WorldWideScience

Sample records for nuclear research facility

  1. LAMPF: a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies.

  2. MYRRHA: A multipurpose nuclear research facility

    Science.gov (United States)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  3. MYRRHA: A multipurpose nuclear research facility

    Directory of Open Access Journals (Sweden)

    Baeten P.

    2014-01-01

    As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  4. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  5. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  6. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  7. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  8. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  9. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  10. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  11. Anomalous radon concentration in a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Pena, P., E-mail: miguel.balcazar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Radon monitoring in more than 60 selected points were part of surveillance radiation activities in the nuclear center of Mexico; three major facilities were inspected, the TRIGA Mark III research reactor, the Tandem Van de Graaff Accelerator and the Pelletron electron Accelerator. During a major maintenance activities in the research reactor, the air extraction system was not functioning for more than a month causing of a radon build up exhaled from the massive concrete of the building, reaching concentrations in some places up to 2.1 kb m{sup -3}. The irradiation room at the Tandem Accelerator presented high radon concentrations up to nearly 5 kb m{sup -3}, manly in the trenches were pipes and electric wires are located, the radon source was identified as originated from small caves under the floor. Low radon concentrations were found inside a similar building where a Pelletron accelerator is located. The reasons for the abnormal radon concentrations and the mitigation actions to remove any risk for the worker are discussed in detail in this paper. (author)

  12. Disposal of radioactive waste from nuclear research facilities

    CERN Document Server

    Maxeiner, H; Kolbe, E

    2003-01-01

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  13. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... COMMISSION Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY... License No. R- 112, held by Reed College (the licensee), which authorizes continued operation of the Reed... renewed Facility Operating License No. R-112 will expire 20 years from its date of issuance. The...

  14. Decommissioning of nuclear facilities at the Nuclear Research Institute Rez plc

    Directory of Open Access Journals (Sweden)

    Podlaha Josef

    2010-01-01

    Full Text Available The Nuclear Research Institute Rez has been a leading institution in all areas of nuclear R&D in the Czech Republic since it was established in 1955. After more than 50 years of activities in the field, there are some environmental liabilities that need to be remedied. The remediation of old environmental liabilities concerning the Nuclear Research Institute is the only ongoing decommissioning project in the Czech Republic. The nature of these environmental liabilities is very specific and requires special remediation procedures. The process begun in 2003 and is expected to be finished by 2014.

  15. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  16. Cost calculations for decommissioning and dismantling of nuclear research facilities, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Inga [StudsvikNuclear AB (Sweden); Backe, S. [Institute for Energy Technology (Norway); Iversen, Klaus [Danish Decommissioning (Denmark); Lindskog, S [Swedish Nuclear Power Inspectorate (Sweden); Salmenhaara, S. [VTT Technical Research Centre of Finland (Finland); Sjoeblom, R. [Tekedo AB (Sweden)

    2006-11-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility. However, no actual international guideline on cost calculations exists at present. Intuitively, it might be tempting to regard costs for decommissioning of a nuclear facility as similar to those of any other plant. However, the presence of radionuclide contamination may imply that the cost is one or more orders of magnitude higher as compared to a corresponding inactive situation, the actual ratio being highly dependent on the level of contamination as well as design features and use of the facility in question. Moreover, the variations in such prerequisites are much larger than for nuclear power plants. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological and other prerequisites. Application of inadequate methodologies especially at early stages has often lead to large underestimations. The goals of the project and the achievements described in the report are as follows: 1) Advice on good practice with regard to: 1a) Strategy and planning; 1b) Methodology selection; 1c) Radiological surveying; 1d) Uncertainty analysis; 2) Techniques for assessment of costs: 2a) Cost structuring; 2b) Cost estimation methodologies; 3) Compilation of data for plants, state of planning, organisations, etc.; 3a) General descriptions of relevant features of the nuclear research facilities; 3b) General plant specific data; 3c) Example of the decommissioning of the R1 research reactor in Sweden; 3d) Example of the decommissioning of the DR1 research reactor in Denmark. In addition, but not described in the present report, is the establishment of a Nordic network in the area including an internet based expert system. It should be noted that the project is planned to exist for at least three years and that the present report is an interim one

  17. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  18. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  19. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  20. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    Science.gov (United States)

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  1. Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

    2010-01-11

    To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

  2. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  3. Perspectives for photonuclear research at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D.; Balabanski, D.L.; Constantin, P.; Gales, S.; Tesileanu, O.; Ur, C.A.; Ursu, I.; Zamfir, N.V. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); Anzalone, A.; La Cognata, M.; Spitaleri, C. [INFN-LNS, Catania (Italy); Belyshev, S.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Camera, F. [Departement of Physics, University of Milano, Milano (Italy); INFN section of Milano, Milano (Italy); Csige, L.; Krasznahorkay, A. [Hungarian Academy of Sciences (MTA Atomki), Institute of Nuclear Research, Post Office Box 51, Debrecen (Hungary); Cuong, P.V. [Vietnam Academy of Science and Technology, Centre of Nuclear Physics, Institute of Physics, Hanoi (Viet Nam); Cwiok, M.; Dominik, W.; Mazzocchi, C. [University of Warsaw, Warszawa (Poland); Derya, V.; Zilges, A. [University of Cologne, Institute for Nuclear Physics, Cologne (Germany); Gai, M. [University of Connecticut, LNS at Avery Point, Connecticut, Groton (United States); Gheorghe, I. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Ishkhanov, B.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Kuznetsov, A.A.; Orlin, V.N.; Stopani, K.A.; Varlamov, V.V. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Pietralla, N. [Technische Universitat Darmstadt, Institut fur Kernphysik, Darmstadt (Germany); Sin, M. [University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Utsunomiya, H. [Konan University, Department of Physics, Kobe (Japan); University of Tokyo, Center for Nuclear Study, Saitama (Japan); Weller, H.R. [Triangle Universities Nuclear Laboratory, North Carolina, Durham (United States); Duke University, Department of Physics, North Carolina, Durham (United States)

    2015-12-15

    The perspectives for photonuclear experiments at the new Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility are discussed in view of the need to accumulate novel and more precise nuclear data. The parameters of the ELI-NP gamma beam system are presented. The emerging experimental program, which will be realized at ELI-NP, is presented. Examples of day-one experiments with the nuclear resonance fluorescence technique, photonuclear reaction measurements, photofission experiments and studies of nuclear collective excitation modes and competition between various decay channels are discussed. The advantages which ELI-NP provides for all these experiments compared to the existing facilities are discussed. (orig.)

  4. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  5. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  6. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option research center

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the Research Center, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the Research Center and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  7. Security culture for nuclear facilities

    Science.gov (United States)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  8. Research and development of earthquake-resistant structure model for nuclear fuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Terada, S.; Shioya, I. [and others

    1999-05-01

    It is important for a nuclear fuel facility to reduce an input intensity of earthquake on the upper part of the building. To study of a response of the building caused by earthquake, an earthquake-resistant structure model is constructed. The weight of the structure model is 90 ton, and is supported by multiple layers of natural ruber and steel. And a weight support device which is called 'softlanding' is also installed to prevent the structure model from loosing the function at excess deformation. The softlanding device consists of Teflon. Dynamic response characteristics of the structure model caused by sine wave and simulated seismic waves are measured and analyzed. Soil tests of the fourth geologic stratum on which the structure model is sited are made to confirm the safety of soil-structure interactions caused by earthquake. (M. Suetake)

  9. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  10. Research in decommissioning techniques for nuclear fuel cycle facilities in JNC. 7. JWTF decommissioning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-02-01

    Decommissioning techniques such as radiation measuring and monitoring, decontamination, dismantling and remote handling in the world were surveyed to upgrading technical know-how database for decommissioning of Joyo Waste Treatment Facility (JWTF). As the result, five literatures for measuring and monitoring techniques, 14 for decontamination and 22 for dismantling feasible for JWTF decommissioning were obtained and were summarized in tables. On the basis of the research, practical applicability of those techniques to decommissioning of JWTF was evaluated. This report contains brief surveyed summaries related to JWTF decommissioning. (H. Itami)

  11. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology research The Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  12. Fault detection and analysis in nuclear research facility using artificial intelligence methods

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Abu Bakar, E-mail: Abakar@uniten.edu.my [Department of Electronics & Communication, College of Engineering, Universiti Tenaga Nasional, 43009 Kajang, Selangor (Malaysia); Ibrahim, Maslina Mohd [Instrumentation Program, Malaysian Nuclear Agency, Bangi (Malaysia)

    2016-01-22

    In this article, an online detection of transducer and actuator condition is discussed. A case study is on the reading of area radiation monitor (ARM) installed at the chimney of PUSPATI TRIGA nuclear reactor building, located at Bangi, Malaysia. There are at least five categories of abnormal ARM reading that could happen during the transducer failure, namely either the reading becomes very high, or very low/ zero, or with high fluctuation and noise. Moreover, the reading may be significantly higher or significantly lower as compared to the normal reading. An artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are good methods for modeling this plant dynamics. The failure of equipment is based on ARM reading so it is then to compare with the estimated ARM data from ANN/ ANFIS function. The failure categories in either ‘yes’ or ‘no’ state are obtained from a comparison between the actual online data and the estimated output from ANN/ ANFIS function. It is found that this system design can correctly report the condition of ARM equipment in a simulated environment and later be implemented for online monitoring. This approach can also be extended to other transducers, such as the temperature profile of reactor core and also to include other critical actuator conditions such as the valves and pumps in the reactor facility provided that the failure symptoms are clearly defined.

  13. Fault detection and analysis in nuclear research facility using artificial intelligence methods

    Science.gov (United States)

    Ghazali, Abu Bakar; Ibrahim, Maslina Mohd

    2016-01-01

    In this article, an online detection of transducer and actuator condition is discussed. A case study is on the reading of area radiation monitor (ARM) installed at the chimney of PUSPATI TRIGA nuclear reactor building, located at Bangi, Malaysia. There are at least five categories of abnormal ARM reading that could happen during the transducer failure, namely either the reading becomes very high, or very low/ zero, or with high fluctuation and noise. Moreover, the reading may be significantly higher or significantly lower as compared to the normal reading. An artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are good methods for modeling this plant dynamics. The failure of equipment is based on ARM reading so it is then to compare with the estimated ARM data from ANN/ ANFIS function. The failure categories in either `yes' or `no' state are obtained from a comparison between the actual online data and the estimated output from ANN/ ANFIS function. It is found that this system design can correctly report the condition of ARM equipment in a simulated environment and later be implemented for online monitoring. This approach can also be extended to other transducers, such as the temperature profile of reactor core and also to include other critical actuator conditions such as the valves and pumps in the reactor facility provided that the failure symptoms are clearly defined.

  14. Determination of Absorbed and Effective Dose from Natural Background Radiation around a Nuclear Research Facility

    Directory of Open Access Journals (Sweden)

    M. A. Musa

    2011-01-01

    Full Text Available Problem statement: This study presents result of outdoor absorbed dose rate and estimated effective dose from the naturally occurring radionuclides 232Th and 238U series 40K, around a Nuclear Research Reactor at the Centre for Energy Research and Training (CERT, Zaria, Nigeria. Approach: A high-resolution in situ ?-ray spectrometry was used to carry out the study. CERT houses a 30Kw Research Reactor and other neutron and gamma sources for Research and Training. Results: The values of absorbed dose rate in air for 232Th, 238U and 40K range from 8.2 ± 2.5-24.5 ± 3.6 nGy h?1, 1.9 ± 1.2-4.6 ± 2.5 nGy h?1 and 12.2 ± 5-38 ± 6.7n Gy h?1 respectively . The estimated total annual effective dose outdoor for the sites range from 27.3-79.9 ?Sv y?1.Conclusions: This showed that radiation exposure level for the public is lower than the recommended value of 1 mSv y?1.Hence, the extensive usage of radioactive materials within and around CERT does not appear to have any impact on the radiation burden of the environment.

  15. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  16. Establishing nuclear facility drill programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  17. Summary of some Recent Work on Financial Planning for Decommissioning of Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, Staffan (Swedish Nuclear Power Inspectorate, Stockholm (Sweden)); Sjoeblom, Rolf (Tekedo AB, Nykoeping (Sweden))

    2008-06-15

    The new European Union Environmental Liability Directive (ELD) together with the new standard and the increased awareness of the implications of the statements on Environmental liabilities in the IFRS/IA high-light the need for appropriate planning for decommissioning including cost estimations and waste fund management. These new regulations and standards are in some respects more stringent than the strictly nuclear rules. Consequently, The Swedish Nuclear Power Inspectorate has sought communication with non-nuclear actors in the area, including the participation in the recent meeting Environmental Economics and Investment Assessment 11, 27-30 May, 2008, Cadiz, Spain. The present compilation of publications on decommissioning and associated cost calculations in Sweden was prompted by these contacts. The compilation comprises 14 reports published during the last four years

  18. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  19. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  20. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  1. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adams, N

    2007-07-08

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to

  2. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Lewis D. A. Hagemeyer Y. U. McCormick

    2012-07-07

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor

  3. Final Report, University Research Program in Robotics (URPR), Nuclear Facilities Clean-up

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, Delbert; Kapoor, Chetan; Pryor, Mitch

    2005-03-31

    This final report describes the research activity at the University of Texas at Austin with application to EM needs at DOE. This research activity is divided in to two major thrusts and contributes to the overall University Research Program in Robotics (URPR) thrust by providing mechanically oriented robotic solutions based on modularity and generalized software. These thrusts are also the core strengths of the UTA program that has a 40-year history in machine development, 30 years specifically devoted to robotics. Since 1975, much of this effort has been to establish the general analytical and design infrastructure for an open (modular) architecture of systems with many degrees of freedom that are able to satisfy a broad range of applications for future production machines. This work has coalesced from two principal areas: standardized actuators and generalized software.

  4. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho

    2000-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows: The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost some level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water sample were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author)

  5. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho; Lee, M.H. [and others

    1999-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul research reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul research reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul research reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author). 3 refs., 50 tabs., 12 figs.

  6. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geun Sik; Lee, Chang Woo; Joo, Young Hyun [and others

    2005-04-01

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha} ,{beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry.

  7. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho; Lee, M.H. [and others

    1999-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul research reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul research reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul research reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author). 3 refs., 50 tabs., 12 figs.

  8. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry.

  9. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  10. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long qaodmasdkwaspemas5ajkqlsmdqpakldnzsdfls 22 ft wide qaodmasdkwaspemas4ajkqlsmdqpakldnzsdfls 7 ft deep concrete...

  11. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  12. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  13. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  14. WIRELESS FOR A NUCLEAR FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Shull, D; Joe Cordaro, J

    2007-03-28

    The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

  15. Towards possible opportunities in nuclear materials science and technology at an X-ray free electron laser research facility

    Science.gov (United States)

    Froideval, A.; Badillo, A.; Bertsch, J.; Churakov, S.; Dähn, R.; Degueldre, C.; Lind, T.; Paladino, D.; Patterson, B. D.

    2011-09-01

    Spectroscopy and imaging of condensed matter have benefited greatly from the availability of intense X-ray beams from synchrotron sources, both in terms of spatial resolution and of elemental specificity. The advent of the X-ray free electron laser (X-ray FEL) provides the additional features of ultra-short pulses and high transverse coherence, which greatly expand possibilities to study dynamic processes and to image non-crystalline materials. The proposed SwissFEL facility at the Paul Scherrer Institute is one of at present four X-ray FEL projects worldwide and is scheduled to go into operation in the year 2017. This article describes a selection of problems in nuclear materials science and technology that would directly benefit from this and similar X-ray FEL sources. X-ray FEL-based experiments are proposed to be conducted on nuclear energy-related materials using single-shot X-ray spectroscopy, coherent X-ray scattering and/or X-ray photon correlation spectroscopy in order to address relevant scientific questions such as the evolution in time of the irradiation-induced damage processes, the deformation processes in nuclear materials, the ion diffusion processes in the barrier systems of geological repositories, the boiling heat transfer in nuclear reactors, as well as the structural characterization of graphite dust in advanced nuclear reactors and clay colloid aggregates in the groundwater near a radioactive waste repository.

  16. Application of robotics in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J S; Fisher, J J

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed.

  17. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  18. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  19. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  20. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditions The Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for...

  1. Field Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...

  2. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  3. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  4. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  5. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  6. Revitalizing Nuclear Safety Research.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    This report covers the general issues involved in nuclear safety research and points out the areas needing detailed consideration. Topics included are: (1) "Principles of Nuclear Safety Research" (examining who should fund, who should conduct, and who should set the agenda for nuclear safety research); (2) "Elements of a Future…

  7. METC Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1993-11-01

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

  8. Variable gravity research facility

    Science.gov (United States)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  9. Nuclear Disaster Preparedness for the Nuclear Facilities in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Soo; Lee, Gun Yub; Khang, Byung Oui; Lee, Hae Cho [KAERI, Daejeon (Korea, Republic of)

    2011-01-15

    An accident which is resulted a radiological emergency is very rare. However, once it is occurred, the accident will be affected to the near resident from the accident facility due to a radiation exposure. Further more it can be resulted in a negative growth of the nuclear industry. To reduce the exposure from the environment release of the radioactive materials and help the public relation from any vague mental stress, it is possible that the nuclear emergency preparedness is established in advance. Japan, JCO critical accident experienced, is commenced or renewed every year continuously related a law, regulations, manuals and procedures by Japan Nuclear Safety Committee. These are also considerable matters in our nuclear facility in point of view a technic or an arrangement. Therefore, this technical report is described the nuclear disaster preparedness which has published by Japan Nuclear Safety Committee. It will be useful as reference document for more improvement or establishment of the planning on our nuclear emergency preparedness

  10. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage. (MOW)

  11. Environmental Radiation Monitoring Around the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geun Sik; Lee, Chang Woo

    2008-05-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uraniu and Strontium in environmental samples showed a environmental level. The radioactivities of most {gamma}-radionuclides in air particulate, surface water and ground water were less than MDA except {sup 40}K or {sup 7}Be which are natural radionuclides. However, not only {sup 40}K or {sup 7}Be but also {sup 137}Cs were detected at the background level in surface soil, discharge sediment and fallout or pine needle.

  12. Enhancement of safety at nuclear facilities in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.A.; Hayat, T.; Azhar, W. [Directorate of Safety, Pakistan Atomic Energy Commission, P.O. Box 3416, Islamabad (Pakistan)

    2006-07-01

    Pakistan is benefiting from nuclear technology mostly in health and energy sectors as well as agriculture and industry and has an impeccable safety record. At the national level uses of nuclear technology started in 1955 resulting in the operation of Karachi Radioisotope Center, Karachi, in December 1960. Pakistan Nuclear Safety Committee (PNSC) was formulated in 1964 with subsequent promulgation of Pakistan Atomic Energy Commission (PAEC) Ordinance in 1965 to cope with the anticipated introduction of a research reactor, namely PARR-I, and a nuclear power plant, namely KANUPP. Since then Pakistan's nuclear program has expanded to include numerous nuclear facilities of varied nature. This program has definite economic and social impacts by producing electricity, treating and diagnosing cancer patients, and introducing better crop varieties. Appropriate radiation protection includes a number of measures including database of sealed radiation sources at PAEC operated nuclear facilities, see Table l, updated during periodic physical verification of these sources, strict adherence to the BSS-115, IAEA recommended enforcement of zoning at research reactors and NPPs, etc. Pakistan is party to several international conventions and treaties, such as Convention of Nuclear Safety and Early Notification, to improve and enhance safety at its nuclear facilities. In addition Pakistan generally and PAEC particularly believes in a blend of prudent regulations and good/best practices. This is described in this paper. (Author)

  13. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  14. An intrinsically safe facility for forefront research and training on nuclear technologies — General description of the system

    Science.gov (United States)

    Mansani, L.; Bruzzone, M.; Frambati, S.; Reale, M.

    2014-04-01

    In the framework of research on generation-IV reactors, it is very important to have infrastructures specifically dedicated to the study of fundamental parameters in dynamics and kinetics of future fast-neutron reactors. Among various options pursued by international groups, Italy focused on lead-cooled reactors, which guarantee minimal neutron slowdown and capture and efficient cooling. In this paper it is described the design of a the low-power prototype generator, LEADS, that could be used within research facilities such as the National Laboratory of Legnaro of the INFN. The LEADS has a high safety standard in order to be used as a training facility, but it has also a good flexibility so as to allow a wide range of measurements and experiments. A high safety standard is achieved by limiting the reactor power to less than few hundred kW and the neutron multiplication factor k eff to less than 0.95 (a limiting value for spent fuel pool), by using a pure-uranium fuel (no plutonium) and by using solid lead as a diffuser. The proposed core is therefore intrinsically subcritical and has to be driven by an external neutron source generated by a proton beam impinging in a target. Preliminary simulations, performed with the MCNPX code indicated, for a 0.75mA continuous proton beam current at 70MeV proton energy, a reactor power of about 190kW when using a beryllium converter. The enriched-uranium fuel elements are immersed in a solid-lead matrix and contained within a steel vessel. The system is cooled by helium gas, which is transparent to neutrons and does not undergo activation. The gas is pumped by a compressor through specific holes at the entrance of the active volume with a temperature which varies according to the operating conditions and a pressure of about 1.1MPa. The hot gas coming out of the vessel is cooled by an external helium-water heat exchanger. The beryllium converter is cooled by its dedicated helium gas cooling system. After shutdown, the decay is

  15. Construction Cost Growth for New Department of Energy Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, Jr., William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  16. About decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brosche, Dieter [Bayernwerk AG, Muenchen (Germany); Klein, K. [Badenwerk AG, Kalrsruhe (Germany); Vollradt, Juergen [Vereinigte Elektrizitaetswerke Westfalen AG, Dortmund (Germany)

    2015-10-15

    The IAEA organised an International Symposium in 1978, which dealt with the main aspects of decommissioning nuclear plants. Sufficient practical experiences and elaborated decommissioning concepts and techniques are already available. Unsolvable problems or only solvable with tremendous efforts of time and expenses are according to the opinion of experts not to be expected. Important statements concern above all the dose load of the decommissioning staff and the costs for decommissioning.

  17. The Study on Domestic and Foreign Cases for Decommissioning of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Ye Ji; Hhu, Joo Youn; Lee, Jung Hyun; Hwang, Yong Soo [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    This study was able to analyze domestic and foreign cases, and collect data on the approximate amount of waste and time required time; however, data on applied technology, input manpower, required cost, and waste disposal method was insufficient. DPRK activities such as nuclear weapon development or nuclear testing not only threaten our country's security but also have an adverse effect on nuclear nonproliferation and security in the international society. Therefore, denuclearization of the DPRK is prior task that is essential to peace on the Korean Peninsula. The fundamental purpose of denuclearization of the DPRK is to safely decommission facilities related to developing nuclear weapons and to depose related radioactive waste and nuclear materials. Understanding descriptive references and physical properties of the facility and its purpose important for decommissioning nuclear facilities. Although it was impossible to collect data on DPRK nuclear facilities to perform complete decommissioning, we were able to understand the process used at DPRK nuclear facilities with open source data. This study has been conducted to establish overall measures for decommissioning DPRK nuclear facilities. DPRK nuclear facilities in this study include a IRT- 2000 type nuclear research reactor, a 5 MWe graphite moderated reactor, nuclear fuel fabrication facility, and a nuclear fuel reprocessing facility, which are considered as facilities that produce or manufacture nuclear materials needed for nuclear weapons or related to such activities.

  18. Dedicated nuclear facilities for electrolytic hydrogen production

    Science.gov (United States)

    Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.

    1979-01-01

    An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.

  19. Quality Assurance for Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. G.; Kwon, H. I.; Kim, K. H.; Oh, Y. W.; Lee, Y. G.; Ha, J. H.; Lim, N. J.

    2008-12-15

    This report describes QA activities performed within 'Quality Assurance for Nuclear facility project' and results thereof. Efforts were made to maintain and improve quality system of nuclear facilities. Varification activities whether quality system was implemented in compliance with requirements. QA department assisted KOLAS accredited testing and calibration laboratories, ISO 9001 quality system, establishment of QA programs for R and D, and carried out reviews and surveys for development of quality assurance technologies. Major items of this report are as follows : - Development and Improvement of QA Programs - QA Activities - Assessment of Effectiveness and Adequacy for QA Programs

  20. Quality assurance for operation of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. G.; Hwang, S. Y.; Kim, K. H.; Ha, J. H.; Kang, J. Y.; Kim, J. S.; Jang, K. J.

    2011-12-15

    This report describes QA activities performed within Quality Assurance for Nuclear facility project and results thereof. Efforts were made to maintain and improve quality system of nuclear facilities. Verification activities whether quality system was implemented in compliance with requirements. QA department assisted KOLAS accredited testing and calibration laboratories, ISO 9001 quality system, establishment of QA programs for R and D, and carried out reviews and surveys for development of quality assurance technologies. Major items of this report are as follows : - Development and Improvement of QA Programs - QA Activities - Assessment of Effectiveness and Adequacy for QA Programs.

  1. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  2. Basic Nuclear Physics Research Needs for Nuclear Energy

    Science.gov (United States)

    Hill, Tony

    2008-10-01

    Basic nuclear physics research will play a central role in the development of the future nuclear facilities. Federal requirements for higher efficiencies, lower operating and construction costs, and advanced safeguards can all be impacted by the quality of nuclear data used in the fuel cycle calculations for design and licensing. Uncertainties in the underlying nuclear data propagate to uncertainties in integral and operational parameters, which drive margins and cost. Department of Energy (DOE) programs are underway to help develop the necessary nuclear research infrastructure. The Nuclear Energy office of DOE leads the development of new nuclear energy generation technologies to meet energy and climate change goals and advanced, proliferation resistant nuclear fuel technologies that maximize energy from nuclear fuel, while maintaining and enhancing the national nuclear infrastructure. These activities build on important work started over the last three years to deploy new nuclear plants in the United States by early in the next decade, and to develop advanced, next-generation nuclear technology. In this talk, I will discuss some of the foreseen opportunities and needs for basic nuclear research in nuclear energy.

  3. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  4. SETT facility of International Nuclear Security Academy

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyung Min [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2012-05-15

    After the Cold War was put to an end, the international community, especially the Western world, was concerned about Soviet nuclear materials falling into wrong hands, especially of terrorists. Later, the growing threat posed by terrorist networks such as the Taliban and al Qaeda led to a global campaign to deny such networks materials which may be used for the development of Weapons of Mass Destruction (WMD). The 9 11 attacks made a section of the international community highly apprehensive of WMD terrorism, especially its nuclear version. From this point of view, it is clear that nuclear facilities which contain nuclear materials are very attractive targets for those who have intention of nuclear terror

  5. Stochastic Optimization for Nuclear Facility Deployment Scenarios

    Science.gov (United States)

    Hays, Ross Daniel

    Single-use, low-enriched uranium oxide fuel, consumed through several cycles in a light-water reactor (LWR) before being disposed, has become the dominant source of commercial-scale nuclear electric generation in the United States and throughout the world. However, it is not without its drawbacks and is not the only potential nuclear fuel cycle available. Numerous alternative fuel cycles have been proposed at various times which, through the use of different reactor and recycling technologies, offer to counteract many of the perceived shortcomings with regards to waste management, resource utilization, and proliferation resistance. However, due to the varying maturity levels of these technologies, the complicated material flow feedback interactions their use would require, and the large capital investments in the current technology, one should not deploy these advanced designs without first investigating the potential costs and benefits of so doing. As the interactions among these systems can be complicated, and the ways in which they may be deployed are many, the application of automated numerical optimization to the simulation of the fuel cycle could potentially be of great benefit to researchers and interested policy planners. To investigate the potential of these methods, a computational program has been developed that applies a parallel, multi-objective simulated annealing algorithm to a computational optimization problem defined by a library of relevant objective functions applied to the Ver ifiable Fuel Cycle Simulati on Model (VISION, developed at the Idaho National Laboratory). The VISION model, when given a specified fuel cycle deployment scenario, computes the numbers and types of, and construction, operation, and utilization schedules for, the nuclear facilities required to meet a predetermined electric power demand function. Additionally, it calculates the location and composition of the nuclear fuels within the fuel cycle, from initial mining through

  6. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  7. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  8. Improving the Safeguardability of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    T. Bjornard; R. Bari; D. Hebditch; P. Peterson; M. Schanfein

    2009-07-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to reduce security risks and proliferation hazards while improving the synergy of major design features and raising operational efficiency, in a world where significant expansion of nuclear energy use may occur. Correspondingly, the U.S. DOE’s Next Generation Safeguards Initiative (NGSI) includes objectives to contribute to international efforts to develop SBD, and to apply SBD in the development of new U.S. nuclear infrastructure. Here, SBD is defined as a structured approach to ensure the timely, efficient and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical protection, and safety objectives into the overall design process for a nuclear facility, from initial planning through design, construction and operation. The SBD process, in its simplest form, may be applied usefully today within most national regulatory environments. Development of a mature approach to implementing SBD requires work in the areas of requirements definition, design processes, technology and methodology, and institutionalization. The U.S. efforts described in this paper are supportive of SBD work for international safeguards that has recently been initiated by the IAEA with the participation of many stakeholders including member States, the IAEA, nuclear technology suppliers, nuclear utilities, and the broader international nonproliferation community.

  9. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  10. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  11. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  12. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  13. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, J E; Clark, A T; Loysen, P; Ballinger, M Y; Mishima, J; Owczarski, P C; Gregory, W S; Nichols, B D

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH.

  14. A State-of-the-Art Report on Cutting Technologies for Decommissioning Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Kyun; Lee, Dong Gyu; Lee, Kune Woo; Jung, Chong Hun

    2007-10-15

    This report provides the status of the cryogenic cutting technology as a new dismantling technology for dismantling radioactive nuclear facilities and also presents the direction of study to apply it to a radioactive nuclear facility research aim of its nuclear. This report consists of four chapter : - 1. Background and objectives of dismantling technology for dismantling a radioactive nuclear facility. - 2. Analysis of the status of conventional cutting technologies - 3. Analysis of the status of cryogenic cutting technology - 4. Discussion, conclusion, and future work on state-of-the-art technology of dismantling for nuclear facilities.

  15. Interim irradiated fuel storage facility for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lolich, Jose [INVAP SE, Bariloche (Argentina)

    2002-07-01

    In most research reactors irradiated fuel discharged from the reactor is initially stored underwater inside the reactor building for along period of time. This allows for heat dissipation and fission product decay. In most cases this initial storage is done in a irradiated fuel storage facility pool located closed to the reactor core. After a certain cooling time, the fuel discharged should be relocated for long-term interim storage in a Irradiated Fuel Storage (IFS) Facility. IFS facilities are required for the safe storage of irradiated nuclear fuel before it is reprocessed or conditioned for disposal as radioactive waste. The IFS Facility described in this report is not an integral part of an operating nuclear reactor. This facility many be either co-located with nuclear facilities (such as a nuclear reactor or reprocessing plant) or sited independently of other nuclear facilities. (author)

  16. Accidents in nuclear facilities: classification, incidence and impact; Accidentes en instalaciones nucleares: clasificacion, incidencia e impacto

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Paredes G, L. C., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    A general analysis of the 146 accidents reported officially in nuclear facilities from 1945 to 2012 is presented, among them some took place in: power or research nuclear reactors, critical and subcritical nuclear assemblies, handling of nuclear materials inside laboratories belonging to institutes or universities, in radiochemistry industrial plants and nuclear fuel factories. In form graph the incidence of these accidents is illustrated classified for; category, decades, geographical localization, country classification before the OECD, failure type, and the immediate or later victims. On the other hand, the main learned lessons of the nuclear accidents of Three Mile Island, Chernobyl and Fukushima are stood out, among those that highlight; the human factors, the necessity of designs more innovative and major technology for the operation, control and surveillance of the nuclear facilities, to increase the criterions of nuclear, radiological and physics safety applied to these facilities, the necessity to carry out probabilistic analysis of safety more detailed for cases of not very probable accidents and their impact, to revalue the selection criterions of the sites for nuclear locations, the methodology of post-accident sites recovery and major instrumentation for parameters evaluation and the radiological monitoring among others. (Author)

  17. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  18. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  19. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  20. Detonation Engine Research Facility (DERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  1. Navy Fuel Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research to understand the underlying chemistry that impacts the use, handling, and storage of current and future Navy mobility...

  2. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  3. Nuclear thermal propulsion test facility requirements and development strategy

    Science.gov (United States)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  4. Nuclear thermal propulsion test facility requirements and development strategy

    Science.gov (United States)

    Allen, George C.; Clark, John S.; Warren, John; Perkins, David R.; Martinell, John

    1992-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  5. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  6. Nuclear Research and Society

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2000-07-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised.

  7. CEA decommissioning strategy and program for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, E.; Cerdan, G. [Legacy and Clean-up Directorate, Nuclear Energy Division, French Atomic Energy Commission, CEA/Siege, 31-33, rue de la Federation, 75752 Paris cedex 15 (France)

    2003-07-01

    The CEA's experience of the decommissioning of nuclear facilities goes back many decades and relates to many installations of very different types. The first substantial operations began in the sixties and seventies, and included, for instance, the first plutonium plant at Fontenay-aux-Roses (total decommissioning) and a number of small research reactors and critical mock-ups such as Cesar and Peggy at Cadarache, and Minerve at Fontenay-aux-Roses. Some twenty facilities were dealt with by 2000, corresponding to around half of all the nuclear facilities permanently closed, beginning with the decommissioning of facility AT1 at La Hague, the pilot plant used by the CEA in the seventies for the reprocessing of spent fuel from fast neutron reactors in March 2001 and ending with the demolition of the G1 stack at Marcoule, on 19 July this year. During the nineties, decommissioning was scaled back and few of the operations in progress were completed. The end of the decade saw a slowdown which was a consequence of financial difficulties, as the CEA had not yet set aside sufficient funds to cover the work, even though, between 1993 and 1999, part of the necessary resources had been provided under an agreement with the industrial partners EDF and Cogema. At the present time, the situation is rapidly improving both as concerns organisational and financial issues for the CEA and as concerns the regulations and the management of waste for all the organisations involved. First of all, for the different problems associated with radioactive clean-up faced by its research centres, the efforts made by the CEA in the field of organisation and planning since the beginning of the nineties have led to the drawing up of an overall multi-year plan referred to as the 'CEA civil centre radioactive clean-up plan' and the appointment of the Legacy and Clean-up Directorate to act as the client and be in charge of application of the plan relating not only to decommissioning of the

  8. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  9. Current Status of the Cyber Threat Assessment for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Doo [KINAC, Daejeon (Korea, Republic of)

    2016-05-15

    In December 2014, unknown hackers hacked internal documents sourced from Korea Hydro and Nuclear Power (KHNP) and those electronic documents were posted five times on a Social Network Service (SNS). The data included personal profiles, flow charts, manuals and blueprints for installing pipes in the nuclear power plant. Although the data were not critical to operation or sabotage of the plant, it threatened people and caused social unrest in Korea and neighboring countries. In December 2015, cyber attack on power grid caused a blackout for hundreds of thousands of people in Ukraine. The power outage was caused by a sophisticated attack using destructive malware called 'BlackEnergy'. Cyber attacks are reality in today's world and critical infrastructures are increasingly targeted. Critical infrastructures, such as the nuclear power plant, need to be proactive and protect the nuclear materials, assets and facilities from potential cyber attacks. The threat assessment document and its detailed procedure are confidential for the State. Nevertheless, it is easy to find cooperation on assessing and evaluating the threats of nuclear materials and facilities with other government departments or agencies including the national police. The NSSC and KINAC also cooperated with the National Intelligence Service (NIS) and National Security Research Institute (NSR). However, robust cyber threat assessment system and regular consultative group should be established with domestic and overseas organization including NIS, NSR, the National Police Agency and the military force to protect and ensure to safety of people, public and environment from rapidly changing and upgrading cyber threats.

  10. Measurements of nuclear data and possibility to construct the nuclear data production facility based on electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Won; Ko, In Soo; Cho, Moo Hyun; Kim, Gui Nyun; Lee, Young Seok; Kang, Heung Sik [Pohang University of Science and Technology, Pohang(Korea)

    2001-04-01

    In order to construct an infrastructure to produce nuclear data, we studied three main items; (1) Study on the possibility to construct a facility for nuclear data production, (2) Production of nuclear data for nuclear power plant, and (3) Pulsed neutron source based on a 100-MeV electron linac at Pohang Accelerator Laboratory (PAL). We confirmed the possibility to build a nuclear data production facility utilizing a 100-MeV electron linac at PAL and manpower who wanted to participate the nuclear data production experiments. In order to measure the nuclear data for nuclear power plant, we used several nuclear data production facilities in abroad. We measured total cross sections and neutron caprure cross sections for {sup nat}Dy and {sup nat}Hf using the pulsed neutron facility in the Research Reactor Institute, Kyoto University (KURRI). The neutron capture cross sections for {sup 161,162,163,164}Dy were measured at KURRI in the neutron energy region between 0.001 eV and several tens keV, and at the fast neutron facility in Tokyo Institute of Technology in the neutron energy region between 10 keV and 100 keV. We also measured the neutron capture cross sections and gamma multiplicity of {sup 232}Th at the IBR30 in Dubna, Russia. We have construct a pulsed neutron source using a 100-MeV electron linac at PAL. We measured neutron time-of-flight (TOF) spectra in order to check the characteristics of the pulsed neutron source. We also measured a neutron total cross sections of W and Cu. The pulsed neutron facility can be utilized in the education facility for nuclear data production and the test facility for the R and D purpose of the nuclear data production facility. 29 refs., 57 figs., 22 tabs. (Author)

  11. DECOMMISSIONING OF NUCLEAR FACILITIES IN GERMANY - STATUS AT BMBF SITES

    Energy Technology Data Exchange (ETDEWEB)

    Papp, R.; Komorowski, K.

    2002-02-25

    In a period of approximately 40 years prior to 1994, the German Federal Government had spent about {approx} 15 billion to promote nuclear technology. These funds were earmarked for R&D projects as well as demonstration facilities which took up operation between 1960 and 1980. These BMBF (Federal Ministry for Research) facilities were mainly located at the sites of the federal research centers at Juelich and Karlsruhe (the research reactors AVR, FR2, FRJ-1, KNK, and MZFR, the pilot reprocessing plant WAK) but included also the pilot plants SNR-300 and THTR-300 for fast breeder and high-temperature gas-cooled reactor development, respectively, and finally the salt mine Asse which had been used for waste emplacement prior to conversion into an underground research laboratory. In the meantime, almost all of these facilities were shut down and are now in a state of decommissioning and dismantling. This is mainly due to the facts that R&D needs are satisfied or do not exist any more and that, secondly, the lack of political consensus led to the cancellation of advanced nuclear technology.

  12. The ELI–NP facility for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Ur, C.A., E-mail: calin.ur@eli-np.ro; Balabanski, D.; Cata-Danil, G.; Gales, S.; Morjan, I.; Tesileanu, O.; Ursescu, D.; Ursu, I.; Zamfir, N.V.

    2015-07-15

    Extreme Light Infrastructure–Nuclear Physics (ELI–NP) is aiming to use extreme electromagnetic fields for nuclear physics research. The facility, currently under construction at Magurele–Bucharest, will comprise a high power laser system and a very brilliant gamma beam system. The technology involved in the construction of both systems is at the limits of the present-day’s technological capabilities. The high power laser system will consist of two 10 PW lasers and it will produce intensities of up to 10{sup 23}–10{sup 24} W/cm{sup 2}. The gamma beam, produced via Compton backscattering of a laser beam on a relativistic electron beam, will be characterized by a narrow bandwidth (<0.5%) and tunable energy of up to almost 20 MeV. The research program of the facility covers a broad range of key topics in frontier fundamental physics and new nuclear physics. A particular attention is given to the development of innovative applications. In the present paper an overview of the project status and the overall performance characteristics of the main research equipment will be given. The main fundamental physics and applied research topics proposed to be studied at ELI–NP will also be briefly reviewed.

  13. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-15

    In modern democratic countries, information sharing and effective and open communication concerning dismantling and decommissioning of of nuclear facilities as well as the management of nuclear waste are essential for the task to build the confidence required for any further development of nuclear energy. At the same time, it is often perceived that all decision making processes about nuclear energy policies are probably increasingly influenced by public opinion. Nuclear and radiation safety Authorities have a clear role in this regard to provide unbiased information on any health and safety related issues. In order to meet this need, it is necessary for Authorities and others to understand the values and opinions of the citizens, and especially the younger ones. They hold the key to the future at the same time as their perspective on these issues is the least understood. The need of greater public participation in decision making is becoming increasingly recognised the scientific as well as the political community. Many activities are carried out in order to stimulate to higher levels of public involvement in decision making in this active research area. Younger citizens is a stakeholder group that is often excluded in decision- making processes. The existence of large gaps between the involvement of older and younger stakeholders in decision making processes needs to be addressed, since such imbalances might otherwise lead to unequal opportunities between generations and limit the future consumption level of the coming generations. Another demanding task for the present generation is to assure that appropriate financial resources are injected into the Swedish Nuclear Waste Fund. It will thereby be possible for coming generations to undertake efficient measures in the decommissioning and dismantling of older nuclear facilities. To undertake such measures in line with the environmental and health codex is essential. An appropriate balance in this regard must be

  14. Handbook on interdisciplinary use of European nuclear physics facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This handbook is intended to collect together, in an accessible way, the most pertinent information which might be needed by anyone contemplating the use of nuclear physics accelerators for research in other disciplines, or for industrial, biomedical, solid-state or other applications. Information for the publication was supplied by each laboratory represented here, and this was edited and supplemented where it was thought necessary, by additional material, often derived from the facilities' web-sites. The reader will find for each facility a technical description concerning the accelerator itself and its experimental equipment, followed by a 'what can be made there' section. 'at a glance' page contains a summary of contact names and addresses, transport, access and accommodation offered that will be of a great use for prospective user. 26 facilities in 12 European countries (Belgium, Finland, France, Germany, Italy, Norway, Poland, Portugal, Spain, Sweden, Switzerland and The Netherlands) are presented.

  15. Future prospects in nuclear physics and the Japanese hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Metag, V. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Giessen Univ. (Germany). 2. Physikalisches Inst.

    1998-05-01

    The Japanese Hadron Facility (JHF) will provide new perspectives for a broad research program covering nuclear and particle physics, condensed matter physics, material sciences, and life sciences. In this talk, the future prospects of nuclear physics, as they are discussed within the community, are addressed. Recommendations worked out by the study groups, evaluating the long term perspectives of GSI, have hereby been used as a guideline. Nuclear physics is considered here in a broad sense as the physics of extended structured objects bound by the strong interaction, i.e. mesons, baryons, and nuclei. Preference is given to those subfields which would benefit most from the new experimental possibilities to the JHF. Consequently, the structure of exotic nuclei and hypernuclei, the properties of compressed hadronic matter and medium modifications of hadrons, spectroscopy of mesons, glueballs and baryons, and the parton structure of the nucleon are addressed and analyzed with regard to their future physics potential. (orig.)

  16. Study on Nuclear Facility Cyber Security Awareness and Training Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Woon; Song, Jae-Gu; Lee, Cheol-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    foreign institutes are searched and introduced. Incident response and recovery training programs may be developed based on the facility incident response plans. In order to have an effective incident response plan, more researches on the detection and analysis of cyber security incidents in nuclear facilities are necessary.

  17. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  18. Supervision of Waste Management and Environmental Protection at the Swedish Nuclear Facilities 2001

    CERN Document Server

    Persson, M

    2003-01-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Authority in 2001. A summary of the inspections and a description of important issues connected with the supervision of the nuclear facilities are given.The inspections during 2001 have focused on theme inspections of waste management, environmental inspections considering the environmental monitoring at the Swedish nuclear facilities and review safety analysis and research programs from the Swedish Nuclear Fuel and Waste Management Co.The Swedish Radiation Protection Authority finds that the operations are mainly performed according to current regulations

  19. Nuclear chemistry counting facilities: requirements definition

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, D.W.; Baker, J.

    1979-04-05

    In an effort to upgrade outdated instrumentation and to take advantage of current and imminent technologies the Nuclear Chemistry Division at Lawrence Livermore Laboratory is about to undertake a major upgrade of their low level radiation counting and analysis facilities. It is expected that such a project will make a more coordinated data acquisition and data processing system, reduce manual data handling operations and speed up data processing throughput. Before taking on a systems design it is appropriate to establish a definition of the requirements of the facilities. This report examines why such a project is necessary in the context of the current and projected operations, needs, problems, risks and costs. The authors also address a functional specification as a prelude to a system design and the design constraints implicit in the systems implementation. Technical, operational and economic assessments establish necessary boundary conditions for this discussion. This report also establishes the environment in which the requirements definition may be considered valid. The validity of these analyses is contingent on known and projected technical, scientific and political conditions.

  20. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  1. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  2. Nuclear Material Accountancy Assessment Technical Measures in Nuclear Centrifuge Enrichment Facility

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Nuclear material accountancy assessment is the main technical measures for nuclear materials regulatory. It is an important basis to detect theft, loss and the illegal diversion of nuclear material. In order to implement the control of nuclear materials for nuclear facilities,

  3. Decontamination and Decommissioning Project for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. and others

    2006-02-15

    The final goal of this project is to complete safely and successfully the decommissioning of the Korean Research Reactor no.1 (KRR-1) and the Korean Research Reactor no.2 (KRR-2), and uranium conversion plant (UCP). The dismantling of the reactor hall of the KRR-2 was planned to complete till the end of 2004, but it was delayed because of a few unexpected factors such as the development of a remotely operated equipment for dismantling of the highly radioactive parts of the beam port tubes. In 2005, the dismantling of the bio-shielding concrete structure of the KRR-2 was finished and the hall can be used as a temporary storage space for the radioactive waste generated during the decommissioning of the KRR-1 and KRR-2. The cutting experience of the shielding concrete by diamond wire saw and the drilling experience by a core boring machine will be applied to another nuclear facility dismantling. An effective management tool of the decommissioning projects, named DECOMIS, was developed and the data from the decommissioning projects were gathered. This system provided many information on the daily D and D works, waste generation, radiation dose, etc., so an effective management of the decommissioning projects is expected from next year. The operation experience of the uranium conversion plant as a nuclear fuel cycle facility was much contributed to the localization of nuclear fuels for both HWR and PWR. It was shut down in 1993 and a program for its decontamination and dismantling was launched in 2001 to remove all the contaminated equipment and to achieve the environment restoration. The decommissioning project is expected to contribute to the development of the D and D technologies for the other domestic fuel cycle facilities and the settlement of the new criteria for decommissioning of the fuel cycle related facilities.

  4. Research Facility Development at CAS

    Institute of Scientific and Technical Information of China (English)

    Tian Dongsheng; Miao Yougui; Zhang Hongsong

    2005-01-01

    @@ This article gives an introductory account on the development of research facilities at the CAS over the past six years since the initiation of the Knowledge Innovation Program in 1998 and during the period of the national 10th Five-year Plan in particular. In addition, it expounds the key points for the future work at the CAS in this regard.

  5. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  6. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  7. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  8. LANSCE nuclear science facilities and activities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald O [Los Alamos National Laboratory

    2010-01-01

    Nuclear science activities at the Los Alamos Neutron Science Center (LANSCE) encompass measurements spanning the neutron energy range from thermal to 600 MeV. The neutron sources use spallation of the LANSCE 800 MeV pulsed proton beam with the time-of-flight technique to measure properties of neutron-induced reactions as a function of energy over this large energy range. Current experiments are conducted at the Lujan Center moderated neutron source, the unmoderated WNR target, and with a lead-slowing-down spectrometer. Instruments in use include the DANCE array of BaF{sub 2} scintillators for neutron capture studies, the FIGARO array of liquid scintillator neutron detectors, the GEANIE array of high-resolution HPGe x-ray and gamma-ray detectors, and a number of fission chambers, and other detectors. The LANL capabilities for production and handling of radioactive materials coupled with the neutron sources and detectors at LANSCE are enabling new and challenging measurements for a variety of applications including nuclear energy and nuclear astrophysics. An overview of recent research and examples of results is presented.

  9. Accelerated radioactive nuclear beams: Existing and planned facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, J.M.

    1992-07-01

    An over-view of existing and planned radioactive nuclear beam facilities world-wide. Two types of production methods are distinguished: projectile fragmentation and the on-line isotope separator (ISOL) method. While most of the projectile fragmentation facilities are already in operation, almost all the ISOL-based facilities are in still the planning stage.

  10. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  11. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  12. Leak test of the charcoal filter in the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Sang Yeol; Lee, Key Soon; Hong, Kwon Pyo; Oh, Yon Woo; Park, Dae Kyu; Ahn, Sang Bok; Choo, Yong Sun; Kim, Sung Jung

    1998-06-01

    In the heating, ventilation and air conditioning(HVAC) system, pre-filter, HEPA(high efficiency particle air) filter and charcoal filter are instrumented in order to filter off the radioactive substance in the nuclear facility. Equipment of the charcoal filter off the radioactive substance in the nuclear facility. Equipment of the charcoal filter at the hot cell where manipulates the nuclear fuel irradiated in the nuclear reactor is essential for shutting off the leakage of the radioiodine which is produced from the cutting procedures of nuclear fuel. Also, the leak test of installed filter should be performed perfectly. In addition, charcoal filter is instrumented to filter the radioactive gas such as radioiodine which is produced in the nuclear facility. In this technical report, the theoretical discussion, the experimental procedures and the precautions of the leak test of charcoal filter are described. (author). 8 refs., 4 tabs., 8 figs.

  13. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  14. A US Based Ultrafast Interdisciplinary Research Facility

    Science.gov (United States)

    Gueye, Paul; Hill, Wendell; Johnson, Anthony

    2006-10-01

    The US scientific competitiveness on the world arena has substantially decreased due to the lack of funding and training of qualified personnel. Most of the potential workforce found in higher education is composed of foreign students and post-docs. In the specific field of low- and high-field science, the European and Asian communities are rapidly catching-up with the US, even leading in some areas. To remain the leader in ultrafast science and technology, new visions and commitment must be embraced. For that reason, an international effort of more than 70 countries for a US-based interdisciplinary research facility using ultrafast laser technology is under development. It will provide research and educational training, as well as new venues for a strong collaboration between the fields of astrophysics, nuclear/high energy physics, plasma physics, optical sciences, biological and medical physics. This facility will consist of a uniquely designed high contrast multi-lines concept housing twenty experimental rooms shared between four beams:[0.1 TW, 1 kHz], [10 TW, 9 kHz], [100-200 TW, 10 Hz] and [500 TW, 10 Hz]. The detail schematic of this multi-laser system, foreseen research and educational programs, and organizational structure of this facility will be presented.

  15. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  16. Fatigue damage of nuclear facilities; Endommagement par fatigue des installations nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  17. Minimum Nuclear Deterrence Research

    Science.gov (United States)

    2003-05-15

    délivrer une frappe d’ultime avertissement sur des objectifs navals ou terrestres ." The translation is the SAIC author’s. Projet de loi de finances... orbit .”75 As China’s nuclear force posture has changed, so too have the assigned targets. For example, the DF-2 was initially based to target Japan

  18. Atmospheric discharges from nuclear facilities during decommissioning: German experiences

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.; Weil, L.

    1997-08-01

    In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

  19. FUSION NUCLEAR SCIENCE FACILITY (FNSF) BEFORE UPGRADE TO COMPONENT TEST FACILITY (CTF)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yueng Kay Martin [ORNL; Canik, John [ORNL; Diem, Stephanie J [ORNL; Milora, Stanley L [ORNL; Park, J. M. [Oak Ridge National Laboratory (ORNL); Sontag, Aaron C [ORNL; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Lumsdaine, Arnold [ORNL; Murakami, Masanori [ORNL; Burgess, Thomas W [ORNL; Cole, Michael J [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Patton, Bradley D [ORNL; Wagner, John C [ORNL; Yoder, III, Graydon L [ORNL

    2011-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, and understand the complex challenges of fusion plasma material interactions, nuclear material interactions, tritium fuel management, and power extraction. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode, Q<1)), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of ~19 MW. If and when this research is successful, its performance can be extended to 1 MW/m2 and ~76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate-plasmas are used to minimize or eliminate plasma-induced disruptions, to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all internal components using remote handling (RH). This in turn requires modular designs for the internal components, including the single-turn toroidal field coil center-post. These device goals would further dictate placement of support structures and vacuum weld seals behind the internal and shielding components. If these goals could be achieved, the FNSF would further provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, for 6 MW-yr/m2 and 30% duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF would thereby complement the ITER Program, and support and help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  20. Space exploration initiative candidate nuclear propulsion test facilities

    Science.gov (United States)

    Baldwin, Darrell; Clark, John S.

    1993-01-01

    One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.

  1. Opportunities for nuclear reaction studies at future facilities

    CERN Document Server

    Veselsky, Martin; Vujisicova, Nikoleta; Souliotis, Georgios A

    2016-01-01

    Opportunities for investigations of nuclear reactions at the future nuclear physics facilities such as radioactive ion beam facilities and high-power laser facilities are considered. Post-accelerated radioactive ion beams offer possibilities for study of the role of isospin asymmetry in the reaction mechanisms at various beam energies. Fission barrier heights of neutron-deficient nuclei can be directly determined at low energies. Post-accelerated radioactive ion beams, specifically at the future facilities such as HIE-ISOLDE, SPIRAL-2 or RAON-RISP can be also considered as a candidate for production of very neutron-rich nuclei via mechanism of multi-nucleon transfer. High-power laser facilities such as ELI-NP offer possibilities for nuclear reaction studies with beams of unprecedented properties. Specific cases such as ternary reactions or even production of super-heavy elements are considered.

  2. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  3. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-15

    In modern democratic countries, information sharing and effective and open communication concerning dismantling and decommissioning of of nuclear facilities as well as the management of nuclear waste are essential for the task to build the confidence required for any further development of nuclear energy. At the same time, it is often perceived that all decision making processes about nuclear energy policies are probably increasingly influenced by public opinion. Nuclear and radiation safety Authorities have a clear role in this regard to provide unbiased information on any health and safety related issues. In order to meet this need, it is necessary for Authorities and others to understand the values and opinions of the citizens, and especially the younger ones. They hold the key to the future at the same time as their perspective on these issues is the least understood. The need of greater public participation in decision making is becoming increasingly recognised the scientific as well as the political community. Many activities are carried out in order to stimulate to higher levels of public involvement in decision making in this active research area. Younger citizens is a stakeholder group that is often excluded in decision- making processes. The existence of large gaps between the involvement of older and younger stakeholders in decision making processes needs to be addressed, since such imbalances might otherwise lead to unequal opportunities between generations and limit the future consumption level of the coming generations. Another demanding task for the present generation is to assure that appropriate financial resources are injected into the Swedish Nuclear Waste Fund. It will thereby be possible for coming generations to undertake efficient measures in the decommissioning and dismantling of older nuclear facilities. To undertake such measures in line with the environmental and health codex is essential. An appropriate balance in this regard must be

  4. 25 years Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Harde, R.

    1981-07-01

    On June 12, the Karlsruhe Nuclear Research Centre celebrated its 25th anniversary. The Centre was founded on July 19, 1956. The importance of this institution became apparent by the large number of prominent guests, at the head, the Federal President, Karl Carstens. Minister President Spaeth and the Federal Minister for Research and Technology, von Buelow, appreciated the achievements obtained by this big science centre of nuclear technology. The ceremony held in the State theatre of Baden-Wuerttemberg gave testimony of an impressing confession in favour of nuclear energy. Excerpts from the speech of the Chairman of the Managing Board, Prof. Harde, are quoted.

  5. Siting of nuclear facilities. Selections from Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.

    1976-07-01

    The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria.

  6. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  7. Test facilities for evaluating nuclear thermal propulsion systems

    Science.gov (United States)

    Beck, David F.; Allen, George C.; Shipers, Larry R.; Dobranich, Dean; Ottinger, Cathy A.; Harmon, Charles D.; Fan, Wesley C.; Todosow, Michael

    1993-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  8. Environmental concerns regarding a materials test reactor fuel fabrication facility at the Nuclear and Energy Research Institute - IPEN; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G. R. T.; Durazzo, M.; Carvalho, E. F. U. [IPEN, CNEN-SP, P.O. Box 11049, CEP 05422-970, Sao Paulo (Brazil); Riella, H. G. [Universidade Federal de Santa Catarina, Departamento de Engenharia Quimica, Campus Universitario, Florianopolis, CEP 88040-900 (Brazil)]. e-mail: grsantos@ipen.br

    2008-07-01

    The aim of the industrial activities success, front to a more and more informed and demanding society and to a more and more competitive market demands an environmental administration policy which doesn't limit itself to assist the legislation but anticipate and prevent, in a responsible way, possible damages to the environment. One of the maim programs of the Institute of Energetic and Nuclear Research of the national Commission of Nuclear Energy located in Brazil, through the Center of Nuclear Fuel - CCN - is to manufacture MTR-type fuel elements using low-enrichment uranium (20 wt% {sup 2}35U), to supply its IEA-RI research reactor. Integrated in this program, this work aims at well developing and assuring a methodology to implant an environment, health and safety policy, foreseeing its management with the use of detailed data reports and through the adoption of new tools for improving the management, in order to fulfil the applicable legislation and accomplish all the environmental, operational and works aspects. The applied methodology for the effluents management comprises different aspects, including the specific environmental legislation of a country, main available effluents treatment techniques, process flow analyses from raw materials and intakes to products, generated effluents, residuals and emissions. Data collections were accomplished for points gathering and tests characterization, classification and compatibility of the generated effluents and their eventual environmental impacts. This study aims to implant the Sustainable Concept in order to guarantee access to financial resources, allowing cost reduction, maximizing long-term profits, preventing and reducing environmental accident risks and stimulating both the attraction and the keeping of a motivated manpower. Work on this project has already started and, even though many technical actions have not still ended, the results have being extremely valuable. These results can already give to

  9. Nuclear Stewardship Research

    Energy Technology Data Exchange (ETDEWEB)

    C.W. Beausang

    2005-06-10

    The second year of our research program has been marked by significant success and progress. It has also been marked by significant changes both in the personnel and location of the major experimental research program. This report covers the period roughly from August 2004 through May 2005. During this period our research has focused mainly on applying the surrogate reaction technique and the ''ratio'' method to deduce neutron induced fission cross sections on uranium nuclei.

  10. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    Science.gov (United States)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  11. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    Science.gov (United States)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-01-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  12. Capsule review of the DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  13. Nuclear fusion research in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Cheetham, A.D. [Australian National Univ., Canberra, ACT (Australia). Plasma Research Lab

    1997-12-31

    In this paper the recently formed National Plasma Fusion Research Facility centred around the H-1NF Heliac, located at the Australian National University, the Institute of Advanced Studies is described in the context of the international Stellarator program and the national collaboration with the Australian Fusion Research Group. The objectives of the facility and the planned physics research program over the next five years are discussed and some recent results will be presented. The facility will support investigations in the following research areas: finite pressure equilibrium and stability, transport in high temperature plasmas, plasma heating and formation, instabilities and turbulence, edge plasma physics and advanced diagnostic development. 4 refs., 2 tabs., 5 figs.

  14. Survey of technology for decommissioning of nuclear fuel cycle facilities. 8. Remote handling and cutting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-03-01

    In nuclear fuel cycle facility decommissioning and refurbishment, the remote handling techniques such as dismantling, waste handling and decontamination are needed to reduce personnel radiation exposure. The survey research for the status of R and D activities on remote handling tools suitable for nuclear facilities in the world and domestic existing commercial cutting tools applicable to decommissioning of the facilities was conducted. In addition, the drive mechanism, sensing element and control system applicable to the remote handling devices were also surveyed. This report presents brief surveyed summaries. (H. Itami)

  15. Standard Guide for Preparing Characterization Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This standard guide applies to developing nuclear facility characterization plans to define the type, magnitude, location, and extent of radiological and chemical contamination within the facility to allow decommissioning planning. This guide amplifies guidance regarding facility characterization indicated in ASTM Standard E 1281 on Nuclear Facility Decommissioning Plans. This guide does not address the methodology necessary to release a facility or site for unconditional use. This guide specifically addresses: 1.1.1 the data quality objective for characterization as an initial step in decommissioning planning. 1.1.2 sampling methods, 1.1.3 the logic involved (statistical design) to ensure adequate characterization for decommissioning purposes; and 1.1.4 essential documentation of the characterization information. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate saf...

  16. Stockbridge Antenna Measurement and Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Stockbridge Antenna Measurement Facility is located 23 miles southwest of AFRL¹s Rome Research Site. This unique measurement facility is designed to evaluate the...

  17. Methodology for categorization of nuclear material in pyroprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chanki; Choi, Sungyeol [UNIST, Ulsan (Korea, Republic of); Kim, Woo Jin; Kim, Min Su; Jeong, Yon Hong [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    For the pyroprocessing facility to be commercialized in future, current regulations should be evaluated and developed in advance, based on the new types of nuclear materials in the facility. Physical protection system, especially, requires reasonable and reliable categorization of nuclear materials, to prevent from the theft of nuclear materials. In this paper, therefore, current categorization methods of nuclear material are investigated and applied to the pyroprocessing facility. After inconsistencies and gaps are found among methods, they are compared and discussed based on eight considering points (i.e, degrees of attractiveness, levels of category, discount factor, physical barriers, chemical barriers, isotopic barriers, radiological barriers, and capabilities of adversaries), to roughly suggest a new method for categorization. Current categorization methods of nuclear material, including IAEA's INFCIRC/225, U.S. DOE's method, newly expected U.S. NRC's method, FOM, and Bunn's approach, are different and can bring inconsistencies of physical protection requirements. The gap among methods will be significant if advanced fuel cycles are applied to them for the future. For example, the categorization results of 5 target materials in pyroprocessing facility show clear inconsistencies, while TRU ingot is considered the most attractive material. To resolve inconsistencies, it is necessary to determine new method suitable to pyroproessing facility, by considering the effects of eight points (i.e, degrees of attractiveness, levels of category, discount factor, physical barriers, chemical barriers, isotopic barriers, radiological barriers, and capabilities of adversaries)

  18. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities; Instalaciones de almacenamiento de combustible nuclear gastado en seco para instalaciones nucleares mexicanas

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J., E-mail: juan.salmeron@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  19. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  20. Experimental facility for testing nuclear instruments for planetary landing missions

    Science.gov (United States)

    Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey

    2017-04-01

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.

  1. The role of the IAEA in international guidance and assistance on decommissioning of small nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laraia, M., E-mail: m.laraia@iaea.or [IAEA, Wagramerstrasse 5, A-1400 Vienna (Austria)

    2010-10-15

    The IAEA has included decommissioning in its regular programmes since the early 1970 decade. Since 1985, decommissioning has been considered as a separate programme within the IAEA. Decommissioning has become a topic of great interest to many countries because of the large number of facilities that have reached or are nearing the end of their operating lifetime. Until recently, attention was focused on the decommissioning of nuclear power plants, and to less extent, other large nuclear facilities like nuclear fuel cycle facilities. Quite a few countries, however, are now being faced with the decommissioning of research reactors and other small non-reactor facilities, which are prevailing in most of our Member States. This factor demands equal attention in IAEA programmes. Not unlike IAEA publications, most of existing technical literature on decommissioning addresses technological and other aspects in decontamination and dismantling of large nuclear facilities. It should however be noted that most nuclear facilities are smaller -in size and complexity- and may present a lower radiological risk in decommissioning than the larger facilities. Such facilities e.g. small research reactors, critical assemblies, biological and medical laboratories, factories manufacturing radioactive products etc. are often located in countries where decommissioning experience and related resources are often limited. The risk here is that even minimum requirements and strategies be disregarded in decommissioning of these facilities resulting in unnecessary costs, delays, and possible safety concerns in the course of decontamination and dismantling activities. Besides, guidance on decommissioning of larger facilities can be misleading for smaller facilities. This paper provides an update on current and foreseen IAEA activities in the field of decommissioning of small nuclear facilities. Most IAEA activities can be included into the following two categories: drafting technical and safety

  2. Standard Specification for Nuclear Facility Transient Worker Records

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This specification covers the required content and provides retention requirements for records needed for in-processing of nuclear facility transient workers. 1.2 This specification applies to records to be used for in-processing only. 1.3 This specification is not intended to cover specific skills records (such as equipment operating licenses, ASME inspection qualifications, or welding certifications). 1.4 This specification does not reduce any regulatory requirement for records retention at a licensed nuclear facility. Note 1—Nuclear facilities operated by the U.S. Department of Energy (DOE) are not licensed by the U.S. Nuclear Regulatory Commission (NRC), nor are other nuclear facilities that may come under the control of the U.S. Department of Defense (DOD) or individual agreement states. The references in this specification to licensee, the U.S. NRC Regulatory Guides, and Title 10 of the U.S. Code of Federal Regulations are to imply appropriate alternative nomenclature with respect to DOE, DOD...

  3. Medical response to effects of ionising radiation. [Nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crosbie, W.A.; Gittus, J.H. (UKAEA Headquarters, London (UK))

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK).

  4. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  5. Systematization of nuclear fuel facility decommissioning technology

    Energy Technology Data Exchange (ETDEWEB)

    Sugitsue, Noritake [Japan Nuclear Cycle Development Inst., Ningyo Toge Environmental Engineering Center, Kamisaibara, Okayama (Japan)

    2001-09-01

    In the Ningyo-Toge Environmental Engineering Center, the nature of all decommissioning works is clarified and, as an information base for planning the promotion of efficiency of a work, the Decommissioning Engineering System is being developed. The Decommissioning Engineering System consists of a function for performing work support for a decommissioning, a function for gathering information results of the decommissioning technology and a general evaluation function for the decommissioning plan on the basis of facilities information collected by three-dimensional CAD. (author)

  6. An Assessment of Testing Requirement Impacts on Nuclear Thermal Propulsion Ground Test Facility Design

    Science.gov (United States)

    Shipers, Larry R.; Ottinger, Cathy A.; Sanchez, Lawrence C.

    1994-07-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

  7. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    Energy Technology Data Exchange (ETDEWEB)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-10-25

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

  8. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities; Hochrisikoanlagen. Notfallschutz bei Kernkraft-, Chemie- und Sondermuellanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Kloepfer, Michael (ed.) [Humboldt-Universitaet, Berlin (Germany)

    2012-07-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  9. Intelligent nuclear material surveillance system for DUPIC facility

    Energy Technology Data Exchange (ETDEWEB)

    Song, D. Y.; Lee, S. Y.; Ha, J. H.; Go, W. I.; Kim, H. D. [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    DUPIC Fuel Development Facility (DFDF) is the facility to fabricate CANDU-type fuel from spent PWR fuel material without any separation of fissile elements and fission products. Unattended continuous surveillance systems for safeguards of nuclear facility result in large amounts of image and radiation data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents a novel concept of the continuous surveillance system that integrates visual image and radiation data by the use of neural networks. This surveillance system is operating for safeguards of the DFDF in KAERI.

  10. Human Factors Research and Nuclear Safety.

    Science.gov (United States)

    Moray, Neville P., Ed.; Huey, Beverly M., Ed.

    The Panel on Human Factors Research Needs in Nuclear Regulatory Research was formed by the National Research Council in response to a request from the Nuclear Regulatory Commission (NRC). The NRC asked the research council to conduct an 18-month study of human factors research needs for the safe operation of nuclear power plants. This report…

  11. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option research center; Cahier des charges specifiques pour la formation du personnel de categorie A ou B travaillant dans les installations nucleaires. Option centre de recherche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document describes the specific dispositions relative to the Research Center, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the Research Center and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  12. The on-line low temperature nuclear orientation facility NICOLE

    Science.gov (United States)

    Ohtsubo, T.; Roccia, S.; Stone, N. J.; Stone, J. R.; Gaulard, C.; Köster, U.; Nikolov, J.; Simpson, G. S.; Veskovic, M.

    2017-04-01

    We review major experiments and results obtained by the on-line low temperature nuclear orientation method at the NICOLE facility at ISOLDE, CERN since the year 2000 and highlight their general physical impact. This versatile facility, providing a large degree of controlled nuclear polarization, was used for a long-standing study of magnetic moments at shell closures in the region Z = 28, N = 28–50 but also for dedicated studies in the deformed region around A ∼ 180. Another physics program was conducted to test symmetry in the weak sector and constrain weak coupling beyond V–A. Those two programs were supported by careful measurements of the involved solid state physics parameters to attain the full sensitivity of the technique and provide interesting interdisciplinary results. Future plans for this facility include the challenging idea of measuring the beta–gamma–neutron angular distributions from polarized beta delayed neutron emitters, further test of fundamental symmetries and obtaining nuclear structure data used in medical applications. The facility will also continue to contribute to both the nuclear structure and fundamental symmetry test programs.

  13. The LLNL Heavy Element Facility -- Facility Management, Authorization Basis, and Readiness Assessment Lessons Learned in the Heavy Element Facility (B251) Transition from Category II Nuclear Facility to Radiological Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M; Anderson, B; Brown, E; Gray, L

    2006-04-10

    This paper presents Facility Management, Readiness Assessment, and Authorization Basis experience gained and lessons learned during the Heavy Element Facility Risk Reduction Program (RRP). The RRP was tasked with removing contaminated glove boxes, radioactive inventory, and contaminated ventilation systems from the Heavy Element Facility (B251) at Lawrence Livermore National Laboratory (LLNL). The RRP was successful in its goal in April 2005 with the successful downgrade of B251 from a Category II Nuclear Facility to a Radiological Facility. The expertise gained and the lessons learned during the planning and conduct of the RRP included development of unique approaches in work planning/work control (''Expect the unexpected and confirm the expected'') and facility management. These approaches minimized worker dose and resulted in significant safety improvements and operational efficiencies. These lessons learned can help similar operational and management activities at other sites, including facilities restarting operations or new facility startup. B251 was constructed at LLNL to provide research areas for conducting experiments in radiochemistry using transuranic elements. Activities at B251 once included the preparation of tracer sets associated with the underground testing of nuclear devices and basic research devoted to a better understanding of the chemical and nuclear behavior of the transuranic elements. Due to the age of the facility, even with preventative maintenance, facility safety and experimental systems were deteriorating. A variety of seismic standards were used in the facility design and construction, which encompassed eight building increments constructed over a period of 26 years. The cost to bring the facility into compliance with the current seismic and other requirements was prohibitive, and simply maintaining B251 as a Category II nuclear facility posed serious cost considerations under a changing regulatory environment

  14. Nuclear data activities at the n_TOF facility at CERN

    Science.gov (United States)

    Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Radeck, D.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-10-01

    Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR database. The EXFOR database forms an important link between nuclear data measurements and the evaluated data libraries. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility n_TOF will be presented.

  15. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  16. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  17. Nuclear space power safety and facility guidelines study

    Energy Technology Data Exchange (ETDEWEB)

    Mehlman, W.F.

    1995-09-11

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  18. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  19. Dismantlement and radioactive waste management of North Korean nuclear facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Whang, Jooho (Kyung Hee University, South Korea); Baldwin, George Thomas

    2004-07-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement', or 'CVID'. It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and

  20. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  1. International symposium on seismic evaluation of existing nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Orbovic, N.; Bouchon, M. [Institut de Radioprotection et de Surete Nucleaire, IRSN, 92 - Fontenay aux Roses (France); Vendel, J.; Gelain, T. [IRSN/DPEA/SERAC, 91 - Gif sur Yvette (France)

    2003-10-01

    Below are summarized the works of Mrs N. Orbovic and M. Bouchon; B. Stojadinovic, N. Orbovic, M.Bouchon and J.T. Wiley; M. Bouchon, N. Orbovic and B. Foure; T. Gelain, F. Gensdarmes, R. Sestier-Carlin, J. Vendel and M. Bouchon dealing respectively with: 1) seismic assessment of existing nuclear facility: a case study position of the IRSN 2) static and dynamic evaluation of an existing nuclear facility reinforced concrete frame structure 3) experimental study of cracking of low-rise reinforced concrete shear walls 4) aeraulics study of crack networks on low-rise reinforced concrete walls subject to static cycling loading. The summaries are followed: 1) The Institute for Radioprotection and Nuclear Safety (IRSN) has the task of evaluating the seismic safety of existing building inventory in French nuclear facilities. Some of the existing structures are reinforced concrete frame buildings with masonry or reinforced concrete in-fill walls built during the 1960's, 70's and 80's following different building codes and seismic input data applicable at the time of construction. The studied building is a laboratory that was built in 1962. The building is composed of three different and independent blocks. The structure is a reinforced concrete frame with masonry in-fills and few stiff concrete elements. Moreover, the building contains an independent massive concrete cell. Structurally, the building has a number of irregularities. From the detailing standpoint, well known deficiencies of low-ductile reinforced concrete structures are evident especially, a lack of transverse reinforcement in the structural joints of the frame. A number of sensitivity studies were conducted using 2D and 3D linear models to evaluate seismic demand. Ambient vibration and regional earthquake records were used to check the soil nature and the existence or not of a possible site effect around the installation as well as to characterize the dynamic behavior of the building. 3D models

  2. Nuclear gas core propulsion research program

    Science.gov (United States)

    Diaz, Nils J.; Dugan, Edward T.; Anghaie, Samim

    1993-01-01

    Viewgraphs on the nuclear gas core propulsion research program are presented. The objectives of this research are to develop models and experiments, systems, and fuel elements for advanced nuclear thermal propulsion rockets. The fuel elements under investigation are suitable for gas/vapor and multiphase fuel reactors. Topics covered include advanced nuclear propulsion studies, nuclear vapor thermal rocket (NVTR) studies, and ultrahigh temperature nuclear fuels and materials studies.

  3. Nuclear Physics Programs for the Future RIBs Facility in Korea

    Institute of Scientific and Technical Information of China (English)

    Moon Chang-Bum

    2016-01-01

    We present nuclear physics programs based on the planned experiments using rare isotope beams (RIBs) for the future Korean Rare Isotope Beams Accelerator facility(KRIA). This ambitious facility has both an Isotope Separation On Line (ISOL) and fragmentation capability for producing RIBs and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. Low energy RIBs at Elab = 5 to 20 MeV per nucleon are for the study of nuclear structure and nuclear astrophysics toward and beyond the drip lines while higher energy RIBs produced by in-flight fragmentation with the reaccelerated ions from the ISOL enable to explore the neutron drip lines in intermediate mass regions. The planned programs have goals for investigating internal structures of the exotic nuclei toward and beyond the nucleon drip lines by addressing the following issues: how the shell structure evolves in areas of extreme proton to neutron imbalance; whether the isospin symmetry maintains in isobaric mirror nuclei at and beyond the drip lines; how two-proton radioactivity affects abundances of the elements;what the role of the continuum states including resonant states above proton-decay threshold in exotic nuclei is in astrophysical nuclear reaction processes, and how the nuclear reaction rates triggered by unbound proton-rich nuclei make an effect on rapid proton capture processes in a very hot stellar plasma.

  4. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    Directory of Open Access Journals (Sweden)

    Nick R. Soelberg

    2013-01-01

    Full Text Available The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for 85Kr and 129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs, have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.

  5. Public involvement in adaptive phased management of nuclear waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chartrand, D. [Royal Roads Univ., Victoria, British Columbia (Canada); Donev, J. [Univ. of Calgary, Calgary, Alberta (Canada)

    2012-07-01

    If a community is going to host a waste facility that community must be informed about nuclear waste disposal and willing to house the facility permanently. This talk will discuss the process for distributing information to primary and secondary stakeholders; investigate the accessibility and transparency of public information and assess the ability to dialogue between stakeholders when issues are raised in the context of adaptive phased management? We will also examine transparency in the process of managing conflict by looking at some of the issues at hand and how those issues are currently being managed through stakeholder engagement.

  6. Gordon Conference on Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Austin, S.M.

    1983-09-01

    Session topics were: quarks and nuclear physics; anomalons and anti-protons; the independent particle structure of nuclei; relativistic descriptions of nuclear structure and scattering; nuclear structure at high excitation; advances in nuclear astrophysics; properties of nuclear material; the earliest moments of the universe; and pions and spin excitations in nuclei.

  7. Application of Nuclear Regulatory Commission Regulation Equivalency to Construction of New Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    BISHOP, G.E.

    1999-06-02

    The Spent Nuclear Fuels Project (SNFP) Office of the Department of Energy (DOE), Richland Operations Office, is charged with moving 2.100 metric tons of spent nuclear fuel elements left over from plutonium production into semi-permanent storage at DOE'S Hanford site in Washington state. In anticipation of eventual NRC regulation, the DOE decided to impose NRC requirements on new SNFP facility design and construction, specifically for the Cold Vacuum Drying Facility (CVDF) and the Canister Storage Building (CSB). The SNFP implemented this policy of ''NRC equivalency'' with the goal of achieving a level of nuclear safety equivalent to that of NRC-licensed fuel processing facilities. Appropriate features of the NRC licensing process were adopted. However, the SNFP maintained applicable DOE requirements in tandem with the NRC regulations. Project work is continuing, with the first fuel movement scheduled for November, 2000.

  8. Teleoperated mobile robot (KAEROT) for inspection in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Soo; Kim, Chang-Hoi; Hwang, Suk-Young; Kim, Seung-Ho; Lee, Jong-Min [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1994-12-31

    A teleoperated mobile robot, named as KAEROT, has been developed for inspection and maintenance in nuclear facilities. It is composed of the planetary wheel-type mobile unit and 5 DOF manipulator one. The mobile unit is able to climb up and down stairs with high stability. This paper presents the kinematic analysis of KAEROT and the stair climbing algorithm. The proposed algorithm consists of two parts; one is to generate the moving path, and the other is to calculate the angular velocity of each wheel to follow up the generated reference path. Simulations and experiments on the irregular stairs have been carried out with the developed mobile robot. The proposed algorithm is proved to be very effective for inspection in nuclear facilities. The inclination angle of robot is maintained below 30.8deg while it is climbing up the stairs of a slope of 25deg. (author).

  9. Benefits of explosive cutting for nuclear-facility applications

    Energy Technology Data Exchange (ETDEWEB)

    Hazelton, R.F.; Lundgren, R.A.; Allen, R.P.

    1981-06-01

    The study discussed in this report was a cost/benefit analysis to determine: (1) whether explosive cutting is cost effective in comparison with alternative metal sectioning methods and (2) whether explosive cutting would reduce radiation exposure or provide other benefits. Two separate approaches were pursued. The first was to qualitatively assess cutting methods and factors involved in typical sectioning cases and then compare the results for the cutting methods. The second was to prepare estimates of work schedules and potential radiation exposures for candidate sectioning methods for two hypothetical, but typical, sectioning tasks. The analysis shows that explosive cutting would be cost effective and would also reduce radiation exposure when used for typical nuclear facility sectioning tasks. These results indicate that explosive cutting should be one of the principal cutting methods considered whenever steel or similar metal structures or equipment in a nuclear facility are to be sectioned for repair or decommissioning. 13 figures, 7 tables. (DLC)

  10. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  11. Environmental practices for biomedical research facilities.

    Science.gov (United States)

    Medlin, E L; Grupenhoff, J T

    2000-12-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12.

  12. FY16 ISCP Nuclear Counting Facility Hardware Expansion Summary

    Energy Technology Data Exchange (ETDEWEB)

    Church, Jennifer A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kashgarian, Michaele [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wooddy, Todd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haslett, Bob [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Torretto, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-15

    Hardware expansion and detector calibrations were the focus of FY 16 ISCP efforts in the Nuclear Counting Facility. Work focused on four main objectives: 1) Installation, calibration, and validation of 4 additional HPGe gamma spectrometry systems; including two Low Energy Photon Spectrometers (LEPS). 2) Re-Calibration and validation of 3 previously installed gamma-ray detectors, 3) Integration of the new systems into the NCF IT infrastructure, and 4) QA/QC and maintenance of current detector systems.

  13. Confinement of Radioactive Materials at Defense Nuclear Facilities

    Science.gov (United States)

    2004-10-01

    analysis was based on calculations performed in 1996 and, more recently, an alternative method using the MELCOR computer program to model the facility as...with a number of uncertainties and nonconservatisms. MELCOR was originally written for analysis of core melt accidents at commercial nuclear power...while MELCOR followed the transfer of airborne contaminants due to the expansion of the air with the rise in temperature. The MELCOR computer

  14. Hypothyroidism among former workers of a nuclear weapons facility.

    Science.gov (United States)

    Leavey, Anna; Frank, Arthur L; Pinson, Barbara; Shepherd, Sara; Burstyn, Igor

    2011-12-01

    Ionizing radiation alters thyroid function, and workers at a nuclear weapons facility may be exposed to above environmental levels of radiation. Hypothyroid status was determined for 622 former workers of a nuclear weapons facility located in Texas, using a combination of measured thyroid stimulating hormone (TSH) levels and thyroid medication history, as part of an on-going health surveillance program. We classified 916 unique job titles into 35 job categories. According to the most stringent TSH definition used in this study (0.3-3.0 IU/ml), 174 (28.0%) former workers were considered to be hypothyroid; of these 66 (41.8%) were females and 108 (23.3%) were males. In logistic regression analysis adjusted for age, gender, and smoking status, only having worked as a material handler (n = 18) exhibited an elevated risk of developing hypothyroidism compared to other jobs (OR 3.88, 95% CI 1.43-11.07). This is one of the jobs with suspected exposure to radiation. No excess risk of hypothyroidism was observed for any of the other job categories. There is suggestive evidence that only material handlers at this nuclear weapons facility may have elevated risk of hypothyroidism; further evaluation of thyroid health in this population is warranted. Copyright © 2011 Wiley Periodicals, Inc.

  15. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  16. The health effects of nuclear facilities under the microscope; Los efectos de las instalaciones nucleares sobre la salud a examen

    Energy Technology Data Exchange (ETDEWEB)

    Catalan, J. M.

    2009-07-01

    The health effects of nuclear facilities under the microscope. The forthcoming months will see the conclusion of the epidemiological study that the Nuclear Safety Council (CSN) and the Carlos III Institute of Health (ISCIII) are carrying out to investigate the possible effects on the population of the ionising radiations produced by the operation of nuclear facilities. (Author)

  17. Dismantling of nuclear facilities; Demantelement des installations nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Tallec, M. [CEA Marcoule, Dept. des Projets d' Assainissement-Demantelement, 30 (France); Kus, J.P. [Electricite de Fance (EDF/CIDEN), 69 - Villeurbanne (France)

    2009-01-15

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  18. The physical protection of nuclear material and nuclear facilities in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, J.; Bartak, L. [State Office for Nuclear Safety, Senovazne nam. 9, 110 00 Prague 1 (Czech Republic)

    2003-07-01

    The paper describes comprehensively past and present of physical protection of nuclear facilities and materials in the Czech Republic, particularly: the changes made in ensuring and legislation of physical protection following the political changes in 1989; the basic concept and regulation in physical protection and the effort made to strengthen the national regulatory programmes, as well as a brief survey of the nuclear facilities in the Czech Republic; experience in design, operation, inspection and licensing of the integrated physical protection system for nuclear power plants with WWER-440 and WWER-1000 reactors; the role of the police as a response force and the role of the new private security companies; the upgrading of the physical protection systems at the different types of the nuclear installations to fulfill the more strict requirements of the new Atomic Law No. 18/1997 Coll. and Regulation No. 144/1997 Coll., on physical protection of nuclear materials and nuclear facilities; the follow up actions in connection with IAEA IPPAS missions carried out in 1998 and 2002 are given.

  19. Research Progress of Nuclear Astrophysics Physics:Study of Key Scientific Problems in Nuclear Synthesis

    Institute of Scientific and Technical Information of China (English)

    GUO; Bing; LIU; Wei-ping; LI; Zhi-hong; WANG; You-bao; HE; Jian-jun; SHI; Jian-rong; TANG; Xiao-dong; YAN; Sheng-quan; SU; Jun; LI; Yun-ju; ZENG; Sheng; LIAN; Gang; BAI; Xi-xiang; CHEN; Yong-shou; PANG; Dan-yang; GU; Jian-zhong; HAN; Zhi-yu; LI; Xin-yue

    2015-01-01

    1 Summary A systematic study of the key scientific problems in nuclear synthesis has been conducted.Significant research achievements from several important subjects such as direct measurement of astrophysical reaction,observation of abundances of elements,studies on decay properties of nuclei and reaction rates of primordial nucleosynthesis have been made utilizing large scientific facilities from China

  20. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef [Universite de Saint-Etienne, Lab. Hubert Curien, UMR-CNRS 5516, F-42000 Saint-Etienne (France); Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre [ISAE, Universite de Toulouse, F-31055 Toulouse (France); Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-07-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  1. Flood Fighting Products Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A wave research basin at the ERDC Coastal and Hydraulics Laboratory has been modified specifically for testing of temporary, barrier-type, flood fighting products....

  2. Nuclear decay data for radionuclides occurring in routine releases from nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, D.C.

    1977-08-01

    This report gives tabulations of the atomic and nuclear radiations emitted by 240 radionuclides. Most of the radionuclides are those expected to occur in routine releases of effluents from nuclear fuel cycle facilities. For each radionuclide are given the half-life and recommended values for the energies, intensities, and equilibrium absorbed-dose constants for each of the atomic and nuclear radiations. Also given are the daughter radionuclides produced and recommended values for decay branching ratios, where applicable. The radioactivity decay chains and branching ratios are displayed in diagram form.

  3. A State-of-the-Art Report on Technologies of a Safety Assessment and a Radioactivity Exposure Assessment for the Decommissioning Process of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwan Seong; Kang, Young Ae; Lee, Dong Gyu; Lee, Kune Woo; Jung, Chong Hun

    2007-09-15

    This report is to provide the reference contents of research and development for technologies of radioactivity exposure and safety assessment for development of the decommissioning technology for nuclear facilities. This report consists of as follows: - Analyzing and discussing on state-of-the-art technologies of a radioactivity exposure assessment of a decommissioning for nuclear facilities - Analyzing and discussing on state-of-the-art technologies of a safety assessment of a decommissioning for nuclear facilities.

  4. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  5. Nuclear Criticality Experimental Research Center (NCERC) Overview

    Energy Technology Data Exchange (ETDEWEB)

    Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes, David Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activities that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.

  6. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    Science.gov (United States)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative effluent containment system (ECS) that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal.

  7. A Second Generation Radioactive Nuclear Beam Facility at CERN

    CERN Document Server

    Äystö, J; Lindroos, M; Ravn, H L; Van Duppen, P

    2000-01-01

    The proposed Superconducting Proton Linac (SPL) at CERN would be an ideal driver for a proton-driven second-generation Radioactive Nuclear Beam facility. We propose to investigate the feasibility of constructing such a facility at CERN close to the present PS Booster ISOLDE facility. The existing ISOLDE facility would be fed with a 10 micro-amps proton beam from SPL, providing the physics community with a low-intensity experimental area. A second, new facility would be built with target stations deep underground, permitting proton beam intensities of more than 100 micro-amps. The secondary beams can be post-accelerated to 20-100 MeV/u and there will be a storage ring complex and large segmented detectors in the experimental area. Also, benefits from a muon-ion collider or from merging the ions and muons should be investigated. Since the antiproton decelerator would be nearby, the opportunities for antiprotonic radioactive atom studies should be pursued as well.

  8. Master Training in Radiological Protection Facilities Radioactive and Nuclear; Formacion de Master en Proteccion Radiologica en Instalaciones Radiactivas y Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G.; Mayo, P.; Campayo, J. M.

    2011-07-01

    The master includes general aspects of radiation protection in nuclear facilities. also an advanced module to acquire a high level training highlights as nuclear decommissioning, shielding calculation using advanced codes, particle accelerators, international law, etc.

  9. Applicability of base-isolation R D in non-reactor facilities to a nuclear reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W.; Chang, Y.W.

    1990-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. The question, therefore, is to what extent can research and development (R D) for non-nuclear use be used to provide technological data needed for seismic isolation of a nuclear power plant. This question, of course is not unique to seismic isolation. Virtually every structural component, system, or piece of equipment used in nuclear power plants is also used in non- nuclear facilities. Experience shows that considerable effort is needed to adapt conventional technology into a nuclear power plant. Usually, more thorough analysis is required, material and fabrication quality-control requirements are more stringent as are controls on field installation. In addition, increased emphasis on maintainability and inservice inspection throughout the life of the plant is generally required to gain acceptance in nuclear power plant application. This paper reviews the R D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant. 2 refs.

  10. International symposium on seismic evaluation of existing nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Orbovic, N.; Bouchon, M. [Institut de Radioprotection et de Surete Nucleaire, IRSN, 92 - Fontenay aux Roses (France); Vendel, J.; Gelain, T. [IRSN/DPEA/SERAC, 91 - Gif sur Yvette (France)

    2003-10-01

    Below are summarized the works of Mrs N. Orbovic and M. Bouchon; B. Stojadinovic, N. Orbovic, M.Bouchon and J.T. Wiley; M. Bouchon, N. Orbovic and B. Foure; T. Gelain, F. Gensdarmes, R. Sestier-Carlin, J. Vendel and M. Bouchon dealing respectively with: 1) seismic assessment of existing nuclear facility: a case study position of the IRSN 2) static and dynamic evaluation of an existing nuclear facility reinforced concrete frame structure 3) experimental study of cracking of low-rise reinforced concrete shear walls 4) aeraulics study of crack networks on low-rise reinforced concrete walls subject to static cycling loading. The summaries are followed: 1) The Institute for Radioprotection and Nuclear Safety (IRSN) has the task of evaluating the seismic safety of existing building inventory in French nuclear facilities. Some of the existing structures are reinforced concrete frame buildings with masonry or reinforced concrete in-fill walls built during the 1960's, 70's and 80's following different building codes and seismic input data applicable at the time of construction. The studied building is a laboratory that was built in 1962. The building is composed of three different and independent blocks. The structure is a reinforced concrete frame with masonry in-fills and few stiff concrete elements. Moreover, the building contains an independent massive concrete cell. Structurally, the building has a number of irregularities. From the detailing standpoint, well known deficiencies of low-ductile reinforced concrete structures are evident especially, a lack of transverse reinforcement in the structural joints of the frame. A number of sensitivity studies were conducted using 2D and 3D linear models to evaluate seismic demand. Ambient vibration and regional earthquake records were used to check the soil nature and the existence or not of a possible site effect around the installation as well as to characterize the dynamic behavior of the building. 3D models

  11. Program for upgrading nuclear materials protection, control, and accounting at all facilities within the All-Russian Institute of Experimental Physics (VNIIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Yuferev, V.; Zhikharev, S.; Yakimov, Y. [All-Russian Inst. of Experimental Physics, Moscow (Russian Federation)] [and others

    1998-12-31

    As part of the Department of Energy-Russian program for strengthening nuclear material protection, control, and accounting (MPC and A), plans have now been formulated to install an integrated MPC and A system at all facilities containing large quantities of weapons-usable nuclear material within the All-Russian Institute of Experimental Physics (VNIIEF, Arzamas-16) complex. In addition to storage facilities, the complex houses a number of critical facilities used to conduct nuclear physics research and facilities for developing procedures for disassembly of nuclear weapons.

  12. Use of video systems in securing nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Zakharko, Eleonora; Weizel, Udo [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Rduch, Alexander

    2010-07-01

    Current paper considers application of video systems, so called Closed-Circuit Television (CCTV), in physical protection of nuclear facilities. CCTV is being used for general surveillance tasks, for alarm assessment, for detection purposes and is crucial for the efficient operation of physical protection system in whole. The main parts of general design layout are being analyzed: i.e. image obtaining, signal transmission, signal processing and signal visualization is being provided. It is underlined, that the general trend of high tech solutions in the field of physical protection is in particular based on innovations in the applications with video systems (orig.)

  13. Nuclear material surveillance system for DUPIC fuel development facility

    Energy Technology Data Exchange (ETDEWEB)

    Song, D. Y.; Lee, S. Y.; Ha, J. H.; Go, W. I.; Kim, H. D. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Unattended continuous surveillance systems for safeguards of nuclear facility result in large amounts of image and radiation data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents a novel concept of the continuous surveillance system that integrates visual image and radiation data by the use of neural networks based on self-organized feature mapping. This surveillance system is stably operating for safeguards of the DUPIC (DFDF) in KAERI.

  14. Whole body counting at nuclear facilities in North America-1984

    Energy Technology Data Exchange (ETDEWEB)

    Saban, C.L.; Coleman, R.L.; Haskins, A.W. (Tennessee Valley Authority, Muscle Shoals, AL (US))

    1984-04-01

    In 1984, the Tennessee Valley Authority conducted a survey of whole body counting (WBC) programs at 75 nuclear facilities in North America. The survey was a supplement to an initial survey performed in 1980. Data obtained from the study were used to compare current trends in whole body counting to those observed in the 1980 survey. This article presents the results of the 1984 survey in five areas: types of WBC systems, WBC spectral analysis software, protocol for performing WBCs, quality assurance programs, and technical bases for WBC programs.

  15. Whole body counting at nuclear facilities in North America (Supplement)

    Energy Technology Data Exchange (ETDEWEB)

    Saban, C.L.; Coleman, R.L.; Haskins, A.W.

    1985-10-01

    A survey was conducted on whole body counting at nuclear facilities. The survey was a supplement to an initial study done by the Tennessee Valley Authority in 1980. Data obtained from this study were used to compare current trends in whole body counting to those observed in the 1980 survey. The current status of this method of personnel monitoring is described, including a description of whole body counting systems in use, spectral analysis software, quality assurance programs, protocol for performing whole body counts, and the technical bases for whole body counting programs. 1 ref., 14 figs., 6 tabs.

  16. Nuclear Families and Nuclear Risks: The Effects of Gender, Geography, and Progeny on Attitudes toward a Nuclear Waste Facility

    Science.gov (United States)

    Freudenburg, William R.; Davidson, Debra J.

    2007-01-01

    Studies of reactions to nuclear facilities have found consistent male/female differences, but the underlying reasons have never been well-clarified. The most common expectations involve traditional roles--with men focusing more on economic concerns and with women (especially mothers) being more concerned about family safety/health. Still, with…

  17. Nuclear Families and Nuclear Risks: The Effects of Gender, Geography, and Progeny on Attitudes toward a Nuclear Waste Facility

    Science.gov (United States)

    Freudenburg, William R.; Davidson, Debra J.

    2007-01-01

    Studies of reactions to nuclear facilities have found consistent male/female differences, but the underlying reasons have never been well-clarified. The most common expectations involve traditional roles--with men focusing more on economic concerns and with women (especially mothers) being more concerned about family safety/health. Still, with…

  18. Naval Research Laboratory Major Facilities 2008

    Science.gov (United States)

    2008-10-01

    Mexico seawater throughout the year. The tropical climate is ideally suited for marine exposure testing. There is minimal climatic variation and a...TW magnetically insulated inductive voltage adder ( IVA ). Mercury is a focal point of research for several areas, including IVA power-flow research...nuclear weapons effects simulation, and particle-beam source and transport research for various applications. DESCRIPTION: Mercury is a 6-stage IVA . The

  19. Reversing nuclear opposition: evolving public acceptance of a permanent nuclear waste disposal facility.

    Science.gov (United States)

    Jenkins-Smith, Hank C; Silva, Carol L; Nowlin, Matthew C; deLozier, Grant

    2011-04-01

    Nuclear facilities have long been seen as the top of the list of locally unwanted land uses (LULUs), with nuclear waste repositories generating the greatest opposition. Focusing on the case of the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, we test competing hypotheses concerning the sources of opposition and support for siting the facility, including demographics, proximity, political ideology, and partisanship, and the unfolding policy process over time. This study tracks the changes of risk perception and acceptance of WIPP over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning an 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those whose residences are closest to the WIPP facility. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval, and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to gaining public acceptance, the most significant being the opening of the WIPP facility itself.

  20. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  1. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  2. A Study on Comparison of HANARO and KIJANG Research Reactor in Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Kim, Hyun-Jo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As one of major national projects for nuclear science and engineering in Korea, the KIJANG Research Reactor(KJRR) project was commenced in order to develop the core research reactor(RR) technologies for strengthening the competitiveness of the RR export and also to stabilize the supply of key radioisotopes for medical and industrial applications. This paper is about applying IAEA safeguards at new nuclear facility (KJRR). The beginning of this project is comparing of HANARO and KIJANG research reactor in nuclear safeguards for nuclear material accountancy method. As mentioned before, research reactor is basically item counting facility. In Fig 1, first two processes are belonging to item counting. But last two processes are for bulk handling. So KIJANG RR would be treated item counting facility as well as bulk handling facility by fission moly production facility. For this reason, nuclear material accountancy method for KJRR is not easy compared to existing one. This paper accounted for solution of KJRR nuclear material accountancy briefly. Future study on the suitable nuclear material accountancy method for mixed facility between item counting facility and bulk handling facility will be conducted more specifically.

  3. Neil Armstrong At Lunar Landing Research Facility

    Science.gov (United States)

    1969-01-01

    Nearly 25 years ago, on July 20,1969, Neil Armstrong, shown here with NASA Langley Research Centers Lunar Excursion Module (LEM) Simulator, became the first human to walk on the moon after practicing with the simulator in May of 1969. Training with the simulator, part of Langleys Lunar Research Facility, allowed the Apollo astronauts to study and safely overcome problems that could have occurred during the final 150-foot descent to the surface of the moon. NASA needed such a facility in order to explore and develop techniques for landing the LEM on the moons surface, where gravity is only one-sixth as strong as on the Earth, as well as to determine the limits of human piloting capabilities in the new surroundings. This unique facility, completed in 1965 and now a National Historic Landmark, effectively canceled all but one-sixth of Earths gravitational force by using an overhead cable system.

  4. 76 FR 61350 - DOE Response to Defense Nuclear Facilities Safety Board's Request for Clarification on...

    Science.gov (United States)

    2011-10-04

    ... Vorderbrueggen, Nuclear Engineer, Departmental Representative to the Defense Nuclear Facilities Safety Board, Office of Health, Safety and Security, U.S. Department of Energy, 1000 Independence Avenue, SW... Representative to the Defense Nuclear Facilities Safety Board, Office of Health, Safety and Security....

  5. Nuclear pumped gas laser research

    Science.gov (United States)

    Thom, K.

    1976-01-01

    Nuclear pumping of lasers by fission-fragments from nuclear chain reactions is discussed. Application of the newly developed lasers to spacecraft propulsion or onboard power, to lunar bases for industrial processing, and to earth for utilization of power without pollution and hazards is envisioned. Emphasis is placed on the process by which the fission-fragement kinetic energy is converted into laser light.

  6. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  7. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  8. Space and nuclear research and technology

    Science.gov (United States)

    1975-01-01

    A fact sheet is presented on the space and nuclear research and technology program consisting of a research and technology base, system studies, system technology programs, entry systems technology, and experimental programs.

  9. Fusion Nuclear Science Facility (FNSF) motivation and required capabilities

    Science.gov (United States)

    Peng, Y. K. M.; Park, J. M.; Canik, J. M.; Diem, S. J.; Sontag, A. C.; Lumsdaine, A.; Murakami, M.; Katoh, Y.; Burgess, T. W.; Korsah, K.; Patton, B. D.; Wagner, J. C.; Yoder, G. L.; Cole, M. J.; Fogarty, P. J.; Sawan, M.

    2011-10-01

    A compact (R0 ~ 1.2-1.3m), low aspect ratio, low-Q (test, discover, and understand new nuclear-nonnuclear synergistic interactions involving plasma material interactions, neutron material interactions, tritium fuel breeding and transport, and power extraction, and innovate and develop solutions for DEMO components. Progress will be reported on the fusion nuclear-nonnuclear coupling effects identified that motivate research on such an FNSF, and on the required capabilities in fusion plasma, device operation, and fusion nuclear science and engineering to fulfill its mission. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

  10. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    Science.gov (United States)

    de Angelis, Giacomo; Fiorentini, Gianni

    2016-11-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ-ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ-detector array based on γ-ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes.

  11. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  12. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  13. 78 FR 40519 - Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving...

    Science.gov (United States)

    2013-07-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving Proposed... No. DPR-46, issued to Nebraska Public Power District (the licensee), for operation of the...

  14. Nuclear Fusion Fuel Cycle Research Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin [KAERI, Daejeon (Korea, Republic of); Yun, Sei-Hun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants.

  15. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a comprehensive understanding of requirements for a facility that could safely conduct effluent treatment for a Nuclear Thermal Propulsion (NTP) rocket...

  16. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  17. Topics of nuclear medicine research in Europe.

    Science.gov (United States)

    Inubushi, Masayuki; Kaneta, Tomohiro; Ishimori, Takayoshi; Imabayashi, Etsuko; Okizaki, Atsutaka; Oku, Naohiko

    2017-07-25

    Last year in the European Journal of Nuclear Medicine and Molecular Imaging, we introduced some recent nuclear medicine research conducted in Japan. This was favorably received by European readers in the main. This year we wish to focus on the Annals of Nuclear Medicine on some of the fine nuclear medicine research work executed in Europe recently. In the current review article, we take up five topics: prostate-specific membrane antigen imaging, recent advances in radionuclide therapy, [(18)F]fluorodeoxyglucose positron-emission tomography (PET) for dementia, quantitative PET assessment of myocardial perfusion, and iodine-124 ((124)I). Just at the most recent annual meeting of the European Association of Nuclear Medicine 2016, Kyoto was selected as the host city for the 2022 Congress of the World Federation of Nuclear Medicine and Biology. We hope that our continuous efforts to strengthen scientific cooperation between Europe and Japan will bring many European friends and a great success to the Kyoto meeting.

  18. Nuclear-nuclear collision centrality determination by the spectators calorimeter for the MPD setup at the NICA facility

    Energy Technology Data Exchange (ETDEWEB)

    Golubeva, M. B.; Guber, F. F.; Ivashkin, A. P. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Isupov, A. Yu. [Joint Institute for Nuclear Research (Russian Federation); Kurepin, A. B. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Litvinenko, A. G., E-mail: litvin@moonhe.jinr.ru; Litvinenko, E. I.; Migulina, I. I.; Peresedov, V. F. [Joint Institute for Nuclear Research (Russian Federation)

    2013-01-15

    The work conditions of the hadron calorimeter for spectators registration (Zero Degree Calorimeter, ZDC) were studied for the heavy nuclei collisions with the several GeV invariant energy. The ZDC simulations were performed for the MPD (Multi-Purpose Detector) at the NICA (Nuclotron-based Ion Collider fAcility) collider, which are under developement at the Joint Institute for Nuclear Research (JINR, Dubna). Taking into account the spectator nuclear fragments leads to a nonmonotonic dependence of the ZDC response on the impact parameter. The reason for this dependence studied with several event generators is the primary beam hole in the ZDC center. It is shown, that the ZDC signal should be combined with a data from other MPD-NICA detector subsystems to determine centrality.

  19. Occupational medicine programs for animal research facilities.

    Science.gov (United States)

    Wald, Peter H; Stave, Gregg M

    2003-01-01

    Occupational medicine is a key component of a comprehensive occupational health and safety program in support of laboratory animal research and production facilities. The mission of the department is to maximize employee health and productivity utilizing a population health management approach, which includes measurement and analysis of health benefits utilization. The department works in close cooperation with other institutional health and safety professionals to identify potential risks from exposure to physical, chemical, and biological hazards in the workplace. As soon as exposures are identified, the department is responsible for formulating and providing appropriate medical surveillance programs. Occupational medicine is also responsible for targeted delivery of preventive and wellness services; management of injury, disease, and disability; maintenance of medical information; and other clinic services required by the institution. Recommendations are provided for the organization and content of occupational medicine programs for animal research facilities.

  20. Variable Gravity Research Facility - A concept

    Science.gov (United States)

    Wercinski, Paul F.; Smith, Marcie A.; Synnestvedt, Robert G.; Keller, Robert G.

    1990-01-01

    Is human exposure to artificial gravity necessary for Mars mission success, and if so, what is the optimum means of achieving artificial gravity? Answering these questions prior to the design of a Mars vehicle would require construction and operation of a dedicated spacecraft in low earth orbit. This paper summarizes the study results of a conceptual design and operations scenario for such a spacecraft, called the Variable Gravity Research Facility (VGRF).

  1. New Mexico energy research resource registry. Researchers and facilities

    Science.gov (United States)

    1975-01-01

    Human resources and facilities in New Mexico available for application to energy research and development are listed. Information regarding individuals with expertise in the environmental, socio-economic, legal, and management and planning areas of the energy effort is included as well as those scientists, engineers, and technicians involved directly in energy research and development.

  2. Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities

    Science.gov (United States)

    Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke

    2014-01-01

    High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.

  3. Reports on research work in the field of the safety of nuclear facilities financed by the Federal Minister of the Interior. Period under report: 1st October - 31th December 1980 (17th quarterly report on SR-projects)

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The BMI (Home Office) finances the performance of studies, expert's reports and other investigations in the field of the safety of nuclear facilities. The results of these studies (CSR-projects) are meant to contribute to the elucidation of still open questions concerning the atomic licensing procedure. The GRS, who are charged by the BMI, give regular information on the state-of-affairs of such investigations. This is done quarterly resp., annually by editing progrss reports within the report series GRS-F. These reports serve to inform the authorities of the Bund and Laender afflicted as well as the reactor safety commission. Each progress report presents a compilation of individual reports arranged according to subject fields. These are written by the contractors themselves in a standardized form as a documentation of the progress of their work and edited by the supervisory board of the GRS (GRS-FB) within the framework of the general information on progress within the investigations on the safety of nuclear facilities. The individual reports are marked in the order of their arrangement with successive numbers. Each report contains, among other things, data on the objective targets, the work performed, the results gained and the continuation of work planned.

  4. Nuclear Diagnostics at the National Ignition Facility, 2013-2015

    Science.gov (United States)

    Yeamans, C. B.; Cassata, W. S.; Church, J. A.; Fittinghoff, D. N.; Gatu Johnson, M.; Gharibyan, N.; Határik, R.; Sayre, D. B.; Sio, H. W.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cerjan, C. J.; Cooper, G. W.; Eckart, M. J.; Edwards, E. R.; Faye, S. A.; Forrest, C. J.; Frenje, J. A.; Glebov, V. Yu; Grant, P. M.; Grim, G. P.; Hartouni, E. P.; Herrmann, H. W.; Kilkenny, J. D.; Knauer, J. P.; Mackinnon, A. J.; Merrill, F. E.; Moody, K. J.; Moran, M. J.; Petrasso, R. D.; Phillips, T. W.; Rinderknecht, H. G.; Schneider, D. H. G.; Sepke, S. M.; Shaughnessy, D. A.; Stoeffl, W.; Velsko, C. A.; Volegov, P.

    2016-05-01

    The National Ignition Facility (NIF) relies on a suite of nuclear diagnostics to measure the neutronic output of experiments. Neutron time-of-flight (NTOF) and neutron activation diagnostics (NAD) provide performance metrics of absolute neutron yield and neutron spectral content: spectral width and non-thermal content, from which implosion physical quantities of temperature and scattering mass are inferred. Spatially-distributed flange- mounted NADs (FNAD) measure, with nearly identical systematic uncertainties, primary DT neutron emission to infer a whole-sky neutron field. An automated FNAD system is being developed. A magnetic recoil spectrometer (MRS) shares few systematics with comparable NTOF and NAD devices, and as such is deployed for independent measurement of the primary neutronic quantities. The gas-Cherenkov Gamma Reaction History (GRH) instrument records four energy channels of time-resolved gamma emission to measure nuclear bang time and burn width, as well as to infer carbon areal density in experiments utilizing plastic or diamond capsules. A neutron imaging system (NIS) takes two images of the neutron source, typically gated to create coregistered 13-15 MeV primary and 6-12 MeV downscattered images. The radiochemical analysis of gaseous samples (RAGS) instrument pumps target chamber gas to a chemical reaction and fractionation system configured with gamma counters, allowing measurement of radionuclides with half-lives as short as 8 seconds. Solid radiochemistry collectors (SRC) with backing NAD foils collect target debris, where activated materials from the target assembly are used as indicators of neutron spectrum content, and also serve as the primary diagnostic for nuclear forensic science experiments. Particle time-of-flight (PTOF) measures compression-bang time using DT- or DD-neutrons, as well as shock bang-time using D3He-protons for implosions with lower x-ray background. In concert, these diagnostics serve to measure the basic and advanced

  5. In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, Michael G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States); Musall, John C.; Bergren, Christopher L. [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)

    2013-07-01

    The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and

  6. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

  7. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  8. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information.

  9. Results of operation and current safety performance of nuclear facilities located in the Russian Federation

    Science.gov (United States)

    Kuznetsov, V. M.; Khvostova, M. S.

    2016-12-01

    After the NPP radiation accidents in Russia and Japan, a safety statu of Russian nuclear power plants causes concern. A repeated life time extension of power unit reactor plants, designed at the dawn of the nuclear power engineering in the Soviet Union, power augmentation of the plants to 104-109%, operation of power units in a daily power mode in the range of 100-70-100%, the use of untypical for NPP remixed nuclear fuel without a careful study of the results of its application (at least after two operating periods of the research nuclear installations), the aging of operating personnel, and many other management actions of the State Corporation "Rosatom", should attract the attention of the Federal Service for Ecological, Technical and Atomic Supervision (RosTekhNadzor), but this doesn't happen. The paper considers safety issues of nuclear power plants operating in the Russian Federation. The authors collected statistical information on violations in NPP operation over the past 25 years, which shows that even after repeated relaxation over this period of time of safety regulation requirements in nuclear industry and highly expensive NPP modernization, the latter have not become more safe, and the statistics confirms this. At a lower utilization factor high-power pressure-tube reactors RBMK-1000, compared to light water reactors VVER-440 and 1000, have a greater number of violations and that after annual overhauls. A number of direct and root causes of NPP mulfunctions is still high and remains stable for decades. The paper reveals bottlenecks in ensuring nuclear and radiation safety of nuclear facilities. Main outstanding issues on the storage of spent nuclear fuel are defined. Information on emissions and discharges of radioactive substances, as well as fullness of storages of solid and liquid radioactive waste, located at the NPP sites are presented. Russian NPPs stress test results are submitted, as well as data on the coming removal from operation of NPP

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  11. Nuclear Methods for Transmutation of Nuclear Waste: Problems, Perspextives, Cooperative Research - Proceedings of the International Workshop

    Science.gov (United States)

    Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.

    1996-12-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and

  12. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  13. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  14. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  15. Nuclear astrophysics and the Daresbury Recoil Separator at the Holifield Radioactive Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.S.

    1997-12-01

    The Daresbury Recoil Separator (DRS) has been installed for nuclear astrophysics research at Oak Ridge National Laboratory`s Holifield Radioactive Ion Beam Facility. It will be used for direct measurements of capture reactions on radioactive ions which occur in stellar explosions such as novae, supernovae and X-ray bursts. These measurements will be made in inverse kinematics with radioactive heavy ion beams incident on hydrogen and helium targets, and the DRS will separate the capture reaction recoils from the intense flux of beam particles. Details of the new DRS experimental equipment and preliminary results from the first commissioning experiments with stable beams are described, along with the plans for the first measurements with radioactive beams. Other astrophysics research efforts at ORNL--in theoretical astrophysics, nuclear astrophysics data evaluation, heavy element nucleosynthesis, theoretical atomic astrophysics, and atomic astrophysics data--are also briefly described.

  16. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  17. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  18. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  19. Analysis of the formation, expression, and economic impacts of risk perceptions associated with nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Allison, T.; Hunter, S.; Calzonetti, F.J.

    1992-10-01

    This report investigates how communities hosting nuclear facilities form and express perceptions of risk and how these risk perceptions affect local economic development. Information was collected from site visits and interviews with plant personnel, officials of local and state agencies, and community activists in the hosting communities. Six commercial nuclear fuel production facilities and five nuclear facilities operated for the US Department of Energy by private contractors were chosen for analysis. The results presented in the report indicate that the nature of risk perceptions depends on a number of factors. These factors are (1) level of communication by plant officials within the local community, (2) track record of the facility. operator, (3) process through which community and state officials receive information and form opinions, (4) level of economic links each plant has with the local community, and (15) physical characteristics of the facility itself. This report finds that in the communities studied, adverse ask perceptions have not affected business location decisions, employment levels in the local community, tourism, or agricultural development. On the basis of case-study findings, this report recommends that nuclear facility siting programs take the following observations into account when addressing perceptions of risk. First, the quality of a facility`s participation with community activists, interest groups, and state agencies helps to determine the level of perceived risk within a community. Second, the development of strong economic links between nuclear facilities and their host communities will produce a higher level of acceptance of the nuclear facilities.

  20. NSTX: Facility/Research Highlights and Near Term Facility Plans

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  1. Advanced research workshop: nuclear materials safety

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  2. Facility for a Low Power Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chalker, R. G.

    1949-09-14

    Preliminary investigation indicates that a reactor facility with ample research provisions for use by University or other interested groups, featuring safety in design, can be economically constructed in the Los Angeles area. The complete installation, including an underground gas-tight reactor building, with associated storage and experiment assembly building, administration offices, two general laboratory buildings, hot latoratory and lodge, can be constructed for approxinately $1,500,000. This does not include the cost of the reactor itself or of its auxiliary equipment,

  3. ARM Climate Research Facility Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  4. Europlanet Research Infrastructure: Planetary Sample Analysis Facilities

    Science.gov (United States)

    Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ≈50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and

  5. Glass Furnace Combustion and Melting Research Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  6. Engineering on abolishment measure of nuclear fuel facilities. Application of 3D-CAD to abolishment measure of nuclear fuel facilities

    Energy Technology Data Exchange (ETDEWEB)

    Annen, Sotonori; Sugitsue, Noritake [Japan Nuclear Cycle Development Inst., Ningyo Toge Environmental Engineering Center, Kamisaibara, Okayama (Japan)

    2001-12-01

    The Japan Nuclear Cycle Development Institute (JNC) progresses some advancing R and Ds required for establishment of the nuclear fuel cycle under considering on safety, economical efficiency, environmental compatibility, and so on. An important item among them is a technology on safe abolishment of a nuclear energy facility ended its role, which is called the abolishment measure technique. Here was introduced at a center of viewpoint called on use of three dimensional CAD (3D-CAD), on outlines of engineering system for abolishment measure (subdivision engineering system) under an object of nuclear fuel facilities, constructed through subdivision and removal of refinement conversion facilities, by the Ningyo-toge Environmental Engineering Center of JNC. (G.K.)

  7. A survey of decontamination processes applicable to DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  8. Database design for Physical Access Control System for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, T., E-mail: satishkumart@igcar.gov.in; Rao, G. Prabhakara, E-mail: prg@igcar.gov.in; Arumugam, P., E-mail: aarmu@igcar.gov.in

    2016-08-15

    Highlights: • Database design needs to be optimized and highly efficient for real time operation. • It requires a many-to-many mapping between Employee table and Doors table. • This mapping typically contain thousands of records and redundant data. • Proposed novel database design reduces the redundancy and provides abstraction. • This design is incorporated with the access control system developed in-house. - Abstract: A (Radio Frequency IDentification) RFID cum Biometric based two level Access Control System (ACS) was designed and developed for providing access to vital areas of nuclear facilities. The system has got both hardware [Access controller] and software components [server application, the database and the web client software]. The database design proposed, enables grouping of the employees based on the hierarchy of the organization and the grouping of the doors based on Access Zones (AZ). This design also illustrates the mapping between the Employee Groups (EG) and AZ. By following this approach in database design, a higher level view can be presented to the system administrator abstracting the inner details of the individual entities and doors. This paper describes the novel approach carried out in designing the database of the ACS.

  9. 78 FR 16302 - Crystal River Unit 3 Nuclear Generating Plant, Application for Amendment to Facility Operating...

    Science.gov (United States)

    2013-03-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Crystal River Unit 3 Nuclear Generating Plant, Application for Amendment to Facility Operating... Operating License No. DPR-72 for the Crystal River Unit 3 Nuclear Generating Plant (CR-3), located in...

  10. 77 FR 1743 - Facility Operating License Amendment From Florida Power Corporation, Crystal River Nuclear...

    Science.gov (United States)

    2012-01-11

    ... COMMISSION Facility Operating License Amendment From Florida Power Corporation, Crystal River Nuclear... Florida Power Corporation for operation of the Crystal River Nuclear Generating Plant, Unit 3. The proposed amendment would increase the licensed core power level for Crystal River Nuclear Generating Plant...

  11. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    Science.gov (United States)

    Allen, G. C.; Beck, D. F.; Harmon, C. D.; Shipers, L. R.

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program.

  12. 75 FR 76055 - Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility...

    Science.gov (United States)

    2010-12-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Docket No. 50-298; NRC-2008-0617] Nebraska Public Power District Cooper Nuclear Station; Notice of... operator of the Cooper Nuclear Station (CNS). Renewed facility operating license No. DPR-46...

  13. 77 FR 2766 - Facility Operating License Amendment from Duke Energy Carolinas, LLC., Catawba Nuclear Station...

    Science.gov (United States)

    2012-01-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Facility Operating License Amendment from Duke Energy Carolinas, LLC., Catawba Nuclear Station... and NPF-52 issued to Duke Energy Carolinas, LLC (the licensee), for operation of the Catawba Nuclear...

  14. Emergency preparedness source term development for the Office of Nuclear Material Safety and Safeguards-Licensed Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, S.L.; Mishima, J.; Ballinger, M.Y.; Lindsey, C.G.

    1984-08-01

    In order to establish requirements for emergency preparedness plans at facilities licensed by the Office of Nuclear Materials Safety and Safeguards, the Nuclear Regulatory Commission (NRC) needs to develop source terms (the amount of material made airborne) in accidents. These source terms are used to estimate the potential public doses from the events, which, in turn, will be used to judge whether emergency preparedness plans are needed for a particular type of facility. Pacific Northwest Laboratory is providing the NRC with source terms by developing several accident scenarios for eleven types of fuel cycle and by-product operations. Several scenarios are developed for each operation, leading to the identification of the maximum release considered for emergency preparedness planning (MREPP) scenario. The MREPP scenarios postulated were of three types: fire, tornado, and criticality. Fire was significant at oxide fuel fabrication, UF/sub 6/ production, radiopharmaceutical manufacturing, radiopharmacy, sealed source manufacturing, waste warehousing, and university research and development facilities. Tornadoes were MREPP events for uranium mills and plutonium contaminated facilities, and criticalities were significant at nonoxide fuel fabrication and nuclear research and development facilities. Techniques for adjusting the MREPP release to different facilities are also described.

  15. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    Science.gov (United States)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  16. NIMBY, CLAMP, and the location of new nuclear-related facilities: U.S. national and 11 site-specific surveys.

    Science.gov (United States)

    Greenberg, Michael R

    2009-09-01

    Public and political opposition have made finding locations for new nuclear power plants, waste management, and nuclear research and development facilities a challenge for the U.S. government and the nuclear industry. U.S. government-owned properties that already have nuclear-related activities and commercial nuclear power generating stations are logical locations. Several studies and utility applications to the Nuclear Regulatory Commission suggest that concentrating locations at major plants (CLAMP) has become an implicit siting policy. We surveyed 2,101 people who lived within 50 miles of 11 existing major nuclear sites and 600 who lived elsewhere in the United States. Thirty-four percent favored CLAMP for new nuclear power plants, 52% for waste management facilities, and 50% for new nuclear laboratories. College educated, relatively affluent male whites were the strongest CLAMP supporters. They disproportionately trusted those responsible for the facilities and were not worried about existing nuclear facilities or other local environmental issues. Notably, they were concerned about continuing coal use. Not surprisingly, CLAMP proponents tended to be familiar with their existing local nuclear site. In short, likely CLAMP sites have a large and politically powerful core group to support a CLAMP policy. The challenge to proponents of nuclear technologies will be to sustain this support and expand the base among those who clearly are less connected and receptive to new nearby sites.

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  18. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  19. Decommissioning of the nuclear facilities at Risø National Laboratory. Descriptions and cost assessment

    DEFF Research Database (Denmark)

    Lauridsen, K.

    2001-01-01

    The report is the result of a project initiated by Risø National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risø National Laboratory to be decommissioned and gives anassessment of the work to be done and the ......The report is the result of a project initiated by Risø National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risø National Laboratory to be decommissioned and gives anassessment of the work to be done...... and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing forthe longer decay periods; some operations still will need to be performed remotely....... Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to betransferred to a Danish repository. For a revision of the cost estimate for the decommissioning of the research Reactor DR 3 please consult...

  20. ICT security- aspects important for nuclear facilities; Information and Communication Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thunem, Atoosa P-J.

    2005-09-15

    Rapid application growth of complex Information and Communication Technologies (ICT) in every society and state infrastructure as well as industry has revealed vulnerabilities that eventually have given rise to serious security breaches. These vulnerabilities together with the course of the breaches from cause to consequence are gradually about to convince the field experts that ensuring the security of ICT-driven systems is no longer possible by only relying on the fundaments of computer science, IT, or telecommunications. Appropriating knowledge from other disciplines is not only beneficial, but indeed very necessary. At the same time, it is a common observation today that ICT-driven systems are used everywhere, from the nuclear, aviation, commerce and healthcare domains to camera-equipped web-enabled cellular phones. The increasing interdisciplinary and inter-sectoral aspects of ICT security worldwide have been providing updated and useful information to the nuclear domain, as one of the emerging users of ICT-driven systems. Nevertheless, such aspects have also contributed to new and complicated challenges, as ICT security for the nuclear domain is in a much more delicate manner than for any other domains related to the concept of safety, at least from the public standpoint. This report addresses some important aspects of ICT security that need to be considered at nuclear facilities. It deals with ICT security and the relationship between security and safety from a rather different perspective than usually observed and applied. The report especially highlights the influence on the security of ICT-driven systems by all other dependability factors, and on that basis suggests a framework for ICT security profiling, where several security profiles are assumed to be valid and used in parallel for each ICT-driven system, sub-system or unit at nuclear facilities. The report also covers a related research topic of the Halden Project with focus on cyber threats and

  1. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  2. Low Prevalence of Chronic Beryllium Disease Among Workers at aNuclearWeaponsResearchandDevelopmentFacility

    Science.gov (United States)

    Arjomandi, Mehrdad; Seward, James; Gotway, Michael B.; Nishimura, Stephen; Fulton, George P.; Thundiyil, Josef; King, Talmadge E.; Harber, Philip; Balmes, John R.

    2012-01-01

    Objective To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. Methods We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with high-resolution computed tomography (N = 49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage and transbronchial biopsies. Results The mean duration of employment at the facility was 18 years and the mean latency (from first possible exposure) to time of evaluation was 32 years. Five of the workers had CBD at the time of evaluation (based on histology or high-resolution computed tomography); three others had evidence of probable CBD. Conclusions These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD. PMID:20523233

  3. Innovative ways of decontaminating nuclear facilities; Innovative Verfahren zur Dekontamination von kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bremmer, Jan; Gentes, Sascha [Univ. Karlsruhe, Inst. fuer Technologie und Management im Baubetrieb (Germany); Ambos, Frank [sat. KERNTECHNIK GmbH, Worms (Germany)

    2009-08-15

    The great variety of surfaces to be decontaminated in a nuclear power plant increases demand for economic solutions and efficient processing systems. The Institute for Technology and Management in Building (TMB) of the University of Karlsruhe (TH) is working on this task in the new professorship of Sascha Gentes and, together with sat Kerntechnik GmbH, developing innovative techniques and tools for surface decontamination. In this effort, sat.Kerntechnik GmbH contributes 50% to the funding of the new professorship at the Karlsruhe Institute of Technology, the merger of the University of Karlsruhe and the Karlsruhe Research Center. The new professorship will extend its work also to various other innovative concepts to be employed not only in demolition but also in maintenance and operation of nuclear facilities. Above and beyond theoretical approaches, practical solutions are in the focus of work. For this reason, new developments are elaborated in close cooperation with the respective users. (orig.)

  4. NGNP Nuclear-Industrial Facility and Design Certification Boundaries White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Hicks

    2011-07-01

    The Next Generation Nuclear Plant (NGNP) Project was initiated at Idaho National Laboratory by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act and based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is helium cooled and graphite moderated and can operate at reactor outlet temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, in addition to producing electricity, which is the principal application of current LWRs. These varied industrial applications may involve a standard HTGR modular design using different Energy Conversion Systems. Additionally, some of these process heat applications will require process heat delivery systems to lie partially outside the HTGR operator’s facility.

  5. Outline of results of safety research (in nuclear fuel cycle field in fiscal year 1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The safety research in Power Reactor and Nuclear Fuel Development Corporation in fiscal year 1996 has been carried out based on the basic plan of safety research (from fiscal year 1996 to 2000) which was decided in March, 1996. In this report, on nuclear fuel cycle field, namely all the subjects in the fields of nuclear fuel facilities, environmental radioactivity and waste disposal, and the subjects related to nuclear fuel facilities among the fields of aseismatic and probabilistic safety assessments, the results of research in fiscal year 1996, the first year of the 5-year project, are summarized together with the outline of the basic plan of safety research. The basic policy, objective and system for promotion of the safety research are described. The objectives of the safety research are the advancement of safety technology, the safety of facilities, stable operation techniques, the safety design and the evaluation techniques of next generation facilities, and the support of transferring nuclear fuel cycle to private businesses. The objects of the research are uranium enrichment, fuel fabrication and reprocessing, and waste treatment and storage. 52 investigation papers of the results of the safety research in nuclear fuel cycle field in fiscal year 1996 are collected in this report. (K.I.)

  6. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horak, Karl Emanuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaChance, Jeffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tolk, Keith Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitehead, Donnie Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  7. Introduction of nuclear medicine research in Japan.

    Science.gov (United States)

    Inubushi, Masayuki; Higashi, Tatsuya; Kuji, Ichiei; Sakamoto, Setsu; Tashiro, Manabu; Momose, Mitsuru

    2016-12-01

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan.

  8. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  9. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  10. World Energy Data System (WENDS). Volume VII. Nuclear facility profiles, AG--CH. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  11. World Energy Data System (WENDS). Volume VIII. Nuclear facility profiles, CO--HU. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  12. World Energy Data System (WENDS). Volume X. Nuclear facility profiles, PO--ZA. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  13. World Energy Data System (WENDS). Volume IX. Nuclear facility profiles, IN--PL. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  14. 放射性束装置给核结构研究带来的新机遇%New Research Opportunities on Nuclear Physics by Facility of Radioactive Beams

    Institute of Scientific and Technical Information of China (English)

    李君清; 周勇

    2000-01-01

    By making use of the facility for radioactive beams which would be able to supply intense high resolution beams of short lived (radioactive) nuclei, the neutron-proton ratio can be extended to extreme values, where some new phenomena such as neutron halo, proton halo, neutron skin, proton skin,growing evidence of the fragility or disappearance of shell structure far from stability, the importance of pairing correlation near drip line, and the possible existence of new superconducting phases of nucleonic matter such as proton neutron pairing etc. will appear. To investigate and understand the phenomena, and then return to experimentally more accesible regions near stability to test our understanding of nuclei will afford a new opportunity to study the nuclear structure, nucleosynthesis and nuclear astrophysics, and fundamental symmetyies in the nature.%利用放射性束装置所提供的高强度和高分辨率的短寿命核束流可达到核中质比的极端值,新的现象,如中子晕、质子晕、中子皮、质子皮、壳的减弱或消失,以及在滴线附近对力的重要性和核物质中质子-中子对的新超导相的可能存在等不断涌现.对这些现象进行研究和理解,然后回到实验上较易达到的稳定区核去检验人们的理解,会对进一步研究核结构、核合成、核天文和自然界基本对称性提供新的机遇.

  15. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, M.K.

    2013-03-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  16. Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

    2009-09-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOE’s Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

  17. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a

  18. Major Cyber threat on Nuclear Facility and Key Entry Points of Malicious Codes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ickhyun; Kwon, Kookheui [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2013-05-15

    Cyber security incident explicitly shows that the domestic intra net system which is not connected to the Internet can be compromised by the USB based mal ware which was developed by the state-sponsored group. It also tells that the actor for cyber-attack has been changed from script kiddies to state's governments and the target has been changed to nation's main infrastructures such as electricity, transportation and etc. Since the cyber sabotage on nuclear facility has been proven to be possible and can be replicated again with same method, the cyber security on nuclear facility must be strengthened. In this paper, it is explained why the malicious code is the one of the biggest cyber threat in nuclear facility's digital I and C(Instrumentation and Controls) system by analyzing recent cyber attacks and well-known malicious codes. And a feasible cyber attack scenario on nuclear facility's digital I and C system is suggested along with some security measures for prevention of malicious code. As experienced from the cyber sabotage on Iranian nuclear facility in 2010, cyber attack on nuclear facility can be replicated by infecting the computer network with malicious codes. One of the cyber attack scenario on nuclear digital I and C computer network with using malicious code was suggested to help security manager establishing cyber security plan for prevention of malicious code. And some security measures on prevention of malicious code are also provided for reference.

  19. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Badwan, Faris M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demuth, Scott F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  1. History of Nuclear Fusion Research in Japan

    Science.gov (United States)

    Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo

    In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.

  2. EPM - The European Facility for human physiology research on ISS.

    Science.gov (United States)

    Rieschel, Mats; Nasca, Rosario; Junk, Peter; Gerhard, Ingo

    2002-07-01

    The European Physiology Modules (EPM) Facility is one of the four major Space Station facilities being developed within the framework of ESA's Microgravity Facilities for Columbus (MFC) programme. In order to allow a wide spectrum of physiological studies in weightlessness conditions, the facility provides the infrastructure to accommodate a variable set of scientific equipment. The initial EPM configuration supports experiments in the fields of neuroscience, bone & muscle research, cardiovascular research and metabolism. The International Space Life Science Working Group (ISLSWG) has recommended co-locating EPM with the 2 NASA Human Research Facility racks.

  3. How Large-Scale Research Facilities Connect to Global Research

    DEFF Research Database (Denmark)

    Lauto, Giancarlo; Valentin, Finn

    2013-01-01

    research. However, based on data on publications produced in 2006–2009 at the Neutron Science Directorate of Oak Ridge National Laboratory in Tennessee (United States), we find that internationalization of its collaborative research is restrained by coordination costs similar to those characterizing other......Policies for large-scale research facilities (LSRFs) often highlight their spillovers to industrial innovation and their contribution to the external connectivity of the regional innovation system hosting them. Arguably, the particular institutional features of LSRFs are conducive for collaborative...... institutional settings. Policies mandating LSRFs should consider that research prioritized on the basis of technological relevance limits the international reach of collaborations. Additionally, the propensity for international collaboration is lower for resident scientists than for those affiliated...

  4. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    2000-09-28

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  6. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    2000-10-12

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  7. 75 FR 11202 - Southern Nuclear Operating Company; Notice of Consideration of Issuance of Amendment to Facility...

    Science.gov (United States)

    2010-03-10

    ... COMMISSION Southern Nuclear Operating Company; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity for a... significant hazards consideration. Under the Commission's regulations in Title 10 of the Code of...

  8. 10 CFR 1.45 - Office of Nuclear Regulatory Research.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Office of Nuclear Regulatory Research. 1.45 Section 1.45... Program Offices § 1.45 Office of Nuclear Regulatory Research. The Office of Nuclear Regulatory Research— (a) Plans, recommends, and implements programs of nuclear regulatory research, standards development...

  9. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  10. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  11. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  12. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  13. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  14. ITEP ElectroNuclear neutron and proton facility

    Energy Technology Data Exchange (ETDEWEB)

    Shvedoy, O.V.; Igumnov, M.I.; Katz, M.M.; Kolomietz, A.A.; Kozodaev, A.M.; Lazarev, N.V.; Vasilyev, V.V.; Volkov, E.B.; Shymchukk, G.V. [State Science Centre of Russian Federation, Institute of Theoretical and Experimental Physics, (Russian Federation)

    1997-10-01

    Construction and current stage of the ITEP Subcritical Facility on the base will be described. The facility uses 36 MeV protons, Be neutron producing target and heavy water reflector. Neutron and proton beam parameters are listed. Special attention is devoted to isotope production and isotope application for e{sup -}--e{sup +} tomography 5 refs., 5 tabs., 1fig.

  15. Spare parts management for nuclear power generation facilities

    Science.gov (United States)

    Scala, Natalie Michele

    With deregulation, utilities in the power sector face a much more urgent imperative to emphasize cost efficiencies as compared to the days of regulation. One major opportunity for cost savings is through reductions in spare parts inventories. Most utilities are accustomed to carrying large volumes of expensive, relatively slow-moving parts because of a high degree of risk-averseness. This attitude towards risk is rooted in the days of regulation. Under regulation, companies recovered capital inventory costs by incorporating them into the base rate charged to their customers. In a deregulated environment, cost recovery is no longer guaranteed. Companies must therefore reexamine their risk profile and develop policies for spare parts inventory that are appropriate for a competitive business environment. This research studies the spare parts inventory management problem in the context of electric utilities, with a focus on nuclear power. It addresses three issues related to this problem: criticality, risk, and policy. With respect to criticality and risk, a methodology is presented that incorporates the use of influence diagrams and the Analytic Hierarchy Process (AHP). A new method is developed for group aggregation in the AHP when Saaty and Vargas' (2007) dispersion test fails and decision makers are unwilling or unable to revise their judgments. With respect to policy, a quantitative model that ranks the importance of keeping a part in inventory and recommends a corresponding stocking policy through the use of numerical simulation is developed. This methodology and its corresponding models will enable utilities that have transitioned from a regulated to a deregulated environment become more competitive in their operations while maintaining safety and reliability standards. Furthermore, the methodology developed is general enough so that other utility plants, especially those in the nuclear sector, will be able to use this approach. In addition to regulated

  16. Nuclear Storage Facility Inventory and Information Management using the GraFIC Software.

    Energy Technology Data Exchange (ETDEWEB)

    Hickerson, T.W.

    1999-05-04

    Oak Ridge has developed an intelligent facility and information management system to provide near real time, verifiable status of safeguarded materials in a nuclear storage facility. The Graphical Facility Information System (GraFIC{trademark}) is a versatile software package designed to operate in a distributed computing environment. GraFIC{trademark} is integrated with a suite of rugged, low-cost sensors that remotely monitor the physical and/or assigned attributes associated with stored nuclear materials and reports item and facility activity to an unlimited number of authorized clients. The software also contains facility management tools to assist with space planning, record management, item location, and a variety of other facilities needs.

  17. Physical protection of nuclear facilities. Quarterly progress report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, L.D. (ed.)

    1977-07-01

    The physical protection of nuclear facilities program consists of four major areas--evaluation methodology development, path generation/selection methodology, facility characterization, and component functional performance characterization. Activities in each of these areas for the second quarter of FY 77 are summarized.

  18. State of the art of nuclear facilities with organic cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brede, O.; Nagel, S.; Ziegenbein, D.

    1984-06-01

    USA, Canadian, and USSR activities aimed at developing nuclear facilities with organic cooled reactors are summarized. The facilities OMRE, PNPF, WR-1, and ARBUS are described, discussing in particular the problems of the chemistry of organic coolants. Finally, problems of further development and prospects of the application of organic cooled reactors are briefly outlined.

  19. Educational Programs and Facilities in Nuclear Science and Engineering. Fifth Edition.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    This publication contains detailed descriptions of nuclear programs and facilities of 182 four-year educational institutions. Instead of chapters, the contents are presented in five tables. Table I presents the degrees, graduate appointments, special facilities and programs of the institutions. The institutions are arranged in alphabetical order…

  20. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Appendix A-Form of nuclear energy liability policy for facilities. 140.91 Section 140.91 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION... other matter not within the Commission's statutory jurisdiction under the Atomic Energy Act....

  1. Criticality safety and sensitivity analyses of PWR spent nuclear fuel repository facilities

    NARCIS (Netherlands)

    Maucec, M; Glumac, B

    2005-01-01

    Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based stor

  2. Criticality safety and sensitivity analyses of PWR spent nuclear fuel repository facilities

    NARCIS (Netherlands)

    Maucec, M; Glumac, B

    2005-01-01

    Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based stor

  3. 78 FR 77606 - Security Requirements for Facilities Storing Spent Nuclear Fuel

    Science.gov (United States)

    2013-12-24

    ... COMMISSION 10 CFR Parts 72 and 73 RIN 3150-AI78 Security Requirements for Facilities Storing Spent Nuclear... requirements for storing spent nuclear fuel (SNF) in an independent spent fuel storage installation (ISFSI), and for storing SNF and/or high-level radioactive waste (HLW) in a monitored retrievable storage...

  4. Cold Neutron Research Facility begins operating at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, E.J.

    1991-09-01

    Steady-state neutron beams are generally produced by fission in a nuclear reactor, whereas pulsed beams come from spallation neutron sources. Beams from a reactor have a distribution of wavelengths that is roughly Maxwellian, with a peak wavelength that depends on the temperature of the moderator that surrounds the fuel. Cold neutrons can be selected from the low-energy tail of the distribution, but the flux drops as 1/{lambda}{sup 4}. However, by shifting the whole spectrum to longer wavelengths one can dramatically increase the cold neutron flux. This is achieved by replacing part of the core moderator with a cold moderator, or cold source,' such as liquid deuterium (at about 30 K) or D{sub 2}O ice (at about 40 K). Neutrons lose energy to the moderator through collisions, producing a shifted spectrum from which one can select lower-energy neutrons with a roughly ten-fold improvement in the flux. Neutrons exhibit optical behavior such as refraction and total reflection. Thus one can use neutron guides - analogous to optical fibers - to conduct intense beams of neutrons from the reactor into a large experimental hall, dubbed a guide hall,' where background radiation is low. The Cold Neutron Research Facility was finally funded in 1987 and opened its doors this past June. CNRF is located at the 20-MW NIST research reactor, which began continuous operation in 1969. With some foresight, the designers of the original reactor allowed space for the addition of a cryogenic moderator, which is only now being exploited. NIST will develop 10 experimental stations for use by the research science community. Additional help in financing the facility comes from participating research teams made up of groups from industry, academe and government.

  5. New Research Approach to Rebuild Sport Facilities

    Directory of Open Access Journals (Sweden)

    Gaetano Raiola

    2011-01-01

    Full Text Available Problem statement: The game court of team sport, part of Sport Centre of Arturo Collana, was closed after structural accident in 2006 and the local administration is now designing the rebuilding of it. For this reason, it has already allocated economical resource to study a partial reconstruction of it to reutilize actual structure. The problem is how can satisfy the customers according to suggesting the old and new solutions. Approach: The aim is to recognize expected demand about the real choice of customers with the proposal for a various architectural aspects. A survey was carries out by using statistical model to correlate a demand of multi game sport relating to various hypotheses, already designed with a different solution. A sample of 100 customers that have submitted questionnaire with the specific parameters about the architecture and engine was taken to apply the qualitative research method to the market research. Results and Conclusion: The result of this study concludes that it is not possible to the partially construct but it is useful the plenty reconstruction of game court. The local organization of Coni (Italian National Olympic Committee designed a new project according to a specific parameter that follows the same characteristic of old game court without searching the other engineer and architectural solutions. Thus the question is a mix of engine and architectural aspects, economical and functional elements of it. The data showed association between demand of multisport and new architectonical hypothesis and the association between demand of single sport and old architectural structure. The percentage of multi sport demand is higher than single sport and this orientation has to follow to design a new sport facilities.

  6. Realistic retrospective dose assessments to members of the public around Spanish nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M.A., E-mail: majg@csn.es [Consejo de Seguridad Nuclear (CSN), Pedro Justo Dorado Dellmans 11, E-28040 Madrid (Spain); Martin-Valdepenas, J.M.; Garcia-Talavera, M.; Martin-Matarranz, J.L.; Salas, M.R.; Serrano, J.I.; Ramos, L.M. [Consejo de Seguridad Nuclear (CSN), Pedro Justo Dorado Dellmans 11, E-28040 Madrid (Spain)

    2011-11-15

    In the frame of an epidemiological study carried out in the influence areas around the Spanish nuclear facilities (ISCIII-CSN, 2009. Epidemiological Study of The Possible Effect of Ionizing Radiations Deriving from The Operation of Spanish Nuclear Fuel Cycle Facilities on The Health of The Population Living in Their Vicinity. Final report December 2009. Ministerio de Ciencia e Innovacion, Instituto de Salud Carlos III, Consejo de Seguridad Nuclear. Madrid. Available from: (http://www.csn.es/images/stories/actualidad{sub d}atos/especiales/epidemiologico/epidemiological{sub s}tudy.pdf)), annual effective doses to public have been assessed by the Spanish Nuclear Safety Council (CSN) for over 45 years using a retrospective realistic-dose methodology. These values are compared with data from natural radiation exposure. For the affected population, natural radiation effective doses are in average 2300 times higher than effective doses due to the operation of nuclear installations (nuclear power stations and fuel cycle facilities). When considering the impact on the whole Spanish population, effective doses attributable to nuclear facilities represent in average 3.5 x 10{sup -5} mSv/y, in contrast to 1.6 mSv/y from natural radiation or 1.3 mSv/y from medical exposures. - Highlights: > Most comprehensive dose assessment to public by nuclear facilities ever done in Spain. > Dose to public is dominated by liquid effluent pathways for the power stations. > Dose to public is dominated by Rn inhalation for milling and mining facilities. > Average annual doses to public in influence areas are negligible (10 {mu}Sv/y or less). > Doses from facilities average 3.5 x 10{sup -2} {mu}Sv/y per person onto whole Spanish population.

  7. Nuclear Safety Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  8. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  9. Characterization and adjustment of the neutron radiography facility of the RP-10 nuclear reactor

    CERN Document Server

    Ravello-R, Y R

    2001-01-01

    The main aim of this work was to characterize and adjust the neutron radiography facility of the RP-10 nuclear reactor, and therefore be able to offer with this technique services to the industry and research centers in general. This technique will be complemented with others such as x-rays and gamma radiography. First, the shielding capacity of the facility was analyzed, proving that it complies with the radiological safety requirements established by the radiological safety code. Then gamma filtration tests were conducted in order to implement the direct method for image formation, optical density curves were built according to the thickness of the gamma filter, the type of film and the type of irradiation. Also, the indirect method for image formation was implemented for two types of converters: indium and dysprosium. Growth curves for optical density were also made according to contact time between converter-film, for different types of films. The resolution of the facility was also analyzed using two met...

  10. Training in Tbilisi nuclear facility provides new sampling perspectives for IAEA inspectors

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2016-06-08

    Office of Nonproliferation and Arms Control- (NPAC-) sponsored training in a “cold” nuclear facility in Tbilisi, Georgia provides International Atomic Energy Agency (IAEA) inspectors with a new perspective on environmental sampling strategies. Sponsored by the Nuclear Safeguards program under the NPAC, Pacific Northwest National Laboratory (PNNL) experts have been conducting an annual weeklong class for IAEA inspectors in a closed nuclear facility since 2011. The Andronikashvili Institute of Physics and the Republic of Georgia collaborate with PNNL to provide the training, and the U.S. Department of State, the U.S. Embassy in Tbilisi and the U.S. Mission to International Organizations in Vienna provide logistical support.

  11. Spent nuclear fuel project cold vacuum drying facility operations manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-05-12

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  12. Mock Nuclear Processing Facility-Safeguards Training Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Hasty, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johns, Rissell [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baum, Gregory [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-31

    This document outlines specific training requirements in the topical areas of Material Control and Accounting (MC&A) and Physical Protection(PP) which are to be used as technical input for designing a mock Integrated Security Facility (ISF) at Sandia National Laboratories (SNL). The overall project objective for these requirements is to enhance the ability to deliver training on Material Protection Control and Accounting (MC&A) concepts regarding hazardous material such as irradiated materials with respect to bulk processing facilities.

  13. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  14. Applicability of base-isolation R and D in nonreactor facilities to a nuclear reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W.; Chang, Y.W. (Argonne National Lab., IL (United States). Reactor Analysis and Safety Div.)

    1990-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. This paper reviews the R and D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R and D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R and D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant.

  15. R and D strategy on remote response technology for emergency situations of nuclear facilities in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Min; Cho, Jae Wan; Choi, Young Soo; Eom, Heung Seup; Seo, Yong Chil; Shin, Hoch Ul; Lee, Sung Uk; Kim, Chang Hoi; Jeong, Seung Ho; Kim, Seung Ho [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extend able to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and obtaining remote situation awareness regardless of the actual task. The efficiency of the human robot interaction is very important to obtain the overall goal for the emergency response in timely manner. It would be a bottle neck to apply the robotic technology for carrying the emergency response in NPP. Simple remote operation schemes are not adequate, more intelligent autonomous operation schemes are required to enhance the effectiveness of robots for the emergency response. KAERI has been developing various robotic systems for nuclear power plants over than 20 years after the Chernobyl accident. But the majority of the developed robotic systems is for the inspection and maintenance of nuclear power plants during their outage periods. Based on the lessons learned from the Fukushima accident, KAERI has planned R and D projects for developing remote response technologies really applicable in emergency situations of nuclear facilities. This paper presents the R and D strategy to achieve real usability and the purpose and research activity plans of on going three projects derived from the strategy.

  16. Emergency planning and response: An independent safety assessment of Department of Energy nuclear reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, D.; Boyd, R.

    1981-02-01

    The Department of Energy (DOE) has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the recommendations contained in the President's Commission Report on the Three Mile Island (TMI) Accident (the Kemeny Commission report) that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors have been reviewed. The assessments of the 13 facilities are based on information provided by the individual operator organizations and/or cognizant DOE Field Offices. Additional clarifying information was supplied in some, but not all, instances. This report indicates how these 13 reactor facilities measure up in light of the Kemeny and other TMI-related studies and recommendations, particularly those that have resulted in upgraded Nuclear Regulatory Commission (NRC) requirements in the area of emergency planning and response.

  17. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, Lindsay; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  18. Shock Thermodynamic Applied Research Facility (STAR)

    Data.gov (United States)

    Federal Laboratory Consortium — The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only...

  19. Realistic retrospective dose assessments to members of the public around Spanish nuclear facilities.

    Science.gov (United States)

    Jiménez, M A; Martín-Valdepeñas, J M; García-Talavera, M; Martín-Matarranz, J L; Salas, M R; Serrano, J I; Ramos, L M

    2011-11-01

    In the frame of an epidemiological study carried out in the influence areas around the Spanish nuclear facilities (ISCIII-CSN, 2009. Epidemiological Study of The Possible Effect of Ionizing Radiations Deriving from The Operation of Spanish Nuclear Fuel Cycle Facilities on The Health of The Population Living in Their Vicinity. Final report December 2009. Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, Consejo de Seguridad Nuclear. Madrid. Available from: http://www.csn.es/images/stories/actualidad_datos/especiales/epidemiologico/epidemiological_study.pdf), annual effective doses to public have been assessed by the Spanish Nuclear Safety Council (CSN) for over 45 years using a retrospective realistic-dose methodology. These values are compared with data from natural radiation exposure. For the affected population, natural radiation effective doses are in average 2300 times higher than effective doses due to the operation of nuclear installations (nuclear power stations and fuel cycle facilities). When considering the impact on the whole Spanish population, effective doses attributable to nuclear facilities represent in average 3.5×10(-5)mSv/y, in contrast to 1.6mSv/y from natural radiation or 1.3mSv/y from medical exposures.

  20. Control of radioactive waste in dismantling of a nuclear facility; Control de residuos radiactivos en desmantelamiento de una instalacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Campayo, E.

    2014-07-01

    In the dismantling of a nuclear facility are generated radioactive waste that must be suitably processed. The overall process, in a simplified manner, contemplates the characterization in origin, their segregation on the basis of physical, mechanical, and radiological characteristics and their packaging. (Author)

  1. Northwestern University Facility for Clean Catalytic Process Research

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin Jay [Northwestern University

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  2. Inside CERN European Organization for Nuclear Research

    CERN Document Server

    Pol, Andri; Heuer, Rolf

    2013-01-01

    For most people locations that hold a particular importance for the development of our society and for the advancement of science and technology remain hidden from view. CERN, the European Organization for Nuclear Research, is best known for its giant particle accelerator. Here researchers take part in a diverse array of fundamental physical research, in the pursuit of knowledge that will perhaps one dayrevolutionize our understanding of the universe and life on our planet. The Swiss photographer Andri Pol mixed with this multicultural community of researchers and followed their work over an extended period of time. In doing so he created a unique portrait of this fascinating “underworld.” The cutting-edge research is given a human face and the pictures allow us to perceive how in this world of the tiniest particles the biggest connections are searched for. With an essay by Peter Stamm.

  3. Public concerns and the public role in siting nuclear and chemical waste facilities

    Science.gov (United States)

    Johnson, Branden B.

    1987-09-01

    Nuclear and chemical waste facilities can be successfully sited, despite nimby responses, if siting programs account for the sources of public concern. Irrational fear is not the main source; instead, waste managers must deal with perceived inequities in the distribution of benefits and costs, and concern about facility safety. Benefit-cost inequities may be dealt with in part by keeping wastes where they are generated, through political restrictions, or by providing economic compensation and political incentives (for example, a local veto). Assuring people of facility safety includes allowing local control (monitoring, health assessment, regulation), and enhancing trust of facility managers through such means as rectifying past mistakes, individual-oriented education campaigns, and negotiation of compensation packages with local residents. These means should reduce —without eliminating—public opposition to local siting of nuclear and chemical waste facilities.

  4. Comparison of the socioeconomic impacts of international fuel service centers versus dispersed nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Braid, Jr., R. B.

    1979-01-01

    The paper investigates a variety of community impacts including: public services, fiscal issues, economic matters, land and water use, political and social cohesion, and legal considerations. Comparisons of socioeconomic impacts of colocated versus dispersed sites are made on the basis of the size of the impacted communities, the size and type of nuclear facility, and the facility's construction time frame. The paper concludes that, under similar circumstances, most of the socioeconomic impacts of colocated nuclear facilities would be somewhat less than the sum of the impacts associated with equivalent dispersed sites. While empirical data is non-existent, the paper contends, however, that because the socioeconomic impacts of colocated facilities are so great and readily identifiable to a public unskilled in making comparisons with the dispersed alternative, the facilities will likely generate so much public opposition that IFSCs will probably prove infeasible.

  5. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt [ed.

    2001-02-01

    The report is the result of a project initiated by Risoe National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risoe National Laboratory to be decommissioned and gives an assessment of the work to be done and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing for the longer decay periods; some operations still will need to be performed remotely. Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to be transferred to a Danish repository. (au)

  6. Office of Chief Scientist, Integrated Research Facility (OCSIRF)

    Data.gov (United States)

    Federal Laboratory Consortium — Introduction The Integrated Research Facility (IRF) is part of the Office of the Chief Scientist (OCS) for the Division of Clinical Research in the NIAID Office of...

  7. Prioritization methodology for the decommissioning of nuclear facilities: a study case on the Iraq former nuclear complex.

    Science.gov (United States)

    Jarjies, Adnan; Abbas, Mohammed; Monken Fernandes, Horst; Wong, Melanie; Coates, Roger

    2013-05-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive waste. The principal nuclear site being Al-Tuwaitha. Many of these sites suffered substantial physical damage during the Gulf Wars and have been subjected to subsequent looting. All require decommissioning in order to ensure both radiological and non-radiological safety. However, it is not possible to undertake the decommissioning of all sites and facilities at the same time. Therefore, a prioritization methodology has been developed in order to aid the decision-making process. The methodology comprises three principal stages of assessment: i) a quantitative surrogate risk assessment ii) a range of sensitivity analyses and iii) the inclusion of qualitative modifying factors. A group of Tuwaitha facilities presented the highest risk among the evaluated ones, followed by a middle ranking grouping of Tuwaitha facilities and some other sites, and a relatively large group of lower risk facilities and sites. The initial order of priority is changed when modifying factors are taken into account. It has to be considered the Iraq's isolation from the international nuclear community over the last two decades and the lack of experienced personnel. Therefore it is appropriate to initiate decommissioning operations on selected low risk facilities at Tuwaitha in order to build capacity and prepare for work to be carried out in more complex and potentially high hazard facilities. In addition it is appropriate to initiate some prudent precautionary actions relating to some of the higher risk facilities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This report describes the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Operations Centers, and other government-owned, contractor-operated facilities which are located in all regions of the United States. It gives brief descriptions of resources, activities, and capabilities of each field facility (sections III through V). These represent a cumulative capital investment of $12 billion and involve a work force of approximately 12,000 government (field) employees and approximately 100,000 contractor employees.

  9. Automatization of welding for nuclear power equipments and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, Y.; Matsumoto, T.; Koyama, T. (Hitachi Ltd., Ibaraki (Japan). Hitachi Works)

    1980-09-01

    For the requirement of high reliability in the construction of nuclear power plants and the reduction of radiation exposure in the modefying works of existing plants, the automation and remote operation of welding have increased their necessity. In this paper, the present state of the automation of welding for making machines, equipments and pipings for nuclear power plants in Hitachi Ltd. is described, and the aim of developing the automation, the features of the equipments and the state of application to actual plants are introduced, centering around the automation of welding for large structures such as reactor containment vessels and the remote type automatic welding system for pipings. By these automations, the large outcomes were obtained in the improvement of welding quality required for the machines and equipments for atomic energy. Moreover, the conspicuous results were also obtained in case of the peculiar works to nuclear power plants, in which the reduction of the radiation exposure related to human bodies and the welding of high quality are demanded. The present state of the automation of welding for nuclear installations in Hitachi Ltd., the development of automatic welding equipments and the present state of application to actual plants, and the development and application of the automatic pipe working machine for reducing radiation exposure are explained.

  10. Research Resources for Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    McKenna, Neil J

    2016-08-01

    Nuclear receptor (NR) signaling pathways impact cellular function in a broad variety of tissues in both normal physiology and disease states. The complex tissue-specific biology of these pathways is an enduring impediment to the development of clinical NR small-molecule modulators that combine therapeutically desirable effects in specific target tissues with suppression of off-target effects in other tissues. Supporting the important primary research in this area is a variety of web-based resources that assist researchers in gaining an appreciation of the molecular determinants of the pharmacology of a NR pathway in a given tissue. In this study, selected representative examples of these tools are reviewed, along with discussions on how current and future generations of tools might optimally adapt to the future of NR signaling research. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period.

  12. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

    1986-01-01

    This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs.

  13. Maternal residential proximity to nuclear facilities and low birth weight in offspring in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi; Lin, Yan [University of New Mexico, Department of Geography and Environmental Studies, Albuquerque, NM (United States); Benjamin Zhan, F. [Texas State University, Department of Geography, Texas Center for Geographic Information Science, San Marcos, TX (United States)

    2017-03-15

    Health effects of close residential proximity to nuclear facilities have been a concern for both the general public and health professionals. Here, a study is reported examining the association between maternal residential proximity to nuclear facilities and low birth weight (LBW) in offspring using data from 1996 through 2008 in Texas, USA. A case-control study design was used together with a proximity-based model for exposure assessment. First, the LBW case/control births were categorized into multiple proximity groups based on distances between their maternal residences and nuclear facilities. Then, a binary logistic regression model was used to examine the association between maternal residential proximity to nuclear facilities and low birth weight in offspring. The odds ratios were adjusted for birth year, public health region of maternal residence, child's sex, gestational weeks, maternal age, education, and race/ethnicity. In addition, sensitivity analyses were conducted for the model. Compared with the reference group (more than 50 km from a nuclear facility), the exposed groups did not show a statistically significant increase in LBW risk [adjusted odds ratio (aOR) 0.91 (95% confidence interval (CI): 0.81, 1.03) for group 40-50 km; aOR 0.98 (CI 0.84, 1.13) for group 30-40 km; aOR 0.95 (CI 0.79, 1.15) for group 20-30 km; aOR 0.86 (CI 0.70, 1.04) for group 10-20 km; and aOR 0.98 (CI 0.59, 1.61) for group 0-10 km]. These results were also confirmed by results of the sensitivity analyses. The results suggest that maternal residential proximity to nuclear facilities is not a significant factor for LBW in offspring. (orig.)

  14. Nuclear phenomena in low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  15. Development techniques of computerized maintenance management system for nuclear fuel cycle examination facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yon Woo; Kim, S. D.; Soong, W. S.; Kim, G. H.; Oh, W. H.; Kim, Y. G

    2000-12-01

    Normal operation of the facility is one of the key factors in the accomplishments of research goals. As confirmed by a case study of the influence of the facility operation condition on the research results, emphasis should be put on the facility preserve management. Facilities should be maintained in solid operational condition and their malfunctions should be repaired as soon as possible. The purpose of this project is to make propositions on the development of the facility Preserve management system which is to maximize the efficiency of the budget execution, manpower organization and maintenance planning, and is to minimize the duration of the operational pause due to malfunctions with the least disbursement.

  16. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  17. Intercomparison and calibration of dose calibrators used in nuclear medicine facilities

    CERN Document Server

    Costa, A M D

    2003-01-01

    The aim of this work was to establish a working standard for intercomparison and calibration of dose calibrators used in most of nuclear medicine facilities for the determination of the activity of radionuclides administered to patients in specific examinations or therapeutic procedures. A commercial dose calibrator, a set of standard radioactive sources, and syringes, vials and ampoules with radionuclide solutions used in nuclear medicine were utilized in this work. The commercial dose calibrator was calibrated for radionuclide solutions used in nuclear medicine. Simple instrument tests, such as linearity response and variation response with the source volume at a constant source activity concentration were performed. This instrument may be used as a reference system for intercomparison and calibration of other activity meters, as a method of quality control of dose calibrators utilized in nuclear medicine facilities.

  18. A study on environmental regulation and public inquiry system of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Kang, Chang Sun; Son, Ki Yon; Cho, Young Ho; Yang, Ji Won; Lee, Young Wook; Ko, Hyun Suk [Seoul National Univ., Seoul (Korea, Republic of)

    2000-03-15

    Public hearing system for domestic and foreign nuclear facilities are investigated and analyzed. As a result, Korean public hearing system are developed. Atomic Energy Act, Environmental Impact Assessment Act and Administrative Procedure Act of Korea are reviewed and appropriate acts, regulations, procedures and mandates of foreign countries including U.S.A are reviewed and analyzed. On the basis of these results the role of device to collect public opinion is identified for nuclear facility of Korea and the elementary principle of the system and recommendations are developed.

  19. Nuclear physics detector technology applied to plant biology research

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, Andrew G. [JLAB; Kross, Brian J. [JLAB; Lee, Seung Joo [JLAB; McKisson, John E. [JLAB; Xi, Wenze [JLAB; Zorn, Carl J. [JLAB; Howell, Calvin [DUKE; Crowell, A.S. [DUKE; Reid, C.D. [DUKE; Smith, Mark [MARYLAND U.

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  20. Human sex ratio at birth and residential proximity to nuclear facilities in France.

    Science.gov (United States)

    Scherb, Hagen; Kusmierz, Ralf; Voigt, Kristina

    2016-04-01

    The possible detrimental genetic impact on humans living in the vicinity of nuclear facilities has been previously studied. We found evidence for an increase in the human secondary sex ratio (sex odds) within distances of up to 35km from nuclear facilities in Germany and Switzerland. Here, we extend our pilot investigations using new comprehensive data from France. The French data (1968-2011) account for 36,565 municipalities with 16,968,701 male and 16,145,925 female births. The overall sex ratio was 1.0510. Using linear and nonlinear logistic regression models with dummy variables coding for appropriately grouped municipalities, operation time periods, and corresponding spatiotemporal interactions, we consider the association between annual municipality-level birth sex ratios and minimum distances of municipalities from nuclear facilities. Within 35km from 28 nuclear sites in France, the sex ratio is increased relative to the rest of France with a sex odds ratio (SOR) of 1.0028, (95% CI: 1.0007, 1.0049). The detected association between municipalities' minimum distances from nuclear facilities and the sex ratio in France corroborates our findings for Germany and Switzerland.

  1. Man-Vehicle Systems Research Facility - Design and operating characteristics

    Science.gov (United States)

    Shiner, Robert J.; Sullivan, Barry T.

    1992-01-01

    This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.

  2. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  3. Improving the regulation of safety at DOE nuclear facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  4. A study of the operation of selected national research facilities

    Science.gov (United States)

    Eisner, M.

    1974-01-01

    The operation of national research facilities was studied. Conclusions of the study show that a strong resident scientific staff is required for successful facility operation. No unique scheme of scientific management is revealed except for the obvious fact that the management must be responsive to the users needs and requirements. Users groups provide a convenient channel through which these needs and requirements are communicated.

  5. REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Metcalf; Robert Bean

    2009-10-01

    Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEA’s Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facility’s general character, purpose, capacity, and location; (2) Description of the facility’s layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards

  6. Organizational culture, safety culture, and safety performance at research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, William S.

    2000-07-30

    Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

  7. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  8. Burning plasma regime for Fussion-Fission Research Facility

    Science.gov (United States)

    Zakharov, Leonid E.

    2010-11-01

    The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

  9. Current status of nuclear physics research

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Department of Physics and Astronomy, Texas A and M University-Commerce (United States); Hussein, Mahir S., E-mail: hussein@if.usp.br [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil). Dept. de Fisica

    2015-12-15

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as {sup 4}He, {sup 7}Li, {sup 9}Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate

  10. Current Status of Nuclear Physics Research

    Science.gov (United States)

    Bertulani, Carlos A.; Hussein, Mahir S.

    2015-12-01

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in

  11. Nuclear Physics Research at the University of Richmond progress report, November 1, 1992--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1993-12-31

    Summarized in this report is the progress achieved during the period from November 1, 1992 to October 31, 1993 under Contract Number DE-FG05-88ER40459. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focussed on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and the University of Pennsylvania.

  12. Facilities Management research in the Nordic Countries

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    This article provides a brief overview of the short history of FM research in Denmark, Norway, Sweden and Finland, and presents current research topics and trends in these countries. It is based on information originally collected as part of the planning for the Danish research programme that led...

  13. General framework and basis of decommissioning of nuclear facilities; Marco general y bases de los desmantelamientos de las instalaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J. L.; Martin, N.; Correa, C.

    2013-07-01

    This article summarizes the legal framework defining the strategies, the main activities and the basic responsibilities and roles of the various agents involved in the decommissioning of nuclear facilities in Spain. It also describes briefly the most relevant projects and activities already developed and/or ongoing nowadays, which have positioned Spain within the small group of countries having an integrated and proved experience and know how in this particular field. (Author)

  14. Design of sample carrier for neutron irradiation facility at TRIGA MARK II nuclear reactor

    Science.gov (United States)

    Abdullah, Y.; Hamid, N. A.; Mansor, M. A.; Ahmad, M. H. A. R. M.; Yusof, M. R.; Yazid, H.; Mohamed, A. A.

    2013-06-01

    The objective of this work is to design a sample carrier for neutron irradiation experiment at beam ports of research nuclear reactor, the Reaktor TRIGA PUSPATI (RTP). The sample carrier was designed so that irradiation experiment can be performed safely by researchers. This development will resolve the transferring of sample issues faced by the researchers at the facility when performing neutron irradiation studies. The function of sample carrier is to ensure the sample for the irradiation process can be transferred into and out from the beam port of the reactor safely and effectively. The design model used was House of Quality Method (HOQ) which is usually used for developing specifications for product and develop numerical target to work towards and determining how well we can meet up to the needs. The chosen sample carrier (product) consists of cylindrical casing shape with hydraulic cylinders transportation method. The sample placing can be done manually, locomotion was by wheel while shielding used was made of boron materials. The sample carrier design can shield thermal neutron during irradiation of sample so that only low fluencies fast neutron irradiates the sample.

  15. Research Facilities for Solar Astronomy at ARIES

    Indian Academy of Sciences (India)

    P. Pant

    2006-06-01

    The solar observational facilities at ARIES (erstwhile U.P. State Observatory, UPSO), Nainital, began in the sixties with the acquisition of two moderate sized (25 cm, f/66 off-axis Skew Cassegrain and 15 cm, f/15 refractor) telescopes. Both these systems receive sunlight through a 45 cm and 25 cm coelostat respectively. The backend instruments to these systems comprised of a single pass grating spectrograph for spectroscopic study of the Sun and a Bernhard–Halle filter, coupled with a Robot recorder camera for solar patrolling in respectively. With the advancement in solar observing techniques with high temporal and spatial resolution in and other wavelengths, it became inevitable to acquire sophisticated instrumentation for data acquisition. In view of that, the above facilities were upgraded, owing to which the conventional photographic techniques were replaced by the CCD camera systems attached with two 15 cm, f/15 Coude refractor telescopes. These CCD systems include the Peltier cooled CCD camera and photometrics PXL high speed modular CCD camera which provide high temporal and spatial resolution of ∼ 25 ms and ∼ 1.3 arcsec respectively.

  16. Small Multi-Purpose Research Facility (SMiRF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Multi-Purpose Research Facility (SMiRF) evaluates the performance of the thermal protection systems required to provide long-term storage (up to 10 years)...

  17. Small Multi-Purpose Research Facility (SMiRF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Multi-Purpose Research Facility (SMiRF) evaluates the performance of the thermal protection systems required to provide long-term storage (up to 10 years)...

  18. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  19. Research plans of heavy element nuclear chemistry in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    Research in nuclear chemistry of heavy elements in JAERI is briefly introduced. Status and future prospects for studies of chemical and nuclear properties of the transactinide elements with the JAERI tandem accelerator are presented. (author)

  20. A facility for using cluster research to study environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

  1. A Study on Research Trend in Nuclear Forensics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyungmin; Yim, Hobin; Lee, Seungmin; Hong, Yunjeong; Kim, Jae Kwang [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2014-05-15

    The international community has recognized the serious threat posed by nuclear and other radioactive material out of regulatory control. To address these concerns, the Office of Nuclear Security of the international Atomic Energy Agency (IAEA) is developing, inter alia, guidance for nuclear forensics to assist Member States. According to the IAEA Incident and Trafficking Database (ITDB) of the IAEA to record the illegal trade and trafficking incidents of nuclear material or other radioactive material, incidents of 2331 have been reported in 1993 to 2012. These incidents mean that we are not safe for nuclear material. In order to solve the case generated by the illicit trafficking of nuclear material and the efficient management of nuclear material, the study of nuclear forensics is very important. In this study, we investigated the analytical techniques and the current status of nuclear forensics research. In this study, we investigated the current status of research of nuclear forensics, procedures for analysis and nuclear forensics analysis technique. A result of the study, we have been found that the major institutes and laboratory actively research on analysis technique and nuclear forensics. However, research on nuclear forensics is still in early stage, ROK is necessary preliminary survey of analysis technique and foundation of physical, chemical, and morphology characteristics of nuclear materials.

  2. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Science.gov (United States)

    Destouches, Christophe

    2016-03-01

    The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND) and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  3. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Directory of Open Access Journals (Sweden)

    Destouches Christophe

    2016-01-01

    Full Text Available The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  4. CAS spearheads R&D program for research facilities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China's capacity for indigenous S&T innovation is believed to have been hampered by its lack of home- grown research facilities. To address the problem, a pilot program for the research and development of major S&T facilities has been launched at CAS. The kick-off meeting was held on 28 March in the CAS Technical Institute of Physics and Chemistry in Beijing.

  5. Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

    1995-02-01

    The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex.

  6. A comparative study of worker and general public risks from nuclear facility operation using MACCS2

    Energy Technology Data Exchange (ETDEWEB)

    East, J.M.; O`Kula, K.R.

    1994-10-01

    Over the last five years, the US Department of Energy (DOE) has attempted to establish quantitative risk indices as minimum acceptance criteria for assurance of safe operation of its nuclear facilities. The risk indices serve as aiming points or targets to include consideration of all aspects of operation including normal conditions as well as abnormal, design basis events, and beyond-design basis events. Although initial focus of the application of these safety targets had been on DOE`s reactors, more recent assessments have also considered non-reactor facilities including those encompassing storage and nuclear processing activities. Regardless of the facility`s primary function, accident progression, event tree/fault tree logic models, and probabilistic (dose) consequence assessment model must be implemented to yield a fully integrated analysis of facility operation. The primary tool for probabilistic consequence assessment in the US is the MELCOR Accident Consequence Code System (MACCS). In this study, two version of MACCS are applied to representative source terms developed in the safety analysis associated with a waste processing facility at the Westinghouse Savannah River Company`s (WSRC`s) Savannah River Site (SRS). The MACCS versions are used to estimate population dose and subsequent health effects to workers and the general public from the SRS referenced facility operation. When combined with the frequency of occurrence evaluation, the margin of compliance with the safety targets may be quantified.

  7. Proposed design for the PGAA facility at the TRIGA IPR-R1 research reactor

    OpenAIRE

    Guerra, Bruno T.; Jacimovic, Radojko; Menezes, Maria Angela BC; Leal,Alexandre S.

    2013-01-01

    Background This work presents an initial proposed design of a Prompt Gamma Activation Analysis (PGAA) facility to be installed at the TRIGA IPR-R1, a 60 years old research reactor of the Centre of Development of Nuclear Technology (CDTN) in Brazil. The basic characteristics of the facility and the results of the neutron flux are presented and discussed. Findings The proposed design is based on a quasi vertical tube as a neutron guide from the reactor core, inside the reactor pool, 6 m below t...

  8. Status and Opportunities at Project X: A Multi-MW Facility for Intensity Frontier Research

    CERN Document Server

    Holmes, S D; Kephart, R; Kourbanis, I; Lebedev, V; Mishra, S; Nagaitsev, S; Solyak, N; Tschirhart, R

    2014-01-01

    Project X is a multi-megawatt proton facility being developed to support a world-leading program in Intensity Frontier physics at Fermilab. The facility will support programs in elementary particle and nuclear physics, with the potential for broader applications in materials and energy research. Project X is in the development stage with a R&D program focused on front end and superconducting RF acceleration technologies, and with design concepts for a staged implementation. This paper will review the status of the Project X conceptual development and the associated R&D programs.

  9. National facility for neutron beam research

    Indian Academy of Sciences (India)

    K R Rao

    2004-07-01

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview of current scenario of NBR world-wide and future of Indian activities.

  10. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor-borne

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor-borne domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor-borne and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  11. Analysis of factors related to man-induced hazard for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Soon; Jung, Jea Hee; Lee, Keun O; Son, Ki Sang; Wang, Sang Chul; Lee, Chang Jin; Ku, Min Ho; Park, Nam Young [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2003-03-15

    This study is to show a guide for installing hazardous facilities adjoined atomic power plant after finding out how much these facilities could impact to the atomic plant. Nuclear power plant is an important facility which is closely connected with public life, industrial activity, and the conduct of public business, so it should not be damaged. Therefore, if there are hazardous and harmful facilities near the plant, then they must be evaluated by the size, the type, and the shape. First of all, any factors that could cause man induced accident must be investigated. And they must be exactly evaluated from how much it will damage the plant facilities. The purpose of this study is to set a technical standard for the installation of these facilities by evaluating the man induced accident. Also, it is to make out the evaluation methods by investigating the hazardous facilities which are placed near the plant. Our country is now using CFR standard : reg. guide and IAEA safety series. However, not only the standard of technology which is related to man induced accident but also the evaluation methods for facilities are not yet layed down. As It was mentioned above, we should evaluate these facilities adequately, and these methods must be made out.

  12. Harmonization between a Framework of Multilateral Approaches to Nuclear Fuel Cycle Facilities and Bilateral Nuclear Cooperation Agreements

    Directory of Open Access Journals (Sweden)

    Makiko Tazaki

    2013-09-01

    Full Text Available One of primary challenges for ensuring effective and efficient functions of the multilateral nuclear approaches (MNA to nuclear fuel cycle facilities is harmonization between a MNA framework and existing nuclear cooperation agreements (NCA. A method to achieve such harmonization is to construct a MNA framework with robust non-proliferation characteristics, in order to obtain supplier states’, especially the US’s prior consents for non-supplier states’ certain activities including spent fuel reprocessing, plutonium storages and retransfers of plutonium originated in NCAs. Such robust characteristics can be accomplished by MNA member states’ compliances with International Atomic Energy Agency (IAEA Safeguards, regional safeguards agreements, international conventions, guidelines and recommendations on nuclear non-proliferation, nuclear security, safety, and export control. Those provisions are to be incorporated into an MNA founding agreement, as requirements to be MNA members in relation to NCAs. Furthermore, if an MNA facility is, (1 owned and operated jointly by all MNA member states, (2 able to conclude bilateral NCAs with non-MNA/supplier states as a single legal entity representing its all member states like an international organization, and (3 able to obtain necessary prior consents, stable, smooth, and timely supplies of nuclear fuel and services can be assured among MNA member states. In this paper, the authors will set out a general MNA framework and then apply it to a specific example of Europe Atomic Energy Community (EURATOM and then consider its applicability to the Asian region, where an establishment of an MNA framework is expected to be explored.

  13. Neutron spectrometry at the interim storage facility for spent nuclear fuel

    CERN Document Server

    Králik, M; Studeny, J

    2002-01-01

    Dosimetric characteristics of neutron and photon components of mixed fields around casks for spent nuclear fuel have been determined at various places at the dry interim storage facility. The results obtained with metrological grade instruments were compared with data provided by usual survey meters for both neutrons and photons.

  14. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  15. Guideline to good practices for postmaintenance testing at DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Purpose of this guide is to provide contractor maintenance organizations with information that may be used for development and implementation of a postmaintenance testing process for structures, systems, and components at DOE nuclear facilities. It is intended to be an example guideline for the implementation of DOE Order 4330.4A, Maintenance Management Program, Chapter 2, Element 9, Postmaintenance Testing.

  16. 75 FR 19428 - Palisades Nuclear Plant; Notice of Consideration of Issuance of Amendment to Facility Operating...

    Science.gov (United States)

    2010-04-14

    ... COMMISSION Palisades Nuclear Plant; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity for a Hearing The U... significant hazards consideration. Under the Commission's regulations in Title 10 of the Code of...

  17. 75 FR 70708 - Palisades Nuclear Plant; Notice of Consideration of Issuance of Amendment to Facility Operating...

    Science.gov (United States)

    2010-11-18

    ... COMMISSION Palisades Nuclear Plant; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity for a Hearing The U... no significant hazards consideration. Under the Commission's regulations in Title 10 of the Code...

  18. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Science.gov (United States)

    2010-03-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board) Recommendation 2009-2 AGENCY: Department of Energy. ACTION: Notice. SUMMARY: The Department of Energy (DOE) is making...

  19. Management concepts and safety applications for nuclear fuel facilities

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, H.; Scotti, R.S. [George Washington Univ., Washington, DC (United States). School of Engineering and Applied Science; Delicate, W.S. [KEVRIC Co., Inc., Silver Spring, MD (United States)

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  20. Mobile robots for use in nuclear facilities; Mobile Roboter fuer kerntechnische Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H. [Inst. fuer Werkstoffkunde, Univ. Hannover (Germany); Bach, F.W. [Inst. fuer Werkstoffkunde, Univ. Hannover (Germany); Seevers, J. [Inst. fuer Werkstoffkunde, Univ. Hannover (Germany)

    1995-10-01

    The radiation exposure encountered in revisions and demolitions of some areas of nuclear facilities requires the use of remotely operated technical systems in order to avoid the personnel being exposed in the course of such work. The main activities conducted within such areas include inspecting, measuring, cleaning, cutting, and handling. The Institute for Materials Research (IW) of th University of Hannover, with its twenty years of experience in basic and application-oriented research and development in the field of thermal cutting, especially in plasma fusion cutting, and ten years of development of remotely operated handling systems, offers its services as a partner in solving these problems in nuclear plants. Besides stationary systems, IW has developed also mobile robots and manipulators able to move largely autonomously under remote control within a certain area. (orig.) [Deutsch] Die Revision und der Rueckbau von kerntechnischen Anlagen erfordern aufgrund der Strahlenexposition in einigen Bereichen fernbedienbare technische Systeme, so dass das Personal beim Verrichten von Taetigkeiten strahlungstechnisch nicht belastet wird. Die Aufgaben innerhalb solcher Bereiche sind im wesentlichen inspizieren, messen, reinigen, schneiden und handhaben. Das Institut fuer Werkstoffkunde (IW) der Universitaet Hannover mit seiner nunmehr zwanzigjaehrigen Erfahrung aus der Grundlagen- und anwendungsorientierten Forschung und Entwicklung auf dem Gebiet der thermischen Trenntechnik, insbesondere der Plasmaschmelzschneidtechnik, sowie der seit zehn Jahren betriebenen Entwicklung von fernbedienbaren Handhabungssystemen bietet sich als Partner fuer die Loesung dieser Aufgaben in kerntechnischen Anlagen an. Neben der Ausfuehrung von stationaeren Systemen wurden am IW mobile Roboter und Manipulatoren entwickelt, die sich fernbedient weitgehend autonom in einem bestimmten Bereich bewegen koennen. (orig.)

  1. The Development of a Radiation Hardened Robot for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil (and others)

    2007-04-15

    We has been developed two remotely controlled robotic systems. One is a underwater vehicle for inspection of the internal structures of PWRs and retrieving foreign stubs in the reactor pressure vessels and reactor coolant pipes. The other robotic system consists of a articulated-type mobile robot capable of recovering the failure of the fuel exchange machine and a mini modular mobile robot for inspection of feeder pipes with ultrasonic array sensors in PHWRs. The underwater robot has been designed by considering radiation effect, underwater condition, and accessibility to the working area. The size of underwater robot is designed to enter the cold legs. A extendable manipulator is mounted on the mobile robot, which can restore nuclear fuel exchange machine. The mini modular mobile robot is composed of dual inch worm mechanisms, which are constructed by two gripper bodies that can fix the robot body on to the pipe and move along the longitudinal and to rotate in a circumferential direction to access all of the outer surfaces of the pipe.

  2. Clinical research: making it work in the outpatient dialysis facility.

    Science.gov (United States)

    Doss, Sheila; Schiller, Brigitte; Fox, Rosemary; Moran, John

    2009-01-01

    Performing clinical research in the outpatient dialysis facility can be very challenging. Research protocols define time-specific and detailed procedures to be performed. In dialysis units where staff members are responsible for the delivery of life-sustaining therapy to an aging end stage renal disease patient population with multiple co-morbidities, these requirements can easily be considered too burdensome to be implemented successfully. In the authors'facility, clinical research has been successfully implemented with a close team approach supported by a dedicated research group and unit staff

  3. Performance of the electronic personal dosemeter for neutron 'Saphydose-N' at different workplaces of nuclear facilities.

    Science.gov (United States)

    Lahaye, T; Chau, Q; Ménard, S; Lacoste, V; Muller, H; Luszik-Bhadra, M; Reginatto, M; Bruguier, P

    2006-01-01

    This paper mainly aims at presenting the measurements and the results obtained with the electronic personal neutron dosemeter Saphydose-N at different facilities. Three campaigns were led in the frame of the European contract EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'). The first one consisted in the measurements at the IRSN French research laboratory in reference neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources ((241)AmBe; (252)Cf; (252)Cf(D(2)O)\\Cd) and a realistic spectrum (CANEL/T400). The second one was performed at the Krümmel Nuclear Power Plant (Germany) close to the boiling water reactor and to a spent fuel transport cask. The third one was realised at Mol (Belgium), at the VENUS Research Reactor and at Belgonucléaire, a fuel processing factory.

  4. Methodology for calculation of radiation doses in the environs from nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.

    1976-08-01

    Comparison of the impacts of various nuclear fuel cycle alternatives includes the evaluation of the radiological impacts. To evaluate the radiological impacts of fuel cycle alternatives, exposure to man must first be identified. The pathways of consequence by which man can be exposed to radiation from a nuclear facility are listed and are grouped into those associated with gaseous effluents, those associated with liquid effluents, and those involving exposure to direct radiation from the facility or from transportation of radioactive materials to or from the facility. Calculations for each pathway were made for those selected organs which could potentially receive the highest radiation dose. Some of the programs developed for calculating radiation doses from radionuclides in the environment are described. (CH)

  5. Evaluation of radiological dispersion/consequence codes supporting DOE nuclear facility SARs

    Energy Technology Data Exchange (ETDEWEB)

    O`Kula, K.R.; Paik, I.K. [Westinghouse Savannah River Site, Aiken, SC (United States); Chung, D.Y. [Dept. of Energy, Germantown, MD (United States)

    1996-12-31

    Since the early 1990s, the authorization basis documentation of many U.S. Department of Energy (DOE) nuclear facilities has been upgraded to comply with DOE orders and standards. In this process, many safety analyses have been revised. Unfortunately, there has been nonuniform application of software, and the most appropriate computer and engineering methodologies often are not applied. A DOE Accident Phenomenology and Consequence (APAC) Methodology Evaluation Program was originated at the request of DOE Defense Programs to evaluate the safety analysis methodologies used in nuclear facility authorization basis documentation and to define future cost-effective support and development initiatives. Six areas, including source term development (fire, spills, and explosion analysis), in-facility transport, and dispersion/ consequence analysis (chemical and radiological) are contained in the APAC program. The evaluation process, codes considered, key results, and recommendations for future model and software development of the Radiological Dispersion/Consequence Working Group are summarized in this paper.

  6. Description of the Space Nuclear Thermal Propulsion (SNTP) cryogenic and hot-hydrogen test facility

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.A.; Riffle, G.K.; Merdich, J.A. (Allied-Signal Aerospace Company, Garrett Fluid Systems Division, 1300 W. Warner Rd. P.O. Box 22200, Tempe, Arizona 85282 (United States))

    1993-01-15

    Cryogenic and high-temperature and high-pressure hydrogen test capabilities are required for component development and qualification for the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program. To effectively support the non-nuclear test needs of the SNTP program, as well as other specialized programs that utilize hydrogen as a working fluid, Allied-Signal Aerospace Company, Garrett Fluid Systems Division (GFSD) is currently developing a hydrogen test facility at our remote San Tan test site. The facility is specifically designed to support turbopump, propellant management valves, instrumentation and general materials evaluation testing with hydrogen at pressures and temperatures representative of actual SNTP engine operating conditions. This paper presents a general description of the SNTP hot-hydrogen test facility including test capabilities, technical approach, and technical status.

  7. Feasibility of AEDC test facility support for nuclear thermal propulsion system development

    Science.gov (United States)

    Roler, Max A.; Turner, Eugene E.; Bradley, Dale

    1993-06-01

    Test facility requirements to support the development of nuclear propulsion have been evaluated and shortfalls within current test facility capabilities identified. The development of a nonnuclear heat source capable of heating the high-pressure, high mass flowrate hydrogen propellant to the required operating temperature has been identified as a key enabling technology. Other significant issues identified were the safety aspects associated with the cooling, pumping, and disposal of the hot hydrogen exhaust gas. The rocket test facilities at the U.S. Air Force Arnold Engineering Development Center (AEDC) were evaluated to determine the ability to support the operationally realistic testing of 'nonirradiated' nuclear propulsion components and/or subassemblies under simulated altitude conditions. An overview of the results from this evaluation process is presented herein.

  8. Description of the Space Nuclear Thermal Propulsion (SNTP) cryogenic and hot-hydrogen test facility

    Science.gov (United States)

    Thompson, David A.; Riffle, George K.; Merdich, Jeff A.

    1993-01-01

    Cryogenic and high-temperature and high-pressure hydrogen test capabilities are required for component development and qualification for the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program. To effectively support the non-nuclear test needs of the SNTP program, as well as other specialized programs that utilize hydrogen as a working fluid, Allied-Signal Aerospace Company, Garrett Fluid Systems Division (GFSD) is currently developing a hydrogen test facility at our remote San Tan test site. The facility is specifically designed to support turbopump, propellant management valves, instrumentation and general materials evaluation testing with hydrogen at pressures and temperatures representative of actual SNTP engine operating conditions. This paper presents a general description of the SNTP hot-hydrogen test facility including test capabilities, technical approach, and technical status.

  9. Feasibility of AEDC test facility support for nuclear thermal propulsion system development

    Energy Technology Data Exchange (ETDEWEB)

    Roler, M.A.; Turner, E.E.; Bradley, D.

    1993-06-01

    Test facility requirements to support the development of nuclear propulsion have been evaluated and shortfalls within current test facility capabilities identified. The development of a nonnuclear heat source capable of heating the high-pressure, high mass flowrate hydrogen propellant to the required operating temperature has been identified as a key enabling technology. Other significant issues identified were the safety aspects associated with the cooling, pumping, and disposal of the hot hydrogen exhaust gas. The rocket test facilities at the U.S. Air Force Arnold Engineering Development Center (AEDC) were evaluated to determine the ability to support the operationally realistic testing of 'nonirradiated' nuclear propulsion components and/or subassemblies under simulated altitude conditions. An overview of the results from this evaluation process is presented herein. 3 refs.

  10. The CASPAR underground accelerator facility for the study of low energy nuclear astrophysics

    Science.gov (United States)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wiescher, Michael

    2016-09-01

    The drive of nuclear astrophysics is to push the limits of reaction measurements into the burning regime of astrophysical interest. As current laboratory experiments approach the stellar burning window, the rapid drop off of cross-sections is a significant barrier and drives the need for higher intensity accelerators, more robust and isotopically enriched target material and lower background interference. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to the lower energies needed. The CASPAR facility is the first and only underground accelerator facility in the US, focused on the study of low energy reactions of nuclear astrophysical interest. Support provided by NSF Grant No. PHY 1419765, JINA-CEE Grant No. PHY 1430152 and the South Dakota Science and Technology Authority.

  11. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  12. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  13. Comparison of airborne and surface particulate size distributions in specific Hanford Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ottley, D.B.

    1995-05-01

    Settled dust from nuclear operations may be contaminated with radionuclides and become resuspended and subsequently breathed. This is the predominate radionuclide inhalation hazard scenario in nuclear facilities that have been deactivated and no longer have liquid in their process systems that may become directly airborne in accident situations. Comparisons were made between indoor ambient airborne particulate size distribution and that of resuspended dust that could become contaminated and subsequently airborne during decommissioning operations at selected nuclear facilities on the Hanford Site. Results indicate that only 5% of the particles, by count, above the breathing zone are greater than ten (10) {mu}m in size and that the particulates that could be resuspended into the breathing zone had a mean aerodynamic equivalent diameter of four (4) {mu}m or less.

  14. 76 FR 13397 - DOE Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet...

    Science.gov (United States)

    2011-03-11

    ... Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet Mixing at the... Defense Nuclear Facilities Safety Board Recommendation 2010-2, concerning Pulse Jet Mixing at the Waste... Board (Board) Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization...

  15. Style, content and format guide for writing safety analysis documents. Volume 1, Safety analysis reports for DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The purpose of Volume 1 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Analysis Reports (SARs) for DOE nuclear facilities at Sandia National Laboratories. The scope of Volume 1 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SARs for DOE nuclear facilities.

  16. Recent Upgrades at the Safety and Tritium Applied Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles [Idaho National Laboratory; Merrill, Brad Johnson [Idaho National Laboratory; Stewart, Dean Andrew [Idaho National Laboratory; Loftus, Larry Shayne [Idaho National Laboratory

    2016-03-01

    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety at the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.

  17. Software and hardware package for justification of safety of nuclear legacy facilities

    Directory of Open Access Journals (Sweden)

    P.A. Blokhin

    2017-03-01

    Full Text Available Determination of future fate for nuclear legacy facilities is becoming an extremely important near-term issue. This includes decommissioning options to be identified based on detailed justifications of respective designs. No general practice has been developed in Russia to address such issues, while the initial steps to this end have been made as part of the federal target program “Ensuring Nuclear and Radiation Safety for 2008 and Up to the Year 2015”. Problems arising in justification of decommissioning options for such facilities, in terms of radiation protection and safety assessments both for the public and personnel, differ greatly from tasks involved in design of new nuclear installations. The explanation is a critical shortage of information on both nuclear legacy facilities as such and on the RW they contain. Extra complexities stem from regulatory requirements to facilities of this type having changed greatly since the time these facilities were built. This puts priority on development of approaches to justification of nuclear, radiation and environmental safety. A software and hardware package, OBOYAN, has been developed to solve a great variety of tasks to be addressed as part of this problem based on a combination of software and hardware tools enabling analysis and justification of the NLS safety in their current state and in a long term. The package's key components are computational modules used to model radiation fields, radionuclide migration and distribution of contamination in water and air, as well as to estimate human doses and risks. The purpose of the study is to describe the structure and the functional capabilities of the package and to provide examples of the package application.

  18. Guidance for the design and management of a maintenance plan to assure safety and improve the predictability of a DOE nuclear irradiation facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Booth, R.S.; Kryter, R.C.; Shepard, R.L.; Smith, O.L. [Oak Ridge National Lab., TN (United States); Upadhyaya, B.R. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Rowan, W.J.

    1994-10-01

    A program is recommended for planning the maintenance of DOE nuclear facilities that will help safety and enhance availability throughout a facility`s life cycle. While investigating the requirements for maintenance activities, a major difference was identified between the strategy suitable for a conventional power reactor and one for a research reactor facility: the latter should provide a high degree of predicted availability (referred to hereafter as ``predictability``) to its users, whereas the former should maximize total energy production. These differing operating goals necessitate different maintenance strategies. A strategy for scheduling research reactor facility operation and shutdown for maintenance must balance safety, reliability,and predicted availability. The approach developed here is based on three major elements: (1) a probabilistic risk analysis of the balance between assured reliability and predictability (presented in Appendix C), (2) an assessment of the safety and operational impact of maintenance activities applied to various components of the facility, and (3) a data base of historical and operational information on the performance and requirements for maintenance of various components. These factors are integrated into a set of guidelines for designing a new highly maintainable facility, for preparing flexible schedules for improved maintenance of existing facilities, and for anticipating the maintenance required to extend the life of an aging facility. Although tailored to research reactor facilities, the methodology has broader applicability and may therefore be used to improved the maintenance of power reactors, particularly in anticipation of peak load demands.

  19. Nuclear power plant Severe Accident Research Plan

    Energy Technology Data Exchange (ETDEWEB)

    Larkins, J T; Cunningham, M A

    1983-01-01

    The Severe Accident Research Plan (SARP) will provide technical information necessary to support regulatory decisions in the severe accident area for existing or planned nuclear power plants, and covers research for the time period of January 1982 through January 1986. SARP will develop generic bases to determine how safe the plants are and where and how their level of safety ought to be improved. The analysis to address these issues will be performed using improved probabilistic risk assessment methodology, as benchmarked to more exact data and analysis. There are thirteen program elements in the plan and the work is phased in two parts, with the first phase being completed in early 1984, at which time an assessment will be made whether or not any major changes will be recommended to the Commission for operating plants to handle severe accidents. Additionally at this time, all of the thirteen program elements in Chapter 5 will be reviewed and assessed in terms of how much additional work is necessary and where major impacts in probabilistic risk assessment might be achieved. Confirmatory research will be carried out in phase II to provide additional assurance on the appropriateness of phase I decisions. Most of this work will be concluded by early 1986.

  20. A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility

    Science.gov (United States)

    Jackson, K. E.; Fasanella, E. L.

    2003-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

  1. Activities on Nuclear Data Measurements at Pohang Neutron Facility

    Science.gov (United States)

    Kim, Guinyun

    2009-03-01

    We report the activities of the Pohang Neutron Facility which consists of an electron linear accelerator, a water-cooled Ta target, and a 12-m time-of-flight path. It has been equipped with a four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows simultaneous accumulation of the neutron time of flight spectra from 4 different detectors. It can be possible to measure the neutron total cross-sections in the neutron energy range from 0.1 eV to few hundreds eV by using the neutron time-of-flight method. A 6LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 12.1 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements of several samples (Ta, Mo) are in general agreement with the evaluated data in ENDF/B-VI. We measured the thermal neutron capture cross-sections and the resonance integrals of the 186W(n,γ)187W reaction and the 98Mo(n,γ)99Mo reaction by the activation method using the 197Au(n,γ)198Au monitor reaction as a single comparator. We also report the isomeric yield ratios for the 44 m, gSc isomeric pairs produced from four different photonuclear reactions 45Sc(γ,n)44m,gSc, natTi(γ,xn1p)44m,gSc, natFe(γ,xn5p)52m,gMn, and 103Rh(γ,4n)99m,gRh by using the activation method.

  2. Project Hanford management contract quality assurance program implementation plan for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bibb, E.K.

    1997-10-15

    During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

  3. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  4. Radiation applications research and facilities in AECL research company

    Science.gov (United States)

    Iverson, S. L.

    In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate

  5. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  6. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    Energy Technology Data Exchange (ETDEWEB)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.; Montgomery, V. Trent [Nuclear Engineering and Radiological Science Center, Alabama A and M University, Huntsville, AL (United States); James, Ralph B.; Blackburn, Noel D. [Nonproliferation and National Security Department, Brookhaven National Laboratory, Upton, NY (United States); Glenn, Chance M. [College of Engineering, Technology and Physical Sciences, Alabama A and M University, Huntsville, AL (United States)

    2015-07-01

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrative curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and

  7. Strategic Nuclear Research Collaboration - FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  8. ARM Climate Research Facility Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  9. Sheep: The First Large Animal Model in Nuclear Transfer Research

    OpenAIRE

    Loi, Pasqualino; Czernik, Marta; Zacchini, Federica; Iuso, Domenico; Scapolo, Pier Augusto; Ptak, Grazyna

    2013-01-01

    The scope of this article is not to provide an exhaustive review of nuclear transfer research, because many authoritative reviews exist on the biological issues related to somatic and embryonic cell nuclear transfer. We shall instead provide an overview on the work done specifically on sheep and the value of this work on the greater nuclear transfer landscape.

  10. Public Facilities Management and Action Research for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    practice inspired by the principles of FM. The bottom up change process had an employee perspective, and the work provides answers to the challenges of creating a culture allowing for critical reflections in relation to the impact of FM practice on societal sustainability.......Current work is the main product of a PhD study with the initial working title ‘Sustainable Facilities Management’ at Centre for Facilities Management – Realdania Research, DTU Management 1. December 2008 – 30. November 2011. Here the notion of Public Sustainable Facilities Management (FM...

  11. FAIR: The accelerator facility for antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Sharkov, Boris [FAIR JCR GSI, Darmstad (Germany)

    2010-07-01

    This presentation outlines the current status of the facility for antiproton and ion research (FAIR). It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction of the accelerator modules in accordance with modularized start version are described. Outstanding research opportunities offered by the modularized start version for all scientific FAIR communities from early on will allow to bridge the time until FAIR's completion with a world-leading research program. The green paper outlining a realistic path to achieve this goal is discussed.

  12. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  13. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-02

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  14. Consideration on Preventive and Protective Measures Against Insider Threats at R.O.K. Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min; Lee, Jung Ho; Koh, Moon Sung [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    This paper focuses on the current status of measures used to prevent, detect and respond to potential insiders at nuclear facilities in the Republic of KOREA. Measures against insiders are then analyzed based on IAEA guidelines. Insiders are able to take advantage of their access rights and knowledge of a facility to bypass dedicated security measures. They can also threaten cyber security, safety measures, and material control and accountancy (MC and A). Insiders are likely to have the time to plan their actions. In addition, they may work with an external adversary who shares their objectives. An insider threat is a great risk to a security system because of the access, authority, and special knowledge that someone within a facility possesses. Therefore, it is imperative that effective measures be taken to prevent insider incidents. A combination of preventive and protective measures offers the best solution to mitigating rogue elements within a facility.

  15. A Fusion Nuclear Science Facility for a fast-track path to DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, A.M., E-mail: garofalo@fusion.gat.com [General Atomics, San Diego, CA (United States); Abdou, M.A. [University of California, Los Angeles, Los Angeles, CA (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chan, V.S.; Hyatt, A.W. [General Atomics, San Diego, CA (United States); Hill, D.N. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Morley, N.B. [University of California, Los Angeles, Los Angeles, CA (United States); Navratil, G.A. [Columbia University, New York, NY (United States); Sawan, M.E. [University of Wisconsin Madison, Madison, WI (United States); Taylor, T.S.; Wong, C.P.C.; Wu, W. [General Atomics, San Diego, CA (United States); Ying, A. [University of California, Los Angeles, Los Angeles, CA (United States)

    2014-10-15

    Highlights: • A FNSF is needed to reduce the knowledge gaps to a fusion DEMO and accelerate progress toward fusion energy. • FNSF will test and qualify first-wall/blanket components and materials in a DEMO-relevant fusion environment. • The Advanced Tokamak approach enables reduced size and risks, and is on a direct path to an attractive target power plant. • Near term research focus on specific tasks can enable starting FNSF construction within the next ten years. - Abstract: An accelerated fusion energy development program, a “fast-track” approach, requires proceeding with a nuclear and materials testing program in parallel with research on burning plasmas, ITER. A Fusion Nuclear Science Facility (FNSF) would address many of the key issues that need to be addressed prior to DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues, and the direct relevance to an attractive target power plant. The standard aspect ratio provides space for a solenoid, assuring robust plasma current initiation, and for an inboard blanket, assuring robust tritium breeding ratio (TBR) >1 for FNSF tritium self-sufficiency and building of inventory needed to start up DEMO. An example design point gives a moderate sized Cu-coil device with R/a = 2.7 m/0.77 m, κ = 2.3, B{sub T} = 5.4 T, I{sub P} = 6.6 MA, β{sub N} = 2.75, P{sub fus} = 127 MW. The modest bootstrap fraction of ƒ{sub BS} = 0.55 provides an opportunity to develop steady state with sufficient current drive for adequate control. Proceeding with a FNSF in parallel with ITER provides a strong basis to begin construction of DEMO upon the achievement of Q ∼ 10 in ITER.

  16. Accidental safety analysis methodology development in decommission of the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H.; Hwang, J. H.; Jae, M. S.; Seong, J. H.; Shin, S. H.; Cheong, S. J.; Pae, J. H.; Ang, G. R.; Lee, J. U. [Seoul National Univ., Seoul (Korea, Republic of)

    2002-03-15

    Decontamination and Decommissioning (D and D) of a nuclear reactor cost about 20% of construction expense and production of nuclear wastes during decommissioning makes environmental issues. Decommissioning of a nuclear reactor in Korea is in a just beginning stage, lacking clear standards and regulations for decommissioning. This work accident safety analysis in decommissioning of the nuclear facility can be a solid ground for the standards and regulations. For source term analysis for Kori-1 reactor vessel, MCNP/ORIGEN calculation methodology was applied. The activity of each important nuclide in the vessel was estimated at a time after 2008, the year Kori-1 plant is supposed to be decommissioned. And a methodology for risk analysis assessment in decommissioning was developed.

  17. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    Science.gov (United States)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  18. Survey Analysis on Nuclear Security Culture Recognition of Nuclear Facility in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yunjeong; Lee, Jeongho; Kim, Jaekwang [Korea Institute of Nonproliferation and Control International Nuclear Security Academy, Daejeon (Korea, Republic of)

    2015-05-15

    All organizations involved in implementing physical protection should give due priority to the security culture, to its development and maintenance necessary to ensure its effective implementation in the entire organization. In this context, Korea Institute of Non-proliferation and Control(KINAC) confirms recognition about protection of people who work in nuclear field and developed questionnaire for utilizing fundamental data for nuclear security culture enhancement activity and conducted a survey. As a result, systematic education needs to employees. Choosing differentiated topic is required to consider employees because recognition level of age, position and division is different. And a variety of education technology as obligatory education such as filling the course time or the one-off thing has limitation. And taking complementary measures needs since there were many opinions that employees feel difficult to understand papers such as regulation and guidelines and so on related security. Finally, we hope to make fundament available to evaluate nuclear security culture recognition level based on the existing questionnaire would be changed to realistic and enhancement in recognition survey for future nuclear security culture.

  19. A systematic method for identifying vital areas at complex nuclear facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin; Hockert, John

    2005-05-01

    Identifying the areas to be protected is an important part of the development of measures for physical protection against sabotage at complex nuclear facilities. In June 1999, the International Atomic Energy Agency published INFCIRC/225/Rev.4, 'The Physical Protection of Nuclear Material and Nuclear Facilities.' This guidance recommends that 'Safety specialists, in close cooperation with physical protection specialists, should evaluate the consequences of malevolent acts, considered in the context of the State's design basis threat, to identify nuclear material, or the minimum complement of equipment, systems or devices to be protected against sabotage.' This report presents a structured, transparent approach for identifying the areas that contain this minimum complement of equipment, systems, and devices to be protected against sabotage that is applicable to complex nuclear facilities. The method builds upon safety analyses to develop sabotage fault trees that reflect sabotage scenarios that could cause unacceptable radiological consequences. The sabotage actions represented in the fault trees are linked to the areas from which they can be accomplished. The fault tree is then transformed (by negation) into its dual, the protection location tree, which reflects the sabotage actions that must be prevented in order to prevent unacceptable radiological consequences. The minimum path sets of this fault tree dual yield, through the area linkage, sets of areas, each of which contains nuclear material, or a minimum complement of equipment, systems or devices that, if protected, will prevent sabotage. This method also provides guidance for the selection of the minimum path set that permits optimization of the trade-offs among physical protection effectiveness, safety impact, cost and operational impact.

  20. Development of a Si-PM based alpha camera for plutonium detection in nuclear fuel facilities

    Science.gov (United States)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toi, Kohei; Tsubota, Youichi

    2014-05-01

    Alpha particles are monitored for detecting nuclear fuel material (i.e., plutonium and uranium) at nuclear fuel facilities. Currently, for monitoring the airborne contamination of nuclear fuel, only energy information measured by Si-semiconductor detectors is used to distinguish nuclear fuel material from radon daughters. In some cases, however, such distinguishing is difficult when the radon concentration is high. In addition, a Si-semiconductor detector is generally sensitive to noise. In this study, we developed a new alpha-particle imaging system by combining a Si-PM array, which is insensitive to noise, with a Ce-doped Gd3Al2Ga3O12(GAGG) scintillator, and evaluated our developed system's fundamental performance. The scintillator was 0.1-mm thick, and the light guide was 3.0 mm thick. An 241Am source was used for all the measurements. We evaluated the spatial resolution by taking an image of a resolution chart. A 1.6 lp/mm slit was clearly resolved, and the spatial resolution was estimated to be less than 0.6-mm FWHM. The energy resolution was 13% FWHM. A slight distortion was observed in the image, and the uniformity near its center was within ±24%. We conclude that our developed alpha-particle imaging system is promising for plutonium detection at nuclear fuel facilities.

  1. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  2. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.

  3. Reevaluating NIMBY: Evolving Public Fear and Acceptance in Siting a Nuclear Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Nowlin, Matthew C.; deLozier, Grant (Dept. of Political Science, Univ. of Oklahoma, Norman, OK (United States))

    2010-09-15

    The not-in-my-backyard (NIMBY) syndrome has long been the focus of academic and policy research. We test several competing hypothesis concerning the sources of NIMBY sentiments, including demographics, proximity, political ideology and partisanship, and the unfolding policy process over time. To test these hypotheses we use survey data collected in New Mexico dealing with risk perceptions and acceptance related to the Waste Isolation Pilot Project (WIPP), a permanent storage site for radioactive waste located near Carlsbad, New Mexico. WIPP became operational and received its first shipment of waste on March 26, 1999. This study tracks the changes of risk perception and acceptance over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning the 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those in the most proximate counties to WIPP. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to public acceptance, the most significant being the opening of the WIPP facility itself

  4. Noneconomic factors influencing scrap metal disposition decisions at DOE and NRC-licensed nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ewen, M.D.; Robinson, L.A.

    1997-02-01

    The U.S. Environmental Protection Agency (EPA) is currently developing radiation protection standards for scrap metal, which will establish criteria for the unconditional clearance of scrap from nuclear facilities. In support of this effort, Industrial Economics, Incorporated is assessing the costs and benefits attributable to the rulemaking. The first step in this analysis is to develop an in-depth understanding of the factors influencing scrap disposition decisions, so that one can predict current and future practices under existing requirements and compare them to the potential effects of EPA`s rulemaking. These baseline practices are difficult to predict due to a variety of factors. First, because decommissioning activities are just beginning at many sites, current practices do not necessarily provide an accurate indicator of how these practices may evolve as site managers gain experience with related decisions. Second, a number of different regulations and policies apply to these decisions, and the interactive effects of these requirements can be difficult to predict. Third, factors other than regulatory constraints and costs may have a significant effect on related decisions, such as concerns about public perceptions. In general, research suggests that these factors tend to discourage the unconditional clearance of scrap metal.

  5. Social responsibility (SR) of nuclear research and its practice for pursuing integrity and sustainability of nuclear research with society

    Energy Technology Data Exchange (ETDEWEB)

    Tetsuo, Sawada; Naoki, Yamano; Yoshiko, Aoyama; Akiko, Shioda; Junichi, Mizuo; Yasuhiko, Fujii [Tokyo Institute of Technology, Tokyo (Japan)

    2007-07-01

    Corporate Social Responsibility (CSR), which includes compliance, engineering and business ethics, safety and security, and corporate governance, is being widely applied not only in the field of business administrations but also in academia and research communities. The basic 3 ideals of CSR are sustainability, stakeholder dialogue (stakeholder include consumers, suppliers, employees, investors and local communities) and triple basic constraints (be environment-friendly, competitive and beneficial for the society as a whole). A typical aspect of this trend is that most electric power company publishes documents such as Corporate Social Responsibility (CSR) reports which are the improved version of social-environmental reports. CSR reflects the very expectations from the society that how far the corporations and organizations including universities can resolve the issues in which the society is necessarily involved. The nuclear power generations and related facilities are sorts of societal systems and not merely technological systems. This paper describes the concept of CSR, its basic prerequisites and the framework of the civic forum that is a part of the practices of Nuclear CSR.

  6. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development of sustainable solutions for the nation's energy and environmental challenges.

  7. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  8. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    Energy Technology Data Exchange (ETDEWEB)

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  9. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  10. The Swiss Institute for Nuclear Research SIN

    CERN Document Server

    Pritzker, Andreas

    2014-01-01

    This book tells the story of the Swiss Institute for Nuclear Research (SIN). The institute was founded in 1968 and became part of the Paul Scherrer Institute (PSI) in 1988. Its founding occurred at a time when physics was generally considered the key discipline for technological and social development. This step was unusual for a small country like Switzerland and showed courage and foresight. Equally unusual were the accomplishments of SIN, compared with similar institutes in the rest of the world, as well as its influence on Swiss, and partially also on international politics of science. That this story is now available in a widely understandable form is due to the efforts of some physicists, who took the initiative as long as contemporary witnesses could still be questioned. As is usually the case, official documents always show just an excerpt of what really happened. An intimate portrayal of people who contributed to success requires personal memories. This text relies on both sources. In addition, the e...

  11. Meteodiffusive Characterization of Algiers' Nuclear Research Reactor

    Directory of Open Access Journals (Sweden)

    Mourad Messaci

    2007-01-01

    Full Text Available In the framework of the environmental impact studies of the nuclear research reactor of Algiers, we will present the work related to the atmospheric dispersion of releases due to the installation in normal operation, which dealt with the assessment of spatial distribution of yearly average values of atmospheric dilution factor. The aim of this work is a characterization of the site in terms of diffusivity, which is basic for the radiological impact evaluation of the reactor. The meteorological statistics result from the National Office of Meteorology and concern 15 years of hourly records. According to the nature and features of these data, a Gaussian-type model with wind direction sectors was used. Values of wind speed at release height were estimated from measurement values at 10 m from ground. For the assessment of vertical dispersion coefficient, we used Briggs' formulas related to a sampling time of one hour. Areas of maximum impact were delimited and points of highest concentration within these zones were identified.

  12. Research and service capabilities of the National Nuclear Forensic Research Laboratory; Capacidades de investigacion y servicio del Laboratorio Nacional de Investigacion en Forense Nuclear, Lanafonu

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C., E-mail: elizabeth.romero@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  13. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J.R.

    1981-08-01

    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  14. Extreme meteorological events and nuclear facilities safety; Fenomenos meteorologicos extremos e a seguranca das instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Patricia Moco Princisval

    2006-07-01

    An External Event is an event that originates outside the site and whose effects on the Nuclear Power Plants (NPP) should be considered. Such events could be of natural or human induced origin and should be identified and selected for design purposes during the site evaluation process. This work shows that the subtropics and mid latitudes of South America east of the Andes Mountain Range have been recognized as prone to severe convective weather. In Brazil, the events of tornadoes are becoming frequent; however there is no institutionalized procedure for a systematic documentation of severe weather. The information is done only for some scientists and by the newspapers. Like strong wind can affect the structural integrity of buildings or the pressure differential can affect the ventilation system, our concern is the safety of NPP and for this purpose the recommendations of International Atomic Energy Agency, Nuclear Regulatory Commission and Comissao Nacional de Energia Nuclear are showed and also a data base of tornadoes in Brazil is done. (author)

  15. A comparative study of worker and general public risks from nuclear facility operation using MACCS2

    Energy Technology Data Exchange (ETDEWEB)

    East, J.M.; O`Kula, K.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1995-12-31

    Over the last five years, the US Department of Energy (DOE) has attempted to establish quantitative risk indices as minimum acceptance criteria for assurance of safe operation of its nuclear facilities. The risk indices serve as aiming points or targets to include consideration of all aspects of operation including normal conditions as well as abnormal, design basis events, and beyond-design basis events. Although initial focus of the application of these safety targets had been on DOE`s reactors, more recent assessments have also considered non-reactor facilities including those encompassing storage and nuclear processing activities. Regardless of the facility`s primary function, accident progression, event tree/fault tree logic models, and probabilistic (dose) consequence assessment model must be implemented to yield a fully integrated analysis of facility operation. The primary tool for probabilistic consequence assessment in the U.S. is the MELCOR Accident Consequence Code System (MACCS). In this study, two version of MACCS are applied to representative source terms developed in the safety analysis associated with a waste processing facility at the Westinghouse Savannah River Company`s (WSRC`s) Savannah River Site (SRS). The MACCS versions are used to estimate population dose and subsequent health effects to workers and the general public from the SRS referenced facility operation. When combined with the frequency of occurrence evaluation, the margin of compliance with the safety targets may be quantified. Additionally, numerical evaluation of the safety targets with the two code versions will serve as an indicator of the impact of the enhancements made to MACCS relative to earlier baseline software.

  16. Safety evaluation report related to the renewal of the facility license for the research reactor at the Dow Chemical Company

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    This safety evaluation report for the application filed by the Dow Chemical Company for renewal of facility Operating License R-108 to continue to operate its research reactor at an increased operating power level has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the grounds of the Michigan Division of the Dow Chemical Company in Midland, Michigan. The staff concludes that the Dow Chemical Company can continue to operate its reactor without endangering the health and safety of the public.

  17. Guideline to good practices for facility condition inspections at DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This guide is intended to provide a means for owner/operators to have an awareness of the way business is actually being conducted on the shop floor. Also, this guide is intended to provide a means for maintenance managers to impart their expectations to crafts persons as to how maintenance should be conducted. It is expected that each DOE facility may use different approaches or methods than those defined in this guide. Explanation of the intent of this guide is provided in the Discussion section, and the specific guidelines that follow reflect generally accepted industry practices. In some cases, example situations accompany these guidelines. These examples have been provided only as an aid in clear understanding of the guidelines and should not be construed as the only method for meeting the intent of the guidelines. Therefore, deviation from any particular guideline would not, in itself, indicate a problem. If substantive differences exist between the intent of the Guideline and actual practice, management should evaluate current practice to determine the need to include/exclude proposed features. A change to maintenance practice would be appropriate if a performance weakness was determined to exist. Development, documentation, and implementation of other features which further enhance these guidelines for specific applications, is encouraged.

  18. Survey study of communities with nuclear facilities; Oeversiktsstudie av kommuner med kaernteknisk verksamhet

    Energy Technology Data Exchange (ETDEWEB)

    Eng, T. [ed.

    1995-05-01

    The report gives a description of the five Swedish communities that already have nuclear facilities, in order to find the potential for selecting any of these for a future Swedish nuclear waste repository. Only existing, available information has been collected for this report, with the aim to find the interest and need for more detailed localization studies. The following subjects are treated: General data like area, population, industry etc. Communications (road, rail and airports). Existing facilities. Geology. Hydrology. Experiences from rock constructions. Land use, planning, natural reserves etc. Local technical conditions for transport and construction. The following conclusions are drawn: Oskarshamn, Nykoeping and Oesthammar have good geologic potentials and should be candidates for more extensive geologic studies. The geologic potential of Varberg is less well known, and geologic mapping and geophysical measurements are needed. Kaevlinge does not have geologic or technical potentials on par with the other communities, and can be disregarded for further studies. 64 refs, 18 figs.

  19. Reliable Wireless Data Acquisition and Control Techniques within Nuclear Hot Cell Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.L.; Tulenko, J.

    2000-09-20

    On this NEER project the University of Florida has investigated and applied advanced communications techniques to address data acquisition and control problems within the Fuel Conditioning Facility (FCF) of Argonne National Laboratory-West (ANL-W) in Idaho Falls. The goals of this project have been to investigate and apply wireless communications techniques to solve the problem of communicating with and controlling equipment and systems within a nuclear hot cell facility with its attendant high radiation levels. Different wireless techniques, including radio frequency, infrared and power line communications were reviewed. For each technique, the challenges of radiation-hardened implementation were addressed. In addition, it has been a project goal to achieve the highest level of system reliability to ensure safe nuclear operations. Achievement of these goals would allow the eventual elimination of through-the-wall, hardwired cabling that is currently employed in the hot cell, along wit h all of the attendant problems that limit measurement mobility and flexibility.

  20. Implementation plan for the Defense Nuclear Facilities Safety Board Recommendation 90-7. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Borsheim, G.L.; Cash, R.J.; Dukelow, G.T.

    1992-12-01

    This document revises the original plan submitted in March 1991 for implementing the recommendations made by the Defense Nuclear Facilities Safety Board in their Recommendation 90-7 to the US Department of Energy. Recommendation 90-7 addresses safety issues of concern for 24 single-shell, high-level radioactive waste tanks containing ferrocyanide compounds at the Hanford Site. The waste in these tanks is a potential safety concern because, under certain conditions involving elevated temperatures and low concentrations of nonparticipating diluents, ferrocyanide compounds in the presence of oxidizing materials can undergo a runaway (propagating) chemical reaction. This document describes those activities underway by the Hanford Site contractor responsible for waste tank safety that address each of the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7. This document also identifies the progress made on these activities since the beginning of the ferrocyanide safety program in September 1990. Revised schedules for planned activities are also included.

  1. Exploring the Use of Activity Patterns for Smart Monitoring of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-10

    The world is at an inflection point where our ability to collect data now far outpaces our ability to make use of it. LANL has a number of efforts to help us pull more meaningful insights out of our data and target resources to where they will be most impactful. We are exploring an approach to recognizing activity patterns across disparate data streams for a more holistic view of nuclear facility monitoring.

  2. Descriptions of selected accidents that have occurred at nuclear reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, H.W.

    1980-04-01

    This report was prepared at the request of the President's Commission on the Accident at Three Mile Island to provide the members of the Commission with some insight into the nature and significance of accidents that have occurred at nuclear reactor facilities in the past. Toward that end, this report presents a brief description of 44 accidents which have occurred throughout the world and which meet at least one of the severity criteria that were established.

  3. Recent advances and results from the solid radiochemistry nuclear diagnostic at the National Ignition Facility

    Science.gov (United States)

    Gharibyan, N.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Despotopulos, J. D.; Faye, S. A.; Jedlovec, D. R.; Yeamans, C. B.

    2016-11-01

    The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.

  4. A Study on the Allowable Safety Factor of Cut-Slopes for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Soo; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this study, the issues of allowable safety factor design criteria for cut-slopes in nuclear facilities is derived through case analysis, a proposed construction work slope design criteria that provides relatively detailed conditions can be applied in case of the dry season and some unclear parts of slope design criteria be modified in case of the rainy season. This safety factor can be further subdivided into two; normal and earthquake factors, a factor of 1.5 is applied for normal conditions and a factor of 1.2 is applied for seismic conditions. This safety factor takes into consideration the effect of ground water and rainfall conditions. However, no criteria for the case of cut-slope in nuclear facilities and its response to seismic conditions is clearly defined, this can cause uncertainty in design. Therefore, this paper investigates the allowable safety factor for cut-slopes in nuclear facilities, reviews conditions of both local and international cut-slope models and finally suggests an alternative method of analysis. It is expected that the new design criteria adequately ensures the stability of the cut-slope to reflect clear conditions for both the supervising and design engineers.

  5. Status of The Facility for Experiments of Nuclear Reactions in Stars

    Science.gov (United States)

    Longland, Richard; Kelley, John; Marshall, Caleb; Portillo, Federico; Setoodehnia, Kiana; Underwood, Daniel

    2016-09-01

    To make connections between observations of stellar atmospheres and the processes occurring deep inside stars, me must rely on accurate nuclear cross sections. Often, the Coulomb barrier makes these cross sections immeasurably small in the laboratory. Particle transfer reactions are one tool in our inventory that can be used to infer the necessary properties of nuclear reactions, thus opening an avenue to calculate their cross sections. Enge split-pole magnetic spectrographs are one tool in our inventory that have been used successfully to perform these experiments. However, after a rash of closures, there were no operational spectrographs of this kind in North America to provide these valuable capabilities. Over the last few years, we have revived the Enge split-pole spectrograph at TUNL. We have also upgraded much of the equipment, ranging from the data acquisition system to the control system and detector package. These upgrades have enabled a powerful, flexible, and modern facility - the Facility for Experiments of Nuclear Reactions in Stars (FENRIS). In this talk, I will present a status upgrade of FENRIS, highlighting our upgrades, capabilities, and first science results. I will also highlight future upgrade plans for the facility.

  6. The CERN n_TOF facility: a unique tool for nuclear data measurement

    Science.gov (United States)

    Mingrone, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Ganesan, S.; Garcia-Rios, A. A.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; Gonzàlez, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Lo Meo, S.; Lonsdale, S.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-06-01

    The study of the resonant structures in neutron-nucleus cross-sections, and therefore of the compound-nucleus reaction mechanism, requires spectroscopic measurements to determine with high accuracy the energy of the neutron interacting with the material under study. To this purpose, the neutron time-of-flight facility n_TOF has been operating since 2001 at CERN. Its characteristics, such as the high intensity instantaneous neutron flux, the wide energy range from thermal to few GeV, and the very good energy resolution, are perfectly suited to perform high-quality measurements of neutron-induced reaction cross sections. The precise and accurate knowledge of these cross sections plays a fundamental role in nuclear technologies, nuclear astrophysics and nuclear physics. Two different measuring stations are available at the n_TOF facility, called EAR1 and EAR2, with different characteristics of intensity of the neutron flux and energy resolution. These experimental areas, combined with advanced detection systems lead to a great flexibility in performing challenging measurement of high precision and accuracy, and allow the investigation isotopes with very low cross sections, or available only in small quantities, or with very high specific activity. The characteristics and performances of the two experimental areas of the n_TOF facility will be presented, together with the most important measurements performed to date and their physics case. In addition, the significant upcoming measurements will be introduced.

  7. A proactive method for safety management in nuclear facilities; Um metodo proativo para gerenciamento da seguranca em instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor Rodrigues de; Santos, Isaac Antonio Luquetti dos, E-mail: grecco@ien.gov.br, E-mail: paulov@ien.gov.br, E-mail: luquetti@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN/RJ), Rio de Janeiro, RJ (Brazil). Div. de Instrumentacao e Confiabilidade Humana

    2014-07-01

    Due to the modern approach to address the safety of nuclear facilities which highlights that these organizations must be able to assess and proactively manage their activities becomes increasingly important the need for instruments to evaluate working conditions. In this context, this work presents a proactive method of managing organizational safety, which has three innovative features: 1) the use of predictive indicators that provide current information on the performance of activities, allowing preventive actions and not just reactive in safety management, different from safety indicators traditionally used (reactive indicators) that are obtained after the occurrence of undesired events; 2) the adoption of resilience engineering approach in the development of indicators - indicators are based on six principles of resilience engineering: top management commitment, learning, flexibility, awareness, culture of justice and preparation for the problems; 3) the adoption of the concepts and properties of fuzzy set theory to deal with subjectivity and consistency of human trials in the evaluation of the indicators. The fuzzy theory is used primarily to map qualitative models of decision-making, and inaccurate representation methods. The results of this study aim an improvement in performance and safety in organizations. The method was applied in a radiopharmaceutical shipping sector of a nuclear facility. The results showed that the method is a good monitoring tool objectively and proactively of the working conditions of an organizational domain.

  8. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  9. New legislation on civil liability for nuclear facilities; Nueva legislacion sobre responsabilidad civil en instalaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The criteria followed by the new regulation is to both qualitatively and quantitatively broaden the liability of a nuclear power plant operator. This increase, in both senses, goes above and beyond what the traditional insurance market is technically in a position to handle. This has resulted in the need for public funds to cover what the insurance companies cannot. Enforcement of the requirements of the new regulation has been postponed because most of the signatory countries have not ratified the 2004 Protocol to the Paris convention. At this time it is difficult to say when this will take place. (Author)

  10. Applicability of base-isolation R and D in non-reactor facilities to a nuclear reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W. (Argonne National Lab., IL (USA))

    1991-06-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. The level of assurance of performance for such isolation systems for a nuclear power plant will be much greater than that required for non-nuclear facilities. The question is to what extent can R and D for non-nuclear use of seismic isolation be applied to a nuclear power plant. Experience shows that considerable effort is needed to adapt any technology to nuclear power facilities. This paper reviews the R and D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R and D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R and D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant. (orig.).

  11. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  12. Nuclear Physics Programs for the Future Rare Isotope Beams Accelerator Facility in Korea

    CERN Document Server

    Moon, Chang-Bum

    2016-01-01

    We present nuclear physics programs based on the planned experiments using rare isotope beams (RIBs) for the future Korean Rare Isotope Beams Accelerator facility; RAON. This ambitious facility has both an Isotope Separation On Line (ISOL) and fragmentation capability for producing RIBs and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. Low energy RIBs at Elab = 5 to 20 MeV per nucleon are for the study of nuclear structure and nuclear astrophysics toward and beyond the drip lines while higher energy RIBs produced by in-flight fragmentation with the re-accelerated ions from the ISOL enable to explore the neutron drip lines in intermediate mass regions. The planned programs have goals for investigating nuclear structures of the exotic nuclei toward and beyond the nucleon drip lines by addressing the following issues: how the shell structure evolves in areas of extreme proton to neutron imbalance; whether the isospin symmetry maintains in isobaric mirror nu...

  13. Jules Horowitz Reactor, a new irradiation facility: Improving dosimetry for the future of nuclear experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, G.; Beretz, D.; Destouches, C. [CEA, DEN, DER/SPEX, F-13108 Saint-Paul-lez-Durance (France)

    2011-07-01

    Document available in abstract form only, full text of document follows: The Jules Horowitz Reactor (JHR) is an experimental reactor under construction at the French Nuclear Energy and Alternative Energies Commission (CEA) facility at Cadarache. It will achieve its first criticality by the end of 2014. Experiments that will be conducted at JHR will deal with fuel, cladding, and material behavior. The JHR will also produce medical radio-isotopes and doped silicon for the electronic industry. As a new irradiation facility, its instrumentation will benefit from recent improvements. Nuclear instrumentation will include reactor dosimetry, as it is a reference technique to determine neutron fluence in experimental devices or characterize irradiation locations. Reactor dosimetry has been improved with the progress of simulation tools and nuclear data, but at the same time the customer needs have increased: Experimental results must have reduced and assessed uncertainties. This is now a necessary condition to perform an experimental irradiation in a test reactor. Items improved, in the framework of a general upgrading of the dosimetry process based on uncertainty minimization, will include dosimeter, nuclear data, and modelling scheme. (authors)

  14. National facilities study. Volume 5: Space research and development facilities task group

    Science.gov (United States)

    1994-01-01

    With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R

  15. The PIRATE Facility: at the crossroads of research and teaching

    Science.gov (United States)

    Kolb, U.

    2014-12-01

    I describe the Open University-owned 0.43m robotic observatory PIRATE, based in Mallorca. PIRATE is a cost-effective facility contributing to topical astrophysical research and an inspiring platform for distance education students to learn practical science.

  16. Thermal Testing Facilities and Efforts at Dryden Flight Research Center

    Science.gov (United States)

    Holguin, Andrew; Kostyk, Christopher B.

    2010-01-01

    This presentation provides the thermal testing panel discussion with an overview of the thermal test facilities at the Dryden Flight Research Center (DFRC) as well as highlights from the thermal test efforts of the past year. This presentation is a little more in-depth than the corresponding material in the center overview presentation.

  17. Geothermal research at the Puna Facility. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.

    1986-04-01

    This report consists of a summary of the experiments performed to date at the Puna Geothermal Research Facility on silica in the geothermal fluid from the HGP-A well. Also presented are some results of investigations in commercial applications of the precipitated silica. (ACR)

  18. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    Directory of Open Access Journals (Sweden)

    Chang-Bum Moon

    2014-02-01

    Full Text Available This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL and fragmentation capability to produce rare isotopes beams (RIBs and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  19. How an integrated change programme has accelerated the reduction in high hazard nuclear facilities at Sellafield

    Energy Technology Data Exchange (ETDEWEB)

    Mackintosh, Angela [Change Manager, Decommissioning, Sellafield Ltd, Seascale, Cumbria (United Kingdom)

    2013-07-01

    For over five decades the Sellafield Site has been central to the UK's nuclear programme. Now operated by Sellafield Ltd, under the management of Parent Body Organisation Nuclear Management Partners (NMP), a consortium of URS Washington Division, AMEC and AREVA is focussed on the decommissioning of historical facilities. When Decommissioning commenced in the late 1980's the site focus at that time was on commercial reprocessing and waste management. Now through the implementation of a company change programme, emphasis has shifted towards accelerated risk and hazard reduction of degraded legacy plants with nuclear inventory whilst ensuring value for money for the customer, the Nuclear Decommissioning Authority. This paper will describe the management success by the Site owners in delivering a successful change programme. The paper will explain how the site has transitioned to the INPO Standard Nuclear Performance Model (SNPM) and how through the use of a change maturity matrix has contributed to the accelerated reduction in high risk high hazard nuclear facilities. The paper will explain in detail how the Decommissioning Programme Office has facilitated and coordinated the Governance and assured delivery of the change plan and how successful application of visual management has aided the communication of its progress. Finally, the paper will discuss how the Delivery Schedules have proved critical for presenting the change plan to Key Stakeholders, Government Owners and Powerful Regulators. Overall, this paper provides an insight into how a massive change programme is being managed within one of the world's highest regulated industries. (authors)

  20. ARM Climate Research Facility Monthly Instrument Report September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-10-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  1. ARM Climate Research Facility Monthly Instrument Report August 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-09-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  2. ARM Climate Research Facility Instrumentation Status and Information February 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-03-25

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. ARM Climate Research Facility Monthly Instrument Report June 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-07-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ARM Climate Research Facility Instrumentation Status and Information December 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-12-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ARM Climate Research Facility Instrumentation Status and Information October 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ARM Climate Research Facility Monthly Instrument Report May 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-06-21

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ARM Climate Research Facility Instrumentation Status and Information April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-05-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. ARM Climate Research Facility Instrumentation Status and Information March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-04-19

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  9. ARM Climate Research Facility Instrumentation Status and Information January 2010

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-02-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  10. ARM Climate Research Facility Monthly Instrument Report July 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-08-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  11. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure

  12. The use of- and the need for- large experimental facilities for education and training in nuclear sciences and technologies: a quantitative study

    Energy Technology Data Exchange (ETDEWEB)

    Giot, M. [Universite catholique de Louvain and SCK.CEN, 200, Boeretang B-2400 Mol (Belgium)

    2010-07-01

    This paper summarises the results of a study carried out by the ETKM working group of the Sustainable Nuclear Energy Technological Platform aimed at identifying facilities to support E and T and R and D requirements in the up-skilling the future workforce. The required identification implied acquiring reliable information about the numbers of students and trainees presently using nuclear research infrastructure, and the numbers of those who could be accommodated additionally to meet future challenges. The presented data were collected from the operators of the facilities (offer side), and from the people in charge of the E and T programmes (demand side). Two aspects were found particularly relevant: the access to research reactors and the access to thermal-hydraulic test facilities. Simulators were also considered as relevant for this study. Two educational levels were considered: the Doctoral and the Master levels. The numbers of doctoral theses produced in Europe with the help of research reactors and thermal-hydraulic loops are respectively of the order of 70 and 20 per year. It appears that less than ten research reactors are intensively used for laboratory sessions at the Bachelor and Master levels, and that there is presently a potential for increased of the accommodated students by at least 50%. The thermal-hydraulic facilities could accommodate three times more students if necessary. Recommendations are formulated for a more intensive use of the facilities in the future. (authors)

  13. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  14. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  15. Radioactive discharges and environmental monitoring at the Swedish nuclear facilities 2001; Utslaepps- och omgivningskontroll vid de kaerntekniska anlaeggningarna 2001

    Energy Technology Data Exchange (ETDEWEB)

    Sandwall, Johanna

    2002-11-01

    This report contains an evaluation of the discharge and environmental programme for the Swedish nuclear facilities. It also contains the work on quality control performed by SSI. This is done as random sampling of discharge water and environmental samples.

  16. Study on the fire-protection-system for interim storage facilities of spent nuclear fuel and transportation ships

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. O; Choi, M. H.; Lee, S. C. and others [Dongbang Electron Industry Corporation, Seoul (Korea, Republic of)

    1993-12-15

    This study consists of : the fire risk and it's fire protection for the storage facilities and transportation equipments of dangerous goods, the fire risk and it's fire protection for the interim storage facilities of spent nuclear fuel, the fire risk and it's fire protection for the dangerous goods transportation ships, the necessary equipment for safety of ships and regulations of fire fighting equipment for ships, technical specification of spent nuclear fuel transportation ships which are operated in foreign countries, draft of fire protection guideline for interim storage facilities of spent nuclear fuel, inspection items of fire fighting equipment, scope of education and training. On the basis of the aforementioned, a draft of fire protection guideline for interim storage facilities of spent nuclear fuel is proposed and the regulations for ship engaged in the a carrage of dangerous goods that should be considered in design and operation stage are proposed.

  17. 75 FR 7628 - Davis-Besse Nuclear Power Station; Notice of Consideration of Issuance of Amendment to Facility...

    Science.gov (United States)

    2010-02-22

    ... COMMISSION Davis-Besse Nuclear Power Station; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity for a... determination that the amendment request involves no significant hazards consideration. Under the...

  18. Review on use of neutron radiography at Saclay Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Bayon, G. [Saclay Nuclear Research Centre DRE/SRO, Gif-sur-Yvette (France)

    1996-11-01

    The Commissariat a l`Energie Atomique (CEA) operates three research reactors at Saclay. Each of them is equipped with a Neutron Radiology facility. Osiris is involved in studies of nuclear fuel rod behaviour during accidental events. The underwater NR facility allows to obtain images of the rods before and after power ramp. The Orphee installation is devoted to industrial application of NR including non destructive testing and real time imaging. The main activity concerns the examination of the pyrotechnic devices of the Ariane launcher programmes. Other areas of interest are also described. (author) 2 figs., 1 tab., 5 refs.

  19. BALU: Largest autoclave research facility in the world

    Directory of Open Access Journals (Sweden)

    Hakan Ucan

    2016-03-01

    Full Text Available Among the large-scale facilities operated at the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade BALU is the world's largest research autoclave. With a loading length of 20m and a loading diameter of 5.8 m the main objective of the facility is the optimization of the curing process operated by components made of carbon fiber on an industrial scale. For this reason, a novel dynamic autoclaving control has been developed that is characterized by peripheral devices to expend the performance of the facility for differential applications, by sensing systems to detect the component state throughout the curing process and by a feedback system, which is capable to intervene into the running autoclave process.

  20. The spatial and urban planning concerns related to nuclear facilities locations: Case study of the Vinča Institute location

    Directory of Open Access Journals (Sweden)

    Stefanović Nebojša D.

    2017-01-01

    Full Text Available The spatial and urban planning is one of the key instruments for the planned formation and development of locations for nuclear facilities, especially in terms of meeting the strict spatial conditionality, as well as in terms of the formation of protection zones in their surroundings. This paper systemizes the international criteria and requirements for the locations of nuclear facilities and analyses the spatial distribution of nuclear facilities in the surrounding countries of the Republic of Serbia. The research was conducted on the example of the location of the Vinča Institute of Nuclear Sciences, within which the fulfilment of spatial requirements, treatment of the location in the existing spatial and urban plans and relationship between other functions in the surrounding area were analysed. The paper proves the starting hypothesis that the general requirements related to both the spatial development of nuclear facilities locations and the protection from radiation have not been met in the Vinča location and its surroundings. It was determined that the spatial and urban plans encompassing the area of Vinča do not contain sufficiently specific planning solutions and that, as such, they do not provide a sufficient planning basis for meeting the necessary requirements and obligations regarding the protection from radiation. The paper also gives recommendations for further spatial development and protection of the Vinča location and its surroundings. The research condcted in this paper indicates the importance and priority of further research so that the necessary planning solutions for further development of the complex in Vinča and for the formation of protection zones could be defined through creating a new planning documentation. In addition, the paper particularly highlights the need for conducting a research to identify a location for permanent disposal of radioactive waste. It also indicates the necessity of considering the aspects