WorldWideScience

Sample records for nuclear research institutes

  1. The United Nuclear Research Institute

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    The UNRI, the only common institute of the socialist countries was founded in 1956 in Dubna. The scientists of small countries have the opportunity to take part in fundamental research with very expensive devices which are usually not available for them. There are six research laboratories and one department in the UNRI namely: the theoretical physical laboratory; the laboratory of high energies - there is a synchrophasotron of 1a GeV there; the laboratory of nuclear problems - there is a synchrocyclotron of 680 MeV there; the laboratory of nuclear reactions with the cyclotron U-300 which can accelerate heavy ions; the neutronphysical laboratory with the impulse reactor IBM-30; the laboratory of computation and automatization with two big computers; the department of new acceleration methods. The main results obtained by Hungarian scientist in Dubna are described. (V.N.)

  2. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  3. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)

  4. Central Institute for Nuclear Research (1956 - 1979)

    International Nuclear Information System (INIS)

    Flach, G.; Bonitz, M.

    1979-12-01

    The Central Institute for Nuclear Research (ZfK) of the Academy of Sciences of the GDR is presented. This first overall survey covers the development of the ZfK since 1956, the main research activities and results, a description of the departments responsible for the complex implementation of nuclear research, the social services for staff and the activities of different organizations in the largest central institute of the Academy of Sciences of the GDR. (author)

  5. Nuclear Research Institute Rez view

    International Nuclear Information System (INIS)

    Biza, K.; Pazdera, F.; Vasa, I.; Zdarek, J.

    2004-01-01

    In this presentation author deals with the present state and perspectives of nuclear energy in the Czech Republic and in the Slovak Republic. It is concluded that lifetime extension and finalization of Mochovce NPP Units 3 and 4 is the cheapest solution for base load production of electricity and is in line with the European union energy challenges: - decrease of carbon dioxide emissions; dependence on energy sources from politically unstable regions; decrease import dependence on energy sources. Nuclear energy is one of important sources for long term sustainability in energy. GEN IV is successful with meet the new requirements after 2025. We should participate on this long term development effort

  6. Overview of research potential of Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Ciocanescu, Marin

    2007-01-01

    The main organizations involved in nuclear power production in Romania, under supervision of Presidency, Prime Minister and Parliament are: CNCAN (National Commission for Nuclear Activities Control), Nuclear Agency, Ministry of Economy and Commerce, ANDRAD (Waste Management Agency), SNN (Nuclearelectrica National Society), RAAN (Romanian Authority for Nuclear Activities), ICN (Institute for Nuclear Research - Pitesti), SITON (Center of Design and Engineering for Nuclear Projects- Bucharest); ROMAG-PROD (Heavy Water Plant), CNE-PROD (Cernavoda Nuclear Power Plant - Production Unit), CNE-INVEST (Cernavoda Nuclear Power Plant -Investments Unit), FCN (Nuclear Fuel Factory). The Institute for Nuclear Research, Pitesti INR, Institute for Nuclear Research, Pitesti is endowed with a TRIGA Reactor, Hot Cells, Materials Laboratories, Nuclear Fuel, Nuclear Safety Laboratories, Nuclear Fuel, Nuclear Safety. Waste management. Other research centers and laboratories implied in nuclear activities are: ICIT, National Institute for cryogenics and isotope technologies at Rm Valcea Valcea. with R and D activity devoted to heavy water technologies, IFIN, Institute for nuclear physics and engineering, Bucharest, as well as the educational institutions involved in atomic energy applications and University research, Politechnical University Bucharest, University of Bucharest, University of Pitesti, etc. The INR activity outlined, i.e. the nuclear power research as a scientific and technical support for the Romanian nuclear power programme, mainly dedicated to the existing NPP in the country (CANDU). Focused with priority are: - Nuclear Safety (behavior of plant materials, components, installations during accident conditions and integrity investigations); - Radioactive Waste Management Radioactive; - Radioprotection; Product and services supply for NPP. INR Staff numbers 320 R and D qualified and experienced staff, 240 personnel in devices and prototype workshops and site support

  7. Termination of past nuclear activities at the nuclear research institute

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    Many countries, particularly in Europe, started with nuclear programs in the fifties of the last century. As a consequence nuclear research institutes were established, among them also the Institute Jozef Stefan (IJS) in Slovenia. The nuclear activities at the IJS were related to the development of uranium ore processing technology and technologies comprising uranium oxide and hexafluoride. After very intensive period of nuclear activities the decline began step by step due to different reasons. Various approaches of the termination and decommissioning of facilities were used. The inspectors of the Slovenian Nuclear Safety Administration (SNSA), the responsible authority, started intensive activities at the IJS at the end of 2004. All together 22 research laboratories or research units were included in the inspection program and around 50 researchers of the IJS were involved into the inspection procedures. The inspection was very intensive in the laboratories and storages where past nuclear activities took place and were later on abandoned. As a result several contaminated equipments and sites in addition to around 200 unregistered sources were found. The majority of these sources is related to past nuclear activities. The inspection program related to the terminated research activities is still in progress. The IJS immediately started with the remediation activities including the development of methodology related to decontamination of radioactive liquids. The decontamination of two nuclear laboratories and three different storages of radioactive waste at its sites is in progress. Sixty of the above mentioned sources have been already stored in the Central Interim Storage for Radioactive Waste. (author)

  8. The Swiss Institute for Nuclear Research SIN

    CERN Document Server

    Pritzker, Andreas

    2014-01-01

    This book tells the story of the Swiss Institute for Nuclear Research (SIN). The institute was founded in 1968 and became part of the Paul Scherrer Institute (PSI) in 1988. Its founding occurred at a time when physics was generally considered the key discipline for technological and social development. This step was unusual for a small country like Switzerland and showed courage and foresight. Equally unusual were the accomplishments of SIN, compared with similar institutes in the rest of the world, as well as its influence on Swiss, and partially also on international politics of science. That this story is now available in a widely understandable form is due to the efforts of some physicists, who took the initiative as long as contemporary witnesses could still be questioned. As is usually the case, official documents always show just an excerpt of what really happened. An intimate portrayal of people who contributed to success requires personal memories. This text relies on both sources. In addition, the e...

  9. Institute of Nuclear Physics, mission and scientific research activities

    International Nuclear Information System (INIS)

    Zoto, J.; Zaganjori, S.

    2004-01-01

    The Institute of Nuclear Physics (INP) was established in 1971 as a scientific research institution with main goal basic scientific knowledge transmission and transfer the new methods and technologies of nuclear physics to the different economy fields. The organizational structure and main research areas of the Institute are described. The effects of the long transition period of the Albanian society and economy on the Institution activity are also presented

  10. National Nuclear Research Institute (NNRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The 2015 report of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission (GAEC) lists various programmes undertaken by the Institute under the following headings: Water resources programme, Energy Research programme, Environmental and Health Safety Programme, Digital Instrumentation programme, Nuclear Applications and Materals programme and Radiation Occupational safety programme. Also, included are abstracts of publications and technical reports.

  11. Central Institute of Nuclear Research Rossendorf 25 years old

    International Nuclear Information System (INIS)

    Hohmuth, K.; Kaun, K.H.; Schmidt, A.; Hennig, K.; Brinckmann, H.F.; Lehmann, E.; Rossbander, W.; Bitterlich, H.; Weibrecht, R.; Fuelle, R.; Nebel, D.; Reetz, T.; Beyer, G.J.; Muenze, R.

    1981-12-01

    A colloquium dedicated the 25th anniversary of the foundation of the Central Institute for Nuclear Research of the GDR Academy of Sciences was held on January, 21st, '81. 13 papers were given which dealt with aspects of the institute's history as well as with modern trends in nuclear and solid state physics, nuclear energy and chemistry, radioisotope production, radiation protection and nuclear information. (author)

  12. Shanghai institute of nuclear research, academia sinica annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Annual Report is a comprehensive review of achievements made by Shanghai Institute of Nuclear Research (SINR), Academia Sinica in 1991, Which concerns nuclear physics (theories, experimentation, and application), nuclear chemistry (radiochemistry, radiopharmaceuticals, labelled compounds, analytical chemistry), radiation chemistry, accelerator physics and technology, nuclear detectors, computer application and maintenance, laboratory engineering, radiation protection and waste treatment. The maintenance, reconstruction and operation of its major facilities are also described

  13. Biotechnology and Nuclear Agriculture Research Institute (BNARI) at a glance

    International Nuclear Information System (INIS)

    2007-01-01

    Biotechnology and Nuclear Agriculture Research Institute (BNARI) was established in 1993 as one of the research, development and technology transfer institutes of the Ghana Atomic Energy Commission (GAEC). This was to help the GAEC to expand its research and development in the area of biotechnology and nuclear agriculture, which have been found to have a major impact on the agricultural development in countries involved in peaceful application of nuclear energy. The main objective of the Institute is to explore and exploit the application of isotopes, ionizing radiation and biotechnologies for increased agricultural and economic development of Ghana and to help the Country attain self-sufficiency in food and agriculture in order to alleviate malnutrition, hunger and poverty. This brochure describes the organizational structure; research facilities and programmes; services of the various departments of the Institute as well as achievements

  14. Economic management model of nuclear power plant research institute

    International Nuclear Information System (INIS)

    Schultz, O.

    1993-01-01

    Brief information about the development of economic management and processing of economic information in the Nuclear Power Plants Research Institute Trnava is given in the paper. The existing economic management model of the Institute impacts positively the fulfillment of economic indicators. When applying this model, activities of individual divisions are emphasized and presentation of the Institute as a global professional capacity is suppressed. With regards to this influence, it will be necessary to look for such system elements that will impact the integrity of the Institute in the future period positively

  15. 30 years of Central Institute for Nuclear Research at Rossendorf

    International Nuclear Information System (INIS)

    Scheler, W.; Flach, G.; Hennig, K.; Collatz, S.; Muenze, R.; Baldeweg, F.

    1986-10-01

    A celebration and a scientific colloquium dedicated the 30th anniversary of the foundation of the Central Institute for Nuclear Research (CINR) of the GDR Academy of Sciences were held on January, 23rd and 24th, '86 at Rossendorf. The speaches and lectures given by the president of the GDR Academy of Sciences and by scientists of the CINR dealt with problems of policy of science, history of the CINR, nuclear methods, microelectronics, nuclear energy research, development and production of radioisotopes and scientific instruments. (author)

  16. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    The JOINT INSTITUTE FOR NUCLEAR RESEARCH, JINR, was established by its founding countries in 1956 with the purpose of joining together the scientific and material potential of Member States in studies of the fundamental properties of matter. JINR is an international inter-governmental scientific research organization, whose activities are based on the principles of openness for participation to all interested states and of their equal, mutually beneficial collaboration.

  17. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Multimedia

    1999-01-01

    The JOINT INSTITUTE FOR NUCLEAR RESEARCH, JINR, was established by its founding countries in 1956 with the purpose of joining together the scientific and material potential of Member States in studies of the fundamental properties of matter. JINR is an international inter-governmental scientific research organization, the activities of which are based on the principles of openness for participation to all interested states of their equal, mutually beneficial collaboration.

  18. Institutional radioactive waste management in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Kovarik, P.; Svoboda, K.; Podlaha, J.

    2008-01-01

    Nuclear research institute Rez, plc. (mentioned below as NRI) has had a dominant position in the area of the nuclear research and development in the Czech Republic, the Central and the Eastern Europe. Naturally, the radioactive waste management is an integral part of the nuclear industry, research and development. For that reason, there is Centre of the radioactive waste management (mentioned below as Centre) in the NRI. This Centre is engaged in the radioactive waste treatment, decontamination, characterisation, decommissioning and other relevant activities. This paper describes the system of technology and other information about institutional radioactive waste management in the NRI. (authors)

  19. Annual report of Nuclear Science Research Institute, JFY2006

    International Nuclear Information System (INIS)

    2008-03-01

    Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and seven departments such as Department of Operational Safety Administration, Department of Radiation Protection, Department of Research Reactor and Tandem Accelerator, Department of Hot Laboratories and Facilities, Department of Criticality and Fuel Cycle Research Facilities, Department of Decommissioning and Waste Management, and Engineering Services Department. This annual report of JFY2006 summarizes the activities of NSRI, the R and D activities of the Research and Development Directorates and human resources development at site, and is expected to be referred to and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to 'Middle-term Plan' successfully and effectively. In chapter 1, outline of JFY2006 activities of NSRI is described. In chapter 2, the following activities made by the departments in NSRI are summarized, i.e., (1) operation and maintenance of research reactors (JRR-3, JRR-4, NSRR), criticality assemblies (STACY, TRACY, FCA, TCA), hot laboratories (BECKY, Reactor Fuel Examination Facility, WASTEF, Research Laboratory 4, Plutonium Research Laboratory 1, Tokai Hot Laboratory, etc), and large-scale facilities (Tandem accelerator, LSTF, THYNC, TPTF, etc), and (2) safety management, radiation protection, management of radioactive wastes, decommissioning of nuclear facilities, engineering services, utilities and maintenance, etc, all of which are indispensable for the stable and safe operation and utilization of the research facilities. The technical developments for the advancement of the related technologies are also summarized. In chapter 3, the R and D and human resources development activities are described including the topics of the research works and projects performed by the Research and Development Directorates at site, such as

  20. System of institutional radioactive waste management in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Podlaha, J.; Burian, P.

    2005-01-01

    The Nuclear Research Institute Rez plc (NRI) is a leading institution in the area of nuclear Research and Development in the Czech Republic. The NRI has had a dominant position in the nuclear programme since it was established in 1955 as a state-owned research organization and it has developed to its current status. In December 1992 the NRI has been transformed into a joint-stock company. The NRI's activity encompasses nuclear physics, chemistry, nuclear power, experiments at the research reactor and many other topics. Main issues addressed in the NRI in the past decades were concentrated on research, development and services provided to the nuclear power plants operating WWER reactors, development of chemical technologies for fuel cycle and irradiation services to research and development in the industrial sector, agriculture, food processing and medicine. At present the research activities are mainly targeted to assist the State Office for Nuclear Safety -the nuclear safety regulating body, power plant operator and nuclear facilities contractors. Significant attention is also paid to the use of nuclear technology outside the nuclear power sector, providing a wide range of services to industry , medicine and the preparation of radiopharmaceuticals. NRI operates two research nuclear reactors and another facilities such as a hot cell facility , research laboratories, technology for radioactive waste (RAW) management, 60 Co irradiators, an electron accelerator, etc. In this paper the Centre of RAW management, system of RAW management, facilities for RAW management as well as decontamination and decommissioning activities of the NRI are presented. The NRI provides complex services in the area of RAW management and has gained many experience and full qualification not only in this area but also in the area of decontamination and decommissioning and spent fuel management. The NRI guarantees safe RAW and spent fuel management. (authors)

  1. Annual report of Nuclear Science Research Institute, JFY2005

    International Nuclear Information System (INIS)

    2007-04-01

    Japan Atomic Energy Agency (JAEA) was inaugurated on October 1st, 2005. Works for the operation and maintenance of various research facilities as well as safety management, radiation protection, and radioactive wastes management, which have been undertaken by departments in Tokai Research Establishment of Japan Atomic Energy Research Institute (JAERI), were inherited by newly established departments of Nuclear Science Research Institute (NSRI). The NSRI is composed of Planning and Coordination Office and seven departments such as Department of Operational Safety Administration, Department of Radiation Protection, Department of Research Reactor and Tandem Accelerator, Department of Hot Laboratories and Facilities, Department of Criticality and Fuel Cycle Research Facilities, Department of Decommissioning and Waste Management, and Engineering Services Department. This annual report of JFY 2005 summarizes the activities of NSRI and is expected to be referred to and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to Middle-term Plan' successfully and effectively. In chapter 1, outline of organization and administrative activities of NSRI is described. In chapter 2, the following activities made by the departments in NSRI are summarized, i.e., (1) operation and maintenance of research reactors (JRR-3, JRR-4, NSRR), criticality assemblies (STACY, TRACY, FCA, TCA), hot laboratories, (BECKY, Reactor Fuel Examination Facility, WASTEF, Research Laboratory 4, Plutonium Research Laboratory 1, Tokai Hot Laboratory, etc), and large-scale facilities (Tandem accelerator, LSTF, THYNC, TPTF, etc), and (2) safety management, radiation protection, management of radioactive wastes, decommissioning of nuclear facilities, engineering services, utilities and maintenance, etc, all of which are indispensable for the stable and safe operation and utilization of the

  2. Accounting for and control of nuclear material at the Central Institute of Nuclear Research, Rossendorf

    International Nuclear Information System (INIS)

    Heidel, S.; Rossbander, W.; Helming, M.

    1983-01-01

    A survey is given of the system of accounting for and control of nuclear material at the Central Institute for Nuclear Research, Rossendorf. It includes 3 material balance areas. Control is implemented at both the institute and the MBA levels on the basis of concepts which are coordinated with the national control authority of the IAEA. The system applied enables national and international nuclear material control to be carried out effectively and economically at a minimum of interference with operational procedures. (author)

  3. Environmental monitoring program of a nuclear research institute

    International Nuclear Information System (INIS)

    Peixoto, Claudia Marques; Jacomino, Vanusa Maria Feliciano; Dias, Fabiana F.

    2009-01-01

    The main activities of the CDTN Research Institute are concentrated in the areas of reactors, materials, process engineering, the environment, health, radioprotection, radioactive waste, and applied physics. Its Environmental Monitoring Program (EMP) began in 1985 with the objective of evaluating and controlling its installations' operating conditions as well as the impact on the neighboring environment caused by release of stable and radioactive elements. EMP's adequate planning and management resulted in obtaining an unique database that has generated information which have contributed to improving the credibility of nuclear and non-nuclear activities developed by the Center with the local community. Besides this, the data collection, study and continuous and systematic follow-up processes of environmental variables allowed the Center to be one of the Nation's pioneering research institutions in obtaining an Environmental Operating License from the Brazilian Environment and Natural Resources Institute (IBAMA). The objective of the present work is to present the experience acquired during the years, including a discussion about methodologies employed as well as the importance of using statistical evaluation tools in evaluating, interpreting, and controlling the quality of the results. Liquid effluent control and surface water monitoring results are also presented. (author)

  4. Nuclear Research and Development Institutes in Central and Eastern Europe

    International Nuclear Information System (INIS)

    2009-06-01

    The science and technology (S and T) sector is faced today with complex and diverse challenges. National science budgets are under pressure, and many countries are changing how research and development (R and D) is funded, reducing direct subsidies and introducing competition for both governmental and alternative sources of revenue. On the other hand, the transition toward knowledge-based economies is creating new opportunities in the S and T sector as governments look to it to foster economic growth through innovation. A number of countries in Central and Eastern Europe have recently joined the European Union (EU) which has defined the Lisbon Strategy to create a 'knowledge triangle' of research, education and innovation to underpin the European economic and social model, and economic growth. This strategy seeks to increase investment in science and technology across the EU to a target of 3% of GDP by 2010, with two-thirds of funds coming from the private sector. By comparison, funding for R and D in most Central and Eastern European countries is only around 1% GDP, of which about 90% is provided by the governments. R and D has become more international, reflecting a more interdependent and globalized world. R and D progress is not only of interest to individual countries but also tries to respond to the needs of a broader society. Governments still maintain national networks, but increasingly emphasize international cooperation, both to avoid duplication of expensive infrastructure, and because scientific excellence requires an exchange of ideas and cooperation that crosses borders. These challenges and opportunities directly impact the research and development institutes (RDIs), including the nuclear RDIs. It is important for the nuclear RDIs to take account of these trends in the broader S and T sector in their vision and strategy. Several nuclear RDIs have become very successful, but others are struggling to adapt. The challenges have been particularly severe

  5. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  6. Emergency planning and preparedness of the Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Luong, B.V.

    2001-01-01

    The effectiveness of measures taken in case of accident or emergency to protect the site personnel, the general public and the environment will depend heavily on the adequacy of the emergency plan prepared in advance. For this reason, an emergency plan of the operating organization shall cover all activities planned to be carried out in the event of an emergency, allow for determining the level of the emergency and corresponding level of response according to the severity of the accident condition, and be based on the accidents analysed in the SAR as well as those additionally postulated for emergency planning purposes. The purpose of this paper is to present the practice of the emergency planning and preparedness in the Dalat Nuclear Research Institute (DNRI) for responding to accidents/incidents that may occur at the DNRI. The DNRI emergency plan and emergency procedures developed by the DNRI will be discussed. The information in the DNRI emergency plan such as the emergency organization, classification and identification of emergencies; intervention measures; the co-ordination with off-site organizations; and emergency training and drills will be described in detail. The emergency procedures in the form of documents and instructions for responding to accidents/incidents such as accidents in the reactor, accidents out of the reactor but with significant radioactive contamination, and fire and explosion accidents will be mentioned briefly. As analysed in the Safety Analysis Report for the DNRI, only the in-site actions are presented in the paper and no off-site emergency measures are required. (author)

  7. 77 FR 9273 - WORKSHOP Sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute...

    Science.gov (United States)

    2012-02-16

    ... Commission and the Electric Power Research Institute on the Treatment of Probabilistic Risk Assessment.... SUMMARY: The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), in cooperation with the Electric Power Research Institute (EPRI), will hold a joint workshop on the Treatment of...

  8. Radiation processing project at the Institute of Nuclear Energy Research

    International Nuclear Information System (INIS)

    Tsai, C.M.; Fu, Y.K.; Yang, Y.H.; Chen, Y.T.; Wei, Y.H.; Lee, K.P.; Wang, Y.K.

    1981-01-01

    The utilization of scientific approach to preserve and sterilize the agricultural products has long been studied since 1954 and was adopted by several countries gradually since 1958. Starting from July 1977 this Institute began to study the preservation of potatoes and onions with reference to sprout inhibition which is discussed and its economical aspect is evaluated. The design concept of a megacurie 60 Co irradiator at this Institute is illustrated. The progress of construction work for the irradiator and the safety device in particular are reported. Current research project on the preservation of agricultural products in this Institute is presented. (author)

  9. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  10. Main tasks of the Nuclear Research Institute in the period till the year 2000

    International Nuclear Information System (INIS)

    Podest, M.

    1989-06-01

    The main tasks of the Nuclear Research Institute will be oriented to: safety of nuclear power installations; expert and diagnostic systems for such installations; the effect of operating medium on the life of nuclear power plants; disposal of radioactive wastes; prospective nuclear sources; research into and development of radiopharmaceuticals; radiation technologies and methods. Specific tasks are itemized. The statute of the Institute is attached. (J.B.). 1 tab

  11. Research activities at nuclear research institute in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, Jan

    2000-01-01

    Research activities at Nuclear Research Institute Rez (NRI) are presented. They are based on former heavy water reactor program and now on pressurized reactors VVER types which are operated on Czech republic. There is LVR-15 research reactor operated in NRI. The reactor and its experimental facilities is utilized for water chemistry and corrosion studies. NRI services for power plants involve water chemistry optimalization, radioactivity build-up, fuel corrosion and structural materials corrosion tests. (author)

  12. The Institute for Nuclear Research and Nuclear Energy - present state and future prospects

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy is the biggest one within Bulgarian Academy of Sciences and it is a leading complex center for research and application of the nuclear physics in Bulgaria. The year 2003 was the first for the functioning of the new organization structure of INRNE consisting of 26 laboratories and 4 scientific experimental bases joined according their thematic in 7 scientific directions governed by the correspondent Expert Councils and Specialised Seminars. The scientific staff of the Institute has been worked on about 104 problems during the 2003 mainly on our traditional scientific areas, in particular, in the field of: theory of the elementary particles, field theory, atomic nuclei and quantum phenomena; experimental physics of the elementary particles, nuclear reactions, structure of atomic nuclei, cosmic rays and gamma-astrophysics at ultra high energies; neutron interactions and cross sections, physics of the fission; reactor physics, nuclear energy and nuclear safety and security ect. Now the results are already present and, as can been seen, almost half of the developments are connected with the problems of scientific support of the national nuclear energy production, radioactive waste, monitoring and management of the environment. With few exceptions, all these tasks are financially supported by national, foreign and international organizations. The fundamental end applied research results for 2003 have been accepted for publication or published in more than 300 articles in journals and proceeding of many international conferences. Large amount of these results has been obtained in close collaboration with international and foreign research centers, universities and institutions. Essential progress was obtained by the modernization of the scientific experimental bases of INRNE. The technical design project for the reconstruction of the old research reactor IRT 2000 in the new IRT 200 was successfully finished. The

  13. 20 th anniversary of the Nuclear Research Institute (UJV)

    International Nuclear Information System (INIS)

    Havel, S.

    1975-01-01

    The importance of NRI founded twenty years ago, its original mission and tasks in the period of its establishement and the growth of its experimental base made possible by Soviet assistance are shown. A new mission of NRI after its reorganization and its incorporation in the Czechoslovak Atomic Commision is discussed. The survey of main research efforts aimed at the implementation of the programme of the Czechoslovak nuclear power and at meeting the needs of the Czechoslovak national economy is given. (author)

  14. Scientific and technological activity in the National Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Escobar A, L.; Monroy G, F.; Morales R, P.; Romero H, S.

    2008-01-01

    The present book was published on the occasion of the 50 years of the existence of the Institute, from its creation in 1956 like National Commission of Nuclear Energy to 1979 that arises like National Institute of Nuclear Research. The objective of this publication is the one to leave a writing testimony of all the activities that are realized in the National Institute of Nuclear Research and an accessible language within the diverse subjects boarded. Referring subjects to the activities of nuclear physics, radiochemistry, research and development of materials, dosimetry, plasma physics, production of radiopharmaceuticals, tissue sterilization by radiation, food irradiation and other included. (Author)

  15. Safeguards at the Central Institute for Nuclear Research at Rossendorf/GDR

    International Nuclear Information System (INIS)

    Helming, M.; Rehak, W.; Schillert, B.

    1989-01-01

    Experience in the implementation of domestic and international safeguards at the Central Institute for Nuclear Research at Rossendorf is reported covering the following topics: overview of the main nuclear installations belonging to the Institute; structure of its material balance areas; responsibilities for the different aspects of accounting for and control of nuclear material at facility level; the various types of nuclear materials handled and their flow, accessibility and strategic significance; the assessment of IAEA safeguards effectiveness. 2 tabs., 2 figs. (author)

  16. National Nuclear Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This annual report covers the research and commercial activities of the National Nuclear Research Institute of the Ghana Atomic Energy Commission for the year 2014. Also listed are the scientific and technical publications issued by staff.

  17. Progress report on research of nuclear data and applied nuclear physics at nuclear research institute Viet Nam. For the period January 1 - December 31 1996

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1997-03-01

    This report contains information on activities of nuclear data and applied physics at the Nuclear Research Institute, Dalat, Vietnam for the period January 1st-December 31st 1996. The specific topics covered are the following: Development of filtered neutron beams. Investigation of average characteristics of nuclei in the unresolved enrgy region, Nuclear structure, Nuclear data for applications, Neutron beam utilization for applications, Nuclear analytical techniques and sedimentology

  18. Institute for Radiation Research and Nuclear Physics. Progress report 1990

    International Nuclear Information System (INIS)

    Strohmaier, B.

    1990-01-01

    In this progress report all of the abstracts - except two - are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) radionuclide metrology (5) applications of nuclear methods and (6) nuclear information processing. (botek)

  19. Institute for Radiation Research and Nuclear Physics. Progress report 1990

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, B [comp.

    1991-12-31

    In this progress report all of the abstracts - except two - are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) radionuclide metrology (5) applications of nuclear methods and (6) nuclear information processing. (botek).

  20. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  1. Impact evaluation of the nuclear training program of the Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Relunia, Estrella D.

    2000-01-01

    This study attempted to determine the factors that influenced the impact of the institute's training program in nuclear science and technology to the institution where the trainee works and to the trainee himself and this study involved engineers, scientists, teachers, medical doctor, technologist and professionals who have successfully completed the PNRI nuclear science and technology training courses

  2. Operational safety experience at 14 MW research reactor from Institute for Nuclear Research Pitesti

    International Nuclear Information System (INIS)

    Ciocanescu, M.

    2007-01-01

    The main challenges identified in TRIGA Research Reactor operated in Institute for Nuclear Research in Pitesti, Romania, are in fact similar with challenges of many other research reactors in the world, those are: Ageing of work forces and knowledge management; Maintaining an enhanced technical and scientific competences; Ensuring adequate financial and human resources; Enhancing excellence in management; Ensuring confidence of stakeholders and public; Ageing of equipment and systems.To ensure safety availability of TRIGA Research Reactor in INR Pitesti, the financial resources were secured and a large refurbishment programme and modernization was undertaking by management of institute. This programme concern the modernization of reactor control and safety systems, primary cooling system instrumentation, radiation protection and releases monitoring with new spectrometric computerized abilities, ventilation filtering system and cooling towers. The expected life extension of the reactor will be about 15 years

  3. Materials of the Annual Scientific Conference of the Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Vishnevs'kij, Yi.M.

    1998-01-01

    The Proceedings contain reports which were presented at current Annual scientific conference of the Institute for Nuclear Research, National Academy of Sciences (Kiev, January 27-30, 1998). The articles are presented in the sections which corresponds to the main scientific directions of the Institute activity: Nuclear Physics, Nuclear Reactor Safety, Radiation physics, Plasma Physics, Radioecology and Radiobiology. Each Proceedings Sections contain the following sequence of the works: theoretical, experimental, applied and methodological. The Proceeding are printed by means of direct reproduction

  4. Institute for Radiation Research and Nuclear Physics. Progress report 1991

    International Nuclear Information System (INIS)

    Strohmaier, B.

    1991-01-01

    In this progress report all of the abstracts are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) applications of nuclear methods and (5) environmental investigations. (botek)

  5. Institute for Radiation Research and Nuclear Physics. Progress report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, B [comp.

    1992-12-31

    In this progress report all of the abstracts are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) applications of nuclear methods and (5) environmental investigations. (botek).

  6. Automatic processing of list of journals and publications in the Nuclear Research Institute

    International Nuclear Information System (INIS)

    Vymetal, L.

    Using an EC 1040 computer, the Institute of Nuclear Research processed the list of journals in the reference library of the Czechoslovak Atomic Energy Commission including journals acquired by all institutions subordinated to the Czechoslovak Atomic Energy Commission, ie., UJV Rez (Nuclear Research Institute), Nuclear Information Centre Prague, UVVVR Prague (Institute for Research, Production and Application of Radioisotopes) and Institute of Radioecology and Applied Nuclear Techniques Kosice. Computer processing allowed obtaining files arranged by libraries, subject matters of the journals, countries of publication, and journal titles. Automated processing is being prepared of publications by UJV staff. The preparation is described of data for computer processing of both files and specimens are shown of printouts. (Ha)

  7. Annual report-2011. Institute for Nuclear Research National Academy of Sciences of Ukraine

    International Nuclear Information System (INIS)

    Iivanyuk, F.O.

    2012-01-01

    Annual report contains information on the fundamental, scientific and applied investigations carried out in the Institute for Nuclear Research of the National Academy of Sciences of Ukraine in the year 2010. The report contains abstracts of research works in the fields of nuclear physics, atomic energy, radiation physics and radiation material science, physics of plasma, radiation ecology and biology.

  8. Lenin nuclear reactor research institute in the tenth five-year plan

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Kulov, E.V.

    1980-01-01

    Main tasks and research results of Lenin Nuclear Reactor Reseach Institute in the 10-th Five-Year Plan are considered. Main research achievements are noted in nuclear power, radiation material testing, accumulation of transuranium elements and investigation of their physicochemical properties at VK-50, BOR-60, SM-2, RBT-6 and MIR reactor plants and in material testing laboratories

  9. Research reactors spent fuel management in the Nuclear Research Institute Rez

    International Nuclear Information System (INIS)

    Rychecky, J.

    2001-01-01

    In Czech Republic 3 research and testing nuclear reactors are operated at present time, with the biggest one being the Nuclear Research Institute (NRI) reactor LVR-15, operated with maximum power 10 MW. This reactor serves as a radiation source for material testing, producing of ionizing radiation sources, theoretical studies, and, most recently, for boron neutron capture therapy. Another NRI reactor LR-0 is a reactor of zero power used mainly for the studies of WWER 1000 spent fuel criticality. For training of students the reactor called VRABEC (VR-1), operated also with very low power, serves since 1990 at the Faculty of Nuclear Engineering, of Czech Technical University. The similar testing type reactor (SR-0), already decommissioned, was also used since 1974 to 1989 in Skoda, Nuclear Machinery, Plzen. This contribution summarizes the present state of the spent fuel (SF) management of these nuclear reactors. As the SF management is different for very low or zero power reactors and power reactors, the first type will be only briefly discussed, and then the main attention will be devoted to SF management of the NRI experimental reactor LVR-15

  10. Research reactors spent fuel management in the Nuclear Research Institute Rez

    Energy Technology Data Exchange (ETDEWEB)

    Rychecky, J. [Nuclear Research Institute, 25068 Rez (Czech Republic)

    2001-07-01

    In Czech Republic 3 research and testing nuclear reactors are operated at present time, with the biggest one being the Nuclear Research Institute (NRI) reactor LVR-15, operated with maximum power 10 MW. This reactor serves as a radiation source for material testing, producing of ionizing radiation sources, theoretical studies, and, most recently, for boron neutron capture therapy. Another NRI reactor LR-0 is a reactor of zero power used mainly for the studies of WWER 1000 spent fuel criticality. For training of students the reactor called VRABEC (VR-1), operated also with very low power, serves since 1990 at the Faculty of Nuclear Engineering, of Czech Technical University. The similar testing type reactor (SR-0), already decommissioned, was also used since 1974 to 1989 in Skoda, Nuclear Machinery, Plzen. This contribution summarizes the present state of the spent fuel (SF) management of these nuclear reactors. As the SF management is different for very low or zero power reactors and power reactors, the first type will be only briefly discussed, and then the main attention will be devoted to SF management of the NRI experimental reactor LVR-15.

  11. Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within First Phase

    International Nuclear Information System (INIS)

    Nguyen Xuan Hai; Nguyen Nhi Dien; Pham Dinh Khang; Pham Ngoc Tuan; Tuong Thi Thu Huong

    2016-01-01

    This report presents results of a research project “Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within first phase”. In the frameworks of the project, a guiding document on 27 Ortec’s experiments was translated into Vietnamese. Several equipment are used in the experiments such as neutron howitzer, gamma counter, multi-channel analyzer and alpha-gamma coincidence spectroscopy were designed and fabricated. These products contributed to improving the ability of research and training of Training and Education Center, Nuclear Research Institute (NRI). (author)

  12. Southern Universities Nuclear Institute

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Southern Universities Nuclear Institute was created in 1961 to provide postgraduate research and teaching facilities for the universities of Cape Town and Stellenbosch. The main research tool is the 6,0 MV Van de Graaff accelerator installed in 1964. Developments and improvements over the years have maintained the Institute's research effectiveness. The work of local research groups has led to a large number of M Sc and doctorate degrees and numerous publications in international journals. Research at the Institute includes front-line studies of basic nuclear and atomic physics, the development and application of nuclear analytical techniques and the application of radioisotope tracers to problems in science, industry and medicine. The Institute receives financial support from the two southern universities, the Department of National Education, the CSIR and the Atomic Energy Board

  13. Facility and application of nuclear and supplementary analytical techniques at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Nguyen Mong Sinh; Ho Manh Dung; Nguyen Thanh Binh

    2006-01-01

    The main applications of the nuclear and supplementary analytical techniques (N and SATs) in the Dalat Nuclear Research Institute (DNRI) and the facilities for the techniques are presented. The NATs in DNRI include the neutron activation analysis (NAA) with instrumental, radiochemical and prompt gamma methods (INAA, RNAA, PGNAA), the X-ray fluorescence analysis (XRFA) and the low-level counting and spectrometry. The sample irradiation sites for NAA, the automatic and manual pneumatic transfer systems, were installed at channels 7-1 and 13-2 and rotary rack on the Dalat research reactor. An ORTEC automatic sample changer (model ASC2) for γ-ray counting was equipped. A computer software for NAA based on the k 0 -standardization method for calculation of elemental concentration was developed. The low-level counting and spectrometry techniques have been setup. The devices required for sampling, sample preparation and data processing have also been equipped. The applications of N and SATs for determination of elemental composition, particularly important in providing data so-called trace elements, radionuclides and multi-element have been enlarged for objects of geology, archaeology, bio-agriculture, health-nutrition and environment. The implementation a quality system for N and SATs has been planned and initiated. (author)

  14. Biotechnology and Nuclear Agricultural Research Institute (BNARI) - Annual Report January-December 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Biotechnology and Nuclear Agriculture Research Institute (BNARI) of the Ghana Atomic Energy Commission (GAEC) exists carry out research and development activities on safe applications of biotechnology and nuclear science and transfer these technologies to end-users for increased agricultural production, health, industrial and economic development for poverty alleviation in Ghana. The 2015 Annual Report covers the organisational structure; various research activities and abstracts of publications. Also listed are training courses and seminars organised during the reporting year.

  15. The evolution of the role of the Philippine Nuclear Research Institute in the national nuclear and radiation safety regime

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.

    2007-01-01

    The Philippine Nuclear Research Institute (PNRI), formerly the Philippine Atomic Energy Commission (PAEC) was created by law in 1958 with a dual mandate namely, to promote the peaceful applications of nuclear energy, and to regulate the safe utilization of nuclear energy. Through its almost 50 years of existence, the PNRI has assumed different roles and functions. As the premier national nuclear research institution the PNRI initiates R and D work in various applications, establishes nuclear and radiation facilities, and undertakes human resource development not only for its staff but also for the prospective users of nuclear energy. At the same time, the PNRI exercises regulatory control over radioactive materials in the country including the regulatory control over the construction of the first Philippine nuclear power plant in the late 1970's and early 1980's. Presently, the PNRI still exercises the dual mandate of promoting and regulating the peaceful and safe use of radioactive materials. In these evolving roles of the Institute, both management and the staff are committed to excellence in nuclear science and to nuclear safety. Initiatives are underway to create a separate nuclear regulatory body from the developmental agency to enable the country to conform with international safety standards and to prepare for the future re-introduction of nuclear power in the Philippine energy mix. A strong regulatory agency and an equally strong technical and scientific support organization are necessary for a successful and safe nuclear energy program. (author)

  16. Shanghai institute of nuclear research, academia sinica annual report (1993-1994)

    International Nuclear Information System (INIS)

    1996-01-01

    This report is a comprehensive review of achievements made by Shanghai Institute of Nuclear Research (SINR), Academia Sinica in the period of 1993-1994, which concerns nuclear physics (theories, experimentation, and application), nuclear chemistry (radiochemistry, radiopharmaceuticals, labelled compounds, analytical chemistry), radiation chemistry, nuclear detectors, development and industrialization of nuclear techniques. The maintenance, reconstruction and operation of its major facilities are also described. There are keywords in each paper. In addition, a series of lists concerning awarded scientific technologies, scientific exchanges, scientific publications, academic activities and etc, is also included in the appendix

  17. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Felicia Angelica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.; Waymire, Russell L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  18. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-01-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  19. Central Scientific and Research Institute of Nuclear Information as the branch centre of information on nuclear science and engineering

    International Nuclear Information System (INIS)

    Arkhangel'skij, I.A.; Sokolov, D.D.; Kalinin, V.F.; Nikiforov, V.S.

    1982-01-01

    The main tasks are considered in the scope of the Central Scientific-Research Institute for Information and Technological and Economic Studies on Nuclear Science and Technology. (TsNIIAtominform). The institute coordinates scientific research and information activity of information agencies of all the USSR organizations engaged in nuclear science and technology, excercises a centralized completion of their libraries, develops and puts into practice the most progressive methods for the information servicing. The institute is a national INIS center of the USSR. Here a system for the automatic information dissemination has been successfully elaborated and employed. Much of the institute activity is given to the estimation and analysis of information and to the determination of tendencies in the nuclear science and technology development. A conclusion is drawn to the effect that TsNIIAtominform, within 15 years of its existence, has formed as a center ensuring functioning of the system of scientific and technical information on nuclear science and technology

  20. Radioactive waste management at Institute for Nuclear Research (ICN) - Pitesti

    International Nuclear Information System (INIS)

    Bujoreanu, C.

    2004-01-01

    The amounts of liquid and solid wastes accumulated at the Radioactive Wastes Treatment Plant are given. The technologies used for the treatment and conditioning of radioactive wastes are presented. The final product is metallic drum-concrete-radioactive wastes (type A package) for the final disposal at the National Repository Baita, Bihor. The facilities for radioactive waste management at ICN Pitesti are: Plant for treatment, with uranium recovery of liquid radioactive waste resulting from the fabrication of CANDU type nuclear fuel; Plant for treatment of low-active liquid wastes; Plant for conditioning in concrete of the radioactive concentrate obtained during the evaporation treatment of liquid radioactive waste; Plant for incineration of solid radioactive waste contaminated with natural uranium; Plant for treatment and conditioning of organic liquid radioactive waste with tritium content. This wastes are generated by Cernavoda-NPP operation; Plant for conditioning into bitumen of spent ion exchangers at TRIGA reactor. The existing Facility is Baita repository - with two rock cavities of an uranium mine and the total capacity of 21000 containers (200 l drums)

  1. Brief review of topmost scientific results obtained in 2016 at the Joint Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Kravchenko, E.I.; Sabaeva, E.V.

    2017-01-01

    This brief review presents the topmost scientific results obtained in 2016 at the Joint Institute for Nuclear Research in such fields as theoretical and experimental physics, radiation and radiobiological research, accelerators, information technology and computer physics. It also provides information about the publications by JINR staff members and activities carried out at the JINR University Centre in 2016. [ru

  2. Brief review of topmost scientific results obtained in 2015 at the Joint Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Sabaeva, E.V.; Krupko, E.I.

    2016-01-01

    This brief review presents the topmost scientific results obtained in 2015 at the Joint Institute for Nuclear Research in such fields as theoretical and experimental physics, radiation and radiobiological research, accelerators, information technology and computer physics. It also provides information about the publications by JINR staff members, awards given to JINR scientists, and activities carried out at the JINR University Centre in 2015. [ru

  3. Scientific and technical production of IPEN - Nuclear and Energetic Research Institute, SP, Brazil. 1997-1999

    International Nuclear Information System (INIS)

    2001-01-01

    This document reports the general activities results of technical and scientific research production of the Institute for Energetic and Nuclear Researches, IPEN, Brazil, during the year of 1997-1999, listing journal articles, scientific events (complete texts, communications, abstracts and panels), thesis and dissertations, books, technical and scientific reports

  4. Preservation of nuclear talented experts in Japan by cooperation of industries, research institutes and universities

    International Nuclear Information System (INIS)

    Mori, H.; Miura, K.

    2004-01-01

    Japan has enjoyed decades-long successful development of nuclear power generation and has a nuclear generating capacity of about 46,000,000 kilowatts at present. Construction of a commercial reprocessing plant in Rokkasho is nearing completion. The continuation of Japan's nuclear technology and experience, however, and the challenge of securing technically trained human resources for the future, present serious problems. Recognizing this, the nuclear industry, universities and research institutes have joined in new cooperative efforts to find network-oriented solutions. (author)

  5. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 3 report, Institutional challenges: Volume IV

    International Nuclear Information System (INIS)

    1986-10-01

    The Institutional Challenges Subpanel of the Energy Research Advisory Board's Civilian Nuclear Power Panel was charged with the task of addressing the institutional issues that affect the future of nuclear power in the United States. Barriers created by non-technical issues are generally considered to be primary obstacles to revitalizing the nuclear fission option as part of a robust supply for future electrical generation. The Subpanel examined the following categories of institutional issues: (1) Administration Policy and Leadership, (2) Licensing Reform, (3) Standardized Designs, (4) Shared Financial Risk, (5) State and Economic Regulation, (6) Waste Disposal, and (7) Public Perception. The Subpanel concluded that the Administration and Congress have the opportunity and responsibility to provide leadership in resolving these difficulties. The main report provides information on the background and current situation for each institutional issue and concludes with the set of recommendations for action

  6. The Chemistry Departement of the Institute for Nuclear Physics Research, Amsterdam, The Netherlands

    International Nuclear Information System (INIS)

    Lindner, L.

    1977-01-01

    In 1946, the Institute for Nuclear Physics Research (IKO) in Amsterdam was founded as a typical post World War II effort to cope with the surge in scientific research, primarily in the USA. At present, the Institute encompasses almost 250 workers - including a Philips research group - out of which nearly 30 are members of the Chemistry Department. In the beginning, the investigations dealt with more or less conventional tracerwork using long-lived radionuclides produced in nuclear reactors. This changed rapidly with the synchrocyclotron coming into operation in 1947. The present can be best characterized as a sort of a transition state. Emphasis has been laid upon more typical chemical aspects of the research program: a shift from ''nuclear'' chemistry to ''radio'' chemistry. The future is determined by the 500 MeV linear electron accelerator, dubbed MEA (Medium Energy Accelerator) already under construction. (T.G.)

  7. Materials of the Annual Scientific Conference at the Institute for Nuclear Research. (Collected reports)

    International Nuclear Information System (INIS)

    Vishnevs'kij, Yi.M.; Ostashko, V.V.

    1995-01-01

    The proceeding contain contributed papers submitted to the annual Scientific conference of the Institute for Nuclear Research, Ukraine (kiev, January 1996). The proceedings include reports have been presented on the following sections: Nuclear physics, Solid State physics, Plasma physics, Radio ecology, Reactor safety, Radiation and reactor materials Study. The book is a direct reproduction of the print-ready manuscripts presented by the authors. No corrections have been made in the texts

  8. Karlsruhe Nuclear Research Center, Institute of Materials Research. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute consists of three parts IMF I, IMF II and IMF III. The tasks are divided into applied material physics (IMF I), material and structural mechanics (IMF II) and material process technology (IMF III). IMF I works preferably on the development of metallic, non-metallic and compound materials and on questions of the structure and properties of boundary surfaces and surface protection coatings. The main work of IMF II is the reliability of components, failure mechanics and the science of damage. IMF III examines process technology questions in the context of the manufacture of ceramic materials and fusion materials and the design of nuclear components. The Institute works on various main points of the Kernforschungszentrum in its research work, particularly in nuclear fusion, micro-system technique, nuclear safety research, superconductivity and in processes with little harmful substances and waste. Material and strength problems for future fusion reactors and fission reactors, in powerful micro systems and safety-related questions of nuclear technology are examined. Also, research not bound to projects in the field of metallic, ceramic and polymer materials for high stresses is carried out. (orig.) [de

  9. Radiotoxicology analysis in Nuclear and Energetic Research Institute (IPEN-CNEN/SP)

    International Nuclear Information System (INIS)

    Duarte, C.L.; Gaburo, J.C.; Bellintani, S.A.

    1987-01-01

    The radiotoxicology laboratory of Nuclear and Energetic Research Institute (IPEN) has the objective of control the internal contamination of workers that handle radioactive materials, in industrial and medical sectors. This control is made through radiochemical analysis of excreta. Nowadays in this laboratory are realized occupational controls on individual, exposure to uranium, tritium, iodine, fluorine, lead compounds, for workers of IPEN and for external institutions, when solicited. (C.G.C.) [pt

  10. Retrospect over past 25 years at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Aoki, Shigebumi

    1983-01-01

    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, was established on April 1, 1956, with the aims of the investigation on the peaceful use of nuclear energy and of the education of scientists and engineers in this field. This report reviews the history of the Laboratory during 25 years and traces the process of growth concerning research divisions, buildings, large-scale experimental facilities and the education in the graduate course for nuclear engineering. In addition, considering what the Laboratory has to be and what the future plan will be, it is mentioned that the research interest should be extended to the field of nuclear fusion reactor, especially the blanket engineering, as a long-term future project of the Research Laboratory. (author)

  11. The accelerators of the Joint Institute for Nuclear Research at Dubna

    International Nuclear Information System (INIS)

    Kuehn, B.

    1981-01-01

    History, state-of-the-art, and the planned development of the high-energy and heavy-ion accelerators at the Joint Institute for Nuclear Research at Dubna are reviewed. Data on the particle beams available at present and in the future are given. (author)

  12. Biotechnology and Nuclear Agriculture Research Institute (BNARI) : Annual Report January - December 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The report is a summary of research projects undertaken by various centres of the Biotechnology and Nuclear Agriculture Institute (BNARI) of the Ghana Atomic Energy Commission from January to December 2014. Also included are the lists of published journal articles and technical reports issued by Staff.

  13. Biotechnology and Nuclear Agricultural Research Institute Annual Report January - December 2012

    International Nuclear Information System (INIS)

    2013-01-01

    The annual report highlights the activities of the Biotechnology and Nuclear Agriculture Research Institute (BNARI) of the Ghana Atomic Energy Commission for the year 2012 grouped under the following headings: Overview of programmes and activities; list of publications, conferences, training courses and workshops attended by staff and future projections. (A. B.)

  14. Testing a CANDU-fueling machine at the Institute for Nuclear Research Pitesti

    International Nuclear Information System (INIS)

    Cojocaru, Virgil

    2006-01-01

    In 2003, as a national and European premiere, the Fueling Machine Head no. 4 (F/M) for the Nuclear Power Plant Cernavoda Unit 2 (NPP) was successfully tested at the Institute for Nuclear Research Pitesti (INR). In 2005, the second Fueling Machine (no. 5) has tested for the Nuclear Power Plant Cernavoda Unit 2. The Institute's main objective is to develop scientific and technological support for the Romanian Nuclear Power Program. Testing the Fueling Machines at INR Pitesti is part of the overall program to assimilate the CANDU technology in Romania. To perform the tests of these machines at INR Pitesti, a special testing rig has built being available for this goal. Both the testing rig and staff had successfully assessed by the AECL representatives during two missions. There was a delivery contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 in Romania before testing activity. As a first conclusion, the Institute for Nuclear Research Pitesti has the facilities, the staff and the experience to perform possible co-operations with any CANDU Reactor owner

  15. Champion comparison of prestigious nuclear research institutes by thirty-year research papers written in nuclear advanced countries

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2010-08-01

    A champion of research paper at JAERI and those of foreign prestigious nuclear research institutes (5 from the U.S., 3 from the France and 2 from the Germany) was studied taking the timeframe as long as 30 years (1978-2007) Tools for this bibliometric study were INIS, ECD, WOS and SCOPUS. The former two were general database collected all papers related to nuclear, while the latter two were specified database collected research papers submitted to journals for natural, social sciences and human learning. (1) INIS for the world-wide general tool focused on nuclear judged that JAERI (32,859 papers) was the champion and ORNL (32,395 papers) was the second position. (2) ECD for the US-oriented energy database judged that the ranking was of the order of ORNL(36,608 papers), ANL(26,530) and SNL(24,687). (3) The trend observed in the WOS for the US-oriented database roughly coincided with that of ECD, where ORNL(34,331 papers) was the champion, where JAERI was the 7th position. (4) SCOPUS, basically originated from the Europe judged that that ORNL (32,728 papers) was the champion, where JAERI (16,860) was the 7th position. (5) Different characteristics exhibited by individual databases can sometimes generate conflicting bibliometric results. This was true among INIS, ECD, WOS and SCOPUS when looking at trends between 5-year periods. It implies that results from analytical tools used in bibliometric studies should be viewed with careful consideration to learn of any influencing factors. (6) Use of INIS has predominance in Japan, and use of ECD has predominance in the U.S. Users from developed and developing countries assigned as the Member State of IAEA would be better served using INIS and ECD as the intellectual data source. As the recent trend, WOS and SCOPUS are used as the evaluation tools. (author)

  16. Sustainability indicators for innovation and research institutes of nuclear area in Brazil

    International Nuclear Information System (INIS)

    Alves, S.F.; Barreto, A.A.; Rodrigues, P.C.H.; Feliciano, V.M.D.

    2016-01-01

    Indicators are relevant tools for measuring sustainability process. In this study, the relevance of sustainability indicators appropriate for research and innovation institutes in Brazil is discussed. As reference for case study, nuclear research and innovation institutes were chosen. Sixty-nine sustainability indicators were considered. Some of these indicators were obtained from lists in the literature review, distributed between the dimensions environmental, economic, social, cultural and institutional. The other indicators were developed through discussions between professionals from nuclear, environmental, economic, social and cultural areas. Among the investigated indicators, 32 were selected as being the most relevant. Discrepancies were found during the analysis the opinions of the experts in relation to sustainability dimensions proposed. (author)

  17. Fifteen year's research activities of the INSS Institute of Nuclear Technology and future policy

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    2008-01-01

    Fifteen years have passed since the Institute of Nuclear Safety System, Incorporated (INSS) was founded. This paper reviews the research activities of the Institute of Nuclear Technology in INSS over that time and proposes a policy for future research. First, a chronological table shows the major milestones over the past fifteen years. Notable events include the following. The head office was moved to Mihama-cho where laboratories and experimental facilities were installed; the Institute signed an agreement with the Kansai Electric Power Co., Inc. (KEPCO) on assistance for the preparedness of nuclear emergency; it assisted KEPCO to investigate the causes of the accident at its Mihama Nuclear Power Station Unit 3 and subsequently established the Nuclear Power Plant Aging Research Center, it began providing information on adverse events occurred at nuclear power plants in the world to Japanese electric utilities that own PWRs; it supported the Energy Research and Development Centralization Plan of Fukui Prefecture, and it embarked on a project to develop the Fukui regional cluster in the Fukui and Kinki area under the government's program for aging management of nuclear power plants. The fifteen years of research activities are shown for each research group and for each research project, and then important achievements of the major research projects are described. Finally, the status of research papers published in external Journals and in INSS over the past fifteen years is illustrated and the number of patents acquired during this period is presented. We evaluated our research activities over the fifteen years and reviewed them according to seven items under a future research policy. The plans include the enhancement of system engineering-based research efforts as the name of this Institute implies, and committing ourselves to forward-looking and creative research program focusing on not only from analysis', but also on 'synthesis'. A suitable approach to safety

  18. Activities of Nuclear Research Institute Rez in the area of hydrogen technologies

    International Nuclear Information System (INIS)

    Doucek, A.; Janik, L.; Misak, J.

    2010-01-01

    NRI is a research institution established in 1955. Nowadays, the Institute provides wide range of expertise and services for operators of the nuclear power plants in the Czech Republic and abroad, supports Czech central state institutions in the domains of strategic energy planning and development, management of radioactive waste (for the Ministry of Trade and Industry), provides independent expertise for the State Office of Nuclear Safety, performs activities in the area of exploitation of ionising radiation and irradiation services for basic and applied research, health service and industry, performs research and provides services for radioactive waste disposal, production of radiopharmaceuticals, education and training of experts and scientific specialists and performs many other activities. With the gradual changes in energy policy, hydrogen economy becomes one of the important topics related to nuclear energy. NRI is participating in the research and development in this area and as a member of the Czech Hydrogen Technology Platform is currently the leader in this area in the country. To promote hydrogen economy, NRI prepared and participated in several demonstration projects. Studies on production of hydrogen in current and future nuclear power plants are performed as well. (authors)

  19. Brief review of topmost scientific results obtained in 2013 at the Joint Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Sabaeva, E.V.; Kravchenko, E.I.

    2014-01-01

    This brief review presents the topmost scientific results obtained in 2013 at the Joint Institute for Nuclear Research in such areas as theoretical physics, experimental physics, radiation and radiobiological research, accelerators, information technology and computer physics. It also provides information on the number of publications by JINR staff members, awards given to JINR scientists, and activities carried out at the JINR University Centre in 2013.

  20. Brief review of topmost scientific results obtained in 2014 at the Joint Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Bulatova, V.V.; Sabaeva, E.V.

    2015-01-01

    This brief review presents the topmost scientific results obtained in 2014 at the Joint Institute for Nuclear Research in such fields as theoretical and experimental physics, radiation and radiobiological research, accelerators, information technology and computer physics. It also provides information about the publications by JINR staff members, patents for inventions, awards given to JINR scientists, and activities carried out at the JINR University Centre in 2014. [ru

  1. Nuclear Research Institute Rez: Its past and present and future challenges

    International Nuclear Information System (INIS)

    Pazdera, F.

    2001-01-01

    The paper gives an overview of the history of the Nuclear Research Institute Rez development over forty years of its existence. Its present activities are discussed in some detail. These historical and present activities represent the basis for discussing: challenges faced by the NRI; interactions of NRI with their environment; collaboration and co-operation. Nuclear research centres would continue to be the main source of expertise for power plant operation, radiation and isotope applications, regulatory practices and waste management. Future developments should ensure viability of these centres. (author)

  2. A structured approach to introduce knowledge management practice in a national nuclear research institution in Malaysia

    International Nuclear Information System (INIS)

    Daud, A.H.

    2004-01-01

    In 2002, the Government of Malaysia has launched the Knowledge Management Master Plan with the aim to transform Malaysian from a production-based economy to a knowledge-based economy. In June 2003, the 2nd National Science and Technology policy was launched. The policy puts in place programmes, institutions and partnerships to enhance Malaysian economic position. Several initiatives developed emphasize on the important roles of national nuclear research institutions in the knowledge based economy. The Malaysian Institute for Nuclear Technology Research (MINT) as a national nuclear research institution is thus expected to make significant contributions to the knowledge economy. To a certain extent MINT has been successful in knowledge acquisition and exploitation from more advanced countries as well as in knowledge generation and in the knowledge application and diffusion to the socio-economic sectors. This paper describes a structured approach to introduce the knowledge management practices or initiatives in MINT. It also describes some of the challenges foreseen in adopting the practices. (author)

  3. Two CANDU fueling machines tested at the Institute For Nuclear Research - Pitesti

    International Nuclear Information System (INIS)

    Doca, Cezar; Cojocaru, Virgil

    2005-01-01

    In 2003, as a national and European premiere, at the Institute for Nuclear Research Pitesti (INR), the Fueling Machine Head no.4 (F/M) for the Nuclear Power Plant Cernavoda - Unit 2 was successfully tested. In 2005, a second Fueling Machine (no.5) was tested for the Nuclear Power Plant Cernavoda - Unit 2. The Institute's main objective is to develop scientific and technological support for the Romanian Nuclear Power Program. Testing the Fueling Machines at INR Pitesti is part of the overall program to assimilate in Romania the CANDU technology. To perform the tests of these machines at INR Pitesti, a special testing rig was built and is available for this goal. Both the testing rig and staff had successfully assessed by the AECL representatives during two missions. There was a delivery contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 in Romania before testing operation. As a first conclusion, the Institute for Nuclear Research Pitesti has the facilities, the staff and the experience to perform possible co-operations with any other CANDU Reactor owner. This experience will support the next steps concerning F/M commissioning in the NPP Cernavoda - Unit 2 and also give the confidence to the end-users that the Institute's team can provide technical assistance during the operation. Also, the obtained results demonstrate that the overall refurbishment of the F/M control system in Unit 1 and Unit 2 will be possible. The paper presents: - a short description of the F/M head;- a short description of the F/M test rig; - the computer control system; - the F/M testing activities; -results and expectations. (authors)

  4. Two CANDU fueling machines tested at the Institute For Nuclear Research - Pitesti

    International Nuclear Information System (INIS)

    Doca, C.; Cojocaru, V.

    2005-01-01

    Full text: In 2003, as a national and European premiere, at the Institute for Nuclear Research Pitesti (INR), the Fueling Machine Head no.4 (F/M) for the Nuclear Power Plant Cernavoda - Unit 2 was successfully tested. In 2005, a second Fueling Machine (no.5) was tested for the Nuclear Power Plant Cernavoda - Unit 2. The Institute's main objective is to develop scientific and technological support for the Romanian Nuclear Power Program. Testing the Fueling Machines at INR Pitesti is part of the overall program to assimilate in Romania the CANDU technology. To perform the tests of these machines at INR Pitesti, a special testing rig was built and is available for this goal. Both the testing rig and staff had successfully assessed by the AECL representatives during two missions. There was a delivery contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 in Romania before testing operation. As a first conclusion, the Institute for Nuclear Research Pitesti has the facilities, the staff and the experience to perform possible co-operations with any other CANDU Reactor owner. This experience will support the next steps concerning F/M commissioning in the NPP Cernavoda - Unit 2 and also give the confidence to the end-users that the Institute's team can provide technical assistance during the operation. Also, the obtained results demonstrate that the overall refurbishment of the F/M control system in Unit 1 and Unit 2 will be possible. The paper presents: - a short description of the F/M head;- a short description of the F/M test rig; - the computer control system; - the F/M testing activities; -results and expectations. (authors)

  5. Nuclear Power : The roles, functions and opportunities for research institutes - An overview and recommendations

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2010-01-01

    Shifting nuclear power from being the Last Option to a new energy mix for Malaysia has significant implications and requires specific actions, responses and support from critical stake holders including Government, Utility, Education Sectors and Research Institutes. This paper aims to briefly outline the roles and functions of these stake holders, but spotlighting on that of research institute. Presently the role of research and development (R and D) within a nuclear power programme is a controversial subject. Opinions range from assigning a continuing priority role in this area, to considering it a somewhat questionable effort at the present state of development of proven reactor types, in particular for countries which have not yet started or are at the earlier stages of the nuclear power programmes. As such Nuclear Malaysia may be facing a similar challenge in its quest to identify the most effective role and function for the agency to undertake for the 1st NPP. Thus it is within this context that his paper aims offer an overview of the activities and work scope required to support a Nuclear Power Programme (NPP) with the view that this will enable management and the scientific and research community to formulate strategies and work plan, in particular in terms of HRD and R and D plans, to further enhance its readiness to support Malaysia's first Nuclear Power programme, earmarked by the Government for the year 2020. Additionally it is hoped that this would contribute to the identification of an effective role, function and opportunities for Nuclear Malaysia in supporting Malaysia's first NPP. (author)

  6. Participation of the research institutes in the safety aspects of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Sanchez G, J.

    1991-01-01

    The main activities undertaken by two research institutes of Mexico, the Instituto de Investigaciones Electricas and the Instituto Nacional de Investigaciones Nucleares, related to the safety of the Laguna Verde Nuclear Power Plant, are described. Among these activities, the development of a system for data acquisition and analysis during pre-operational tests, the design and construction of a full-scope simulator, the in-core fuel management and the establishment of an equipment qualification laboratory, stand out. It is considered that there exists a large potential for further participation. (author)

  7. Radiochemistry Institute of Karlsruhe Nuclear Research Centre. Progress report on R and D work in 1985

    International Nuclear Information System (INIS)

    1986-02-01

    The Radiochemistry Institute carried out R and D work within the framework of the following projects: Project PWA, Reprocessing and Waste Treatment; project PSB, Fast Breeder Reactor; project PKF, Nuclear Fusion. Basic and applied problems in the field of surface chemistry and surface analysis were studied under the working programme 'Solids and Materials Research', and 'Technology - Man - Environment' was a point of main interest that gathered a number of working programmes in the field of water chemistry. (orig./RB) [de

  8. Karlsruhe Nuclear Research Center, Institute of Neutron Physics and Reactor Engineering. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute of Neutron Physics and Reactor Engineering is concerned with research work in the field of nuclear engineering related to the safety of thermal reactors as well as with specific problems of fusion reactor technology. Under the project of nuclear safety research, the Institute works on concepts designed to drastically improve reactor safety. Apart from that, methods to estimate and minimize the radiological consequences of reactor accidents are developed. Under the fusion technology project, the Institute deals with neutron physics and technological questions of the breeding blanket. Basic research covers technico-physical questions of the interaction between light ion radiation of a high energy density and matter. In addition and to a small extent, questions of employing hydrogen in the transport area are studied. (orig.) [de

  9. The RA nuclear research reactor at VINCA Institute as an engineering and scientific challenge

    International Nuclear Information System (INIS)

    Mesarovic, M.

    1997-01-01

    The RA nuclear research at the Vinca Institute of Nuclear Sciences is the largest nuclear research facility in Yugoslavia and belongs to that generation of research reactors which have had an important contribution to nuclear technology development. As these older reactors were generally not built to specific nuclear standards, new safety systems had to be installed at the RA reactor for a renewal of its operating licence in 1984 and it was shut down, after 25 years of operation. Although all the required and several additional systems were built for the restart of the RA reactor, a disruption of foreign delivery of new control equipment caused its conversion to a 'dormant' facility, and it is still out of operation. Therefore, the future status of the RA reactor presents an engineering and scientific challenge to the engineers and scientists from Yugoslavia and other countries that may be interested to participate. To attract their attention on the subject, principal features of the RA reactor and its present status are described in detail, based on a recent engineering economic and safety evaluation. A comparative review of the world research reactors is also presented.(author)

  10. Status of decommissioning and waste management in the Nuclear Science Research Institute of JAEA

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Yamashita, Toshiyuki

    2007-01-01

    The Nuclear Science Research Institute (NSRI) of JAEA has some experiences of the decommissioning of research reactors and research laboratories including a reprocessing test facility. In order to dismantle those facilities safely, we paid much attention for the radiological protection of radiation workers taking into consideration of characteristics of each facility, especially to protect internal exposures. As the results of decommissioning activities, several thousands tons of solid radioactive wastes were generated. In the near future, we will start the treatment of these stored wastes by a super compactor, metal melting furnace and non-metal waste melting furnace to gain high volume reduction and to prepare stable waste forms for final disposal. In Japan, the clearance system was established in 2005 by amending the Nuclear Regulatory Law. The NSRI plans to release very slightly contaminated concrete debris for recycling, which was generated from the replacement of reactor core of research reactor (JRR-3), according to the clearance system. (author)

  11. Networking of institutions in India to promote research and education in nuclear science and engineering

    International Nuclear Information System (INIS)

    Puri, R.R.

    2007-01-01

    Full text: The Programme of Nuclear Energy and its Applications (NEA) is knowledge intensive requiring engineers and scientists having special education and training for its implementation. The paucity of manpower in managing this programme is partly due to limitations of the university system in catering to the needs of the nuclear industry. Those limitations arise due to several reasons, like, regulatory requirements which make it difficult to set up nuclear facilities in university environment, capital intensive nature of nuclear set-ups, paucity of teaching staff having hands-on experience and limited employment opportunities making nuclear option unattractive for talented youngsters. The Department of Atomic Energy of India (DAE) established in 1954 for shaping and managing the Indian NEA programme realized those limitations and opted for an in-house education and training programme leading to assured employment for young Engineering Graduates and Science Post Graduates. Called the Bhabha Atomic Research Centre (BARC) Training School Programme, it is in place since 1957. The Indian NEA programme is thus fortunate to be supported by a visionary human resource development (HRD) programme in nuclear science and technology practically right since its inception. The success of HRD programme of DAE lies in its broader outlook based on the premise that technology development and basic research go hand-in-hand. This outlook is reflected also in the way DAE has been managing the implementation of its programme in that on one hand it has set up centres for technological Research and Development and, on the other, it is providing Grant-in-Aid to several Institutes for carrying basic research. Moreover, DAE has not lost sight of the fact that success of its initiatives lies as much in the vibrant university system as in its own training and educational efforts. It has, therefore, created avenues for extra-mural funding for supporting research activities in universities in

  12. Research and development on activation analysis at the Thailand Institute of Nuclear Technology

    International Nuclear Information System (INIS)

    Laoharojanaphand, S.; Dharmavanij, W.; Busamongkol, A.; Pareepart, R.; Wimolwattanapun, W.; Chantarachot, W.

    2008-01-01

    Research and development in activation analysis at the Thailand Institute of Nuclear Technology has been carried out over 40 years. The main activation source is from the TRIGA type research reactor TRR1/M1. Average in-core flux is around 10 13 n x cm -2 x s -1 . Experience on the analysis of various kind of samples range from environmental field especially air particulate, ores, rocks and soil for natural resources exploration as well as industrial applications. Elemental composition in silk thread, silk cocoon and silk products from the royal silk project are one of the research work done incorporation with the Queen Sirikit Institute of Sericulture. Food items are also another topic of interest to our research team. (author)

  13. Evolutions at SCK-CEN Mol. An example of trends in nuclear research institutes

    International Nuclear Information System (INIS)

    Dejonghe, P.A.J.; Sakurada, M.

    1995-01-01

    In the 1950s and 1960s, large nuclear research institutes (NRIs) were established by governments in many countries to play a role as centres of nuclear research and development. At the beginning, they were mostly financed through government grants and contracts. Since then, significant changes have occurred which affect the operation of NRIs: nuclear power has become an economic reality, but is still a matter of socio-political debate, the major infrastructure gets older, and the question may be raised to what extent governments and/or the industry will still be willing to support NRIs, at least in their present form, what their mission would be in the future and which alternative ways of financing could be developed. Considering these evolutions, the OECD/NEA launched a study on past trends and the current state of NRIs, in co-operation with 40 laboratories. Mainly on the basis of the contribution of the Belgian NRI to the study, some problems and trends are discussed in the paper: growth of NRIs and financial support; evolution of programmes; diversification: opportunities and consequences; ageing of nuclear facilities; technical liabilities; creation of dedicated establishments for nuclear services; and future needs for NRIs. The paper analyses the necessity of maintaining some form of NRI in view of the need for programmes, expertise and staff in a number of areas, given the present and anticipated requirements of the nuclear sector. (author). 4 refs

  14. Construction of sustainability indicators for Nuclear Area Innovation and Research Institutes in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone Fonseca

    2017-01-01

    The dissertation consists of a construction of appropriate sustainability indicators for nuclear area innovation and research institutes in Brazil. In order to do so, the results of the construction process, as well as, the perception of the population that resides in the area surrounding this type of institute are presented and discussed. As reference for this case study, the Nuclear Technology Development Center (CDTN) was chosen. It is located in Pampulha, more specifically, on the campus of the Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil. One of the methodological processes present in this research is the Delphi method, because it is the most used in the construction of indicators. Its application in this work allowed obtaining the of specialist group opinions collected through a questionnaire. Initially, sixty-nine sustainability indicators were considered. They were distributed among the environmental, economic, socio cultural and institutional dimensions, some of which were obtained through lists of indicators pointed by literature review. Other indicators were built through discussions with groups from the nuclear, environmental, economic and socio cultural areas. Among the set of indicators investigated, twenty-six were selected as being the most relevant. A questionnaire was then applied to one hundred and twenty individuals living in the vicinity of the CDTN. Discrepancies were found during the analysis the opinions of the experts in relation to sustainability dimensions proposed, as well as, indicators of the same dimensions were varied. However, the opinion of the population and the opinion of the experts had similar results. Finally, this study is the first proposal for the nuclear sector to construct this kind of indicator that takes into account the evaluation of experts and the opinion of the community that resides around these institutions. (author)

  15. Knowledge loss risk assessment in Institute for Nuclear Research Pitesti, Romania

    International Nuclear Information System (INIS)

    Apostol, Minodora; Constantin, Marin; Balaceanu, Victoria

    2009-01-01

    This paper presents a method developed in Institute for Nuclear Research Pitesti for knowledge loss risk assessment in nuclear sector, in order to obtain a risk map at departmental and organizational level, by analyzing each position/people. The method starts from the classical method for knowledge loss risk assessment but takes into account the INR characteristics, the particularities of Romanian nuclear market and the difficulties of the classical method to estimate correctly the risk at the job level. A short description of the classical method of knowledge loss risk assessment, the improved method by introducing five new parameters for risk factor of vacant job are presented, how this last method has been applied in some departments from INR Pitesti and the preliminary risk matrix for knowledge loss at organization level is discussed. (authors)

  16. Joint Institute for Nuclear Research as an example of socialist integration in science

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.

    1979-01-01

    History of establishing, main directions of works and some results of investigations which have been carried out in the Joint Institute of Nuclear Research according to the program of the JINR member-states are stated as well as directions of the JINR co-operation with other countries are given. In detail, main works are stated in the field of high energy physics, theoretical nuclear physics, investigation of interactions of elementary particles, nuclear spectroscopy of nuclides. Examples are given of joint researches which have been conducted by scientists from the JINR together with scientists from other scientific research centers of the JINR member-states and other countries. Content is stated of works in the field of synthesis of ultraheavy elements and development of methods of study as their chemical properties. Composition of the JINR computer center is given as well as the list of problems which are solved at this center. Some results are given of works conducted in the JINR in the field of development of equipment for nuclear-physical researches and improvement of accelerators. Some results are presented of the JINR activity and plans for future [ru

  17. Remediation of old environmental liabilities in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Svoboda, Karel; Podlaha, Josef

    2011-01-01

    The Nuclear Research Institute Rez plc (NRI) after 55 years of activities in the nuclear field produced some environmental liabilities that shall be remedied. There are three areas of remediation: (1) decommissioning of old obsolete facilities (e.g. decay tanks, RAW treatment technology, special sewage system), (2) processing of RAW from operation and dismantling of nuclear facilities, and (3) elimination of spent fuel from research nuclear reactors operated by the NRI. The goal is to remedy the environmental liabilities and eliminate the potential negative impact on the environment. Remediation of the environmental liabilities started in 2003 and will be finished in 2014. The character of the environmental liabilities is very specific and requires special remediation procedures. Special technologies are being developed with assistance of external subcontractors. The NRI has gained many experiences in the field of RAW management and decommissioning of nuclear facilities and will use its facilities, experienced staff and all relevant data needed for the successful realization of the remediation. The most significant items of environmental liabilities are described in the paper together with information about the history, the current state, the progress, and the future activities in the field of remediation of environmental liabilities in the NRI. (author)

  18. Review on Overseas Contracts of a Nuclear Research Institute in Korea

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Lee, Eui Jin

    2010-01-01

    Since its establishment, Korea Atomic Energy Research Institute (KAERI) has made various contracts in research, design, engineering and consultation with a lot of foreign counterparts all over the world, including international organizations. As one of the global nuclear energy research leaders, KAERI can make a large scale contract because it has already procured a turnkey EPC (Engineering, Procurement, Construction) contract for a research and training reactor in the spring of 2010 by forming a consortium with a construction and engineering company. A contract in nuclear business industries is to be made under the limited control of regulatory authorities because the contractors must ensure nuclear safety and follow the international nuclear non-proliferation guidelines to secure the peaceful use of nuclear energy at an international level. The export and import of strategic technologies, products or materials (including nuclear materials) must be directly controlled by the authorities in accordance with the applicable law. In 2009, KAERI organized a new team to manage the overseas contracts and to make the limited control reflected in the contract documentation. In large scale project contracts, more attention shall be given to the contracts to prevent claims and also to the consideration of the regulatory requirements. In this context, the nature of the past KAERI contracts was reviewed. The conditions of several recent KAERI contracts were also individually reviewed based on the FIDIC (Federation Internationale des Ingenieurs-Conseils) model service agreement, which is generally accepted by service contractors. Ways to increase the quality of future contracts and to improve the standard model agreement which is used to prepare the draft contract were also considered

  19. Review on Overseas Contracts of a Nuclear Research Institute in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Lee, Eui Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Since its establishment, Korea Atomic Energy Research Institute (KAERI) has made various contracts in research, design, engineering and consultation with a lot of foreign counterparts all over the world, including international organizations. As one of the global nuclear energy research leaders, KAERI can make a large scale contract because it has already procured a turnkey EPC (Engineering, Procurement, Construction) contract for a research and training reactor in the spring of 2010 by forming a consortium with a construction and engineering company. A contract in nuclear business industries is to be made under the limited control of regulatory authorities because the contractors must ensure nuclear safety and follow the international nuclear non-proliferation guidelines to secure the peaceful use of nuclear energy at an international level. The export and import of strategic technologies, products or materials (including nuclear materials) must be directly controlled by the authorities in accordance with the applicable law. In 2009, KAERI organized a new team to manage the overseas contracts and to make the limited control reflected in the contract documentation. In large scale project contracts, more attention shall be given to the contracts to prevent claims and also to the consideration of the regulatory requirements. In this context, the nature of the past KAERI contracts was reviewed. The conditions of several recent KAERI contracts were also individually reviewed based on the FIDIC (Federation Internationale des Ingenieurs-Conseils) model service agreement, which is generally accepted by service contractors. Ways to increase the quality of future contracts and to improve the standard model agreement which is used to prepare the draft contract were also considered

  20. The impact of changing computing technology on EPRI [Electric Power Research Institute] nuclear analysis codes

    International Nuclear Information System (INIS)

    Breen, R.J.

    1988-01-01

    The Nuclear Reload Management Program of the Nuclear Power Division (NPD) of the Electric Power Research Institute (EPRI) has the responsibility for initiating and managing applied research in selected nuclear engineering analysis functions for nuclear utilities. The computer systems that result from the research projects consist of large FORTRAN programs containing elaborate computational algorithms used to access such areas as core physics, fuel performance, thermal hydraulics, and transient analysis. This paper summarizes a study of computing technology trends sponsored by the NPD. The approach taken was to interview hardware and software vendors, industry observers, and utility personnel focusing on expected changes that will occur in the computing industry over the next 3 to 5 yr. Particular emphasis was placed on how these changes will impact engineering/scientific computer code development, maintenance, and use. In addition to the interviews, a workshop was held with attendees from EPRI, Power Computing Company, industry, and utilities. The workshop provided a forum for discussing issues and providing input into EPRI's long-term computer code planning process

  1. Main research results in the field of nuclear power engineering of the Nuclear Reactors and Thermal Physics Institute in 2014

    International Nuclear Information System (INIS)

    Trufanov, A.A.; Orlov, Yu.I.; Sorokin, A.P.; Chernonog, V.L.

    2015-01-01

    The main results of scientific and technological activities for last years of the Nuclear Reactors and Thermal Physics Institute FSUE SSC RF - IPPE in solving problems of nuclear power engineering are presented. The work have been carried out on the following problems: justification of research and development solutions and safety of NPPs with fast reactors of new generation with sodium (BN-1200, MBIR) and lead (BREST-OD-300) coolants, justification of safety of operating and advanced NPPs with WWER reactor facilities (WWER-1000, AEhS 2006, WWER-TOI), development and benchmarking of computational codes, research and development support of Beloyarsk-3 (BN-600) and Bilibino (BN-800) NPPs operation, decommissioning of AM and BR-10 research reactors, pilot scientific studies (WWER-SKD, ITER), international scientific and technical cooperation. Problems for further investigations are charted [ru

  2. Materials of the Annual Scientific Conference of the Institute for Nuclear Research; Materyiali shchoryichnoyi naukovoyi konferentsyiyi Yinstitutu Yadernikh Doslyidzhen`

    Energy Technology Data Exchange (ETDEWEB)

    Vishnevs` kij, Yi M [ed.

    1999-12-31

    The Proceedings contain reports which were presented at current Annual scientific conference of the Institute for Nuclear Research, National Academy of Sciences (Kiev, January 27-30, 1998). The articles are presented in the sections which corresponds to the main scientific directions of the Institute activity: Nuclear Physics, Nuclear Reactor Safety, Radiation physics, Plasma Physics, Radioecology and Radiobiology. Each Proceedings Sections contain the following sequence of the works: theoretical, experimental, applied and methodological. The Proceeding are printed by means of direct reproduction.

  3. Karlsruhe Nuclear Research Center, Institute for Meteorology and Climate Research. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute for Meteorology and Climate Research is operated by Karlsruhe Nuclear Research Centre in cooperation with Karlsruhe University. It investigates mesoscale and global atmospheric processes. Work on mesoscale processes focuses on interactions between atmosphere, soil and vegetation via the exchange of momentum, energy, water, and materials. Another field of primary interest are the flow processes and turbulent exchange processes in the lower troposphere. Parallel to the experiments, numerical simulation models for describing and predicting mesospheric climate-relevant processes and atmospheric exchange processes were used and improved upon. For remote processing of atmospheric parameters, a satellite-based data processing system was used for recording land surface parameters and vertical profiles and meteorological variables that are applicable for climatological studies and for the validation of numerical models. For recording and interpretation of the spatial and time-dependent distribution of trace elements, measuring instruments in the field of air chemistry were newly developed or improved upon, especially with a view towards high time resolution of the measured data. Ozone research is a key issue of the remote measurements. Contributions were made primarily in the framework of international research programmes (e.g. EASOE) on the degradation of the atmospheric ozone layer in the higher latitudes of the northern hemisphere. In addition to the experimental investigations, the transport of stratospheric trace elements was simulated numerically. (orig./KW) [de

  4. Paul Scherrer Institut annual report 1996. Annex IV: PSI nuclear energy and safety research

    International Nuclear Information System (INIS)

    Birchley, J.; Roesel, R.; Wellner, A.

    1997-01-01

    The department 'Nuclear Energy and Safety Research' (F4) at PSI carries the responsibility of performing the essential nuclear energy research in Switzerland. This research is part of the remit of PSI and follows government directive; about one-fifth of the Institute's Federal budget is allocated to this task. Currently about 190 persons are working in this field. Approximately 45% of the salary and investment costs (5.5 million CHF in the budget period 1996/97) are externally funded. This funding is provided primarily by the Swiss Utilities, the NAGRA and the safety authority HSK. The activities in nuclear research concentrate on three main domains: safety and safety related problems of operating plants, safety features of future reactor and fuel cycle concepts and waste management; another 4% of staff are addressing broader aspects of energy. At the end of 1996, a policy evaluation with the laboratory heads took place in order to redefine the direction of F4 activities. (author) figs., tabs., refs

  5. Innovative Competency Gap Analysis; A Malaysian Nuclear Research Institute Case Study

    International Nuclear Information System (INIS)

    Muhd Husamuddin A Khalil; Zakaria Taib; Zuraida Zainudin; Munira Shaikh Nasir; Abul Adli Anuar

    2015-01-01

    Human resource development has become an essential component to the development process of Research and Development institute like Malaysian Nuclear Agency as it relies heavily on a specialized and highly trained work force for its technical capability and sustainability. In this paper, it is urged that human resource development be supported by appropriate survey tools to achieve its one of the most important objective which is to prepare training platforms that follow-through from the systematic competency gap analysis approach. The purpose of this study was to find the competency needs and investigate the competency gaps in Malaysia Nuclear Agency using modified Systematic Assessment of Regulatory Competence Needs for Regulatory Bodies of Nuclear Facilities (SARCoN) tools by International Atomic Energy Agency (IAEA) based on basic, applied and specialized Science and Technology area of expertise. To achieve this purpose, the secretariat identified the appropriate competency statements based on each Division and investigation has been done on all the researchers to find the competency gaps via survey using SARCoN tools. On this ground, it has been concluded that a lot of competency on specialized subject matters need to be systematically analyzed using innovative analytical method that yield 2 important parameters: i. organizational core competencies; ii. Personnel core competencies. From a before and after comparison, it is concluded that the new strategy is better placed to manage the training and educational programme to preserve the sustainability of subject matter experts of nuclear HRD in this organization and Malaysia as a whole. (author)

  6. The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles

    Science.gov (United States)

    Bednyakov, V. A.; Russakovich, N. A.

    2018-05-01

    The year 2016 marks the 60th anniversary of the Joint Institute for Nuclear Research (JINR) in Dubna, an international intergovernmental organization for basic research in the fields of elementary particles, atomic nuclei, and condensed matter. Highly productive advances over this long road clearly show that the international basis and diversity of research guarantees successful development (and maintenance) of fundamental science. This is especially important for experimental research. In this review, the most significant achievements are briefly described with an attempt to look into the future (seven to ten years ahead) and show the role of JINR in solution of highly important problems in elementary particle physics, which is a fundamental field of modern natural sciences. This glimpse of the future is full of justified optimism.

  7. Impact evaluation of the nuclear training program of the Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Relunia, Estrella Duran

    1999-10-01

    This study attempted to determine the factors that influenced the impact of the PNRI training program in nuclear science and technology. The population of the study consisted of all graduate trainees who successfully completed the training courses conducted at the PNRI Training Center for the period 1989 to 1994. A stratified random sampling of 600 or 50% of the population were chosen from the 4 sectors of the population namely industry/service, medicine, education and research sector. Of the 600 samples only 395 or 66% of the samples responded to the mailed questionnaires. The following hypotheses were tested: 1) trainee - organization- related factors and overall satisfaction of the participants on the training program determine the impact of training; 2) there are significant differences among the perceptions of the participants on impact. Frequency counts and percentages were used to determine the number of trainees by sector and the description of the sample. T-test was used to measure whether or not the relationship between the ''Before'' and ''After'' training scores of the trainees is significant and whether the perceptions of the trainee respondents by sector on impact differed significantly. Multiple regression was used to determine whether the independent variables are significantly associated with the measures of program impact. The t-test was used to measure the significance of regression coefficient. (Author)

  8. Impact evaluation of the nuclear training program of the Philippine Nuclear Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Relunia, Estrella Duran

    1999-10-01

    This study attempted to determine the factors that influenced the impact of the PNRI training program in nuclear science and technology. The population of the study consisted of all graduate trainees who successfully completed the training courses conducted at the PNRI Training Center for the period 1989 to 1994. A stratified random sampling of 600 or 50% of the population were chosen from the 4 sectors of the population namely industry/service, medicine, education and research sector. Of the 600 samples only 395 or 66% of the samples responded to the mailed questionnaires. The following hypotheses were tested: (1) trainee - organization- related factors and overall satisfaction of the participants on the training program determine the impact of training; (2) there are significant differences among the perceptions of the participants on impact. Frequency counts and percentages were used to determine the number of trainees by sector and the description of the sample. T-test was used to measure whether or not the relationship between the ''Before'' and ''After'' training scores of the trainees is significant and whether the perceptions of the trainee respondents by sector on impact differed significantly. Multiple regression was used to determine whether the independent variables are significantly associated with the measures of program impact. The t-test was used to measure the significance of regression coefficient. (Author)

  9. Educational Research Centre of the Joint Institute for Nuclear Research and students training on the 'Medical Physics' speciality

    International Nuclear Information System (INIS)

    Ivanova, S.P.; )

    2005-01-01

    The Educational Research Centre (ERC) of the Joint Institute for Nuclear Research is the place of joint activity of the JINR, Moscow State University (MSU) and Moscow Engineering Physical Institute (MEFI) on students training by a broadened circle of specialities with introduction of new educational forms. Active application of medical accelerator beams of the JINR Laboratory of Nuclear Beams becomes a reason for implementation of a new training chair in the MEFI on the JINR base - the Physical methods in applied studies in the medicine chair. For the 'medical physics' trend development in 2003 the workshop on discussion both curricula and teaching methodic by the speciality was held. One the Educational Research Centre main activities is both organization and conducting an international scientific schools and training courses. The International student School 'Nuclear-Physical Methods and Accelerators is the most popular and traditional. The principal aim of these schools and courses is familiarization of students and postgraduates with last achievement and and contemporary problems of applied medical physics. The school audience is a students and postgraduates of ERC, MSU, MEFI, and an institutes of Poland, Hungary, Slovakia, France, Czech and Bulgaria

  10. Research works at the Physics Institute nuclear reactor for the nuclear power engineering

    International Nuclear Information System (INIS)

    Gavars, V.V.; Kalnin'sh, D.O.; Lapenas, A.A.; Tomsons, E.Ya.; Ulmanis, U.A.

    1985-01-01

    Methods for neutron spectra determination in the nuclear reactor core and vessel have been developed. On their base the neutron spectra at the Novo-Voronezh and kola NPPs have been measured. Such measurements are necessary for the determination of the nuclear fuel reprocessing coefficients, for the evaluation of the construction radiation-damage stability and the NPP economical efficiency on the whole. A new type of the reactor regulator - a liquid metal one - has been created. Such regulators are promising in respect of their use at the NPPs. The base for studying new radiation-damage-stable insulators has been founded. The materials obtained are now applied to designing the reactors of the second (fast) and the third (thermonuclear H) generations. There have developed and by a long-time exploitation checked a hot loop, used for materials irradiation. the nuclear reactor in Salaspils provides training of students being the new brain-power for the nuclear power engineering

  11. Karlsruhe Nuclear Research Center, Institute of Nuclear Solid State Physics. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute for Nuclear Solids Physics carried out about 90% of its work in the year of the report, 1993, on the main point of superconductivity. The work on high temperature superconductors on a cuprate basis was continued on a large scale. The availability of better samples (eg: non-twinned single crystals) make it possible to clear up a series of important detailed questions regarding the structure, grid dynamics and electronic structure. The activities closely related to applications of superconducting films were concentrated on the growth of a-axis and c-axis orientated films on technically relevant substrates (above all on sapphire, including suitable buffer layers and the examination of these films regarding their high frequency behaviour. Considerable progress was achieved in the manufacture of wafers coated on both sides. The work on Fullerene (carbon molecules C 60 , C 70 etc) and Fullerene compounds was continued. The Institute quickly succeeded not only in preparing these systems, but also in making a considerable contribution to a physical understanding of them. Among the Institute's activities, which are not directly connected to superconductivity (about 10%), one should mention above all, the experimental and theoretical work on the physics of surfaces and boundary surfaces, on polymer physics and on the physics of mesoscopic systems. (orig.) [de

  12. Institute for Nuclear Theory

    International Nuclear Information System (INIS)

    Haxton, W.; Bertsch, G.; Henley, E.M.

    1993-01-01

    This report briefly discussion the following programs of the Institute for Nuclear Theory: fundamental interactions in nuclei; strangeness in hadrons and nuclei; microscopic nuclear structure theory; nuclear physics in atoms and molecules; phenomenology and lattice QCD; and large amplitude collective motion

  13. Champion data comparison in nuclear research institutes in Europe, the U. S., and Japan

    International Nuclear Information System (INIS)

    Kazuaki Yanagisawa; Cutler, D.E.

    2011-01-01

    Bibliometric analysis was carried out for champion data comparisons among prestigious nuclear research institutes (PNRI) existed in Japan, the U. S., France, and Germany. The analysis was relied on database INIS (IAEA), ECD (DOE), WOS (Thomson), and SCOPUS (Elsevier). INIS is advanced, key ex-post evaluating tool for determining general research paper-based champion. Over the 30-year time span of research paper publication, the world champion among 11 PNRI is JAERI confirmed by INIS but ORNL confirmed by ECD, WOS, and SCOPUS, the latter two collected journal submitted research paper. Five years ago JAERI is the 3rd ranked institutes following ORNL and ANL. INIS database results revealed that CEA/Grenoble is the French domestic champion regarding research paper publication. Five years ago it was CEA/Saclay. Results from analytical tools used in bibliometric studies should be viewed with careful consideration to learn of any influencing factors because different characteristics exhibited by individual databases can sometimes generate conflicting bibliometric results. This was true among INIS, ECD, WOS, and SCOPUS when looking at trends especially between 5-year periods. (author)

  14. 25 years of the Joint Institute for Nuclear Research in Dubna and Czechoslovakia's part in its activities

    International Nuclear Information System (INIS)

    Simane, C.; Tucek, J.

    1981-01-01

    The main tasks and results attained by the individual units of the Joint Institute for Nuclear Research in Dubna are briefly described: by the high energy laboratory, the nuclear problems laboratory, the laboratory of theoretical physics, the laboratory of neutron physics, the laboratory of nuclear reactions, the laboratory of computer technology and automation, and by the unit responsible for the implementation of the project for accelerators of positively charged ions based on the principle of collective acceleration using electron rings. Czechoslovakia contributes approximately 6% to the financing of the Institute. Also briefly described are the main fields of cooperation between Czechoslovak research institutes and the laboratories of the Joint Institute for Nuclear Research. (Z.M.)

  15. Nuclear calculation for employing medium enrichment in reactors of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    1979-01-01

    The fuel used for the research reactors of Japan Atomic Energy Research Institute (JAERI) is presently highly enriched uranium of 93%. However, the U.S. government (the supplier of fuel) is claiming to utilize low or medium enriched uranium from the viewpoint of resistivity to nuclear proliferation, and the availability of highly enriched uranium is becoming hard owing to the required procedure. This report is described on the results of nuclear calculation which is the basis of fuel design in the countermeasures to the reduction of enrichment. The basic conception in the reduction of enrichment is three-fold: to lower the latent potential of nuclear proliferation as far as possible, to hold the present reactor performance as far as possible, and to limit the reduction in the range which is not accompanied by the modification of reactor core construction and cooling system. This time, the increase of the density and thickness of fuel plates and the effect of enrichment change to 45% on reactivity and neutron flux were investigated. The fuel of UAl sub(x) - Al system was assumed, which was produced by powder metallurgical method. The results of investigations on JRR-2 and JMTR reactors revealed that 45% enriched fuel does not affect the performances much. However, deterioration of the performances is not neglegible if further reduction is needed. In future, the influence of the burn-up effect of fuel on the life of reactor cores must be investigated. (Wakatsuki, Y.)

  16. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  17. Twenty years of the Nuclear Research Institute and its contribution to the development of nuclear power and technology in Czechoslovakia

    International Nuclear Information System (INIS)

    Havel, S.

    1976-01-01

    A survey is presented of the most important results of scientific research efforts of the Nuclear Research Institute (UJV) attained in the 20 years of the Institute's existence. In 1975 the proportion of the individual fields of research was as follows: reactor technology 37%, reactor materials 19%, nuclear fuel processing including waste processing 18%, ionizing radiation applications 16%, others 10%. In the field of reactor technology, orientation is evident to light-water and fast reactors (1975): light-water reactors 40%, fast reactors 44%, heavy-water reactors 16%. The most significant contribution of the Institute to the first Czechoslovak nuclear power plant A-1 in the past period included the construction of the TR-0 heavy-water critical assembly, the choice of suitable uranium alloys and their thermal and mechanical treatment for the A-1 fuel elements, corrosion and mechanical stability study of cladding materials and post-irradiation fuel study performed in the UJV hot chambers. Significant for the development of light-water reactors are mainly the study of water regimes of radiation-exposed circuits, the solution of primary circuit chemical problems, participation in the international research programme of the CMEA countries related to the ZR-6 (Budapest) critical assembly, and the study of Zr-based cladding materials. UJV is the main Czechoslovak study centre for the development of a fast reactor and its staff have written a number of programmes for the computation of such a reactor and its fuel cycle. Also available is a suitable experimental facility. The Institute also participates in the research of UO 2 -based ceramic fuel, and in the field of spent fuel and radioactive waste processing in the development of extraction processes and the application of fluoride technology. As for ionizing radiation applications, UJV has since 1960 been manufacturing radioactive preparations including, to a limited extent, radiopharmaceuticals. It is envisaged that

  18. Radiation and nuclear technologies in the Institute for Nuclear Research NAS of Ukraine

    International Nuclear Information System (INIS)

    Vishnevs'kij, Yi.M.; Gajdar, G.P.; Kovalenko, O.V.; Kovalyins'ka, T.V.; Kolomyijets', M.F.; Lips'ka, A.Yi.; Litovchenko, P.G.; Sakhno, V.Yi.; Shevel', V.M.

    2014-01-01

    The monograph describes some of the important developments of radiation and nuclear technology, made in INR NAS Ukraine. The first section describes radiation producing new materials and services using electrons with energies up to 5 MeV and Bremsstrahlung X-rays. We describe the original technology using ion emissions of the low and very low energies. In the second section the nuclear technologies, where ions, neutrons and other high-energy particles with energies are used, provide modification of the structure of matter nuclei in particular - radioactive isotopes for industrial and medical supplies and devices based on them.

  19. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    International Nuclear Information System (INIS)

    Kohman, T.P.

    1976-01-01

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time

  20. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Kohman, T.P.

    1976-05-28

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time. (JSR)

  1. Paul Scherrer Institut annual report 1994. Annex IV: PSI nuclear energy and safety research progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T; Kallfelz, J M; Mathews, D [eds.; Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    Nuclear energy research in Switzerland is concentrated at PSI. It is explicitly mentioned in the Institute`s official charter and commands about one fifth of the Institute`s federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI`s activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs.

  2. Recent results of μCF experiments at SIN [Swiss Institute For Nuclear Research

    International Nuclear Information System (INIS)

    Breunlich, W.H.; Cargnelli, M.; Bistirlich, J.

    1986-09-01

    Important topics concerning Muon Catalyzed Fusion were investigated in experiments at the Swiss Institute for Nuclear Research (SIN), including transient and steady state rates for the main dμt cycle as well as detailed information about the competing dμd and tμt fusion branches. The basic kinetic parameters were determined and striking features of the resonant dμt formation process were revealed (density effect, epithermal behavior). DT sticking was measured with independent techniques, i.e., detection of fusion neutrons as well as μHe x-rays after fusion. Fusion yields per muon of 113 +- 10 were observed at liquid conditions, yields exceeding 200 are anticipated for optimal conditions from our results. 43 refs., 8 figs., 3 tabs

  3. THE DEVELOPMENT OF AN ENTERPRISE RESOURCE PLANNING SYSTEM (ERP FOR A RESEARCH AND TECHNOLOGY INSTITUTE: THE CASE OF THE NUCLEAR AND ENERGY RESEARCH INSTITUTE -IPEN

    Directory of Open Access Journals (Sweden)

    Willy Hoppe de Souza

    2011-05-01

    Full Text Available This paper reports the history of the development of an enterprise resource planning (ERP dedicated to managing the technical activities of the Nuclear and Energy Research Institute, a governmental research and technology institute in Brazil. After the implementation of the new planning process, the development of a new management information system named SIGEPI was immediately initiated. The implementation of this system followed a strategy of integrating databases already available and developing new ones in order to facilitate the data collecting process and to improve the quality and the reliability of these data. This paper describes the evolution of SIGEPI, its main features and it also reports the difficulties faced for almost ten years of developments. The success factors of the case were classified into three groups: strategic, technical and behavioral ones. The impact of these factors and recommendation for future similar developments are presented.

  4. Restoration of the former site of the institute for nuclear physics research in Amsterdam

    International Nuclear Information System (INIS)

    Louwrier, Pieter W.F.; Bakker, C.N.M.; Peperkamp, J.A.M.

    2000-01-01

    In 1946 the Institute for Nuclear Physics Research (IKO) started operations on the site of an old gas factory made available by the City of Amsterdam. In 1997 IKO became part of the National Institute for Nuclear Physics and High-Energy Physics (NIKHEF). In 1996 NIKHEF left the laboratory site after 50 years of occupation. The City of Amsterdam, being the owner of the area, decided that in view of the plants for development of the area, the buildings should be demolished and the area made suitable for public use. The site was used as a nuclear research laboratory since 1946, housing a synchrocyclotron from 1947 to 1977 and a linear electron accelerator from 1968 to 1977. Several nuclear chemistry laboratories were in operation from 1946 to 1984. During the 50-year period the original buildings were modified and enlarged, and new buildings were added. Before the responsibility for the area could be transferred to the City and the operating licence could be adjusted to the new situation the Dutch authorities required that a site restoration project be executed. The site restoration project was planned in stages, each of which was supervised and evaluated by the Dutch Ministry of Housing, Spatial Planning and the Environment, and the Ministry of Social Affairs and Employment. Special interest groups such as Greenpeace, LAKA Foundation (a non-profit organisation acting as a consultant for the neighbouring population), the City of Amsterdam and the local City-Boards were following the process closely. The project encompassed the following stages: Set-up of a plan for the clearance of the building structures, including the criteria for release, in consultation with the ministries involved. Radiation protection was an integral part of the plan. Investigation of possible radioactive contamination of the evacuated buildings. Six undocumented contaminations and one documented contamination were identified. Supervised removal of contaminated building structures by a

  5. Experiments in Laboratory of Nuclear Problems of Joint Institute for Nuclear Research in 1994-1995

    International Nuclear Information System (INIS)

    Bednyakov, V.A.

    1994-01-01

    This book is a complication of the short status reports on current experiments on intermediate energy physics and on high energy physics. The projects of new facilities and the results of radiobiological researches are presented

  6. Available post-irradiation examination techniques at Romanian institute for nuclear research

    International Nuclear Information System (INIS)

    Parvan, Marcel; Sorescu, Antonius; Mincu, Marin; Uta, Octavian; Dobrin, Relu

    2005-01-01

    The Romanian Institute for Nuclear Research (INR) has a set of nuclear facilities consisting of TRIGA 14 MW(th) materials testing reactor and LEPI (Romanian acronym for post-irradiation examination laboratory) which enable to investigate the behaviour of the nuclear fuel and materials under various irradiation conditions. The available techniques of post-irradiation examination (PIE) and purposes of PIE for CANDU reactor fuel are as follows. 1) Visual inspection and photography by periscope: To examine the surface condition such as deposits, corrosion etc. 2) Eddy current testing: To verify the cladding integrity. 3) Profilometry and length measurement performed both before and after irradiation: To measure the parameters which highlight the dimensional changes i.e. diameter, length, diametral and axial sheath deformation, circumferential sheath ridging height, bow and ovality. 4) Gamma scanning and Tomography: To determine the burnup, axial and radial fission products activity distribution and to check for flux peaking and loading homogeneity. 5) Puncture test: To measure the pressure, volume and composition of fission gas and the inner free volume. 6) Optical microscopy: To highlight the structural changes and hydriding, to examine the condition of the fuel-sheath interface and to measure the oxide thickness and Vickers microhardness. 7) Mass spectrometry: To measure the burnup. 8) Tensile testing: To check the mechanical properties. So far, non-destructive and destructive post-irradiation examinations have been performed on a significant number of CANDU fuel rods (about 100) manufactured by INR and irradiated to different power histories in the INR 14 MW(th) TRIGA reactor. These examinations have been performed as part of the Romanian research programme for the manufacturing, development and safety of the CANDU fuel. The paper describes the PIE techniques and some results. (Author)

  7. A history of the collaboration between the European Organisation for Nuclear Research (CERN) and the Joint Institute for Nuclear Research (JINR), and with Soviet research institutes in the USSR 1955-1970

    International Nuclear Information System (INIS)

    Lock, W.O.

    1975-01-01

    The report describes in some detail the origins and development up to 1970 of the collaboration which now exists between the European Organization for Nuclear Research (CERN) and its counterpart the Joint Institute for Nuclear Research (JINR) at Dubna, USSR and also with the Institute for High Energy Physics, Serpukhov, USSR. Part 1 deals with the relations between JINR and CERN, their beginnings and the subsequent development of exchange of scientists, joint Summer Schools, and the organization of Seminars to discuss perspectives in high energy physics. Part 2 describes first the steps which led up to the signing of an Agreement between CERN and the State Committee of the USSR for the Utilization of Atomic Energy, governing collaboration between CERN and the Institute for High Energy Physics at Serpukhov. A brief account is then given of the subsequent installation of equipment built at CERN for the Institute's 76-Gev proton accelerator and the carrying out of joint physics experiments by teams from Western Europe and from the Soviet Union. Part 3 summarizes the origins of collaborative agreements which have been made by CERN with a few other leading Institutes in the Soviet Union. A number of Annexes reproduce some of the relevant documents and letters. (author)

  8. Remediation of the old environmental liabilities in the Nuclear Research Institute Rez. Situation at the end of 2008

    Energy Technology Data Exchange (ETDEWEB)

    Kovarik, Petr; Svoboda, Karel; Podlaha, Josef [Nuclear Research Institute Rez (Czech Republic)

    2010-10-15

    The Nuclear Research Institute Rez (NRI) has been a leading institution in the area of R and D (Research and Development) in the Czech Republic. The NRI has had a dominant position in the nuclear programme of the former Czechoslovakia since it was established in 1955. In December 1992 the NRI has been transformed into a joint-stock company. The Institute's activity encompasses nuclear physics, radiochemistry, experiments at the research reactor and many other topics. Main issues addressed in the NRI in the past decades were concentrated on research, development and services provided to the VVER reactors, development of chemical technologies for fuel cycle and irradiation services. Currently, the research activities are mainly targeted to assist the State Office for Nuclear Safety. Significant attention is also paid to the use of nuclear technology outside the nuclear power sector, providing a wide range of services to industry, medicine and the preparation of radiopharmaceuticals. NRI operates 2 research nuclear reactors, hot cell facility, research laboratories, and technology for radioactive waste management, radionuclide irradiators, an electron accelerator and others. After 50 years of activities in the nuclear field, there have been many environmental liabilities that are being remedied in the NRI. There are 3 areas of these remediation activities: - decommissioning of old obsolete facilities, - processing of RAW resulting from operation and dismantling of nuclear facilities, and - elimination of spent fuel from research nuclear reactors. The goal is to remedy the environmental liabilities and eliminate the potential negative impact on the environment. Remediation of the environmental liabilities started in 2003 and should be finished in 2014. (orig.)

  9. Planning ten years ahead a multidisciplinary nuclear research technology institute: the case of IPEN

    International Nuclear Information System (INIS)

    Sousa, Willy Hoppe de

    2011-01-01

    Planning is always a problem in government organizations whose mission involves the development of R and D activities. The current issue of the Institute of Energy and Nuclear Research (IPEN), one of the institutes comprising the National Nuclear Energy Commission (CNEN), is to plan the reconciling the long-term ramifications of a large project whose funding is primarily derived from the budget Union with the R and D agenda of IPEN which is largely driven and funded by science and technology funding agencies. This paper aims at reporting the results of one of the stages of the work developed by IPEN to deal with this problem. In mid-2010, top management of IPEN approved the implementation of a participatory planning effort with the following guidelines: (1) focus on two of the three finalist functions of IPEN - Research and Development (R and D) and Products and Services (P and S), (2) results orientation with a time horizon of 10 years, (3) incorporation of the unfolding of a large project in this planning effort (this project has its own planning) and (4) the source of information of the planning process would be the teams involved in the research lines and projects (LPP's) and the lines of production activities (LAP's) - the lowest grouping level in the current planning framework of IPEN. The planning process developed was based on an adaptation of a technique known as technology roadmapping. The data were collected through a web questionnaire. At the end of the data collection in mid- December 2010 89 LPP's and LAP 28's responses were recorded. For the purposes of this article the following groups of information related to R and D finalist function are presented: Where are we now?: (1) Profile of the current team; (2) Motivation of research and (3) Sources used for identification R and D goals. How can we get there?: (4) Profile of research partners, and (5) Profile of the necessary changes. Where do we want to go?: (6) Classification of results by areas and (7

  10. Planning ten years ahead a multidisciplinary nuclear research technology institute: the case of IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Willy Hoppe de, E-mail: whsousa@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Planos e Programas

    2011-07-01

    Planning is always a problem in government organizations whose mission involves the development of R and D activities. The current issue of the Institute of Energy and Nuclear Research (IPEN), one of the institutes comprising the National Nuclear Energy Commission (CNEN), is to plan the reconciling the long-term ramifications of a large project whose funding is primarily derived from the budget Union with the R and D agenda of IPEN which is largely driven and funded by science and technology funding agencies. This paper aims at reporting the results of one of the stages of the work developed by IPEN to deal with this problem. In mid-2010, top management of IPEN approved the implementation of a participatory planning effort with the following guidelines: (1) focus on two of the three finalist functions of IPEN - Research and Development (R and D) and Products and Services (P and S), (2) results orientation with a time horizon of 10 years, (3) incorporation of the unfolding of a large project in this planning effort (this project has its own planning) and (4) the source of information of the planning process would be the teams involved in the research lines and projects (LPP's) and the lines of production activities (LAP's) - the lowest grouping level in the current planning framework of IPEN. The planning process developed was based on an adaptation of a technique known as technology roadmapping. The data were collected through a web questionnaire. At the end of the data collection in mid- December 2010 89 LPP's and LAP 28's responses were recorded. For the purposes of this article the following groups of information related to R and D finalist function are presented: Where are we now?: (1) Profile of the current team; (2) Motivation of research and (3) Sources used for identification R and D goals. How can we get there?: (4) Profile of research partners, and (5) Profile of the necessary changes. Where do we want to go?: (6) Classification of

  11. The tissue bank at the national nuclear research institute in Mexico.

    Science.gov (United States)

    Esther Martínez-Pardo, María; Lourdes Reyes-Frías, Ma

    2003-01-01

    The Instituto Nacional de Investigaciones Nucleares (ININ, The National Nuclear Research Institute) received during 1997-1998 strong support of the International Atomic Energy Agency (IAEA), to establish the first and only one tissue bank (BTR ININ tissue bank) in Mexico that uses ionising radiation as sterilising agent. In that time, the BTR staff was trained in different tissue banks in several countries. Basic equipment for tissue processing donated by the IAEA was received in 1998. In July, 1999 the Mexican Health Secretariat gave the Sanitary License No. 1062000001 to the BTR to operate as an official organ and tissue bank. In August, 2001 the ININ and the Hospital Materno Infantil (HMI-ISSEMYM) signed an agreement to collaborate in amnion processing. The hospital is responsible for donor selection, serology tests, tissue procurement and washing, since this hospital is the BTR amnion supplier. The tissues are collected by ININ weekly with complete documentation. The BTR is responsible for processing: cleaning, air drying, packaging, labelling, microbiological control and sterilisation by gamma irradiation. The sterilised tissue is kept under quarantine for 6 months to obtain the results of the donor second serology test. From March to June, 2002 the BTR has processed 347.86 units (50 cm(2) each), is say, 17,393 cm(2). In addition, the pig skin xenograft process has been implemented and a protocol for clinical applications of it is running at the Hospital Central Sur de Alta Especialidad (PEMEX). Also the ININ tissue bank present status and perspectives are described.

  12. Estimation of metal pollutant loads from Nuclear and Energy Research Institute (Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joyce R.; Monteiro, Lucilena R.; Soares, Sabrina M.V.; Stellato, Thamiris B.; Silva, Tatiane B.S.C.; Silva, Douglas B. da; Faustino, Mainara G.; Pires, Maria A.F.; Cotrim, Marycel E.B., E-mail: joyce.marques@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    According to National Environmental Council's (CONAMA) Resolution 357/05, pollutant load can be defined as the amount of a particular pollutant released in receiving water body; it is commonly expressed in a mass-time ratio. As specified in CONAMA's Resolution 430/11, the responsible for the pollutant source must present the Pollutant Load Declaration to environmental authorities. However, pollutant load knowledge is also important to the water quality maintenance and its environmental rating that must be kept to meet the requirements of the most restrictive use. In the control of metals releases is also important due public health matters, since they can cause harmful environmental contamination and major public health issues. Therefore this work aims to present the estimated metal pollutant load released by Nuclear and Energy Research Institute (IPEN/CNEN - Brazil), between 2013 and 2014. Results of cadmium, lead, copper, chromium, zinc, nickel, manganese, iron, barium, silver, boron and tin in composite samples (weekly) via Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and bromide (Br-) released as a tracer, to measure the wastewater flow were used to estimate IPEN's Metal Pollutant load. This study is part of the environmental assessment Program at IPEN, instituted since 2006 to the attendance of the current environmental legislation (CONAMA's Resolution 430/11, Article 19-A of State Decree 8.468/76 and State Decree 15.425/80). (author)

  13. Management of Spent Nuclear Fuel of Nuclear Research Reactor VVR-S at the National Institute of Physics and Nuclear Engineering, Bucharest, Romania

    Science.gov (United States)

    Biro, Lucian

    2009-05-01

    The Nuclear Research Reactor VVR-S (RR-VVR-S) located in Magurele-Bucharest, Romania, was designed for research and radioisotope production. It was commissioned in 1957 and operated without any event or accident for forty years until shut down in 1997. In 2002, by government decree, it was permanently shutdown for decommissioning. The National Institute of Physics and Nuclear Engineering (IFIN-HH) is responsible for decommissioning the RR-VVR-S, the first nuclear decommissioning project in Romania. In this context, IFIN-HH prepared and obtained approval from the Romanian Nuclear Regulatory Body for the Decommissioning Plan. One of the most important aspects for decommissioning the RR-VVR-S is solving the issue of the fresh and spent nuclear fuel (SNF) stored on site in wet storage pools. In the framework of the Russian Research Reactor Fuel Return Program (RRRFR), managed by the U.S. Department of Energy and in cooperation with the International Atomic Energy Agency and the Rosatom State Corporation, Romania repatriated all fresh HEU fuel to the Russian Federation in 2003 and the HEU SNF will be repatriated to Russia in 2009. With the experience and lessons learned from this action and with the financial support of the Romanian Government it will be possible for Romania to also repatriate the LEU SNF to the Russian Federation before starting the dismantling and decontamination of the nuclear facility. [4pt] In collaboration with K. Allen, Idaho National Laboratory, USA; L. Biro, National Commission for Nuclear Activities Control, Romania; and M. Dragusin, National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania.

  14. Health status of radiation workers in an institute of nuclear research

    International Nuclear Information System (INIS)

    Popescu, F.; Paunescu, G.; Stroe, F.; Andrei, N.

    2000-01-01

    The aim of this study was the identification of the changes in health condition of workers from an institute of nuclear research. Thirty-five workers (25 male and 10 female) radiation exposed to low doses of ionizing radiation were admitted in the Radiopathology Centre Bucharest, after a selection performed during the annual check-up. The workers have had different professions: nuclear fuel processor, engineer laboratory technician, electrician, instrument technician. The time of exposure to ionizing radiation was between 6 to 25 years. Medical specialists in occupational health, dermatology, ophthalmology, O.R.L., endocrinology, haematology, neurology and psychology investigated them. The following lab tests were performed: haematological examination, biochemical examination, immunology tests, alergology skin tests, functional lung tests and cardiogram. No special problems concerning the exposure to ionizing radiation were found, but the following diseases were detected in some extent: neurasthenia, high blood pressure, ischemic heart disease, digestive system disorders, endocrinology disorders and anaemia. High blood pressure, ischemic heart disease and digestive system disorders were related with stress or job strain. Anaemia occurred in connection with gynaecological disorders. Some thyroid dysfunction appeared because of low dietary iodine content in the Sub-Carpathian region. The focus of the psychological exam was the identification of the effect of different factors (exogenous, endogenous or multidimensional) over a person, that could influence the psychological potential. The psychological exam reveals the following disturbances: asthenia, tiredness, chronic fatigue, psycho-emotional impairment, lapses of attention, anxiety. These disturbances may be in relation both with job strain (especially a substantial stress factor for nuclear fuel processor and engineer laboratory technician) and the syndrome of workplace. (author)

  15. Health status of radiation workers in an institute of nuclear research

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, F.; Paunescu, G.; Stroe, F. [Inst. of Public Health, Bucharest (Romania); Andrei, N.

    2000-05-01

    The aim of this study was the identification of the changes in health condition of workers from an institute of nuclear research. Thirty-five workers (25 male and 10 female) radiation exposed to low doses of ionizing radiation were admitted in the Radiopathology Centre Bucharest, after a selection performed during the annual check-up. The workers have had different professions: nuclear fuel processor, engineer laboratory technician, electrician, instrument technician. The time of exposure to ionizing radiation was between 6 to 25 years. Medical specialists in occupational health, dermatology, ophthalmology, O.R.L., endocrinology, haematology, neurology and psychology investigated them. The following lab tests were performed: haematological examination, biochemical examination, immunology tests, alergology skin tests, functional lung tests and cardiogram. No special problems concerning the exposure to ionizing radiation were found, but the following diseases were detected in some extent: neurasthenia, high blood pressure, ischemic heart disease, digestive system disorders, endocrinology disorders and anaemia. High blood pressure, ischemic heart disease and digestive system disorders were related with stress or job strain. Anaemia occurred in connection with gynaecological disorders. Some thyroid dysfunction appeared because of low dietary iodine content in the Sub-Carpathian region. The focus of the psychological exam was the identification of the effect of different factors (exogenous, endogenous or multidimensional) over a person, that could influence the psychological potential. The psychological exam reveals the following disturbances: asthenia, tiredness, chronic fatigue, psycho-emotional impairment, lapses of attention, anxiety. These disturbances may be in relation both with job strain (especially a substantial stress factor for nuclear fuel processor and engineer laboratory technician) and the syndrome of workplace. (author)

  16. Groundwater assessment in water resources management at Nuclear and Energy Research Institute, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sabrina M.V.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Silva, Tatiane B.S.C.; Faustino, Mainara G.; Silva, Douglas B. da; Cotrim, Marycel E.B.; Pires, Maria Aparecida F., E-mail: sabrinamoura@usp.br, E-mail: joyce.marques@usp.br, E-mail: luciremo@uol.com.br, E-mail: thamistellato@gmail.com, E-mail: tatianebscs@live.com, E-mail: mainarag@usp.br, E-mail: douglas.sbatista@yahoo.com.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    To comply with the guidelines for environmental control and legal requirements, the Nuclear and Energy Research Institute (IPEN/ CNEN - Brazil/ SP) performs the Environmental Monitoring Program for Chemical Stable Compounds (PMA-Q) since 2007, in attendance to the Term for the Adjustment of Conduct (TAC) signed between IPEN and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). The PMA-Q program includes the assessment of the IPEN's wastewater released in water body, and the groundwater assessment, which is carried out in nine monitoring wells. In groundwater is analyzed, by ion chromatography, species regulated by CONAMA 396/08 [01] fluoride, chloride, nitrite-N, nitrate-N, sulfate, sodium, potassium, ammonium, magnesium and calcium, besides other parameters. Furthermore, based on legal requirements, each year the program is reviewed and improvement actions are planned and implemented. Therefore, the integrated monitoring of groundwater should provide information on the quality and dynamics of the aquifer compared to seasonal variations and anthropogenic effects. Thus, this study intends to evaluate the chemical features of the institute groundwater, evaluating the database of the monitoring program from 2011 to 2014, for the ions chloride, nitrate-N, sulfate, sodium, potassium, magnesium, calcium and bicarbonate, using these information diagrams will be developed for the characterization of the wells. This assessment will be essential to support the control actions of environmental pollution and the management of water resources. Making possible the establishment of groundwater Quality Reference Figures (QRF), according to the CONAMA 396/08 [01] rating, in order to demonstrate that the activities developed at IPEN are not affecting on the aquifer features. (author)

  17. Remote handling equipment for laboratory research of fuel reprocessing in Nuclear Research Institute at Rez

    International Nuclear Information System (INIS)

    Fidler, J.; Novy, P.; Kyrs, M.

    1985-04-01

    Laboratory installations were developed for two nuclear fuel reprocessing methods, viz., the solvent extraction process and the fluoride volatility process. The apparatus for solvent extraction reprocessing consists of a pneumatically driven rod-chopper, a dissolver, mixer-settler extractors, an automatic fire extinguishing device and other components and it was tested using irradiated uranium. The technological line for the fluoride volatility process consists of a fluorimater, condensers, sorption columns with NaF pellets and a distillation column for the separation of volatile fluorides from UF 6 . The line has not yet been tested using irradiated fuel. Some features of the remote handling equipment of both installations are briefly described. (author)

  18. Vision of the Training Department of the National Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Dominguez A, C. E.

    2008-12-01

    The availability of skilled personnel is an essential element of the national infrastructure, to ensure the safety and security through the strong principles of management and good technology, quality assurance, training and qualification of new personnel, thorough safety evaluations and building on lessons of experience and research. In the national case the General Regulation of Radiation Safety requires that the Radiation Safety Responsible (RSR) must be experienced in issues of radiation safety of the facility in which employed. As experience has been found by chance that some people who have attended courses offered by the National Institute of Nuclear Research and have not achieved a result approval, obtain approval at the respective courses offered by other entities, which may have a potential dilemma (not at all cases since then), in the sense that the aspiration to become experts in the safety basic standards, can be addressed only after ensuring that there is an acceptance at the level of the course and evaluation ways of the present courses to RSR. Viewed another way, one can consider the formation of RSR experience in planning for better training of experts in the safety basic standards. It happens that the courses offered to RSR some of them do not cover the requirements of time, content and practices established in the regulations. The Mexican Society of Radiological Safety can affect as a partner to improve the courses quality. (Author)

  19. 1989 annual report of the Rossendorf Central Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Fromm, W.; Kaun, K.H.; Moeller, K.; Naehring, F.; Schulz, H.; Winter, G.; Heidel, I.; Breiter, S.

    1990-01-01

    The research and development results are classified by research lines. Each section starts with an introduction summing up the developments of the particular field of work, followed by progress reports on specific projects, contributions on partial results not published so far, and summaries of 1989 publications. Research priorities are, among others, the fields of nuclear spectroscopy; ion-beam solid state physics; positron emission tomography; nuclear trace technology; neutron doping, and accelerator development. (DG) [de

  20. Web server of the Centre for Photonuclear Experiments Data of the Scientific Research Institute for Nuclear Physics, Moscow State University: Hypertext version of the nuclear physics database

    Energy Technology Data Exchange (ETDEWEB)

    Boboshin, I N; Varlamov, A V; Varlamov, V V; Rudenko, D S; Stepanov, M E [D.V. Skobel' tsyn Scientific Research Institute for Nuclear Physics, M.V. Lomonosov Moscow State University, Centre for Photonuclear Experiments Data (Russian Federation)

    2001-02-01

    The nuclear databases which have been developed at the Centre for Photonuclear Experiments Data of the D.V. Skobel'tsyn Scientific Research Institute for Nuclear Physics, M.V. Lomonosov Moscow State University, and put on the Centre's web server, are presented. The possibilities for working with these databases on the Internet are described. (author)

  1. Web server of the Centre for Photonuclear Experiments Data of the Scientific Research Institute for Nuclear Physics, Moscow State University: Hypertext version of the nuclear physics database

    International Nuclear Information System (INIS)

    Boboshin, I.N.; Varlamov, A.V.; Varlamov, V.V.; Rudenko, D.S.; Stepanov, M.E.

    2001-01-01

    The nuclear databases which have been developed at the Centre for Photonuclear Experiments Data of the D.V. Skobel'tsyn Scientific Research Institute for Nuclear Physics, M.V. Lomonosov Moscow State University, and put on the Centre's web server, are presented. The possibilities for working with these databases on the Internet are described. (author)

  2. Karlsruhe Nuclear Research Center, Institute of Radiochemistry. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The IRCH microsystems technology activities are dedicated to the development of chemical sensors and probes which meet the practical sensitivity, selectivity or specificity and stability requirements. The devices are miniaturized for integration into microsystems technology solutions and are designed for a wide range of process management, process control and process analysis uses including, e.g. pollution monitoring and medical diagnosis. The nuclear fusion project focuses on investigations into chemical and technical tritium technology problems which may occur, e.g. during tritium recovery from tritiated compounds in the internal and external fusion reactor fuel cycles. Additional efforts go into the physico-ceramic characterization of ceramic breeder materials, the extraction of bred tritium from the blanket, and the development of the necessary process analysis methods. (orig.) [de

  3. Paul Scherrer Institut annual report 1994. Annex IV: PSI nuclear energy and safety research progress report 1994

    International Nuclear Information System (INIS)

    Williams, T.; Kallfelz, J.M.; Mathews, D.

    1995-01-01

    Nuclear energy research in Switzerland is concentrated at PSI. It is explicitly mentioned in the Institute's official charter and commands about one fifth of the Institute's federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI's activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs

  4. Food irradiation studies at the Institute of Nuclear Energy Research, Taiwan, Rep. of China

    International Nuclear Information System (INIS)

    Fu, Y.-K.; Tsai, C.-M.; Wu, W.-S.; Chang, M.-S.; Chang, Y.-N.; Shu, S.-L.

    1981-01-01

    The use of radiation to inhibit sprouting of potatoes, onions, gingers and garlic was studied at the Institute of Nuclear Energy Research. The sprout inhibition doses were found to be, 10, 5, 2.5, 7.5 Krads, respectively. Changes in the content of moisture, ash, reducing sugars, total sugars, lipids, proteins, fiber etc. were monitored in various agricultural foodstuffs both with and without γ-irradiation at various doses. Fungicides did not prevent potatoes from decaying at 10 or 25 0 C with or without gamma radiation. Onions treated with any fungicides have significantly more healthy tissues than controls at 10 0 C but not 25 0 C after 30 and 60 days storage, regardless of the presence or absence of gamma radiation. Insect pests have been causing great damage to stored rice in Taiwan. The four most harmful insects are: Sitophilus Zeamais Mostschulsky, Rhyzopertha dominica, Tribolitum custaneum Herbst and Sitotroga cerealella Oliver. Adults, eggs or larvae of these insect pests were irradiated by 60 Co gamma rays. The results show that 40 Krads of gamma-irradiation could completely control these four species of pests in stored rice. (author)

  5. Management of communication area in a nuclear research and development institute

    International Nuclear Information System (INIS)

    Soares, Wellington Antonio

    2005-01-01

    Nuclear energy to the general public is always associated to the production of nuclear weapons or to nuclear and radiological accidents. Public communication actions done by the National Commission of Nuclear Energy (CNEN) have been contributing to make known the social and peaceful applications of nuclear energy, reaching different kinds of public. Interaction programs with society and in particular with students have also been carried out by the Nuclear Technology Development Center (CDTN/CNEN). Measuring public communication results can help to show that financial resource in this area should be considered as investment and not as expenses. One needs therefore a well-established managing system. Fundamentals of the National Quality Award Criteria for Excellence - PNQ are being applied in the area in charge of business and public communication at CDTN. Systematic registration of results started in 2000 and a gradual increase in the number of means of communication for the internal public has occurred in the last five years. The Center has now a bimonthly newspaper edition. Communication indicators have shown an increasing number of students received in the Center or provided with lectures in schools. Results of satisfaction inquiry from these students show good results. The implemented management system has allowed informing the nature and quantity of people reached by the information on nuclear applications and the improvement in the institutional image. (author)

  6. Management of communication area in a nuclear research and development institute

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Wellington Antonio [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil). Servico de Negocios e Comunicacao]. E-mail: soaresw@cdtn.br

    2005-07-01

    Nuclear energy to the general public is always associated to the production of nuclear weapons or to nuclear and radiological accidents. Public communication actions done by the National Commission of Nuclear Energy (CNEN) have been contributing to make known the social and peaceful applications of nuclear energy, reaching different kinds of public. Interaction programs with society and in particular with students have also been carried out by the Nuclear Technology Development Center (CDTN/CNEN). Measuring public communication results can help to show that financial resource in this area should be considered as investment and not as expenses. One needs therefore a well-established managing system. Fundamentals of the National Quality Award Criteria for Excellence - PNQ are being applied in the area in charge of business and public communication at CDTN. Systematic registration of results started in 2000 and a gradual increase in the number of means of communication for the internal public has occurred in the last five years. The Center has now a bimonthly newspaper edition. Communication indicators have shown an increasing number of students received in the Center or provided with lectures in schools. Results of satisfaction inquiry from these students show good results. The implemented management system has allowed informing the nature and quantity of people reached by the information on nuclear applications and the improvement in the institutional image. (author)

  7. Aseismatic design and safety of nuclear power generation facilities. Research in Central Research Institute of Electric Power Industry

    International Nuclear Information System (INIS)

    1995-01-01

    In order to contribute to the aseismatic design of nuclear power generation facilities, this Research Institute has carried out the observation on the site of buildings in Matsushiro earthquake, the experiment on a large vibration table, the vibration experiment on actual buildings and so on, thus made clear the method of evaluating the dynamic model of buildings and foundation grounds. Also it cooperated in the determination of input earthquake motion which is important for aseismatic design by carrying out the evaluation of the activity of faults the observation of strong earthquakes, and the elucidation and evaluation of the characteristics of earthquake motion. It has made the standard for evaluating the fault activity and the stability in earthquakes of the foundation and surrounding grounds of power stations. The development of new underground location technology, the location on Quaternary grounds and the location on the sea, and the research on developing the aseismatic construction of FBRs are in progress. The survey and evaluation of fault activities, the evaluation of earthquake input, the limit state design of important outdoor structures, the new location technology for nuclear power stations, and the development of the buckling and base isolation design of FBRs are reported. (K.I.)

  8. Application of accelerators in industry, medicine and for environmental research in Almaty Institute of Nuclear Physics

    International Nuclear Information System (INIS)

    Lyssukhin, S.N.; Arzumanov, A.A.

    2001-01-01

    Full text: The Institute of Nuclear Physics in Almaty is the only Kazakhstan institution with a significant activity at the national level in the field of physics of accelerators, their application and associated technology. Three accelerators of different type are being used in the Institute: high power electron beam accelerator, isochronous cyclotron and heavy ion electrostatic tandem. Electron beam accelerator ELV-4 - This high power machine is only electron beam irradiation facility of industrial scale in the Republic. It was produced by Budker Institute of Nuclear Physics, Novosibirsk, Russia and installed in Almaty in 1991 for development of radiation technology in Kazakhstan. The accelerator generates electron beams of following parameters: Energy range (MeV) 1.0-1.5; Max. beam power (kW) 40; Max. beam current (mA) 40. The machine is equipped with beam scanning system, extraction device with output window 980x75 mm 2 and chain conveyer for irradiated material supply. Tn the time being the accelerator is regularly used for radiation cross-linking technology and for sterilization. Cross-linking technology is the base of high quality roof material production for building industry. Raw ethylene-propylene rubber mixture is rolled as strip of 50 m length, 1 m width, 1 mm thickness and then irradiated by dose of about 120 kGy. The final product is waterproof flexible material, very stable in hard atmospheric conditions and non sensitive to sun UV radiation. Sterilization of medical materials and items is not traditional application of such low energy installations but due to uniqueness of this accelerator in Kazakhstan and high actuality of the task for the Republic this technology was developed in INP. Hermetically packed items (medical cotton , bandages, syringes, surgical gloves, small plastic bottles) with thickness less than penetration range of 1.5 MeV electrons are put at the conveyer as mono-layer and irradiated by sterilizing dose of 25 kGy. Isochronous

  9. XV and XVI SERC Main Schools in Theoretical High Energy Physics held at the Saha Institute of Nuclear Physics and Harish-Chandra Research Institute

    CERN Document Server

    2005-01-01

    Current research in High Energy Physics focuses on a number of enigmatic issues that go beyond the very successful Standard Model of particle physics. Among these are the problem of neutrino mass, the (as yet) unobserved Higgs particle, the quark-gluon plasma, quantum aspects of gravity, and the so--called hierarchy problem. Satisfactory resolution of these important questions will take much research effort in both theory and experiment. The Science & Engineering Research Council, Department of Science & Technology has sponsored a series of SERC Schools in Theoretical High Energy Physics over the past several years, to provide instruction and training to graduate students working for research degrees. This book is an outcome of the schools held at the Saha Institute of Nuclear Physics, Kolkata in 2000, and at the Harish-Chandra Research Institute, Allahabad in 2001. Based on lectures by active researchers in the field---Rajiv Gavai, Debashis Ghoshal, Dileep Jatkar, Anjan Joshipura, Biswarup Mukhopadhy...

  10. Present status of contamination monitoring at the Dalat Nuclear Research Institute (DNRI)

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hoang Van [Dalat Nuclear Research Inst. (Viet Nam)

    1997-06-01

    The Dalat nuclear research reactor was renovated and upgraded from the previous TRIGA reactor. In Vietnam, it is a unique nuclear device having suitable neutron flux for the radioisotope production and neutron activation analysis. Soon after the reactor reached its initial criticality in November 1983, a programme has been formed to develop the application of nuclear techniques in various fields. In addition, the use of radioisotopes for diagnostic, therapeutic and other research purposes has been in progress. In order to support these activities, the radiation protection, especially the radiation contamination monitoring has been properly paid attention to. In DNRI, the Radiation Protection Department is responsible for controlling and supervising radiation and working safety for all activities. In this paper, the following items are described on radiation contamination monitoring: controlled area, surface contamination monitoring, and airborne concentration monitoring. (G.K.)

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  13. Implementation of neutron diffraction technique at Nuclear Center of National Institute of Nuclear Research for study of materials

    International Nuclear Information System (INIS)

    Macias Betanzos, L.R.

    1993-01-01

    The Neutron Diffraction technique, it's a helpful tool for the study of materials. The purpose, was to verify that such technique works with the Neutron Diffractometer of National Institute of Nuclear Research. The scope, is to study crystalline materials by the Neutron Diffraction Method, that means it completion with Bragg's Law. There exist a lot of diffraction techniques that depend on the kind of study to do. In this case the study was to measure known samples to have a correlation between parameters such a extinction factor and dislocation density. Known copper deformed samples were measured to observe the extinction effect and it could be observed. We had to calibrate the Neutron Diffractometer, the detection system and to have an optimal movement control of diffractometer devices by mean of a microcomputer. Also, was necessary to control the Reactor TRIGA operation to minimize the neutron flux oscillation. It was not possible the quantification of dislocation density in the samples because the relation signal/background was about one and it gives high inaccuracy. To correct this problem, it's necessary to have a better shielding to minimize the contribution of the background. The conclusion is that the Neutron Diffractometer is in conditions to carry out investigation on the material field, today it can be lattice constants, crystalline phases and measurements of metallic textures. For such studies, it's necessary to have samples with 2 cm 3 or higher to increase the relation signal/background. At present, we have the process software to give the interpretation of the Neutron Diffraction process. (Author). 12 refs, 16 figs

  14. Nuclear fusion research and plasma application technologies in SWIP (Southwestern Institute of Physics)

    International Nuclear Information System (INIS)

    Deng, X.W.

    1990-01-01

    A brief introduction of nuclear fusion research and plasma application technologies in SWIP is reported in this paper. The SWIP focuses its fusion efforts mainly on Tokamak with mirror as the supplemental experiments and fusion reactor conceptual design as preparation for future application of fusion energy. SWIP is making great efforts on fusion technology spin-off to make contribution towards national economic construction. (Author)

  15. IAEA support to the sustainability of nuclear research institutions through networking and coalitions

    International Nuclear Information System (INIS)

    Videnovic, I.R.; Goldman, I.N.; Bradley, E.E.; Ridikas, D.; Adelfang, P.; Acuna, O.E.; )

    2009-01-01

    Full text: The research reactor community has had a long and successful history of both productive and safe operations, with important contributions to scientific and technical research, production of isotopes for medical and industrial purposes, and important support to nuclear power programmes. However, most of the research reactors operating in the European region are now over 30 years old, although many of them have been refurbished to meet today's technological standards and safety requirements. Many research reactors are underutilized and faced with critical issues regarding their sustainability and important decisions concerning their future operation. These include challenges associated with the ageing of staff, reactor components, materials and spent fuel. Another significant challenge is securing adequate financial support - through public subsidies or income generation - to offset operational costs and the level of political and/or public support. Additional attention should be focused on the serious erosion at the level of government support, management commitment and available resources for the infrastructure necessary for effective research reactor operations. Such challenges are also occurring in the context of increased concerns over global non-proliferation and nuclear material safety and security, as a result of which research reactor operators are increasingly compelled to substantially improve their physical security arrangements and to convert their reactors to low enriched uranium (LEU) fuel. In addition, some of the products of research reactors, such as medical radioisotopes, are increasingly subject to transport security restrictions, delays and added costs, making it even more difficult for research reactors to develop potential revenue sources. These factors create a complex environment for research reactors and one in which underutilized and therefore usually poorly funded facilities invoke different concerns. In this context, greatly

  16. Bulletin of the Research Laboratory for Nuclear reactors (Tokyo Institute of Technology)

    International Nuclear Information System (INIS)

    Fujii, Yasuhiko

    2000-01-01

    This bulletin contains five chapters, which are Celebration of Prof. Tomiyasu's sixtieth birthday, Energy engineering, Mass transmutation engineering, System and safety engineering, and Co-operative researches. At first,, a memorial lecture of prof. Tomiyasu was expressed on a short note concerning pyrometallurgical nuclear reprocessing methods in view of recent studies under a title of 'Illusion in pyrometallurgical nuclear fuel reprocessing'. On next, at the energy engineering, 26 reports such as energy loss of 6 MeV/u iron ions in partially ionized helium plasma, nuclear fuel rods bundle thermal hydraulics analysis, coupling of space-dependent neutron kinetics model with thermal hydraulics analysis, and so on, were described. At the mass transmutation engineering, 22 reports such as a lead-bismuth cooled long life reactor with CANDLE burnup, molten salt reactor in the future equilibrium state, basic study on some equilibrium fuel cycle of PWR, and so on, were expressed. And, at the system and safety engineering, 16 reports such as study of a rotary phase shifter for power system applications, high field FBC tokamak for D-T fusion reactor, SMES using a high temperature superconductor, and so on, were found. At the co-operative researches at last chapter, four subjects on co-operative researches in T.I.T., themes of co-operative researches outside T.I.T., co-operative researches by use of MIT-RR, and themes supported by grants-in-aid for scientific research of the Ministry of Education, Science, Sports and Culture, were reported. (G.K.)

  17. Institute of Energy and Climate Research IEK-6 : nuclear waste management & reactor safety report 2009/2010 ; material science for nuclear waste management

    OpenAIRE

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (Editors)

    2011-01-01

    This is the first issue of a new series of bi-annual reports intended to provide an overview of research activities for the safe management of nuclear waste in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety devision in Jülich. The report gives a thematic overview of the research in 2009 and 2010 by short papers of five to eight pages. Some papers are discussing the work within different projects with intensive overlap, such as ...

  18. Institute of Energy and Climate Research IEK-6. Nuclear Waste Management report 2011/2012. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2013-01-01

    The nuclear waste management section of the Institute of Energy and Climate Research IEK-6 in Juelich is focused on research on radiochemistry aspects/materials science relevant for the long-term safety of nuclear waste storage and disposal. Studies on innovative waste management strategies include partitioning o actinides and the development of ceramic waste forms. Structural research is covering solid state chemistry, crystallography and computational science to model actinide containing compounds. With respect to waste management concepts nondestructive essay techniques, waste treatment procedures and product quality control strategies were developed.

  19. X-ray fluorescence in Member States: Philippines. XRF activities at Analytical Measurements Research Group, Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pabroa, Corazon B.; Castaneda, Soledad S.; Almoneda, Rosalina V.; Sucgang, Raymond J.; Racho, Joseph Michael D.; Morco, Ryan P.; Cuyco, Danilo; Jimenez, Gloria; Santos, Flora L.

    2008-01-01

    Full text: XRF analysis and activities of the Analytical Measurements Research (AMR) Group (see Fig.1) of the Philippine Nuclear Research Institute (PNRI) focus on both research and analytical services. Air pollution research, in particular source apportionment studies, requires multi-elemental data for a substantial number of samples. In the PNRI, energy-dispersive X-ray fluorescence (EDXRF) has been used as an effective tool for providing such multi-elemental data. With the latest acquisition of the Panalytical Epsilon 5 (E5) EDXRF system, the process of quantification has become easier and faster with the auto-quantify method. Other research involvements of the group are in the analysis of samples in relation to mineral explorations and the elemental characterization of water in support for isotope hydrology research. The AMR group, as part of its function to provide analytical services, offers qualitative or semi quantitative analysis of solid samples using the auto quantify method, quantitative analysis of environmental samples using the emission-transmission method and quantitative analysis of air particulate matter collected on filters. Telephone wire materials sold in junkshops (alleged to have been pilfered from installed telephone lines of a major telecommunications company in the country) and materials being assessed in relation to patent claims are other examples of samples submitted for analytical services. As mentioned, a useful feature of the E5 system is the use of the auto-quantify (AQ) method. Calibration lines used for this type of application are obtained using the fundamental parameter (FP) model. For AQ applications, accurate results are obtained for samples prepared as fused glass beads in which the whole matrix is known. However, only qualitative or semi quantitative analysis can be applied for other types of solid samples. The AQ method was adapted for the multi-elemental analysis of air particulates using the MicroMatter standards to set

  20. Preservation of nuclear talented experts in Japan by co-operation of industries, research institutes and universities

    International Nuclear Information System (INIS)

    Mori, H.

    2004-01-01

    about 70% of them want to go into nuclear careers, only 1/3 of them can find jobs. For these reasons, despite the importance of nuclear energy and needs of capable students, fewer students go to the nuclear engineering field due to reduced job opportunities. This in turn has led to the lowered popularity of the nuclear engineering departments in universities. Industrials have concerns about preservation of their own nuclear expertise under a circumstance of reduced On-the-Job-Training (OJT) opportunities due to fewer plant installation projects. The JAIF analysis report compiles following proposals: 1) To diminish the quantitative and qualitative imbalance between supply and demands of capable human resources; 2) To develop new technical fields for the application of nuclear technologies so that researchers and engineers of next generations be attracted; and 3) To build up a new network system for nuclear human resources development by education and training through cooperation of universities, research organizations and industries. The new proposed system in the JAIF report, the Nuclear Educational System network (NESnet), has two main pillars: (i) to share the information on the nuclear human resource development between industries and research organizations; and (ii) to strengthen the graduate school systems jointly operated by universities and research organizations, by sharing expertise resources. The first pillar of constructing the information database about human resource development is underway between the industries and research organizations. Plans of joint operations of graduate courses are also being specified in nuclear engineering by various research organizations and universities. The Japan Nuclear Cycle Development Institute (JNC) and the Japan Atomic Energy Research Institute (JAERI) will be integrated into one new nuclear research-and-development organization by 2005. Human resources development for future is prescribed as one of the new organization

  1. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  2. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2011-01-01

    Due to the use of nuclear energy about 17.000 t (27.000 m 3 ) of high level waste and about 300.000 m 3 of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear graphite

  3. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M; Neumeier, S; Bosbach, D [eds.

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  4. Nuclear Data Center (NDC) of Korea Atomic Energy Research Institute (KAERI). Progress Report to the IAEA Technical Meeting of Nuclear Reaction Data Centers (NRDC)

    International Nuclear Information System (INIS)

    Lee, Young-Ouk

    2012-01-01

    Nuclear Data Center (NDC, former Nuclear Data Evaluation Lab.) of Korea Atomic Energy Research Institute (KAERI) has a director, 10 permanent staffs (2 in evaluation, 1 in measurement, 2 in atomic and molecular data, 2 in processing and validation, 3 in applications), one PhD student and one secretary. KAERI/NDC recently expanded its scope of work into the atomic and molecular data where two permanent staffs are involved. Mission of KAERI/NDC is disseminating outcomes of international network as well as promoting domestic nuclear data activities and related applications.

  5. Institute of Nuclear Solid State Physics (INFP). Progress report on research and development in 1994

    International Nuclear Information System (INIS)

    1995-01-01

    About 90 percent of the research activities of the INFP in 1994 were devoted to superconductivity as the priority research field of the Institute. In the domain of fundamental research, the work on oxidic HT superconductors was continued, concentrating on the electronic structure and details of the lattice dynamics. New tasks were opened up with studies on the recently discovered boron nitrides of the type LnNi 2 B 2 C (Ln=Y,Lu,..) with superconducting transition temperatures of up to T c ∼23K. Good progress was achieved in the preparation of MPMG superconducting bulk specimens intended for use in self-stabilising magnetic bearings. A prototype flywheel power storage system was developed for demonstrating the technological feasibility. Application-oriented studies were concerned with the growth of epitactic thin films on application-relevant substrates and including suitable buffer layers, and with the examination of the high-frequency performance of these films. Fullerene research continued with studies into the solid-state physics of crystalline fullerenes or fullerene compounds, and the preparation and characterisation of endofullerenes such as La C 82 . The remaining approximately 10 percent of the Institute's research activities covered experimental and theoretical work on the physics of surfaces and boundary surfaces, and the physics of mesoscopic systems. (orig./MM) [de

  6. Non-radioactive waste management in a Nuclear Energy Research Institution

    International Nuclear Information System (INIS)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F.

    2013-01-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  7. Sustainability indicators for innovation and research institutes of nuclear area in Brazil; Indicadores de sustentabilidade para institutos de pesquisa e inovacao da area nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Alves, S.F.; Barreto, A.A.; Rodrigues, P.C.H.; Feliciano, V.M.D., E-mail: sfa@cdtn.br, E-mail: aab@cdtn.br, E-mail: pchr@cdtn.br, E-mail: vmfj@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-11-01

    Indicators are relevant tools for measuring sustainability process. In this study, the relevance of sustainability indicators appropriate for research and innovation institutes in Brazil is discussed. As reference for case study, nuclear research and innovation institutes were chosen. Sixty-nine sustainability indicators were considered. Some of these indicators were obtained from lists in the literature review, distributed between the dimensions environmental, economic, social, cultural and institutional. The other indicators were developed through discussions between professionals from nuclear, environmental, economic, social and cultural areas. Among the investigated indicators, 32 were selected as being the most relevant. Discrepancies were found during the analysis the opinions of the experts in relation to sustainability dimensions proposed. (author)

  8. KfK, Institute for Nuclear Solid-State Physics. Report of results on research and development work 1985

    International Nuclear Information System (INIS)

    1986-02-01

    The Institute for Nuclear Solid-State Physics pursues at time mainly basis-oriented work in the fields of superconductivity and the boundary-surface and microstructure research. The experimental and theoretical works aim to a better understanding of the microscopical and macroscopical properties of certain solids. At time superconductors with high transition point, highly correlated electron systems, conducting polymers, and amorphous substances are studied especially intensively. Technologically relevant materials have in the comparative case preference. Beside the experimental methods of nuclear solid-state physics (neutron scattering, Moessbauer spectroscopy, ion-implantation technology, irradiation and analysis with fast ions) the institute disposes of further highly specificated techniques, like electron-energy-loss-spectroscopy, special material preparation, X-ray diffractometry, and two UHV facilities for the study of the first surface respectively near-surface regions with thermal helium atoms as well as with fast ions. (orig./HSI) [de

  9. Bulletin of the Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    1992-01-01

    In this bulletin, 48 reports of the researches in the Energy Engineering Division on two-phase flow characteristics, thermo-hydraulic behavior of fuel channel, FBR cores, combustion systems, boiling heat transfer, MHD generators, thermoluminescence emission, nuclear magnetic resonance, photoreduction of uranium, kinetics and mechanism of reaction, chemical heat pumps and others, 39 reports of the researches in the Mass Transmutation Engineering Division on heavy ion linac system, tritiated water diffusion into concrete, hydrogen plasma-driven permeation, neutron diffusion, long life small safe reactors, use of U-233, mercury coolant, low level neutron detectors, tritium enrichment, free electron laser, compact storage and acceleration rings and others, and 20 reports of the researches in the System and Safety Engineering Division on self-consistent nuclear energy supply system, behavior of plasma-facing components, fragmentation of liquid metal, flywheel motor generator, modeling of tokamak plasma, irradiation effect on SiC ceramics, safety analysis of fusion energy system and others are collected. (K.I.)

  10. Results of research and development work 1981 of the Institute of Nuclear Engineering

    International Nuclear Information System (INIS)

    1982-03-01

    Besides the works for the demonstration plant in Brazil, separation nozzle methods for commercial plants are tried that allow an economical way of enriching uranium in plants of medium capacity. An injection method has been developed by means of which space-charge problems while producing intensive hydrogen rays for fusion experiments and fusion reactors allow to be disarmed. The interaction of He3-, He-4- and H 2 -cluster rays with nuclear- and electron rays has been investigated as part of the basic research. (DG) [de

  11. Research activity of institute of physical chemistry of Russian Academy of sciences in the field of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pikaev, A.K. [Institute of Physical Chemistry of Russian Academy of Sciences, Moscow (Russian Federation)

    2000-07-01

    The report is a brief review of the most important directions in research activity of the Institute of Physical Chemistry of RAS (Moscow) in the field of nuclear fuel cycle. The main attention is paid to researches and developments on liquid radioactive waste management including the removal of wastes to deep geological formations and the immobilization of the wastes. In particular, the data from the study on the properties of new, basaltic-like matrices for the immobilization are presented. The results of research on gas evolution from the systems modeling liquid high-level radioactive wastes are considered. The separation of some radionuclides from irradiated nuclear and the production of radiation sources by various methods are discussed. (author)

  12. Nuclear and Energy Research Institute (1956-2000). A case study under the science, technology and brazilian culture history

    International Nuclear Information System (INIS)

    Gordon, Ana Maria Pinho Leite

    2003-01-01

    We analysed a period of the contemporary Brazilian history with the aim to discuss the inter-relationship between science, technology (S and T) and culture in a developing country, showing as a background for a case of study the history of the 'Instituto de Pesquisas Energeticas e Nucleares'. The history of Science and Technology, as a result of the human brain ability of innovate using the resources offered by nature, it is not only the description of successive findings carried out by talented men. It is a reflex of determined age of history as a consequence of accumulated knowledge connected also to human and cultural relationships, which together leads to the scientific and technological progress. In fact, the human brain and society march along together and can not be separated in this journey. In our study we recovered the initial steps of IPEN's outbreak; inserted its achievements in the context of the national policy for nuclear technology and evaluated how this policy was a reply of the governmental organizations to the worldwide situation. Finally, we spread the scientific ideas and technological findings of this institution, who has translate much of the life style and culture of our society. For this purposes, we analysed internal technical report series elaborated by several researchers and few testimonies. The Institution developed the fuel cycle technology, supplied radioisotopes for medical diagnosis and treatment purposes, generating economic resources for our country. The nuclear techniques are a relevant tool for researchers of this Institution applied for several purposes, including the assessment of the radioactivity levels in the environment, radioprotection, etc. Besides those applications, other techniques including the laser technology, the fuel cell, corrosion studies, etc, were implemented as a result of the improved capabilities and skills acquired during the almost 50 years of the Institute's existence. We make evident two strong

  13. Decommissioning strategy for the 'RA' research nuclear reactor at the 'Vinca' Institute

    International Nuclear Information System (INIS)

    Matausek, M.V.

    2000-01-01

    Adopting the global strategy for decommissioning of the research reactor RA at the Vinca Institute and preliminary planning of particular activities is necessary independently on the decision of the future status of this reactor, namely even in the case that it is decided to complete the modernization and to use the reactor again. In this paper the global decommissioning strategy for the RA reactor is proposed, as well as the optimal time schedule of particular activities, based on the relevant experiences from other countries (author) [sr

  14. Non-radioactive waste management in a Nuclear Energy Research Institution

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F., E-mail: helioaf@ipen.br, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEM-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2013-07-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  15. Overview of management of low and intermediate level radioactive wastes at the Institute for Nuclear Research for to save management of the waste from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The national policy of radioactive waste management fully complies with the international requirements established by 'Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and with the EURATOM treaty, directives, recommendations and policy of radioactive waste management promoted at the level of the European Union. The Institute for Nuclear Research Pitesti (INR) has its own Radwaste Treatment Plant. The object of activity is to treat and condition radioactive waste resulted from the nuclear facility. According to the National Nuclear Program, the institute is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by Cernavoda NPP. For all these, in accordance with the Governmental order no. 11/2003, INR shall must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from decommissioning activities. (authors)

  16. Some results of NAA collaborative study in white rice performed at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Thien, T.Q.; Vu, C.D.; Doanh, H.V.; Sy, N.T.

    2014-01-01

    White rice is a main food for Asian people. In the framework of Forum for Nuclear Cooperation in Asia (FNCA), therefore, the eight Asian countries: China, Indonesia, Japan, Korea, Malaysia, the Philippines, Thailand and Vietnam selected white rice as a common target sample for a collaboration study since 2008. Accordingly, rice samples were purchased and prepared by following a protocol that had been proposed for this study. The groups of elements that were analyzed by using neutron activation analysis in the white rice samples were toxic elements and nutrient elements, including: Al, As, Br, Ca, Cl, Co, Cr, Cs, Fe, K, Mg, Mn, Na, Rb and Zn. The analytical results were compared between the different countries and evaluated by using the Tolerable Intake Level of World Health Organization (WHO) and Recommended Dietary Allowance or Adequate Intake (AI) of the U.S. Institute of Medicine (IOM) guideline values. These data will be very useful in the monitoring of the levels of food contamination and in the evaluation of the nutritional status for people living in Vietnam and other Asian countries. (author)

  17. Contributions of the National Institute of Nuclear Research to the advance of Science and Technology in Mexico. Commemorative edition 2010

    International Nuclear Information System (INIS)

    Duque M, G.; Jimenez R, M.; Monroy G, F.; Romero H, S.; Serment G, J.

    2010-01-01

    From the second decade of the X X century the applications of the nuclear energy have been important part of the scientific and technological patrimony in Mexico. Records exist with regard to the use of the radioisotopes and the radiations in our country in that time, and in a formal way until the year of 1950, in a process that culminates with the creation of the Comision Nacional de Energia Nuclear (CNEN. January 1, 1956). In January 12, 1972 were published the Organic Law that created to the Instituto Nacional de Energia Nuclear, being responsible for the works that the CNEN developed. The current Instituto Nacional de Investigaciones Nucleares (ININ) was constituted starting from the Regulation Law of the constitutional Article 27 in nuclear matter of January 26, 1979, abrogated and substituted by the Law in force of February 4, 1985. In this lapse they were undertaken multitude of projects with results and diverse achievements. From their creation, the mission of the ININ and the previous institutions has been to realize research in science and nuclear technology, to promote their peaceful uses and to diffuse the achieved advances, always searching for to link them to the economic, social, scientific and technological development of the country. In this occasion with the purpose of participating in the commemoration of the bicentennial of the independence and centennial of the Mexican revolution in our country, the ININ decided to publish this work, directed to a wide public, with the intention of providing a vision the most complete and appropriate possible of the activities in research and technology that it is carries out at the moment. This work also seeks to be a diffusion instrument of the tasks that they are carried out in the institute, in diverse subjects as: the basic research, the nuclear applications in the health, the agriculture and the industry, the studies on the contamination and the environment; the dosimetry; the radiological protection; as

  18. Nuclear research at the institute of physics of Azerbaijan national academy of sciences

    International Nuclear Information System (INIS)

    Nagiyev, Sh. M.

    2002-01-01

    In the field of elementary particles and nuclear physics the research of a number of theoretical and experimental problems is being carried out. Theoretical research by axiomatic, symmetric and field theoretical methods in elementary particles and nuclear physics have obtained wider development. Theorists study the problems of electroweak interaction, investigate relativistic composite models in the framework of a finite-difference version of relativistic quantum mechanics and phenomenological aspects of subquark models, develop a description of fundamental interactions in the axiomatic quantum field theory and investigate non-perturbative methods in gauge field theory. Using field theoretical methods, a relativistic covariant Hamiltonian quantum field theory on the light cone (on the light-front planes) for fields with arbitrary spin was developed.The various exactly soluble finite-difference models for some important applications of dynamic quantum systems (linear and three-dimensional harmonic oscillators, hydrogen atoms etc.) were investigated. The wave functions, energy spectra and dynamic symmetry were determined; the coherent states and Wigner distribution functions for the stationary states and the states of thermodynamic equilibrium were constructed.Research related to the possible description of lepton and lepton-hadron interactions within the framework of the weak and electromagnetic interaction theories with spontaneously broken of SU(2)xU(1) gauge symmetry were carried out. The questions of acceptance of different SU(2)xU(1) models were investigated. Several methods for introducing heavy leptons were also considered.It was shown that, the spin interactions in even deformed nuclei generate a new collective branch of monopoly excitations, and are responsible for the formation of observables in experiments on magnetic dipole and Gamov-Teller resonances. The experimental studies are primarily focused on the investigation of the following problems: a) ATLAS

  19. Progress report 2011-2013 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2014-01-01

    This progress report presents the results of the R&D center of IPEN in accordance with the main programs: Lasers Technology, Applications of Ionizing Radiations, Biotechnology, Renewable Energies, Radiopharmacy, Nuclear Science and Technology, Environmental Science and Technology, Nuclear Reactors and Fuel Cycle, Materials and Nanotechnology, Nuclear Safety, Education, Brazilian Multipurpose Reactor and Scientific and Technical Production

  20. Progress report 2008-2010 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2011-01-01

    This progress report presents the results of the R and D center of IPEN in the areas of: Lasers Technology; Renewable Energies; Nuclear Reactors and Fuel Cycle; Applications of Ionizing Radiations; Nuclear Science and Technology; Materials and Nanotechnology; Environmental Science and Technology; Radiopharmacy; Nuclear Safety; and Education. Also presents the Technical and Scientific Production od the center

  1. Proceedings of the International Symposium on Advances in Nuclear Physics. Fifty Years of Institutional Physics Research in Romania

    International Nuclear Information System (INIS)

    Poenaru, Dorin; Stoica, Sabin

    2000-01-01

    This Symposium was devoted to the cerebration of 50 years of Institutional Physics Research in Romania. The inaugural talk was given by professor W. Greiner on development in fission, fusion, cluster radioactivity and the extension of the periodic system of elements. Seven divisions followed on the items: super heavy nuclei (4 talks); new fission modes (4 talks); astrophysics and cosmic rays (5 talks); particle and high energy physics (6 talks); hadronic matter (6 talks); nuclear structure and reactions (13 talks); atomic physics (4 talks); applications and history. Many of these talks highlighted the substantial Romanian contributions to the scientific achievements in these fields

  2. TL dosimetry in the new Tandetron ion accelerator site of the National Institute of Nuclear Research (ININ)

    International Nuclear Information System (INIS)

    Valdovinos A, M.; Gonzalez M, P.R.

    2000-01-01

    The National Institute of Nuclear Research (ININ) acquired a positive ions accelerator type Tandetron 2 MV of the dutch company High Voltage Engineering, Europe B.V., which was finished its installation this year (2000) in an already existing building in the Dr. Nabor Carrillo Flores Nuclear Centre, where it was prepared for the following purposes: the accelerator will be used to realize research through X-ray emission induced by charged particles, Rutherford backscattering analysis, nuclear reaction analysis, gamma ray emission induced by charged particles, resonant dispersion analysis, elastic backward detection analysis and by particle canalization analysis. The accelerator consists of an injection system with two ion sources, ion accelerator tank with voltage in terminal at 2 MV, recovery and recirculation system of charge interchange gas, iman selector analyzer system and with high energy focussing, control system through computer and management and recovery of isolator gas system. For the realization of operation tests of this accelerator, it was had the license authorizing by the National Commission of Nuclear Safety and Safeguards (CNSNS). During the test stage Tl dosemeters were arranged in the Tandetron accelerator area, and also in direction to the beam outlet. In this work, are presented the obtained results of the measurement of radiation levels, as in the area as in the beam outlet. (Author)

  3. Institute of Energy and Climate Research IEK-6. Nuclear waste management report 2013/2014. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Neumeier, S.; Klinkenberg, M.; Bosbach, D.

    2016-01-01

    This is the third bi-annual report of the Nuclear Waste Management section of the Institute of Energy and Climate Research (IEK-6) at Forschungszentrum Juelich since 2009 - almost a tradition. Our institute has seen two more years with exciting scientific work, but also major changes regarding nuclear energy in Germany and beyond. After the reactor accident in Fukushima (Japan) in 2011, it was decided in Germany to phase out electricity production by nuclear energy by 2022. It seems clear, that the decommissioning of the nuclear power plants will take several decades. The German nuclear waste repository Konrad for radioactive waste with negligible heat generation (all low level and some of the intermediate level radioactive waste) will start operation in the next decade. The new site selection act from 2013 re-defines the selection procedure for the German high level nuclear waste repository. Independently of the decision to stop electricity production by nuclear energy, Germany has to manage and ultimately dispose of its nuclear waste in a safe way. Our basic and applied research for the safe management of nuclear waste is focused on radiochemistry and materials chemistry aspects - it is focused on the behaviour of radionuclides and radioactive waste materials within the back-end of the nuclear fuel cycle. Itis organized in four areas: (1) research supporting the scientific basis of the safety case of a deep geological repository for high level nuclear waste, (2) fundamental structure research of radionuclide containing (waste) materials (3) R and D for waste management concepts for special nuclear wastes and (4) international safeguards. A number of excellent scientific results have been published in more than 80 papers in international peer-reviewed scientific journals in 2013 - 2014. Here, I would like to mention four selected scientific highlights - more can be found in this report: (1) The retention of radionuclides within a nuclear waste repository system by

  4. Institute of Energy and Climate Research IEK-6. Nuclear waste management report 2013/2014. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, S.; Klinkenberg, M.; Bosbach, D. (eds.)

    2016-07-01

    This is the third bi-annual report of the Nuclear Waste Management section of the Institute of Energy and Climate Research (IEK-6) at Forschungszentrum Juelich since 2009 - almost a tradition. Our institute has seen two more years with exciting scientific work, but also major changes regarding nuclear energy in Germany and beyond. After the reactor accident in Fukushima (Japan) in 2011, it was decided in Germany to phase out electricity production by nuclear energy by 2022. It seems clear, that the decommissioning of the nuclear power plants will take several decades. The German nuclear waste repository Konrad for radioactive waste with negligible heat generation (all low level and some of the intermediate level radioactive waste) will start operation in the next decade. The new site selection act from 2013 re-defines the selection procedure for the German high level nuclear waste repository. Independently of the decision to stop electricity production by nuclear energy, Germany has to manage and ultimately dispose of its nuclear waste in a safe way. Our basic and applied research for the safe management of nuclear waste is focused on radiochemistry and materials chemistry aspects - it is focused on the behaviour of radionuclides and radioactive waste materials within the back-end of the nuclear fuel cycle. Itis organized in four areas: (1) research supporting the scientific basis of the safety case of a deep geological repository for high level nuclear waste, (2) fundamental structure research of radionuclide containing (waste) materials (3) R and D for waste management concepts for special nuclear wastes and (4) international safeguards. A number of excellent scientific results have been published in more than 80 papers in international peer-reviewed scientific journals in 2013 - 2014. Here, I would like to mention four selected scientific highlights - more can be found in this report: (1) The retention of radionuclides within a nuclear waste repository system by

  5. Institute of Nuclear Waste Management Technology (INE). 1994 progress report on research and development

    International Nuclear Information System (INIS)

    1995-01-01

    In 1994 INE worked on the following research projects: radionuclide behaviour during corrosion of high-level radioactive COGEMA glass; studies of glassy basalt of the Werra-Fulda salt deposit as a natural analogue of the corrosion of HAW glass; corrosion studies of high burnup LWR fuels in brine; chemical behaviour of Tc in aqueous, chloride systems; corrosion studies of waste container materials; solution chemistry of U; thermodynamics of Np(V) in concentrated brines; radiation-chemical effects in the vicinity of repositories; laser spectroscopic speciation and thermodynamics of Cm(III); development of laser spectroscopic methods; radiochemical and chemical analyses of nuclear samples; solid-state and surface analyses; coupling of transport and speciation models; influence of colloid formation on the migration behaviour of long-lived radionuclides; studies of the consolidation behaviour of filling material; thermomechanical effects of inhomogeneities in the salt dome; basic studies and process engineering developments in the field of solidification of high-level radioactive fission product solutions; corrosion behaviour of WAK-HAW containing glass products in brines. (orig./HP) [de

  6. Forty years of the Institute for Nuclear Research (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 22 December 2010)

    International Nuclear Information System (INIS)

    2011-01-01

    On 22 December 2010, the scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), devoted to the 40th anniversary of the Institute for Nuclear Research, RAS, was held at the Institute for Nuclear Research, RAS in Troitsk. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A (Institute for Nuclear Research, RAS, Moscow) ''Introductory word''; (2) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) ''Contribution of the SAGE results to the understanding of solar physics and neutrino physics''; (3) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) ''Baikal neutrino experiment''; (4) Tkachev I I (Institute for Nuclear Research, RAS, Moscow) ''Observation of the Greisen - Zatsepin - Kuz'min effect at the Telescope Array Observatory''; (5) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow) ''Neutrino T2K experiment: the first results''; (6) Sadykov R A (Institute for Nuclear Research, RAS, Moscow) ''Fields of study of condensed media at the neutron facility at the INR, RAS''; (7) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) ''Production of isotopes at the INR, RAS: reality and prospects''. The papers written on the base of reports 1-5 and 7 are published below. In addition, the paper ''High-power diode-pumped alkali lasers'' by A M Shalagin is published. The paper is based on the report presented at the scientific session of the General Assembly of the Physical Sciences Division, RAS (13 December 2010) devoted to the 50th anniversary of the laser, the main materials of the session having been published in Usp. Fiz. Nauk 181 (8) 867 (2011) [Phys. Usp. 54 837 (2011)]. . Institute for Nuclear Research of the Russian Academy of Sciences turns 40, V A Matveev Physics-Uspekhi, 2011, Volume 54, Number 9, Pages 939-940 . The Russian-American gallium experiment SAGE, V N Gavrin Physics-Uspekhi, 2011, Volume 54

  7. Progress report 2005-2007 - Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2008-01-01

    This progress report presents the results of the R and D center of IPEN in accordance with the main programs: Radiopharmacy; Application of Ionizing Radiations; Nuclear Science and Technology; Nuclear Reactors and Fuel Cycle; Environmental Science and Technology; Renewable Energies; Materials and Nanotechnology; Biotechnology; Lasers Technology and Education

  8. Activity report 1991 from IPEN - Brazilian Institute of Energy and Nuclear Researches, CNEN/SP

    International Nuclear Information System (INIS)

    1991-01-01

    This report presents the main events achieved at IPEN in 1991: actions related to international cooperation, developed administrative activities as well as the matched results in the areas of Fuel Cycle, Nuclear Reactors, Application of Nuclear Techniques, Radiation Protection and Logistic Support

  9. Annual report for FY 2010 on the activities of radiation safety in Nuclear Science Research Institute etc. April 1, 2010 - March 31, 2011

    International Nuclear Information System (INIS)

    2012-03-01

    This annual report describes the activities of Radiation Protection Sector in Department of Radiation Protection in Nuclear Science Research Institute, Safety Section in Takasaki Advanced Radiation Research Institute, Safety Section in Kansai Photon Science Institute, Operation Safety Administration Section in Aomori Research and Development Center and Safety Section in Naka Fusion Institute. The activities described are environmental monitoring, radiation protection in workplaces, individual monitoring, maintenance of monitoring instruments, and research and development of radiation protection. At these institutes the occupational exposures did not exceed the dose limits. The radioactive gaseous and liquid discharges from the facilities were well below the prescribed limits. The research and development activities obtained certain results in the fields of operational radiation protection technique and the construction of calibration fields for neutron beams. The institutes in Tokai, Takasaki, Aomori and Naka were suffered from the Great East Japan Earthquake and the nuclear power plant accident which followed the earthquake. (author)

  10. Fuel-handling machine tests at the Institute for Nuclear Research - Pitesti. Computer and software research and engineering

    International Nuclear Information System (INIS)

    Doca, Cezar; Predescu, Darie; Maiorescu, Oliviu; Dobrescu, Sorin

    2003-01-01

    management and maintenance tools and procedures to make the data safely and consistently available to concurrent software processes at run time including data acquisition during the f/h machine calibration process and data presentation to human; - robust real time controller core sw based on OS9/68k OS and ISaGRAF target kernel with reliable inter-process synchronization and data management via OS9 data modules assuring safely cooperation mechanisms between different tasks were developed under different programming environments; - I/O management in the real-time data acquisition tasks and acquisition process test tools; - system and technological comprehensive loggers and flexible presentation tools; - run-time remote cross debugging tools (both for sw development and as an alternate for technological process monitoring or simulation); - technological operator oriented HMI with local or remote access for online and offline tasks; - integrated user and group policies management tools and procedures using both native OS9 and application mechanisms; - error handling management for safe technological control and for application sw maintenance; - technological job definition and execution management tools. The result is a highly flexible and maintainable working system that is now the core controlling the test and calibration process of f/h machine stand. The complex system computer-software was successfully used in the first tests of the f/h machine at the Institute for Nuclear Research - Pitesti

  11. The 1989 annual report: Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 annual report of the Nuclear Physics Institute (Orsay, France) is presented. The results concerning exotic nuclei and structure studies by means of nuclear reactions are summarized. Research works involving the inertial fusion and the actinides are discussed. Theoretical and experimental work on the following fields is also included: high excitation energy nuclear states, heavy ion collision, intermediate energy nuclear physics, transfer reactions, dibaryonic resonances, thermodiffusion, management of radioactive wastes [fr

  12. Strategic management at IPEN - Institute of Nuclear and Energetic Research, S P, Brazil

    International Nuclear Information System (INIS)

    Rodrigues, Claudio; Zouain, Desiree M.

    2000-01-01

    This panel presents an overview on the strategic management of the IPEN, S P, Brazil, with emphasis on the history, the main installations, the nature of the activities and training activities of the institute

  13. The ICRP 66 Internal Radiation Exposure Control and Dose Evaluation of The Institute of Nuclear Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Pang, H. F.; Hwang, W. S.; Chiu, J. H.

    2004-07-01

    The Atomic Energy Council (AEC) is the regulatory body of ionization radiation protection in Taiwan. To effectively control the safety in ionization radiation, AEC brought into force the Ionization Radiation Protection Act on 1 February, 2003 with clear statements of the penalty for violating the Law. The Article 5 of the Act provides: In order to limit the radiation exposure from radiation sources or practices, the Competent Authority shall refer to the latest standards of the International Commission on Radiological Protection to lay down the Safety Standards for Protection against Ionizing Radiation. Thus, AEC is going to draft new safety standards of ionization radiation protection of Taiwan according to ICRP Publication 60. The Institute of Nuclear Energy Research (INER), the governmental institute working on ionization radiation research in Taiwan, took the responsibility of assisting AEC in establishing guidelines on the control of internal radiation exposure and responding to the regulations in the new standards as soon as possible. So, according to the recommendations of ICRP Publications 60, 66,67,68,69,71,78,88, and IAEA Safety Standard Series No. RS-G- 1.1 and 1.2, INER undertook researches on the internal radiation exposure control and dose evaluations for INER's radiation workers as well as dose evaluations for the general public. The research accomplishments not only can be the reference of AEC when making new standards, but also can be followed by other radiation protection businesses. (Author) 23 refs.

  14. Identification of organization values according to the perception of the employees of the Energetic and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    Pupak, Marcia Orrico; Roman, Edson; Perrota, Jose Augusto; Feher, Ana Claudia M.; Magalhaes, Adriana B.V.B.; Massi, Maria Julia Gili; Rogero, Jose Roberto; Maximiano, Antonio Cesar Amaru

    2002-01-01

    The purpose of this research was to identify the organizational values, according to the perception of employees of the Energetic and Nuclear Research Institute - IPEN. The instrument used in this research was the 'Organization Values Questionnaire'. This survey contains a list with 38 values, each followed by a parenthetical explanation that clarifies its meaning. Respondents rated each value on a 6-point scale from, less important (0) to very important (6), in response to the question: How important is each values for the organizational life? This evaluation should be done in two levels of perception: REAL plan, and IDEAL plan. The population investigated was constituent by 1000 employees. The total of 553, i.e. 55.3%, questionnaires were turned back. As result, it was identified on REAL plan, values related to coefficient as EFFICIENCY, EFFICACY and MANAGEMENT. On IDEAL plan, they were related to EMPLOYEE VALORIZATION and INOVATION coefficient. As consequence, the institutional commitment is to form working groups, inside the Strategic Planning Revision, in order to elaborate the Core Values, based on the values identified on this research. (author)

  15. The ICRP 66 Internal Radiation Exposure Control and Dose Evaluation of The Institute of Nuclear Energy Research

    International Nuclear Information System (INIS)

    Pang, H. F.; Hwang, W. S.; Chiu, J. H.

    2004-01-01

    The Atomic Energy Council (AEC) is the regulatory body of ionization radiation protection in Taiwan. To effectively control the safety in ionization radiation, AEC brought into force the Ionization Radiation Protection Act on 1 February, 2003 with clear statements of the penalty for violating the Law. The Article 5 of the Act provides: In order to limit the radiation exposure from radiation sources or practices, the Competent Authority shall refer to the latest standards of the International Commission on Radiological Protection to lay down the Safety Standards for Protection against Ionizing Radiation. Thus, AEC is going to draft new safety standards of ionization radiation protection of Taiwan according to ICRP Publication 60. The Institute of Nuclear Energy Research (INER), the governmental institute working on ionization radiation research in Taiwan, took the responsibility of assisting AEC in establishing guidelines on the control of internal radiation exposure and responding to the regulations in the new standards as soon as possible. So, according to the recommendations of ICRP Publications 60, 66,67,68,69,71,78,88, and IAEA Safety Standard Series No. RS-G- 1.1 and 1.2, INER undertook researches on the internal radiation exposure control and dose evaluations for INER's radiation workers as well as dose evaluations for the general public. The research accomplishments not only can be the reference of AEC when making new standards, but also can be followed by other radiation protection businesses. (Author) 23 refs

  16. The post-irradiated examination of CANDU type fuel irradiated in the Institute for Nuclear Research TRIGA reactor

    International Nuclear Information System (INIS)

    Tuturici, I.L.; Parvan, M.; Dobrin, R.; Popov, M.; Radulescu, R.; Toma, V.

    1995-01-01

    This post-irradiation examination work has been done under the Research Contract No. 7756/RB, concluded between the International Atomic Energy Agency and the Institute for Nuclear Research. The paper contains a general description of the INR post-irradiation facility and methods and the relevant post-irradiation examination results obtained from an irradiated experimental CANDU type fuel element designed, manufactured and tested by INR in a power ramp test in the 100 kW Pressurised Water Irradiation Loop of the TRIGA 14 MW(th) Reactor. The irradiation experiment consisted in testing an assembly of six fuel elements, designed to reach a bumup of ∼ 200 MWh/kgU, with typical CANDU linear power and ramp rate. (author)

  17. Activity report on research and development work 1980 of the institute for Nuclear Process Technology

    International Nuclear Information System (INIS)

    1981-02-01

    Within the framework of guaranteeing supplies of nuclear fuel for the generation of nuclear energy, the KfK developed the separation nozzle method for the enrichment of U-235. It is based on partial separation of this uranium isotope by a deflected jet from a mixture of UF 6 /hydrogen. This method is now being applied on a technical scale for the first time in Brazil within the framework of an agreement concluded between the Federal Republic of Germany and Brazil and approved by the International Atomic Energy Agency. (orig./EF) [de

  18. Bio dosimetry- present situation and solution for application at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Tran Que; Hoang Hung Tien; Hoang Van Nguyen

    2000-01-01

    Studies on using technique of chromosome aberration analysis of Human lymphocytes for biodosimetry included the study on spontaneous frequencies of chromosome aberrations (background), the study on dosimetric calibrations, and the study on the solutions for personal biodosimetry at Dalat Nuclear Reactor. The results of these studies were published and the solutions for personal biodosimetry were recommended. (author)

  19. Study of social responsibility of the Nuclear and Energy Research Institute of Sao Paulo (IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Mutarelli, Rita de Cassia

    2014-01-01

    Over the years, the socio-environmental concept has grown through programs, conferences and several activities that have been held in Brazil and worldwide. Sustainability and social responsibility are now an integral part of everyday life of organizations The Instituto de Pesquisas Energeticas e Nucleares (IPEN), which is the focus of this research, is committed to the improvement of Brazilian quality of life. Based on IPEN's mission, and due to the lack of tools for assessing socio-environmental actions, this research aims to propose an assessment tool for social responsibility, which may also be a methodological resource committed to the improvement of the Institute. Through indicators and dimensions, a methodology to assess social responsibility and identify both strengths and weaknesses was designed. The methodology was administered to IPEN, and the results demonstrated positive aspects regarding actions towards the internal publics and negative aspects towards the external publics that require improvement. The results obtained were satisfactory. Nevertheless, as the subject of this study is a broad theme, further studies are suggested. IPEN's board may use the results of this research as a tool to help them identify feasible socio-environmental actions to be implemented in the institute. (author)

  20. Study of socio environmental actions of Energy and Nuclear Research Institute of Sao Paulo (IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Mutarelli, Rita de Cassia; Sabundjian, Gaiane; Menzel, Francine

    2013-01-01

    Over the years the evolution of environmental concept comes solidifying increasingly through programs, conferences and various activities taking place in Brazil and worldwide. As a result of this development, sustainability and social responsibility began to be seen as something present in day to day business and institutions. In particular, the Institute of Energy and Nuclear Research (IPEN), state authority associated with University of Sao Paulo (USP) and managed by the National Commission of Nuclear Energy (CNEN), subordinate the Ministry of Science and Technology, which is the focus of this work, has the mission the commitment to society as regards: improving the quality of life of the population, producing scientific knowledge, developing technologies, generating products and services and training human resources in nuclear and related. Based on the mission of IPEN and in the lack of assessment tools of social actions, this paper aims to propose an instrument for assessing social responsibility and serve as a methodological option, strongly committed to the pursuit of improvements of IPEN. Through indicators and dimensions, built up a methodology that seeks to assess social responsibility and identify strengths, to be encouraged and weaknesses, which can be studied and improved. This methodology was applied to IPEN and the results that are presented in this work identified positives regarding their actions to their domestic audience and points to be improved in relation to their external audience. As an initial evaluation, the results were satisfactory; however, this work will continue in order to suggest the implementation of social and environmental actions feasible to be applied in IPEN. (author)

  1. Study of socio environmental actions of Energy and Nuclear Research Institute of Sao Paulo (IPEN/CNEN-SP)

    Energy Technology Data Exchange (ETDEWEB)

    Mutarelli, Rita de Cassia; Sabundjian, Gaiane; Menzel, Francine, E-mail: rmutarelli@gmail.com, E-mail: gdjian@ipen.br, E-mail: fmenzel@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Over the years the evolution of environmental concept comes solidifying increasingly through programs, conferences and various activities taking place in Brazil and worldwide. As a result of this development, sustainability and social responsibility began to be seen as something present in day to day business and institutions. In particular, the Institute of Energy and Nuclear Research (IPEN), state authority associated with University of Sao Paulo (USP) and managed by the National Commission of Nuclear Energy (CNEN), subordinate the Ministry of Science and Technology, which is the focus of this work, has the mission the commitment to society as regards: improving the quality of life of the population, producing scientific knowledge, developing technologies, generating products and services and training human resources in nuclear and related. Based on the mission of IPEN and in the lack of assessment tools of social actions, this paper aims to propose an instrument for assessing social responsibility and serve as a methodological option, strongly committed to the pursuit of improvements of IPEN. Through indicators and dimensions, built up a methodology that seeks to assess social responsibility and identify strengths, to be encouraged and weaknesses, which can be studied and improved. This methodology was applied to IPEN and the results that are presented in this work identified positives regarding their actions to their domestic audience and points to be improved in relation to their external audience. As an initial evaluation, the results were satisfactory; however, this work will continue in order to suggest the implementation of social and environmental actions feasible to be applied in IPEN. (author)

  2. Results of research and development works of the Institute for Nuclear Engineering in 1982

    International Nuclear Information System (INIS)

    1983-02-01

    Report on the following works: a) enrichment of U-235 according to the nozzle enrichment process, b) physical advancement of that process, c) separative element testing and uranium hexafluoride technology for that process, d) development and testing of components for that process, e) plant development to this and f) basic research for the particle injection for fusion experiments and -reactors as well as g) investigations on molecular and cluster beams. Listing of the publications and reports performed in 1982. (PW) [de

  3. Annual report for FY 2012 on the activities of radiation safety in Nuclear Science Research Institute etc. April 1, 2012 - March 31, 2013

    International Nuclear Information System (INIS)

    2014-02-01

    This annual report describes the activities in the 2012 fiscal year of Department of Radiation Protection in Nuclear Science Research Institute, Safety Section in Takasaki Advanced Radiation Research Institute, Safety Section in Kansai Photon Science Institute, Operation Safety Administration Section in Aomori Research and Development Center and Safety Section in Naka Fusion Institute. The activities described are environmental monitoring, radiation protection practices in workplaces, individual monitoring, maintenance of monitoring instruments, and research and development of radiation protection. At these institutes the occupational exposures did not exceed the dose limits. The radioactive gaseous and liquid discharges from the facilities were well below the prescribed limits. The radiological situations at the institutes in Tokai, Aomori and Naka have been affected by the Fukushima Dai-ichi nuclear power plant accident in March 2011. The research and development activities produced certain results in the fields of radiation protection technique. The radiation protection experts in the institutes actively participated in the projects after the Fukushima nuclear power plant accident. (author)

  4. Annual report for FY 2012 on the activities of radiation safety in Nuclear Science Research Institute etc. April 1, 2012 - March 31, 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-15

    This annual report describes the activities in the 2012 fiscal year of Department of Radiation Protection in Nuclear Science Research Institute, Safety Section in Takasaki Advanced Radiation Research Institute, Safety Section in Kansai Photon Science Institute, Operation Safety Administration Section in Aomori Research and Development Center and Safety Section in Naka Fusion Institute. The activities described are environmental monitoring, radiation protection practices in workplaces, individual monitoring, maintenance of monitoring instruments, and research and development of radiation protection. At these institutes the occupational exposures did not exceed the dose limits. The radioactive gaseous and liquid discharges from the facilities were well below the prescribed limits. The radiological situations at the institutes in Tokai, Aomori and Naka have been affected by the Fukushima Dai-ichi nuclear power plant accident in March 2011. The research and development activities produced certain results in the fields of radiation protection technique. The radiation protection experts in the institutes actively participated in the projects after the Fukushima nuclear power plant accident. (author)

  5. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  6. Danish Space Research Institute

    International Nuclear Information System (INIS)

    1991-01-01

    The present report presents a description of the activities and finances of the Danish Space Reserach Institute during 1989 and 1990. The research deals with infrared astronomy (ISOPHOT), X-ray astronomy (EXPECT/SODART), hard X-ray astronomy (WATCH), satellite projects and sounding rocket experiments. (CLS)

  7. Green Vinca - Vinca Institute nuclear decommissioning program

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Ljubenov, V.; Sotic, O.

    2003-01-01

    Current conditions related to the nuclear and radiation safety in the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro are the result of the previous nuclear programs in the former Yugoslavia and strong economic crisis during the previous decade. These conditions have to be improved as soon as possible. The process of establishment and initialisation of the Vinca Institute Nuclear Decommissioning (VIND) Program, known also as the 'Green Vinca' Program supported by the Government of the Republic Serbia, is described in this paper. It is supposed to solve all problems related to the accumulated spent nuclear fuel, radioactive waste and decommissioning of RA research reactor. Particularly, materials associated to the RA reactor facility and radioactive wastes from the research, industrial, medical and other applications, generated in the previous period, which are stored in the Vinca Institute, are supposed to be proper repackaged and removed from the Vinca site to some other disposal site, to be decided yet. Beside that, a research and development program in the modern nuclear technologies is proposed with the aim to preserve experts, manpower and to establish a solid ground for new researchers in field of nuclear research and development. (author)

  8. The uranium fuel cycle at IPEN - Energy and Nuclear Research Institute, SP, Brazil

    International Nuclear Information System (INIS)

    Abrao, Alcidio

    1994-09-01

    This paper summarizes the progress of research concerning the uranium fuel cycle set up at the IPEN, Sao Paulo, from the raw yellow-cake to the uranium hexafluoride. It covers the reconversion of the hexafluoride to ammonium uranyl tricarbonate and the manufacturing of the fuel elements for the swimming pool IEA-R1 reactor. This review extends the coverage of two pilot plants for uranium purification based upon ion exchange, one demonstration unity for the purification of uranyl nitrate by solvent extraction in pulsed columns, the unity of uranium tetrafluoride into moving bed reactors and a second one based upon the wet chemistry via uranium dioxide and aqueous hydrogen fluoride. The paper mentions the pilot plant for the preparation of uranium trioxide by the thermal decomposition of ammonium diuranate and a second unity by the thermal denitration of uranyl nitrate. The paper outlines the fluorine plant and the unity for the hexafluoride preparation, the unity for the conversion of the hexa to the ammonium uranyl tricarbonate and the fabrication of fuel elements for the IEA-R1 reactor. (author)

  9. Applied radiation chemistry - the present status in the Institute for Nuclear Research Academia Sinica (INRAS)

    International Nuclear Information System (INIS)

    Nian-yun, L.

    1981-01-01

    The department of radiation chemistry in INRAS is one of the research centers of radiation chemistry in China. Since its establishment in 1958, basic theoretical and applied radiation chemistry have been extensively studied and promoted. In the field of applied radiation chemistry of polymers, radiation modification of polymeric systems is an important and active branch. Materials such as permselective membranes based on different polymer films have been prepared by means of radiation crosslinking and grafting. Superfine powdered wax, which may be used for the preparation of special lubricating grease of high quality, has been obtained via radiation degradation of PTFE (polytetrafluoroethylene). As for applied organic radiation chemistry, the main technological conditions of preparation of alkane sulfonic acid by radiation sulphoxidation of n-paraffin were optimized and the radiation sensitization effects of halogenated alkane and acetic anhydride on the indicated system were studied. The radiation stability of linear conjugated molecules and the related effects of intra- and intermolecular radiation protection were particularly investigated. These studies are described. (author)

  10. The results of the investigations of Russian Research Center-'Kurchatov Institute' on molten salt applications to problems of nuclear energy systems

    International Nuclear Information System (INIS)

    Novikov, Vladimir M.

    1995-01-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research 'Kurchatov Institute' are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on a way of MS application to different nuclear energy systems

  11. The results of the investigations of Russian Research Center - {open_quotes}Kurchatov Institute{close_quotes} on molten salt applications to problems of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.M. [Russian Research Center, Moscow (Russian Federation)

    1995-10-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclear energy systems.

  12. Progress report 1985 of Institute for Radium Research and Nuclear Physics (IRK) of the Austrian Academy of Sciences

    International Nuclear Information System (INIS)

    Wild, E.; Dirniger, G.

    1986-01-01

    The work of the institute members is presented in short communications. 20 thereof, mainly in the fields medium-energy and nuclear physics, are of INIS interest and are treated separately. There is also a list of publications. (G.Q.)

  13. Proceedings of the 2. SIPEN: Integration week from IPEN - Brazilian Institute for Energy and Nuclear Researches, CNEN/SP

    International Nuclear Information System (INIS)

    1994-01-01

    The technical-scientific activities of IPEN (Instituto de Pesquisas Energeticas e Nucleares), Brazilian CNEN, has been presented in these proceedings. It includes the following topics: management and logistics, infra-structure and support, application of nuclear techniques, fuel cycle, materials, reactor research, development of products and services, radiation protection and monitoring. Nuclear medicine and application of radiation in biological assays are studied. Environmental impacts and management of radioactive wastes are also presented

  14. Environmental concerns in regarding a materials test reactor fuel fabrication facility at the Nuclear and Energy Research Institute - IPEN

    International Nuclear Information System (INIS)

    Santos, Glaucia R.T.; Durazzo, Michelangelo; Carvalho, Elita F.U.; Riella, Humberto G.

    2008-01-01

    The aim of the industrial activities success, front to a more and more informed and demanding society and to a more and more competitive market demands an environmental administration policy which doesn't limit itself to assist the legislation but anticipate and prevent, in a responsible way, possible damages to the environment. One of the main programs of the Institute of Energetic and Nuclear Research of the national Commission of Nuclear Energy located in Brazil, through the Center of Nuclear Fuel -CCN- is to manufacture MTR-type fuel elements using low-enrichment uranium (20 wt % 235 U), to supply its IEA-R1 research reactor. Integrated in this program, this work aims at well developing and assuring a methodology to implant an environment, health and safety policy, foreseeing its management with the use of detailed data reports and through the adoption of new tools for improving the management, in order to fulfil the applicable legislation and accomplish all the environmental, operational and works aspects. The applied methodology for the effluents management comprises different aspects, including the specific environmental legislation of a country, main available effluents treatment techniques, process flow analyses from raw materials and intakes to products, generated effluents, residuals and emissions. Data collections were accomplished for points gathering and tests characterization, classification and compatibility of the generated effluents and their eventual environmental impacts.This study aims to implant the Sustainability Concept in order to guarantee access to financial resources, allowing cost reduction, maximizing long-term profits, preventing and reducing environmental accident risks and stimulating both the attraction and the keeping of a motivated manpower. Work on this project has already started and, even though many technical actions have not still ended, the results have being extremely valuable. These results can already give to CCN

  15. Environmental concerns regarding a materials test reactor fuel fabrication facility at the Nuclear and Energy Research Institute - IPEN

    International Nuclear Information System (INIS)

    Santos, G. R. T.; Durazzo, M.; Carvalho, E. F. U.; Riella, H. G.

    2008-01-01

    The aim of the industrial activities success, front to a more and more informed and demanding society and to a more and more competitive market demands an environmental administration policy which doesn't limit itself to assist the legislation but anticipate and prevent, in a responsible way, possible damages to the environment. One of the maim programs of the Institute of Energetic and Nuclear Research of the national Commission of Nuclear Energy located in Brazil, through the Center of Nuclear Fuel - CCN - is to manufacture MTR-type fuel elements using low-enrichment uranium (20 wt% 2 35U), to supply its IEA-RI research reactor. Integrated in this program, this work aims at well developing and assuring a methodology to implant an environment, health and safety policy, foreseeing its management with the use of detailed data reports and through the adoption of new tools for improving the management, in order to fulfil the applicable legislation and accomplish all the environmental, operational and works aspects. The applied methodology for the effluents management comprises different aspects, including the specific environmental legislation of a country, main available effluents treatment techniques, process flow analyses from raw materials and intakes to products, generated effluents, residuals and emissions. Data collections were accomplished for points gathering and tests characterization, classification and compatibility of the generated effluents and their eventual environmental impacts. This study aims to implant the Sustainable Concept in order to guarantee access to financial resources, allowing cost reduction, maximizing long-term profits, preventing and reducing environmental accident risks and stimulating both the attraction and the keeping of a motivated manpower. Work on this project has already started and, even though many technical actions have not still ended, the results have being extremely valuable. These results can already give to CCN

  16. 78 FR 13097 - Electric Power Research Institute; Seismic Evaluation Guidance

    Science.gov (United States)

    2013-02-26

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0038] Electric Power Research Institute; Seismic... Electric Power Research Institute (EPRI)-1025287, ``Seismic Evaluation Guidance: Screening, Prioritization... guidance and clarification of an acceptable approach to assist nuclear power reactor licensees when...

  17. Contributions of the Nuclear Research Institute to the French-Czechoslovak seminar on the management of radioactive wastes held on 12-14 May, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    Paper were submitted on the use of calcination in liquid radioactive waste solidification; experience with the operation of mobile lines of the MESA type which are tested at nuclear power plants; the treatment of low level liquid wastes from special laundries. Other papers described experience with the operation of the facility for processing low and intermediate level wastes run by UJV (Nuclear Research Institute) since 1962, and the conditions for a radioactive waste burial site in Czechoslovakia. (E.S.). 3 tabs

  18. Description and Methods of the Automated Document Management System Usage in Scientific Organizational Activities of the Joint Institute for Nuclear Research (ADS SOA JINR)

    CERN Document Server

    Borisovsky, V F; Kekelidze, M G; Nikonov, E G; Senchenko, V A

    2005-01-01

    This paper presents the structure description and user guide for Information program system for automation of a document flow for support of scientific arrangement planning (ADS SOA) which can be used for planning and carrying out seminars, workshops, conferences and other arrangements of research management. This work is intended for automation of scientific research management in the Joint Institute for Nuclear Research. The complex of programs represents the CDS Agenda system used in the European Organization for Nuclear Research (CERN), which is adapted to the conditions of JINR.

  19. Quality assurance program for determining the radioactivity in environmental samples at the Institute of Nuclear Energy Research in Taiwan

    International Nuclear Information System (INIS)

    Gone, J.K.; Wang, T.W.

    2000-01-01

    Interest in determining radioactivity in environmental samples has increased considerably in recent years after the Chernobyl accident in 1986. Environmental monitoring programs have been set up in different countries to measure the trace amount of radionuclides in the environment, and quality of the analytical results on these samples is important because the regulation and safety concerns. A good quality assurance program is essential to provide accurate information for the regulatory body and environmentalists to set proper reactions to protect the environment, and a good analytical result is also important for scientists to determine the transfer of radionuclides between environmental matrices. The Institute of Nuclear Energy Research (lNER) in Taiwan has been working on radionuclide analysis in environmental samples for years, and it's environmental media radioanalytical laboratory (EMRAL) has recently upgraded its quality assurance program for the international standard ISO/lEC guide 25 requirements. The general requirements of lSO/lEC guide 25 has been adapted by the Chinese National Laboratory Accreditation (CNLA) of Taiwan, and CNLA is also a member of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC). This paper summarizes the quality assurance program of lNER's EMRAL. It covers both management and technical sections. These sections have ensured the quality of INER's EMRAL, and they can be applied to different laboratories in the future. (author)

  20. Quality assurance program for determining the radioactivity in environmental samples at the Institute of Nuclear Energy Research in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Gone, J.K. [TRR-II Project Team, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Wang, T.W. [Division of Health Physics, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2000-05-01

    Interest in determining radioactivity in environmental samples has increased considerably in recent years after the Chernobyl accident in 1986. Environmental monitoring programs have been set up in different countries to measure the trace amount of radionuclides in the environment, and quality of the analytical results on these samples is important because the regulation and safety concerns. A good quality assurance program is essential to provide accurate information for the regulatory body and environmentalists to set proper reactions to protect the environment, and a good analytical result is also important for scientists to determine the transfer of radionuclides between environmental matrices. The Institute of Nuclear Energy Research (lNER) in Taiwan has been working on radionuclide analysis in environmental samples for years, and it's environmental media radioanalytical laboratory (EMRAL) has recently upgraded its quality assurance program for the international standard ISO/lEC guide 25 requirements. The general requirements of lSO/lEC guide 25 has been adapted by the Chinese National Laboratory Accreditation (CNLA) of Taiwan, and CNLA is also a member of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC). This paper summarizes the quality assurance program of lNER's EMRAL. It covers both management and technical sections. These sections have ensured the quality of INER's EMRAL, and they can be applied to different laboratories in the future. (author)

  1. Evaluation of the aptitude for the service of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico

    International Nuclear Information System (INIS)

    Merino C, J.; Gachuz M, M.; Diaz S, A.; Arganis J, C.; Gonzalez R, C.; Nava G, T.; Medina R, M.J.

    2001-01-01

    This work describes the evaluation of the structural integrity of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico, which was realized in July 2001, as an element to determine those actions for preventive and corrective maintenance which owner must do it for a safety and efficient operation of the component in the next years. (Author)

  2. Radiometric analysis performed by the Environment Monitoring Service from IPEN (Institute of Energy and Nuclear Research), Brazil, between 1988 and 1991

    International Nuclear Information System (INIS)

    Venturini, L.; Nisti, M.B.; Pecequilo, B.R.S.

    1993-03-01

    This report presents the radiometric analyses made by the Environmental Monitoring Service from the Institute of Energy and Nuclear Research (IPEN), Brazil, in the period 1988-1991. The experimental procedures, the products analysed and their respective quantities are described. (F.E.). 11 refs, 3 tabs

  3. Annual report 1991 on R and D work by the Institute for Materials and Solid State Research (IMF), Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1992-03-01

    The annual report summarises the activities of the IMF in the following subject areas: 1) Contributions to the PKF (fusion technology project (refewing to structural materials, superconducting magnets, blanket development); 2) PSU, project for the management of pollutants in the environment (treatment and recycling of hazardous waste); 3) solid state and materials research (high-temperature materials, ceramic materials as protective coatings, polymer materials, high-performance ceramics, high-TC superconducting materials; biomechanics, laser technology); 4) microtechnology (development and testing of compact or layered materials in microtechnology); 5) PSF project, nuclear safety, research (safety and materials aspects of fast breeder reactors, transient behaviour of fuel elements in fact breeder reactors, LWR-specific safety research, containment design concepts for the next generation of PWR-type reactors); 6) NE project, nuclear waste management (analysis of solid wastes from the dissolution of spent LWR fuels, materials testing in nitric acid). The primary reports and other publications of the Institute issued in 1991 are listed in an annex. (orig./MM) [de

  4. Annual report for FY 2007 on the activities of radiation control in Nuclear Science Research Institute etc. April 1, 2007 - March 31, 2008

    International Nuclear Information System (INIS)

    2009-01-01

    This annual report describes the activities of Radiation Protection Sector in Department of Radiation Protection in Nuclear Science Research Institute, Safety Section in Takasaki Advanced Radiation Research Institute, Safety Section in Kansai Photon Science Institute and Operation Safety Administration Section in Aomori Research and Development Center. The report covers environmental monitoring around the facilities, radiation protection of workplace and workers, individual monitoring, maintenance of monitoring instruments, and research and development of radiation protection technologies, which were performed at the Radiation Protection Sector. There were no occupational or public exposures exceeding the prescribed dose limits. No effluent releases were recorded exceeding the prescribed limits on the amount and concentration of radioactivity for gaseous release and liquid waste. As for the research and development activities, studies were conducted continuously focusing mainly on the following themes: technological developments on operational radiation protection and establishment of calibration fields for various energy types of neutrons. (author)

  5. History of the research reactor institute of Kyoto University in view of nuclear science information data base (KURRIP)

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Takayuki; Mizuma, Mitsuo (Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.); Kimura, Itsuro

    1994-02-01

    Since the Research Reactor Institute of Kyoto University was established as an inter-university research institute in 1963, a large number of cooperative research projects have been achieved by visiting scientists and its own staff in various research fields, making use of facilities centered around the Kyoto University Reactor, as well as the other experimental facilities. Ten years ago, the construction of the 'KURRIP' data base was initiated to grasp the whole aspect of the research activities at the Institute, in commemoration of its 20th anniversary. At the present time, KURRIP contains the information on 5,910 papers published for 29 years from 1963 to 1991. As this academic year is the 30th anniversary of the Institute, the history of its research activities was reviewed again using this data base. All of the publications were classified by authors's affiliations, kinds of papers, publishers, fields of studies, and research facilities used, and their historical variations are checked and discussed. (author).

  6. Nuclear Energy Institute (NEI) summary

    International Nuclear Information System (INIS)

    2001-01-01

    The Nuclear Energy Institute (NEI) provided a brief presentation on the state of energy demand in the United States and discussed the improving economics for new nuclear power plants. He discussed the consolidation of companies under deregulation and the ability of these larger companies to undertake large capital projects such as nuclear power plant construction. He discussed efforts under way to support a new generation of plants but noted that there needs to be greater certainty in the licensing process. He discussed infrastructure challenges in terms of people, hardware, and services to support new and current plants. He stated that there needs to be fair and equitable licensing fees and decommissioning funding assurance for innovative modular designs such as the PBMR. He concluded that NRC challenges will include resolving 10 CFR Part 52 implementation issues, establishing an efficient and predictable process for siting, COL permits and inspection, and an increasing regulatory workload

  7. Computer networks for financial activity management, control and statistics of databases of economic administration at the Joint Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Tyupikova, T.V.; Samoilov, V.N.

    2003-01-01

    Modern information technologies urge natural sciences to further development. But it comes together with evaluation of infrastructures, to spotlight favorable conditions for the development of science and financial base in order to prove and protect legally new research. Any scientific development entails accounting and legal protection. In the report, we consider a new direction in software, organization and control of common databases on the example of the electronic document handling, which functions in some departments of the Joint Institute for Nuclear Research

  8. Vision of the Training Department of the National Institute of Nuclear Research; Vision del Departamento de Capacitacion del Instituto Nacional de Investigaciones Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A, C. E. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2008-12-15

    The availability of skilled personnel is an essential element of the national infrastructure, to ensure the safety and security through the strong principles of management and good technology, quality assurance, training and qualification of new personnel, thorough safety evaluations and building on lessons of experience and research. In the national case the General Regulation of Radiation Safety requires that the Radiation Safety Responsible (RSR) must be experienced in issues of radiation safety of the facility in which employed. As experience has been found by chance that some people who have attended courses offered by the National Institute of Nuclear Research and have not achieved a result approval, obtain approval at the respective courses offered by other entities, which may have a potential dilemma (not at all cases since then), in the sense that the aspiration to become experts in the safety basic standards, can be addressed only after ensuring that there is an acceptance at the level of the course and evaluation ways of the present courses to RSR. Viewed another way, one can consider the formation of RSR experience in planning for better training of experts in the safety basic standards. It happens that the courses offered to RSR some of them do not cover the requirements of time, content and practices established in the regulations. The Mexican Society of Radiological Safety can affect as a partner to improve the courses quality. (Author)

  9. Institute for Nuclear Waste Disposal. Annual Report 2011

    International Nuclear Information System (INIS)

    Geckeis, H.; Stumpf, T.

    2012-01-01

    The R and D at the Institute for Nuclear Waste Disposal, INE, (Institut fuer Nukleare Entsorgung) of the Karlsruhe Institute of Technology (KIT) focuses on (i) long term safety research for nuclear waste disposal, (ii) immobilization of high level radioactive waste (HLW), (iii) separation of minor actinides from HLW and (iv) radiation protection.

  10. KfK Institute of Nuclear Solid State Physics. Progress report on research and development activities in 1991

    International Nuclear Information System (INIS)

    1992-03-01

    The INFP is primarily occupied with basic research work in the field of solid state physics and materials science, with preference being given to subjects and problems of interest from the point of view of potential applications. This is particularly true for research work devoted to the high-temperature superconductors, which currently are the area of main effort of the Institute, but also for work performed in the fields of interface and microstructure research. In 1991, about 80% of the activities were superconductivity research. (orig./MM) [de

  11. Signature of the Agreement between the University of Liverpool, acting on behalf of the Cockcroft Institute, represented by Inaugural Director of Cockcroft Institute S. Chattopadhyay and the European Organization for Nuclear Research represented by Director-General R. Aymar,concerning collaboration between the Cockcroft Institute and CERN in Accelerator Physics and Technologies.

    CERN Document Server

    Claudia Marcelloni

    2008-01-01

    Signature of the Agreement between the University of Liverpool, acting on behalf of the Cockcroft Institute, represented by Inaugural Director of Cockcroft Institute S. Chattopadhyay and the European Organization for Nuclear Research represented by Director-General R. Aymar,concerning collaboration between the Cockcroft Institute and CERN in Accelerator Physics and Technologies.

  12. Nuclear Energy Institute (NEI) summary

    International Nuclear Information System (INIS)

    2001-01-01

    The Nuclear Energy Institute (NEI) provided a brief discussion on the benefits of establishing a new regulatory framework. He suggested that a new paradigm in regulatory thinking is needed and stated that the reactor oversight process (ROP) serves as the appropriate basis for starting these discussions. He suggested that the ROP cornerstones of safety be used as the starting point for developing a new set of General Design Criteria (10 CFR Part 50, Appendix A). It is suggested that new operating criteria, generic risk- informed and performance-based regulations be developed with associated design-specific and regulation-specific regulatory guides

  13. Activities at the Institute of Materials and Solid State Research of the Karlsruhe Nuclear Research Centre in the field of fuel pin modelling

    International Nuclear Information System (INIS)

    Elbel, H.

    1979-01-01

    Fuel pin modelling has been pursued at the Institute of Materials and Solid State Research (IMF) of the Karlsruhe Nuclear Research Centre (KfK) with the main objective to provide a detailed quantitative analysis of the fuel pin behaviour in a LMFBR under normal and off-normal operation conditions. The computer programs and models developed at the IMF serve the purpose to aid effectively in the development of an optimized fuel pin concept for a LMFBR. What extent of clad deformation can be tolerated without running into clad failure? What is the influence of neutron dose, temperature, corrosion attack, arid cyclic forces on the state of the clad? What may be the reasons for clad failure? In answering these questions computer programs can play an important role. The activities at the IMF in the field of fuel pin modelling cover the following topics: development of computer programs and models; validation of these programs and models, application to the design of fuel pins for irradiation experiments; assistance in the evaluation of operation data and post- irradiation results, and parametric studies on the influence of design parameters, operation conditions and certain material phenomena on the in-pile behaviour of the fuel pin

  14. Institutional Support : Ethiopian Development Research Institute ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Ethiopian Development Research Institute (EDRI) was established in 1999 and became operational in 2003 as a semi-autonomous organization accountable to ... International Water Resources Association, in close collaboration with IDRC, is holding a webinar titled “Climate change and adaptive water management: ...

  15. KfK Institute of Nuclear Solid State Physics. Progress report on research and development activities in 1990

    International Nuclear Information System (INIS)

    1991-03-01

    The INFP is primarily occupied with basic research work in the field of solid state physics and materials science, with preference being given to subjects and problems of interest from the point of view of potential applications. This is particularly true for research work devoted to the high-temperature superconductors, which currently are the area of main effort of the Institute, but also for work performed in the fields of interface and microstructure research, polymer physics, or studies on amorphous and glassy materials. In 1990, about 70% of the activities were superconductivity research. Basic research investigated the lattice dynamics and electronic structure of HT superconductors by means of inelastic neutron scattering, or electron energy loss spectroscopy and tunnel spectroscopy. Application-oriented work concentrated on the development of HTSC-films required for equipment in microwave engineering, microelectronics, and sensor engineering. (orig./MM) [de

  16. Towards 'green' Vinca - Vinca institute nuclear program

    International Nuclear Information System (INIS)

    Subotic, K.; Pesic, M.P.; Ljubenov, V.Lj.; Sotic, O.; Plecas, I.; Milosevic, M.J.; Peric, A.; Pavlovic, R.

    2002-01-01

    In order to solve the main nuclear and radiation safety problems in the Vinca Institute of Nuclear Sciences related to the inadequate storage conditions for the RA research reactor spent fuel, further decommissioning of the RA reactor and construction of central national radioactive waste long term storage, the 'Vinca Nuclear Decommissioning Program' is initiated during first months of 2002. A systematic and interrelated approach to the solving of the problems is proposed. Program will consist of set of Projects and Activities, planned to be done in the next 10 years. Realization of Program should improve nuclear and radiation safety and should solve problems arose in the previous period. The paper describes existing conditions related to the RA reactor and spent fuel pools, the main actions done in previous period, program goals and proposed organization structure. (author)

  17. Research at the Paul Scherrer Institut

    International Nuclear Information System (INIS)

    Walter, H.K.

    1996-01-01

    The Paul Scherrer Institut (PSI) is a multidisciplinary research institute for natural sciences and technology. In national and international collaboration with universities, other research institutes and industry, PSI is active in elementary particle physics, life sciences, solid-state physics, material sciences, nuclear and non-nuclear energy research, and energy-related ecology. PSI's priorities lie in research fields which are relevant to sustainable development, serve educational needs and are beyond the possibilities of a single university department. PSI develops and operates complex research installations open of the world's most powerful cyclotron, allowing to operate high intensity secondary pion and muon beams, a neutron spallation source and various applications in medicine and materials research. A short review on research at PSI is presented, with special concentration on particle physics experiments. (author)

  18. Progress of the radioactive waste management at the Dalat Nuclear Research Institute and the role of an IAEA technical co-operation project in this process

    International Nuclear Information System (INIS)

    Nang, N.T.; Ngoc, O.V.; Nhu Thuy, T.T.; Nghi, D.V.; Thu, N.T.

    2002-01-01

    At present, the main radioactive waste generator in Vietnam is the Dalat Nuclear Research Institute (DNRI). For safe management of radioactive waste generated from this nuclear center, in 1982 Soviet specialists newly constructed one combined technology system for low level radioactive waste management. The existing system consists of two main parts, a Liquid Radioactive Waste Treatment Station and a Storage/Disposal Facility. The liquid treatment station can in principle meet the needs for this nuclear center but disposal technology and storage/disposal facilities are not good enough both with respect to safety and economy, especially the storage/disposal facility placed in Dalat, the tourist city. In order to help DNRI and Vietnam to solve the radioactive waste management problem, the IAEA Technical Co-operation (TC) project VIE/9/007 was implemented in Vietnam. The facilities and IAEA experts provided under this project gradually help to develop radioactive waste management at DNRI, Vietnam. This paper outlines progress under way in the management of the radioactive waste at the Nuclear Research Institute (NRI), Dalat, Vietnam, and the role of the IAEA Technical Co-operation (TC) project in this process. (author)

  19. ADVANCES IN NUCLEAR PHYSICS. International Symposium Dedicated to the 50th Anniversary of Institutional Physics Research in Romania. Abstracts of invited talks, oral contributions and posters

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Enulescu, A.; Stoica, S.

    1999-01-01

    This document contains the Abstracts of the invited talks, oral contributions and posters presented in the International Symposium Dedicated to the 50th Anniversary of Institutional Physics Research in Romania. Horia Hulubei was born in November 15, 1896 in Iassy and died in November 22, 1972. He graduated in 1926 and in 1927 went in Paris and worked with the Physical Chemistry Laboratory of Sorbonne and took his PhD in 1933 with Professor Jean Perrin in the field of X-ray spectroscopy, a domain in which he became one of the best specialists of the time. His papers treated a large area of subjects from the multiple Compton effects, predicted and experimentally discovered by him, Raman spectra, the X-ray spectra of gases obtained in collaboration with Yvette Cauchois, the identification of elements by X-ray spectroscopy, etc. Winner of two prises of Paris Academy of Sciences, he was elected Corresponding Member of this prestigious French institution. He was also a Directeur de Recherches at the French National Centre of Scientific Research (CNRS). In Romania, he founded in 1949 at Bucharest, the Institute of Atomic Physics, a realization of his dream to build a modern institution of Western type in his own country, tightly connected with the rest of scientific world by international cooperation. The lectures given at this symposium will be published by World Scientific Publishing Co. while the oral contributions and posters will be published in Romanian Journal of Physics. The abstracts of all these communications are dealing with current research conducted in the Horia Hulubei National Institute of Physics and Nuclear Engineering in the field of nuclear structure, elementary particle and fields, applications of isotopes and radiation, etc. A number of these communications have been presented by invited prominent scientists of abroad, many of them working in collaboration with the scientific staff of the Romanian institutes and universities

  20. The impact of ISO 9001:2008 quality management system implementation on organizational performance of the Nuclear Regulatory Division of Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Borras, Alan M.

    2012-02-01

    This report aims to determine the perception of Nuclear Regulatory Division staff of the Phiippine Nuclear Research Institute on the implementation of ISO 9001-2008 Quality Management System in terms of the eight quality management principles, its effect to their process performance and its impact to NRD organizational performance. Likewise, it aims to determine if there are direct relationshops between the ISO-QMS implementation, the process performance, and organizational performance in terms of customers' satisfaction. Two survey instruments were used for quantitative data collection from two groups of respondents, i.e., the NRD staff for their perception and as internal customers and the licenses (holder of valid radioactive material license) as the external customers. All items were measured on a 4-point Likert Scale ranging from 1 as Strongly Disagree/Strongly Dissatisfied to 4 Strongly Agree/Strongly Satisfied. The data were analyzed statistically by means of Microsoft Ofice Excel and Statistical Analysis Software (SAS). Linear regression was used to test the hypotheses. The results show that the perception of the NRD staff are agreeable with the implementation of the ISO 9001:2008 in their organization which indicated 'customer focused' and 'process approach' as the strength of the practices while 'leadership' and 'mutually beneficial supplier relationship' as the weakest. Data on NRD staff perceptions of ISO 9001:2008 also show that QMS implementation has improved the effectiveness and efficiency of their core business processes which impacted on the organizational performance. The external customers rated 'competence', 'courtesy' and 'credibility' as the three highest attributes of NRD service quality which denote their full trust and confidence to NRD as a nuclear regulatory body. Meanwhile, the same external customers rated 'tangibles', 'reliability' and 'access' as the lowest attributes. Furthermore, the results also show a significant and strong

  1. Russian scientists make desperate plea to save nuclear institute

    CERN Multimedia

    2003-01-01

    Scientists from a Russian nuclear research institute recently held a news conference in Moscow to publicize their work on a revolutionary new type of nuclear reactor. However, it transpired that the scientists were worried about their institute being closed down, and saw the news conference as an opportunity to draw attention to their plight (1 page).

  2. Institute of Nuclear Engineering: report 1974-1976

    International Nuclear Information System (INIS)

    Amyot, L.

    1976-01-01

    The Institute of Nuclear Engineering is described in terms of its objectives, resources, instructional duties, and research. Basically the Institute is involved in the study of technical, economic and ecological aspects of nuclear installations, basic radioisotopic methods, and general energy problems. (E.C.B.)

  3. Diabetes Research Institute Foundation

    Science.gov (United States)

    ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ... Million Brenda Novak's Online Auction Cord Blood-Derived Stem ... Highlights DRI Research Diamond Ball 2009 DRI/DRIF Press Releases Historic ...

  4. Nuclear engineering in the National Polytechnic Institute

    International Nuclear Information System (INIS)

    Del Valle G, E.

    2008-12-01

    In the National Polytechnic Institute the bachelor degree in physics and mathematics, consists of 48 subjects in the common trunk. For the nuclear engineering option, from the fifth semester undergoing 9 specific areas within the Nuclear Engineering Department : introduction to nuclear engineering, power cycles thermodynamics, heat transfer, two courses of nuclear reactors theory, two of nuclear engineering, one course of laboratory and other of radiation protection. There is also a master in nuclear engineering aims train human resources in the area of power and research nuclear reactors to meet the needs of the nuclear industry in Mexico, as well as train highly qualified personnel in branches where are used equipment involving radiation and radioisotopes tale as Medicine, Agriculture and Industry. Among its compulsory subjects are: radiation interaction with the matter, measurements laboratory, reactor physics I and II, reactor engineering, reactor laboratory and thesis seminar. Optional, are: engineering of the radiation protection, computers in the nuclear engineering, nuclear systems dynamics, power plants safety, flow in two phases, reliability and risk analysis, nuclear power systems design, neutron transport theory. Many graduates of this degree have been and are involved in various phases of the nuclear project of Laguna Verde. The Nuclear Engineering Department has a subcritical nuclear reactor of light water and natural uranium and one isotopic source of Pu-Be neutrons of 5 Ci. It also has a multichannel analyzers, calibrated sources of alpha, beta and gamma radiation, a gamma spectrometer of high resolution and low background, a specialized library and one data processing center. In relation particularly to radiation protection, it is clear that there is a lack of specialists, as reflected in radiological control problems in areas such as medicine and industry. Given this situation, it is perceived to be required post-graduate studies at Master and Ph

  5. Peralta Cancer Research Institute

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The investigators in the cell biology program at PCRI have pioneered in the development of techniques for culturing human epithelial cells. The cancer diagnosis program has been concerned with researching new techniques for early diagnosis of breast cancer in women. The cancer treatment program has been concerned with applying cell biology and biochemistry advances to improve cancer management

  6. Tehran Nuclear Research Center

    International Nuclear Information System (INIS)

    Taherzadeh, M.

    1977-01-01

    The Tehran Nuclear Research Center was formerly managed by the University of Tehran. This Center, after its transformation to the AEOI, has now become a focal point for basic research in the area of Nuclear Energy in Iran

  7. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  8. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  9. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Poland

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Licensing; Registration and monitoring of nuclear materials and radioactive sources; High activity sources); 4. Nuclear facilities (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (The President of the National Atomic Energy Agency - Prezes Panstwowej Agencji Atomistyki (President of the PAA); Minister of Health; Minister of the Environment); 2. Advisory bodies (Council for Nuclear Safety and Radiological Protection); 3. Public and semi-public bodies (Radioactive Waste Management Plant); 4. Research institutes (Central Laboratory for Radiological Protection; National Centre for Nuclear Research; Institute of Nuclear Physics; Institute of Nuclear Chemistry and Technology; Institute of Plasma Physics and Laser Microfusion)

  10. The Central Research Institute of Electric Power Industry and nuclear energy. Real images and views for compatibility of specialty and sociality

    International Nuclear Information System (INIS)

    Sato, Motohide

    2004-01-01

    The Central Research Institute of Electric Power Industry (CRIEPI) has been a motive power supporting electric energy and rich society in Japan as a center of electric power field in Japan under always challenging technologies advancing at a step since beginning of business as a special research institute on electrical power technology in Japan. And, on today receiving whole of liberalization on electric business, CRIEPI plans to carry out new development closer to society and nationals under a flag of 'contribution to society' by making its specialty and sociality compatible. Therefore, when social discussion on nuclear energy constructing basis of electric energy in Japan is noisy, here were summarized efforts, actual results, and topics for individual researching subjects shown as follows under showing basic attitude of CRIEPI to the nuclear energy: maintenance and administration techniques to rationally secure soundness of the light water reactor apparatuses; intermediate storage technique on spent fuels (concrete cask storage); survey, design and safety evaluation techniques supporting landfill disposal business of high level radioactive wastes; dry recycle technique and metal fuel fast reactors applicable to spent fuel processing at light water reactors; and small size fast reactors (4S reactors) usable for diverse applications. (G.K.)

  11. The Institute of Nuclear Agriculture in Bangladesh

    International Nuclear Information System (INIS)

    Kaul, A.K.

    1978-01-01

    Since as early as 1964, a small group of agricultural scientists of the Bangladesh Atomic Research Establishment have been using radioisotopes and radiation tools in their research. Realizing the potential use of nuclear tools in agriculture, this agricultural section was reorganized and expanded into a full-fledge institute. For this work the need for outside support was foreseen and in July 1973 the Government submitted a request for support from the Swedish International Development Agency (SIDA). As a result, a technical assistance SIDA project was approved, with the IAEA being the executing agency. This US $1 million, 5 year-project provides for some 100 man-months of international expertise, some 200 man-months of fellowships, as well as for various equipment and supplies. The Institute of Nuclear Agriculture was formally inaugurated on 12 December 1977, by the Vice-President of the People's Republic of Bangladesh, Justice Abdus Sattar. Helio F.S. Bittencourt, the IAEA Deputy Director General for Technical Assistance and Publications, represented the Agency at this ceremony. The objectives of INA are: 1. To identify and solve basic agricultural problems of the country through inter-disciplinary approach, employing both nuclear and conventional research techniques. 2. To train scientists in appropriate fields of research at home and abroad, there by filling the gap of skilled manpower. 3. To conduct experiments in areas of agricultural research, such as breeding of cereals, fibre crops, legumes and oil-seed plants, irrigation and water management, soil-plant relationship studies and other related areas. 4. To perfect and apply a number of analytical techniques, which are rapid and accurate, for use in different fields of research. The physical facilities are made available to users from throughout the country. 5. To make use of international expertise in specific fields to provide on-the-spot analysis of problems, and to render advice and training to

  12. The Institute of Nuclear Agriculture in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, A K [Institute of Nuclear Agriculture, Mymensingh (Bangladesh)

    1978-06-15

    Since as early as 1964, a small group of agricultural scientists of the Bangladesh Atomic Research Establishment have been using radioisotopes and radiation tools in their research. Realizing the potential use of nuclear tools in agriculture, this agricultural section was reorganized and expanded into a full-fledge institute. For this work the need for outside support was foreseen and in July 1973 the Government submitted a request for support from the Swedish International Development Agency (SIDA). As a result, a technical assistance SIDA project was approved, with the IAEA being the executing agency. This US $1 million, 5 year-project provides for some 100 man-months of international expertise, some 200 man-months of fellowships, as well as for various equipment and supplies. The Institute of Nuclear Agriculture was formally inaugurated on 12 December 1977, by the Vice-President of the People's Republic of Bangladesh, Justice Abdus Sattar. Helio F.S. Bittencourt, the IAEA Deputy Director General for Technical Assistance and Publications, represented the Agency at this ceremony. The objectives of INA are: 1. To identify and solve basic agricultural problems of the country through inter-disciplinary approach, employing both nuclear and conventional research techniques. 2. To train scientists in appropriate fields of research at home and abroad, there by filling the gap of skilled manpower. 3. To conduct experiments in areas of agricultural research, such as breeding of cereals, fibre crops, legumes and oil-seed plants, irrigation and water management, soil-plant relationship studies and other related areas. 4. To perfect and apply a number of analytical techniques, which are rapid and accurate, for use in different fields of research. The physical facilities are made available to users from throughout the country. 5. To make use of international expertise in specific fields to provide on-the-spot analysis of problems, and to render advice and training to

  13. Inquiry relating to safety due to modification of usage of nuclear fuel material (establishment of waste safety testing facility) in Tokai Laboratory, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the director of the Science and Technology Agency (STA) for the license relating to the modification of usage of nuclear fuel material (the establishment of waste safety testing facility) from the director of the Japan Atomic Energy Research Institute on November 30, 1978. After passing through the safety evaluation in the Nuclear Safety Bureau of STA, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on June 6, 1979, from the director of the STA. The head of AESC directed to conduct the safety examination to the head of the Nuclear Fuel Safety Examination Specialist Committee on June 7, 1979. The content of the modification of usage of nuclear fuel material is the establishment of waste safety testing facility to study and test the safety relating to the treatment and disposal of high level radioactive liquid wastes due to the reprocessing of spent fuel. As for the results of the safety examination, the siting of the waste safety testing facility which is located in the Tokai Laboratory, Japan Atomic Energy Research Institute (JAERI), and the test plan of the glass solidification of high level radioactive liquid are presented as the outline of the study plan. The building, main equipments including six cells, the isolation room and the glove box, the storage, and the disposal facilities for gas, liquid and solid wastes are explained as the outline of the facilities. Concerning the items from the viewpoint of safety, aseismatic design, slightly vacuum operation, shielding, decay heat removal, fire protection, explosion protection, criticality management, radiation management and environmental effect were evaluated, and the safety was confirmed. (Nakai, Y.)

  14. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  15. The Gulf Nuclear Energy Infrastructure Institute (GNEII) Four Years On

    International Nuclear Information System (INIS)

    Finch, Robert J.; Mohagheghi, Amir H.; Solodov, Alexander; Beeley, Philip A.; Boyle, David R.

    2014-01-01

    Introduction: What is GNEII? • Regionally based Institution → human resource capability → Future decision makers → managers & regulators. • Education & Development → Nuclear energy infrastructure → Integrated safeguards, safety, and security (3S) → Nuclear power fundamentals. • Strategic effort → Coordinated partnership → Responsible national nuclear energy program → Regional context. Why GNEII? • Build indigenous human resources → Education, Research, Technical capacity → Integrated 3S Systems Approach - coupled with - Nuclear Energy Infrastructure. • GNEII Addresses a Need → Increased nuclear power demand → Regional Nuclear Infrastructure → GNEII is a sustainable mechanism for developing a responsible nuclear energy program

  16. Contamination monitoring of Na 131 I levels in therapy unit of Research Institute for Nuclear Medicine, Tehran University of Medical Sciences by indirect method (Wipe test)

    International Nuclear Information System (INIS)

    Beiki, D.; Shahhosseini, S.; Eftekhari, M.; Takavar, A.; Fard-Esfahani, A.

    2003-01-01

    Contamination with radiopharmaceuticals in nuclear medicine centres in addition to being a health concern requires time consuming decontamination efforts. According to Nuclear Regulatory Commission Contamination should be monitored in nuclear medicine centers where radiopharmaceuticals are prepared and administrated at the end of each working session; otherwise, contamination spread to other areas not only equipment but also personnel and other people will be expected. The wipe test for the presence of radioactivity is accomplished by wiping the surface over an area approximately 100 cm 2 with an absorbent paper, then counting it in an appropriate radiation detector. In this study, contamination monitoring of patient's rooms (4 rooms), entrance corridor, patient's corridor, waiting room, control room (nursing station), radiopharmaceutical storage room in therapy unit of Research Institute for Nuclear Medicine, Shariati hospital was performed by indirect method. Based on the results, some areas including storage room were contaminated. There was also a direct relationship between dose administrated and levels of contamination in patient's rooms. Regarding high uptake of iodine by thyroid gland and damaging effects of Na 131 I, weekly wipe tests are required to determine the level of contamination. Patient's rooms after discharging the patients and before re hospitalization specially should be checked. If these tests reveal contamination over standard levels, appropriate decontamination procedures should be carried out immediately

  17. Institute of Nuclear Chemistry of Mainz University. Annual report 1987

    International Nuclear Information System (INIS)

    Weber, M.

    1988-06-01

    Apart from the traditional topics of the institute's five working groups, i.e. rapid separation and exotic nuclei, nuclear structures, nuclear fission, heavy ion reactions, and ecology of radionuclides, the report includes papers investigating into the chemistry of the heaviest elements, papers on nuclear astrophysics, and brief contributions on applied radioactivity in anticipation of further and more detailed ones. Most of the studies are the result of national and international efforts in the sense of modern co-operative research. The report refers to the institute's collaboration with university teams and research institutes. (orig./RB) [de

  18. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Czech Republic

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear items and spent fuel (Ionising radiation sources; Nuclear items; Spent fuel); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response; Decommissioning); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (State Office for Nuclear Safety - SUJB; Ministry of Industry and Trade; Ministry of the Interior; Ministry of the Environment); 2. Public and semi-public agencies (CEZ, a.s.; National Radiation Protection Institute - NRPI; Radioactive Waste Repository Authority - RAWRA; Diamo; Nuclear Physics Institute - NPI; National Institute for Nuclear, Chemical and Biological Protection; Nuclear Research Institute Rez, a.s. - NRI)

  19. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  20. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  1. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  2. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  3. Social Institutions and Nuclear Energy

    Science.gov (United States)

    Weinberg, Alvin M.

    1972-01-01

    Nuclear technologists can offer an all but infinite source of relatively cheap and clean energy" but society must decide whether the price of eternal vigilance needed to ensure proper and safe operation of its nuclear energy system" is worth the benefits. (Author/AL)

  4. Nuclear power supply (Japan Nuclear Safety Institute)

    International Nuclear Information System (INIS)

    Kameyama, Masashi

    2013-01-01

    After experienced nuclear disaster occurred on March 11, 2011, role of nuclear power in future energy share in Japan became uncertain because most public seemed to prefer nuclear power phase out to energy security or costs. Whether nuclear power plants were safe shutdown or operational, technologies were requisite for maintaining their equipment by refurbishment, partly replacement or pressure proof function recovery works, all of which were basically performed by welding. Nuclear power plants consisted of tanks, piping and pumps, and considered as giant welded structures welding was mostly used. Reactor pressure vessel subject to high temperature and high pressure was around 200mm thick and made of low-alloy steels (A533B), stainless steels (308, 316) and nickel base alloys (Alloy 600, 690). Kinds of welding at site were mostly shielded-metal arc welding and TIG welding, and sometimes laser welding. Radiation effects on welding of materials were limited although radiation protection was needed for welding works under radiation environment. New welding technologies had been applied after their technical validation by experiments applicable to required regulation standards. Latest developed welding technologies were seal welding to prevent SCC propagation and temper-bead welding for cladding after removal of cracks. Detailed procedures of repair welding of Alloy 600 at the reactor outlet pipe at Oi Nuclear Power Plants unit 3 due to PWSCC were described as an example of crack removal and water jet peening, and then overlay by temper-bead welding using Alloy 600 and clad welding using Alloy 690. (T. Tanaka)

  5. Creation of a dynamic database and analysis of LIDAR measurements in web format at the Laboratory of Environmental Laser Applications at the Nuclear and Energy Research Institute

    International Nuclear Information System (INIS)

    Pozzetti, Lucila Maria Viola

    2006-01-01

    The LIDAR system (Light Detection and Ranging) laser remote sensing at the Nuclear and Energy Research Institute - Laboratory of Environmental Laser Applications allows on line measurements of variations in the concentrations of atmospheric aerosols by sending a laser beam to the atmosphere and collecting the backscattered light. Such a system supplies a great number of physical parameters that must be managed in an agile form to the attainment of a real time analysis. Database implementation therefore becomes an important toll of communication and graphical visualization of measurements. A criterion for classification of this valuable information was adopted, establishing defined levels of storage from specific characteristics of the determined data types. The compilation and automation of these measurements will promote optimized integration between data, analysis and retrieval of the resulting properties and of the atmosphere, improving future research and data analysis. (author)

  6. Progress report on research and development work 1991 of the Institute of Genetics and Toxicology of Fissionable Materials, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1991-03-01

    The present annual report describes the results of research work done by the Institute of Genetics and Toxicology of Fissionable Materials (IGT) in 1991. The following eight subjects were dealt with: genetic repair; genetic regulation; biological carcinogenesis; molecular genetics of eukaryontic genes; genetic mouse models for human illnesses; radiation toxicology of actinides; molecular and cellular environmental toxicology, and in vivo fractionation and speciation of actinides. (MG) [de

  7. Nuclear Research and Compliance

    International Nuclear Information System (INIS)

    Noramly Muslim

    2012-01-01

    In his speech, Professor Noramly stressed on any research conducted in Malaysian Nuclear Agency must be comply with the national and international regulations. This to avoid any problems in the future. Moreover, research conducted in Malaysian Nuclear Agency are based on nuclear matters that seems sensitive to the public communities. In order to attract the publics on the benefit of nuclear technologies in many applications, researcher also must aware about the regulations and must take care on their safety during their experiment and working. This to make the public feels that nuclear are not the bad things and erased the worseness of nuclear technology into public minds. This strategies can be used for Malaysia in embarking for their first nuclear power program and the public feels that nuclear power are not threatened to them and consequently, they will accept that program without any issues. (author)

  8. The World Nuclear University Summer Institute

    International Nuclear Information System (INIS)

    Rivard, D.; McIntyre, M.

    2007-01-01

    The World Nuclear University (WNU) Summer Institute is a six weeks intensive training program aimed to develop a global leadership in the field of nuclear sciences and technologies. The topics covered include global setting, international regimes, technology innovation and nuclear industry operations. This event has been held annually since 2005. Mark McIntyre and Dominic Rivard attended this activity as a personal initiative. In this paper they will present the WNU and its Summer Institute, share their participation experience and discuss as well of some technical content covered during the Institute, highlighting the benefits this brought to their careers. (author)

  9. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - New Zealand

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive Substances and Equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities - National Radiation Laboratory - NRL; 2. Advisory bodies - Radiation Protection Advisory Council; 3. Public and semi-public agencies - Research institutes

  10. Nuclear safety research

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA checked and coordinated in 1999 the research project of the Surveillance Technology on Nuclear Installations under the National 9th-Five-Year Program to promote the organizations that undertake the research work on schedule and lay a foundation of obtaining achievements and effectiveness for the 9th-five-year plan on nuclear safety research

  11. 78 FR 29159 - Electric Power Research Institute; Seismic Evaluation Guidance

    Science.gov (United States)

    2013-05-17

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0038] Electric Power Research Institute; Seismic... U.S. Nuclear Regulatory Commission (NRC) is issuing an endorsement letter of Electric Power Research... Fukushima Dai-ichi nuclear power plant in March 2011. Enclosure 1 to the 50.54(f) letter requests licensees...

  12. Radioactive waste management at the Peruvian Nuclear Energy Institute

    International Nuclear Information System (INIS)

    Mallaupoma, M.

    1986-01-01

    A brief account of current radioactive liquid waste management practices at the Peruvian Nuclear Energy Institute (IPEN), is presented. The storage and disposal systems and facilities to be provided at the future Peruvian Nuclear Research Centre (CNIP) at Huarangal, 40 km to the North of Lima, are described. (Author) [pt

  13. Annual technical report - 1987 - Nuclear Engineering Institute - Dept. of Physics

    International Nuclear Information System (INIS)

    Silva, A.G. da; Cabral, S.C.; Bastos, M.A.V.

    1987-01-01

    The research reports carried out in the Physics Department of Nuclear Engineering Institute/Brazilian CNEN, in nuclear physics, isotope production and hazards by irradiation using the CV-28 cyclotron capable to accelerate protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively, are presented. (M.C.K.) [pt

  14. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    Energy Technology Data Exchange (ETDEWEB)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M., E-mail: sobolevs@inr.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ilic, R. D. [Vinca Institute of Nuclear Sciences (Serbia)

    2013-04-15

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10{sup 3} to 10{sup 4} times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts-in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  15. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    International Nuclear Information System (INIS)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M.; Ilić, R. D.

    2013-01-01

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10 3 to 10 4 times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts—in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  16. Long-term nuclear knowledge management (NKM) of innovative nuclear energy systems (INES). A case study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Bezdek, Roger H.; Sawada, Tetsuo

    2008-01-01

    Within JAERI, funds invested in a 45-year study of LWR totaled 4.2b$ for research and 3.4b$ (34,718 man years) for personnel. The benefits to taxpayers from this JAERI work were estimated to be about 6.3b$ , resulting in a favorable cost-benefit ratio of 1.5 (6.3/4.2). JAERI is a national research institute and this figure may be regarded as sufficiently high, and many high risk and complex tasks were completed successfully. Funds invested in the 32-year study of HTGR were 1.5b$ for R and D and 0.3b$ (2966 man years) for personnel. Commercialized HTGR will result in a cost reduction of electricity during power generation. Retail cost is 0.36b$/year and the share of JAERI (MCP) is 0.018b$/year. Funds invested in the 32-year study of FR were 5.4b$ for R and D and 0.6b$ (6331 man years) for personnel. Estimate is that after commercialization in 2050, a FR will generate revenue from electricity as high as 1687b$ during the period 2050-2100, or 34b$/year - which is greater than that of LWR. However, there is substantial uncertainty in these estimates. To achieve long-term INES, it is necessary to develop the sustainable scenarios and the long-term robust NKM, as shown in the present study. (author)

  17. Institutional plan -- Institute of Nuclear Power Operations, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The US nuclear electric utility industry established the Institute of Nuclear Power Operations (INPO) in 1979 to promote the highest levels of safety and reliability -- to promote excellence -- in the operation of its nuclear plants. After its formation, the Institute grew from a handful of on-loan personnel in late 1979 to an established work force of more than 400 permanent and on-loan personnel. INPO's early years were marked by growth and evolution of its programs and organization. The Institute now focuses primarily on the effectiveness and enhancement of established programs and activities. For INPO to carry out its role, it must have the support of its members and participants and a cooperative but independent relationship with the NRC. A basis for that support and cooperation is an understanding of INPO's role. This Institutional Plan is intended to provide that understanding by defining the Institute's role and its major programs. This plan considers the existing and projected needs of the industry and the overall environment in which INPO and its members and participants operate

  18. Research work with TRIGA Mark II at the Nuclear Chemistry Section of the 'J. Stefan' Institute in Ljubljana

    International Nuclear Information System (INIS)

    Byrne, A.R.; Dermelj, M.; Kosta, L.; Ravkin, V.; Stegnar, P.

    1978-01-01

    The general features of our research programme using TRIGA MK II, as outlined at the last TRIGA Reactor Users Conference in Vienna, September 28-30,1976, remain the same; namely, neutron activation analysis for trace and some minor elements. The four main areas presently investigated are a) environmental studies, b) life sciences research, c) standardization and d) methodology for specific problems arising in the first three topics

  19. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Hungary

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Atomic Energy Co-ordination Council; Hungarian Atomic Energy Authority - HAEA; Minister for Health; Minister for Local Government and Regional Development and Minister for Justice and Law Enforcement; Minister for Agriculture and Rural Development; Minister for Economy and Transport; Minister of Environment Protection and Water Management; Minister for Defence; Minister for Education; President of the Hungarian Mining and Geological Authority; Governmental Co-ordination Committee); 2. Advisory bodies (Scientific Board); 3. Public and semi-public agencies (Institute for Electric Power Research - VEIKI; Atomic Energy Research Institute - AEKI; Institute of Isotopes; Department of Physical Chemistry of the University of Pannon; Hungarian Power Companies Ltd - MVM Zrt.)

  20. Contributions of the National Institute of Nuclear Research to the advance of Science and Technology in Mexico. Commemorative edition 2010; Contribuciones del Instituto Nacional de Investigaciones Nucleares al avance de la ciencia y la tecnologia en Mexico. Edicion conmemorativa 2010

    Energy Technology Data Exchange (ETDEWEB)

    Duque M, G.; Jimenez R, M.; Monroy G, F.; Romero H, S.; Serment G, J. (ed.) [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    From the second decade of the X X century the applications of the nuclear energy have been important part of the scientific and technological patrimony in Mexico. Records exist with regard to the use of the radioisotopes and the radiations in our country in that time, and in a formal way until the year of 1950, in a process that culminates with the creation of the Comision Nacional de Energia Nuclear (CNEN. January 1, 1956). In January 12, 1972 were published the Organic Law that created to the Instituto Nacional de Energia Nuclear, being responsible for the works that the CNEN developed. The current Instituto Nacional de Investigaciones Nucleares (ININ) was constituted starting from the Regulation Law of the constitutional Article 27 in nuclear matter of January 26, 1979, abrogated and substituted by the Law in force of February 4, 1985. In this lapse they were undertaken multitude of projects with results and diverse achievements. From their creation, the mission of the ININ and the previous institutions has been to realize research in science and nuclear technology, to promote their peaceful uses and to diffuse the achieved advances, always searching for to link them to the economic, social, scientific and technological development of the country. In this occasion with the purpose of participating in the commemoration of the bicentennial of the independence and centennial of the Mexican revolution in our country, the ININ decided to publish this work, directed to a wide public, with the intention of providing a vision the most complete and appropriate possible of the activities in research and technology that it is carries out at the moment. This work also seeks to be a diffusion instrument of the tasks that they are carried out in the institute, in diverse subjects as: the basic research, the nuclear applications in the health, the agriculture and the industry, the studies on the contamination and the environment; the dosimetry; the radiological protection; as

  1. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Greece

    International Nuclear Information System (INIS)

    2015-01-01

    In Greece, there are no nuclear power plants and nuclear energy is not considered as an option in the foreseeable future. There is, however, one nuclear research reactor (in extended shutdown since 2014) and one sub-critical assembly. Radioactive waste originating from medicine, research and industry is classified as low level. Although there is no framework act dealing comprehensively with the different aspects of nuclear energy, there are various laws, decrees and regulations of a more specific nature governing several aspects of nuclear activities. This paper gives information on the general regulatory regime (mining regime, radioactive substances, nuclear fuel and equipment, nuclear installations (licensing and inspection, including nuclear safety, emergency response, trade in nuclear materials and equipment, radiation protection, radioactive waste management, nuclear security, transport, nuclear third party liability) and on the institutional framework with the regulatory and supervisory authorities (Greek Atomic Energy Commission (EEAE))

  2. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  3. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  4. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  5. Long-Term Nuclear Knowledge Management (NKM) on Nuclear Production of Hydrogen - A Case Study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2007-01-01

    In Japan, so-called a formal nuclear policy; The Framework for Nuclear Energy Policy is built up by Japan Atomic Energy Commission at every 5-year, in which not only a conventional light water reactor (LWR) but also a fast breeder reactor (FBR), HTGR and a fusion reactor (FR) is referred as a prominent candidate of long-term (<100 years) nuclear energy source. The policy makers might have multi-purpose scenarios for a future of innovated nuclear energy systems through results of various discussions at their level. According to long-term nuclear knowledge management, the author made ex ante evaluation of HTGR known as the intellectual assets of JAERI 1, from the viewpoint of hypothetical benefits under conditions of substantial uncertainty. Nuclear knowledge management (NKM) is an integrated, systematic approach to identifying, managing and sharing an organization's nuclear knowledge, and enabling persons to create new nuclear knowledge collectively and thereby helping achieve the objectives. NKM identifies, optimizes, and actively manages intellectual assets either in the form of explicit knowledge held in intangible products or tacit knowledge possessed by individuals or communities in the nuclear fields. In the present study the authors wish not only to show the validity of long-term NKM as a key factor of HTGR but also to assess their hypothetical benefits through the year 2050 under conditions of substantial uncertainty. It should be stressed that those factors are important intellectual assets of JAERI developed to date. Additionally, in the Framework for Nuclear Energy Policy constructed up by the Japan Atomic Energy Commission, a LWR, a fast breeder reactor (FBR), a HTGR, and a fusion reactor (FR) are all defined as eligible and prominent candidates for long-term nuclear energy sources. In this sense, we estimate here a direct market creation of (1) hydrogen energy production and (2) electricity generation, by commercialized HTGR through the year 2050 with

  6. The Russian nuclear data research programme

    International Nuclear Information System (INIS)

    1995-11-01

    The report contains the Russian programme of nuclear data research, approved by the Russian Nuclear Data Committee on 16 December 1994. It gives surveys on nuclear data needs, on the structure of nuclear data activities, on experimental facilities for nuclear data measurements at five Russian institutes, on theoretical model work, nuclear data evaluation, and nuclear data testing. It describes four Russian nuclear data centers and their relations to the International Nuclear Data Centres Network, and their holdings of nuclear data libraries of Russian and international origin. A summary of nuclear data applications in energy and non-energy fields is given. An appendix contains a detail nuclear data research programme for the years 1995 - 2005. (author). 16 refs, 1 fig., 6 tabs

  7. Spanish Nuclear Safety Research under International Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Reventos, F.; Ahnert, C.; Jimenez, G.; Queral, C.; Verdu, G.; Miro, R.; Gallardo, S.

    2013-10-01

    The Nuclear Safety research requires a wide international collaboration of several involved groups. In this sense this paper pretends to show several examples of the Nuclear Safety research under international frameworks that is being performed in different Universities and Research Institutions like CIEMAT, Universitat Politecnica de Catalunya (UPC), Universidad Politecnica de Madrid (UPM) and Universitat Politenica de Valencia (UPV). (Author)

  8. Astronomical Research Institute Photometric Results

    Science.gov (United States)

    Linder, Tyler R.; Sampson, Ryan; Holmes, Robert

    2013-01-01

    The Astronomical Research Institute (ARI) conducts astrometric and photometric studies of asteroids with a concentration on near-Earth objects (NEOs). A 0.76-m autoscope was used for photometric studies of seven asteroids of which two were main-belt targets and five were NEOs, including one potentially hazardous asteroid (PHA). These objects are: 3122 Florence, 3960 Chaliubieju, 5143 Heracles, (6455) 1992 HE, (36284) 2000 DM8, (62128) 2000 SO1, and 2010 LF86.

  9. Evolution of nuclear spectroscopy at Saha Institute of Nuclear Physics

    Indian Academy of Sciences (India)

    1990 to date a variety of medium energy heavy ions were made available from the BARC-TIFR Pel- letron and the Nuclear Science Centre Pelletron. The state of the art gamma detector arrays in these centres enabled the Saha Institute groups to undertake more sophisticated experiments. Front line nuclear spectroscopy ...

  10. Max-Planck-Institute for Nuclear Physics. Annual report 1986

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short descriptions of the research performed at the given institute together with an extensive list of publications. The research in nuclear physics is concerned with developments in accelerators and ion sources, radiation detectors, solid-state studies by nuclear methods, counting circuits, data processing, target preparation, fission, fusion, and nuclear friction, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics and interaction of charged particles with matter, medium and high energy physics. The research in cosmophysics works on meteorites and lunar rocks, the gallium-solar-neutrino experiment (project GALLEX), problems of Halley's comet, interplanetary and interstellar dust, planetary atmospheres, interstellar medium and cosmic rays, molecular collision processes in the gas phase, nuclear geology and geochemistry, and archaeometry. (GG)

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  13. Radiant Research. Institute for Energy Technology 1948-98

    International Nuclear Information System (INIS)

    Njoelstad, Olav

    1999-01-01

    Institutt for Atomenergi (IFA), or Institute for Atomic Energy, at Kjeller, Norway, was founded in 1948. The history of the institute as given in this book was published in 1999 on the occasion of the institute's 50th anniversary. The scope of the institute was to do research and development as a foundation for peaceful application of nuclear energy and radioactive substances in Norway. The book tells the story of how Norway in 1951 became the first country after the four superpowers and Canada to have its own research reactor. After the completion of the reactor, the institute experienced a long and successful period and became the biggest scientific and technological research institute in Norway. Three more reactors were built, one in Halden and two at Kjeller. Plans were developed to build nuclear powered ships and nuclear power stations. It became clear, however, in the 1970s, that there was no longer political support for nuclear power in Norway, and it was necessary for the institute to change its research profile. In 1980, the institute changed its name to Institutt for energiteknikk (IFE), or Institute for energy technology, to signal the broadened scope. The book describes this painful but successful readjustment and shows how IFE in the 1980s and 1990s succeeded in using its special competence from the nuclear field to establish special competence in new research fields with great commercial potential

  14. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  15. Advances of the Radio sterilized Tissue Bank of the National Institute of Nuclear Research; Avances del Banco de Tejidos Radioesterilizados del Instituto Nacional de Investigaciones Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M. L.; Martinez P, M. E.; Luna Z, D.; Lavalley E, M. C., E-mail: lourdes.reyes@inin.gob.m [ININ, Gerencia de Aplicaciones Nucleares en la Salud, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In view of the necessity of finding alternative sources of biological tissues provision for surgical interventions, the Instituto Nacional de Investigaciones Nucleares (ININ) received the IAEA support from 1997 to 1998, for the establishment of a tissue bank, using the gamma radiation like sterilizing agent. The IAEA support consisted on basic equipment, the personnel's training by means of scientific visits and training in other banks, besides experts missions. As a result of this great support, the Radio sterilized Tissue Bank was established in the ININ, attributed to the Office of Nuclear Applications to the Health. The bank obtained its license in July 7, 1999, granted by the Health Secretary in Mexico. The advances that have been obtained from their creation to the date are presented, with respect to the activities that are carried out in this Tissue Bank. (Author)

  16. Change in plan for installation of nuclear reactor in No.1 atomic powered vessel of Japan Atomic Energy Research Institute (change in purpose of use and in method for nuclear reactor installation and spent fuel disposal) (report)

    International Nuclear Information System (INIS)

    1987-01-01

    This report, compiled by the Nuclear Safety Commission to be submitted to the Prime Minister, deals with studies concerning some changes in the plan for the installation of a nuclear reactor in the No.1 atomic powered vessel to be constructed under the Japan Atomic Energy Research Institute (changes in the purpose of its use and in the methods for the nuclear reactor installation and spent fuel disposal). The conclusions of and procedures for the examination and evaluation are presented and then detailes of the studies are described. The study on the location requirements for the incidental land facilities at Sekinehama covers various conditions concerning the location, geology, earthquakes, meteorology, hydrology and social environment. The study on the safety design of the nuclear reactor facilities deals with the reactor, fuel handling facilities and other auxiliary facilities, as well as various land facilities to be constructed at Sekinehama including the reactor facilities and other facilities for fuel handling, waste disposal and protection and management of radioactive rays. Evaluation of possible radiation emission is shown and the accident analysis is also addressed. (Nogami, K.)

  17. Thailand's nuclear research centre

    International Nuclear Information System (INIS)

    Yamkate, P.

    2001-01-01

    The Office of Atomic Energy for Peace, Thailand, is charged with three main tasks, namely, Nuclear Energy development Plan, Utilization of Nuclear Based technology Plan and Science and Technology Plan. Its activities are centred around the research reactor TRR-1/M1. The main areas of contribution include improvement in agricultural production, nuclear medicine and nuclear oncology, health care and nutrition, increasing industrial productivity and efficiency and, development of cadre competent in nuclear science and technology. The office also has the responsibility of ensuring nuclear safety, radiation safety and nuclear waste management. The office has started a new project in 1997 under which a 10 MWt research reactor, an isotope production facility and a waste processing and storage facility would be set up by General Atomic of USA. OAEP has a strong linkage with the IAEA and has been an active participant in RCA programmes. In the future OAEP will enhance its present capabilities in the use of radioisotopes and radiation and look into the possibility of using nuclear energy as an alternative energy resource. (author)

  18. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  19. Environmental concerns regarding a materials test reactor fuel fabrication facility at the Nuclear and Energy Research Institute - IPEN; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G. R. T.; Durazzo, M.; Carvalho, E. F. U. [IPEN, CNEN-SP, P.O. Box 11049, CEP 05422-970, Sao Paulo (Brazil); Riella, H. G. [Universidade Federal de Santa Catarina, Departamento de Engenharia Quimica, Campus Universitario, Florianopolis, CEP 88040-900 (Brazil)]. e-mail: grsantos@ipen.br

    2008-07-01

    The aim of the industrial activities success, front to a more and more informed and demanding society and to a more and more competitive market demands an environmental administration policy which doesn't limit itself to assist the legislation but anticipate and prevent, in a responsible way, possible damages to the environment. One of the maim programs of the Institute of Energetic and Nuclear Research of the national Commission of Nuclear Energy located in Brazil, through the Center of Nuclear Fuel - CCN - is to manufacture MTR-type fuel elements using low-enrichment uranium (20 wt% {sup 2}35U), to supply its IEA-RI research reactor. Integrated in this program, this work aims at well developing and assuring a methodology to implant an environment, health and safety policy, foreseeing its management with the use of detailed data reports and through the adoption of new tools for improving the management, in order to fulfil the applicable legislation and accomplish all the environmental, operational and works aspects. The applied methodology for the effluents management comprises different aspects, including the specific environmental legislation of a country, main available effluents treatment techniques, process flow analyses from raw materials and intakes to products, generated effluents, residuals and emissions. Data collections were accomplished for points gathering and tests characterization, classification and compatibility of the generated effluents and their eventual environmental impacts. This study aims to implant the Sustainable Concept in order to guarantee access to financial resources, allowing cost reduction, maximizing long-term profits, preventing and reducing environmental accident risks and stimulating both the attraction and the keeping of a motivated manpower. Work on this project has already started and, even though many technical actions have not still ended, the results have being extremely valuable. These results can already give to

  20. Research Institute for Technical Careers

    Science.gov (United States)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  1. Institutional issues affecting transportation of nuclear materials

    International Nuclear Information System (INIS)

    Reese, R.T.; Luna, R.E.

    1980-01-01

    The institutional issues affecting transportation of nuclear materials in the United States represent significant barriers to meeting future needs in the transport of radioactive waste materials to their ultimate repository. While technological problems which must be overcome to perform such movements seem to be within the state-of-the-art, the timely resolution of these institutional issues seems less assured. However, the definition of these issues, as attempted in this paper, together with systematic analysis of cause and possible solutions are the essential elements of the Transportation Technology Center's Institutional Issues Program

  2. USAF Institute for National Security Studies 1998 Research Results Conference

    National Research Council Canada - National Science Library

    1998-01-01

    The USAF Institute for National Security Studies (INSS), in cooperation with HQ USAF Nuclear and Counterproliferation Directorate, sponsored its 6th annual Research Results Conference on 19 - 20 November 1998...

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Mexico

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Nuclear terrorism; II. Institutional Framework - The federal government: 1. Regulatory and supervisory authorities (Ministry of Energy; Ministry of Health; Ministry of Labour and Social Security; Ministry of the Environment and Natural Resources; Ministry of Communications and Transport); 2. Public and semi-public agencies: (National Nuclear Safety and Safeguards Commission; National Nuclear Research Institute)

  4. [Biological research and security institutes].

    Science.gov (United States)

    Darsie, G; Falczuk, A J; Bergmann, I E

    2006-04-01

    The threat of using biological material for ago-bioterrorist ends has risen in recent years, which means that research and diagnostic laboratories, biological agent banks and other institutions authorised to carry out scientific activities have had to implement biosafety and biosecurity measures to counter the threat, while carrying out activities to help prevent and monitor the accidental or intentional introduction of exotic animal diseases. This article briefly sets outthe basic components of biosafety and biosecurity, as well as recommendations on organisational strategies to consider in laboratories that support agro-bioterrorist surveillance and prevention programs.

  5. Welcome from INMM (Institute of Nuclear Materials Management)

    International Nuclear Information System (INIS)

    Satkowiak, L.

    2015-01-01

    The Institute of Nuclear Materials Management (INMM) is the premier professional society focused on safe and secure use of Nuclear Materials and the related nuclear scientific technology and knowledge. Its international membership includes government, academia, non-governmental organizations and industry, spanning the full spectrum all the way from policy to technology. The Institute's primary role include the promotion of research, the establishment of standards and the development of best practices, all centered around nuclear materials. It then disseminates this information through meetings, professional contacts, reports, papers, discussions, and publications. The formal structure of the INMM includes six technical divisions: Facility Operation; Materials Control and Accountability; Nonproliferation and Arms Control; Nuclear Security and Physical Protection; Packaging, Transportation and Disposition

  6. Regulatory and institutional framework for nuclear activities

    International Nuclear Information System (INIS)

    1996-01-01

    This study is part of a series of analytical studies on nuclear legislation in OECD Member countries, prepared with the co-operation of the countries concerned. Each study has been organised on the basis of a standardised format for all countries, thus facilitating the comparison of information. The studies are intended to be updated periodically, taking into account modifications to the nuclear legislation in each country. This is the first update to the 1995 Edition. Unfortunately, due to the constraints of the OECD Publications Service, it covers only those legislative and institutional changes which, in our view, are of the greatest significance for our readers. Thus, you will find new chapters on Finland, Greece, Italy, Japan, Mexico, the Netherlands, Portugal and the United States. Changes to the nuclear legislation and institutions of the remaining countries will be incorporated into the next Update which is expected to be published at the end of 1997. (author)

  7. The health physics programs in low-level radioactive waste management at the Institute of Nuclear Energy Research, Republic of China

    International Nuclear Information System (INIS)

    Chen, W-L.

    1986-01-01

    The primary mission of the health physics programs in low-level radioactive management is to ensure radiation safety for personnel and environment of the Institute of Nuclear Energy Research (INER), and also for the general public surrounding INER. In view of the above, the Health Physics programs in low-level radioactive waste management are divided into three sub-programs: the radiation control program, the environmental survey and bioassay program, and the radiation dosimetry supporting program. The general guidelines, responsibilities, and performance of these programs will be discussed in this paper in the following order. The responsibility of radiation control group is to conduct area monitoring and radiation surveillance for the radioactive waste treatment workers. It includes the control of radiation field level of the working area, servicing personnel dosimeters, instruction on radiation safety, and handling of radiation accidents. The responsibility of the environmental survey and bioassay group is to perform environmental surveys and bioassays. Environmental gamma monitoring stations were installed both on-site and off-site at INER. For bioassays, urine samples are taken from radioactive waste treatment workers, and for internal contamination checks of workers, total body counting systems are being used. The main responsibility of the radiation dosimetry group is to provide radiation dosimetrical support to the radiation control group and the environmental survey and bioassay group. Some typical work of the radiation dosimetry group is the qualitative assay and quantitative determination of radioactive samples, and calibration of dosimeters and survey meters

  8. State of opening the cover and carrying out the checkup of the reactor vessel of the nuclear-powered ship 'Mutsu' by Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1989-01-01

    In the checkup by opening the cover of the reactor vessel of the nuclear-powered ship 'Mutsu', Japan Atomic Energy Research Institute carried out the checkup and maintenance for the reactor proper, control system and primary coolant facilities including the secondary side of steam generators and the pressure balancing valve of the containment vessel. The works were classified into the opening of the reactor, checkup, maintenance and restoration. The opening was begun on August 4, 1988, and finished on December 5. The checkup and maintenance were begun on September 22, and are still continued now. The maximum radiation dose rate on the surfaces of fuel assemblies and control rods and at the positions 1 m distant from them was measured. The results of the checkup of various components are reported. In 290 absorbent rods of control rods, spot corrosion and discoloration were observed, of which the spot corrosion penetrated the walls of 4 rods. Also in 12 fuel rods, spot corrosion was observed near the welded end plugs, but leak was not observed. (K.I.)

  9. Japan Atomic Energy Research Institute in the 21st century

    International Nuclear Information System (INIS)

    Sato, Y.

    2001-01-01

    Major nuclear research institutes in Japan are the Japan Atomic Energy Research Institute (JAERI), Nuclear Cycle Development Institute (JNC), National Research Institute of Radiological Science (NIRS), and the Institute of Physical and Chemical Research (RIKEN). In the 50s and 60s JAERI concentrated on the introduction of nuclear technology from overseas. Energy security issues led to the development of a strong nuclear power programme in the next two decades resulting in Japan having 50 light water cooled nuclear power plants in operation. Japan also worked on other reactor concepts. The current emphasis of JAERI is on advanced reactors and nuclear fusion. Its budget of 270 million US$ supports five research establishments. JAERI has strong collaboration with industry and university system on nuclear and other advanced research topics (neutron science, photon science). In many areas Japan has strong international links. JAERI has also been transferring know-how on radioisotope and radiation applications to the developing countries particularly through IAEA-RCA mechanisms. (author)

  10. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1977-04-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in various institutions. The major experimental facilities consist of: A 5 Megawatt swimming pool enriched uranium reactor at the Soreq Nuclear Research Centre; A 26 Megawatt heavy water tank-type natural uranium reactor at the Negev Research Centre; A 6-million volt EN tandem accelerator at the Weizmann Institute of Science, Rehovot; The new most modern high energy 14 UD pelletron accelerator manufactured by the National Electrostatic Corporation of Middleton, Wisconsin, installed inside the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot. Brief abstracts of the research work, both published and unpublished, listed according to the various laboratories, are reported in the following pages. (author)

  11. Joint Global Change Research Institute (JGCRI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Joint Global Change Research Institute (JGCRI) is dedicated to understanding the problems of global climate change and their potential solutions. The Institute...

  12. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Austria

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime - General Outline: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances, Nuclear Fuel and Equipment; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II) - Institutional Framework: 1. Regulatory and Supervisory Authorities: A. Federal Authorities - Bund (The Federal Chancellery; The Federal Minister for Women's Affairs and Consumer Protection; The Federal Minister of the Interior; The Federal Minister for Economic Affairs; The Federal Minister of Finance; The Federal Minister of Labour, Health and Social Affairs; The Federal Minister of Science and Transport; The Federal Minister of Justice; The Federal Minister for the Environment; The Federal Minister for Foreign Affairs) B. Regional Authorities - Laender; C. District Authorities - Bezirksverwaltungsbehorden; 2. Advisory Bodies (Forum for Nuclear Questions, Radiation Protection Commission - SSK); 3. Public and Semi-Public Agencies (The Seibersdorf Austrian Research Centre; The Graz Nuclear Institute; The Nuclear Institute of the Austrian Universities; The Institute of Risk Research, University of Vienna)

  13. Inauguration of the international Institute of the nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    On June 27, 2011 was inaugurated in Saclay (France) the I2EN (international Institute of the nuclear energy) and the Jannus platform. The I2EN has to particularly centralize and relay, at the international scale, the French formations offer in the field of nuclear energy. On the other hand, the Jannus platform is an example of cooperation between research organisms and universities. (O.M.)

  14. Nuclear-safety institution in France: emergence and development

    International Nuclear Information System (INIS)

    Vallet, B.M.

    1986-01-01

    This research work examines the social construction of the nuclear-safety institution in France, and the concurrent increased focus on the nuclear-risk issue. Emphasis on risk and safety, as primarily technical issues, can partly be seen as a strategy. Employed by power elites in the nuclear technostructure, this diverts emphasis away from controversial and normative questions regarding the political and social consequences of technology to questions of technology that appear to be absolute to the technology itself. Nuclear safety, which started from a preoccupation with risk related to the nuclear energy research and development process, is examined using the analytic concept of field. As a social arena patterned to achieve specific tasks, this field is dominated by a body of state engineers recognized to have high-level scientific and administrative competences. It is structured by procedures and administrative hierarchies as well as by technical rules, norms, and standards. These are formalized and rationalized through technical, economic, political, and social needs; over time; they consolidate the field into an institution. The study documents the nuclear-safety institution as an integral part of the nuclear technostructure, which has historically used the specificity of its expertise as a buffer against outside interference

  15. Radiometric analysis performed by the Environment Monitoring Service from IPEN (Institute of Energy and Nuclear Research), Brazil, between 1988 and 1991; Analises radiometricas realizadas pelo Servico de Monitoracao Ambiental do IPEN de 1988 a 1991

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, L; Nisti, M B; Pecequilo, B R.S.

    1993-03-01

    This report presents the radiometric analyses made by the Environmental Monitoring Service from the Institute of Energy and Nuclear Research (IPEN), Brazil, in the period 1988-1991. The experimental procedures, the products analysed and their respective quantities are described. (F.E.). 11 refs, 3 tabs.

  16. Karlsruhe Nuclear Research Center. Research and development programme 1988

    International Nuclear Information System (INIS)

    1987-01-01

    A general survey of planned activities and developmental trends of the nuclear research centre is followed by a more detailed account of projects and goals. The various institutes and laboratories are presented together with their specific task schedules. (UA) [de

  17. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  18. Study of social responsibility of the Nuclear and Energy Research Institute of Sao Paulo (IPEN/CNEN-SP); Estudo da responsabilidade social do Instituto de Pesquisas Energeticas e Nucleares de Sao Paulo (IPEN/CNEN-SP)

    Energy Technology Data Exchange (ETDEWEB)

    Mutarelli, Rita de Cassia

    2014-07-01

    Over the years, the socio-environmental concept has grown through programs, conferences and several activities that have been held in Brazil and worldwide. Sustainability and social responsibility are now an integral part of everyday life of organizations The Instituto de Pesquisas Energeticas e Nucleares (IPEN), which is the focus of this research, is committed to the improvement of Brazilian quality of life. Based on IPEN's mission, and due to the lack of tools for assessing socio-environmental actions, this research aims to propose an assessment tool for social responsibility, which may also be a methodological resource committed to the improvement of the Institute. Through indicators and dimensions, a methodology to assess social responsibility and identify both strengths and weaknesses was designed. The methodology was administered to IPEN, and the results demonstrated positive aspects regarding actions towards the internal publics and negative aspects towards the external publics that require improvement. The results obtained were satisfactory. Nevertheless, as the subject of this study is a broad theme, further studies are suggested. IPEN's board may use the results of this research as a tool to help them identify feasible socio-environmental actions to be implemented in the institute. (author)

  19. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  20. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1978-07-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in the various institutions listed in previous Progress Reports (LS-270 for 1976). The latest major experimental facility, the 14 UD pelletron, was installed in the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot, and accepted on April 1st 1977. A report in Revue de Physique Appliquee of October 1977 including a description of the facility, acceptance performance, as well as some supplementary devices, is reproduced in the beginning of this report. Brief abstracts of the research work, both published and unpublished, are presented. (author)

  1. Institutional Repositories in Indian Universities and Research Institutes: A Study

    Science.gov (United States)

    Krishnamurthy, M.; Kemparaju, T. D.

    2011-01-01

    Purpose: The purpose of this paper is to report on a study of the institutional repositories (IRs) in use in Indian universities and research institutes. Design/methodology/approach: Repositories in various institutions in India were accessed and described in a standardised way. Findings: The 20 repositories studied covered collections of diverse…

  2. 1988 activity report of the Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-06-01

    The 1988 activity report of the Nuclear Physics Institute (France) is presented. The report covers the scientific activities from the 1st October 1987 to the 30th September 1988 and the technical developments form the 1st October 1986 to the 30th September 1988. The main research fields include works on exotic nuclei, hot nuclei characteristics, physics of strangeness, nuclear structure studies by means of nuclear reactions, high spin states and radiochemistry. The project of an electron accelerator, delivering a 4 GeV beam (in a first step), is one of the Institute's priorities. The research works carried out in the Experimental Research and Theoretical Physics Divisions as well as technological projects are included [fr

  3. Institute for Nuclear Waste Disposal. Annual Report 2009

    International Nuclear Information System (INIS)

    Geckeis, H.; Stumpf, T.

    2010-01-01

    On October 01, 2009, the Karlsruhe Institute of Technology (KIT) was founded by a merger of Forschungszentrum Karlsruhe and Universitaet Karlsruhe (TH). KIT bundles the missions of both precursory institutions: a university of the state of Baden- Wuerttemberg with teaching and research tasks and a large-scale research institution of the Helmholtz Association conducting program-oriented provident research on behalf of the Federal Republic of Germany. Within these missions, KIT is operating along the three strategic fields of action, research, teaching, and innovation. With about 8000 employees and an annual budget of about EUR 700 million, KIT is one of the largest research and teaching institutions worldwide. It has the potential to assume a top position worldwide in selected fields of research. The objective: KIT will become an institution of excellent research and scientific education, as well as a prominent location of academic life, life-long learning, comprehensive advanced training, unrestricted exchange of know-how and sustainable innovation culture. The largest organizational units of KIT are the KIT Centers. They focus on problems of fundamental importance to the existence and further development of our society or on key issues of basic science. KIT Centers are characterized by the uniqueness of their scientific approach, their strategic objective and mission and by a long-term perspective. The Institut fuer Nukleare Entsorgung, INE, (Institute for Nuclear Waste Disposal) belongs to the KIT Energy Center. The KIT Energy Center comprises some 40 institutes of the Universitaet Karlsruhe (TH) and 18 large institutes of the Forschungszentrum Karlsruhe with, at present, a total of approx. 1100 staff members. The participating institutes and research groups are the operating research units. An interdisciplinary KIT School of Energy establishes ideal framework conditions for teaching. For external partners from industry, the KIT Center develops solutions in

  4. Vinca institute nuclear decommissioning program - Establishment and initialisation

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Ljubenov, V.; Sotic, O.

    2003-01-01

    Present conditions in The Vinca Institute of Nuclear Sciences related to the nuclear and radiation safety, as result of ambitious nuclear program in the former Yugoslavia and strong economic crisis during the previous decade, have to be improved as soon as possible. RA research reactor, which extended shutdown stage took almost 18 years, spent nuclear fuel from the RA operation in the water pools within the reactor building and inadequate storage facilities for the low and intermediate radioactive wastes at the Vinca site are the main safety problems that have to be solved. To solve the problems mentioned above, a new 'Vinca Nuclear Decommissioning (VIND) Program' is initiated in the Vinca Institute during 2002. The Program team is assembled from about 60 experts from the Institute and relevant organisations. The Program, known also as the G reen Vinca , will be supported, besides the government funding and expected donation from foreign institutions, by experts' help from the IAEA. The necessary equipment will be obtained through the technical assistance from the IAEA. Close co-operation of the team members with experts and relevant companies from nuclear developed countries is expected. (author)

  5. Institutional failures and transaction costs of Bulgarian private research institutes

    OpenAIRE

    Nozharov, Shteryo

    2016-01-01

    The paper analyses the reasons for poor performance of private research institutes in Bulgaria. In this regard the Institutional Economics methods are used. A connection between smart growth policy goals and Bulgarian membership in EU is made. The gaps in the institutional environment are identified as well as measures for their elimination are proposed. The main accent of the study is put on the identification of transaction costs, arisen as a result of the failures of the institutional envi...

  6. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    partners in the Nuclear Competence Association. As of January 2011, the Dresden-Rossendorf Helmholtz Center (HZDR), with its 2 Institutes of Safety Research and for Radiochemistry, is an integral part of the Nuclear Safety Research Program within the Energy Research Area. Both institutes work on topics of safety research for nuclear reactors and safety research for nuclear waste management. In this way, the 2 institutes represent very welcome added value as well as a supplement to the Nuclear Safety Research Program. (orig.)

  7. Nuclear structure studies at Saha Institute of Nuclear Physics using ...

    Indian Academy of Sciences (India)

    In-beam gamma-ray spectroscopy, carried out at the Saha Institute of Nuclear Physics in the recent past, using heavy-ion projectiles from the pelletron accelerator centres in the country and multi-detector arrays have yielded significant data on the structure of a large number of nuclei spanning different mass regions.

  8. The nuclear research centre at Bariloche, Argentina

    International Nuclear Information System (INIS)

    Abriata, J.P.

    2001-01-01

    The nuclear research centre at Bariloche (CAB) is one of the four centres under the Atomic Energy Commission of Argentina (CNEA). The research programme of CAB addresses various issues like nuclear reactor development, nuclear fuel and fuel cycle, applications of radioisotopes and radiation, and waste management. There is also a basic nuclear science component. The human resource development in the areas of physics and nuclear engineering is done in an associated Balseiro Institute which has undergraduate and graduate programmes as well as doctoral and postdoctoral research. The Centre interacts well with the society and provides services in the nuclear area. It has a close interaction with the nuclear sector of Argentina as also with many international organisations. Regulatory control over the Centre is carried out by the Nuclear Regulatory Authority of Argentina. (author)

  9. Research Institute for Medical Biophysics

    International Nuclear Information System (INIS)

    Wynchank, S.

    1989-01-01

    The effects of ionising and non-ionising radiation on rodent tumours and normal tissue were studied in terms of cellular repair and the relevant biochemical and biophysical changes following radiation. Rodent tumours investigated in vivo were the CaNT adenocarcinoma and a chemically induced transplantable rhabdomyosarcoma. Radiations used were 100KVp of X-Rays, neutron beams, various magnetic fields, and microwave radiation of 2450MHz. The biochemical parameters measured were, inter alia, levels of adenosine-5'-triphoshate (ATP) and the specific activity of hexokinase (HK). Metabolic changes in ATP levels and the activity of HK were observed in tumour and normal tissues following ionising and non-ionising radiation in normoxia and hypoxia. The observation that the effect of radiation and chemotherapeutic treatment of some tumours may be size dependent can possibly now be explained by the variation of ATP content with tumour size. The enhanced tumour HK specific activity implies increased metabolism, possibly a consequence of cellular requirements to maintain homeostasis during repair processes. Other research projects of the Research Institute for Medical Biophysics involved, inter alia, gastroesophageal scintigraphies to evaluate the results of new forms of therapy. 1 ill

  10. Implementation of a constant load method, for determination of crack growth velocities in MEX-03 system of National Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.

    2009-10-01

    Whit the objective of to complete the existent techniques for susceptibility evaluation to phenomenon of stress corrosion cracking in laboratories of Applied Sciences Area of National Institute of Nuclear Research; was realized and documented the modification of a high pressure and temperature equipment, identified as MEX-03 to carry out the implementation of a growth and crack propagation assay, using a constant load method. The assay was realized to a specimen of stainless steel AISI 304l type CT of an inch, which was previously thermally sensitize, simulating the typical degradation of this materials type below operation conditions in a BWR. The MEX-03 system, consist from an annexed auto key to a load system which originally was controlled by displacement; therefore were carried out modifications to achieve the control by load. The realized adjustments allowed to maintain a constant load during all the experiment, and as much the temperature conditions (T = 288 C) as of pressure (P = 8 Mpa) were controlled during the assay realization. The steel was exposed to a conditioned ambient with hydrogen gas addition; simulating a well-known alternative chemistry as hydrogen water chemistry that is used to mitigate the phenomenon of stress corrosion cracking, main degradation mechanism of austenitic stainless steels. The continuation of the crack behavior was realized by means of electric potential fall technique and later was validated of visual form through the fractographic analysis of cracked surface. The modification and control of equipment for realization of this experiment is necessary, for what should be carried out new assays, whose results will allow to establish the effect of dynamic and static methods in velocity determination of crack growth to laboratory level; to be considered in the existent models of crack propagation in systems and components in operation. (Author)

  11. Proposal to Establish an International Solar Research Institute

    International Nuclear Information System (INIS)

    Broda, E.

    1974-01-01

    This report was written by E. Broda and it is about a proposal to establish an international solar research institute. Broda emphasizes solar energy as the most important energy source alternatively to nuclear energy and he points out the advantages of solar energy over nuclear energy. This report was written for a symposium for science and peace in February 1974. (nowak)

  12. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction (Licensing system; Offences, compliance and enforcement; Regulatory documents; Other relevant legislation); 2. Mining regime; 3. Nuclear substances and radiation devices; 4. Nuclear facilities; 5. Trade in nuclear materials and equipment (Exports, Other imports); 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Governor in council; Minister of natural resources; Other Ministerial authorities; Canadian Nuclear Safety Commission - CNSC); 2. Public and semi-public agencies (National Research Council - NRC; Natural Sciences and Engineering Research Council; Atomic Energy of Canada Ltd. - AECL)

  13. Institutional Support : Kenya Institute for Public Policy Research and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In 2006 the Government of Kenya passed an Act of Parliament making the Kenya Institute for Public Policy Research and Analysis (KIPPRA) the government's lead socioeconomic research institute. The Act exerts enormous demands on KIPPRA at a time when it is trying to recover from the senior staff turnover suffered in ...

  14. Relations with the Joint Institute for Nuclear Research (JINR) and draft agreement between UNESCO and that body. Executive Board 151. session. Item 9.11 of the provisional agenda

    International Nuclear Information System (INIS)

    Mayor, F.; Kadyshevsky, V.G.

    1997-01-01

    This document contains a proposal for the conclusion of an agreement between UNESCO and the Joint Institute for Nuclear Research (JINR) in Dubna (Russian Federation) in order to promote international co-operation for research on the fundamental properties of matter. The proposal made was initiated by JINR which is an international intergovernmental organization with 18 Member States. In accordance with Article XI.1 of UNESCO's Constitution, the Director-General requests the Executive Board's approval of the draft agreement with JINR

  15. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  16. Research in nuclear astrophysics

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1989-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and the supernova phenomenon; in fact, nuclear matter properties, especially at supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered in the one and one half years prior to its explosion in February 1987. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We propose to modify it to use implicit differencing and to include multi-group neutrino diffusion and General Relativity. In parallel, we are extending calculations of the birth of a neutron star to include convection and mass accretion, by incorporating a hydrodynamic envelope onto a hydrostatic core. In view of the possible recent discovery of a pulsar in SN1987A, we are including the effects of rotation. We are undertaking a detailed comparison of current equations of state, focusing on disagreements regarding the nuclear incompressibly, symmetry energy and specific heat. Especially important is the symmetry energy, which below nuclear density controls free proton fractions and weak interaction rates and above this density critically influences the neutron star maximum mass and binding energy. 60 refs

  17. Harish-Chandra Research Institute, Allahabad

    Indian Academy of Sciences (India)

    The Harish-Chandra Research Institute (known as the Mehta Research Institute of Math- ematics and Mathematical Physics until October 2000) came into existence in 1975, with a donation of some land and Rs. 40 lakhs from the B S Mehta Trust in Calcutta. With the aim of converting it into a top-class research Institute in ...

  18. Guidelines for an environmental code of ethics for research institutions

    International Nuclear Information System (INIS)

    Gardusi, Claudia; Aquino, Afonso Rodrigues de

    2009-01-01

    The purpose of this work is to reflect about actions that may contribute to the creation of mechanisms to protect the environment in the development of research projects at research institutions, specifically the Nuclear and Energy Research Institute - IPEN. A brief review of part of the ethical values applied to the process of scientific development during the old, medieval and modern periods is presented, showing the split of the nature ethical principles. It is also reported an overview of the creation of codes of ethics applied to research institutions. Moreover, criteria are presented to settle guidelines to protect the environment during the development of research projects. (author)

  19. Gas Research Institute wetland research program

    International Nuclear Information System (INIS)

    Wilkey, P.L.; Zimmerman, R.E.; Isaacson, H.R.

    1992-01-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry's impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables

  20. Research for nuclear power. A Swiss perspective

    International Nuclear Information System (INIS)

    Foskolos, K.; Yadigaroglu, G.; Chawla, R.; Paul Scherrer Inst., Villigen

    1996-01-01

    Nuclear energy research in Switzerland is concentrated in the Department for Nuclear Energy and Safety Research of the Paul Scherrer Institute (PSI). Nuclear research at PSI is structured around three main poles: safety and related operational issues for existing NPPs, nuclear waste management, and safety characteristics of future reactor concepts. Further, global aspects of energy systems are examined with regard to safety, economics and environmental impact. Presently, a total effort of about 200 py/a is invested in the nuclear research. Government funding of nuclear research was relatively stable during recent years, reaching about 35 MCHF/a. External funding of about 15 MCHF/a is expected to remain stable. (R.P.)

  1. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  2. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  3. National Institute of Nursing Research

    Science.gov (United States)

    ... Medicine at NINR Research Highlights Data Science and Nursing Research Spotlight on End-of-Life and Palliative Care Research Spotlight on Symptom Management Research Spotlight on Pain Research The Science of Compassion: Future Directions in ...

  4. Activation Analysis and Nuclear Research in Burma

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R. W.

    1971-07-01

    Research endeavours in the field of Nuclear Sciences in Burma appear to be concentrated in three main Institutions. These are the Chemistry and Physics Departments of the Rangoon Arts & Science University and the Union of Burma Applied Research Institute (UBARI). In view of possible forthcoming developments an expanded research programme, which is to be implemented on the basis of a five year plan, has been drawn up. Research topics included in this programme are predominantly of practical interest and aimed at a contribution by nuclear methods, in particular activation analysis, to the technological and industrial needs of the country.

  5. Nuclear skills and education training in the UK through the Dalton nuclear institute

    International Nuclear Information System (INIS)

    Richard Clegg

    2006-01-01

    The UK demand for nuclear skills and research requirements is showing signs of a significant upturn. More capacity is being needed to support the UK's national programmes on clean-up and decommissioning, keeping the nuclear option open, and longer term advanced reactors technology. In response to this, The University of Manchester has launched the Dalton Nuclear Institute. The Institute is working with government and industry to strengthen and develop the UK's strategic nuclear skills base in the university sector. The Institute's scope covers the broad entirety of the UK's nuclear requirements spanning reactors, fuel cycles, decommissioning, disposal, social policy and regulation, and with connections into nuclear medicine and fusion. The rational behind the setting up of the Dalton Nuclear Institute including its research and education strategies are explained below, together with a description of the areas of current strength and the areas where major university investment is being targeted to uplift UK capacity and infrastructure. A big driver is also to forge links with other world leading centres internationally that will complement Manchester's in house capability. In the UK, the Dalton Nuclear Institute is working in partnership with Nexia Solutions and the NDA (Nuclear Decommissioning Authority) to match the Institute's plans with end-user industry and sector requirements. A key driver is to maximize the utilisation of the UK's specialist research facilities, notably the new Sellafield Technology Centre in West Cumbria. Discussions are underway with Nexia Solutions and the NDA to grant academic access for the Dalton Nuclear Institute and its collaborators to the Sellafield Technology Centre, to utilize it along the lines akin to a 'teaching hospital' model. The paper also explains the steps Dalton has taken by setting up and leading a consortium with ten other higher education providers in the UK, to launch a national programme for postgraduate

  6. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Netherlands

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Fissionable materials, ores, radioactive materials and equipment (Fissionable materials and ores; Radioactive materials and equipment); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection (Protection of workers; Protection of the public; Protection of individuals undergoing medical exposure); 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Housing, Spatial Planning and the Environment; Minister for Economic Affairs; Minister for Social Affairs and Employment; Minister for Health, Welfare and Sports; Minister for Finance; Minister for Foreign Affairs); 2. Advisory body - Health Council of the Netherlands; 3. Public and semi-public agencies (Nuclear Research and Consultancy Group - NRG; Central Organisation for Radioactive Waste - COVRA)

  7. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Spain

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trading in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Safeguards and non-proliferation; Physical protection); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Industry, Tourism and Trade - MITYC; Ministry of the Interior - MIR; Ministry of Economy and the Exchequer - MEH; Ministry of the Environment and Rural and Marine Affairs - MARM); 2. Public and semi-public agencies (Nuclear Safety Council - CSN; Centre for Energy-related, Environmental and Technological Research - CIEMAT; National Energy Commission - CNE; 3. Public capital companies (Enusa Industrias Avanzadas, s.a. - ENUSA; Empresa Nacional de Residuos Radiactivos, s.a. - ENRESA)

  8. Forgotten research institute makes money from ideas

    International Nuclear Information System (INIS)

    Sobinkovic, B.

    2008-01-01

    Robots that stack magnets weighing several tons in the world's biggest nuclear laboratory with a millimetre precision. Small machines that can destroy bombs, detect bombs in trains, planes or cars. A leading position in an expert group that, with NATO funds, tests how robotic systems can be used in the fight against terrorism. This summary indicates that ideas are an integral part of the work done at the ZTS Vyskumno-vyvojovy ustav (ZTS VVU) research institute in Kosice. This is nothing special for a research institute. But this is a joint stock company. And so it needed one additional vision: producing goods that sell from the research. ZTS VVU has delivered robotic system for accurate positioning of cryo-magnets for the CERN. Cryo-magnet is 16 m long and weights 34 tonnes. For the CERN five robotic systems were delivered. The value of the contract with the CERN was about 60 millions slovak crowns (≅ 2 million EUR). Transport containers, manipulators for decontamination and manipulators with radioactive wastes were manufactured for the Bohunicke spracovatelske centrum (Bohunice Radioactive Waste Processing Center). (authors)

  9. Auditing as Institutional Research: A Qualitative Focus.

    Science.gov (United States)

    Fetterman, David M.

    1991-01-01

    Internal institutional auditing can improve effectiveness and efficiency and protect an institution's assets. Many of the concepts and techniques used to analyze higher education institutions are qualitative in nature and suited to institutional research, including fiscal, operational, data-processing, investigative, management consulting,…

  10. The first Summer Institute of the World Nuclear University - a personal record

    International Nuclear Information System (INIS)

    Denk, W.; Fischer, C.; Seidl, M.

    2005-01-01

    The first World Nuclear University Summer Institute was held at Idaho Falls, USA, between July 9 and August 20, 2005. The event was hosted by the Institute of Nuclear Science and Engineering of Idaho State University (ISU) and by the Idaho National Laboratory (INL), which has been planned to be the central nuclear technology research institution in the United States. The World Nuclear University (WNU) was founded in 2003 by the International Atomic Energy Agency (IAEA), the OECD Nuclear Energy Agency (OECD-NEA), the World Association of Nuclear Operators (WANO), and the World Nuclear Association (WNA) as a global association fo scientific and educational institutions in the nuclear field. The first WNU Summer Institute was designed at IAEA in Vienna in the course of the following year and planned by the WNU Coordinating Centre in London. The six weeks of lectures and presentations arranged by the World nuclear University in Idaho Falls are described in detail from the participants' perspective. (orig.)

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Switzerland

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Nuclear fuels; Radioactive substances and equipment generating ionising radiation); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Environmental protection; II. Institutional Framework: 1. Regulatory and supervisory authorities (Federal Council; Federal Assembly; Federal Department of the Environment, Transport, Energy and Communications - DETEC; Federal Office of Energy - SFOE; Swiss Federal Nuclear Safety Inspectorate - IFSN; Federal Department of Home Affairs - FDHA; Federal Office of Public Health - FOPH; State Secretariat for Education and Research - SER; Other authorities); 2. Advisory bodies (Swiss Federal Nuclear Safety Commission - KNS; Federal Commission for Radiological Protection and Monitoring of the Radioactivity in the Environment; Federal Emergency Organisation on Radioactivity); 3. Public and semi-public agencies (Paul-Scherrer Institute - PSI; Fund for the decommissioning of nuclear installations and for the waste disposal; National Co-operative for the

  12. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Italy

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment (General provisions; Patents); 6. Radiation Protection (Protection of workers; Protection of the public; Protection of the environment); 7. Radioactive Waste Management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Interdepartmental Committee for Economic Planning; Nuclear Safety Agency; Prime Minister; Minister for Economic Development; Minister for Labour and Social Security; Minister for Health; Minister for the Environment; Minister for the Interior; Minister for Transport and Navigation; Minister for Foreign Trade (now incorporated in Ministry for Economic Development); Minister for Education; Treasury Minister; Minister for Universities and for Scientific and Technical Research; Minister for Foreign Affairs; State Advocate General); 2. Advisory bodies (Inter-ministerial Council for Consultation and Co-ordination; Coordinating Committee for Radiation Protection of Workers and the Public; Regional and Provincial Commissions for Public Health Protection

  13. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  14. Using institutional theory in enterprise systems research

    DEFF Research Database (Denmark)

    Svejvig, Per

    2013-01-01

    This paper sets out to examine the use of institutional theory as a conceptually rich lens to study social issues of enterprise systems (ES) research. More precisely, the purpose is to categorize current ES research using institutional theory to develop a conceptual model that advances ES research...... model that advocates multi-level and multi-theory approaches and applies newer institutional aspects such as institutional logics. The findings show that institutional theory in ES research is in its infancy and adopts mainly traditional institutional aspects like isomorphism, with the organization....... Key institutional features are presented such as isomorphism, rationalized myths, and bridging macro and micro structures, and institutional logics and their implications for ES research are discussed. Through a literature review of 181 articles, of which 18 papers are selected, we build a conceptual...

  15. Institute of Nuclear Power Operations (INPO)

    International Nuclear Information System (INIS)

    Pack, R.W.

    1980-01-01

    The electric utility industry established the Institute of Nuclear Power Operations, or INPO, the purpose of which is to ensure the highest quality of operations in nuclear power plants. INPO will be an industry self-help instrument focusing on human factors. From top management to the operator trainee, it will measure utility performance against benchmarks of excellence and help utilities reach those benchmarks throughout training and operating programs. INPO will see that the utilities ferret out lessons for all from the abnormal operating experiences of any. It will do everything possible to assist utilities in meeting its certification requirements, but will have the clout to see that those requirements are met. INPO is also managing the nationwide system of utility emergency response capability

  16. The future of national research institutions

    International Nuclear Information System (INIS)

    Popp, M.

    1992-01-01

    In Germany, the national research centers have prepared, accompanied and stabilized the development of nuclear technology. In the present, political, situation, they are no longer able to make a comparably constructive contribution to the future perspective of nuclear technology. The accompanying scientific services rendered nuclear technology by the national research centers also in the future include the cultivation of qualified expertise. In this way, the link between national research centers and nuclear technology is maintained, albeit at a different level. Cases in point are nuclear fusion or the development of new, advanced reactor lines. (orig.) [de

  17. The current state of the development of the supercomputer system in plasma science and nuclear fusion research in the case of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Azumi, Masafumi

    2004-01-01

    The progress of large scale scientific simulation environment in JAERI is briefly described. The expansion of fusion simulation science has been played a key role in the increasing performances of super computers and computer network system in JAERI. Both scalar parallel and vector parallel computer systems are now working at the Naka and Tokai sites respectively, and particle and fluid simulation codes developed under the fusion simulation project, NEXT, are running on each system. The storage grid system has been also successfully developed for effective visualization analysis by remote users. Fusion research is going to enter the new phase of ITER, and the need for the super computer system with higher performance are increasing more than as ever along with the development of reliable simulation models. (author)

  18. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  19. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  20. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Turkey

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Prime Minister; Ministry of Energy and Natural Resources; Ministry of Health; Ministry of the Environment and Forestry); 2. Public and semi-public agencies (Turkish Atomic Energy Authority - TAEK; General Directorate for Mineral Research and Exploration - MTA; ETI Mine Works General Management; Turkish Electric Generation and Transmission Corporation - TEAS; Turkish Electricity Distribution Corporation - TEDAS)

  1. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2004

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    2005-01-01

    The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Rossendorf e.V. (FZR e.V.) which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibniz Association). Together with the Institute of Radiochemistry, ISR constitutes the research programme ''Safety and Environment'' which is one from three scientific programmes of FZR. In the framework of this research programme, the institute is responsible for the two subprogrammes ''Plant and Reactor Safety'' and ''Thermal Fluid Dynamics'', respectively. We also provide minor contributions to the sub-programme ''Radio-Ecology''. Moreover, with the development of a pulsed photo-neutron source at the radiation source ELBE (Electron linear accelerator for beams of high brilliance and low emittance), we are involved in a networking project carried out by the FZR Institute of Nuclear and Hadron Physics, the Physics Department of TU Dresden, and ISR. (orig.)

  2. Information Science Research Institute. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nartker, T.A.

    1994-06-30

    This is a second quarter 1194 progress report on the UNLV Information Science Research Institute. Included is symposium activity; staff activity; document analysis program; text retrieval program; institute activity; and goals.

  3. KFK. Institut fuer Radiochemie research and development activities in 1982

    International Nuclear Information System (INIS)

    1983-02-01

    The Institute for Radiochemistry (IRCH, Director: Proj. D. Ache) is concerned with research and development programmes within two framework of the following projects: Reprocessing and Waste Processing; Fast Breeder; Nuclear Safeguards; and Nuclear Material Surveillance. Fundamental problems in the field of instrumental analysis (in particular surface chemistry, surface structure analysis and radiochemistry) are studied within the priority work programme 'Solids and Materials Research'. Water technology studies at the IRCH are included in the joint priority programmes 'Technology - Man - Environment'. (orig./RB) [de

  4. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  5. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  6. Nuclear Research and Society

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2000-07-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised.

  7. Nuclear Research and Society

    International Nuclear Information System (INIS)

    Eggermont, G.

    2000-01-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised

  8. Dynamic design load of type 2 water-flow capsule in Nuclear Safety Research Reactor in Tokai Research Establishment of Japan Atomic Energy Research Institute, and its reuse test

    International Nuclear Information System (INIS)

    1981-01-01

    A report by the Nuclear Safety Bureau of the Science and Technology Agency to the Nuclear Safety Commission was presented on the validity of the dynamic design load of type 2 water-flow capsule and the method of its reuse test. The safety in both aspects of the capsule was confirmed. The Nuclear Safety Research Reactor (NSRR), in which the water-flow capsule is set, is a swimming pool type reactor, fueled with enriched uranium, having heat output of 300 kW in normal operation and maximum instantaneous heat output of 23,000 MW in pulse operation. The type 2 water-flow capsule, with the initial conditions simulating a power generating LWR plant and being appropriately set, is used to acquire the data on fuel behavior and destructive power in pulse irradiation. (J.P.N.)

  9. Dynamic design load of type 2 water-flow capsule in Nuclear Safety Research Reactor in Tokai Research Establishment of Japan Atomic Energy Research Institute, and its reuse test

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A report by the Nuclear Safety Bureau of the Science and Technology Agency to the Nuclear Safety Commission was presented on the validity of the dynamic design load of type 2 water-flow capsule and the method of its reuse test. The safety in both aspects of the capsule was confirmed. The Nuclear Safety Research Reactor (NSRR), in which the water-flow capsule is set, is a swimming pool type reactor, fueled with enriched uranium, having heat output of 300 kW in normal operation and maximum instantaneous heat output of 23,000 MW in pulse operation. The type 2 water-flow capsule, with the initial conditions simulating a power generating LWR plant and being appropriately set, is used to acquire the data on fuel behavior and destructive power in pulse irradiation.

  10. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - France

    International Nuclear Information System (INIS)

    2011-01-01

    . Nuclear Third Party Liability: 1 Scope (Geographical scope; Installations subject to the nuclear third party liability regime; Transport; Damage covered); 2 General principles of the nuclear third party regime (Legal channelling of liability to the operator; Strict liability; Liability limited in amount; Operator's insurance or financial security; Liability limited in time; Exclusive jurisdiction); 3 Amendments of the Paris and Brussels Conventions; II. Institutional Framework: 1. The Nuclear Safety Authority (President of the Republic: Council for Nuclear Policy, Council for Defence and National Security; Prime Minister: Inter-ministerial Committee for Nuclear or Radiological Emergencies, General Secretariat for Defence and National Security, Euratom Technical Committee, Administration of the CTE is handed to the Atomic Energy Commission, Atomic Energy Committee; Minister for Industry: Nuclear Engineering Terminology and Neology Commission; Minister responsible for Ecology and Energy: Directorate General for Energy and Climate, Directorate General for the Prevention of Risks, Department for Defence, Security and Economic Intelligence; Minister for Research; Minister for Health; Minister for Public Safety: Directorate for Public Safety, Central Office for the Prevention of Organised Crime; Minister for Defence: Council for Nuclear Defence, DSND (Minister responsible for Work, Minister for Foreign Affairs); 2. Specialised Committees or Boards (Advisory Commission on Major Nuclear Installations; Special Commission for Major Nuclear Installations classified as Secret; Higher Council for Nuclear Safety and Information; Higher Committee for the Transparency of Information on Nuclear Safety); 3. Public and semi-public agencies (The Atomic Energy and Alternative Energies Commission, Atomic Energy Committee, Management Board, Administrator-General, High Commissioner for Atomic Energy, Agence ITER-France - AIF, Agence France Nucleaire international - AFNI; Electricite de

  11. Material Control and Accounting (MC and A) System Upgrades and Performance Testing at the Russian Federal Nuclear Center-All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF)

    International Nuclear Information System (INIS)

    Bushmelev, Vadim; Viktorov, Vladimir; Zhikharev, Stanislav; Yuferev, Vladimir; Singh, Surinder Paul; Kuzminski, Jozef; Hogan, Kevin; McKisson, Jacquelin

    2008-01-01

    The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), founded in 1946 at the historic village of Sarov, in Nizhniy Novgorod Oblast, is the largest nuclear research center in the Rosatom complex. In the framework of international collaboration, the United States (US) Department of Energy/National Nuclear Security Agency, in cooperation with US national laboratories, on the one hand, Rosatom and VNIIEF on the other hand, have focused their cooperative efforts to upgrade the existing material protection control and accountability system to prevent unauthorized access to the nuclear material. In this paper we will discuss the present status of material control and accounting (MC and A) system upgrades and the preliminary results from a pilot program on the MC and A system performance testing that was recently conducted at one technical area.

  12. Report by the AERES on the unit: Research Unit on Reactor Safety under the supervision of the establishments and bodies: Radioprotection and Nuclear Safety Institute

    International Nuclear Information System (INIS)

    2010-10-01

    This report is a kind of audit report on a research laboratory whose activity is organized according to the following themes: behaviour of nuclear fuel under accidental conditions, core fusion accidents, fire in confined environment, and civil engineering and structure behaviour. The authors discuss an assessment of the unit activities in terms of strengths and opportunities, aspects to be improved and recommendations, productions and publications. A more detailed assessment is presented in terms of scientific quality, influence and attractiveness (awards, recruitment capacity, capacity to obtain financing and to tender, participation to international programs), strategy and governance, and project. Each research theme is analyzed in the same way

  13. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  14. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1985-01-01

    The Act for Japan Atomic Energy Research Institute has been promulgated anew. Contents are the following : general rules, officials, advisors and personnel, duties, financial affairs and accounts, supervision, miscellaneous rules, penal provisions, and additional rules. (In the additional rules, the merger into JAERI of Japan Nuclear Ship Research and Development Agency is treated.) Japan Atomic Energy Research Institute conducts research etc. for the development of atomic energy comprehensively and efficiently, thereby contributing to the promotion of atomic energy research, development and utilization, according to the Atomic Energy Fundamental Act. Duties are atomic energy basic and application research, reactor relation, training of the personnel, RIs relation, etc. (Mori, K.)

  15. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  16. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  17. Nuclear-waste problems are deemed less technological than institutional

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Nuclear waste management needs administrative re-organization to separate management, regulation, and research and development responsibilities. New stable, but adaptable, institutions need to be established to clarify criteria for containing and isolating nuclear waste and to ensure that criteria are met. Present structure, which puts much of the temporary responsibility on the private sector and permanent responsibility on ERDA, does not encourage efficiency. Government regulations and public pressure have provided some incentives, but military nuclear wastes have no independent regulation to protect the public, and the states have proved ineffective in regulating commercial operations. Recommendations for reorganization are: (1) to establish a national public corporation to manage high-level and transuranic wastes; (2) to consolidate regulatory authority under a comprehensive Nuclear Regulatory Commission; and (3) to establish a commission within the International Atomic Energy Agency for licensing and review of disposal operations

  18. Marie Curie: the Curie Institute in Senegal to Nuclear Physics

    Science.gov (United States)

    Gueye, Paul

    Sub-Saharan Africa is not a place where one will look first when radioactivity or nuclear physics is mentioned. Conducting forefront research at the international stage at US national facilities such as the Thomas Jefferson National Accelerator Facility in Virginia or the National Superconducting Cyclotron Facility/Facility for Rare Isotope Beams in Michigan does not point to Historically Black Colleges either. The two are actually intrinsically connected as my personal journey from my early exposure to radiation at the Curie Institute at the LeDantec Hospital in Senegal lead me to Hampton University. The former, through one of my uncles, catapulted me into a nuclear physics PhD while the latter houses the only nuclear physics program at an HBCU to date that has established itself as one of the premier programs in the nation. This talk will review the impact of Marie Curie in my life as a nuclear physicist.

  19. Report of evaluation of organization. Japan Nuclear Cycle Development Institute

    International Nuclear Information System (INIS)

    2004-08-01

    Various activities of JNC (Japan Nuclear Cycle Development Institute) from December in 2003 to July in 2004 are evaluated on management, practice and progressing of development of research by the committee on organization evaluation. The report includes abstract, purpose of evaluation, evaluation items, deliberation process, total results of evaluation, development of projects, the spread of results, international cooperation, management system, effort to safety, responsibility of explanation, live together with community and other suggestions. Main projects consists of practice of FBR, development of uranium enrichment, nuclear fuel reprocessing and MOX fuel processing technology, reopening of MONJU, development of high-level radioactive waste and environmental protection policy. (S.Y.)

  20. Interim report on research between Oak Ridge National Laboratory and Japan Nuclear Cycle Development Institute on neutron-capture cross sections by long-lived fission product nuclides

    International Nuclear Information System (INIS)

    Furutaka, Kazuyoshi; Nakamura, Shoji; Harada, Hideo

    2004-03-01

    Neutron capture cross sections of long-lived fission products (LLFP) are important quantities as fundamental data for the study of nuclear transmutation of radioactive wastes. Previously obtained thermal-neutron capture gamma-ray data were analyzed to deduce the partial neutron-capture cross sections of LLFPs including 99 Tc, 93 Zr, and 107 Pd for thermal neutrons. By comparing the decay gamma-ray data and prompt gamma-ray data for 99 Tc, the relation between the neutron-capture cross section deduced by the two different methods was studied. For the isotopes 93 Zr and 107 Pd, thermal neutron-capture gamma-ray production cross sections were deduced for the first time. The level schemes of 99 Tc, 93 Zr, and 107 Pd have also been constructed form the analyzed data and compared with previously reported levels. This work has been done under the cooperative program 'Neutron Capture Cross Sections of Long-Lived Fission products (LLFPs)' by Japan Nuclear Cycle Development Institute (JNC) and Oak Ridge National Laboratory (ORNL). (author)

  1. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  2. Low Vision Research at the Schepens Eye Research Institute

    National Research Council Canada - National Science Library

    D'Amore, Patricia

    2003-01-01

    This research proposal, Low Vision at the Schepens Eye Research Institute, is a collaborative effort on the part of four Investigators at the Institute whose goal is to advance the studies on low vision...

  3. International human cooperation in Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Shiba, Koreyuki; Kaieda, Keisuke; Makuuchi, Keizo; Takada, Kazuo; Nomura, Masayuki

    1997-01-01

    Rearing of talented persons in the area of nuclear energy is one of the important works in Japan Atomic Energy Research Institute. In this report, the present situations and future schedules of international human cooperation in this area wsere summarized. First, the recent activities of International Nuclear Technology Center were outlined in respect of international human cooperation. A study and training course which was started in cooperation with JICA and IAEA from the middle of eighties and the international nuclear safety seminar aiming at advancing the nuclear safety level of the world are now being put into practice. In addition, a study and training for rearing talented persons was started from 1996 to improve the nuclear safety level of the neighbouring countries. The activities of the nuclear research interchange system by Science and Technology Agency established in 1985 and Bilateral Co-operation Agreement from 1984 were explained and also various difficulties in the international cooperation were pointed out. (M.N.)

  4. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Germany

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Definitions; Licensing requirements); 4. Nuclear installations (Licensing regime; Protection of the environment against radiation effects; Emergency response; Surveillance of installations and activities); 5. Trade in nuclear materials and equipment; 6. Radiation protection (General; Principal elements of the Radiation Protection Ordinance; Additional radiation protection norms); 7. Radioactive waste management (Atomic Energy Act 2002; Radiation Protection Ordinance; International obligations); 8. Non-proliferation and physical protection (Non-proliferation regime; Physical protection regime); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities: Federal authorities (Federal Minister for the Environment, Nature Conservation and Nuclear Safety, Federal Minister for Education and Research, Federal Minister of Finance, Federal Minister of Transport, Building and Urban Affairs, Federal Minister for Economy and Technology, Federal Minister of Defence, Federal Office for Radiation Protection - BfS, Federal Office of Economics and Export Control); Authorities of the Laender; 2. Advisory bodies (Reactor Safety Commission - RSK; Radiation Protection Commission - SSK; Disposal Commission - ESK; Nuclear Technology

  5. Nuclear Human Resource Development in Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Satio, Masaki; Igashira, Masayuki; Obara, Toru; Kikura, Hironari; Kawahara, Akira; Ujita, Hiroshi

    2012-01-01

    Nuclear engineering education has been initiated in 1957 at the graduate school of Tokyo Institute of Technology. Higher Educational activities have been conducted for more than half century. More than 1000 Master students and 200 Doctoral students graduated from the Department of Nuclear Engineering in Tokyo Institute if Technology. Many of them are working in nuclear industries and institutes. International course of nuclear engineering was initiated in 1994, and 130 students from 20 overseas countries have graduated from Master and Doctoral Programs. In the present paper, the current nuclear educational activities in Tokyo Institute of Technology are summarized

  6. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  7. Main directions of Research Institute of Experimental and Theoretic Physics

    International Nuclear Information System (INIS)

    Tazhibaeva, I.L.

    1997-01-01

    The characteristic of main directions of the Research Institute of Experimental and Theoretic Physics (RIETF) activity is given in the paper. It is noted, that Institute is headquarters organisation in 4 following scientific programs of Ministry of Science - Academy of Science of Republic of Kazakhstan: Physics and mechanics of gases, plasma and liquid; Theoretical physics; Nonlinear processes and structural self-organization of substance; Research works Comet. Since 1994 RIETF is one of executors on interstate scientific program ITER. There are following priorities in activity of the institute: - actual problems of relativity theory, gravitation and quantum mechanics; - research on combustion problems and heat-mass-transfer; - physics of gases, plasma and liquid; physics non-equilibrium processes in plasma an in plasma-similar media; - solid state physics and material testing problems; modification of materials properties; electrophysical, optical and structural researches of substance; - interactions of nuclear, electromagnet radiation and accelerated particles with substance; - theoretical and experimental nuclear physics and physics of cosmic rays

  8. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  9. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  10. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  11. Physical protection of radioactive materials in a University Research Institute

    International Nuclear Information System (INIS)

    Boeck, H.

    1998-01-01

    Although nuclear research centers attached to universities usually do not keep large inventories of radioactive or special nuclear material, the mentioned material has still to be under strict surveillance and safeguards if applicable. One problem in such research centers is the large and frequent fluctuation of persons - mainly students, scientists or visiting guest scientists - using such materials for basic or applied research. In the present paper an overview of protective actions in such a research institute will be given and experience of more than 36 years will be presented. (author)

  12. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - United Kingdom

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities (Department of Trade and Industry - DTI; Secretary of State for Environment, Food and Rural Affairs and the Secretary of State for Health; Secretary of State for Transport; Secretary of State for Education); 2. Advisory Bodies (Medical Research Council - MRC; Nuclear Safety Advisory Committee; Radioactive Waste Management Advisory Committee); 3. Public and Semi-Public Agencies (United Kingdom Atomic Energy Authority - UKAEA; Health and Safety Commission and Executive - HSC/HSE; National Radiological Protection Board - NRPB; Environment Agencies; British Nuclear Fuels plc. - BNFL; Amersham International plc.; The National Nuclear Corporation Ltd. - NNC; United Kingdom Nirex Ltd.; Magnox Electric plc.; British Energy Generation Ltd.; Scottish Electricity Generator Companies; British Energy Generation Ltd.; Regional Electricity Companies in England and Wales)

  13. [German research institute/Max-Planck Institute for psychiatry].

    Science.gov (United States)

    Ploog, D

    1999-12-01

    The Deutsche Forschungsanstalt für Psychiatrie (DFA, German Institute for Psychiatric Research) in Munich was founded in 1917 bel Emil Kraepelin. For a long time it was the only institution in Germany entirely devoted to psychiatric research. Because of its strictly science-oriented and multidisciplinary approach it also became a model for institutions elsewhere. Kraepelin's ideas have certainly had a strong influence on psychiatry in the twentieth century. The fascinating and instructive history of the DFA reflects the central issues and determinants of psychiatric research. First, talented individuals are needed to conduct such research, and there was no lack in this regard. Second, the various topics chosen are dependent on the available methods and resources. And finally, the issues addressed and the ethical standards of the researchers are heavily dependent on the zeitgeist, as is evident in the three epochs of research at the DFA, from 1917 to 1933, from 1933 to 1945, and from the postwar period to the present. With the introduction of molecular biology and neuroimaging techniques into psychiatric research a change in paradigm took place and a new phase of the current epoch began.

  14. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  15. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  16. Nuclear Physics Institute of the Czechoslovak Academy of Sciences 1955 to 1975

    International Nuclear Information System (INIS)

    The scientific problems studied at the Institute of Nuclear Physics are described and the most important results obtained in basic and applied research are presented. The document includes photographs of the instrumentation of the Institute of Nuclear Physics. (J.P.)

  17. Institutional Support : Institute for Research on Political Economy in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Institut de recherche empirique en économie politique (IREEP) is an independent nonprofit organization established in 2004 with a view to contributing to the education of the next generation of teachers and researchers in political economy in Bénin and West Africa. IREEP has successfully integrated academic training ...

  18. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Republic of Korea

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection) (Protection of workers; Protection of the public); 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Education, Science and Technology, including the Nuclear Energy Bureau; Minister of Knowledge Economy); 2. Advisory bodies (Atomic Energy Commission; Atomic Energy Safety Commission); 3. Public and semi-public agencies (Korean Atomic Energy Research Institute - KAERI; Korean Institute for Nuclear Safety - KINS; Korean Electric Power Company - KEPCO; Korean Hydro and Nuclear Power - KHNP)

  19. Decommissioning of the research reactors at the Russian Research Centre Kurchatov Institute

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoy, N.N.; Ryantsev, E.P.; Kolyadin, V.I.; Kucharkin, N.E.; Melkov, E.S.; Gorlinsky, Yu.E.; Kyznetsova, T.I.; Bulkin, B.K.

    2002-01-01

    The Kurchatov Institute is the largest research center of Russia in the field of nuclear science and engineering. It comprises more than 10 research institutes and scientific-technological complexes carrying out research work in the field of safe development of atomic engineering, controlled thermonuclear fusion, and plasma physics, nuclear physics and elementary particle physics, research reactors, radiation materials technology, solid state physics and superconductivity, molecular and chemical physics, and also perspective know-how's, information science and ecology. This report is basically devoted to the decommissioning of the research reactor installations, in particular to the reactor MR because of the volume and complexity of actions involved. (author)

  20. Institutional research and development, FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  1. Institutional research and development, FY 1987

    International Nuclear Information System (INIS)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S.

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87

  2. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  3. Annual report of the nuclear physics section of the institute of applied nuclear physics (July 1, 1976 - June 30, 1977)

    International Nuclear Information System (INIS)

    Bechtold, V.; Ottmar, H.

    1977-10-01

    The activities of the Nuclear Physics Section of the Institute of Applied Nuclear Physics from mid 1976 to mid 1977 are surveyed. The research program comprises both contributions to fundamental and applied nuclear research. The activities on the application of nuclear methods mainly concentrate on the measurements of cross sections of neutron-induced nuclear reactions for the fast breeder project, the application of gamma-ray spectrometry to nuclear fuel assay problems, the development of a proton microbeam for elemental analysis, and the production of 123 J for medical application. The study of nuclear reactions induced by α particles, 6 Li ions and fast neutrons, and the measurement of optical hyperfine structure using high-resolution laser spectroscopy form the major part of the fundamental research work. In addition, the operation of the two accelerators of the institute, an isochronous cyclotron and a 3 MV Van de Graaff accelerator, are briefly reviewed. (orig.) [de

  4. Institut fuer Materialforschung. Research and development activities in 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The IMF consists of three institutes with different tasks: IMF I works mainly on the development of metals, nonmetals and composite materials and on problems concerning the structure and properties of interfaces and protective layers. IMF II works on component reliablility, failure mechanisms and damage analysis. IMF III works on problems of process engineering in the production of ceramic powders and ceramic, metallic and polymeric microstructures, as well as on the design of nuclear components and the optimisation of corrosive materials. The IMF supports the research activities of Karlsruhe Research Center, especially in nuclear fusion research, microsystems engineering, nuclear safety, superconductivity, and low-pollution and low-waste processes. Materials and strength problems are investigated for future fusion reactors, high-performance microsystems, and safety problems in nuclear engineering. (orig./MM) [de

  5. Institutional Research's Role in Strategic Planning

    Science.gov (United States)

    Voorhees, Richard A.

    2008-01-01

    Institutions that have organized and centralized their data enjoy an obvious advantage in grappling with strategic planning and other issues. As the drumbeat for accountability, planning, and demonstrating effectiveness to internal and external stakeholders intensifies, the stature and importance of institutional research offices on most campuses…

  6. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    Nuclear Competence Association. The Forschungszentrum Juelich GmbH, HZDR Helmholtz-Zentrum Dresden-Rossendorf and the KIT Karlsruhe Institute of Technology are involved in the Nuclear Safety Research Program within the Helmholtz Association. The work and results in 2012 are presented. (orig.)

  7. Evaluation of the aptitude for the service of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico; Evaluacion de la aptitud para el servicio de la piscina del reactor TRIGA Mark III del Instituto Nacional de Investigaciones Nucleares de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, J.; Gachuz M, M.; Diaz S, A.; Arganis J, C.; Gonzalez R, C.; Nava G, T.; Medina R, M.J. [Departamento de Sintesis y Caracterizacion de Materiales del ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    This work describes the evaluation of the structural integrity of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico, which was realized in July 2001, as an element to determine those actions for preventive and corrective maintenance which owner must do it for a safety and efficient operation of the component in the next years. (Author)

  8. TL dosimetry in the new Tandetron ion accelerator site of the National Institute of Nuclear Research (ININ); Dosimetria TL en el area del nuevo acelerador de iones Tandetron del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Valdovinos A, M.; Gonzalez M, P.R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The National Institute of Nuclear Research (ININ) acquired a positive ions accelerator type Tandetron 2 MV of the dutch company High Voltage Engineering, Europe B.V., which was finished its installation this year (2000) in an already existing building in the Dr. Nabor Carrillo Flores Nuclear Centre, where it was prepared for the following purposes: the accelerator will be used to realize research through X-ray emission induced by charged particles, Rutherford backscattering analysis, nuclear reaction analysis, gamma ray emission induced by charged particles, resonant dispersion analysis, elastic backward detection analysis and by particle canalization analysis. The accelerator consists of an injection system with two ion sources, ion accelerator tank with voltage in terminal at 2 MV, recovery and recirculation system of charge interchange gas, iman selector analyzer system and with high energy focussing, control system through computer and management and recovery of isolator gas system. For the realization of operation tests of this accelerator, it was had the license authorizing by the National Commission of Nuclear Safety and Safeguards (CNSNS). During the test stage Tl dosemeters were arranged in the Tandetron accelerator area, and also in direction to the beam outlet. In this work, are presented the obtained results of the measurement of radiation levels, as in the area as in the beam outlet. (Author)

  9. Teaching and Research at Undergraduate Institutions

    Science.gov (United States)

    Garg, Shila

    2006-03-01

    My own career path has been non-traditional and I ended up at a primarily undergraduate institution by pure accident. However, teaching at a small college has been extremely rewarding to me, since I get to know and interact with my students, have an opportunity to work with them one-on-one and promote their intellectual growth and sense of social responsibility. One of the growing trends at undergraduate institutions in the past decade has been the crucial role of undergraduate research as part of the teaching process and the training of future scientists. There are several liberal arts institutions that expect research-active Faculty who can mentor undergraduate research activities. Often faculty members at these institutions consider their roles as teacher-scholars with no boundary between these two primary activities. A researcher who is in touch with the developments in his/her own field and contributes to new knowledge in the field is likely to be a more exciting teacher in the classroom and share the excitement of discovery with the students. At undergraduate institutions, there is generally very good support available for faculty development projects in both teaching and research. Often, there is a generous research leave program as well. For those who like advising and mentoring undergraduates and a teaching and learning centered paradigm, I will recommend a career at an undergraduate institution. In my presentation, I will talk about how one can prepare for such a career.

  10. Alternative institutional arrangements for nuclear power

    International Nuclear Information System (INIS)

    Bussard, D.

    1980-08-01

    This paper investigates how alternative organizations of nuclear power generation would effect the regulatory environment for nuclear power production, how it would effect financial constraints on new construction, and what governmental barriers to such reorganization exist

  11. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  12. Waste management in the Institute for Nuclear Sciences 'Vinca' - Belgrade

    International Nuclear Information System (INIS)

    Raicevic, J.; Avramovic, I.; Plecas, I.; Mandic, M.; Goldammer, W.

    2004-01-01

    The Vinca Institute of Nuclear Sciences served for many years as the only Yugoslav (Serbia and Montenegro) nuclear institute. Therefore, it acted for many years as national storage facility for the radioactive waste from all institutional (medical, military, etc.) activities. The interim storage was situated within the Vinca Institute historically at several different places. The main fraction of the wastes is stored in two metallic hangars. In addition, underground stainless steel tanks in concrete shields have been constructed to accept all processed liquid waste from the research reactor RA. The current situation of the interim storage facilities is not satisfactory. However, the principle limitation for improvements of the waste management at the Vinca Institute lies in the fact that long-term solutions cannot be addressed at the moment. Plans for a final repository for radioactive waste do not exist yet in the Serbia and Montenegro. Consequently, waste management can only address an interim solution. In order to conduct all waste management activities in a safe manner, an overall strategy and study for improvement/rearrangement of radioactive waste storage facilities was developed which addresses all wastes and their management. The IAEA is providing assistance to these activities. This support includes a project which has been initiated by the IAEA to improve the waste management at the Vinca Institute. This paper describes the current status of the development of this overall strategy and study for improvement/rearrangement of radioactive waste storage facilities. The information available and the current status of the development of concepts for the processing and storage of the waste are summarised. (author)

  13. Nuclear energy research in Indonesia

    International Nuclear Information System (INIS)

    Supadi, S.; Soentono, S.; Djokolelono, M.

    1988-01-01

    Indonesia's National Atomic Energy Authority, BATAN (Badan Tenaga Atom Nasional), was founded to implement, regulate and monitor the development and launching of programs for the peaceful uses of nuclear power. These programs constitute part of the efforts made to change to a more industrialized level the largely agricultural society of Indonesia. BATAN elaborated extensive nuclear research and development programs in a variety of fields, such as medicine, the industrial uses of isotopes and radiation, the nuclear fuel cycle, nuclear technology and power generation, and in fundamental research. The Puspiptek Nuclear Research Center has been equipped with a multi-purpose research reactor and will also have a fuel element fabrication plant, a facility for treating radioactive waste, a radiometallurgical laboratory, and laboratories for working with radioisotopes and for radiopharmaceutical research. (orig.) [de

  14. Nuclear regulation plans originated from the results of accidents or natural disasters and countermeasures adopted in Kinki University Atomic Energy Research Institute. The information in this paper hopes to ensure sensible and safe reactor management

    International Nuclear Information System (INIS)

    Tsuruta, Takao

    2010-01-01

    As a result of investigating cause and effect of accidents or natural disasters, the authorities concerned would introduce new regulations. It is desirable that the person in authority should negotiate with the parties concerned on the regulation. After following accidents and natural disasters, three negotiations were made between the person in authority and the Kinki University Atomic Energy Research Institute. (1) The accident at Three Mile Island nuclear power plant in 1979. (2) The crash near a nuclear power plant in Ehime prefecture in 1988. (3) The Great Hanshin Earthquake in 1995. The documents of the negotiations are described. They discuss ways of building up better relationships between the authorities and the parties concerned. (author)

  15. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  16. Institutional Researchers' Use of Qualitative Research Methods for Institutional Accountability at Two Year Colleges in Texas

    Science.gov (United States)

    Sethna, Bishar M.

    2011-01-01

    This study examined institutional researchers' use of qualitative methods to document institutional accountability and effectiveness at two-year colleges in Texas. Participants were Institutional Research and Effectiveness personnel. Data were collected through a survey consisting of closed and open ended questions which was administered…

  17. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  18. Vinca Institute and the Future of Nuclear Investigations

    International Nuclear Information System (INIS)

    Kopecni, M. M.

    1997-01-01

    Ever since its foundation in 1948, Vinca Institute was a nuclear-oriented scientific institution. Achieving valuable results in different fields of nuclear sciences and technologies, Vinca became and still is the largest scientific institution in the former and today's Yugoslavia. Structure and intensity of nuclear activities varied with the time, following the pattern of domestic and international interest for this kind of knowledge. The nuclear part of Vinca had its raises and falls, it is a long history, but unquestionably there is a future. This paper presents a survey of the past and the present nuclear activities in Yugoslavia, with special attention paid to the future of nuclear sciences and technologies in the Institute. (author)

  19. Institute for Fusion Research and Large Helical Device program

    International Nuclear Information System (INIS)

    Iiyoshi, Atsuo

    1989-01-01

    In the research on nuclear fusion, the final objective is to materialize nuclear fusion reactors, and for the purpose, it is necessary to cause nuclear combustion by making the plasma of higher than 100 million deg and confine it for a certain time. So far in various universities, the researches on diversified fusion processes have been advanced, but in February, 1986, the Science Council issued the report 'Nuclear fusion research in universities hereafter'. As the next large scale device, an external conductor system helical device was decided, and it is desirable to found the organization for joint utilization by national universities to promote the project. The researches on the other processes are continued by utilizing the existing facilitie. The reason of selecting a helical device is the data base of the researches carried out so far can be utilized sufficiently, it is sufficiently novel even after 10 years from now, and many researchers can be collected. The place of the research is Toki City, Gifu Prefecture, where the Institute of Plasma Physics, Nagoya University, is to be moved. The basic concept of the superconducting helical device project, the trend of nuclear fusion development in the world, the physical research using a helical system and so on are reported. (Kako, I.)

  20. KfA Institute of Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    Gruemmer, F.; Kilian, K.; Schult, O.; Seyfarth, H.; Speth, J.; Turek, P.

    1988-04-01

    This annual report contains extended abstracts about the work performed at the named institute together with a list of publications and speeches. The work concerns nuclear reactions, nuclear spectroscopy, intermediate-energy physics, nuclear structure, developments of the isochronous cyclotron and the ISIS ion source, construction of spectrometers, detectors, and targets, computer development, counting electronics, and radiation protection. (HSI)

  1. Contributions to radiochemical and nuclear materials research

    International Nuclear Information System (INIS)

    Matzke, H.

    1982-01-01

    Series of talks given during a seminar of the European Institute for Transuranium Elements in april 1981 in honor of R. LINDNER on the occasion of his 60th birth day. The topics include general aspects of research practice and science prognosis, retrospective essays about the discovery of nuclear fission by O. HAHN as well as surveys of actual research activities concerning a radiochemistry and the use of radioactivity in material science

  2. Report on the work of the Institute of Nuclear Sciences 27 January - December 1976

    International Nuclear Information System (INIS)

    1977-10-01

    The work of the New Zealand Institute of Nuclear Sciences during the period January-June 1975 is summarized under the following headings: A) Nuclear Physics; B) Radiation Research; C) Isotope Geochemistry - Stable Isotopes; D) Radiocarbon Dating and Fallout; E) Radioisotope Applications; F) Instrumentation. Appendices on current research projects, staff publications and library holdings are included. (D.C.R.)

  3. Report on the work of the Institute of Nuclear Sciences 26 July - December 1975

    International Nuclear Information System (INIS)

    1976-04-01

    The work of the New Zealand Institute of Nuclear Sciences during the period January-June 1975 is summarized under the following headings: A) Nuclear Physics; B) Radiation Research; C) Isotope Geochemistry - Stable Isotopes; D) Radiocarbon Dating and Fallout; E) Radioisotope Applications; F) Instrumentation. Appendices on current research projects, staff publications and library holdings are included. (D.C.R.)

  4. Annual Technical Report - Nuclear Engineering Institute/ Dept. of Physics (IEN/DEFI) 1988

    International Nuclear Information System (INIS)

    Silva, A.G. da; Cabral, S.C.; Osso Junior, J.A.

    1988-01-01

    The researches carried out by physics department of Nuclear Engineering Institute(IEN)/Brazilian CNEN are presented. The researches in nuclear physics, isotope production and irradiation damages using CV-28 cyclotron which accelerates protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively are described. (M.C.K.)

  5. Retooling Institutional Support Infrastructure for Clinical Research

    Science.gov (United States)

    Snyder, Denise C.; Brouwer, Rebecca N.; Ennis, Cory L.; Spangler, Lindsey L.; Ainsworth, Terry L.; Budinger, Susan; Mullen, Catherine; Hawley, Jeffrey; Uhlenbrauck, Gina; Stacy, Mark

    2016-01-01

    Clinical research activities at academic medical centers are challenging to oversee. Without effective research administration, a continually evolving set of regulatory and institutional requirements can detract investigator and study team attention away from a focus on scientific gain, study conduct, and patient safety. However, even when the need for research administration is recognized, there can be struggles over what form it should take. Central research administration may be viewed negatively, with individual groups preferring to maintain autonomy over processes. Conversely, a proliferation of individualized approaches across an institution can create inefficiencies or invite risk. This article describes experiences establishing a unified research support office at the Duke University School of Medicine based on a framework of customer support. The Duke Office of Clinical Research was formed in 2012 with a vision that research administration at academic medical centers should help clinical investigators navigate the complex research environment and operationalize research ideas. The office provides an array of services that have received high satisfaction ratings. The authors describe the ongoing culture change necessary for success of the unified research support office. Lessons learned from implementation of the Duke Office of Clinical Research may serve as a model for other institutions undergoing a transition to unified research support. PMID:27125563

  6. Fifty years experiences in nuclear engineering education at Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Fujii, Yasuhiko; Saito, Masaki; Aritomi, Masanori

    2008-01-01

    Nuclear engineering education has been initiated in 1957 at the graduate school of Tokyo Institute of Technology. Educational activities have been conducted for fifty years under the support of the Research Laboratory for Nuclear Reactors. In the past fifty years, about 1000 Master students and 200 Doctoral students and 200 Doctoral students graduated from our Nuclear Engineering Department at Tokyo Institute of Technology. Many of them found their jobs in nuclear industries and institutes. International course of nuclear engineering was initiated in 1994, and so far about 90 students from 15 overseas countries have graduated from our Master and Doctoral Programs. In 2003, our proposal of 'Innovative Nuclear Energy System for the Sustainable World' was adopted as the Center of Excellent Program sponsored by Ministry of Education, Science and Technology. Recently a collaborative education network has been developed among Kanazawa University, Fukui University, Ibaraki University, Okayama University, Tokyo Institute of Technology and Japan Atomic Energy Agency. (author)

  7. Japan's contribution to nuclear medical research

    International Nuclear Information System (INIS)

    Rahman, M.; Sakamoto, Junichi; Fukui, Tsuguya

    2002-01-01

    We investigated the degree of Japan's contribution to the nuclear medical research in the last decade. Articles published in 1991-2000 in highly reputed nuclear medical journals were accessed through the MEDLINE database. The number of articles having affiliation with a Japanese institution was counted along with publication year. In addition, shares of top-ranking countries were determined along with their trends over time. Of the total number of articles (7,788), Japan's share of articles in selected nuclear medical journals was 11.4% (889 articles) and ranked 2nd in the world after the USA (2,645 articles). The recent increase in the share was statistically significant for Japan (p=0.02, test for trend). Japan's share in nuclear medical research output is much higher than that in other biomedical fields. (author)

  8. Final Report: Performance Engineering Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2014-10-27

    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  9. Annual report 2015 of the Institute for Nuclear and Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas

    2016-07-01

    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for nuclear fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies.

  10. From nuclear research to multidisciplinary research

    International Nuclear Information System (INIS)

    Theenhaus, R.; Baurmann, K.W.

    1996-01-01

    Forty years ago, the North Rhine-Westphalian State Government founded the then Juelich Nuclear Research Center. After a growth period of the reactor engineering program until 1980, claiming a share of 42% of R and D resources, that share declined continuously to a present level of 8%. This development is an expression of the activities successfully completed in the past, of progress achieved in industrial reactor development, but also of the fact that the high temperature reactor, which had been run successfully for twenty years, failed as a technical scale THTR-300 version. The Center has reorientated its line of research in a process of structural reshuffle beginning some fifteen years ago and still going on. Information technology, materials research, life sciences, environmental research, and energy technology have become main activities of equal weight. Activities specific to nuclear reactors have been incorporated in this new line of work as nuclear safety research and work on safe repository storage. (orig.) [de

  11. Institutional Research and Development: [Annual report], FY 1986

    International Nuclear Information System (INIS)

    Strack, B.

    1987-01-01

    The Institutional Research and Development (IR and D) program was established at the Lawrence Livermore National Laboratory (LLNL) by the Director in October 1984. The IR and D program fosters exploratory work to advance science and technology; disciplinary research to create varied, innovative approaches to selected scientific fields; and long-term research in support of the defense and energy missions at LLNL. Each project in the IR and D program was selected after personal interviews by the Director and his delegates and was deemed to show unusual promise. These projects include research in the following fields: chemistry and materials science, computation, earth sciences, engineering, nuclear chemistry, biotechnology, environmental consequences of nuclear war, geophysics and planetary physics, and supercomputer research and development. A separate section of the report is devoted to research projects receiving individual awards

  12. Institutional Research and Development: (Annual report), FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Strack, B. (ed.)

    1987-01-01

    The Institutional Research and Development (IR and D) program was established at the Lawrence Livermore National Laboratory (LLNL) by the Director in October 1984. The IR and D program fosters exploratory work to advance science and technology; disciplinary research to create varied, innovative approaches to selected scientific fields; and long-term research in support of the defense and energy missions at LLNL. Each project in the IR and D program was selected after personal interviews by the Director and his delegates and was deemed to show unusual promise. These projects include research in the following fields: chemistry and materials science, computation, earth sciences, engineering, nuclear chemistry, biotechnology, environmental consequences of nuclear war, geophysics and planetary physics, and supercomputer research and development. A separate section of the report is devoted to research projects receiving individual awards.

  13. Current status and future prospect of radiation exposure to research volunteers in institutes with nuclear medicine. The report of questionnaires regarding radiation exposures to volunteers in clinical researches and clinical trials

    International Nuclear Information System (INIS)

    2010-01-01

    There has been no guide of authorized radiological protection system in Japan when volunteers receive radionuclide administration in clinical research or phase I - IV studies. The purpose of this report was to depict issues on institutional radiological protection system for establishing the guide. We accumulated full-filled questionnaires regarding institutional radiological protection system of human subjects in 82 hospitals in which clinical researches or phase I - IV studies underwent to be subjected to radionuclide administrated volunteers in recent two years. We analyzed regarding (1) research content, (2) what committee approval of research using radionuclide administrated volunteer, (3) selection of the volunteers, (4) regulatory dose of administrated radionuclide, and (5) informed consent. Normal volunteers are subjected in clinical researches as well as phase-I study and microdose study. The researches subjected to normal volunteers needed with approval of institutional ethic committee in 64 (78%) hospitals, others than ethic committee in 9 (10%), and unknown in 2 (2%). In remaining 7 (8%), both ethic and other committees were described. No one with radiological knowledge included the committees in 23 hospitals (28%), of 15 had no consultation system regarding radiological protection. In all hospitals, regulatory dose in human subjects is less than 50 mSv and sufficient informed consent regarding the protection was obtained. In Japan, researches subjected to radionuclide administrated volunteers are performed by authorization of institutional ethic committees. Administrated radionuclide dose in them are less than upper limits of regulatory system of ICRP, USA and England because the committees include physicians, technologists and pharmaceutics with knowledge of radiological protection. But some hospitals have no committees authorize the research because they have no idea of authorized committees or cannot establish the committees. We recommend that

  14. The 'World Institute for Nuclear Security' - News note

    International Nuclear Information System (INIS)

    Hautecouverture, Benjamin

    2008-12-01

    This article comments the creation of the World Institute for Nuclear Security (WINS) in September 2008 in Vienna. The creation of this institution is the result of a project initiated by the USA in 2004. The author recalls the process which leaded to this creation: workshops organised by the Nuclear Threat Initiative (NTI) and the Institute for Nuclear Materials Management (INMM), creation of a coordination committee, and expert meeting in Baden. He indicates how the WINS is financed (by the NTI, the US DoE, and Norway) and its future costs. He briefly describes its structure and operation, its mission, scope and activities (11 fields of activity have been defined). He recalls the various international instruments (conventions, resolutions, institutions, initiatives) related to nuclear security and to the struggle against nuclear threat and terrorism, and indicates how the WINS considers them (an insufficient and inefficient, but existing support). He finally indicates issues to be addressed to better define the WINS' role

  15. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  16. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-01-01

    Research in progress and plans for future investigations are briefly summarized for the following areas: light-ion structure and reactions; nuclear structure; peripheral heavy-ion reactions at medium and high energy; medium-energy heavy-ion collisions and properties of highly excited nuclear matter; and high-energy heavy-ion collisions and QCD plasma

  17. Concepts for institutional arrangements for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1979-01-01

    The paper focuses on the role of institutional arrangements in developing a consensus in international nuclear cooperation. Institutional arrangements are defined as undertakings and activities by governments or private entities to facilitate the efficient and secure functioning of the nuclear fuel cycle. The first two sections of the paper explore the historical role of cooperative arrangements, suggest criteria for evaluating the usefulness of institutional arrangements, and review the status of the discussion of institutional arrangements in INFCE Working Groups as of December 1978. The final section of the paper, explores potential relationships between various institutional arrangements and suggests that certain areas such as, the standardization of nuclear practices, joint commercial and development undertakings, nuclear supply assurances, and the settlement of disputes may have broad application for several stages of the fuel cycle and merit further study

  18. Institutional shared resources and translational cancer research

    Directory of Open Access Journals (Sweden)

    De Paoli Paolo

    2009-06-01

    Full Text Available Abstract The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology. In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization

  19. Institutional shared resources and translational cancer research.

    Science.gov (United States)

    De Paoli, Paolo

    2009-06-29

    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology.In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization supporting clinical trial recruitment

  20. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de

  1. Role of the Vinca Institute in nuclear engineering and radiation protection education

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    Education programmes in nuclear engineering and radiation protection in former Yugoslavia have been supported by comprehensive research and development and pertinent training of experts and students in the Vinca (former B oris Kidric ) Institute of nuclear sciences and abroad. Two research reactors were constructed and operated in the Vinca Institute since 1958. Adopted law on ban for NPP construction, isolation of the country due to the UN sanctions and weak economical situation deteriorated considerably the nuclear expertise in Serbia after 1989. Nuclear courses at the University were revoked, major research programmes were cancelled, RA research reactor in the Vinca Institute was shut down and many experts left the country. A novel nuclear programme related to remedial of nuclear and radiation safety in the Vinca Institute has been launched in 2003. This paper emphasizes the need for nuclear expertise, the lack of nuclear professionals to carry out the new programme, the experience gained so far and point out a possible future creative role of the Vinca Institute in education of new experts in the country and abroad. (author)

  2. Forschungszentrum Rossendorf. Institute of Safety Research. Annual report 1998

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    1999-07-01

    The Institute of Safety Research is one of the five scientific institutes of Forschungszentrum Rossendorf e.V. The Forschungszentrum Rossendorf is a member of the 'Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz' und is funded by the Federal Ministry of Education and Research and by the Saxon Ministry of Science and Arts with 50% each. The research work of the institute aims at the assessment and increase of the safety and environmental sustainability of technical plants. The emphasis is put on the development and validation of mathematical and physical models for process and plant analysis, and of techniques for process and components monitoring. Subject of investigations are equally nuclear plants and installations of process industries. (orig.)

  3. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  4. Nuclear research center transformation experience

    International Nuclear Information System (INIS)

    Diaz, J. L.; Jimenez, J. M.

    2001-01-01

    As consequence of the changes in the energy polities of each countries in the 80th. many of the Nuclear Research Centres suffered a transformation (more of less deep) in other Research and Development Centres with a wider spectrum that the exclusively nuclear one. This year is the 50 anniversary of the Spanish Centre of Nuclear Research-Junta de Energia Nuclear.The JEN the same as other suffered a deep renovation to become the CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (Research Centre for Energy, Environment and Technology). This paper is focussed on the evolution of JEN to CIEMAT besides analysing the reach of this re-foundation considering the political reasons and technical aspect that justified it and the laws in those it is based on. (Author)

  5. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1990-01-01

    Research programs in nuclear theory are discussed in this paper. The topics discussed are: neutron stars and pulsars; transverse momentum distribution; intermittency and other correlations; photon and delepton production; electroweak theory at high temperature; and fractional statistics

  6. Evolutionary computing in Nuclear Engineering Institute/CNEN-Brazil

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Lapa, Celso M.F.; Lapa, Nelbia da Silva; Mol, Antonio C.

    2000-01-01

    This paper aims to discuss the importance of evolutionary computation (CE) for nuclear engineering and the development of this area in the Instituto de Engenharia Nuclear (IEN) at the last years. Are describe, briefly, the applications realized in this institute by the technical group of CE. For example: nuclear reactor core design optimization, preventive maintenance scheduling optimizing and nuclear reactor transient identifications. It is also shown a novel computational tool to implementation of genetic algorithm that was development in this institute and applied in those works. Some results were presents and the gains obtained with the evolutionary computation were discussing. (author)

  7. The Belgian nuclear research centre

    International Nuclear Information System (INIS)

    Moons, F.

    2001-01-01

    The Belgian Nuclear Research Centre is almost exclusively devoted to nuclear R and D and services and is able to generate 50% of its resources (out of 75 million Euro) by contract work and services. The main areas of research include nuclear reactor safety, radioactive waste management, radiation protection and safeguards. The high flux reactor BR2 is extensively used to test fuel and structural materials. PWR-plant BR3 is devoted to the scientific analysis of decommissioning problems. The Centre has a strong programme on the applications of radioisotopes and radiation in medicine and industry. The centre has plans to develop an accelerator driven spallation neutron source for various applications. It has initiated programmes to disseminate correct information on issues of nuclear energy production and non-energy nuclear applications to different target groups. It has strong linkages with the IAEA, OECD-NEA and the Euratom. (author)

  8. Investigation of radioactive contaminations of the environment in the surroundings of the Institute of Nuclear Research at Swierk in the years 1977-1980. Badanie zanieczyszczen promieniotworczych srodowiska w otoczeniu Instytutu Badan Jadrowych w Swierku w latach 1977-1980

    Energy Technology Data Exchange (ETDEWEB)

    Pensko, J; Stpiczynska, Z; Hryczuk, O; Kowalska, A

    1983-01-01

    The results of measurements of the contamination level of the environment in the surroundings of the Institute of Nuclear Research at Swierk and in surroundings of the repository of radioactive wastes at Rozan including the possible paths of migration of the radionuclides in the years 1977-1980 have been presented. The investigations proved that the radioactive fall-out from nuclear weapon tests was the main source of contamination. In the period of investigation the quantities of the radionuclides discharged into the sanitary sewage system did not exceed the weekly limit of 2590 MBq (70mCi). They had no influence on the level of the radioactive contaminations of the Vistula river water. Sporadically observed, the increased level of the radioactive contamination of the draining system water at Swierk exceeded at most 3 times the permissible concentration of /sup 90/Sr for drinking water 2.6 Bq dm/sup -3/. The radioactive contamination of the water, soil, grass and rye investigated around the Centre have been shown in the same level as for the reference points being out of the range of the influence of the Institute.

  9. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, F.P.; Rindelhardt, U. (eds.)

    2005-07-01

    The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Rossendorf e.V. (FZR e.V.) which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibniz Association). Together with the Institute of Radiochemistry, ISR constitutes the research programme ''Safety and Environment'' which is one from three scientific programmes of FZR. In the framework of this research programme, the institute is responsible for the two subprogrammes ''Plant and Reactor Safety'' and ''Thermal Fluid Dynamics'', respectively. We also provide minor contributions to the sub-programme ''Radio-Ecology''. Moreover, with the development of a pulsed photo-neutron source at the radiation source ELBE (Electron linear accelerator for beams of high brilliance and low emittance), we are involved in a networking project carried out by the FZR Institute of Nuclear and Hadron Physics, the Physics Department of TU Dresden, and ISR. (orig.)

  10. Korea Atomic Energy Research Institute (KAERI) in the 21st century

    International Nuclear Information System (INIS)

    Chang, In Soon; Lee, Mun-Ki

    2001-01-01

    Abstract. KAERI (Korea Atomic Energy Research Institute), a national nuclear research institute in the Republic of Korea, celebrated its fortieth anniversary last April. It has played a key role in the Korean nuclear history such that it: initiated and promoted the peaceful uses of nuclear energy in the Republic of Korea; maintained nuclear expertise on whole spectrum of nuclear field through conducting nuclear R and D programs, operating nuclear research facilities, and training and educating specialized nuclear personnel; founded a cornerstone of Korean nuclear industry by participating in the establishment of a nuclear engineering company and a nuclear fuel company and localizing nuclear fuel and reactor technology; and contributed to nuclear safety regulation by incubating a specialized nuclear regulatory body. Recently, to concentrate on nuclear R and D on advanced technology, KAERI went through management reform such as: the transfer of nuclear engineering divisions responsible for NSSS design and nuclear fuel design to nuclear industry in 1996; and the downsizing of manpower in 1998. Currently KAERI is in the challenging stage in terms of its missions and manpower. In the coming 21st century, KAERI is required to maintain the current R and D momentum and also to conduct priority-based research requiring concentrated effort. (author)

  11. Final report on research and development work 1979 by the Institute for Radiochemistry

    International Nuclear Information System (INIS)

    1980-02-01

    The report gives a brief survey of the state of the research, development, and service activities in the Institute for Radiochemistry in Karlsruhe Nuclear Research Centre. The work is to be classified in the main points analytics, nuclear chemistry, isotope service, and water chemistry, with the analytic and nuclear-chemical tasks being mainly project-related. A bibliography of the publications made by the staff of the institute during 1979 is annected. (RB) [de

  12. How EPRI [Electric Power Research Institute] helps utilities save money

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A number of case studies are presented which illustrate how the work of the Electric Power Research Institute in the USA has enabled nuclear utilities to save money. The areas covered by the examples are: steam generator tube repair; streamlining of reliability centred maintenance; cost effective instrumentation and control maintenance; reducing the frequency of instrument calibration; optimising the engineering change process; detecting and reducing fuel failure; extending the qualified life of equipment. (U.K.)

  13. Nuclear Chemistry Institute, Mainz University. Annual Report 1995

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1996-03-01

    The annual report of the Institut fuer Kernchemie addresses inter alia three main research activities. The first belongs to the area of basic research, covering studies in the fields of nuclear fission, chemistry of the super-heavy elements and of heavy-ion reactions extending from the Coulomb barrier to relativistic energies, and nuclear astrophysics in connection with the ''r process''. By means of laser technology, high-precision data could be measured of the ionization energies of berkelium and californium. Studies of atomic clusters in the vacuum of an ionization trap revealed interesting aspects. The second major activity was devoted to the analysis of environmental media, applying inter alia neutron activation analysis and resonance ionization mass spectroscopy (RIMS). The third activity resulted in the development of novel processes, or the enhancement of existing processes or methods, for applications in basic research work and in environmental analytics. Another item of interest is the summarizing report on the operation of the TRIGA research reactor. (orig./SR) [de

  14. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  15. Digital Repository of Research Institutes – RCIN

    Directory of Open Access Journals (Sweden)

    Kamila Kaczyńska

    2014-03-01

    Full Text Available The paper describes the project of Digital Repository of Scientific Institutes RCIN and presents opportunities for promoting science by digitization and sharing them on the Internet. The Repository has been created by the 16 Scientific Institutes in Warsaw, Krakow and Bialowieza to modernize the science-research and IT infrastructure, to increase digital resources of mathematical, technical, natural and medical sciences, and to popularize and promote of Polish science. That dissemination and popularization of science affects its development and competitiveness in the international arena and it allows transfer of research results to the economy. In addition, Institutes of RCIN providing contemporary and archival materials of science, support the intellectual capital of Polish science and raise awareness of professional literature of search on the Internet. Project RCIN is implemented in the years 2010–2014 and financing is provided by the funds of the European Fund of Regional Development.

  16. Research in Institutional Economics in Management Science

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    This report maps research in institutional economics in management science in the European Union for the 1995 to 2002 period. The reports applies Internet search based on a university listing, search on journal databases, key informants and an internet-based survey. 195 researchers are identified....... In (sub-)disciplinary terms, organization, strategy, corporate governance, and international business are the major areas of application of institutional economics ideas. In terms of countries, the EU strongholds are Holland, Denmark, UK, and Germany. There is apparently no or very little relevant...... research in Ireland, Portugal, Luxembourg and Greece. Based on the findings of the report, it seems warranted to characterize the EU research effort in the field as being rather dispersed and uncoordinated. Thus, there are no specialized journals, associations or PhD courses. This state of affairs...

  17. Adapting Institutional Research to Changing Student Populations.

    Science.gov (United States)

    Cohen, Arthur M.

    Institutional research (IR) in community/junior colleges in past years has been limited to gathering data for external agencies, concentrating on raw demographic data and student flow studies. IR should be directed toward providing data for administrative decisions and for successful maintenance of college operations. In spite of the heavy demands…

  18. Water Resources Research Institute | Mississippi State University

    Science.gov (United States)

    Welcome The Mississippi Water Resources Research Institute provides a statewide center of expertise in water and associated land-use and serves as a repository of knowledge for use in education private interests in the conservation, development, and use of water resources; to provide training

  19. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Iceland

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health and Social Security; Icelandic Radiation Protection Institute)

  20. The Nuclear Security Science and Policy Institute at Texas A&M University

    Directory of Open Access Journals (Sweden)

    Claudio A. Gariazzo

    2015-07-01

    Full Text Available The Nuclear Security Science and Policy Institute (NSSPI is a multidisciplinary organization at Texas A&M University and was the first U.S. academic institution focused on technical graduate education, research, and service related to the safeguarding of nuclear materials and the reduction of nuclear threats. NSSPI employs science, engineering, and policy expertise to: (1 conduct research and development to help detect, prevent, and reverse nuclear and radiological proliferation and guard against nuclear terrorism; (2 educate the next generation of nuclear security and nuclear nonproliferation leaders; (3 analyze the interrelationships between policy and technology in the field of nuclear security; and (4 serve as a public resource for knowledge and skills to reduce nuclear threats. Since 2006, over 31 Doctoral and 73 Master degrees were awarded through NSSPI-sponsored research. Forty-one of those degrees are Master of Science in Nuclear Engineering with a specialization in Nuclear Nonproliferation and 16 were Doctorate of Philosophy degrees with a specific focus on nuclear nonproliferation. Over 200 students from both technical and policy backgrounds have taken classes provided by NSSPI at Texas A&M. The model for creating safeguards and security experts, which has in large part been replicated worldwide, was established at Texas A&M by NSSPI faculty and staff. In addition to conventional classroom lectures, NSSPI faculty have provided practical experiences; advised students on valuable research projects that have contributed substantially to the overall nuclear nonproliferation, safeguards and security arenas; and engaged several similar academic and research institutes around the world in activities and research for the benefit of Texas A&M students. NSSPI has had an enormous impact on the nuclear nonproliferation workforce (across the international community in the past 8 years, and this paper is an attempt to summarize the activities

  1. Management of nuclear information and knowledge in Cuban institutions

    International Nuclear Information System (INIS)

    Garcia, A.G.; Rondon, C.F.; Aldama, C.L.; Aruca, L.A.; Labrada, C.

    2004-01-01

    In the framework of the management of information and the knowledge, the Cuban Agency of Nuclear Energy and Advanced Technologies recognizes as needful the establishment of the nuclear knowledge management system. In the rank of the Nuclear Ramal Program are executed projects, with the participation of all the Cuban nuclear institutions, focused to develop the web site and the intranet of the proper agency as support to the process of taking decisions, to develop the networking education system for human resources of these institutions and others that belong to the energy sector in Cuba, to introduce the data warehousing process for all institutions on corporate levels, to develop technology watching system for all the scientific and technical activities linked to the use and application of the peaceful use of nuclear energy, based on the information and knowledge contained in the databases of INIS, WIPO and RRIAN, between other purposes. (author)

  2. Confirmation of safety (important matters to be confirmed by the administration office having jurisdiction) of the first nuclear-powered ship 'Mutsu' in Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1988-01-01

    After the deliberation on this safety confirmation, which was reported on September 22, 1987, by the Science and Technology Agency, the Nuclear Safety Commission started the investigation and deliberation from the 32nd regular meeting on September 24, 1987. As the result of examining on making the radiation measurement facilities for the time of accidents on board the first nuclear-powered ship 'Mutsu' into the fixed type, it was recognized to be appropriate. The contents of the investigation were the reqirements of the guideline, and the design of the radiation measurement facilities for the time of accidents such as high level containment vessel area monitors, high level reactor auxiliary machinery room area monitors, high level exhaust stack gas monitors, high level main steam pipe monitors and the radiation monitoring panel. It was confirmed that the proper countermeasures based on the features of the nuclear-powered ship 'Mutsu' have been taken for the radiation measurement facilities for the time of accidents on the basis of the basic concept referring to the guideline. (Kako, I.)

  3. Preservation of the first research nuclear reactor in Korea

    International Nuclear Information System (INIS)

    2008-06-01

    This book describes preservation of the first research nuclear reactor in Korea and necessity of building memorial hall, sale of the Institute of Atomic Energy Research in Seoul and dismantlement of the first and the second nuclear reactor, preservation of the first research nuclear reactor and activity about memorial hall of the atomic energy reactor, assignment and leaving the report, and the list of related data.

  4. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  5. Paul Scherrer Institut annual report 1995. Annex IV: PSI nuclear energy and safety

    Energy Technology Data Exchange (ETDEWEB)

    Birchley, J.; Roesel, R.; Doesburg, R. van [eds.] [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-09-01

    Nuclear energy research in Switzerland is concentrated at PSI`s Department F4. It is explicitly mentioned in the Institute`s official charter and commands about one fifth of the Institute`s federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI`s activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs.

  6. Nuclear engineering experiments at experimental facilities of JNC in graduate course of Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Hayashizaki, Noriyosu; Takahashi, Minoru; Aoyama, Takafumi; Onose, Shoji

    2005-01-01

    Nuclear engineering experiments using outside facilities of the campus have been offered for graduate students in the nuclear engineering course in Tokyo Institute of Technology (Tokyo Tech.). The experiments are managed with the collaboration of Japan Nuclear Cycle Development Institute (JNC), Japan Atomic Energy Research Institute (JAERI) and Research Reactor Institute, Kyoto University (KUR). This report presents the new curriculum of the nuclear engineering experiments at JNC since 2002. The change is due to the shutdown of Deuterium Criticality Assembly Facility (DCA) that was used as an experimental facility until 2001. Reactor physics experiment using the training simulator of the experimental fast reactor JOYO is continued from the previous curriculum with the addition of the criticality approach experiment and control rods calibration. A new experimental subject is an irradiated material experiment at the Material Monitoring Facility (MMF). As a result, both are acceptable as the student experiments on the fast reactor. (author)

  7. Evaluation acting: the experience of a public research institute

    International Nuclear Information System (INIS)

    Guimaraes, Regia Ruth Ramirez; Ferreira, Hudson Rubio; Filgueiras, Sergio A. Cunha

    2007-01-01

    Innovation and knowledge management are central questions of the modern world economy where the incorporation of new knowledge is determining for competition. In this context, there is a movement of pression under public research institutions for a more dynamic participation on the local innovation system. The institutions of C and T should prepare to help the companies to insert in the context of open economies and also to compete in the global market. The modernity requires flexibility and organizational changes in the research institutions. Redefinitions of their practices in relation to other aspects such as: financing sources; partnership with other organizations; definition and planning of the objectives; evaluation, diffusion and valorization of the results and the establishing of a measuring system and performance indicators. Aiming at having an effective institutional insertion on the national and regional systems of innovation, the Nuclear Technology Development Center - CDTN reformulated its strategical planning, incorporating the view of the researchers of the Center and external experts. As part of the evaluation process, CDTN organizes an annual seminar for evaluating its projects, focused on presenting the results and also on the analysis of the performance indicators. The result of this pairs review are widely informed to the Institution and is an important tool for the critical analysis of the institutional performance and for corrections to be made by the high direction. This paper presents the methodology for evaluating the results, as well as the difficulties and improvements incorporated to the process, which has been applied for three years. (author)

  8. Multi-Institutional Collaborative Astronomy Education Research

    Science.gov (United States)

    Slater, T. F.; Slater, S. J.

    2011-09-01

    ASP, AAS, APS, and AAPT advocate that scientists should be engaged and acknowledged for successfully engaging in astronomy and physics education research and the scholarship of teaching because these efforts serve to improve pedagogical techniques and the evaluation of teaching. However, scientists have had the opportunity to pursue formal training in how to meaningfully engage in astronomy education research as an important scholarly endeavor. This special interest session for college and university physics and astronomy faculty, post-docs, and graduate students provided a forum to discuss the motivations, strategies, methodology, and publication routes for improving astronomy education through conducting rigorous science education research. Topics for discussion targeted the value of various education research questions, strengths and weaknesses of several different research design methodologies, strategies to successfully obtain Institutional Review Board approval to conduct education research on human subjects, and become more aware of how education research articles are created for publication in journals such as the Astronomy Education Review.

  9. Max-Planck-Institute for Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short communications and extended abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments on accelerators and ion sources, developments of detectors and experimental setups, electronics, data processing, target developments, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics, medium- and high-energy physics, statistical models of nuclei and nuclear reactions, nuclear reactions at high energies, many-particle theory, quantum chromodynamics, meteorites, comets, interstellar dust, planetary atmospheres, cosmic radiation, molecular collisions in the earth atmosphere, nuclear geology and geochemistry, as well as archaeology. See hints under the relevant topics. (HSI)

  10. Special course for global nuclear human resource development in cooperation with Hitachi-GE nuclear energy in Tokyo institute of technology

    International Nuclear Information System (INIS)

    Ujita, H.; Futami, T.; Saito, M.; Murata, F.; Shimizu, M.

    2012-01-01

    Many Asian countries are willing to learn Japanese nuclear power plants experiences, and are interested in introducing nuclear power generation to meet their future energy demand. Special course for Global Nuclear Human Resource Development was established in April, 2011 in the Department of Nuclear Engineering at Graduate School of Tokyo Institute of Technology in cooperation with Hitachi-GE Nuclear Energy. Purpose of the special course is to develop global nuclear engineers and researchers not only in the Tokyo Institute of Technology but also in the educational institutes of Southeast Asian countries

  11. Annual report of the Grenoble Institute of nuclear science

    International Nuclear Information System (INIS)

    Vignon, B.

    1988-01-01

    Research in theoretical nuclear physics; peripheral reactions and intermediate energy physics; characteristics of reaction mechanisms in heavy ion collisions; nuclear structure; fundamental interactions; interdisciplinary studies; experimental methods and instrumentation; and the SARA accelerator is presented [fr

  12. Mainz University, Institute of Nuclear Chemistry. Annual report 1993

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1994-03-01

    The report presents the results achieved by the Institute's five working groups in the following fields: Development of chemical separation processes, chemistry of ultraheavy elements; Developments in instrumentation; Nuclear fission and heavy ion reactions; Nuclear astrophysics, decay characteristics, structure of atoms and nuclei; Environmental pollution analysis. (orig./EF) [de

  13. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  14. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators.

  15. Inr training programme in nuclear research

    International Nuclear Information System (INIS)

    Cretu, I.; Ionila, M.; Gyongyosi, E.; Dragan, E.; Petra, M.

    2013-01-01

    The field of scientific research goes through rapid changes to which organizations must dinamically and efficiently adapt, which leads to the need to develop a continuous learning process that should be the basis for a long-term operational performance. Thus, human resource management systems and continuous learning should be perfectly correlated/alligned with the organizational strategy and knowledge. The research institutes through the nature of their activity are constantly undergoing a transformation process by exploring new research areas which presumes ensuring competent human resources who have to continuously learn and improve. The «learning organization » concept represents a metaphor rooted in the search of a strategy for promoting the personal development of the individual within an organization through a continuous transformation. Learning is associated with the idea of continuous transformation based on the individual and organizational development. Within « learning organizations » the human development strategy occupies a central role in management strategies. It was learned that organizations which perform excellently depend on the employees committment, especially in the budget constraints environment. For this, the human resources have to be used at maximum capacity but this is possible only with an increased committment of the employee towards the organization. The purpose of this paper is to present the basic training programme for the new employees which is part of the training strategy which carry out activities in the nuclear field of SCN Pitesti. With the majority of the research personnel aged between 45 and 60 years old there is the risk of loosing the knowledge gained in this domain. The expertise gained by experienced experts in the institute nationally and internationally can be exploited through the knowledge transfer to the new employees by organizing training programmes. The knowledge transfer between generations is one of the

  16. The Knowledge Management Research of Agricultural Scientific Research Institution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the perception of knowledge management from experts specializing in different fields,and experts at home and abroad,the knowledge management of agricultural scientific research institution can build new platform,offer new approach for realization of explicit or tacit knowledge,and promote resilience and innovative ability of scientific research institution.The thesis has introduced functions of knowledge management research of agricultural science.First,it can transform the tacit knowledge into explicit knowledge.Second,it can make all the scientific personnel share knowledge.Third,it is beneficial to the development of prototype system of knowledge management.Fourth,it mainly researches the realization of knowledge management system.Fifth,it can manage the external knowledge via competitive intelligence.Sixth,it can foster talents of knowledge management for agricultural scientific research institution.Seventh,it offers the decision-making service for leaders to manage scientific program.The thesis also discusses the content of knowledge management of agricultural scientific research institution as follows:production and innovation of knowledge;attainment and organizing of knowledge;dissemination and share of knowledge;management of human resources and the construction and management of infrastructure.We have put forward corresponding countermeasures to further reinforce the knowledge management research of agricultural scientific research institution.

  17. Activities at the electric power research institute to support the modernization of instrumentation and control systems in nuclear power plants in the United States of America

    International Nuclear Information System (INIS)

    Naser, J.

    1998-01-01

    Most nuclear power plants in the United States are operating with a vast majority of their original analog instrumentation and control (I and C) equipment. Many of the I and C systems in the plants need to be modernized in a reliable and cost-effective manner to replace obsolete equipment, to reduce operating and maintenance (O and M) costs, to improve plant performance, and to maintain safety. The major drivers for the replacement of the safety, control, and information systems in nuclear power plants are the obsolescence of the existing hardware and the need for more cost-effective power production. Competition between power producers is dictating the need for more cost-effective power production. The increasing O and M costs to maintain systems experiencing obsolescence problems is counter to the needs for more cost-effective power production and improved competitiveness. Modern technology, especially digital systems, offers improved functionality, performance, and reliability; solutions to obsolescence of equipment; reduction in O and M costs, and the potential to enhance safety. Digital I and C systems with their inherent advantages will be implemented only if reliable and cost-effective implementation and licensing acceptance is achieved and if the modernized system supports reduced power production costs. Increasing competition will continue to be a major factor in the operation of nuclear power plants. I will continue to dictate the need for improved productivity and cost-effectiveness. EPRI and its members utilities are working together on an industry-wide Instrumentation and Control Program to address I and C issues and to develop cost-effective solutions. (author)

  18. Re-evaluation of Assay Data of Spent Nuclear Fuel obtained at Japan Atomic Energy Research Institute for validation of burnup calculation code systems

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya, E-mail: suyama.kenya@jaea.go.jp [Office of International Relations, Nuclear Safety Division, Ministry of Education, Culture, Sports, Science and Technology - Japan, 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan); Murazaki, Minoru; Ohkubo, Kiyoshi [Fuel Cycle Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Nakahara, Yoshinori [Research Group for Analytical Science, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Uchiyama, Gunzo [Fuel Cycle Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan)

    2011-05-15

    Highlights: > The specifications required for the analyses of the destructive assay data taken from irradiated fuel in Ohi-1 and Ohi-2 PWRs were documented in this paper. > These data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. > These destructive assay data are suitable for the benchmarking of the burnup calculation code systems. - Abstract: The isotopic composition of spent nuclear fuels is vital data for studies on the nuclear fuel cycle and reactor physics. The Japan Atomic Energy Agency (JAEA) has been active in obtaining such data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuels, and some data has already been published. These data have been registered with the international Spent Fuel Isotopic Composition Database (SFCOMPO) and widely used as international benchmarks for burnup calculation codes and libraries. In this paper, Assay Data of Spent Nuclear Fuel from two fuel assemblies irradiated in the Ohi-1 and Ohi-2 PWRs in Japan are shown. The destructive assay data from Ohi-2 have already been published. However, these data were not suitable for the benchmarking of calculation codes and libraries because several important specifications and data were not included. This paper summarizes the details of destructive assay data and specifications required for analyses of isotopic composition from Ohi-1 and Ohi-2. For precise burnup analyses, the burnup values of destructive assay samples were re-evaluated in this study. These destructive assay data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. This indicates that the quality of destructive assay data from Ohi-1 and Ohi-2 PWRs is high, and that these destructive assay data are suitable for the benchmarking of burnup calculation code systems.

  19. Do Research Participants Trust Researchers or Their Institution?

    Science.gov (United States)

    Guillemin, Marilys; Barnard, Emma; Allen, Anton; Stewart, Paul; Walker, Hannah; Rosenthal, Doreen; Gillam, Lynn

    2018-07-01

    Relationships of trust between research participants and researchers are often considered paramount to successful research; however, we know little about participants' perspectives. We examined whom research participants trusted when taking part in research. Using a qualitative approach, we interviewed 36 research participants, including eight Indigenous participants. Thematic analysis was used to analyze the data. This article focuses on findings related to non-Indigenous participants. In contrast to Indigenous participants, non-Indigenous participants placed their trust in research institutions because of their systems of research ethics, their reputation and prestige. Researchers working in non-Indigenous contexts need to be cognizant that the trust that participants place in them is closely connected with the trust that participants have in the institution.

  20. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Luxembourg

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Framework: 1. General; 2. Mining; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency measures); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. General Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health; Minister of Labour; Other Ministers competent); 2. Advisory bodies (Higher Health Council)

  1. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  2. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  3. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  4. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  5. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods.

  6. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods.

  7. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  8. Institute for Safety Research. Annual report 1992

    International Nuclear Information System (INIS)

    Weiss, F.P.; Boehmert, J.

    1993-11-01

    The Institute is concerned with evaluating the design based safety and increasing the operational safety of technical systems which include serious sources of danger. It is further occupied with methods of mitigating the effects of incidents and accidents. For all these goals the institute does research work in the following fields: modelling and simulation of thermofluid dynamics and neutron kinetics in cases of accidents; two-phase measuring techniques; safety-related analyses and characterizing of mechanical behaviours of material; measurements and calculations of radiation fields; process and plant diagnostics; development and application of methods of decision analysis. This annual report gives a survey of projects and scientific contributions (e.g. Single rod burst tests with ZrNb1 cladding), lists publications, institute seminars and workshops, names the personal staff and describes the organizational structure. (orig./HP)

  9. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  10. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities. Japan

    International Nuclear Information System (INIS)

    2017-01-01

    The NEA has updated, in coordination with the Permanent Delegation of Japan to the OECD, the report on the Regulatory and Institutional Framework for Nuclear Activities in Japan. This country report provides comprehensive information on the regulatory and institutional framework governing nuclear activities in Japan. It provides a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. Content: I - General Regulatory Regime: Introduction; Mining regime; Radioactive substances and equipment; Nuclear installations (Reactor Regulation, Emergency response); Trade in nuclear materials and equipment; Radiological protection; Radioactive waste management; Nuclear safeguards and nuclear security; Transport; Nuclear third party liability. II - Institutional Framework: Regulatory and supervisory authorities (Cabinet Office, Nuclear Regulation Authority (NRA), Ministry of Economy, Trade and Industry (METI), The Agency for Natural Resources and Energy (ANRE), Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Ministry of Education, Culture, Sports, Science and Technology (MEXT)); Advisory bodies (Atomic Energy Commission (AEC), Reactor Safety Examination Committee, Nuclear Fuel Safety Examination Committee, Radiation Council, Other advisory bodies); Public and semi-public agencies (Japan Atomic Energy Agency (JAEA), National Institutes for Quantum and Radiological Science and Technology (QST), Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF), Nuclear Waste Management Organisation (NUMO))

  11. National Institute of Nuclear and Particle Physics - IN2P3. 2001-2003 activity report

    International Nuclear Information System (INIS)

    Spiro, Michel; Armand, Dominique

    2005-12-01

    The CNRS National Institute of Nuclear and Particle Physics (IN2P3) acts as national leader and coordinator in the fields of nuclear, particle and astro-particle physics, technological advances and their related applications, especially in the health and energy sectors. This research aims to explore particle and nuclear physics, fundamental interactions, and the links between the infinitely small and the infinitely large. Scientific fields include: Particle physics and hadronic physics, Nuclear physics, Astro-particles and cosmology, Neutrinos, Instrumentation, Computing and data, Research and development of accelerators, Back-end of the nuclear fuel cycle and nuclear energy, Medical applications. This document is IN2P3's activity report for the 2001-2003 period. It presents the strategic priorities of the Institute, the highlights and projects of the period

  12. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  13. Karlsruhe Nuclear Research Centre. Report on the results of research and development 1985

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains a description of the research projects, a list of the institutes and departments of the scientific-technical range with short articles concerning the results of the institutional work, and a bibliography of all publications of 1985. The main aspects of the projects and research programs are fast breeder, separation nozzle process, nuclear fusion, waste recycling and reprocessing, final storage, nuclear safety, the range of technique-man-environment, solid state and materials research, nuclear and elementary particle physics, and research programs of different institutes. (HK)

  14. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  15. Concepts for institutional arrangements for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1979-02-01

    These concepts deal with establishing a framework for the analysis of institutional arrangements, with institutional arrangements under consideration in the working groups on fuel and heavy water availability, enrichment availability, assurances of long-term supply, reprocessing-plutonium handling-recycling, fast breeder reactors, spent fuel management, waste management and disposal, and advanced reactor concepts. The standardization of nuclear practices, joint commercial and development undertakings, nuclear supply assurances, developing a consensus in international nuclear co-operation, and settlements of disputes are treated

  16. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  17. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  18. Nuclear Stewardship Research

    International Nuclear Information System (INIS)

    C.W. Beausang

    2006-01-01

    This report covers the period from June 2005 through May 2006. During this, the third year of our program, our research has focused mainly on applying the surrogate reaction technique and our newly developed surrogate ratio method to deduce neutron induced fission cross sections on uranium nuclei. The year has been marked by continued scientific progress, by the arrival of new personnel, by a growth in the numbers of students working in the group and by a continuation of our experimental program and close collaboration with staff and scientists from Lawrence Livermore National Laboratory and from Lawrence Berkeley National Laboratory

  19. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  20. Research program on nuclear technology and nuclear safety

    International Nuclear Information System (INIS)

    Dreier, J.

    2010-04-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning nuclear technology and nuclear safety. Work carried out, knowledge gained and results obtained in the various areas are reported on. These include projects carried out in the Laboratory for Reactor Physics and System Behaviour LRS, the LTH Thermohydraulics Laboratory, the Laboratory for Nuclear Materials LNM, the Laboratory for Final Storage Safety LES and the Laboratory for Energy Systems Analysis LEA of the Paul Scherrer Institute PSI. Work done in 2009 and results obtained are reported on, including research on transients in Swiss reactors, risk and human reliability. Work on the 'Proteus' research reactor is reported on, as is work done on component safety. International co-operation in the area of serious accidents and the disposal of nuclear wastes is reported on. Future concepts for reactors and plant life management are discussed. The energy business in general is also discussed. Finally, national and international co-operation is noted and work to be done in 2010 is reviewed