WorldWideScience

Sample records for nuclear related materials

  1. Holdup-related issues in safeguarding of nuclear materials

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1988-03-01

    Residual inventories of special nuclear materials (SNM) remaining in processing facilities (holdup) are recognized as an insidious problem for both safety and safeguards. This paper identifies some of the issues that are of concern to the safeguards community at-large that are related to holdup of SNM in large-scale process equipment. These issues range from basic technologies of SNM production to changing regulatory requirements to meet the needs of safeguarding nuclear materials. Although there are no magic formulas to resolve these issues, there are several initiatives that could be taken in areas of facility design, plant operation, personnel training, SNM monitoring, and regulatory guidelines to minimize the problems of holdup and thereby improve both safety and safeguards at nuclear material processing plants. 8 refs

  2. Analysis on Domestic Law and Management Trend Related to Small-Quantity Nuclear Material

    International Nuclear Information System (INIS)

    Park, Jae Beom; Lee, Kyong Woo; Shim, Hye Won; Min, Gyung Sik

    2005-01-01

    International Atomic Energy Agency (IAEA) has requested Korea to establish and manage the law ruling all nuclear materials through the INFCIRC/153. Now, it has been 30 years since Korea made the agreement, INFCIRC/153, with IAEA. Korea has tried their best to accomplish the international standard in nuclear control field and it is a fact that Korea finally produced some results in the nuclear control field. Related to nuclear material control, Korea is above the common level appropriately ranked 6th in the world in terms of nuclear power. Before 2000, Korea was making the foundation secure in the nuclear control. IAEA did not urge to establish the law supervising the small-quantity nuclear material and depleted uranium (DU). In a turnaround from early IAEA moderate line to Korea, the situation was changed. Since IAEA brought up the agenda to 2000 Joint Review Meeting between Korea-IAEA, IAEA has asked Korea to establish the control system for smallquantity nuclear material and DU. In 2003, the Korean government set up a project establishing the control system about all nuclear material including small-quantity nuclear material and DU. National Nuclear Management and Control Agency (NNCA), delegating the business relating to international controlling materials from government, developed some modules in nuclear material control system and operated it. The system includes a controlling system for small-quantity nuclear material. NNCA on behalf of government has collected the information and Korea Ministry of Science and Technology (MOST) has reported the information to the IAEA. This paper introduces you the background of controlling the small-quantity nuclear material and the system of controlling nuclear material in Korea. And it will suggest the improvement of the management method in the system for small-quantity nuclear material

  3. Analysis on Domestic Law and Management Trend Related to Small-Quantity Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Beom; Lee, Kyong Woo; Shim, Hye Won; Min, Gyung Sik [National Nuclear Management and Control Agency, Daejeon (Korea, Republic of)

    2005-07-01

    International Atomic Energy Agency (IAEA) has requested Korea to establish and manage the law ruling all nuclear materials through the INFCIRC/153. Now, it has been 30 years since Korea made the agreement, INFCIRC/153, with IAEA. Korea has tried their best to accomplish the international standard in nuclear control field and it is a fact that Korea finally produced some results in the nuclear control field. Related to nuclear material control, Korea is above the common level appropriately ranked 6th in the world in terms of nuclear power. Before 2000, Korea was making the foundation secure in the nuclear control. IAEA did not urge to establish the law supervising the small-quantity nuclear material and depleted uranium (DU). In a turnaround from early IAEA moderate line to Korea, the situation was changed. Since IAEA brought up the agenda to 2000 Joint Review Meeting between Korea-IAEA, IAEA has asked Korea to establish the control system for smallquantity nuclear material and DU. In 2003, the Korean government set up a project establishing the control system about all nuclear material including small-quantity nuclear material and DU. National Nuclear Management and Control Agency (NNCA), delegating the business relating to international controlling materials from government, developed some modules in nuclear material control system and operated it. The system includes a controlling system for small-quantity nuclear material. NNCA on behalf of government has collected the information and Korea Ministry of Science and Technology (MOST) has reported the information to the IAEA. This paper introduces you the background of controlling the small-quantity nuclear material and the system of controlling nuclear material in Korea. And it will suggest the improvement of the management method in the system for small-quantity nuclear material.

  4. 'Low-activation' fusion materials development and related nuclear data needs

    International Nuclear Information System (INIS)

    Cierjacks, S.

    1990-01-01

    So-called ''low-activation'' materials are presently considered as an important means of improving the safety characteristics of future DT fusion reactors. Essential benefits are expected in various problem areas ranging from operation considerations to aspects of decommissioning and waste disposal. Present programs on ''low-activation'' materials development depend strongly on reliable activity calculations for a wide range of technologically important materials. The related nuclear data requirements and important needs for more and improved nuclear data are discussed. (author). 32 refs, 4 figs, 4 tabs

  5. MAT-DB - A database for nuclear energy related materials data

    International Nuclear Information System (INIS)

    Over, H.H.

    2009-01-01

    The web-enabled materials database (Mat-DB) of JRC-IE has a long-term history in storing materials test data resulting from European and international research projects. The database structure and the user-guidance has bee permanently updated improved and optimized. The database is implemented in the secure ODIN portal: https://odin.jrc.ec.europa.eu of JRC-IE. This architecture guarantees fast access to confidential and public data and documentation which are stored in an inter-related document management database (DoMa). It is a part of JRC's nuclear knowledge management. Mat-DB hosts the whole pool of IAEA surveillance data of reactor pressure vessel materials from different nuclear power plants of the member states. Mat-DB contains also thousands of European GEN IV reactor systems related R and D materials data which are an important basis for the evaluating and extrapolating design data for candidate materials and setting up design rules covering high temperature exposure, irradiation and corrosion. Those data and rules would match also fusion related components. Mat-DB covers thermo-mechanical and thermo-physical properties data of engineering alloys at low, elevated and high temperatures for base materials and joints, including irradiated materials for nuclear fission and fusion applications, thermal barrier coated materials for gas turbines and properties of corroded materials. The corrosion part refers to weight gain/loss data of high temperature exposed engineering alloys and ceramic materials. For each test type the database structure reflects international test standards and recommendations. Mat-DB features an extensive library of evaluation programs for web-enabled assessment of uniaxial creep, fatigue, crack growth and high temperature corrosion properties. Evaluations can be performed after data retrieval or independently of Mat-DB by transferring other materials data in a given format to the programs. The fast evaluation processes help the user to

  6. Nuclear material accounting handbook

    International Nuclear Information System (INIS)

    2008-01-01

    The handbook documents existing best practices and methods used to account for nuclear material and to prepare the required nuclear material accounting reports for submission to the IAEA. It provides a description of the processes and steps necessary for the establishment, implementation and maintenance of nuclear material accounting and control at the material balance area, facility and State levels, and defines the relevant terms. This handbook serves the needs of State personnel at various levels, including State authorities, facility operators and participants in training programmes. It can assist in developing and maintaining accounting systems which will support a State's ability to account for its nuclear material such that the IAEA can verify State declarations, and at the same time support the State's ability to ensure its nuclear security. In addition, the handbook is useful for IAEA staff, who is closely involved with nuclear material accounting. The handbook includes the steps and procedures a State needs to set up and maintain to provide assurance that it can account for its nuclear material and submit the prescribed nuclear material accounting reports defined in Section 1 and described in Sections 3 and 4 in terms of the relevant agreement(s), thereby enabling the IAEA to discharge its verification function as defined in Section 1 and described in Sections 3 and 4. The contents of the handbook are based on the model safeguards agreement and, where applicable, there will also be reference to the model additional protocol. As a State using The handbook consists of five sections. In Section 1, definitions or descriptions of terms used are provided in relation to where the IAEA applies safeguards or, for that matter, accounting for and control of nuclear material in a State. The IAEA's approach in applying safeguards in a State is also defined and briefly described, with special emphasis on verification. In Section 2, the obligations of the State

  7. Hot cell works and related irradiation tests in fission reactor for development of new materials for nuclear application

    International Nuclear Information System (INIS)

    Shikama, Tatsuo

    1999-01-01

    Present status of research works in Oarai Branch, Institute for Materials Research, Tohoku University, utilizing Japan Materials Testing Reactor and related hot cells will be described.Topics are mainly related with nuclear materials studies, excluding fissile materials, which is mainly aiming for development of materials for advanced nuclear systems such as a nuclear fusion reactor. Conflict between traditional and routined procedures and new demands will be described and future perspective is discussed. (author)

  8. Some political issues related to future special nuclear materials production

    International Nuclear Information System (INIS)

    Peaslee, A.T. Jr.

    1981-08-01

    The Federal Government must take action to assure the future adequate supply of special nuclear materials for nuclear weapons. Existing statutes permit the construction of advanced defense production reactors and the reprocessing of commercial spent fuel for the production of special materials. Such actions would not only benefit the US nuclear reactor manufacturers, but also the US electric utilities that use nuclear reactors

  9. Decree no 2007-1557 from November 2, 2007, relative to basic nuclear facilities and to the nuclear safety control of nuclear materials transport

    International Nuclear Information System (INIS)

    2007-11-01

    This decree concerns the enforcement of articles 5, 17 and 36 of the law 2006-686 from June 13, 2006, relative to the transparency and safety in the nuclear domain. A consultative commission of basic nuclear facilities is established. The decree presents the general dispositions relative to basic nuclear facilities, the dispositions relative to their creation and operation, to their shutdown and dismantling. It precises the dispositions in the domain of public utility services, administrative procedures and sanctions. It stipulates also the particular dispositions relative to other facilities located in the vicinity of nuclear facilities, relative to the use of pressure systems, and relative to the transport of radioactive materials. (J.S.)

  10. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  11. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  12. Definition of Nuclear Material in Aspects of Nuclear Nonproliferation and Security

    International Nuclear Information System (INIS)

    Jeon, Ji Hye; Lee, Chan Suh

    2014-01-01

    Nuclear safety accidents directly affect human health but nuclear security incidents indirectly influence human, which demonstrates the reason why security receives less attention. However, it is acknowledged that nuclear terrorism is indeed one of the most dreadful threat humanity faces. As part of strengthening nuclear security as well as nonproliferation to response to the threat, we need a better understanding of the nuclear material which needs to be safe under the objective of nuclear security. In reality, practitioners implement safeguards and physical protection in compliance with the regulation text in domestic legislation. Thus, it is important to specify nuclear material clearly in law for effective implementation. Therefore, the definition of terminology related to nuclear material is explored herein, within the highest-level legislation on the safeguards and physical protection. First the definition in Korean legislation is analyzed. Then, so as to suggest some improvements, other international efforts are examined and some case studies are conducted on other states which have similar level of nuclear technology and industry to Korea. Finally, a draft of definition on nuclear material in perspective of nuclear nonproliferation and security is suggested based on the analysis below. The recommendation showed the draft nuclear material definition in nuclear control. The text will facilitate the understanding of nuclear material in the context of nuclear nonproliferation and security. It might provide appropriate provision for future legislation related to nuclear nonproliferation and security. For effective safeguards and physical protection measures, nuclear material should be presented with in a consistent manner as shown in the case of United Kingdom. It will be much more helpful if further material engineering studies on each nuclear material are produced. Multi-dimensional approach is required for the studies on the degree of efforts to divert

  13. Definition of Nuclear Material in Aspects of Nuclear Nonproliferation and Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ji Hye; Lee, Chan Suh [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2014-10-15

    Nuclear safety accidents directly affect human health but nuclear security incidents indirectly influence human, which demonstrates the reason why security receives less attention. However, it is acknowledged that nuclear terrorism is indeed one of the most dreadful threat humanity faces. As part of strengthening nuclear security as well as nonproliferation to response to the threat, we need a better understanding of the nuclear material which needs to be safe under the objective of nuclear security. In reality, practitioners implement safeguards and physical protection in compliance with the regulation text in domestic legislation. Thus, it is important to specify nuclear material clearly in law for effective implementation. Therefore, the definition of terminology related to nuclear material is explored herein, within the highest-level legislation on the safeguards and physical protection. First the definition in Korean legislation is analyzed. Then, so as to suggest some improvements, other international efforts are examined and some case studies are conducted on other states which have similar level of nuclear technology and industry to Korea. Finally, a draft of definition on nuclear material in perspective of nuclear nonproliferation and security is suggested based on the analysis below. The recommendation showed the draft nuclear material definition in nuclear control. The text will facilitate the understanding of nuclear material in the context of nuclear nonproliferation and security. It might provide appropriate provision for future legislation related to nuclear nonproliferation and security. For effective safeguards and physical protection measures, nuclear material should be presented with in a consistent manner as shown in the case of United Kingdom. It will be much more helpful if further material engineering studies on each nuclear material are produced. Multi-dimensional approach is required for the studies on the degree of efforts to divert

  14. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    conditions. There was also a session on accident analysis, a very important topic in today's nuclear technology. Other topics related to fission reactor technology included thermodynamics in waste management and fuel reprocessing. One severe limitation to scientists working in applied thermodynamics has been the lack of basic or fundamental thermodynamic data. Accordingly, several sessions of the Symposium were devoted to basic data on nuclear fuels as well as fundamental data on the thermodynamic properties of nuclear materials. The Symposium was indeed a timely one. It served as a mechanism by which the participants gained a comprehensive and complete picture of the current status of international thermodynamic investigations on nuclear materials. The data presented at the Symposium is not the final answer to nuclear material problems, but it will serve as a guide for further investigations. (author)

  15. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel

    International Nuclear Information System (INIS)

    1988-07-01

    This paper is primarily concerned with Section 11 of INFCIRC/153 which provides for the possible termination of safeguards based on a determination that the nuclear material in question has been consumed, has been diluted, or has become practicably irrecoverable. Two distinctly different categories of nuclear material have been suggested for possible termination of safeguards based on a determination that the nuclear material has become practicably irrecoverable: One relates to a variety of low concentration waste materials, meaning thereby materials which the State or plant operator considers to be of questionable economic recoverability and the other relates to the spent fuel placed in facilities described as ''permanent repositories'' which are at least claimed to represent ''final disposal'' facilities and are candidates for a possible determination of practicably irrecoverable. 26 refs, tabs

  16. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  17. Nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    In 1998, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) performed 38 inspections, 25 of them were performed in co-operation with IAEA inspectors. There is no fresh nuclear fuel at Bohunice A-1 NPP at present. Fresh fuel of Bohunice V-1 and V-2 NPPs is inspected in the fresh fuel storage.There are 327 fresh fuel assemblies in Mochovce NPP fresh fuel storage. In addition to that, are also 71 small users of nuclear materials in Slovakia. In most cases they use: covers made of depleted uranium for non-destructive works, detection of level in production plants, covers for therapeutical sources at medical facilities. In. 1995, NRA SR issued 4 new licences for nuclear material withdrawal. In the next part manipulation with nuclear materials, spent fuel stores and illegal trafficking in nuclear materials are reported

  18. Concerning major items in government ordinance requiring modification of part of enforcement regulation for law relating to control of nuclear material, nuclear fuel and nuclear reactor

    International Nuclear Information System (INIS)

    1989-01-01

    The report describes major items planned to be incorporated into the enforcement regulations for laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The modifications have become necessary for the nation to conclude a nuclear material protection treaty with other countries. The modification include the definitions of 'special nuclear fuel substances' and 'special nuclear fuel substances' and 'special nuclear fuel substances subject to protection'. The modifications require that protective measures be taken when handling and transporting special nuclear fuel substances subject to protection. Transport of special nuclear fuel substances requires approval from the Prime Minister or Transport Minister. Transport of special nuclear fuel substances subject to protection should be conducted after notifying the prefectural Public Safety Commission. Transport of special nuclear fuel substances subject to protection requires the conclusion of arrangements among responsible persons and approval of them from the Prime Minister. (N.K.)

  19. Expanding Nuclear Power Programmes - Romanian experience: Master - Nuclear Materials and Technologies Educational Plan

    International Nuclear Information System (INIS)

    Valeca, S.; Valeca, M.

    2012-01-01

    The main objectives of the Master Nuclear Materials and Technologies Educational Plan are: 1. To deliver higher education and training in the following specific domains, such as: Powders Technology and Ceramic Materials, Techniques of Structural Analysis, Composite Materials, Semiconductor Materials and Components, Metals and Metallic Alloys, Optoelectronic Materials and Devices, Nuclear Materials, The Engineering of Special Nuclear Materials, 2. To train managers of the Nuclear Waste Products and Nuclear Safety, 3. To qualify in ICT Systems for Nuclear Process Guidance, 4. To qualify in Environmental Protection System at the Level of Nuclear Power Stations, 5. To train managers for Quality Assurance of Nuclear Energetic Processes, 6. To deliver higher education and training regarding the International Treatises, Conventions and Settlements in force in the field of nuclear related activities. (author)

  20. Comprehensive nuclear materials

    CERN Document Server

    Allen, Todd; Stoller, Roger; Yamanaka, Shinsuke

    2012-01-01

    Comprehensive Nuclear Materials encapsulates a panorama of fundamental information on the vast variety of materials employed in the broad field of nuclear technology. The work addresses, in five volumes, 3,400 pages and over 120 chapter-length articles, the full panorama of historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. It synthesizes the most pertinent research to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

  1. Supplier responsibility for nuclear material quality

    International Nuclear Information System (INIS)

    Stuart, P.S.; Dohna, A.E.

    1976-01-01

    Nuclear materials must be delivered by either the manufacturer or the distributor with objective, documented evidence that the material was manufactured, inspected, and tested by proven techniques performed by qualified personnel working to documented procedures. Measurement devices used for acceptance must be of proven accuracy. The material and all records must be identified for positive traceability as part of the quality history of the nuclear components, system, or structure in which the material was used. In conclusion, the nuclear material supplier must join the fabricator, the installer, and the user in effective implementation of the total systems approach to the application of quality assurance principles to all phases of procurement, fabrication, installation, and use of the safety-related components, systems, and structures in a nuclear power plant

  2. Nuclear data of the major actinide fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, W.P.; Saussure, G. De

    1984-01-01

    The effect of nuclear data of the major actinide fuel materials on the design accuracy, economics and safety of nuclear power systems is discussed. Since most of the data are measured relative to measurement standards, in particular the fission cross-section of /sup 235/U, data must be examined to ensure that absolute measurements and relative measurements are correctly handled. Nuclear data of fissile materials, fertile materials and minor plutonium isotopes are discussed.

  3. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  4. Control of Nuclear Material in Republic of Croatia

    International Nuclear Information System (INIS)

    Cizmek, A.; Medakovic, S.; Prah, M.; Novosel, N.

    2008-01-01

    State Office for Nuclear Safety (SONS) is established based on 'Nuclear Safety Act' (Official Gazette No. 173/2003) as an independent state organization responsible for all questions in connection with safe use of nuclear energy and technology, for expert matters of preparedness in the case of nuclear emergency, as well as for international co-operation in these fields (regulatory body). In the second half of year 2006, stationary detection systems for nuclear and other radioactive materials were installed on Border Crossing Bregana, Croatia. Yantar 2U, which is the commercial name of the system, is integrated automatic system capable of detection of nuclear and other radioactive materials prepared for fixed-site customs applications (Russian origin). Installed system contains portal monitors, camera, communication lines and communication boxes and server. Two fully functional separate systems has been installed on BC Bregana, one on truck entrance and another one on car entrance. In this article the operational experience of installed system is presented. This includes statistical analysis of recorded alarms, evaluation of procedures for operational stuff and maintenance and typical malfunction experience, as well as some of the recommendation for future use of detection systems. Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08) lays down the list of nuclear materials and special equipment as well as the list of other activities related to the production of special equipment and non-nuclear materials; the contents of the declaration of intent form for export/import of goods, the form for notifying export/import of goods, the form for notifying transport of nuclear material, the form for notifying the activity related to producing of special equipment and non-nuclear material, as well as of the form of the report on nuclear material balance in the user's material balance area. This Ordinance lays down the method of

  5. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2005-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbales dated 25 October 2004 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Brazil, Canada, Cyprus, Czech Republic, Estonia, Finland, France, Greece, Hungary, Italy, Japan, Malta, Netherlands, Norway, Republic of Korea, South Africa, Spain, Sweden, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology. The purpose of the Notes Verbales is to provide further information on those Governments' guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbales is attached. The attachment to these Notes Verbales is also reproduced in full

  6. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-23

    The Director General of the International Atomic Energy Agency has received Notes Verbales dated 25 October 2004 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Brazil, Canada, Cyprus, Czech Republic, Estonia, Finland, France, Greece, Hungary, Italy, Japan, Malta, Netherlands, Norway, Republic of Korea, South Africa, Spain, Sweden, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology. The purpose of the Notes Verbales is to provide further information on those Governments' guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbales is attached. The attachment to these Notes Verbales is also reproduced in full.

  7. Communications Received from Certain Member States Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology. Nuclear Transfers and Nuclear-Related Dual-Use Transfers

    International Nuclear Information System (INIS)

    1993-04-01

    The Director General has received a Note Verbale dated 5 March 1993 from the Ministry of Foreign Affairs of the Slovak Republic. The purpose of the Note Verbale is to provide information on that Governments' guidelines for Nuclear Transfers and for Transfers of of Nuclear-related Dual-use Equipment, Material and Related Technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Note Verbale is annexed hereto [fr

  8. Communications Received from Certain Member States Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology. Nuclear Transfers and Nuclear-Related Dual-Use Transfers

    International Nuclear Information System (INIS)

    1993-04-01

    The Director General has received a Note Verbale dated 5 March 1993 from the Ministry of Foreign Affairs of the Slovak Republic. The purpose of the Note Verbale is to provide information on that Governments' guidelines for Nuclear Transfers and for Transfers of of Nuclear-related Dual-use Equipment, Material and Related Technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Note Verbale is annexed hereto [es

  9. New materials in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Iwata, Shuichi

    1988-01-01

    In the autumn of 1987, the critical condition was attained in the JET in Europe and Japanese JT-60, thus the first subject in the physical verification of nuclear fusion reactors was resolved, and the challenge to the next attainment of self ignition condition started. As the development process of nuclear fusion reactors, there are the steps of engineering, economical and social verifications after this physical verification, and in respective steps, there are the critical problems related to materials, therefore the development of new materials must be advanced. The condition of using nuclear fusion reactors is characterized by high fluence, high thermal flux and strong magnetic field, and under such extreme condition, the microscopic structures of materials change, and they behave much differently from usual case. The subjects of material development for nuclear fusion reactors, the material data base being built up, the materials for facing plasma and high thermal flux, first walls, blanket structures, electric insulators and others are described. The serious effect of irradiation and the rate of defect inducement must be taken in consideration in the structural materials for nuclear fusion reactors. (Kako, I.)

  10. Problems on shipping high-enriched nuclear materials

    International Nuclear Information System (INIS)

    Ganzha, V.V.; Demko, N.A.; Deryavko, I.I.; Zelenski, D.I.; Kolbaenkov, A.N.; Pivovarov, O.S.; Storozhenko, A.N.; Chernyad'ev, V.V.; Yakovlev, V.V.; Gorin, N.V.; Prokhod'ko, A.I.; Sherbina, A.N.; Barsanov, V.I.; Dyakov, E.K.; Tishenko, M.F.; Khlystov, A.I.; Vasil'ev, A.P.; Smetannikov, V.P.

    1998-01-01

    In 1996-1998 all Russian nuclear materials were taken out of the Institute of Atomic Energy of Kazakhstan National Nuclear Centre (IAE NNC RK). In this report there are basic tasks related to the performance of this work. They are: 1) Preparation of Russian nuclear materials (NM) kept at IAE NNC RK for transportation; 2) accounting and control of Russian nuclear materials kept at IAE NNC RK; 3) arrangement of permit papers for NM transportation; 4) NM transportation from IAE NNC RK to the enterprises of Russian MINATOM; 5) provision of nuclear and radiation safety in the course of operations with NM; 6) provision of physical protection for Russian NM

  11. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1987-01-01

    General provisions specify the purpose of the Law and definitions of terms used in it. Provisions relating to control of business management for refining cover designation of business operation, requirements for designation, permission and report of alteration, report of commencement of business operation, revocation of designation, recording, and measures for wastes. Provisions relating to control of business management for processing cover permission of operation, requirements for permission, approval of design and construction plan, inspection of facilities, report of commencement of business management, measures for maintenance, suspension of use of facilities, responsible personnel for handling nuclear fuel, and permit, obligations, etc. of responsible personnel for handing nuclear fuel. Provisions relating to control of construction and operation of nuclear reactor cover permission of construction, permission concerning nuclear reactor mounted on foreign nuclear powered ships, requirements for permission, etc. Other articles stipulate provisions relating to control of business management for reprocessing, use of nuclear fuel substances, use of materials and substances covered by international regulations, designation of inspection organizations, and other rules. (Nogami, K.)

  12. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  13. Study of nuclear environment and material strategy

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    There is a concern about the environmental hazard caused by radioactive materials coming with the expansion of nuclear power and even by renewable energies, which are used as countermeasures against global warming to construct a sustainable society. A concept to internalize the pollution caused by radioactive materials, which are directly or indirectly related to nuclear power, to economical activities by adopting externality is proposed. Energy and industrial productions are strongly related to the supply of material. Therefore material flow is also part of this internalization concept. The concept is named 'NEMS (Nuclear Environment and Material Strategy)'. Fission products and transuranic isotopes from nuclear power such as plutonium are considered in this concept. Thorium, which comes from the material flow of rare-earth production to support the elaboration of renewable energies including electric vehicles on the consumer side, is considered as an externality of the non-nuclear power field. Fission products contain some rare-earth materials. Thus, these rare-earth materials, which are extracted by the advanced ORIENT (Optimization by Recycling Instructive Elements) cycle, are internalized as rare-earth supplier in economy. However, the supply quantity is limited. Therefore rare-earth production itself is still needed. The externality of rare-earth production is thorium and is internalized by using it as nuclear fuel. In this case, the demand of thorium is still small within these few decades compared to the production of thorium as byproduct of the rare-earth production. A thorium energy bank (The Bank) is advanced to regulate the storage of the excess amount of thorium inside of an international framework in order to prevent environmental hazard resulting from the illegal disposal of thorium. In this paper, the material flows of thorium and rare-earth are outlined. Their material balance are demonstrated based on the prediction of rare-earth mining and an

  14. The physical protection of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  15. The physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  16. Study on interface between nuclear material accounting system and national nuclear forensic library

    International Nuclear Information System (INIS)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho

    2016-01-01

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library

  17. Study on interface between nuclear material accounting system and national nuclear forensic library

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library.

  18. Communications Received from Certain Member States Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology. Nuclear Transfers and Nuclear-Related Dual-Use Transfers

    International Nuclear Information System (INIS)

    1993-04-01

    The Director General has received a Note Ver bale dated 5 March 1993 from the Ministry of Foreign Affairs of the Slovak Republic. The purpose of the Note Ver bale is to provide information on that Governments' guidelines for Nuclear Transfers and for Transfers of of Nuclear-related Dual-use Equipment, Material and Related Technology. In the light of the wish expressed at the end of each Note Ver bale, the text of the Note Ver bale is annexed hereto

  19. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2003-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbales dated 28 February 2003 from the Resident Representatives to the Agency of Argentina, Austria, Belgium, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Japan, Kazakhstan, Latvia, Netherlands, Norway, Portugal, Republic of Korea, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland, and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology. The purpose of the Note Verbales is to provide further information on those Governments' Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbales is attached. The attachment to these Notes Verbales is also reproduced in full

  20. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-16

    The Director General of the International Atomic Energy Agency has received Notes Verbales dated 28 February 2003 from the Resident Representatives to the Agency of Argentina, Austria, Belgium, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Japan, Kazakhstan, Latvia, Netherlands, Norway, Portugal, Republic of Korea, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland, and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology. The purpose of the Note Verbales is to provide further information on those Governments' Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbales is attached. The attachment to these Notes Verbales is also reproduced in full.

  1. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  2. Communication Received from the PermanentMission of Mexico to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-19

    The Director General has received a note verbale dated 15 June 2012 from the Permanent Mission of Mexico to the International Atomic Energy Agency providing information on the decision of the Government of Mexico to act in accordance with the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2.

  3. Communication Received from the Permanent Mission of Mexico to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-19

    The Director General has received a note verbale dated 15 June 2012 from the Permanent Mission of Mexico to the International Atomic Energy Agency providing information on the decision of the Government of Mexico to act in accordance with the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2.

  4. Communication Received from the Permanent Mission of Mexico to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 15 June 2012 from the Permanent Mission of Mexico to the International Atomic Energy Agency providing information on the decision of the Government of Mexico to act in accordance with the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2

  5. Communication Received from the PermanentMission of Mexico to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 15 June 2012 from the Permanent Mission of Mexico to the International Atomic Energy Agency providing information on the decision of the Government of Mexico to act in accordance with the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2

  6. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  7. Safeguards for special nuclear materials

    International Nuclear Information System (INIS)

    Carlson, R.L.

    1979-12-01

    Safeguards, accountability, and nuclear materials are defined. The accuracy of measuring nuclear materials is discussed. The use of computers in nuclear materials accounting is described. Measures taken to physically protect nuclear materials are described

  8. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are provided for under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and provisions concerning refining business in the enforcement order for the law. The basic concepts and terms are defined, such as: exposure dose, accumulative dose; controlled area; inspected surrounding area and employee. Refining facilities listed in the application for designation shall be classified into clushing and leaching, thickning, refining facilities, storage facilities of nuclear source materials and nuclear fuel materials, disposal facilities of contaminated substances and building for refining, etc. Business program attached to the application shall include expected time of beginning of refining, estimated production amount of nuclear source materials or nuclear fuel materials for the first three years and funds necessary for construction, etc. Records shall be made and kept for particular periods on delivery and storage of nuclear source materials and nuclear fuel materials, control of radiation, maintenance and accidents of refining facilities. Safety securing, application of internationally regulated substances and measures in dangerous situations are stipulated respectively. Exposure dose of employees and other specified matters shall be reported by the refiner yearly to the Director General of Science and Technology Agency and the Minister of International Trade and Industry. (Okada, K.)

  9. Communications received from certain Member States regarding guidelines for the export of nuclear material, equipment and technology. Nuclear-related dual-use transfers

    International Nuclear Information System (INIS)

    1995-10-01

    The Director General has received notes verbales dated 30 June 1995 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Bulgaria, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, the Slovak Republic, South Africa, Spain, Sweden, Switzerland, the United Kingdom of Great Britain and Northern Ireland, and the United States of America relating to the export of nuclear material, equipment and technology. The purpose of the notes verbales is to provide further information on those Governments' Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material and related Technology. In the light of the wish expressed at the end of each note verbale, the text of the notes verbales is annexed hereto. The enclosure to these notes verbales is also reproduced in full in the Annex

  10. Communications received from certain Member States regarding guidelines for the export of nuclear material, equipment and technology. Nuclear-related dual-use transfers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The Director General has received notes verbales dated 30 June 1995 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Bulgaria, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, the Slovak Republic, South Africa, Spain, Sweden, Switzerland, the United Kingdom of Great Britain and Northern Ireland, and the United States of America relating to the export of nuclear material, equipment and technology. The purpose of the notes verbales is to provide further information on those Governments` Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material and related Technology. In the light of the wish expressed at the end of each note verbale, the text of the notes verbales is annexed hereto. The enclosure to these notes verbales is also reproduced in full in the Annex.

  11. Hungarian national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Lendvai, O.

    1985-01-01

    The Hungarian system for nuclear materials control and accounting is briefly described. Sections include a historical overview, a description of nuclear activities and an outline of the organizational structure of the materials management system. Subsequent sections discuss accounting, verification and international relations

  12. U.S. national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Taylor, S; Terentiev, V G

    1998-01-01

    Issues related to nuclear material control and accounting and illegal dealing in these materials were discussed at the April 19--20, 1996 Moscow summit meeting (G7 + Russia). The declaration from this meeting reaffirmed that governments are responsible for the safety of all nuclear materials in their possession and for the effectiveness of the national control and accounting system for these materials. The Russian delegation at this meeting stated that ''the creation of a nuclear materials accounting, control, and physical protection system has become a government priority''. Therefore, in order to create a government nuclear material control and accounting system for the Russian Federation, it is critical to study the structure, operating principles, and regulations supporting the control and accounting of nuclear materials in the national systems of nuclear powers. In particular, Russian specialists have a definite interest in learning about the National Nuclear Material Control and Accounting System of the US, which has been operating successfully as an automated system since 1968

  13. Welcome from INMM (Institute of Nuclear Materials Management)

    International Nuclear Information System (INIS)

    Satkowiak, L.

    2015-01-01

    The Institute of Nuclear Materials Management (INMM) is the premier professional society focused on safe and secure use of Nuclear Materials and the related nuclear scientific technology and knowledge. Its international membership includes government, academia, non-governmental organizations and industry, spanning the full spectrum all the way from policy to technology. The Institute's primary role include the promotion of research, the establishment of standards and the development of best practices, all centered around nuclear materials. It then disseminates this information through meetings, professional contacts, reports, papers, discussions, and publications. The formal structure of the INMM includes six technical divisions: Facility Operation; Materials Control and Accountability; Nonproliferation and Arms Control; Nuclear Security and Physical Protection; Packaging, Transportation and Disposition

  14. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  15. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions concerning refining business in the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for the execution of this law, and to enforce them. Basic terms are defined, such as: exposure radiation dose, cumulative dose, control area, surrounding monitoring area and worker. The application for the designation for refining business under the law shall be classified into the facilities for crushing and leaching-filtration, thikening, and refining, the storage facilities for nuclear raw materials and nuclear fuel materials, and the disposal facilities for radioactive wastes, etc. To the application, shall be attached business plans, the explanations concerning the technical abilities of applicants and the prevention of hazards by nuclear raw materials and nuclear fuel materials regarding refining facilities, etc. Records shall be made on the accept, delivery and stock of each kind of nuclear raw materials and nuclear fuel materials, radiation control, the maintenance of and accidents in refining facilities, and kept for specified periods, respectively. Security regulations shall be enacted for each works or enterprise on the functions and organizations of persons engaged in the control of refining facilities, the operation of the apparatuses which must be controlled for the prevention of accidents, and the establishment of control area and surrounding monitoring area, etc. The report on the usage of internationally regulated goods and the measures taken at the time of danger are defined particularly. (Okada, K.)

  16. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  17. The establishment of computer system for nuclear material accounting

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Park, Ho Joon

    1988-01-01

    Computer based nuclear material accountancy system will not only increase the credibility of KOREA-IAEA safeguards agreement and bilateral agreements but also decrease the man-power needed to carry out the inspection activity at state level and at facility level. Computer software for nuclear material accounting for and control has been materialized the application to both item and bulk facilities and software for database at state level has been also established to maintain up -to-date status of nation-wide nuclear material inventory. Computer recordings and reporting have been realized to fulfill the national and international commitments to nuclear material accounting for and control. The exchange of information related to nuclear material accounting for has become possible by PC diskettes. (Author)

  18. A review on nuclear forensic methodology for analysis of nuclear material of unknown origin

    International Nuclear Information System (INIS)

    Deshmukh, A.V.; Raghav, N.K.; Fatangare, N.M.; Jagtap, S.S.

    2014-01-01

    With the growing use of nuclear power and threat from illegal nuclear smuggling nuclear forensic provides an aid to the law enforcement to trace back modus operandi of such threats. Extensive nuclear proliferation, race among countries to acquire nuclear capability and global terrorism scenario has mandated Nuclear Forensic Science technology to tackle nuclear threats. Gamma spectrometry, alpha spectrometry, thermal ionization mass spectrometry, inductively coupled plasma mass spectrometry are employed for characterization and relative isotopic composition determinant of Nuclear material and techniques like SEM transmission electron TEM, FT-IR, GC-MS, Electrophoretic technique are used to characterize the contaminated materials in order to deceive investigative agencies. The present paper provide systematic forensic methodology for nuclear and radioactive materials encountered at any crime scene due to any accidental discharges or military activities. (author)

  19. Communication Received from the Permanent Mission of the Republic of Serbia to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 28 September 2012 from the Permanent Mission of Serbia to the International Atomic Energy Agency providing information on the decision of the Government of Serbia to adhere to the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2 [es

  20. Communication Received from the Permanent Mission of the Republic of Serbia to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 28 September 2012 from the Permanent Mission of Serbia to the International Atomic Energy Agency providing information on the decision of the Government of Serbia to adhere to the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2 [fr

  1. Communication Received from the Permanent Mission of the Republic of Serbia to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 28 September 2012 from the Permanent Mission of Serbia to the International Atomic Energy Agency providing information on the decision of the Government of Serbia to adhere to the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2

  2. Auditing nuclear materials statements

    International Nuclear Information System (INIS)

    Anon.

    1973-01-01

    A standard that may be used as a guide for persons making independent examinations of nuclear materials statements or reports regarding inventory quantities on hand, receipts, production, shipment, losses, etc. is presented. The objective of the examination of nuclear materials statements by the independent auditor is the expression of an opinion on the fairness with which the statements present the nuclear materials position of a nuclear materials facility and the movement of such inventory materials for the period under review. The opinion is based upon an examination made in accordance with auditing criteria, including an evaluation of internal control, a test of recorded transactions, and a review of measured discards and materials unaccounted for (MUF). The standard draws heavily upon financial auditing standards and procedures published by the American Institute of Certified Public Accountants

  3. Protection and control of nuclear materials

    International Nuclear Information System (INIS)

    Jalouneix, J.; Winter, D.

    2007-01-01

    In the framework of the French regulation on nuclear materials possession, the first liability is the one of operators who have to know at any time the quantity, quality and localization of any nuclear material in their possession. This requires an organization of the follow up and of the inventory of these materials together with an efficient protection against theft or sabotage. The French organization foresees a control of the implementation of this regulation at nuclear facilities and during the transport of nuclear materials by the minister of industry with the sustain of the institute of radiation protection and nuclear safety (IRSN). This article presents this organization: 1 - protection against malevolence; 2 - national protection and control of nuclear materials: goals, administrative organization, legal and regulatory content (authorization, control, sanctions), nuclear materials protection inside facilities (physical protection, follow up and inventory, security studies), protection of nuclear material transports (physical protection, follow up), control of nuclear materials (inspection at facilities, control of nuclear material measurements, inspection of nuclear materials during transport); 3 - international commitments of France: non-proliferation treaty, EURATOM regulation, international convention on the physical protection of nuclear materials, enforcement in France. (J.S.)

  4. The nuclear materials contraband

    International Nuclear Information System (INIS)

    Williams, P.; Woessner, P.

    1996-01-01

    Several seizures of nuclear materials carried by contraband have been achieved. Some countries or criminal organizations could manufacture atomic bombs and use them. This alarming situation is described into details. Only 40% of drugs are seized by the American police and probably less in western Europe. The nuclear materials market is smaller than the drugs'one but the customs has also less experience to intercept the uranium dispatch for instance more especially as the peddlers are well organized. A severe control of the international transports would certainly allow to seize a large part of nuclear contraband materials but some dangerous isotopes as uranium 235 or plutonium 239 are little radioactive and which prevents their detection by the Geiger-Mueller counters. In France, some regulations allow to control the materials used to manufacture the nuclear weapons, and diminish thus the risk of a nuclear materials contraband. (O.L.). 4 refs., 2 figs

  5. Passive nondestructive assay of nuclear materials

    International Nuclear Information System (INIS)

    Reilly, D.; Ensslin, N.; Smith, H. Jr.; Kreiner, S.

    1991-03-01

    The term nondestructive assay (NDA) is applied to a series of measurement techniques for nuclear fuel materials. The techniques measure radiation induced or emitted spontaneously from the nuclear material; the measurements are nondestructive in that they do not alter the physical or chemical state of the nuclear material. NDA techniques are characterized as passive or active depending on whether they measure radiation from the spontaneous decay of the nuclear material or radiation induced by an external source. This book emphasizes passive NDA techniques, although certain active techniques like gamma-ray absorption densitometry and x-ray fluorescence are discussed here because of their intimate relation to passive assay techniques. The principal NDA techniques are classified as gamma-ray assay, neutron assay, and calorimetry. Gamma-ray assay techniques are treated in Chapters 1--10. Neutron assay techniques are the subject of Chapters 11--17. Chapters 11--13 cover the origin of neutrons, neutron interactions, and neutron detectors. Chapters 14--17 cover the theory and applications of total and coincidence neutron counting. Chapter 18 deals with the assay of irradiated nuclear fuel, which uses both gamma-ray and neutron assay techniques. Chapter 19 covers perimeter monitoring, which uses gamma-ray and neutron detectors of high sensitivity to check that no unauthorized nuclear material crosses a facility boundary. The subject of Chapter 20 is attribute and semiquantitative measurements. The goal of these measurements is a rapid verification of the contents of nuclear material containers to assist physical inventory verifications. Waste and holdup measurements are also treated in this chapter. Chapters 21 and 22 cover calorimetry theory and application, and Chapter 23 is a brief application guide to illustrate which techniques can be used to solve certain measurement problems

  6. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications

  7. Control of Nuclear Materials and Special Equipment (Nuclear Safety Regulations)

    International Nuclear Information System (INIS)

    Cizmek, A.; Prah, M.; Medakovic, S.; Ilijas, B.

    2008-01-01

    Based on Nuclear Safety Act (OG 173/03) the State Office for Nuclear Safety (SONS) in 2008 adopted beside Ordinance on performing nuclear activities (OG 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (OG 74/06) the new Ordinance on the control of nuclear material and special equipment (OG 15/08). Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a license to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance also lays down the manner in which nuclear material records have to be kept, the procedure for notifying the State administration organization (regulatory body) responsible for nuclear safety by the nuclear material user, and the keeping of registers of nuclear activities, nuclear material and special equipment by the State administration organization (regulatory body) responsible for nuclear safety, as well as the form and content of official nuclear safety inspector identification card and badge.(author)

  8. National and international nuclear material monitoring

    International Nuclear Information System (INIS)

    Waddoups, I.G.

    1996-01-01

    The status of nuclear materials in both the U.S. and Former Soviet Union is changing based upon the execution of agreements relative to weapons materials production and weapon dismantlement. The result of these activities is that a considerably different emphasis is being placed on how nuclear materials are viewed and utilized. Even though much effort is being expended on the final disposition of these materials, the interim need for storage and security of the material is increasing. Both safety and security requirements exist to govern activities when these materials are placed in storage. These requirements are intended to provide confidence that the material is not being misused and that the storage operations are conducted safely. Both of these goals can be significantly enhanced if technological monitoring of the material is performed. This paper will briefly discuss the traditional manual methods of U.S. and international material monitoring and then present approaches and technology that are available to achieve the same goals under the evolving environment

  9. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel (AGM-660)

    International Nuclear Information System (INIS)

    1988-12-01

    The Advisory Group was asked to advise the Agency on the circumstances under which the Agency might logically implement Section 11 of INFCIRC/153, or the comparable Section 26c of INFCIRC/66/rev2, which provides for a determination that nuclear material is 'practicably irrecoverable', and that therefore safeguards could be terminated. This advice was sought, and in the paragraphs that follow is given, in two areas. One relates to 'waste', which the Group understands as referring to material which contains nuclear material that the State/facility operator believes has no economically recoverable value and for which no further use is foreseen. The other relates to spent fuel, which in some cases may be placed in geological 'permanent repositories'

  10. Illicit diversion of nuclear materials

    International Nuclear Information System (INIS)

    Bett, F.L.

    1975-08-01

    This paper discusses the means of preventing illegal use of nuclear material by terrorists or other sub-national groups and by governments. With respect to sub-national groups, it concludes that the preventive measures of national safeguards systems, when taken together with the practical difficulties of using nuclear material, would make the diversion and illegal use of nuclear material unattractive in comparison with other avenues open to these groups to attain their ends. It notes that there are only certain areas in the nuclear fuel cycle, e.g. production of some types of nuclear fuel embodying highly enriched uranium and shipment of strategically significant nuclear material, which contain material potentially useful to these groups. It also discusses the difficult practical problems, e.g. coping with radiation, which would face the groups in making use of the materials for terrorist purposes. Concerning illegal use by Governments, the paper describes the role of international safeguards, as applied by the International Atomic Energy Agency, and the real deterrent effect of these safeguards which is achieved through the requirements to maintain comprehensive operating records of the use of nuclear material and by regular inspections to verify these records. The paper makes the point that Australia would not consider supplying nuclear material unless it were subject to international safeguards. (author)

  11. Legal aspects of transport of nuclear materials

    International Nuclear Information System (INIS)

    Jacobsson, Mans.

    The Paris Convention and the Brussels Supplementary Convention are briefly discussed and other conventions in the field of civil liability for nuclear damage are mentioned: the Vienna Convention, the Nuclear Ships Convention and the 1971 Convention relating to civil liability in the field of maritime carriage of nuclear material. Legislation on civil liability in the Nordic countries, which is based on the Paris Convention and the Supplementary Convention is discussed, notably the principle of channelling of liability and exceptions from that principle due to rules of liability in older transport conventions and certain problems due to the limited geographical scope of the Paris Convention and the Supplementary Convention. Insurance problems arising in connection with transport of nuclear materials are surveyed and an outline is given of the administrative provisions concerning transport (based on the IAEA transport regulations) which govern transport of radioactive materials by different means: road, rail, sea and air. Finally, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons is discussed. (NEA) [fr

  12. Physics and technology of nuclear materials

    International Nuclear Information System (INIS)

    Ursu, I.

    1985-01-01

    The subject is covered in chapters, entitled; elements of nuclear reactor physics; structure and properties of materials (including radiation effects); fuel materials (uranium, plutonium, thorium); structural materials (including - aluminium, zirconium, stainless steels, ferritic steels, magnesium alloys, neutron irradiation induced changes in the mechanical properties of structural materials); moderator materials (including - nuclear graphite, natural (light) water, heavy water, beryllium, metal hydrides); materials for reactor reactivity control; coolant materials; shielding materials; nuclear fuel elements; nuclear material recovery from irradiated fuel and recycling; quality control of nuclear materials; materials for fusion reactors (thermonuclear fusion reaction, physical processes in fusion reactors, fuel materials, materials for blanket and cooling system, structural materials, materials for magnetic devices, specific problems of material irradiation). (U.K.)

  13. The use of modern databases in managing nuclear material inventories

    International Nuclear Information System (INIS)

    Behrens, R.G.

    1994-01-01

    The need for a useful nuclear materials database to assist in the management of nuclear materials within the Department of Energy (DOE) Weapons Complex is becoming significantly more important as the mission of the DOE Complex changes and both international safeguards and storage issues become drivers in determining how these materials are managed. A well designed nuclear material inventory database can provide the Nuclear Materials Manager with an essential cost effective tool for timely analysis and reporting of inventories. This paper discusses the use of databases as a management tool to meet increasing requirements for accurate and timely information on nuclear material inventories and related information. From the end user perspective, this paper discusses the rationale, philosophy, and technical requirements for an integrated database to meet the needs for a variety of users such as those working in the areas of Safeguards, Materials Control and Accountability (MC ampersand A), Nuclear Materials Management, Waste Management, materials processing, packaging and inspection, and interim/long term storage

  14. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for designation of undertakings of refining (spallation and eaching filtration facilities, thickening facilities, refining facilities, nuclear material substances or nuclear fuel substances storage facilities, waste disposal facilities, etc.), application for permission for alteration (business management plan, procurement plan, fund raising plan, etc.), application for approval of merger (procedure, conditions, reason and date of merger, etc.), submission of report on alteration (location, structure, arrangements processes and construction plan for refining facilities, etc.), revocation of designation, rules for records, rules for safety (personnel, organization, safety training for employees, handling of important apparatus and tools, monitoring and removal of comtaminants, management of radioactivity measuring devices, inspection and testing, acceptance, transport and storage of nuclear material and fuel, etc.), measures for emergency, submission of report on abolition of an undertaking, submission of report on disorganization, measures required in the wake of revocation of designation, submission of information report (exposure to radioactive rays, stolen or missing nuclear material or nuclear fuel, unusual leak of nuclear fuel or material contaminated with nuclear fuel), etc. (Nogami, K.)

  15. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  16. Global nuclear material control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  17. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  18. International nuclear material safeguards

    International Nuclear Information System (INIS)

    Syed Azmi Syed Ali

    1985-01-01

    History can be a very dull subject if it relates to events which have long since lost their relevance. The factors which led to the creation of the International Atomic Energy Agency (IAEA), however, are as important and relevant today as they were when the Agency was first created. Without understanding these factors it is impossible to realise how important the Agency is in the present world or to understand some of the controversies surrounding its future. Central to these controversies is the question of how best to promote the international transfer of nuclear technology without contributing further to the problem of proliferating nuclear explosives or explosive capabilities. One effective means is to subject nuclear materials (see accompanying article in box), which forms the basic link between the manufacture of nuclear explosives and nuclear power generation, to international safeguards. This was realized very early in the development of nuclear power and was given greater emphasis following the deployment of the first two atomic bombs towards the end of World War II. (author)

  19. Development of a relational database for nuclear material (NM) accounting in RC and I Group

    International Nuclear Information System (INIS)

    Yadav, M.B.; Ramakumar, K.L.; Venugopal, V.

    2011-01-01

    A relational database for the nuclear material accounting in RC and I Group has been developed with MYSQL for Back-End and JAVA for Front-End development. Back-End has been developed to avoid any data redundancy, to provide random access of the data and to retrieve the required information from database easily. JAVA Applet and Java Swing components of JAVA programming have been used in the Front-End development. Front-End has been developed to provide data security, data integrity, to generate inventory status report at the end of accounting period, and also to have a quick look of some required information on computer screen. The database has been tested for the data of three quarters of the year 2009. It has been implemented from 1st January, 2010 for the accounting of nuclear material in RC and I Group. (author)

  20. Development of a relational database for nuclear material (NM) accounting in RC and I Group

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, M B; Ramakumar, K L; Venugopal, V [Radioanalytical Chemistry Division, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    A relational database for the nuclear material accounting in RC and I Group has been developed with MYSQL for Back-End and JAVA for Front-End development. Back-End has been developed to avoid any data redundancy, to provide random access of the data and to retrieve the required information from database easily. JAVA Applet and Java Swing components of JAVA programming have been used in the Front-End development. Front-End has been developed to provide data security, data integrity, to generate inventory status report at the end of accounting period, and also to have a quick look of some required information on computer screen. The database has been tested for the data of three quarters of the year 2009. It has been implemented from 1st January, 2010 for the accounting of nuclear material in RC and I Group. (author)

  1. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  2. Materials aspects of nuclear waste isolation

    International Nuclear Information System (INIS)

    Bennett, J.W.

    1984-01-01

    This paper is intended to provide an overview of the nuclear waste repository performance requirements and the roles which we expect materials to play in meeting these requirements. The objective of the U.S. Dept. of Energy's (DOE) program is to provide for the safe, permanent isolation of high-level radioactive wastes from the public. The Nuclear Waste Policy Act of 1982 (the Act) provides the mandate to accomplish this objective by establishing a program timetable, a schedule of procedures to be followed, and program funding (1 mil/kwhr for all nuclear generated electricity). The centerpiece of this plan is the design and operation of a mined geologic repository system for the permanent isolation of radioactive wastes. A nuclear waste repository contains several thousand acres of tunnels and drifts into which the nuclear waste will be emplaced, and several hundred acres for the facilities on the surface in which the waste is received, handled, and prepared for movement underground. With the exception of the nuclear material-related facilities, a repository is similar to a standard mining operation. The difference comes in what a repository is supposed to do - to contain an isolate nuclear waste from man and the environment

  3. The application of a figure of merit for nuclear explosive utility as a metric for material attractiveness in a nuclear material theft scenario

    International Nuclear Information System (INIS)

    King, Wayne E.; Bradley, Keith; Jones, Edwin D.; Kramer, Kevin J.; Latkowski, Jeffery F.; Robel, Martin; Sleaford, Brad W.

    2010-01-01

    Effective integration of nonproliferation management into the design process is key to the broad deployment of advanced nuclear energy systems, and is an explicit goal of the Laser Inertial Fusion Energy (LIFE) project at Lawrence Livermore National Laboratory. The nuclear explosives utility of a nuclear material to a state (proliferator) or sub-state (terrorist) is a critical factor to be assessed and is one aspect of material attractiveness. In this work, we approached nuclear explosives utility through the calculation of a 'figure of merit' (FOM) that has recently been developed to capture the relative viability and difficulty of constructing nuclear explosives starting from various nuclear material forms and compositions. We discuss the integration of the figure of merit into an assessment of a nuclear material theft scenario and its use in the assessment. This paper demonstrates that material attractiveness is a multidimensional concept that embodies more than the FOM. It also seeks to propose that other attributes may be able to be quantified through analogous FOMs (e.g., transformation) and that, with quantification, aggregation may be possible using concepts from the risk community.

  4. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The internationally controlled materials determined according to the law for nuclear source materials, etc. are the following: nuclear source materials, nuclear fuel materials, moderating materials, facilities including reactors, etc. sold, transferred, etc. to Japan according to the agreements for peaceful uses of atomic energy between Japan, and the United States, the United Kingdom, Canada, Australia and France by the respective governments and those organs under them; nuclear fuel materials resulting from usage of the above sold and transferred materials, facilities; nuclear fuel materials sold to Japan according to agreements set by the International Atomic Energy Agency; nuclear fuel materials involved with the safeguards in nuclear weapons non-proliferation treaty with IAEA. (Mori, K.)

  5. Professional Nuclear Materials Management

    International Nuclear Information System (INIS)

    Forcella, A.A.; O'Leary, W.J.

    1966-01-01

    This paper describes the scope of nuclear materials management for a typical power reactor in the United States of America. Since this power reactor is financed by private capital, one of the principal obligations of the reactor operator is to ensure that the investment is protected and will furnish an adequate financial return. Because of the high intrinsic value of nuclear materials, appropriate security and accountability must be continually exercised to minimize losses beyond security and accountability for the nuclear materials. Intelligent forethought and planning must be employed to ensure that additional capital is not lost as avoidable additional costs or loss of revenue in a number of areas. The nuclear materials manager must therefore provide in advance against the following contingencies and maintain constant control or liaison against deviations from planning during (a) pre-reactor acquisition of fuel and fuel elements, (b) in-reactor utilization of the fuel elements, and (c) post-reactor recovery of fuel values. During pre-reactor planning and operations, it is important that the fuel element be designed for economy in manufacture, handling, shipping, and replaceability. The time schedule for manufacturing operations must minimize losses of revenue from unproductive dead storage of high cost materials. For in-reactor operations, the maximum achievable burn-up of the fissionable material must be obtained by means of appropriate fuel rearrangement schemes. Concurrently the unproductive down-time of the reactor for fuel rearrangement, inspections, and the like must be minimized. In the post-reactor period, when the fuel has reached a predetermined depletion of fissionable material, the nuclear materials manager must provide for the most economical reprocessing and recovery of fissionable values and by-products. Nuclear materials management is consequently an essential factor in achieving competitive fuel cycle and unit energy costs with power reactors

  6. Reliability of structural materials in nuclear industry

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1996-01-01

    The reliability of nuclear installations is a fundamental point for the exploitation of nuclear energy. It requires an extensive knowledge of the behaviour of materials in the operating conditions and during the expected service life of the installations. In nuclear power plants multiple risks of failure can exist and are expressed by corrosion and deformation phenomena or by modification in the mechanical characteristics of materials. The knowledge of the evolution with time of a given material requires to take into account the data relative to the material itself, to its environment and to the physical conditions of this environment. The study of materials aging needs a more precise knowledge of the kinetics of phenomena at any scale and of their interactions, and a micro- or macro-modeling of their behaviour during long periods of time. This paper gives an overview of the aging phenomena that occur in the structural materials involved in PWR and fast neutron reactors: thermal aging, generalized corrosion, corrosion under constraint, intergranular corrosion, crack growth under loading, wear, irradiation etc.. (J.S.)

  7. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  8. Nuclear material operations manuals

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1979-06-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  9. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  10. ANCRE alliance: Road-map for nuclear materials

    International Nuclear Information System (INIS)

    Touboul, F.; Carre, F.

    2013-01-01

    Created in 2009 by the Higher Education and Research ministry and by the Ecology ministry, ANCRE, the National Alliance for Energy Research Coordination aims at enhancing the efficiency of French research in the field of energy by promoting partnerships and synergies between public and private sectors (research organizations, universities and companies). ANCRE aims to propose a coordinated strategy for research and innovation projects. Beyond its four founding members, CEA, CNRS, IFPEN and CPU, ANCRE brings together all the French public research organizations concerned with energy issues, and has strong links with the industrial sector. Among the 10 programmatic groups of ANCRE, one is specifically dedicated to Nuclear Energies (fission and fusion). This group has proposed road-maps in five scientific fields, considered as strategic for R and D, in relation to industrial objectives and scientific bottlenecks: nuclear materials, nuclear chemistry, reactor physics, instrumentation and fusion. For twenty to thirty years, R and D on nuclear materials has evolved from the heavy metallurgy of the first generation of power reactors to the nano-materials science under extreme conditions for present and future needs. Nuclear systems are characterized by extreme operating conditions: high temperatures, mechanical stresses, radiations, corrosive environment, and long durations. In order to deal with these extreme conditions, it is necessary to have a sound knowledge of the materials, to the finest scale. R and D development was made possible by advances in materials science, in relation to more efficient observation means (now reaching the atom scale) and deeper control of the microstructure. Development of simulation methods at the atomic level (ab initio, classical molecular dynamics, kinetic Monte Carlo, etc.) have also allowed a better understanding of phenomena at their most fundamental level. Material performance issues, however, remain significant, as the performance

  11. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    Concerning refining, fabrication and reprocessing operations of such materials as well as the installation and operation of reactors, necessary regulations are carried out. Namely, in case of establishing the business of refining, fabricating and reprocessing nuclear materials as well as installing nuclear reactors, applications for the permission of the Prime Minister and the Minister of International Trade and Industry should be filed. Change of such operations should be permitted after filing applications. These permissions are retractable. As regards the reactors installed aboard foreign ships, it must be reported to enter Japanese waters and the permission by the Prime Minister must be obtained. In case of nuclear fuel fabricators, a chief technician of nuclear fuel materials (qualified) must be appointed per each fabricator. In case of installing nuclear reactors, the design and methods of construction should be permitted by the Prime Minister. The standard for such permission is specified, and a chief engineer for operating reactors (qualified) must be appointed. Successors inherit the positions of ones who have operated nuclear material refining, fabrication and reprocessing businesses or operated nuclear reactors. (Rikitake, Y.)

  12. Characteristics of X-ray fluorescence of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seunghoon; Kwak, Sung-Woo; Shin, Jung-Ki; Park, Uk-Rayng; Jung, Heejun [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    LED is a technique of determination of uranium concentration as a continuous X-ray energy beams transmit a uranium liquid sample for safeguards. Compared to K-edge densitometer, due to relatively lower energy (L-edge energy is 17.17 keV) of Uranium L series energy than K-series energy, L-edge densitometer does not require high purity germanium detector with liquid nitride cooling. Therefore, the Ledge densitometer is appropriate for portable equipment for on-site nuclear material inspection and safeguards at facility sites. XRF combined with LED is a technique of finding of nuclear materials from reflected characteristic X-ray photons. In this study, characteristics of XRF of nuclear materials are simulated Monte Carlo method (Geant4) for feasibility of the system for determination of concentration of nuclear species. The analysis method of uranium concentration or minor actinides is applied using combination of linear extrapolation from jump of L-edge of sample and ratio between uranium and minor actinide from XRF measurement. In this study, The XRF ch aracteristics was simulated from Monte Carlo method. The peaks were obtained from nuclear material mixture. The estimated nuclear material concentration is low due to the volume effect of the sample. The correction factor or minimization of the effect is required.

  13. Nuclear material management: challenges and prospects

    International Nuclear Information System (INIS)

    Rieu, J.; Besnainou, J.; Leboucher, I.; Chiguer, M.; Capus, G.; Greneche, D.; Durret, L.F.; Carbonnier, J.L.; Delpech, M.; Loaec, Ch.; Devezeaux de Lavergne, J.G.; Granger, S.; Devid, S.; Bidaud, A.; Jalouneix, J.; Toubon, H.; Pochon, E.; Bariteau, J.P.; Bernard, P.; Krellmann, J.; Sicard, B.

    2008-01-01

    The articles in this dossier were derived from the papers of the yearly S.F.E.N. convention, which took place in Paris, 12-13 March 2008. They deal with the new challenges and prospects in the field of nuclear material management, throughout the nuclear whole fuel cycle, namely: the institutional frame of nuclear materials management, the recycling, the uranium market, the enrichment market, the different scenarios for the management of civil nuclear materials, the technical possibilities of spent fuels utilization, the option of thorium, the convention on the physical protection of nuclear materials and installations, the characterisation of nuclear materials by nondestructive nuclear measurements, the proliferation from civil installations, the use of plutonium ( from military origin) and the international agreements. (N.C.)

  14. Nuclear material inventory estimation in solvent extraction contactors

    International Nuclear Information System (INIS)

    Beyerlein, A.; Geldard, J.

    1986-06-01

    This report describes the development of simple nuclear material (uranium and plutonium) inventory relations for mixer-settler solvent extraction contactors used in reprocessing spent nuclear fuels. The relations are developed for light water reactor fuels where the organic phase is 30% tri-n-butylphosphate (TBP) by volume. For reprocessing plants using mixer-settler contactors as much as 50% of the nuclear material within the contactors is contained in A type (aqueous to organic extraction) contactors. Another very significant portion of the contactor inventory is in the partitioning contactors. The stripping contactors contain a substantial uranium inventory but contain a very small plutonium inventory (about 5 to 10% of the total contactor inventory). The simplified inventory relations developed in this work for mixer-settler contactors reproduce the PUBG databases within about a 5% standard deviation. They can be formulated to explicitly show the dependence of the inventory on nuclear material concentrations in the aqueous feed streams. The dependence of the inventory on contactor volumes, phase volume ratios, and acid and TBP concentrations are implicitly contained in parameters that can be calculated for a particular reprocessing plant from nominal flow sheet data. The terms in the inventory relations that represent the larger portion of the inventory in A type and partitioning contactors can be extended to pulsed columns virtually without change

  15. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.; Gassman, L.D.

    1978-04-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations--management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of ''play-scripts'' in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  16. Nuclear measurements and reference materials

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes the progress of the JRC programs on nuclear data, nuclear metrology, nuclear reference materials and non-nuclear reference materials. Budget restrictions and personnel difficulties were encountered during 1987. Fission properties of 235 U as a function of neutron energy and of the resonances can be successfully described on the basis of a three exit channel fission model. Double differential neutron emission cross-sections were accomplished on 7 Li and were started for the tritium production cross-section of 9 Be. Reference materials of uranium minerals and ores were prepared. Special nuclear targets were prepared. A batch of 250 g of Pu0 2 was characterized in view of certification as reference material for the elemental assay of plutonium

  17. Nuclear materials management procedures

    International Nuclear Information System (INIS)

    Veevers, K.; Silver, J.M.; Quealy, K.J.; Steege, E. van der.

    1987-10-01

    This manual describes the procedures for the management of nuclear materials and associated materials at the Lucas Heights Research Laboratories. The procedures are designed to comply with Australia's nuclear non-proliferation obligations to the International Atomic Energy Agency (IAEA), bilateral agreements with other countries and ANSTO's responsibilities under the Nuclear Non-Proliferation (Safeguards) Act, 1987. The manual replaces those issued by the Australian Atomic Energy Commission in 1959, 1960 and 1969

  18. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  19. The application of a figure of merit for nuclear explosive utility as a metric for material attractiveness in a nuclear material theft scenario

    Energy Technology Data Exchange (ETDEWEB)

    King, Wayne E., E-mail: weking@llnl.go [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Bradley, Keith [Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Jones, Edwin D. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Kramer, Kevin J.; Latkowski, Jeffery F. [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Robel, Martin [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Sleaford, Brad W. [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2010-11-15

    Effective integration of nonproliferation management into the design process is key to the broad deployment of advanced nuclear energy systems, and is an explicit goal of the Laser Inertial Fusion Energy (LIFE) project at Lawrence Livermore National Laboratory. The nuclear explosives utility of a nuclear material to a state (proliferator) or sub-state (terrorist) is a critical factor to be assessed and is one aspect of material attractiveness. In this work, we approached nuclear explosives utility through the calculation of a 'figure of merit' (FOM) that has recently been developed to capture the relative viability and difficulty of constructing nuclear explosives starting from various nuclear material forms and compositions. We discuss the integration of the figure of merit into an assessment of a nuclear material theft scenario and its use in the assessment. This paper demonstrates that material attractiveness is a multidimensional concept that embodies more than the FOM. It also seeks to propose that other attributes may be able to be quantified through analogous FOMs (e.g., transformation) and that, with quantification, aggregation may be possible using concepts from the risk community.

  20. Statistical methods for nuclear material management

    International Nuclear Information System (INIS)

    Bowen, W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems

  1. Statistical methods for nuclear material management

    Energy Technology Data Exchange (ETDEWEB)

    Bowen W.M.; Bennett, C.A. (eds.)

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  2. Considerations for sampling nuclear materials for SNM accounting measurements. Special nuclear material accountability report

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Upson, U.L.

    1978-05-01

    This report presents principles and guidelines for sampling nuclear materials to measure chemical and isotopic content of the material. Development of sampling plans and procedures that maintain the random and systematic errors of sampling within acceptable limits for SNM(Special Nuclear Materials) accounting purposes are emphasized

  3. Nuclear Materials Management. Proceedings of the Symposium on Nuclear Materials Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-02-15

    An increasing number of countries are using nuclear materials which, because of their high value and the potential hazards involved, require special methods of handling. To discuss these and to provide a forum at which different systems for achieving the necessary economy and safety could be compared, the International Atomic Energy Agency held a Symposium at Vienna on Nuclear Materials Management from 30 August to 3 September, 1965. It was attended by 115 participants from 19 Member States and two international organizations. Nuclear materials are already being used on an industrial scale and their high cost demands close and continuous control to ensure that they are delivered precisely on time and that they are used to the fullest possible extent before they are withdrawn from service. Routine industrial methods of material control and verification are widely used to ensure safe and economical operation and handling in nuclear power stations, in fuel-element fabrication and reprocessing plants, and in storage facilities. In addition special refinements are needed to take account of the value and the degree of purity required of nuclear materials. Quality as well as quantity has to be checked thoroughly and the utmost economy in processing is necessary. The radioactivity of the material poses special problems of handling and storage and creates a potential hazard to health. A further problem is that of criticality. These dangers and the means of averting them are well understood, as is evidenced by the outstandingly good safety record of the atomic energy industry. But besides accommodating all these special problems, day-to-day procedures must be simple enough to fit in with industrial conditions. Many of the 58 papers presented at the Symposium emphasized that records, checks, measurements and handling precautions, if suitably devised, provide the control vital to efficient operation, serve as checks against loss or waste of valuable materials and help meet the

  4. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and reactors, and the former notification No. 26, 1961, is hereby abolished. Internationally regulated goods under the law are as follows: nuclear raw materials, nuclear fuel materials and moderator materials transferred by sale or other means from the governments of the U.S., U.K., Canada, Australia and France or the persons under their jurisdictions according to the agreements concluded between the governments of Japan and these countries, respectively, the nuclear fuel materials recovered from these materials or produced by their usage, nuclear reactors, the facilities and heavy water transferred by sale or other means from these governments or the persons under their jurisdictions, the nuclear fuel materials produced by the usage of such reactors, facilities and heavy water, the nuclear fuel materials sold by the International Atomic Energy Agency under the contract between the Japanese government and the IAEA, the nuclear fuel materials recovered from these materials or produced by their usage, the heavy water produced by the facilities themselves transferred from the Canadian government, Canadian governmental enterprises or the persons under the jurisdiction of the Canadian government or produced by the usage of these facilities, etc. (Okada, K.)

  5. Nuclear Security Recommendations on Nuclear and other Radioactive Material out of Regulatory Control: Recommendations (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  6. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the ? field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  7. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Russian Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  8. Security Culture in Physical Protection of Nuclear Material and Facility

    International Nuclear Information System (INIS)

    Susyanta-Widyatmaka; Koraag, Venuesiana-Dewi; Taswanda-Taryo

    2005-01-01

    In nuclear related field, there are three different cultures: safety, safeguards and security culture. Safety culture has established mostly in nuclear industries, meanwhile safeguards and security culture are relatively new and still developing. The latter is intended to improve the physical protection of material and nuclear facility. This paper describes concept, properties and factors affecting security culture and interactions among these cultures. The analysis indicates that anybody involving in nuclear material and facility should have strong commitment and awareness of such culture to establish it. It is concluded that the assessment of security culture outlined in this paper is still preliminary for developing and conduction rigorous security culture implemented in a much more complex facility such as nuclear power plant

  9. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  10. Nuclear reactions and self-shielding effects of gamma-ray database for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Noda, Tetsuji [National Research Institute for Metals, Tsukuba, Ibaraki (Japan)

    2001-03-01

    A database for transmutation and radioactivity of nuclear materials is required for selection and design of materials used in various nuclear reactors. The database based on the FENDL/A-2.0 on the Internet and the additional data collected from several references has been developed in NRIM site of 'Data-Free-Way' on the Internet. Recently, the function predicted self-shielding effect of materials for {gamma}-ray was added to this database. The user interface for this database has been constructed for retrieval of necessary data and for graphical presentation of the relation between the energy spectrum of neutron and neutron capture cross section. It is demonstrated that the possibility of chemical compositional change and radioactivity in a material caused by nuclear reactions can be easily retrieved using a browser such as Netscape or Explorer. (author)

  11. Nuclear reactions and self-shielding effects of gamma-ray database for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji

    2001-01-01

    A database for transmutation and radioactivity of nuclear materials is required for selection and design of materials used in various nuclear reactors. The database based on the FENDL/A-2.0 on the Internet and the additional data collected from several references has been developed in NRIM site of 'Data-Free-Way' on the Internet. Recently, the function predicted self-shielding effect of materials for γ-ray was added to this database. The user interface for this database has been constructed for retrieval of necessary data and for graphical presentation of the relation between the energy spectrum of neutron and neutron capture cross section. It is demonstrated that the possibility of chemical compositional change and radioactivity in a material caused by nuclear reactions can be easily retrieved using a browser such as Netscape or Explorer. (author)

  12. Nuclear public relations campaign

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    A two-day hearing to investigate DOE's participation in a $30 million nuclear public relations program at a time when the country is asked to decrease spending and in conjunction with similar efforts by the nuclear industry focused on the issue of whether ratepayers or shareholders should finance the effort. Shelby Brewer, Assistant Secretary for Nuclear Energy, defended the expenditures as a response to public demand for information and the need to correct misinformation. The testimony of 14 other witnesses includes the views of citizen and professional groups, utilities, and government agencies. Their testimony is followed by additional material submitted for the record. (DCK)

  13. Evaluating the attractiveness of nuclear material for proliferation-resistance and nuclear security

    International Nuclear Information System (INIS)

    Choi, Jor-Shan; Ikegame, Kou; Kuno, Yusuke

    2011-01-01

    The attractiveness of nuclear material, defined as a function of the isotopic composition of the nuclear material in formulas expressing the material's intrinsic properties, is of considerably debate in recent developments of proliferation-resistance measures of a nuclear energy system. A reason for such debate arises from the fact that the concept of nuclear material attractiveness can be confusing because the desirability of a material for nuclear explosive use depends on many tangible and intangible factors including the intent and capability of the adversary. In addition, a material that is unattractive to an advanced nation (in the case of proliferation) may be very attractive to a terrorist (in the case of physical protection and nuclear security). Hence, the concept of 'Nuclear Material Attractiveness' for different nuclear materials must be considered in the context of safeguards and security. The development of a ranking scheme on the attractiveness of nuclear materials could be a useful concept to start-off the strategies for safeguards and security on a new footing (i.e., why and how nuclear material is attractive, and what are the quantifiable basis). Japan may benefit from such concept regarding the attractiveness of nuclear materials when recovering nuclear materials from the damaged cores in Fukushima because safety, security, and safeguards (3S) would be a prominent consideration for the recovery operation, and it would be the first time such operation is performed in a non-nuclear weapons state. (author)

  14. Uncertainty estimation in nuclear material weighing

    Energy Technology Data Exchange (ETDEWEB)

    Thaure, Bernard [Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, (France)

    2011-12-15

    The assessment of nuclear material quantities located in nuclear plants requires knowledge of additions and subtractions of amounts of different types of materials. Most generally, the quantity of nuclear material held is deduced from 3 parameters: a mass (or a volume of product); a concentration of nuclear material in the product considered; and an isotopic composition. Global uncertainties associated with nuclear material quantities depend upon the confidence level of results obtained in the measurement of every different parameter. Uncertainties are generally estimated by considering five influencing parameters (ISHIKAWA's rule): the material itself; the measurement system; the applied method; the environmental conditions; and the operator. A good practice guide, to be used to deal with weighing errors and problems encountered, is presented in the paper.

  15. Review of the IAEA Nuclear Fuel Cycle Materials Section activities related to WWER fuel

    International Nuclear Information System (INIS)

    Killeen, J.

    2003-01-01

    The IAEA Nuclear Fuel Cycle Programme, designated as Programme B, has the main objective of supporting Member States in policy making, strategic planning, developing technology and addressing issues with respect to safe, reliable, economically efficient, proliferation resistant and environmentally sound nuclear fuel cycle. This paper is concentrated on describing the work within Sub-programme B.2 'Fuel Performance and Technology'. Two Technical Working Groups assist in the preparation of the IAEA programme in the nuclear fuel cycle area - Technical Working Group on Water Reactor Fuel Performance and Technology and Technical Working Group on Nuclear Fuel Cycle Options. The activities of the Unit within the Nuclear Fuel Cycle and Materials Section working on Fuel Performance and Technology are given, based on the sub-programme structure of the Agency programme and budget for 2002-2003. Within the framework of Co-ordinated Research Projects a study of the delayed hydride cracking (DHC) of the zirconium alloys used in pressurised heavy water reactors (PHWR) involving 10 countries has been completed. It achieved very effective transfer of know-how at the laboratory level in three technologically important areas: 1) Controlled hydriding of samples to predetermined levels; 2) Accurate measurement of hydrogen concentrations at the relatively low levels found in pressure tubes and RBMK channel tubes; and 3) In the determination of DHC rates under various conditions of temperature and stress. A new project has been started on the 'Improvement of Models used for Fuel Behaviour Simulation' (FUMEX II) to assist Member States in improving the predictive capabilities of computer codes used in modelling fuel behaviour for extended burnup. The IAEA also collaborates with organisations in the Member States to support activities and meetings on nuclear fuel cycle related topics

  16. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-08-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  17. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [es

  18. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  19. Smuggling special nuclear materials

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    1999-01-01

    Ever since the collapse of the former Soviet Union reports have circulated with increasing frequency concerning attempts to smuggle materials from that country's civil and military nuclear programs. Such an increase obviously raises a number of concerns (outlined in the author's introduction), chief among which is the possibility that these materials might eventually fall into the hands of proliferant states or terrorist groups. The following issues are presented: significance of materials being smuggled; sources and smuggling routes; potential customers; international efforts to reduce nuclear smuggling; long-term disposition of fissile materials. (author)

  20. Nuclear battery materials and application of nuclear batteries

    International Nuclear Information System (INIS)

    Hao Shaochang; Lu Zhenming; Fu Xiaoming; Liang Tongxiang

    2006-01-01

    Nuclear battery has lots of advantages such as small volume, longevity, environal stability and so on, therefore, it was widely used in aerospace, deep-sea, polar region, heart pacemaker, micro-electromotor and other fields etc. The application of nuclear battery and the development of its materials promote each other. In this paper the development and the latest research progress of nuclear battery materials has been introduced from the view of radioisotope, electric energy conversion and encapsulation. And the current and potential applications of the nuclear battery are also summarized. (authors)

  1. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-09

    The document reproduces the text of the Notes Verbales received by the Director General of the IAEA on 20 October 1999 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, the Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, the Slovak Republic, South Africa, Spain, Sweden, Switzerland, Ukraine, the United Kingdom, and the United States of America relating to the transfers of nuclear-related dual-use equipment, materials, software and related technology.

  2. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Notes Verbales received by the Director General of the IAEA on 20 October 1999 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, the Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, the Slovak Republic, South Africa, Spain, Sweden, Switzerland, Ukraine, the United Kingdom, and the United States of America relating to the transfers of nuclear-related dual-use equipment, materials, software and related technology

  3. Communications Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2006-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbales, dated 1 December 2005, from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, Croatia, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, New Zealand, Poland, Portugal, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology

  4. Nuclear materials stewardship: Our enduring mission

    International Nuclear Information System (INIS)

    Isaacs, T.H.

    1998-01-01

    The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now the attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country's nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national

  5. Better materials for nuclear energy

    International Nuclear Information System (INIS)

    Banerjee, S.

    2005-01-01

    material joining are some outstanding issues, which need to be addressed for the successful development of high temperature reactor systems. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  6. Risk ranking of LANL nuclear material storage containers for repackaging prioritization.

    Science.gov (United States)

    Smith, Paul H; Jordan, Hans; Hoffman, Jenifer A; Eller, P Gary; Balkey, Simon

    2007-05-01

    Safe handling and storage of nuclear material at U.S. Department of Energy facilities relies on the use of robust containers to prevent container breaches and subsequent worker contamination and uptake. The U.S. Department of Energy has no uniform requirements for packaging and storage of nuclear materials other than those declared excess and packaged to DOE-STD-3013-2000. This report describes a methodology for prioritizing a large inventory of nuclear material containers so that the highest risk containers are repackaged first. The methodology utilizes expert judgment to assign respirable fractions and reactivity factors to accountable levels of nuclear material at Los Alamos National Laboratory. A relative risk factor is assigned to each nuclear material container based on a calculated dose to a worker due to a failed container barrier and a calculated probability of container failure based on material reactivity and container age. This risk-based methodology is being applied at LANL to repackage the highest risk materials first and, thus, accelerate the reduction of risk to nuclear material handlers.

  7. Neutron imaging methods for the investigation of energy related materials. Fuel cells, battery, hydrogen storage and nuclear fuel

    Science.gov (United States)

    Lehmann, Eberhard H.; Boillat, Pierre; Kaestner, Anders; Vontobel, Peter; Mannes, David

    2015-10-01

    After a short explanation of the state-of-the-art in the field of neutron imaging we give some examples how energy related materials can be studied successfully. These are in particular fuel cell studies, battery research approaches, the storage of hydrogen, but also some investigations with nuclear fuel components. The high contrast for light isotopes like H-1, Li-6 or B-10 are used to trace low amounts of material even within compact sealing of metals which are relatively transparent for neutrons at the same time.

  8. Resolution 62/96 Regulation for the accounting and control of the nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    The present Regulation is a complementary disposition of the ordinance number 208 of May 24 National System of Accounting and Control of Nuclear Materials and it has as objective to establish the relative norms to this System. As for the responsibilities it establish that the National Center of Nuclear Security (CNSN) it is the responsible for the execution from the relative tasks to the National System of Accounting and Control of Nuclear Materials. It establishes the regulations for the following aspects: licenses and authorizations for the transportation of the nuclear material and important components, Of the ceasing of the Accounting and Control, Of the Accounting and Control of the Nuclear Materials, Control of the Important Components, The Inspections, International Organism of the Atomic Energy Safeguards

  9. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    According to the provisions of The Law, those stipulated as internationally controlled materials are nuclear source materials, nuclear fuel materials, moderating materials, reactors and facilities, transferred from such as the U.S.A., the U.K. and Canada on the agreements of peaceful uses of atomic energy, and nuclear fuel materials accruing therefrom. (Mori, K.)

  10. Chapter No.5. Nuclear materials and physical protection of nuclear installations

    International Nuclear Information System (INIS)

    2002-01-01

    The State System of Accounting for and Control of Nuclear Material (SSAC) is based on requirements resulting from the Safeguards Agreement between the Government of the Slovak Republic and the IAEA. UJD performs this activity according to the 'Atomic Act' and relevant decree. The purpose of the SSAC is also to prevent unauthorised use of nuclear materials, to detect loses of nuclear materials and provide information that could lead to the recovery of missing material. The main part of nuclear materials under jurisdiction of the Slovak Republic is located at NPP Jaslovske Bohunice, NPP Mochovce and at interim storage in Jaslovske Bohunice. Even though that there are located more then 99% of nuclear materials in these nuclear facilities, there are not any significant problems with their accountancy and control due to very simply identification of accountancy units - fuel assemblies, and due to stability of legal subjects responsible for operation and for keeping of information continuity, which is necessary for fulfilling requirements of the Agreement. The nuclear material located outside nuclear facilities is a special category. There are 81 such subjects of different types and orientations on the territory of the Slovak Republic. These subjects use mainly depleted uranium as a shielding and small quantity of natural uranium, low enrichment uranium and thorium for experimental purposes and education. Frequent changes of these subjects, their transformations into the other subjects, extinction and very high fluctuation of employees causes loss of information about nuclear materials and creates problems with fulfilling requirements resulting from the Agreement. In 2001, the UJD carried out 51 inspections of nuclear materials, of which 31 inspections were performed at nuclear installations in co-operation with the IAEA inspectors. No discrepancies concerning the management of nuclear materials were found out during inspections and safeguards goals in year 2001 were

  11. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  12. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  13. Techniques and methods in nuclear materials traceability

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1996-01-01

    The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials

  14. Decree of the State Office for Nuclear Safety No. 147/1997 of 17 June 1997 specifying lists of selected nuclear-related items and dual-use nuclear-related items

    International Nuclear Information System (INIS)

    1997-01-01

    The core of the Decree consists of 2 lists, viz (a) the List of Selected Items (selected nuclear-related materials, equipment and technologies) which are subject to control regimes during imports, exports and transit; and (b) the List of Dual-Use Items (dual-use nuclear-related materials, equipment and technologies) which are subject to control regimes during imports and exports. Both Lists are based on the IAEA document INFCIRC/254/Rev.2/Part 2/Mod.1. (P.A.)

  15. The system of nuclear material control of Kazakhstan

    International Nuclear Information System (INIS)

    Yeligbayeva, G.Zh.

    2001-01-01

    Full text: The State system for nuclear material control consists of three integral components. The efficiency of each is to guarantee the non-proliferation regime in Kazakhstan. The components are the following: accounting, export and import control and physical protection of nuclear materials. First, the implementation of the goals of accounting and control bring into force, by the organization of the system for accounting and measurement of nuclear materials to determine present quantity. Organizing the accounting for nuclear material at facilities will ensure the efficiency of accountancy and reporting information. This defines the effectiveness of the state system for the accounting for the Kazakhstan's nuclear materials. Currently, Kazakhstan's nuclear material is fully safeguarded in designated secure locations. Kazakhstan has a nuclear power plant, 4 research reactors and a fuel fabrication plant. The governmental information system for nuclear materials control consist of two level: Governmental level - KAEA collects reports from facilities and prepares the reports for International Atomic Energy Agency, keeping of supporting documents and other necessary information, a data base of export and import, a data base of nuclear material inventory. Facility level - registration and processing information from key measurement points, formation the facility's nuclear materials accounting database. All facilities have computerized systems. Currently, all facilities are safeguarded under IAEA safeguarding standards, through IAEA inspections. Annually, IAEA verifies all nuclear materials at all Kazakhstan nuclear facilities. The government reporting system discloses the existence of all nuclear material and its transfer intended for interaction through the export control system and the nuclear control accounting system. Nuclear material export is regulated by the regulations of the Nuclear Export Control Law. The standard operating procedure is the primary means for

  16. Control of nuclear material specified equipment and specified material

    International Nuclear Information System (INIS)

    1982-04-01

    The goal and application field of NE 2.02 regulatory guide of CNEN (Comissao Nacional de Energia Nuclear), are described. This regulatory guide is about nuclear material management, specified equipment and specified material. (E.G.) [pt

  17. Physical protection of nuclear material

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: An Advisory Group met to consider the up-dating and extension of the Recommendations for the Physical Protection of Nuclear Material, produced in 1972. Twenty-seven experts from 11 countries and EURATOM were present. Growing concern has been expressed in many countries that nuclear material may one day be used for acts of sabotage or terrorism. Serious attention is therefore being given to the need for States to develop national systems for the physical protection of nuclear materials during use, storage and transport throughout the nuclear fuel cycle which should minimize risks of sabotage or theft. The revised Recommendations formulated by the Advisory Group include new definitions of the objectives of national systems of physical protection and proposals for minimizing possibilities of unauthorized removal and sabotage to nuclear facilities. The Recommendations also describe administrative or organizational steps to be taken for this purpose and the essential technical requirements of physical protection for various types and locations of nuclear material, e.g., the setting up of protected areas, the use of physical barriers and alarms, the need for security survey, and the need of advance arrangements between the States concerned in case of international transportation, among others. (author)

  18. Enhancing materials management programs in nuclear power plants

    International Nuclear Information System (INIS)

    Hassaballa, M.M.; Malak, S.M.

    1992-01-01

    Materials management programs for the nuclear utilities in the United States are continually being affected, concurrent with the gradual disappearance of qualified component and replacement parts vendors by regulatory concerns about procurement and materials management. In addition, current economic and competitive pressures are forcing utilities to seek avenues for reducing procurement costs for safety-related items. In response to these concerns, initiatives have been undertaken and engineering guidelines have been developed by the nuclear power industry-sponsored organizations, such as the Electric Power Research Institute and the Nuclear Management Resources Council. It is our experience that successful materials management programs require a multitude of engineering disciplines and experience and are composed of three major elements: strategic procurement plan, parts classification and procurement data base, and enhancement tools. This paper provides a brief description of each of the three elements

  19. Nuclear science in the 20th century. Nuclear technology applications in material science

    International Nuclear Information System (INIS)

    Pei Junchen; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear technology to material science has led to a new cross subject, nuclear material science (also named nuclear solid physics) which covers material analysis, material modification and new material synthesis. This paper reviews the development of nuclear technical applications in material science and the basic physics involved

  20. United States Department of Energy Nuclear Materials Stewardship

    International Nuclear Information System (INIS)

    Newton, J. W.

    2002-01-01

    The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials

  1. Communications Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2006-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbales, dated 1 December 2005, from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, Croatia, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, New Zealand, Poland, Portugal, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology [es

  2. Communications Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2006-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbales, dated 1 December 2005, from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, Croatia, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, New Zealand, Poland, Portugal, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology [fr

  3. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1980-01-01

    The law intends under the principles of the atomic energy act to regulate the refining, processing and reprocessing businesses of nuclear raw and fuel metarials and the installation and operation of reactors for the peaceful and systematic utilization of such materials and reactors and for securing public safety by preventing disasters, as well as to control internationally regulated things for effecting the international agreements on the research, development and utilization of atomic energy. Basic terms are defined, such as atomic energy; nuclear fuel material; nuclear raw material; nuclear reactor; refining; processing; reprocessing; internationally regulated thing. Any person who is going to engage in refining businesses other than the Power Reactor and Nuclear Fuel Development Corporation shall get the special designation by the Prime Minister and the Minister of International Trade Industry. Any person who is going to engage in processing businesses shall get the particular admission of the Prime Minister. Any person who is going to establish reactors shall get the particular admission of the Prime Minister, The Minister of International Trade and Industry or the Minister of Transportation according to the kinds of specified reactors, respectively. Any person who is going to engage in reprocessing businesses other than the Power Reactor and Nuclear Fuel Development Corporation and the Japan Atomic Energy Research Institute shall get the special designation by the Prime Minister. The employment of nuclear fuel materials and internationally regulated things is defined in detail. (Okada, K.)

  4. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    1989-12-01

    A Technical Committee on Physical Protection of Nuclear Material met in April-May 1989 to advise on the need to update the recommendations contained in document INFCIRC/225/Rev.1 and on any changes considered to be necessary. The Technical Committee indicated a number of such changes, reflecting mainly: the international consensus established in respect of the Convention on the Physical Protection of Nuclear Material; the experience gained since 1977; and a wish to give equal treatment to protection against the theft of nuclear material and protection against the sabotage of nuclear facilities. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. 1 tab

  5. Approaches to characterization of nuclear material for establishment of nuclear forensics

    International Nuclear Information System (INIS)

    Okazaki, Hiro; Sumi, Mika; Sato, Mitsuhiro; Kayano, Masashi; Kageyama, Tomio; Shinohara, Nobuo; Martinez, Patrick; Xu, Ning; Thomas, Mariam; Porterfield, Donivan; Colletti, Lisa; Schwartz, Dan; Tandon, Lav

    2014-01-01

    The Plutonium Fuel Development Center (PFDC) of Japan Atomic Energy Agency has been analyzing isotopic compositions and contents of plutonium and uranium as well as trace impurities and physics in the nuclear fuel from MOX fuel fabrication process for accountancy and process control purpose. These analytical techniques are also effective for nuclear forensics to identify such as source, history, and route of the material by determining a composition and characterization of nuclear material. Therefore, PFDC cooperates with Los Alamos National Laboratory which has broad experience and established measurement skill for nuclear forensics, and evaluates the each method, procedure and analytical data toward R and D of characterizing a nuclear material for forensic purposes. This paper describes the approaches to develop characterization techniques of nuclear material for nuclear forensics purposes at PFDC. (author)

  6. Peculiarities of physical protection assurance of the nuclear materials at nuclear installation decommissioning stage

    International Nuclear Information System (INIS)

    Pinchuk, M.G.

    2001-01-01

    On December 15, 2000 Unit 3 of Chernobyl NPP, which is the last one in Ukraine having RBMK-type reactor, was permanently shutdown before the end of its lifetime. A number of projects related to establishing infrastructure for the plant decommissioning are being implemented in compliance with the Ukraine's commitments. Decommissioning stage includes activities on fuel unloading from the cores of Unit I and Unit 3, fuel cooling in the ponds followed by the fuel transportation to the spent fuel dry storage facility (currently under construction) for its safe long-term storage. Special facilities are being created for liquid and solid radioactive waste treatment. Besides, it is planned to implement a number of projects to convert Shelter Object in environmentally safe structure. Physical protection work being an essential part of the nuclear material management is organized in line with the recommendations of the IAEA, and the Laws of Ukraine 'On Nuclear Energy Utilization and Radiation Safety', 'On Physical Protection of Nuclear Installations and Materials', 'Regulations on Physical Protection of Nuclear Materials and Installations', other codes and standards. While organizing physical protection on ChNPP decommissioning stage we have to deal with some specific features, namely: Significant amount of fuel assemblies, which are continuously transferred between various storage and operation facilities; Big amount of odd nuclear material at Shelter Object; 'Theft of new fuel fragments from the central hall of the Shelter Object in 1995 with the intention of their further sale. The thieves were detained and sentenced. The stolen material was withdrawn, that prevented its possible proliferation and illicit trafficking. At present physical protection of ChNPP does not fully satisfy the needs of the decommissioning stage and Ukraine's commitments on non-admission of illicit trafficking. Work is carried out, aimed to improve nuclear material physical protection, whose main

  7. Linear filtering applied to safeguards of nuclear material

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.; Holland, C.W.

    1975-01-01

    In regard to the problem of nuclear materials theft or diversion in the fuel cycle, a method is needed to detect continual thefts of relatively small amounts of material. It is suggested that Kalman filtering techniques be used. A hypothetical material flow situation is used to illustrate the technique; losses could be detected in as few as 5 months. (DLC)

  8. Audit Report on 'The Department's Management of Nuclear Materials Provided to Domestic Licensees'

    International Nuclear Information System (INIS)

    2009-01-01

    The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguards System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our

  9. Preliminary assessment on the differences of nuclear terrorism convention from the convention on the physical protection of nuclear material and amendment to the convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    Midiana Ariethia; Muhamad Ilman A A; Mas Pungky Hendrawijaya

    2011-01-01

    The threat of acts of nuclear terrorism in all its forms and manifestations create the urgent need to enhance international cooperation between countries in designing and following practical and effective measures for the prevention of acts of terrorism and to counter and punish its offenders. Several United Nations Security Council Resolutions, such as UNSCR Number 1373 (2001), and UNSCR Number 1540 (2005), and the result of Nuclear Security Summit in 2010 that encourage the member countries of IAEA to ratify nuclear conventions as soon as possible, are the reasons that the Indonesian Government planning on ratifying The International Convention for The Suppression of Acts of Nuclear Terrorism (Nuclear Terrorism Convention). Nuclear Terrorism Convention is one of the 16 (sixteen) international instruments that must be ratified by the member countries of IAEA. Of the 16 (sixteen) international instruments, 3 (three) conventions are related to nuclear; Convention on the Physical Protection of Nuclear Material, Amendment to the Convention on the Physical Protection of Nuclear Material, dan Nuclear Terrorism Convention. This paper presents the preliminary assessment on the differences of Nuclear Terrorism Convention to The Convention on The Physical Protection of Nuclear Material and Amendment to The Convention on The Physical Protection of Nuclear Material. This assessment is important due to the plan of the Indonesian Government to ratify the Nuclear Terrorism Convention. The result of this assessment could be used by BAPETEN in the ratification process of the Nuclear Terrorism Convention. The method used in this assessment is references assessment. (author)

  10. Study of nuclear material accounting

    International Nuclear Information System (INIS)

    Ruderman, H.

    1977-01-01

    The implications of deliberate diversion of nuclear materials on materials accounting, the validity of the MUF concept to establish assurance concerning the possible diversion of special nuclear materials, and an economic analysis to permit cost comparison of varying the inventory frequency are being studied. An inventory cost model, the statistical hypothesis testing approach, the game theoretic approach, and analysis of generic plants are considered

  11. Establishment of ultra trace nuclear material analysis system

    International Nuclear Information System (INIS)

    Song, Kyuseok; Jee, Kwangyong; Lee, Changheon

    2012-05-01

    Highly accurate and precise analysis of ultra trace nuclear materials contained in swipe samples and environmental samples is required to improve the national nuclear transparency and the international nuclear security. The objectives of the first stage of this project are to develop the techniques for bulk analysis of environmental samples and the elemental techniques for particle analysis using FT-TIMS. To accomplish the objectives, state-of-the-art analytical instruments were set up followed by the development of the techniques for screening of nuclear materials, chemical treatement, particle handling, isotopic measurements using TIMS and ICP-MS, and fabrication of uranium microparticles. The verifications of the developed techniques were carried out by measurement of reference materials, and by participation to interlaboratory comparison programs. In additon, the establishement of a quality management system and the performance of the analysis of QC samples for IAEA-NWAL qualification were carried out to obtain the international accreditation for the related analytical system. In this report, the results of research and developments, and the achievements to obtain the international accreditation were summarized

  12. Nuclear material control in Spain

    International Nuclear Information System (INIS)

    Velilla, A.

    1988-01-01

    A general view about the safeguards activities in Spain is presented. The national system of accounting for and control of nuclear materials is described. The safeguards agreements signed by Spain are presented and the facilities and nuclear materials under these agreements are listed. (E.G.) [pt

  13. Automated nuclear materials accounting

    International Nuclear Information System (INIS)

    Pacak, P.; Moravec, J.

    1982-01-01

    An automated state system of accounting for nuclear materials data was established in Czechoslovakia in 1979. A file was compiled of 12 programs in the PL/1 language. The file is divided into four groups according to logical associations, namely programs for data input and checking, programs for handling the basic data file, programs for report outputs in the form of worksheets and magnetic tape records, and programs for book inventory listing, document inventory handling and materials balance listing. A similar automated system of nuclear fuel inventory for a light water reactor was introduced for internal purposes in the Institute of Nuclear Research (UJV). (H.S.)

  14. Development of nuclear material accountancy control system

    International Nuclear Information System (INIS)

    Hirosawa, Naonori; Kashima, Sadamitsu; Akiba, Mitsunori

    1992-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty (NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to various inquiries can be carried out by the data base system which has free item searching procedure. (author)

  15. The position of IAEA safeguards relative to nuclear material control accountancy by states

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards are always implemented on the basis of agreements which are concluded between one or more Governments and the Agency. They lay down the rights and obligations of the parties; the more modern types of agreements, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do that in quite some details. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. Those are based on two basic obligations: that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the Agency to ascertain the absence of diversion of nuclear material by verifying the findings of the States' system, inter alia through independent measurements and observations. Other articles dealing also with the working relations States - IAEA rule that the Agency should take due account of the technical effectiveness of the States' system and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy from that of the facility operator. However, quantitative relationships in that respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rational has been developed and possible practical arrangements discussed with several States concerned. The rational for coordinating the work of the States' inspectorate with IAEA's inspectorate was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted in order to reduce to a certain extent the Agency's independent verification work in case the States would do extensive verifications themselves in a manner transparent to IAEA. However, in practice it proved that there are quite a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards objective

  16. The position of IAEA safeguards relative to nuclear material control accountancy by States

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards, which are always implemented on the basis of agreements which are concluded between one or more Governments and the IAEA, lay down the rights and obligations of the parties; and the more modern types of agreement, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do this in quite some detail. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. These are based on two basic obligations - that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the IAEA to ascertain the absence of diversion of nuclear material by verifying the findings of the States' systems, inter alia through independent measurements and observations. Other articles dealing also with the working relations between States and the IAEA rule that the IAEA should take due account of the technical effectiveness of the States' systems and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy on that of the facility operator. However, quantitative relationships in this respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rationale has been developed and possible practical arrangements discussed with several States concerned. The rationale for co-ordinating the work of the States' inspectorate with that of the IAEA was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted so as to reduce to a certain extent the IAEA's independent verification work in case the States would themselves do extensive verifications in a manner transparent to the IAEA. However, in practice it proved that there are a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards

  17. Plans of reorganization of USA nuclear military complex and provision of military program by special nuclear materials

    International Nuclear Information System (INIS)

    Semenovskaya, I.V.

    1996-01-01

    Consideration is given to plans and implementation of the program of reorganization of USA nuclear military complex, related with conducted reduction of nuclear arsenal after concluding the Strategic Nuclear Armament Reduction Treaty. Particular attention is paid to problems of satisfying short-term and long-term requirements in special nuclear materials and in tritium in particular

  18. A new Brazilian regulation for the security of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Renato L.A.; Filho, Josélio S.M.; Torres, Luiz F.B.; Lima, Alexandre R., E-mail: renato.tavares@cnen.gov.br, E-mail: joselio@cnen.gov.br, E-mail: ltorres@cnen.gov.br, E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear; Lima, Fabiano P.C., E-mail: fabianopetruceli@outlook.com [Presidência da República, Brasilia, DF (Brazil). Gabinete de Segurança Institucional

    2017-07-01

    The present paper aims to outline the challenges related to the elaboration and concepts involved in a regulatory transition from a purely prescriptive approach to a combined approach that mixes performance-based concepts and evaluation metrics based on statistical data of equipment and personnel. This methodology might represent an improvement compared to a purely prescriptive approach, in which the regulatory authority defines the measures to be taken by operators of nuclear facilities to prevent theft, sabotage events, and mitigate their consequences. The prescriptive approach, despite having the advantages of clarity in the definition of requirements, simplicity in regulatory terms (inspections to verify compliance), and homogeneity in relation to various facilities, does not allow a clear and effective performance measurement, may provide insufficient or excessive security measures (with excessive expenditure of material and human resources), and the possibility of providing a false sense of security. It is known that, in many countries, the state-sponsored nuclear security regime mixes elements of the two mentioned approaches, prescriptive and based on performance, which is not Brazilian practice nowadays. Such methodological developments happened globally due to the increase of threat level for nuclear facilities and materials. The currently regulation in force is CNEN-NE 2.01, which provides a set of measures intended to implement Physical Protection Systems in Nuclear, Radiological Facilities as well as Transport Operations, and all documents related to security of such issues. The new regulation, named CNEN-NN 2.01, will focus only on Nuclear Material and Facilities (two other regulations specific for Security of Radioactive Sources and Transport Operations are under elaboration process). CNEN NN 2.01 is intended to provide further adherence to new international recommendations, e.g, IAEA INFCIRC 225 Rev.5 (NSS 13), which is currently regarded as the

  19. A new Brazilian regulation for the security of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    Tavares, Renato L.A.; Filho, Josélio S.M.; Torres, Luiz F.B.; Lima, Alexandre R.; Lima, Fabiano P.C.

    2017-01-01

    The present paper aims to outline the challenges related to the elaboration and concepts involved in a regulatory transition from a purely prescriptive approach to a combined approach that mixes performance-based concepts and evaluation metrics based on statistical data of equipment and personnel. This methodology might represent an improvement compared to a purely prescriptive approach, in which the regulatory authority defines the measures to be taken by operators of nuclear facilities to prevent theft, sabotage events, and mitigate their consequences. The prescriptive approach, despite having the advantages of clarity in the definition of requirements, simplicity in regulatory terms (inspections to verify compliance), and homogeneity in relation to various facilities, does not allow a clear and effective performance measurement, may provide insufficient or excessive security measures (with excessive expenditure of material and human resources), and the possibility of providing a false sense of security. It is known that, in many countries, the state-sponsored nuclear security regime mixes elements of the two mentioned approaches, prescriptive and based on performance, which is not Brazilian practice nowadays. Such methodological developments happened globally due to the increase of threat level for nuclear facilities and materials. The currently regulation in force is CNEN-NE 2.01, which provides a set of measures intended to implement Physical Protection Systems in Nuclear, Radiological Facilities as well as Transport Operations, and all documents related to security of such issues. The new regulation, named CNEN-NN 2.01, will focus only on Nuclear Material and Facilities (two other regulations specific for Security of Radioactive Sources and Transport Operations are under elaboration process). CNEN NN 2.01 is intended to provide further adherence to new international recommendations, e.g, IAEA INFCIRC 225 Rev.5 (NSS 13), which is currently regarded as the

  20. Integrated Global Nuclear Materials Management Preliminary Concepts

    International Nuclear Information System (INIS)

    Jones, E; Dreicer, M.

    2006-01-01

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  1. Evaluation and development of advanced nuclear materials: IAEA activities

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Basak, U.; Killeen, J.; Dyck, G.; Zeman, A.; )

    2011-01-01

    structural materials' and 'Various issues related to thorium fuel cycle for thermal and fast reactors ' (all planned for 2011). Information is also provided about projects aimed at sharing experience in advances in the operation of existing nuclear units, such as on fuel modelling at high burn-ups, analysis of fuel failures, data bases development and training programmes. (author)

  2. LECI Department of Nuclear Materials

    International Nuclear Information System (INIS)

    2006-01-01

    The LECI is a 'hot' laboratory dedicated mostly to the characterization of irradiated materials. It has, however, limited activities on fuel, as a back up to the LECA STAR in Cadarache. The LECI belongs to the Section of Research on Irradiated Materials (Department of Nuclear Materials). The Department for Nuclear Materials (DMN) has for its missions: - to contribute, through theoretical and experimental investigations, to the development of knowledge in materials science in order to be able to predict the evolution of the material physical and mechanical properties under service conditions (irradiation, thermomechanical solicitations, influence of the environment,..); - to characterize the properties of the materials used in the nuclear industry in order to determine their performance and to be able to predict their life expectancy, in particular via modelling. These materials can be irradiated or not, and originate from surveillance programs, experimental neutron irradiations or simulated irradiations with charged particles; - to establish, maintain and make use of the databases generated by these data; - to propose new or optimized materials, satisfying future service conditions and extend the life or the competitiveness of the associated systems; - to establish constitutive laws and models for the materials in service, incidental, accidental and storage conditions, and contribute to the development of the associated design codes in order to support the safety argumentation of utilities and vendors; - to provide expertise on industrial components, in particular to investigate strain or rupture mechanisms and to offer leads for improvement. This document presents, first, the purpose of the LECI (Historical data, Strategy, I and K shielded cell lines (building 605), M shielded cell line (building 625), Authorized materials). Then, it presents the microscopy and irradiation damage studies laboratory of the Saclay centre (Building 605) Which belongs to the Nuclear

  3. Management of Small Quantity of Nuclear Material at Locations Outside Facilities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Sik; Kim, Ki Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Small quantity of nuclear material (SQNM) is prescribed to be less than specified minimum quantities of nuclear material in a facility. SQNM is used at the locations called locations outside facilities (LOFs). LOFs are used to control the locations and installations that store nuclear materials under one effective Kg, respectively. Holders of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or neither report them to the System of Accounting for and Control of nuclear material (SSAC) under specified quantities according to the Atomic Safety Law. Well defined safeguards law is fundamental to the effective control of nuclear material, facilities and nuclear related activities. In the current nuclear safety legislation, there are some exceptive clauses. Users of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or not report them to the national authority below specified amount.

  4. Management of Small Quantity of Nuclear Material at Locations Outside Facilities in Korea

    International Nuclear Information System (INIS)

    Park, Seung Sik; Kim, Ki Hyun

    2016-01-01

    Small quantity of nuclear material (SQNM) is prescribed to be less than specified minimum quantities of nuclear material in a facility. SQNM is used at the locations called locations outside facilities (LOFs). LOFs are used to control the locations and installations that store nuclear materials under one effective Kg, respectively. Holders of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or neither report them to the System of Accounting for and Control of nuclear material (SSAC) under specified quantities according to the Atomic Safety Law. Well defined safeguards law is fundamental to the effective control of nuclear material, facilities and nuclear related activities. In the current nuclear safety legislation, there are some exceptive clauses. Users of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or not report them to the national authority below specified amount

  5. Royal order relating to the transfer of nuclear materials and technology to non-nuclear weapon states

    International Nuclear Information System (INIS)

    1989-05-01

    In implementation of the Act of 1981 on conditions for the export of nuclear materials, equipment and technological data, this Order sets down the detailed mechanisms for such transfers. Its object is to ensure that they will be carried out exclusively for peaceful purposes and in conformity with the NPT [fr

  6. Transport of nuclear material under the 1971 Brussels Convention

    International Nuclear Information System (INIS)

    Lagorce, M.

    1975-01-01

    The legal regime in force before entry into force of the 1971 Brussels Convention relating to civil liability for the maritime carriage of nuclear material created serious difficulties for maritime carriers, regarding both the financial risks entailed and restrictions on enjoyment of the rights granted by civil liability conventions. The 1971 Convention exonerates from liability any person likely to be held liable for nuclear damage under maritime law, provided another person is liable under the nuclear conventions or an equivalent national law. A problem remaining is that of compensation of nuclear damage to the means of transport for countries not having opted for re-inclusion of such damage in the nuclear law regime; this does not apply however to countries having ratified the Convention to date. A feature of the latter is that it establishes as extensively as possible the priority of nuclear law over maritime law. Furthermore the new regime continues to preserve efficiently the interests of victims of nuclear incidents. It is therefore to be hoped that insurers will no longer hesitate to cover international maritime carriage of nuclear material [fr

  7. Combating illicit trafficking in nuclear and other radioactive material. Reference material

    International Nuclear Information System (INIS)

    2007-01-01

    This publication is intended for individuals and organizations that may be called upon to deal with the detection of and response to criminal or unauthorized acts involving nuclear or other radioactive material. It will also be useful for legislators, law enforcement agencies, government officials, technical experts, lawyers, diplomats and users of nuclear technology. This manual emphasizes the international initiatives for improving the security of nuclear and other radioactive material. However, it is recognized that effective measures for controlling the transfer of equipment, non-nuclear material, technology or information that may assist in the development of nuclear explosive devices, improvised nuclear devices (INDs) or other radiological dispersal devices (RDDs) are important elements of an effective nuclear security system. In addition, issues of personal integrity, inspection and investigative procedures are not discussed in this manual, all of which are essential elements for an effective overall security system. The manual considers a variety of elements that are recognized as being essential for dealing with incidents of criminal or unauthorized acts involving nuclear and other radioactive material. Depending on conditions in a specific State, including its legal and governmental infrastructure, some of the measures discussed will need to be adapted to suit that State's circumstances. However, much of the material can be applied directly in the context of other national programmes. This manual is divided into four main parts. Section 2 discusses the threat posed by criminal or unauthorized acts involving nuclear and other radioactive material, as well as the policy and legal bases underlying the international effort to restrain such activities. Sections 3 and 4 summarize the major international undertakings in the field. Sections 5-8 provide some basic technical information on radiation, radioactive material, the health consequences of radiation

  8. Material degradation - a nuclear utility's view

    International Nuclear Information System (INIS)

    Spekkens, P.

    2007-01-01

    Degradation of nuclear plant materials has been responsible for major costs and unit outage time. As such, nuclear utilities are important end users of the information produced by R and D on material degradation. This plenary describes the significance of material degradation for the nuclear utilities, and how utilities use information about material degradation in their short, medium and long term planning activities. Utilities invest in R and D programs to assist them in their business objective of operating safely, reliably and cost competitively. Material degradation impacts all three of these business drivers. Utilities make decisions on life cycle planning, unit refurbishment and 'new build' projects on the basis of their understanding of the behaviour of a variety of materials in a broad range of environments. The R and D being carried out today will determine the future business success of the nuclear utilities. The R and D program needs to be broadly based to include a range of materials, environments and time-frames, particularly any new materials proposed for use in new units. The R and D community needs to help the utility managers make choices that will result in an optimized materials R and D program

  9. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses

    International Nuclear Information System (INIS)

    2001-01-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards (including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security

  10. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards (including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security.

  11. Country Presentation on Illicit Trafficking of Nuclear Materials

    International Nuclear Information System (INIS)

    Mwandime, C.

    2010-01-01

    Assess the role of various agences in Kenya in fighting illicit traficking of nuclear materials. These includes the police, customs, National Council for Science and Technology, Radiation and Protection Board. Gives incidences of trafficking of various materials in Kenya and related activities like the 1998 terrorist attack of American Embassy in Nairobi and the Kikambala Tourist Hotel in Mombasa

  12. Nuclear material control in Brazil

    International Nuclear Information System (INIS)

    Marzo, M.A.S.; Iskin, M.C.L.; Palhares, L.C.; Almeida, S.G. de.

    1988-01-01

    A general view about the safeguards activities in Brazil is presented. The national system of accounting for and control of nuclear materials is described. The safeguards agreements signed by Brazil are presented, the facilities and nuclear material under these agreements are listed, and the dificulties on the pratical implementation are discussed. (E.G.) [pt

  13. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  14. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  15. Nuclear materials transport worldwide

    International Nuclear Information System (INIS)

    Stellpflug, J.

    1987-01-01

    This Greenpeace report shows: nuclear materials transport is an extremely hazardous business. There is no safe protection against accidents, kidnapping, or sabotage. Any moment of a day, at any place, a nuclear transport accident may bring the world to disaster, releasing plutonium or radioactive fission products to the environment. Such an event is not less probable than the MCA at Chernobyl. The author of the book in hand follows the secret track of radioactive materials around the world, from uranium mines to the nuclear power plants, from reprocessing facilities to the waste repositories. He explores the routes of transport and the risks involved, he gives the names of transport firms and discloses incidents and carelessness, tells about damaged waste drums and plutonium that 'disappeared'. He also tells about worldwide, organised resistance to such nuclear transports, explaining the Greenpeace missions on the open sea, or the 'day X' operation at the Gorleben site, informing the reader about protests and actions for a world freed from the threat of nuclear energy. (orig./HP) [de

  16. Details of criminological investigations of large-valued thefts related to nuclear materials (diversion safeguards program)

    International Nuclear Information System (INIS)

    Leachman, R.B.; Cornella, A.P.

    1972-06-01

    Studies were made of five areas of criminology which have great similarity to the case of nuclear materials. Actual cases of crimes were analyzed by experts in law enforcement and criminal justice. To identify fields of analogous criminology, possible characteristics of nuclear material thefts were considered: total value, high unit cost, limited marketability, special technology for handling, and licensing. The items considered to be analogous to nuclear materials in these aspects were: narcotics, data (as exists in computer memories, tapes, or discs), precious metal and gems, objects of art, and weapons. A criminology survey was conducted in which 509 individuals received one or more questionnaires soliciting opinion responses. Sixty-five questionnaires were returned. Eighty-four individuals replied by letter indicating inadequate knowledge of the crimes being surveyed. The questionnaire was supplemented by 18 interviews with criminal justice and industry personnel for more definitive information on diversion problems. Results of this survey are reported

  17. Fundamentals of materials accounting for nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. (comp.)

    1989-04-01

    Materials accounting is essential to providing the necessary assurance for verifying the effectiveness of a safeguards system. The use of measurements, analyses, records, and reports to maintain knowledge of the quantities of nuclear material present in a defined area of a facility and the use of physical inventories and materials balances to verify the presence of special nuclear materials are collectively known as materials accounting for nuclear safeguards. This manual, prepared as part of the resource materials for the Safeguards Technology Training Program of the US Department of Energy, addresses fundamental aspects of materials accounting, enriching and complementing them with the first-hand experiences of authors from varied disciplines. The topics range from highly technical subjects to site-specific system designs and policy discussions. This collection of papers is prepared by more than 25 professionals from the nuclear safeguards field. Representing research institutions, industries, and regulatory agencies, the authors create a unique resource for the annual course titled ''Materials Accounting for Nuclear Safeguards,'' which is offered at the Los Alamos National Laboratory.

  18. A study on strengthening measures of non-proliferation regime through the export control system of sensitive materials, equipment and technology related to nuclear activities

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Kurosawa, Mitsuru; Komizo, Yasuyoshi

    2004-01-01

    The strengthened safeguards caused from safeguards experiences to Iraq and DPRK leads to the expansion of the IAEA's activities for verification of all nuclear activities as well as verification of nuclear material in the States. The purpose of the activities, of course, includes detection of undeclared exports and imports of specified equipment and non-nuclear material. The Additional Protocol to the agreements between States and the IAEA for the application of safeguards requires to the States to declare the exports and imports information regarding specified equipment and non-nuclear material corresponding to the export control list that is established by the nuclear suppliers group. The Additional Protocol also insists the IAEA's right to access to the location identified by the State to resolve a question related to the declarations. Recently, the IAEA detected the black market group of the sensitive materials, equipment and technologies relevant to the nuclear proliferation through the safeguards activities to Iran and Libya. International community stated deeply concerns to the indecent facts. This paper would discuss and propose the supplemental strengthening measures of non-proliferation regime by effective combination of the safeguards activities under additional protocol and the export control regime. (author)

  19. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    Science.gov (United States)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  20. Introduction to nuclear material safeguards

    International Nuclear Information System (INIS)

    Kuroi, Hideo

    1986-01-01

    This article is aimed at outlining the nuclear material safeguards. The International Atomic Energy Agency (IAEA) was established in 1957 and safeguards inspection was started in 1962. It is stressed that any damage resulting from nuclear proliferation would be triggered by a human intentional act. Various measures have been taken by international societies and nations, of which the safeguards are the only means which relay mainly on technical procedures. There are two modes of diversing nuclear materials to military purposes. One would be done by national intension while the other by indivisulas or expert groups, i.e., sub-national intention. IAEA is responsible for the prevention of diversification by nations, for which the international safeguards are being used. Measures against the latter mode of diversification are called nuclear protection, for which each nation is responsible. The aim of the safeguards under the Nonproliferation Treaty is to detect the diversification of a significant amount of nuclear materials from non-military purposes to production of nuclear explosion devices such as atomic weapons or to unidentified uses. Major technical methods used for the safeguards include various destructive and non-destructive tests as well as containment and monitoring techniques. System techniques are to be employed for automatic containment and monitoring procedures. Appropriate nuclear protection system techniques should also be developed. (Nogami, K.)

  1. Inventory of nuclear materials in case of emergency

    International Nuclear Information System (INIS)

    Portugal, J.L.; Zanetti, S.

    2001-01-01

    The crisis situations for nuclear materials in nuclear facilities are provided for in the French regulation, as the decree of 12 May 1981 specifies that 'In any circumstance, the Ministry of Industry can order a physical inventory of the materials and its comparison with the accountancy records'. Such an inventory can be ordered in facilities holding category I nuclear materials, in case of a theft for example. The operators must be able to establish quickly if the stolen materials come from their facility. To test the organization set at the operators and competent authority levels respectively, five exercises of increasing complexity have already been carried out. These exercises have permitted the validation of procedures, composition of the various crisis centers, methodology for such an inventory and use of protected communication means. The authority crisis center includes members of the competent Authority and it's technical support body: staff members of the IPSN. It is in charge of the national managing of the operations, in relation with one or several site crisis centers. The site crisis center is the interface between the authorities and the facility crisis center. The operations of inventory are carried out from the roughest checking to the finest ones. To be efficient during the first hours of the crisis, the authority crisis center must have data bases at the disposal of its experts, containing information about physical protection and accountancy of the nuclear materials detained by the site and the relevant facilities. (authors)

  2. The century of nuclear materials

    Science.gov (United States)

    Mansur, Lou; Was, Gary S.; Zinkle, Steve; Petti, David; Ukai, Shigeharu

    2018-03-01

    In the spring of 1959 the well-read metallurgist would have noticed the first issue of an infant Journal, one dedicated to a unique and fast growing field of materials issues associated with nuclear energy systems. The periodical, Journal of Nuclear Materials (JNM), is now the leading publication in the field from which it takes its name, thriving beyond the rosiest expectations of its founders. The discipline is well into the second half-century. During that time much has been achieved in nuclear materials; the Journal provides the authoritative record of virtually all those accomplishments. These pages introduce the 500th volume, a significant measure in the world of publishing. The Editors reflect on the progress in the field and the role of this journal.

  3. Safeguards on nuclear materials

    International Nuclear Information System (INIS)

    Cisar, V.; Keselica, M.; Bezak, S.

    2001-01-01

    The article describes the implementation of IAEA safeguards for nuclear materials in the Czech and Slovak Republics, the establishment and development of the State System of Accounting for and Control of Nuclear Material (SSAC) at the levels of the state regulatory body and of the operator, particularly at the Dukovany nuclear power plant. A brief overview of the historical development is given. Attention is concentrated on the basic concepts and legal regulation accepted by the Czech and Slovak Republics in accordance with the new approach to create a complete legislative package in the area of nuclear energy uses. The basic intention is to demonstrate the functions of the entire system, including safeguards information processing and technical support of the system. Perspectives of the Integrated Safeguards System are highlighted. The possible ways for approximation of the two national systems to the Safeguards System within the EU (EURATOM) are outlined, and the necessary regulatory and operators' roles in this process are described. (author)

  4. Safeguards: Modelling of the Detection and Characterization of Nuclear Materials

    International Nuclear Information System (INIS)

    Enqvist, Andreas

    2010-01-01

    Nuclear safeguards is a collective term for the tools and methods needed to ensure nonproliferation and safety in connection to utilization of nuclear materials. It encompasses a variety of concepts from legislation to measurement equipment. The objective of this thesis is to present a number of research results related to nuclear materials control and accountability, especially the area of nondestructive assay. Physical aspects of nuclear materials are often the same as for materials encountered in everyday life. One special aspect though is that nuclear materials also emit radiation allowing them to be qualitatively and quantitatively measured without direct interaction with the material. For the successful assay of the material, the particle generation and detection needs to be well understood, and verified with measurements, simulations and models. Four topics of research are included in the thesis. First the generation and multiplication of neutrons and gamma rays in a fissile multiplying sample is treated. The formalism used enables investigation of the number of generated, absorbed and detected particles, offering understanding of the different processes involved. Secondly, the issue of relating the coincident detector signals, generated by both neutrons and gamma rays, to sample parameters is dealt with. Fission rate depends directly on the sample mass, while parameters such as neutron generation by alpha decay and neutron leakage multiplication are parameters that depend on the size, composition and geometry of the sample. Artificial neural networks are utilized to solve the inverse problem of finding sample characteristics from the measured rates of particle multiples. In the third part the interactions between neutrons and organic scintillation detectors are treated. The detector material consists of hydrogen and carbon, on which the neutrons scatter and transfer energy. The problem shares many characteristics with the area of neutron moderation found in

  5. Mobile Techniques for Rapid Detection of Concealed Nuclear Material

    International Nuclear Information System (INIS)

    Rosenstock, W.; Koeble, T.; Risse, M.; Berky, W.

    2015-01-01

    To prevent the diversion of nuclear material as well as illicit production, transport and use of nuclear material we investigated in mobile techniques to detect and identify such material in the field as early as possible. For that purpose we use a highly sensitive gamma measurement system installed in a car. It consists of two large volume plastic scintillators, one on each side of the car, each scintillator with 12 l active volume, and two extreme sensitive high purity Germanium detectors with 57 cm 2 crystal diameter, cooled electrically. The measured data are processed immediately with integrated, appropriate analysis software for direct assessment including material identification and classification within seconds. The software for the plastic scintillators can differentiate between natural and artificial radioactivity, thus giving a clear hint for the existence of unexpected material. In addition, the system is equipped with highly sensitive neutron detectors. We have performed numerous measurements by passing different radioactive and nuclear sources in relatively large distances with this measurement car. Even shielded as well as masked material was detected and identified in most of the cases. We will report on the measurements performed in the field (on an exercise area) and in the lab and discuss the capabilities of the system, especially with respect to timeliness and identification. This system will improve the nuclear verification capabilities also. (author)

  6. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [es

  7. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [fr

  8. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-01-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  9. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  10. Metabonomics for detection of nuclear materials processing

    International Nuclear Information System (INIS)

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-01-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  11. Modernizing computerized nuclear material accounting systems

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Claborn, J.

    1995-01-01

    DOE Orders and draft orders for nuclear material control and accountability address a complete material control and accountability (MC and A) program for all DOE contractors processing, using, or storing nuclear materials. A critical element of an MC and A program is the accounting system used to track and record all inventories of nuclear material and movements of materials in those inventories. Most DOE facilities use computerized accounting systems to facilitate the task of accounting for all their inventory of nuclear materials. Many facilities still use a mixture of a manual paper system with a computerized system. Also, facilities may use multiple systems to support information needed for MC and A. For real-time accounting it is desirable to implement a single integrated data base management system for a variety of users. In addition to accountability needs, waste management, material management, and production operations must be supported. Information in these systems can also support criticality safety and other safety issues. Modern networked microcomputers provide extensive processing and reporting capabilities that single mainframe computer systems struggle with. This paper describes an approach being developed at Los Alamos to address these problems

  12. Transcending sovereignty. In the management and control of nuclear material

    International Nuclear Information System (INIS)

    Scheinman, Lawrence

    2001-01-01

    Effective control of nuclear material is fundamentally important to the credibility and reliability of the nuclear non-proliferation regime. Under the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), international safeguards are applied to non-nuclear- weapon State Parties for the purpose of verifying compliance with their undertakings not to seek to acquire nuclear weapons or explosive devices by assuring that safeguarded nuclear activities and material are not diverted from their intended peaceful use. Reflecting the sovereign State basis upon which the international system rests, the control and protection of nuclear materials within the State are the responsibility of the national authority. This division of responsibility between international verification of non-diversion on the one hand and national responsibility for material protection on the other has worked quite well over time. But it has not created a seamless web of fully effective control over nuclear material. 34 In so far as safeguards are concerned, six points are to be made: 1. INFCIRC/153 Agreements: Completion by all NPT Parties of the required safeguards agreements with the IAEA. Fifty States Party to the NPT still have not entered into treaty-obligated safeguards agreements with the IAEA. 2. Adherence by all States having full-scope safeguards INFCIRC/540. As noted, very few States have thus far negotiated and implemented the strengthened safeguards arrangements. 3. United Nations Security Council action to take its 1992 assertions (related to compliance and enforcement) on proliferation and safeguards a step further. 4. Non-NPT Party support for international Safeguards. 5. Safeguards financing. 6. IAEA Access to export license information

  13. Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management

    International Nuclear Information System (INIS)

    Jardine, L.J.; Peddicord, K.L.; Witmer, F.E.; Krumpe, P.F.; Lazarev, L.; Moshkov, M.

    1997-01-01

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment

  14. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  15. Regulation on control of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ikeda, Kaname

    1976-01-01

    Some comment is made on the present laws and the future course of consolidating the regulation of nuclear fuel materials. The first part gives the definitions of the nuclear fuel materials in the laws. The second part deals with the classification and regulation in material handling. Refinement undertaking, fabrication undertaking, reprocessing undertaking, the permission of the government to use the materials, the permission of the government to use the materials under international control, the restriction of transfer and receipt, the reporting, and the safeguard measures are commented. The third part deals with the strengthening of regulation. The nuclear fuel safety deliberation special committee will be established at some opportunity of revising the ordinance. The nuclear material safeguard special committee has been established in the Atomic Energy Commission. The last part deals with the future course of legal consolidation. The safety control will be strengthened. The early investigation of waste handling is necessary, because low level solid wastes are accumulating at each establishment. The law for transporting nuclear materials must be consolidated as early as possible to correspond to foreign transportation laws. Physical protection is awaiting the conclusions of the nuclear fuel safeguard special committee. The control and information systems for the safeguard measures must be consolidated in the laws. (Iwakiri, K.)

  16. Technologies for detection of nuclear materials

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1996-01-01

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling

  17. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    International Nuclear Information System (INIS)

    Powell, Danny H.; Elwood, Robert H. Jr.; Roche, Charles T.; Campbell, Billy J.; Hammond, Glenn A.; Meppen, Bruce W.; Brown, Richard F.

    2011-01-01

    A nuclear material control and accountability (MC and A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC and A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC and A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC and A system (2) A fault tree of the operating MC and A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC and A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area (MBA)) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance

  18. Basic components of a national control system for nuclear materials

    International Nuclear Information System (INIS)

    Rabot, G.

    1986-01-01

    The paper presents the different aspects related to the organization and the functioning of a national control and accounting system for nuclear materials. The legal aspects and the relations with the IAEA are included

  19. Tracer techniques in estimating nuclear materials holdup

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1987-01-01

    Residual inventory of nuclear materials remaining in processing facilities (holdup) is recognized as an insidious problem for safety of plant operations and safeguarding of special nuclear materials (SNM). This paper reports on an experimental study where a well-known method of radioanalytical chemistry, namely tracer technique, was successfully used to improve nondestructive measurements of holdup of nuclear materials in a variety of plant equipment. Such controlled measurements can improve the sensitivity of measurements of residual inventories of nuclear materials in process equipment by several orders of magnitude and the good quality data obtained lend themselves to developing mathematical models of holdup of SNM during stable plant operations

  20. Metabonomics for detection of nuclear materials processing.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; Luxon, Bruce A. (University Texas Medical Branch); Neerathilingam, Muniasamy (University Texas Medical Branch); Ansari, S. (University Texas Medical Branch); Volk, David (University Texas Medical Branch); Sarkar, S. (University Texas Medical Branch); Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  1. Security of material: Preventing criminal activities involving nuclear and other radioactive materials

    International Nuclear Information System (INIS)

    Nilsson, A.

    2001-01-01

    The report emphasizes the need for national regulatory authorities to include in the regulatory systems, measures to control and protect nuclear materials from being used in illegal activities, as well as aspects of relevance for detecting and responding to illegal activities involving nuclear and other radioactive materials. The report will give an overview of the international treaties and agreements that underpin the establishment of a regulatory structure necessary for States to meet their non-proliferation policy and undertakings. Ongoing work to strengthen the protection of nuclear material and to detect and respond to illegal activities involving nuclear and other radioactive material will be included. The focus of the paper is on the need for standards and national regulation in the nuclear security area. (author)

  2. Nuclear material attractiveness: an assessment of material associated with a closed fuel cycle

    International Nuclear Information System (INIS)

    Bathke, C.G.; Wallace, R.K.; Hase, K.R.; Jarvinen, G.D.; Ireland, J.R.; Johnson, M.W.; Ebbinghaus, B.B.; Sleaford, B.W.; Robel, M.; Bradley, K.S.; Collins, B.A.; Prichard, A.W.; Smith, B.W.

    2010-01-01

    This paper examines the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the various processing steps required for a closed fuel cycle. This paper combines the results from earlier studies that examined the attractiveness of SNM associated with the processing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR with new results for the final, repeated burning of SNM in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). The results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, or undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed. (authors)

  3. Nuclear Material Attractiveness: An Assessment Of Material Associated With A Closed Fuel Cycle

    International Nuclear Information System (INIS)

    Bathke, C.G.; Ebbinghaus, B.; Sleaford, Brad W.; Wallace, R.K.; Collins, Brian A.; Hase, Kevin R.; Robel, Martin; Jarvinen, G.D.; Bradley, Keith S.; Ireland, J.R.; Johnson, M.W.; Prichard, Andrew W.; Smith, Brian W.

    2010-01-01

    This paper examines the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the various processing steps required for a closed fuel cycle. This paper combines the results from earlier studies that examined the attractiveness of SNM associated with the processing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR with new results for the final, repeated burning of SNM in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). The results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, or undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.

  4. Role of nuclear material accounting and control on nuclear security. Countermeasure against insider threat

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    2014-01-01

    Possibility on unauthorized removal (theft) of nuclear material by a facility insider is a recognized as a serious threat. An insider could take advantage or knowledge of control system and access to nuclear material to intercept facility's system designed to protect theft of nuclear material by an insider. This paper will address how the facility level Nuclear Material Accounting and Control (NMAC) System should be designed and implemented to enhance deterring and detect theft of nuclear material by a facility insider. (author)

  5. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses. Addendum

    International Nuclear Information System (INIS)

    2001-01-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards ( including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security

  6. District file of major risks for the Moselle district: B6 - The nuclear risk; B7 - The risk related to radioactive material transport

    International Nuclear Information System (INIS)

    2013-10-01

    A first document addresses the nuclear risk with some generalities (definition, occurrence, consequences for people and for the environment with an indication of exposure thresholds, presentation of individual safety directives), a discussion of the nuclear risk level in the district (history, contamination threats, preventive actions for the Cattenom nuclear plant, existence of a triple barrier for radioactive product containment, other factors aimed at nuclear safety, urban development control, control of nuclear activities, information, rescue organisation, map of concerned communes). The second document addresses the risk related to radioactive material transport with some generalities (definition, occurrence, consequences for persons and goods, individual safety directive in case of road or railway accident), a more detailed analysis of the risk in the district (situation of the radioactive material transport in the district, risk history, human and environmental stakes, preventive actions, radiation protection safety challenges, safety factors, control of transports, rescue organisation)

  7. Raising awareness about protection and control of nuclear materials held by 'small-scale holders'

    International Nuclear Information System (INIS)

    Ladsous, D.; Coulie, E.; Giorgio, M.

    2013-01-01

    In France, the activities carried out by the 'small-scale holders' of nuclear materials are organized by a specific regulatory system which defines in a detailed way their obligations and the means of control of the government. The first part of the article presents the legal framework relating to the use of nuclear materials by small-scale holders in civilian fields. The importance of the declaration of the nuclear material inventory is clearly emphasized and must be prepared and transmitted to the Institute for Radiological Protection and Nuclear Safety (IRSN) every year. The second part describes how this declaration is used to provide basic information for the competent Ministry and the inspectors to check the correct application of the regulatory requirements relating to physical protection and to the control of nuclear materials. Finally, the last part presents the on-site inspections carried out by sworn and accredited inspectors under the authority of the competent Authority, which provide an overall picture and allow an evaluation of the risks of theft, loss or diversion of these materials. (authors)

  8. Concepts of IAEA nuclear materials accounting

    International Nuclear Information System (INIS)

    Oakberg, John A.

    2001-01-01

    The paper describes nuclear material accounting from the standpoint of IAEA Safeguards and how this accounting is applied by the Agency. The basic concepts of nuclear material accounting are defined and the way these apply to States with INFCIRC/153-type safeguards agreements is presented. (author)

  9. International safeguards: Accounting for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  10. International safeguards: Accounting for nuclear materials

    International Nuclear Information System (INIS)

    Fishbone, L.G.

    1988-01-01

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the ''non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs

  11. A open-quotes Newclose quotes regime for nuclear weapons and materials

    International Nuclear Information System (INIS)

    Sutcliffe, W.G.

    1994-01-01

    In this paper, I discuss the principal ideas that I covered in my presentation on December 8, 1993, at the Future of Foreign Nuclear Materials Symposium held by the Naval Postgraduate School in Monterey, California. I was asked to discuss issues related to military inventories of plutonium, and I took this opportunity to describe a possible declaratory regime that could encompass military as well as civilian inventories of plutonium. The open-quote newclose quotes in the title does not imply that the regime discussed here is an original idea. Rather, the regime will be open-quotes new,close quotes when it is adopted. The regime proposed here and in other works is one in which all stocks of nuclear weapons and materials are declared. Originally, declarations were proposed as a traditional arms control measure. Here, declarations are proposed to support the prevention of misuse of nuclear weapons and materials, including support for the nonproliferation regime. In the following, I discuss: (1) Worldwide inventories of nuclear weapons and materials, including the fact that military plutonium must be viewed as part of that worldwide inventory. (2) Life cycles of nuclear weapons and materials, including the various stages from the creation of nuclear materials for weapons through deployment and retirement of weapons to the final disposition of the materials. (3) Mechanisms for making declarations. (4) Risks and benefits to be derived from declarations. (5) Possibilities for supporting evidence or verification

  12. Russia-U.S. joint program on the safe management of nuclear materials

    International Nuclear Information System (INIS)

    Witmer, F.E.; Krumpe, P.F.; Carlson, D.D.

    1998-06-01

    The Russia-US joint program on the safe management of nuclear materials was initiated to address common technical issues confronting the US and Russia in the management of excess weapons grade nuclear materials. The program was initiated after the 1993 Tomsk-7 accident. This paper provides an update on program activities since 1996. The Fourth US Russia Nuclear Materials Safety Management Workshop was conducted in March 1997. In addition, a number of contracts with Russian Institutes have been placed by Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL). These contracts support research related to the safe disposition of excess plutonium (Pu) and highly enriched uranium (HEU). Topics investigated by Russian scientists under contracts with SNL and LLNL include accident consequence studies, the safety of anion exchange processes, underground isolation of nuclear materials, and the development of materials for the immobilization of excess weapons Pu

  13. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5): Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  14. Experience of the Russian Federation in the field of the nuclear material control

    International Nuclear Information System (INIS)

    1998-01-01

    The paper deals with the develop met of new approaches concerning safeguards for specific nuclear materials, specific facilities which used Russian technology and design and situation of storing the nuclear materials. The role od IAEA safeguards is emphasised in view of verification and inspection of all the related issues

  15. Dynamic nuclear polarization of irradiated target materials

    International Nuclear Information System (INIS)

    Seely, M.L.

    1982-01-01

    Polarized nucleon targets used in high energy physics experiments usually employ the method of dynamic nuclear polarization (DNP) to polarize the protons or deuterons in an alcohol. DNP requires the presence of paramagnetic centers, which are customarily provided by a chemical dopant. These chemically doped targets have a relatively low polarizable nucleon content and suffer from loss of polarization when subjected to high doses of ionizing radiation. If the paramagnetic centers formed when the target is irradiated can be used in the DNP process, it becomes possible to produce targets using materials which have a relatively high polarizable nucleon content, but which are not easily doped by chemical means. Furthermore, the polarization of such targets may be much more radiation resistant. Dynamic nuclear polarization in ammonia, deuterated ammonia, ammonium hydroxide, methylamine, borane ammonia, butonal, ethane and lithium borohydride has been studied. These studies were conducted at the Stanford Linear Accelerator Center using the Yale-SLAC polarized target system. Results indicate that the use of ammonia and deuterated ammonia as polarized target materials would make significant increases in polarized target performance possible

  16. Present situation and problems of nuclear-security-related legislation in Japan

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2013-01-01

    This paper shows surveys of current Japanese regulations relevant to nuclear security, including regulations for nuclear damage compensation. It also shows the regulatory issues still left unresolved, particularly the question of whether existing laws are broad enough, or whether new legislation will be needed. The largest unresolved issue is how to establish a system of physical protection of nuclear materials for broader nuclear security purposes within a system that was originally introduced only to control nuclear proliferation. Such a system will necessitate a radical revision of the relevant law. Moreover, the current regulations have left unresolved the physical protection of radioactive materials used in research, medical, and non-nuclear-power-related industrial operations. Japanese legislation has already authorized an integrated Nuclear Regulatory Commission. Its mandate should include introduction of a physical protection system for currently unregulated radioactive materials. This will also necessitate a radical revision of the relevant law. Comprehensive consideration should also be given to transportation of nuclear materials away from the site of nuclear material processing businesses. Current regulation also leaves this issue unresolved. There is a possibility that consistent protective measures may not be possible across transportation modes even under the recent legislation that authorized reorganization of nuclear regulatory authorities. (author)

  17. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  18. The development of nuclear material accountability system - software user's manual

    International Nuclear Information System (INIS)

    Byeon, Kee Hoh; Kim, Ho Dong; Song, Dae Yong; Ko, Won Il; Hong, Jong Sook; Lee, Byung Doo

    1999-07-01

    We have developed the near-real time nuclear material accountability system, named by DMAS, for DUPIC Test Facility in the basis of the survey of DUPIC process and activities for the accountability of the system, and the review of the rules and regulations related to the nuclear material accounting. Our system adopts the structure and technologies used in COREMAS which was developed by LANL. This technical report illustrates the system structure and program usage as a user manual for DMAS. (author). 56 tabs., 1 fig

  19. Management of Global Nuclear Materials for International Security

    International Nuclear Information System (INIS)

    Isaacs, T; Choi, J-S

    2003-01-01

    Nuclear materials were first used to end the World War II. They were produced and maintained during the cold war for global security reasons. In the succeeding 50 years since the Atoms for Peace Initiative, nuclear materials were produced and used in global civilian reactors and fuel cycles intended for peaceful purposes. The Nonproliferation Treaty (NPT) of 1970 established a framework for appropriate applications of both defense and civilian nuclear activities by nuclear weapons states and non-nuclear weapons states. As global inventories of nuclear materials continue to grow, in a diverse and dynamically changing manner, it is time to evaluate current and future trends and needed actions: what are the current circumstances, what has been done to date, what has worked and what hasn't? The aim is to identify mutually reinforcing programmatic directions, leading to global partnerships that measurably enhance international security. Essential elements are material protection, control and accountability (MPC and A) of separated nuclear materials, interim storage, and geologic repositories for all nuclear materials destined for final disposal. Cooperation among key partners, such as the MPC and A program between the U.S. and Russia for nuclear materials from dismantled weapons, is necessary for interim storage and final disposal of nuclear materials. Such cooperative partnerships can lead to a new nuclear regime where a complete fuel cycle service with fuel leasing and spent fuel take-back can be offered to reactor users. The service can effectively minimize or even eliminate the incentive or rationale for the user-countries to develop their indigenous enrichment and reprocessing technologies. International cooperation, supported by governments of key countries can be best to facilitate the forum for formation of such cooperative partnerships

  20. Protecting nuclear material and facilities: Is a new approach needed?

    International Nuclear Information System (INIS)

    Steinhausler, F.; Bunn, G.

    2002-01-01

    Full text: The main reason why national physical protection (PP) systems for nuclear and other radioactive material need to be strengthened further is that, after the attacks on the US on 11 September 2001, the threat of dangerous, suicidal radiological and nuclear terrorism can no longer be excluded as a possibility. Existing PP systems were not designed to deal with the threat of suicidal terrorists having the numbers, skills, training, and resources available to the commandos attacking on 11 September. Moreover, there are no mandatory international standards for domestic PP systems for nuclear or radioactive material, and this has produced great variation in protection provided from country to country. IAEA recommended standards, while useful, were not designed with the new terrorist threat in mind. Moreover, they are often not followed in practice. The result is inadequate protection against the new form of terrorism in most countries. The Director General of the IAEA expressed a similar view after 11 September, but achieving a consensus to amend the Convention on the Physical Protection of Nuclear Material (CPPNM) to require specific standards of protection for different amounts and kinds of nuclear material used or stored domestically (not in international transport) has been impossible in the year since 11 September. In the case of radiological materials, a new effort to provide required international standards for protection against the new form of terrorism has not begun. In the summer of 2001, leaders of the G-8 countries agreed to a Global Partnership to prevent the new terrorists from acquiring nuclear and radiological as well as other materials related to weapons of mass destruction. Perhaps in part because of the failure to date to achieve agreement on an effective amendment to the CPPNM, the first principle of this partnership is to strengthen 'multilateral treaties and other instruments whose aim is to prevent the proliferation or illicit

  1. Procedures for the accounting and control of nuclear materials in large research centres, as related to the needs of international safeguards

    International Nuclear Information System (INIS)

    Kotte, U.; Bueker, H.; Stein, G.

    1976-07-01

    In signatory states of the Non-Proliferation Treaty nuclear material is subject to the supervision of the International Atomic Energy Agency. The IAEA safeguards concept intended for nuclear material has, so far, been predominantly applied to nuclear facilities of the nuclear fuel cycle. It is the aim of this report to consider the applicability of these control measures to a nuclear research centre. The report refers to the concrete example of the Juelich Nuclear Research Centre (KFA). The particular features of a nuclear research centre and the handling of nuclear material in the KFA are described. A review is given of the various licence areas and permitted handling quantities as well as of the inventories and flow of nuclear material. The concept of a control system for a nuclear research centre satisfying the operator's requirements, national requirement and international obligations at the same time is developed along these lines. The essential characteristic of the concept is a far-reaching clarity of the distribution of nuclear material items within the Nuclear Research Centre. The clarity desired will be achieved by means of an integrated accountancy system processing all necessary data with the aid of a central computer and remote terminals. The availability of information is based on differentiated material acountancy in conjunction with adequate measurement of nuclear material data. In the case of the KFA two groups are formed by research reactors and critical assemblies. Research institutes and central departments the permitted handling quantities of which do not exceed 5 eff.kg constitute a further group. Two further groups are formed for cases where the permitted handling quantities are above or below 1 eff.kg. The report shows the safeguards measures that can be applied in certain circumstances and conditions in a nuclear research centre

  2. Management review of nuclear material control and accounting systems

    International Nuclear Information System (INIS)

    1975-06-01

    Section 70.58, ''Fundamental Nuclear Material Controls,'' of 10 CFR Part 70, ''Special Nuclear Materials,'' requires, in paragraph 70.58(c), that certain licensees authorized to possess more than one effective kilogram of special nuclear material establish a management system to provide for the development, revision, implementation, and enforcement of nuclear material control and accounting procedures. Such a system must provide for a review of the nuclear material control system at least every 12 months. This guide describes the purpose and scope, personnel qualifications, depth of detail, and procedures that are acceptable to the NRC staff for the management review of nuclear material control systems required under paragraph 70.58(c) of 10 CFR Part 70. (U.S.)

  3. Base isolation for nuclear power and nuclear material facilities

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Kircher, C.A.; Vaidya, N.; Constantinou, M.; Kelly, J.M.; Seidensticker, R.; Tajirian, F.F.; Ovadia, D.

    1989-01-01

    This report serves to document the status of the practice for the use of base isolation systems in the design and construction of nuclear power and nuclear material facilities. The report first describes past and current (1989) applications of base isolation in nuclear facilities. The report then provides a brief discussion of non-nuclear applications. Finally, the report summarizes the status of known base-isolation codes and standards

  4. Accountability of Radioactive Materials in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Noor Fadilla Ismail; Wan Saffiey Wan Abdullah; Khairuddin Mohamad Kontol; Azimawati Ahmad; Suzilawati Muhd Sarowi; Mohd Fazlie Abdul Rashid

    2016-01-01

    Radioactive materials possessed in Malaysian Nuclear Agency have many beneficial applications for research and development, calibration, tracer and irradiation. There are two types of radioactive materials which consist of sealed sourced and unsealed sourced shall be accounted for and secured at all the times by following the security aspect. The Health Physics Group in the Department of Radiation Safety and Health Division is responsible to manage the issues related to any accountability for all radioactive material purchased or received under the radioactive material protocol. The accountability of radioactive materials in Malaysian Nuclear Agency is very important to ensure the security and control the radioactive materials to not to be lost or fall into the hands of people who do not have permission to possess or use it. The accountability of radioactive materials considered as a mandatory to maintaining accountability by complying the requirements of the Atomic Energy Licensing Act 1984 (Act 304) and regulations made thereunder and the conditions of license LPTA / A / 724. In this report describes the important element of accountability of radioactive materials in order to enhances security standard by allowing tracking of the locations of sources and to reduce the risk of radioactive materials falling into the wrong hands. (author)

  5. Order for execution of the law concerning regulation of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    The designations according to Item 1, Article 3 and Item 1, Article 13 of the Law must be obtained for each factory or business place where refining and fabrication of nuclear material are to be performed. One who wants to obtain such designation should file an application attached with a business plan and other documents via the director of a regional bureau of international trade and industry having jurisdiction over such factory or business place. When nuclear material refiners and nuclear material fabricators wish to obtain the approval for change stipulated in Item 1, Article 6 and Item 1, Article 16 of the Law, they must file applications to the Prime Minister and the Minister of International Trade and Industry via said directors. Chief handlers of nuclear fuel materials shall be approved among those meeting the strict requirements. One who wishes to install reactors must obtain the approval for each factory or business place where the reactors are to be installed. The permission must be obtained for each nuclear ship entering Japanese waters. The reactors proper and several facilities are subject to periodic inspection. (Rikitake, Y.)

  6. Safeguards considerations related to the decontamination and decommissioning of former nuclear weapons facilities

    International Nuclear Information System (INIS)

    Crawford, D.

    1995-01-01

    In response to the post-Cold War environment and the changes in the U. S. Department of Energy defense mission, many former nuclear operations are being permanently shut down. These operations include facilities where nuclear materials production, processing, and weapons manufacturing have occurred in support of the nation's defense industry. Since defense-related operations have ceased, many of the classification and sensitive information concerns do not exist. However, nuclear materials found at these sites are of interest to the DOE from environmental, safety and health, and materials management perspectives. Since these facilities played a role in defense activities, the nuclear materials found at these facilities are considered special nuclear materials, primarily highly enriched uranium and/or plutonium. Consequently, these materials pose significant diversion, theft, and sabotage threats, and significant nuclear security issues exist that must be addressed. This paper focuses on the nuclear materials protection issues associated with facility decommissioning and decontamination, primarily safeguards

  7. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    Bethge, K.; Baumann, H.; Jex, H.; Rauch, F.

    1980-01-01

    Proceedings of the seventh divisional conference of the Nuclear Physics Division held at Darmstadt, Germany, from 23rd through 26th of September, 1980. The scope of this conference was defined as follows: i) to inform solid state physicists and materials scientists about the application of nuclear physics methods; ii) to show to nuclear physicists open questions and problems in solid state physics and materials science to which their methods can be applied. According to the intentions of the conference, the various nuclear physics methods utilized in solid state physics and materials science and especially new developments were reviewed by invited speakers. Detailed aspects of the methods and typical examples extending over a wide range of applications were presented as contributions in poster sessions. The Proceedings contain all the invited papers and about 90% of the contributed papers. (orig./RW)

  8. Experience in safeguarding nuclear material at the Rheinsberg nuclear power station

    International Nuclear Information System (INIS)

    Winkler, R.

    1976-01-01

    The three years' experience that has been gained in application of the Safeguards Agreement shows that the carrying out of inspections at the nuclear power plant has virtually no effect on operating conditions. In future it will be possible to reduce this effect even further and still maintain the operational reliability of the station. Verification of the transfer of nuclear material and detection of possible violations have proved relatively simple. The labour requirement of each unit at the station for the performance of inspections is not more that thirty man-days. Constructive collaboration between power station staff and inspectors is of great importance in improving the safeguards procedures. (author)

  9. Gamma spectrometric discrimination of special nuclear materials

    International Nuclear Information System (INIS)

    Dowdall, M.; Mattila, A.; Ramebaeck, H.; Aage, H.K.; Palsson, S.E.

    2012-12-01

    This report presents details pertaining to an exercise conducted as part of the NKS-B programme using synthetic gamma ray spectra to simulate the type of data that may be encountered in the interception of material potentially containing special nuclear materials. A range of scenarios were developed involving sources that may or may not contain special nuclear materials. Gamma spectral data was provided to participants as well as ancillary data and participants were asked, under time constraint, to determine whether or not the data was indicative of circumstances involving special nuclear materials. The situations varied such that different approaches were required in order to obtain the correct result in each context. In the majority of cases participants were able to correctly ascertain whether or not the situations involved special nuclear material. Although fulfilling the primary goal of the exercise, some participants were not in a position to correctly identify with certainty the material involved, Situations in which the smuggled material was being masked by another source proved to be the most challenging for participants. (Author)

  10. Gamma spectrometric discrimination of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Dowdall, M. [Norwegian Radiation Protection Authority (Norway); Mattila, A. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Ramebaeck, H. [Swedish Defence Research Agency, Stockholm (Sweden); Aage, H.K. [Danish Emergency Management Agency, Birkeroed (Denmark); Palsson, S.E. [Icelandic Radiation Safety Authority, Reykjavik (Iceland)

    2012-12-15

    This report presents details pertaining to an exercise conducted as part of the NKS-B programme using synthetic gamma ray spectra to simulate the type of data that may be encountered in the interception of material potentially containing special nuclear materials. A range of scenarios were developed involving sources that may or may not contain special nuclear materials. Gamma spectral data was provided to participants as well as ancillary data and participants were asked, under time constraint, to determine whether or not the data was indicative of circumstances involving special nuclear materials. The situations varied such that different approaches were required in order to obtain the correct result in each context. In the majority of cases participants were able to correctly ascertain whether or not the situations involved special nuclear material. Although fulfilling the primary goal of the exercise, some participants were not in a position to correctly identify with certainty the material involved, Situations in which the smuggled material was being masked by another source proved to be the most challenging for participants. (Author)

  11. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to perform regulations on enterprises of refining, processing and reprocessing of nuclear source and fuel materials and on establishment and operation of reactors to realize the peaceful and deliberate utilization of atomic energy according to the principle of the atomic energy basic law. Regulations of use of internationally regulated substances are also envisaged to observe international agreements. Basic concepts and terms are defined, such as: atomic energy; nuclear fuel material; nuclear source material; reactor; refining; processing; reprocessing and internationally regulated substance. Any person besides the Power Reactor and Nuclear Fuel Material Developing Corporation who undertakes refining shall be designated by the Prime Minister and the Minister of International Trade and Industry. An application shall be filed to the ministers concerned, listing name and address of the person, name and location of the refining works, equipment and method of refining, etc. The permission of the Prime Minister is necessary for any person who engages in processing. An application shall be filed to the Prime Minister, listing name and address of the person, name and location of the processing works and equipment and method of processing, etc. Permission of the Prime Minister, the Minister of International Trade and Industry or the Minister of Transport is necessary for any person who sets up reactors. An application shall be filed to the minister concerned, listing name and address of the person, purpose of operation, style, thermal output of reactor and number of units, etc. (Okada, K.)

  12. Automated processing of nuclear materials accounting data

    International Nuclear Information System (INIS)

    Straka, J.; Pacak, P.; Moravec, J.

    1980-01-01

    An automated system was developed of nuclear materials accounting in Czechoslovakia. The system allows automating data processing including data storage. It comprises keeping records of inventories and material balance. In designing the system, the aim of the IAEA was taken into consideration, ie., building a unified information system interconnected with state-run systems of accounting and checking nuclear materials in the signatory countries of the non-proliferation treaty. The nuclear materials accounting programs were written in PL-1 and were tested at an EC 1040 computer at UJV Rez where also the routine data processing takes place. (B.S.)

  13. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... Systems for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  14. Survey of naturally occurring hazardous materials in deep geologic formations: a perspective on the relative hazard of deep burial of nuclear wastes

    International Nuclear Information System (INIS)

    Tonnessen, K.A.; Cohen, J.J.

    1977-01-01

    Hazards associated with deep burial of solidified nuclear waste are considered with reference to toxic elements in naturally occurring ore deposits. This problem is put into perspective by relating the hazard of a radioactive waste repository to that of naturally occurring geologic formations. The basis for comparison derives from a consideration of safe drinking water levels. Calculations for relative toxicity of FBR waste and light water reactor (LWR) waste in an underground repository are compared with the relative toxicity indices obtained for average concentration ore deposits. Results indicate that, over time, nuclear waste toxicity decreases to levels below those of naturally occurring hazardous materials

  15. Structural materials for innovative nuclear systems (SMINS)

    International Nuclear Information System (INIS)

    2008-01-01

    Structural materials research is a field of growing relevance in the nuclear sector, especially for the different innovative reactor systems being developed within the Generation IV International Forum (GIF), for critical and subcritical transmutation systems, and of interest to the Global Nuclear Energy Partnership (GNEP). Under the auspices of the NEA Nuclear Science Committee (NSC) the Workshop on Structural Materials for Innovative Nuclear Systems (SMINS) was organised in collaboration with the Forschungszentrum Karlsruhe in Germany. The objectives of the workshop were to exchange information on structural materials research issues and to discuss ongoing programmes, both experimental and in the field of advanced modelling. These proceedings include the papers and the poster session materials presented at the workshop, representing the international state of the art in this domain. (author)

  16. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  17. Materials reliability in the back end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1987-05-01

    Operating experience of nuclear fuel cycle facilities has proved that the performance and availability of key equipment largely depend on the reliability of its construction materials. In general, the materials of construction have performed well in accordance with the design criteria of equipment. In some cases, however, materials failure problems have been encountered, the causes of which are related to their corrosion and mechanical degradation. In response to the growing interest in these topics, the IAEA convened the Technical Committee Meeting on ''Materials Reliability in the Back-End of the Nuclear Fuel Cycle'' at its Headquarters from September 2 to 5, 1986. This Technical Document contains the 15 papers presented during the Meeting. Material aspects of the following fields of the back-end of the nuclear fuel cycle are covered: interim and long-term storage of spent fuel; final disposal of spent fuel; storage and vitrification of High Level Liquid Wastes (HLLW); long-term storage of High Level Wastes (HLW); and spent fuel treatment

  18. Development of comprehensive material performance database for nuclear applications

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Yokoyama, Norio; Tsukada, Takashi; Nakajima, Hajime

    1993-01-01

    This paper introduces the present status of the comprehensive material performance database for nuclear applications, which was named JAERI Material Performance Database (JMPD), and examples of its utilization. The JMPD has been developed since 1986 in JAERI with a view to utilizing various kinds of characteristics data of nuclear materials efficiently. Management system of relational database, PLANNER, was employed, and supporting systems for data retrieval and output were expanded. In order to improve user-friendliness of the retrieval system, the menu selection type procedures have been developed where knowledge of the system or the data structures are not required for end-users. As to utilization of the JMPD, two types of data analyses are mentioned as follows: (1) A series of statistical analyses was performed in order to estimate the design values both of the yield strength (Sy) and the tensile strength (Su) for aluminum alloys which are widely used as structural materials for research reactors. (2) Statistical analyses were accomplished by using the cyclic crack growth rate data for nuclear pressure vessel steels, and comparisons were made on variability and/or reproducibility of the data between obtained by ΔK-increasing and ΔK-constant type tests. (author)

  19. New challenges in nuclear material detection

    International Nuclear Information System (INIS)

    Dunlop, W.; Sale, K.; Dougan, A.; Luke, J.; Suski, N.

    2002-01-01

    Full text: Even before the attacks of September 11, 2001 the International Safeguards community recognized the magnitude of the threat posed by illicit trafficking of nuclear materials and the need for enhanced physical protection. For the first time, separate sessions on illicit trafficking and physical protection of nuclear materials were included in the IAEA Safeguards Symposium. In the aftermath of September 11, it is clear that the magnitude of the problem and the urgency with which it must be addressed will be a significant driver for advanced nuclear materials detection technologies for years to come. Trafficking in nuclear material and other radioactive sources is a global concern. According to the IAEA Illicit Trafficking Database Program, there have been confirmed cases in more than 40 countries and the number of cases per year have nearly doubled since 1996. The challenge of combating nuclear terrorism also brings with it many opportunities for the development of new tools and new approaches. In addition to the traditional gamma-ray imaging, spectrometry and neutron interrogation, there is a need for smaller, smarter, more energy-efficient sensors and sensor systems for detecting and tracking threats. These systems go by many names - correlated sensor networks, wide-area tracking systems, sensor or network fabrics - but the concept behind them is the same. Take a number of wireless sensors and tie them together with a communications network, develop a scheme for fusing the data and make the system easy to deploy. This paper will present a brief survey of nuclear materials detection capability, and discuss some advances in research and development that are particularly suited for illicit trafficking, detection of shielded highly enriched uranium, and border security. (author)

  20. Transportation of hazardous and nuclear materials

    International Nuclear Information System (INIS)

    Boryczka, M.; Shaver, D.

    1989-01-01

    Transportation of hazardous and radioactive materials is a vital part of the nation's economy. In recent years public concern over the relative safety of transporting hazardous materials has risen sharply. The United States has a long history of transporting hazardous and radioactive material; rocket propellants, commercial spent fuel, low-level and high-level radioactive waste has been shipped for years. While the track record for shipping these materials is excellent, the knowledge that hazardous materials are passing through communities raises the ire of citizens and local governments. Public outcry over shipments containing hazardous cargo has been especially prominent when shippers have attempted to transport rocket propellants or spent nuclear fuel. Studies of recent shipments have provided insight into the difficulties of shipping in a politically charged environment, the major issues of concern to citizens, and some of the more successful methods of dealing with public concerns. This paper focuses on lessons learned from these studies which include interviews with shippers, carriers, and regulators

  1. Detecting Illicit Nuclear Materials

    International Nuclear Information System (INIS)

    Kouzes, Richard T.

    2005-01-01

    The threat that weapons of mass destruction might enter the United States has led to a number of efforts for the detection and interdiction of nuclear, radiological, chemical, and biological weapons at our borders. There have been multiple deployments of instrumentation to detect radiation signatures to interdict radiological material, including weapons and weapons material worldwide

  2. Resources of nuclear fuels and materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, K [Tokyo Inst. of Tech. (Japan); Kamiyama, Teiji; Hayashi, S; Hida, Noboru; Okano, T

    1974-11-01

    In this explanatory article, data on the world resources of nuclear fuels and materials, their production, and the present state of utilization are presented by specialists in varied fields. Main materials taken up are uranium, thorium, beryllium, zirconium, niobium, rare earth elements, graphite, and materials for nuclear fusion (heavy hydrogen and tritium). World reserves and annual production of these materials listed in a number of tables are cited from statistics of the period 1970-1973 or given by estimation. These data may be used as valuable numerical data for various projects and problems of atomic power industries.

  3. Nuclear material accounting software for Ukraine

    International Nuclear Information System (INIS)

    Doll, M.; Ewing, T.; Lindley, R.; McWilliams, C.; Roche, C.; Sakunov, I.; Walters, G.

    1999-01-01

    Among the needs identified during initial surveys of nuclear facilities in Ukraine was improved accounting software for reporting material inventories to the regulatory body. AIMAS (Automated Inventory/Material Accounting System) is a PC-based application written in Microsoft Access that was jointly designed by an US/Ukraine development team. The design is highly flexible and configurable, and supports a wide range of computing infrastructure needs and facility requirements including situations where networks are not available or reliable. AIMAS has both English and Russian-language options for displays and reports, and it operates under Windows 3.1, 95, or NT 4.0trademark. AIMAS functions include basic physical inventory tracking, transaction histories, reporting, and system administration functions (system configuration, security, data backup and recovery). Security measures include multilevel password access control, all transactions logged with the user identification, and system administration control. Interfaces to external modules provide nuclear fuel burn-up adjustment and barcode scanning capabilities for physical inventory taking. AIMAS has been installed at Kiev Institute of Nuclear Research (KINR), South Ukraine Nuclear Power Plant (SUNPP), Kharkov Institute of Physics and Technology (KIPT), Sevastopol Institute of Nuclear Energy and Industry (SINEI), and the Ministry of Environmental Protection and Nuclear Safety/Nuclear Regulatory Administration (MEPNS/NRA). Facility specialists are being trained to use the application to track material movement and report to the national regulatory authority

  4. The national nuclear material tracking system. A Korea's countermeasure against nuclear terrorism

    International Nuclear Information System (INIS)

    Moon, Joo Hyun

    2011-01-01

    Since nuclear terrorism has been identified as a real threat, the Korean government has earnestly developed elementary technologies and sub-systems for establishing an integrated defensive system against nuclear terrorism, which is based on the concept of defense-in-depth. This paper introduces the gist and implications of the studies that have been conducted in building the national nuclear material tracking system for preventing and intercepting the illicit trafficking and transporting of nuclear material in Korea. (orig.)

  5. Supporting system in emergency response plan for nuclear material transport accidents

    International Nuclear Information System (INIS)

    Nakagome, Y.; Aoki, S.

    1993-01-01

    As aiming to provide the detailed information concerning nuclear material transport accidents and to supply it to the concerned organizations by an online computer, the Emergency Response Supporting System has been constructed in the Nuclear Safety Technology Center, Japan. The system consists of four subsystems and four data bases. By inputting initial information such as name of package and date of accident, one can obtain the appropriate initial response procedures and related information for the accident immediately. The system must be useful for protecting the public safety from nuclear material transport accidents. But, it is not expected that the system shall be used in future. (J.P.N.)

  6. Order for execution of the law concerning regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1978-01-01

    Under the above mentioned law this order prescribes the procedures of controls given to the persons who wish to conduct refining and fabricating businesses, to construct and operate reactors, and to use nuclear source materials, nuclear fuel materials and internationally controlled materials. The common controlling principle prescribed is that the permission or authorization necessary for above listed businesses should be applied for at each factory or each place of business. Based on the principle, the order prescribes: the procedures to apply for the authorization of the refining business, the permission of the change thereof, and the permission of the fabricating business and the change, thereof (the 1st chapter); the procedures to apply for the permission of the construction of reactors and of the change of the construction, as well as the procedure to do periodic inspections of reactor facilities (the 2nd chapter); the procedures to apply for the permission to use nuclear fuel materials and to change the use thereof, the submission of the report to use nuclear source materials, as well as the procedure to apply for the permission to use internationally controlled materials. In the 4th chapter the order lists up the items on which the competent Ministers may require reports from the person who carries on the relevant business. (Matsushima, A.)

  7. The regulations concerning the uses of nuclear source materials

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for the execution of this law, and to enforce them. Basic terms are defined, such as exposure radiation dose, cumulative dose, control area, surrounding monitoring area, worker and radioactive waste. Nuclear raw materials shall be used at the facilities for using them, and control areas and surrounding monitoring areas shall be set up. Cumulative dose and exposure radiation dose of workers shall not exceed the permissible quantities defined by the General Director of the Science and Technology Agency. Records shall be made in each works or enterprise on the accept, delivery and stock of each kind of nuclear raw materials, radiation control and the accidents in the facilities of using nuclear raw materials, and kept for specified periods, respectively. The users of nuclear raw materials shall present reports in each works or enterprise on the stock of these materials on July 30 and December 31, every year. They shall submit reports immediately to the Director General on the particular accidents concerning nuclear raw materials and their facilities and on the circumstances and the measures taken against such accidents within ten days. These reports shall be presented on internationally regulated raw materials too. (Okada, K.)

  8. Nuclear material statistical accountancy system

    International Nuclear Information System (INIS)

    Argentest, F.; Casilli, T.; Franklin, M.

    1979-01-01

    The statistical accountancy system developed at JRC Ispra is refered as 'NUMSAS', ie Nuclear Material Statistical Accountancy System. The principal feature of NUMSAS is that in addition to an ordinary material balance calcultation, NUMSAS can calculate an estimate of the standard deviation of the measurement error accumulated in the material balance calculation. The purpose of the report is to describe in detail, the statistical model on wich the standard deviation calculation is based; the computational formula which is used by NUMSAS in calculating the standard deviation and the information about nuclear material measurements and the plant measurement system which are required as data for NUMSAS. The material balance records require processing and interpretation before the material balance calculation is begun. The material balance calculation is the last of four phases of data processing undertaken by NUMSAS. Each of these phases is implemented by a different computer program. The activities which are carried out in each phase can be summarised as follows; the pre-processing phase; the selection and up-date phase; the transformation phase, and the computation phase

  9. The U.S. national nuclear forensics library, nuclear materials information program, and data dictionary

    International Nuclear Information System (INIS)

    Lamont, Stephen Philip; Brisson, Marcia; Curry, Michael

    2011-01-01

    Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it provides an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability

  10. Nuclear materials transportation

    International Nuclear Information System (INIS)

    Ushakov, B.A.

    1986-01-01

    Various methods of nuclear materials transportation at different stages of the fuel cycle (U 3 O 8 , UF 6 production enrichment, fuel element manufacturing, storage) are considered. The advantages and drawbacks of railway, automobile, maritime and air transport are analyzed. Some types of containers are characterized

  11. Regulatory problems relating to physical protection of nuclear plants and materials in Italy

    International Nuclear Information System (INIS)

    Nocera, F.

    1981-10-01

    Although the questions raised by physical protection have an international charater, it is important to know of national regulations in that field since exchange of information and study of common problems help to achieve satisfactory results. This paper analyses the Italian situation, by illustrating legislative and administrative actions undertaken as well as the practices adopted in Italy to meet problems of prevention of malevolent acts against nuclear installations and substances, until such time an Act is passed in this respect. Finally, the author is in favour of the 1980 Convention of Physical Protection of Nuclear Material being ratified soon by a large number of countries. (NEA) [fr

  12. Nuclear Security Recommendations on Nuclear and other Radioactive Material out of Regulatory Control: Recommendations (Spanish Edition); Recomendaciones de Seguridad Fisica Nuclear sobre Materiales Nucleares y otros Materiales Radiactivos no sometidos a Control Reglamentario: Recomendaciones

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  13. Evaluation of Terminated Nuclear Material Licenses

    International Nuclear Information System (INIS)

    Spencer, K.M.; Zeighami, E.A.

    1999-01-01

    This report presents the results of a six-year project that reviewed material licenses that had been terminated during the period from inception of licensing until approximately late-1994. The material licenses covered in the review project were Part 30, byproduct material licenses; Part 40, source material licenses; and Part 70, special nuclear material licenses. This report describes the methodology developed for the project, summarizes the findings of the license file inventory process, and describes the findings of the reviews or evaluations of the license files. The evaluation identified nuclear material use sites that need review of the licensing material or more direct follow-up of some type. The review process also identified licenses authorized to possess sealed sources for which there was incomplete or missing documentation of the fate of the sources

  14. Materials. The Argentine nuclear policy

    International Nuclear Information System (INIS)

    Strasser, H.

    1982-01-01

    Part A of the volume contains a literature search on proliferation and the Third World and on the nuclear technology of Argentina. The materials in part B are divided in: 1. Nonproliferation discussion and the Third World. 2. Development and state of nuclear technology in Argentina. 3. Argentina's international contacts in the field of nuclear energy 1. Federal Republic of Germany, 2. Soviet Union, 3. Brazil. (orig./HP) [de

  15. A future vision of nuclear material information systems

    International Nuclear Information System (INIS)

    Suski, N.; Wimple, C.

    1999-01-01

    To address the current and future needs for nuclear materials management and safeguards information, Lawrence Livermore National Laboratory envisions an integrated nuclear information system that will support several functions. The vision is to link distributed information systems via a common communications infrastructure designed to address the information interdependencies between two major elements: Domestic, with information about specific nuclear materials and their properties, and International, with information pertaining to foreign nuclear materials, facility design and operations. The communication infrastructure will enable data consistency, validation and reconciliation, as well as provide a common access point and user interface for a broad range of nuclear materials information. Information may be transmitted to, from, and within the system by a variety of linkage mechanisms, including the Internet. Strict access control will be employed as well as data encryption and user authentication to provide the necessary information assurance. The system can provide a mechanism not only for data storage and retrieval, but will eventually provide the analytical tools necessary to support the U.S. government's nuclear materials management needs and non-proliferation policy goals

  16. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  17. Communications received from certain Member States regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    1992-07-01

    The document reproduces the text of the notes verbales dated 15 May 1992, received by the Director General from the Resident Representatives to the Agency of Australia, Austria, Belgium, Bulgaria, Canada, Czech and Slovak Federal Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Luxembourg, Netherlands, Norway, Poland, Portugal, Romania, Russia Federation, Spain, Sweden, Switzerland, the United Kingdom of Great Britain and Northern Ireland, and the United States of America relating to the export of nuclear material, equipment and technology and the Guidelines for Transfer of Nuclear-Related Dual-Use Equipment, Material and Related Technology. An Annex to these Guidelines contains the list of Nuclear-Related Dual-Use Equipment and Materials and Related Technology

  18. Guide to the declaration procedure and coding system for criteria concerning significant events related to safety, radiation protection or the environment, applicable to basic nuclear installations and the transport of radioactive materials

    International Nuclear Information System (INIS)

    Lacoste, Andre-Claude

    2005-01-01

    This guide notably contains various forms associated with the declaration of significant events, and explanations to fill them in: significant event declaration form for a basic nuclear installation, significant event declaration form for radioactive material transport, significant event report for a basic nuclear installation, significant event report for radioactive material transport, declaration criteria for significant events related to the safety of non-PWR basic nuclear installations, declaration criteria for significant events related to PWR safety, significant events declared further to events resulting in group 1 unavailability and non-compliance with technical operating specifications, declaration criteria for significant events concerning radiation protection for basic nuclear installations, declaration criteria for significant events concerning environmental protection, applicable to basic nuclear installations, and declaration criteria for significant events concerning radioactive material transport

  19. Order for execution of the law concerning regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This ordinance is stipulated under the law concerning the regulation of nuclear raw materials, nuclear fuel materials and reactors. The designation for refining and processing businesses under the law shall be obtained for each works or enterprise where these operations are to be practiced. Persons who intend to accept the designation shall file applications attaching business plans and the other documents specified by the ordinances of the Prime Minister's Office and other ministry orders. The permission for the installation of nuclear reactors under the law shall be received for each works or enterprise where reactors are to be set up. Persons who intend to get the permission shall file applications attaching the financing plans required for the installation of reactors and the other documents designated by the orders of the competent ministry. The permission concerning the reactors installed on foreign ships shall be obtained for each ship which is going to enter into the Japanese waters. Persons who ask for the permission shall file applications attaching the documents which explain the safety of reactor facilities and the other documents defined by the orders of the Ministry of Transportation. The designation for reprocessing business and the application for it are provided for, respectively. The usage of nuclear fuel materials, nuclear raw materials and internationally regulated goods is ruled in detail. (Kubozone, M.)

  20. Order for execution of the law concerning regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1981-01-01

    This ordinance is stipulated under the law concerning the regulation of nuclear raw materials, nuclear fuel materials and reactors. The designation for refining and processing businesses under the law shall be obtained for each works or enterprise where these operations are to be practiced. Persons who intend to accept the designation shall file applications attaching business plans and the other documents specified by the ordinances of the Prime Minister's Office and other ministry orders. The permission for the installation of nuclear reactors under the law shall be received for each works or enterprise where reactors are to be set up. Persons who intend to get the permission shall file applications attaching the financing plans required for the installation of reactors and the other documents designated by the orders of the competent ministry. The permission concerning the reactors installed on foreign ships shall be obtained for each ship which is going to enter into the Japanese waters. Persons who ask for the permission shall file applications attaching the documents which explain the safety of reactor facilities and the other documents defined by the orders of the Ministry of Transportation. The designation for reprocessing business and the application for it are provided for, respectively. The usage of nuclear fuel materials, nuclear raw materials and internationally regulated goods is ruled in detail.(Okada, K.)

  1. National practices in physical protection of nuclear materials. Regulatory basis

    International Nuclear Information System (INIS)

    Goltsov, V.Y.

    2002-01-01

    criminal code of Russian Federation regarding improper execution of duties on and theft of nuclear materials and equipment that could be used for weapons of mass destruction construction. Minatom of Russia is actively elaborating ministerial documents on physical protection. Since 1995 till 2001 there were developed and put in force 21 this topic related documents including the following: physical protection terminology; general approaches to physical protection ensuring; vulnerability analysis of nuclear-hazardous facilities; physical protection systems designing; organizing of safeguards and security services at nuclear-hazardous facilities; operation of automated physical protection systems; communication and data exchange in physical protection systems; certification of technical means of physical protection; physical protection system information protection; ministerial on-site guarding of nuclear-hazardous facilities; provision of ministerial control of physical protection condition; interaction of different entities participating physical protection at ministerial level. (author)

  2. Croatian National System of Nuclear Materials Control

    International Nuclear Information System (INIS)

    Biscan, R.

    1998-01-01

    In the process of economic and technological development of Croatia by using or introducing nuclear power or in the case of international co-operation in the field of peaceful nuclear activities, including international exchange of nuclear material, Croatia should establish and implement National System of Nuclear Materials Control. Croatian National System of accounting for and control of all nuclear material will be subjected to safeguards under requirements of Agreement and Additional Protocol between the Republic of Croatia and the International Atomic Energy Agency (IAEA) for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The decision by NPT parties at the 1995 NPT Review and Extension Conference to endorse the Fullscope IAEA Safeguards Standard (FSS) as a necessary precondition of nuclear supply means that states are obliged to ensure that the recipient country has a FSS agreement in place before any nuclear transfer can take place (Ref. 1). The FSS standard of nuclear supply is a central element of the Nuclear Suppliers Group (NSG) Guidelines which the NSG adopted in 1992 and should be applied to members and non-members of the NSG. The FSS standard of nuclear supply in general allows for NPT parties or countries which have undertaken the same obligations through other treaty arrangements, to receive favourable treatment in nuclear supply arrangements. However, the Iraqi experience demonstrate that trade in nuclear and dual-use items, if not properly monitored, can contribute to a nuclear weapons program in countries acting contrary to their non-proliferation obligation. Multilateral nuclear export control mechanisms, including the FSS supply standard, provide the basis for co-ordination and standardisation of export control measures. (author)

  3. Software development for managing nuclear material database

    International Nuclear Information System (INIS)

    Tondin, Julio Benedito Marin

    2011-01-01

    In nuclear facilities, the nuclear material control is one of the most important activities. The Brazilian National Commission of Nuclear Energy (CNEN) and the International Atomic Energy Agency (IAEA), when inspecting routinely, regards the data provided as a major safety factor. Having a control system of nuclear material that allows the amount and location of the various items to be inspected, at any time, is a key factor today. The objective of this work was to enhance the existing system using a more friendly platform of development, through the VisualBasic programming language (Microsoft Corporation), to facilitate the operation team of the reactor IEA-R1 Reactor tasks, providing data that enable a better and prompter control of the IEA-R1 nuclear material. These data have allowed the development of papers presented at national and international conferences and the development of master's dissertations and doctorate theses. The software object of this study was designed to meet the requirements of the CNEN and the IAEA safeguard rules, but its functions may be expanded in accordance with future needs. The program developed can be used in other reactors to be built in the country, since it is very practical and allows an effective control of the nuclear material in the facilities. (author)

  4. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    International Nuclear Information System (INIS)

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-01-01

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials

  5. Communications received from certain Member States regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    1993-01-01

    The document reproduces the Note Verbale dated 2 December 1992 received by the Director General from the Resident Representative of Argentina to the Agency relating to the export of nuclear material, equipment or technology, in order to provide information on that Government's Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material and related Technology

  6. Convention on the Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1980-01-01

    The convention on the Physical Protection of Nuclear Material is composed of the text of 23 articles, annex 1 showing the levels of physical protection and annex 2 which is the categorization list of nuclear material. The text consists of definitions (article 1), the scope of applications (2), liability of protecting nuclear material during international transport (3 and 4), duty of mutual cooperation (5 and 6), responsibility for criminal punishment (7 to 13), and final provisions (14 to 23). It is to be noted that the nuclear material for military purposes and domestic nuclear facilities are excluded in the connection. After the brief description of the course leading to the establishment of the convention, individual articles and annexes and the respective Japanese version, and the explanation based on the intergovernmental meeting discussion on the draft convention are described. (J.P.N.)

  7. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is revised on the basis of ''The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Provisions concerning the enterprises processing nuclear fuel materials'' in the Enforcement Ordinance for the Law, to enforce such provisions. This is the complete revision of the regulation of the same name in 1957. Terms are explained, such as exposure radiation dose, cumulative dose, control area, surrounding inspection area, persons engaged in works, radioactive wastes, area for incoming and outgoing of materials, fluctuation of stocks, batch, real stocks, effective value and main measuring points. For the applications for the permission of the enterprises processing nuclear fuel materials, the location of an enterprise, the construction of buildings and the construction of and the equipments for facilities of chemical processing, forming, coating, assembling, storage of nuclear fuel materials, disposal of radioactive wastes and radiation control must be written. Records shall be made and maintained for the periods specified on the inspection of processing facilities, nuclear fuel materials, radiation control, operation, maintainance, accidents of processing facilities and weather. Limit to entrance into the control area, measures for exposure radiation dose, patrol and inspection, operation of processing facilities, transport of materials, disposal of radioactive wastes, safety regulations are provided for. Reports to be filed by the persons engaging in the enterprises processing nuclear fuel materials are prescribed. (Okada, K.)

  8. Supply of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    Any large-scale atomic energy programme is inherently dependent on the availability of materials that can be used as fuel in reactors, and the International Atomic Energy Agency, at its inception, was intended to act as a bank for the flow of materials between Member States. According to its Statute, one of its primary functions is to provide materials 'to meet the needs of research on, and development and practical application of, atomic energy for peaceful purposes, including the production of electric power, with due consideration for the needs of the under-developed areas of the world'. If the Agency is to fulfil its Statutory function, it would be essential for it to have not only some ready sources of supply, but also an established framework of general terms and conditions on which it could secure the supplies. The latter would eliminate the need for going through elaborate procedural formalities whenever the Agency receives a new request for materials. Such a framework has now been established with the signing of broad agreements with three countries which had offered to supply various quantities of special fissionable materials to the Agency. These agreements, signed in Vienna on 11 May 1959, with the USSR, the UK and the USA, lay down the basic terms and conditions on which these three countries will make nuclear materials available when needed by the Agency. The USSR has agreed to make available to the Agency 50 kg of uranium-235, the UK 20 kg and the USA 5 000 kg. The material will be supplied in the form of enriched uranium in any concentration up to 20 per cent; the amounts mentioned relate to the 235-isotope content of the materials. The UK and the USA have agreed that the parties to a particular supply agreement may decide on higher enrichment of uranium to be used for research reactors, material testing reactors or for other research purposes. The USA has also agreed to make available to the Agency such additional supplies as would match in amount

  9. Responsible stewardship of nuclear materials

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1994-01-01

    The ability to tap the massive energy potential of nuclear fission was first developed as a weapon to end a terrible world war. Nuclear fission is also a virtually inexhaustible energy resource, and is the only energy supply in certain areas in Russia, Kazakhstan and elsewhere. The potential link between civilian and military applications has been and continues to be a source of concern. With the end of the Cold War, this issue has taken a dramatic turn. The U.S. and Russia have agreed to reduce their nuclear weapons stockpiles by as much as two-thirds. This will make some 100 tonnes of separated plutonium and 500 tonnes of highly enriched uranium available, in a form that is obviously directly usable for weapons. The total world inventory of plutonium is now around 1000 tonnes and is increasing at 60-70 tonnes per year. There is even more highly enriched uranium. Fortunately the correct answer to what to do with excess weapons material is also the most attractive. It should be used and reused as fuel for fast reactors. Material in use (particularly nuclear material) is very easy to monitor and control, and is quite unattractive for diversion. Active management of fissile materials not only makes a major contribution to economic stability and well-being, but also simplifies accountability, inspection and other safeguards processes; provides a revenue stream to pay for the necessary safeguards; and, most importantly, limits the prospective world inventory of plutonium to only that which is used and useful

  10. Risk Prevention for Nuclear Materials and Radioactive Sources

    International Nuclear Information System (INIS)

    Badawy, I.

    2008-01-01

    The present paper investigates the parameters which may have effects on the safety of nuclear materials and other radioactive sources used in peaceful applications of atomic energy. The emergency response planning in such situations are also indicated. In synergy with nuclear safety measures, an approach is developed in this study for risk prevention. It takes into consideration the collective implementation of measures of nuclear material accounting and control, physical protection and monitoring of such strategic and dangerous materials in an integrated and coordinated real-time mode at a nuclear or radiation facility and in any time

  11. Development of technologies for national control of and accountancy for nuclear materials

    International Nuclear Information System (INIS)

    Choi, Young Myung; Kwack, E. H.; Kim, B. K.

    2002-03-01

    The aim of this project is to establish a rigid foundation of national safeguards and to develop the new technologies for the nuclear control. This project is composed of four different technologies; 1. Monitoring technology for nuclear materials, 2. Detection technology for a single particle, 3. Safeguards information management technology, 4. Physical protection technology. Various studies such as a remote verification system for CANDU spent fuel in dry storage canister, a spent fuel verification system using an optical fiber scintillator, and development of softwares for safeguards and physical protection were performed in the frist phase('99-'01). As a result of this research, it has been identified that the developed technologies could be a crucial means of the control for the nuclear material and facilities related. We are planing to accomplish a steady national safeguard system in the second phase('02-'06). This research will help to elevate the transparency and credibility in national nuclear activities by improving the relative technologies

  12. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  13. U.S.-origin nuclear material removal program

    International Nuclear Information System (INIS)

    Messick, C.E.; Galan, J.J.

    2014-01-01

    The United States (U.S.) Department of Energy (DOE) Global Threat Reduction Initiative's (GTRI) U.S.-Origin Nuclear Material Removal program, also known as the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (FRR SNF AP), was established by the U.S. Department of Energy in May 1996. The program's mission provides a disposition pathway for certain U.S. origin spent nuclear fuel and other weapons-grade nuclear material. The program will continue until May 2016 with an additional three year window for fuel cooldown and transportation. This paper provides an update on recent program accomplishments, current program initiatives and future activities.

  14. The convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1980-05-01

    This document contains the full text of a convention to facilitate the safe transfer of nuclear material, and to insure the physical protection of nuclear material in domestic use, storage, and transport. Two annexes are included, which establish categories of nuclear materials and levels of physical protection to be applied in international transport

  15. Nuclear material measurement system in Brazil

    International Nuclear Information System (INIS)

    Almeida, S.G. de.

    1988-01-01

    The description of the activities developed at the Safeguards Laboratory of Brazilian Nuclear Energy Commission is done. The methods and techniques used for measuring and evaluating nuclear materials and facilities are presented. (E.G.) [pt

  16. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de

  17. The regulations concerning the uses of nuclear fuel materials

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulations are established on the basis of ''The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Provisions concerning the usage of nuclear fuel materials'' in the Enforcement Ordinance of the Law, to enforce such provisions. Terms are explained, such as exposure radiation dose, cumulative dose, control area, surrounding inspection area, persons engaging in works, area for incoming and outgoing of materials, batch, real stocks, effective value and main measuring points. In the applications for the permission to use nuclear fuel materials, the expected period and quantity of usage of each kind of such materials and the other party and the method of selling, lending and returning spent fuel or the process of disposal of such fuel must be written. Explanations concerning the technical ability required for the usage of nuclear fuel materials shall be attached to the applications. Applications shall be filed for the inspection of facilities for use, in which the name and the address of the applicant, the name and the address of the factory or the establishment, the range of the facilities for use, the maximum quantity of nuclear fuel materials to be used or stocked, and the date, the place and the kind of the expected inspection are written. Prescriptions cover the records to be held, safety regulations, the technical standards for usage, the disposal, transport and storage of nuclear fuel materials and the reports to be filed. (Okada, K.)

  18. Radiation damage in nuclear waste materials

    International Nuclear Information System (INIS)

    Jencic, I.

    2000-01-01

    Final disposal of high-level radioactive nuclear waste is usually envisioned in some sort of ceramic material. The physical and chemical properties of host materials for nuclear waste can be altered by internal radiation and consequently their structural integrity can be jeopardized. Assessment of long-term performance of these ceramic materials is therefore vital for a safe and successful disposal. This paper presents an overview of studies on several possible candidate materials for immobilization of fission products and actinides, such as spinel (MgAl 2 O 4 ), perovskite (CaTiO 3 ), zircon (ZrSiO 4 ), and pyrochlore (Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 ). The basic microscopic picture of radiation damage in ceramics consists of atomic displacements and ionization. In many cases these processes result in amorphization (metaminctization) of irradiated material. The evolution of microscopic structure during irradiation leads to various macroscopic radiation effects. The connection between microscopic and macroscopic picture is in most cases at least qualitatively known and studies of radiation induced microscopic changes are therefore an essential step in the design of a reliable nuclear waste host material. The relevance of these technologically important results on our general understanding of radiation damage processes and on current research efforts in Slovenia is also addressed. (author)

  19. Nuclear Space Power Systems Materials Requirements

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    2004-01-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited

  20. Quality control of three main materials for civil construction of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Feng

    2011-01-01

    The construction and operation of nuclear power plant is a systematic engineering. To ensure quality and safety of nuclear power plants, each work from design to operation can have certain impact on the quality and safety of the project. The quality of each related work shall be controlled. Starting from the quality control over raw materials for the civil construction of nuclear power plant, this article mainly analyzes how to control the quality and manage the three main materials of steel, concrete and modular parts in the civil construction. (author)

  1. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  2. Nuclear reactor structural material forming less radioactive corrosion product

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi.

    1988-01-01

    Purpose: To provide nuclear reactor structural materials forming less radioactive corrosion products. Constitution: Ni-based alloys such as inconel alloy 718, 600 or inconel alloy 750 and 690 having excellent corrosion resistance and mechanical property even in coolants at high temperature and high pressure have generally been used as nuclear reactor structural materials. However, even such materials yield corrosion products being attacked by coolants circulating in the nuclear reactor, which produce by neutron irradiation radioactive corrosion products, that are deposited in primary circuit pipeways to constitute exposure sources. The present invention dissolves dissolves this problems by providing less activating nuclear reactor structural materials. That is, taking notice on the fact that Ni-58 contained generally by 68 % in Ni changes into Co-58 under irradiation of neutron thereby causing activation, the surface of nuclear reactor structural materials is applied with Ni plating by using Ni with a reduced content of Ni-58 isotopes. Accordingly, increase in the radiation level of the nuclear reactor structural materials can be inhibited. (K.M.)

  3. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-01-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  4. Large area nuclear particle detectors using ET materials

    International Nuclear Information System (INIS)

    1987-08-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated

  5. A Road map for Establishing the Physical Protection Regime of Nuclear Materials and Facilities

    International Nuclear Information System (INIS)

    Yoo, Ho-Sik; Kwak, Sung-Woo; Jang, Sung-Soon; Kim, Jae-Kwang; Kim, Jung-Soo; Yoon, Wan-Ki

    2007-01-01

    The importance of physical protection for nuclear materials and facilities that can be an objective for terrorists has never been more stressed. The responsibility for physical protection within a State does not rest entirely with that state because cross-border transactions related to nuclear materials increase as nuclear related industries expand. The international community has prepared measures to strengthen the regime of physical protection such as the IAEA's proposal of the 'Nuclear Security Plan for 2006-2009' and UN's resolution on 'the International Convention for the Suppression of Acts of Nuclear Terrorism'. In order to cope with this, Korea has also made efforts to establish the implementation system for physical protection in the field of nuclear industries since the law for Physical Protection of Nuclear Material and Facility and Radiological Emergency Preparedness (LPPREP) was promulgated in 2004. The detailed plans should be prepared to accomplish this. This study has been performed to derive the items for establishing the regime of physical protection. The items derived were classified as short, mid and long-term depending on their characteristics and environmental circumstances. The regime of national physical protection will be established if the studies on these items are carried out successfully and tangible results are obtained

  6. Nuclear-waste-package materials degradation modes and accelerated testing

    International Nuclear Information System (INIS)

    1981-09-01

    This report reviews the materials degradation modes that may affect the long-term behavior of waste packages for the containment of nuclear waste. It recommends an approach to accelerated testing that can lead to the qualification of waste package materials in specific repository environments in times that are short relative to the time period over which the waste package is expected to provide containment. This report is not a testing plan but rather discusses the direction for research that might be considered in developing plans for accelerated testing of waste package materials and waste forms

  7. Attributes identification of nuclear material by non-destructive radiation measurement methods

    International Nuclear Information System (INIS)

    Gan Lin

    2002-01-01

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  8. Introduction of the Recycling program for Nuclear materials

    International Nuclear Information System (INIS)

    Park, Jae Beom; Shin, Byung Woo; Park, Jae Whan; Park, Soo Jin

    2009-01-01

    The LOF is the abbreviation of Location outside Facilities using in safeguards. IAEA want to control the location using the small nuclear material over the world. The depleted uranium used in Industrial field should be controlled by the Government according to the agreement between the IAEA and the ROK. From 2006, The ROK is managing the locations in the LOF. The detail article governing the locations is on the Location attachment agreed between two bodies. As of end of 2007, The LOF was consisting of 64 locations. Now, A number of Locations are increasing up to 75. The KINAC(Korea Institute of Nuclear Nonproliferation and Control) is controlling the data about the amount of nuclear material in LOF. The KINAC is trying to upgrade the efficiency and accuracy about the data. The KINAC will make a storage house at the underground of head office from 2009. The purpose of the storage system in KINAC is gathering the nuclear material, which is difficult to control by the industries, especially the nuclear material involved in LOF. The final goal for gathering the nuclear materials are recycling to new another machine. I would like to introduce the handling case of the Depleted uranium in their countries. On this paper, I will show 4 countries case briefly

  9. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  10. Nuclear materials control technology in the post-cold war world: Radiation-based methods and information management systems

    International Nuclear Information System (INIS)

    Tape, J.W.; Eccleston, G.W.; Ensslin, N.; Markin, J.T.

    1993-01-01

    The end of the cold war is providing both opportunities and requirements for improving the control of nuclear materials around the world. The dismantlement of nuclear weapons and the growth of nuclear power, including the use of plutonium in light water reactors and breeder reactor programs, coupled with enhanced proliferation concerns, drive the need for improved nuclear materials control. We describe nuclear materials control and the role of technology in making controls more effective and efficient. The current use and anticipated development in selected radiation-based methods and related information management systems am described briefly

  11. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, A A [Materials Division, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B{sub 4} C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs.

  12. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    1996-01-01

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B 4 C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs

  13. U.S.-origin nuclear material removal program

    Energy Technology Data Exchange (ETDEWEB)

    Messick, C.E.; Galan, J.J. [U.S. Department of Energy, Washington, DC (United States). U.S.-Origin Nuclear Material Removal Program

    2014-12-15

    The United States (U.S.) Department of Energy (DOE) Global Threat Reduction Initiative's (GTRI) U.S.-Origin Nuclear Material Removal program, also known as the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (FRR SNF AP), was established by the U.S. Department of Energy in May 1996. The program's mission provides a disposition pathway for certain U.S. origin spent nuclear fuel and other weapons-grade nuclear material. The program will continue until May 2016 with an additional three year window for fuel cooldown and transportation. This paper provides an update on recent program accomplishments, current program initiatives and future activities.

  14. Environmental-impact appraisal related to special nuclear materials. License No. SNM-696; Docket No. 70-734

    International Nuclear Information System (INIS)

    1983-06-01

    This Environmental Impact Appraisal is issued by the US Nuclear Regulatory Commission in response to an application by GA Technologies, Inc., (GA) for renewal of Special Nuclear Material (SNM) License No. SNM-696 covering plant operations at San Diego, California. The proposed action provides for continuing research, development, and production activities involving SNM, uranium enriched in the U-235 and U-233 isotopes, and plutonium

  15. In-field analysis and assessment of nuclear material

    International Nuclear Information System (INIS)

    Morgado, R.E.; Myers, W.S.; Olivares, J.A.; Phillips, J.R.; York, R.L.

    1996-01-01

    Los Alamos National Laboratory has actively developed and implemented a number of instruments to monitor, detect, and analyze nuclear materials in the field. Many of these technologies, developed under existing US Department of Energy programs, can also be used to effectively interdict nuclear materials smuggled across or within national borders. In particular, two instruments are suitable for immediate implementation: the NAVI-2, a hand-held gamma-ray and neutron system for the detection and rapid identification of radioactive materials, and the portable mass spectrometer for the rapid analysis of minute quantities of radioactive materials. Both instruments provide not only critical information about the characteristics of the nuclear material for law-enforcement agencies and national authorities but also supply health and safety information for personnel handling the suspect materials

  16. Use of some nuclear methods for materials analysis

    International Nuclear Information System (INIS)

    Habbani, Farouk

    1994-01-01

    A review is given about the use of two nuclear-related analytical methods, namely: X-ray fluorescence (XRF) and neutron activation analysis (NAA), for the determination of elemental composition of various materials. Special emphasis is given to the use of XRF for the analysis of geological samples, and NAA for the analysis of food - stuffs for their protein content. (Author)

  17. Recommended nuclear criticality safety experiments in support of the safe transportation of fissile material

    International Nuclear Information System (INIS)

    Tollefson, D.A.; Elliott, E.P.; Dyer, H.R.; Thompson, S.A.

    1993-01-01

    Validation of computer codes and nuclear data (cross-section) libraries using benchmark quality critical (or certain subcritical) experiments is an essential part of a nuclear criticality safety evaluation. The validation results establish the credibility of the calculational tools for use in evaluating a particular application. Validation of the calculational tools is addressed in several American National Standards Institute/American Nuclear Society (ANSI/ANS) standards, with ANSI/ANS-8.1 being the most relevant. Documentation of the validation is a required part of all safety analyses involving significant quantities of fissile materials. In the case of transportation of fissile materials, the safety analysis report for packaging (SARP) must contain a thorough discussion of benchmark experiments, detailing how the experiments relate to the significant packaging and contents materials (fissile, moderating, neutron absorbing) within the package. The experiments recommended in this paper are needed to address certain areas related to transportation of unirradiated fissile materials in drum-type containers (packagings) for which current data are inadequate or are lacking

  18. Nuclear data information system for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji; Utsumi, Misako

    1996-01-01

    The conceptual system for nuclear material design is considered and some trials on WWW server with functions of the easily accessible simulation of nuclear reactions are introduced. Moreover, as an example of the simulation on the system using nuclear data, transmutation calculation was made for candidate first wall materials such as 9Cr-2W steel, V-5Cr-5Ti and SiC in SUS316/Li 2 O/H 2 O(SUS), 9Cr-2W/Li 2 O/H 2 O(RAF), V alloy/Li/Be(V), and SiC/Li 2 ZrO 3 /He(SiC) blanket/shield systems based on ITER design model. Neutron spectrum varies with different blanket/shield compositions. The flux of low energy neutrons decreases in order of V< SiC< RAF< SUS blanket/shield systems. Fair amounts of W depletion in 9Cr-2W steel and the increase of Cr content in V-5Cr-5Ti were predicted in SUS or RAF systems. Concentration change in W and Cr is estimated to be suppressed if Li coolant is used in place of water. Helium and hydrogen production are not strongly affected by the different blanket/shield compositions. (author)

  19. Topical understandings of nuclear material measurement · accountancy and quality assurance

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Muraoka, Susumu; Osabe, Takeshi; Terada, Hiromi; Shimizu, Kenichi; Ohtani, Tetsuo; Fujimaki, Kazunori; Ishikawa, Tadatsugu; Shinohara, Yoshinori

    2002-01-01

    Nuclear material measurement is an important measure to determine the amount of nuclear material of each stage such as receipt, shipment, inventory and hold-up. The material accountancy based on the material balance among the measurements is a measure to control of nuclear material. The material accountancy, from the technical aspect, can be used as promising measures for purposes from operator's level to state's level such as the nuclear safety, property control and environmental preservation other than safeguards measures only to conclude no diversion of nuclear material. This paper discusses various purposes of nuclear material measurements and clarifies the certain function such as quality assurance to be expected at each purpose. Based on the discussion, critical points for the quality assurance of each stage are studied. (author)

  20. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-04

    The document reproduces the text of the Note Verbale received by the Director General of the IAEA from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology.

  1. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Note Verbale received by the Director General of the IAEA from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology

  2. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    Science.gov (United States)

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  3. Security of nuclear materials using fusion multi sensor wavelett

    International Nuclear Information System (INIS)

    Djoko Hari Nugroho

    2010-01-01

    Security of a nuclear material in an installation is determined by how far the installation is to assure that nuclear material remains at a predetermined location. This paper observed a preliminary design on nuclear material tracking system in the installation for decision making support based on multi sensor fusion that is reliable and accurate to ensure that the nuclear material remains inside the control area. Capability on decision making in the Management Information System is represented by an understanding of perception in the third level of abstraction. The second level will be achieved with the support of image analysis and organizing data. The first level of abstraction is constructed by merger between several CCD camera sensors distributed in a building in a data fusion representation. Data fusion is processed based on Wavelett approach. Simulation utilizing Matlab programming shows that Wavelett fuses multi information from sensors as well. Hope that when the nuclear material out of control regions which have been predetermined before, there will arise a warning alarm and a message in the Management Information System display. Thus the nuclear material movement time event can be obtained and tracked as well. (author)

  4. Hydrological dispersion of radioactive material in relation to nuclear power plant siting

    International Nuclear Information System (INIS)

    1985-01-01

    This Guide discusses the dispersion of normal and accidental releases of radioactive materials from nuclear power plants into surface water, including the washout of airborne radionuclides, and gives recommendations on information to be collected during the various stages of the siting procedure, a minimum measurement programme and the selection and validation of appropriate mathematical models for predicting dispersion. Guidelines are also provided for the optimal use of models for a specific site situation and for defining the necessary input parameters. Results of existing validation studies are given

  5. Risk Informed Approach for Nuclear Security Measures for Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to States for developing a risk informed approach and for conducting threat and risk assessments as the basis for the design and implementation of sustainable nuclear security systems and measures for prevention of, detection of, and response to criminal and intentional unauthorised acts involving nuclear and other radioactive material out of regulatory control. It describes concepts and methodologies for a risk informed approach, including identification and assessment of threats, targets, and potential consequences; threat and risk assessment methodologies, and the use of risk informed approaches as the basis for informing the development and implementation of nuclear security systems and measures. The publication is an Implementing Guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, law enforcement agencies and experts from competent authorities and other relevant organizations involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures related to nuclear and other radioactive material out of regulatory control

  6. Regulation on control of nuclear materials of the 31 Oct 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The new regulation on accounting for and control of nuclear materials was issued on 31 October 1986 and put into force on 1 February 1987. The following provisions are included: aim and scope, responsibility for nuclear material accounting and control, rights and obligations of the nuclear material control officer, licensing, facility's instructions for nuclear material control, accounting, records, reporting, unusual events, inspections, nuclear material transfers, exemptions and termination of IAEA safeguards, final provisions, and definitions of terms

  7. Basic fracture toughness requirements for ferritic materials of nuclear class pressure retaining equipment in NPP

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2005-01-01

    In this paper, theory basis on cold brittleness and anti-brittle fracture design of ferritic materials are introduced summarily and fracture toughness requirements for ferritic materials in ASME code for nuclear safety class pressure retaining equipment in NPP are summarized and evaluated. The results show that notch impact toughness requirements for materials relate to nuclear safety class of materials so as to ensure that brittle fracture of retaining pressure boundary in NPP can not occur. (authors)

  8. Bar code usage in nuclear materials accountability

    International Nuclear Information System (INIS)

    Mee, W.T.

    1983-01-01

    The age old method of physically taking an inventory of materials by listing each item's identification number has lived beyond its usefulness. In this age of computerization, which offers the local grocery store a quick, sure, and easy means to inventory, it is time for nuclear materials facilities to automate accountability activities. The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At that time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable; however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented

  9. Aims and methods of nuclear materials management

    International Nuclear Information System (INIS)

    Leven, D.; Schier, H.

    1979-05-01

    Whilst international safeguarding of fissile materials against abuse has been the subject of extensive debate, little public attention has so far been devoted to the internal security of these materials. All countries using nuclear energy for peaceful purposes have laid down appropriate regulations. In the Federal Republic of Germany safeguards are required, for instance, by the Atomic Energy Act, and are therefore a prerequisite for licensing. The aims and methods of national nuclear materials management are contrasted with viewpoints on international safeguards

  10. Overview moderator material for nuclear reactor components

    International Nuclear Information System (INIS)

    Mairing Manutu Pongtuluran; Hendra Prihatnadi

    2009-01-01

    In order for a reactor design is considered acceptable absolute technical requirement is fulfilled because the most important part of a reactor design. Safety considerations emphasis on the handling of radioactive substances emitted during the operation of a reactor and radioactive waste handling. Moderator material is a layer that interacts directly with neutrons split the nuclear fuel that will lead to changes in physical properties, nuclear properties, mechanical properties and chemical properties. Reviews moderator of this time is of the types of moderator is often used to meet the requirements as nuclear material. (author)

  11. New technologies for monitoring nuclear materials

    International Nuclear Information System (INIS)

    Moran, B.W.

    1993-01-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items

  12. Illicit trafficking of nuclear material and other radioactive sources

    International Nuclear Information System (INIS)

    Yilmazer, A.; Yuecel, A.; Yavuz, U.

    2001-01-01

    As it is known, for the fact that the illicit trafficking and trading of nuclear materials are being increased over the past few years because of the huge demand of third world states. Nuclear materials like uranium, plutonium, and thorium are used in nuclear explosives that have very attractive features for crime groups, terrorist groups and, the states that are willing to have this power. Crime groups that make illegal trade of nuclear material are also trying to market strategic radioactive sources like red mercury and Osmium. This kind of illegal trade threats public safety, human health, environment also it brings significant threat on world peace and world public health. For these reasons, both states and international organizations should take a role in dealing with illicit trafficking. An important precondition for preventing this kind of incidents is the existence of a strengthened national system for control of all nuclear materials and other radioactive sources. Further, Governments are responsible for law enforcement within their borders for prevention of illegal trading and trafficking of nuclear materials and radiation sources

  13. The development of nuclear material accountability system - software user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Kim, Ho Dong; Song, Dae Yong; Ko, Won Il; Hong, Jong Sook; Lee, Byung Doo

    1999-07-01

    We have developed the near-real time nuclear material accountability system, named by DMAS, for DUPIC Test Facility in the basis of the survey of DUPIC process and activities for the accountability of the system, and the review of the rules and regulations related to the nuclear material accounting. Our system adopts the structure and technologies used in COREMAS which was developed by LANL. This technical report illustrates the system structure and program usage as a user manual for DMAS. (author). 56 tabs., 1 fig.

  14. The Physical Protection of Nuclear Material; Proteccion Fisica Delos Materiales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-15

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [French] La proteccion fisica contra el robo o la desviacion no autorizada de materiales nucleares y contra el sabotaje de las instalaciones nucleares por parte de individuos o de grupos ha sido durante largo tiempo motivo de preocupacion nacional e internacional. Aunque la obligacion de crear y hacer funcionar un sistema completo de proteccion fisica para las instalaciones y materiales nucleares en el territorio de un Estado determinado incumbe enteramente al Gobierno de dicho Estado, el que esa obligacion se cumpla o no, y si se cumple, en que medida o hasta que punto, es cosa que no deja indiferentes a los demas Estados. De aqui que la proteccion fisica se haya convertido en motivo de interes y cooperacion internacional. La necesidad de cooperacion internacional se hace evidente en los casos en que la eficacia de la proteccion fisica en el territorio de un Estado depende de que otros Estados tomen tambien medidas apropiadas para evitar o hacer fracasar los actos hostiles dirigidos contra instalaciones y

  15. Strengthened implementation of physical protection of nuclear material and nuclear facilities in the Republic of Korea

    International Nuclear Information System (INIS)

    Shim, H.-W.; Lee, J.-U.

    2005-01-01

    Full text: Since the 9.11 terror, strengthening physical protection has been an accelerated trend internationally. IAEA has been requesting that member states implement a strengthened physical protection of nuclear facilities on the basis of threat assessments. In order to cope with this demand, the Korean government promulgated the 'Law for Physical Protection and Radiological Emergency Preparedness (LPPRE)' as a substantial countermeasure against possible threats. Pursuant to LPPRE, which entered into force on February 16, 2004, nuclear enterprisers are obliged to implement an effective physical protection of nuclear materials, get approval for its physical protection system, and be constantly inspected on. The Ministry of Science and Technology (MOST) approved physical protection regulations of 24 domestic facilities operated by 14 enterprisers. National Nuclear management and Control Agency (NNCA) is entrusted with physical protection related duty and has been conducting physical protection inspection on nuclear materials in use, storage and transport. In addition, NNCA has established the methodology of threat assessment that entails organizing the threat assessment working group to develop a design basis threat (DBT). Korea is putting its best efforts to construct the threat assessment system and strengthen domestic physical protection regime in cooperation with competent authorities. (author)

  16. Towards a new system of accounting of nuclear material

    International Nuclear Information System (INIS)

    Maceiras, Elena; Fernandez Moreno, Sonia; Castro, Laura B.; Saavedra, Analia D.; Mairal, M.L.; Valentino, Lucia I.; Vicens, Hugo E.; Llacer, Carlos D.

    1999-01-01

    The Nuclear Regulatory Authority (NRA) of Argentina has, among other functions, to ensure the fulfilment of national nuclear regulatory standards and all international safeguards commitments assumed by Argentina, particularly those related to the accounting and control of nuclear materials. To fulfil this responsibility, national inspections and audits of the operator's accounting and measurement systems are carried out, generating a great deal of data to be processed and evaluated. To manage this information in an efficient way, the RNA has implemented a control system composed by three database: SCMN, SIS and SOP, which interact amongst them. The objectives and functions of this integrated system and the achieved results to date are described in the present paper. (author)

  17. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Science.gov (United States)

    2010-01-01

    ... and maintain a measurement system which assures that all quantities in the material accounting records...) In each inventory period, control total material control and accounting measurement uncertainty so... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special...

  18. Nuclear Materials Diversion Safety and the Long-term Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2002-01-01

    Primarily due to irresponsible cold war politics of nuclear weapon countries nuclear proliferation situation is little short of getting out of control. In addition to five nominal nuclear weapon countries there are at present at least three more nuclear weapon countries and several countries with nuclear weapon potential. Non-proliferation treaty (NPT), signed in 1970, has been recognized by most non-nuclear weapon countries as unjust and ineffective. After the initial, deliberate, nuclear weapon developments of five nominal nuclear weapon countries, subsequent paths to nuclear weapons have been preceded by nominal peaceful use of nuclear energy. Uranium enrichment installations as well as reprocessing installations in non-nuclear weapon countries are the weakest spots of fuel cycle for diversion of nuclear materials either by governments or by illicit groups. An energy scenario, which would, by the end of century, replace the large part of fossil fuels use through extension of present nuclear practices, would mean very large increase in a number of such installations, with corresponding increase of the probability of diversion of nuclear materials. Such future is not acceptable from the point of view of proliferation safety. Recent events make it clear, that it cannot be accepted from the requirements of nuclear terrorism safety either. Nuclear community should put it clearly to their respective governments that the time has come to put general interest before the supposed national interest, by placing all enrichment and reprocessing installations under full international control. Such internationalization has a chance to be accepted by non-nuclear weapon countries, only in case should it apply to nuclear weapon countries as well, without exception. Recent terrorist acts, however horrible they were, are child,s play compared with possible acts of nuclear terrorism. Nuclear energy can be made proliferation safe and diversion of nuclear materials safe, and provide

  19. Applications of a glove-box ICP-MS for the analysis of nuclear materials

    International Nuclear Information System (INIS)

    Garcia Alonso, J.I.; Babelot, J.F.; Glatz, J.P.; Cromboom, O.; Koch, L.

    1993-01-01

    The relatively new analytical technique, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), has been used for the analysis of nuclear materials stemming from different parts of the nuclear fuel cycle. The original instrument has been modified in order to work with radioactive materials in a glove box. The plasma torch and vacuum interface are situated inside the glove box while the mass spectrometer and associated electronics are outside. Samples analysed include fresh nuclear fuels (natural impurities), spent fuels (fission products and actinides), reprocessing solutions (minor actinides) and leachates of spent fuel and high level waste glasses (natural elements, fission products and actinides). (orig.)

  20. Regulations on nuclear materials control of the People's Republic of China

    International Nuclear Information System (INIS)

    1996-01-01

    The present 'Regulations on Nuclear Materials Control of the People's Republic of China' were promulgated by the State Council on June 15, 1987, which are enacted to ensure safe and lawful use of nuclear materials, to prevent theft, sabotage, lose, unlawful diversion and unlawful use, to protect the security of the State and the Public and to facilitate the development of nuclear undertakings. The nuclear materials controlled are: 1. Uranium-235 (materials and products); 2. Uranium-233 (material and products); 3. Plutonium-239 (materials and products); 4. tritium (materials and products); 5. lithium-6 (materials and products); 6. Other nuclear materials requiring control. The present regulations are not applicable to the control of uranium ore and its primary products. The control measures for nuclear products transferred to the armed forces shall be laid down by the national defence department

  1. Materials interactions relating to long-term geologic disposal of nuclear waste glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jantzen, C.M.

    1987-01-01

    In the geologic disposal of nuclear waste glass, the glass will eventually interact with groundwater in the repository system. Interactions can also occur between the glass and other waste package materials that are present. These include the steel canister that holds the glass, the metal overpack over the canister, backfill materials that may be used, and the repository host rock. This review paper systematizes the additional interactions that materials in the waste package will impose on the borosilicate glass waste form-groundwater interactions. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g. oxic vs anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interactions is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. It is noted when further tests of repository interactions are needed before long-term predictions can be made. 63 references, 1 table

  2. Nuclear Fuels & Materials Spotlight Volume 5

    International Nuclear Information System (INIS)

    Petti, David Andrew

    2016-01-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  3. Energy-range relations for hadrons in nuclear matter

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  4. Development of materials for the fusion nuclear energy system

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, S. H.; Jang, J. S.; Kim, W. J.; Jung, C. H.; Jun, B. H.; Maeng, W. Y.; Kwon, J. H.; Kim, H. P.; Hong, J. H.

    2005-01-01

    A state of the art on the nuclear material development has been reviewed based on the each component of the Tokamak typed fusion reactor. The current status of the development of structural materials such as FM steels, ODS steels, vanadium alloys and SiCf/SiC composites are introduced. The application of Li-based ceramics as a ceramic breeder and W-based alloys and C/C composites as plasma facing components for the divertor were also investigated, respectively. Some evaluation methods and results of the computational material simulation for irradiation damages and the compatibility between materials and coolant are described. Additionally, the material related research activities of ITER and ITER TBM and the collaboration activities on fusion materials between Japan and USA are briefly summarized

  5. Control of nuclear materials and materials in Argentina

    International Nuclear Information System (INIS)

    Arbor G, A.; Fernandes M, S.

    1988-01-01

    A general view about the safeguards activities in Argentina is presented. The national system of accounting for and control of nuclear materials is described. The safeguards agreement signed by Argentina are presented. (E.G.) [pt

  6. Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    Nuclear material accounting and control (NMAC) works in a complementary fashion with the international safeguards programme and physical protection systems to help prevent, deter or detect the unauthorized acquisition and use of nuclear materials. These three methodologies are employed by Member States to defend against external threats, internal threats and both state actors and non-state actors. This publication offers guidance for implementing NMAC measures for nuclear security at the nuclear facility level. It focuses on measures to mitigate the risk posed by insider threats and describes elements of a programme that can be implemented at a nuclear facility in coordination with the physical protection system for the purpose of deterring and detecting unauthorized removal of nuclear material

  7. Material control and accounting at Exxon Nuclear, I

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1985-01-01

    The nuclear material control and accounting system at Exxon Nuclear will be described in detail. Subjects discussed will include: the basis of the MC and A system, the nuclear materials accounting systems (NMRS and NICS), physical inventory taking, IAEA inspection experience, safeguards organization, measurements and measurement control, MUF evaluation, accounting forms and reports and use of tamper-indicating seals. The general requirements for material accounting and control in this type of a bulk-handling facility are described. The way those requirements are met for the subject areas shown above is illustrated using a reference (Model Plant) version of the Exxon Nuclear plant The difference between the item-accounting procedures used at reactor facilities and the bulk-accounting procedures used at fuel fabrication facilities is discussed in detail

  8. Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells

    International Nuclear Information System (INIS)

    Rodriquez, Michael

    2009-01-01

    As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the 'Nuclear Renaissance'. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very tight

  9. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  10. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  11. Regulation of nuclear materials control and accountability and inspection practices in the Russian Federation

    International Nuclear Information System (INIS)

    Volodin, Y.G.; Dimitriev, A.M.; Krouptchatnikov, B.N.

    1999-01-01

    Review and assessment of the resent state orders and directives regulating nuclear materials control and accountability, defining responsibilities and incorporation of different agencies in nuclear materials control and accountability (MC and A) area in Russia, related actions to stipulate tasks in developing the State System of Accounting for and Control of Nuclear Materials (SSAC) and a role of the Federal Nuclear and Radiation Safety Authority of Russia (Gosatomnadzor) in this process is presented. Main principles, elements and practical results of Gosatomnadzor inspection activities are reported. Elements of the SSAC, status of works in establishment of the SSAC and in implementation of fragments of the SSAC, an international assistance in up-grading MC and A systems at some of the Russian facilities and in establishing the SSAC in Russia is outlined. (author)

  12. PWR composite materials use. A particular case of safety-related service water pipes

    International Nuclear Information System (INIS)

    Pays, M.F.; Le Courtois, T.

    1997-11-01

    This paper shows the present and future uses of composite materials in French nuclear and fossil-fuel power plants. Electricite de France has decided to install composite materials in service water piping in its future nuclear power plant (PWR) at Civaux (West of France) and for the firs time in France, in safety-related applications. A wide range of studies has been performed about the durability, the control and damage mechanisms of those materials under service conditions among an ongoing Research and Development project. The main results are presented under the following headlines: selection of basic materials and manufacturing processes; aging processes (mechanical behavior during 'lifetime'); design rules; non destructive examination during manufacturing process and during operation. The studies have been focused on epoxy pipings. The importance of strong quality insurance policy requirements are outlined. A study of the use of composite pipes in power plants (hydraulic, fossil fuel, and nuclear) in France and around the world (USA, Japan, Western Europe) are presented whether it be safety related or non safety-related applications. The different technical solutions for materials and manufacturing processes are presented and an economic comparison is made between steel and composite pipes. (author)

  13. PWR composite materials use. A particular case of safety-related service water pipes

    Energy Technology Data Exchange (ETDEWEB)

    Pays, M.F.; Le Courtois, T

    1997-11-01

    This paper shows the present and future uses of composite materials in French nuclear and fossil-fuel power plants. Electricite de France has decided to install composite materials in service water piping in its future nuclear power plant (PWR) at Civaux (West of France) and for the firs time in France, in safety-related applications. A wide range of studies has been performed about the durability, the control and damage mechanisms of those materials under service conditions among an ongoing Research and Development project. The main results are presented under the following headlines: selection of basic materials and manufacturing processes; aging processes (mechanical behavior during `lifetime`); design rules; non destructive examination during manufacturing process and during operation. The studies have been focused on epoxy pipings. The importance of strong quality insurance policy requirements are outlined. A study of the use of composite pipes in power plants (hydraulic, fossil fuel, and nuclear) in France and around the world (USA, Japan, Western Europe) are presented whether it be safety related or non safety-related applications. The different technical solutions for materials and manufacturing processes are presented and an economic comparison is made between steel and composite pipes. (author) 2 refs.

  14. Education and training in nuclear materials

    International Nuclear Information System (INIS)

    Falcon, S.; Marco, M.

    2014-01-01

    CIEMAT participates in the European project Matisse (Materials Innovations for a Safe and Sustainable nuclear in Europe) belonging to FP7, whose main objective is to promote the link between the respective national research programs through networking and integration of activities for innovation in materials for advanced nuclear systems, sharing among partners best practices and implementation of training tools and efficient communication. The draft four years, from 2013 to 2017, includes aspects such as the interaction between infrastructure, R and D programs and postgraduate education and training. (Author)

  15. Outline of a computerized nuclear material accounting system applicable to nuclear power reactors

    International Nuclear Information System (INIS)

    Handshuh, J.W.

    1975-01-01

    A computerized nuclear material accounting system is described which enables a utility to account for its material throughout the entire fuel cycle. From input of transactions, the system records and reports inventories and transactions by accounts which the user may establish for discrete locations, item control areas, further subdivisions, and material types. Account numbers are designed so that accounts and records are automatically sorted in the order desired. The system also generates the Material Status Reports for the Nuclear Regulatory Commission

  16. The national nuclear material tracking system. A Korea's countermeasure against nuclear terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyun [Dongguk Univ., Gyeongbuk (Korea, Republic of)

    2011-07-15

    Since nuclear terrorism has been identified as a real threat, the Korean government has earnestly developed elementary technologies and sub-systems for establishing an integrated defensive system against nuclear terrorism, which is based on the concept of defense-in-depth. This paper introduces the gist and implications of the studies that have been conducted in building the national nuclear material tracking system for preventing and intercepting the illicit trafficking and transporting of nuclear material in Korea. (orig.)

  17. Nuclear materials control and accountability criteria for upgrades measures

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Hatcher, C.R.

    1998-01-01

    As a result of major political and societal changes in the past several years, methods of nuclear material control may no longer be as effective as in the past in Russia, the Newly Independent States (NIS), and the Baltic States (BS). The objective of the Department of Energy (DOE) Material Protection, Control, and Accounting Program (MPC and A) is to reduce the threat of nuclear proliferation by collaborating with Russia, NIS, and BS governments to promote western-style MPC and A. This cooperation will improve the MPC and A on all weapons useable nuclear materials and will establish a sustainable infrastructure to provide future support and maintenance for these technology-based improvements. Nuclear materials of proliferation concern include materials of the types and quantities that can be most easily and directly used in a nuclear weapon. Sabotage of nuclear material is an event of great concern and potentially disastrous consequences to both the US and the host country. However, sabotage is currently beyond the scope of program direction and cannot be used to justify US-funded MPC and A upgrades. Judicious MPC and A upgrades designed to protect against insider and outsider theft scenarios would also provide addition, although not comprehensive, protection against saboteurs. This paper provides some suggestions to establish consistency in prioritizing system-enhancement efforts at nuclear material facilities. The suggestions in this paper are consistent with DOE policy and directions and should be used as a supplement to any policy directives issued by NN-40, DOE Russia/NIS Task Force

  18. Nuclear materials control and accountability criteria for upgrades measures

    Energy Technology Data Exchange (ETDEWEB)

    Erkkila, B.H.; Hatcher, C.R.

    1998-11-01

    As a result of major political and societal changes in the past several years, methods of nuclear material control may no longer be as effective as in the past in Russia, the Newly Independent States (NIS), and the Baltic States (BS). The objective of the Department of Energy (DOE) Material Protection, Control, and Accounting Program (MPC and A) is to reduce the threat of nuclear proliferation by collaborating with Russia, NIS, and BS governments to promote western-style MPC and A. This cooperation will improve the MPC and A on all weapons useable nuclear materials and will establish a sustainable infrastructure to provide future support and maintenance for these technology-based improvements. Nuclear materials of proliferation concern include materials of the types and quantities that can be most easily and directly used in a nuclear weapon. Sabotage of nuclear material is an event of great concern and potentially disastrous consequences to both the US and the host country. However, sabotage is currently beyond the scope of program direction and cannot be used to justify US-funded MPC and A upgrades. Judicious MPC and A upgrades designed to protect against insider and outsider theft scenarios would also provide addition, although not comprehensive, protection against saboteurs. This paper provides some suggestions to establish consistency in prioritizing system-enhancement efforts at nuclear material facilities. The suggestions in this paper are consistent with DOE policy and directions and should be used as a supplement to any policy directives issued by NN-40, DOE Russia/NIS Task Force.

  19. US develops neutron to sniff out nuclear material

    CERN Document Server

    2002-01-01

    The USA has developed a tiny portable neutron device that can detect hidden nuclear materials. The device is undergoing trials in the Argonne National Laboratory to see if it could be used to stop smuggling and unauthorised use of nuclear weapons and materials (1/2 page).

  20. Nuclear materials management handbook. Safeguards, physical protection of nuclear material. 1995 ed.

    International Nuclear Information System (INIS)

    1995-01-01

    Now, very safe and stable supply of electric power has become to be obtained by nuclear energy, and Japan has steadily promoted nuclear power as the basic energy that contributes to overcome the unstable structure of energy supply in Japan highly depending on foreign countries, as shown in the long term plan of the research, development and utilization of nuclear power. Great progress was observed in nuclear fuel recycling in Japan such as the attainment of initial criticality of the prototype FBR 'Monju' and the start of construction of the commercial fuel reprocessing plant in Rokkasho. Recently the recognition of the importance of nuclear substance management has heightened, and the measures for maintaining and strengthening the reliability of nuclear nonproliferation system are investigated. It is important that Japan strictly observes the nuclear nonproliferation system based on the NPT which was extended infinitely. In this handbook, the outline of the measures for nuclear nonproliferation and safeguard and the protection of nuclear substances, the treaties and agreements and the national laws related to these are described. (K.I.)

  1. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  2. Consideration on the current status and issues of sensitive information management concerning the physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    Inamura, Tomoaki; Madarame, Haruki

    2009-01-01

    The confidentiality system concerning the physical protection of nuclear materials and nuclear facilities was enacted by revision of the Nuclear Reactor Regulation Law in 2005. We made a comparative analysis with the information security in governmental agencies or financial sectors, in order to consider the way the sensitive information management concerning the physical protection of nuclear materials and nuclear facilities should be. The considerations in this paper are as follows. (1) In order to secure a suitable level of security, close cooperation should be achieved among related governmental agencies. (2) A cycle that continuously evaluates whether suitable management is performed should be established. (3) Excessive secretiveness should be eliminated. (4) An information-sharing system among the related persons beyond the frame of governmental agencies and electricity companies should be established. (5) Improvement in the social acceptability of the sensitive information management is important. (6) Although it is important to perform evaluation by the consideration of suitable balance with information disclosure, it is also important that it is positively shown to society. (author)

  3. Computerized nuclear material database management system for power reactors

    International Nuclear Information System (INIS)

    Cheng Binghao; Zhu Rongbao; Liu Daming; Cao Bin; Liu Ling; Tan Yajun; Jiang Jincai

    1994-01-01

    The software packages for nuclear material database management for power reactors are described. The database structure, data flow and model for management of the database are analysed. Also mentioned are the main functions and characterizations of the software packages, which are successfully installed and used at both the Daya Bay Nuclear Power Plant and the Qinshan Nuclear Power Plant for the purposed of handling nuclear material database automatically

  4. A Uniform Framework of Global Nuclear Materials Management

    International Nuclear Information System (INIS)

    Dupree, S.A.; Mangan, D.L.; Sanders, T.L; Sellers, T.A.

    1999-01-01

    Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must build on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures

  5. A Uniform Framework of Global Nuclear Materials Management

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, S.A.; Mangan, D.L.; Sanders, T.L; Sellers, T.A.

    1999-04-20

    Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must build on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures.

  6. Software development for managing nuclear material database; Desenvolvimento de um programa computacional para gerenciamento de banco de dados de material nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Tondin, Julio Benedito Marin

    2011-07-01

    In nuclear facilities, the nuclear material control is one of the most important activities. The Brazilian National Commission of Nuclear Energy (CNEN) and the International Atomic Energy Agency (IAEA), when inspecting routinely, regards the data provided as a major safety factor. Having a control system of nuclear material that allows the amount and location of the various items to be inspected, at any time, is a key factor today. The objective of this work was to enhance the existing system using a more friendly platform of development, through the VisualBasic programming language (Microsoft Corporation), to facilitate the operation team of the reactor IEA-R1 Reactor tasks, providing data that enable a better and prompter control of the IEA-R1 nuclear material. These data have allowed the development of papers presented at national and international conferences and the development of master's dissertations and doctorate theses. The software object of this study was designed to meet the requirements of the CNEN and the IAEA safeguard rules, but its functions may be expanded in accordance with future needs. The program developed can be used in other reactors to be built in the country, since it is very practical and allows an effective control of the nuclear material in the facilities. (author)

  7. Nuclear Fuels & Materials Spotlight Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  8. Measures for prevention illicit trafficking of nuclear and radioactive materials

    International Nuclear Information System (INIS)

    Strezov, A.

    2002-01-01

    Full text: In the early 1990ies the number of illicit trafficking cases with nuclear material and radioactive sources began to appear in the press more often than before. This fact became of great concern among international organizations and different states that the nuclear material subjected to trafficking might become in possession of rogue states and be implicated in weapons production or that stolen radioactive sources may cause health and safety effects to the population or to the environment. The creation and proposition of a model scheme procedure for the developing countries is important for starting the initial process of preventing and combating the illicit traffic of nuclear materials. Particular efforts have been directed for the protection of fissile materials. The reported incidents for diversion of nuclear materials have raised the problem of potential nuclear terrorism and also for countries of proliferation to take a short cut to the bomb. There is a need of rapid implementation of comprehensive, mutually reinforcing strategy to control the existing stockpiles of fissile material and to lower the future production and use of such materials. The illicit traffic of nuclear materials is a new threat, which requires new efforts, new approaches and coordination of services and institutions and even new legislation. The propositions of a model-procedure will allow better and quicker upgrade of developing countries capabilities for combating illicit nuclear trafficking. (author)

  9. Selection of materials in nuclear fuel: present and future

    International Nuclear Information System (INIS)

    Munoz-Reja, C.; Fuentes, L.; Garcia de la Infanta, J. M.; Munoz Sicilia, A.

    2013-01-01

    One of the main aspects of the nuclear fuel is the selection of materials for the components. The operating conditions of the fuel elements impose a major challenge to materials: high temperature, corrosive aqueous environment, high mechanical properties, long periods of time under these extreme conditions and what is the differentiating factor; the effect of irradiation. The materials are selected to fulfill these severe requirements and also to be able to control and to predict its behavior in the working conditions. Their development, in terms of composition and processing, is based on the continuous follow-up of the operation behavior. Many of these materials are specific of the nuclear industry, such as the uranium dioxide and the zirconium alloys. This article presents the selection and development of the nuclear fuel materials as a function of the services requirements. It also includes a view of the new nuclear fuels materials that are being raised after Fukushima accident. (Author)

  10. Study on CPPNM Interpretation of the Physical Protection Regulatory Aspects for International Transport of Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-jin; Yang, Seong-hyo; Hyung, Sang-chul [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    Nuclear energy has been regulated by various international agreements or treaties due to the potential dangers. In case of export or import of nuclear material, it is important to comply with international norms and domestic laws related to nonproliferation and physical protection of nuclear material. Because, if non-compliant, it can be taken nuclear sanctions from the international community, and thus the domestic nuclear activities can be under a negative impact. Recently, international interests in nuclear security have been increased, it has become very sensitive to whether or not to join, and to comply with international treaties during international transportation of nuclear materials. Currently it is not discussed yet how to present and interpret the relevant provisions in CPPNM. However, it is necessary to prepare for the dispute among the parties that we don't know when it happens.

  11. Estimation methods for special nuclear materials holdup

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Picard, R.R.

    1984-01-01

    The potential value of statistical models for the estimation of residual inventories of special nuclear materials was examined using holdup data from processing facilities and through controlled experiments. Although the measurement of hidden inventories of special nuclear materials in large facilities is a challenging task, reliable estimates of these inventories can be developed through a combination of good measurements and the use of statistical models. 7 references, 5 figures

  12. Nuclear and hazardous material perspective

    International Nuclear Information System (INIS)

    Sandquist, Gary M.; Kunze, Jay F.; Rogers, Vern C.

    2007-01-01

    The reemerging nuclear enterprise in the 21. century empowering the power industry and nuclear technology is still viewed with fear and concern by many of the public and many political leaders. Nuclear phobia is also exhibited by many nuclear professionals. The fears and concerns of these groups are complex and varied, but focus primarily on (1) management and disposal of radioactive waste [especially spent nuclear fuel and low level radioactive waste], (2) radiation exposures at any level, and (3) the threat nuclear terrorism. The root cause of all these concerns is the exaggerated risk perceived to human health from radiation exposure. These risks from radiation exposure are compounded by the universal threat of nuclear weapons and the disastrous consequences if these weapons or materials become available to terrorists or rogue nations. This paper addresses the bases and rationality for these fears and considers methods and options for mitigating these fears. Scientific evidence and actual data are provided. Radiation risks are compared to similar risks from common chemicals and familiar human activities that are routinely accepted. (authors)

  13. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  14. Decree no 2007-1557 from November 2, 2007, relative to basic nuclear facilities and to the nuclear safety control of nuclear materials transport; Decret no 2007-1557 du 2 novembre 2007 relatif aux installations nucleaires de base et au controle, en matiere de surete nucleaire, du transport de substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    This decree concerns the enforcement of articles 5, 17 and 36 of the law 2006-686 from June 13, 2006, relative to the transparency and safety in the nuclear domain. A consultative commission of basic nuclear facilities is established. The decree presents the general dispositions relative to basic nuclear facilities, the dispositions relative to their creation and operation, to their shutdown and dismantling. It precises the dispositions in the domain of public utility services, administrative procedures and sanctions. It stipulates also the particular dispositions relative to other facilities located in the vicinity of nuclear facilities, relative to the use of pressure systems, and relative to the transport of radioactive materials. (J.S.)

  15. Absolute nuclear material assay using count distribution (LAMBDA) space

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. The Application of materials attractiveness in a graded approach to nuclear materials security

    International Nuclear Information System (INIS)

    Ebbinghaus, B.; Bathke, C.; Dalton, D.; Murphy, J.

    2013-01-01

    The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that is necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED

  17. Application of Nuclear Forensics in Combating Illicit Trafficking of Nuclear and Other Radioactive Material

    International Nuclear Information System (INIS)

    2014-01-01

    As a scientific discipline, nuclear forensics poses formidable scientific challenges with regard to extracting information on the history, origin, movement and processing of nuclear and other radioactive material found to be out of regulatory control. Research into optimized techniques is being pursued by leading nuclear forensic research groups around the world. This research encompasses areas including evidence collection, analytical measurements for rapid and reliable categorization and characterization of nuclear and radioactive material, and interpretation using diverse data characteristics or the 'science of signatures' from throughout the nuclear fuel cycle. In this regard, the IAEA recently concluded the Coordinated Research Project (CRP) entitled Application of Nuclear Forensics in Illicit Trafficking of Nuclear and Other Radioactive Material. The CRP seeks to improve the ability of Member States to provide robust categorization and characterization of seized material, reliable techniques for the collection and preservation of nuclear forensic evidence, and the ability to interpret the results for law enforcement and other purposes. In accordance with broader IAEA objectives, the CRP provides a technical forum for participating institutes from Member States to exchange technical information to benefit national confidence building as well as to advance the international discipline of nuclear forensics. This CRP was initially planned in 2006, commenced in 2008 and was completed in 2012. Three research coordination meetings (RCM) were convened at the IAEA in Vienna to review progress. The leadership of the chairpersons was essential to establishing the technical viability of nuclear forensics at the IAEA and with the Member States

  18. IBA studies of helium mobility in nuclear materials revisited

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P., E-mail: patrick.trocellier@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Agarwal, S.; Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Vaubaillon, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); CEA, INSTN, UEPTN, F-91191 Gif-sur-Yvette (France); Leprêtre, F.; Serruys, Y. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-12-15

    The aim of this paper is to point out and to discuss some features extracted from the study of helium migration in nuclear materials performed during the last fifteen years using ion beam analysis (IBA) measurements. The first part of this paper is devoted to a brief description of the two main IBA methods used, i.e. deuteron induced nuclear reaction for {sup 3}He depth profiling and high-energy heavy-ion induced elastic recoil detection analysis for {sup 4}He measurement. In the second part, we provide an overview of the different studies carried out on model nuclear waste matrices and model nuclear reactor structure materials in order to illustrate and discuss specific results in terms of key influence parameters in relation with thermal or radiation activated migration of helium. Finally, we show that among the key parameters we have investigated as able to influence the height of the helium migration barrier, the following can be considered as pertinent: the experimental conditions used to introduce helium (implanted ion energy and implantation fluence), the grain size of the matrix, the lattice cell volume, the Young's modulus, the ionicity degree of the chemical bond between the transition metal atom M and the non-metal atom X, and the width of the band gap.

  19. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P.

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs

  20. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs.

  1. Special nuclear material simulation device

    Science.gov (United States)

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  2. Basic requirements of mechanical properties for nuclear pressure vessel materials in ASME-BPV code

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2011-01-01

    The four basic aspects of strengths, ductility, toughness and fatigue strengths can be summarized for overall mechanical properties requirements of materials for nuclear pressure-retaining vessels in ASME-BPV code. These mechanical property indexes involve in the factors of melting, manufacture, delivery conditions, check or recheck for mechanical properties and chemical compositions, etc. and relate to degradation and damage accumulation during the use of materials. This paper specifically accounts for the basic requirements and theoretic basis of mechanical properties for nuclear pressure vessel materials in ASME-BPV code and states the internal mutual relationships among the four aspects of mechanical properties. This paper focuses on putting forward at several problems on mechanical properties of materials that shall be concerned about during design and manufacture for nuclear pressure vessels according to ASME-BPV code. (author)

  3. International conference on security of material. Measures to prevent, intercept and respond to illicit uses of nuclear material and radioactive sources. Book of extended synopses

    International Nuclear Information System (INIS)

    2001-10-01

    The papers cover the subjects relating to the trafficking of highly enriched nuclear materials, less radioactive, radioactive materials, radiations sources, prevention of crime, capabilities of preventing smuggling, radiation detection devices that are or should be applied on borders. Different aspects of physical protection, security and safety of nuclear materials in a number of countries are discussed. A number of papers are devoted to detectors, and measuring methods

  4. International conference on security of material. Measures to prevent, intercept and respond to illicit uses of nuclear material and radioactive sources. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    The papers cover the subjects relating to the trafficking of highly enriched nuclear materials, less radioactive, radioactive materials, radiations sources, prevention of crime, capabilities of preventing smuggling, radiation detection devices that are or should be applied on borders. Different aspects of physical protection, security and safety of nuclear materials in a number of countries are discussed. A number of papers are devoted to detectors, and measuring methods.

  5. IAEA inspectors complete verification of nuclear material in Iraq

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: At the request of the Government of Iraq and pursuant to the NPT Safeguards Agreement with Iraq, a team of IAEA safeguards inspectors has completed the annual Physical Inventory Verification of declared nuclear material in Iraq, and is returning to Vienna. The material - natural or low-enriched uranium - is not sensitive from a proliferation perspective and is consolidated at a storage facility near the Tuwaitha complex, south of Baghdad. This inspection was conducted with the logistical and security assistance of the Multinational Force and the Office of the UN Security Coordinator. Inspections such as this are required by safeguards agreements with every non-nuclear-weapon state party to the NPT that has declared holdings of nuclear material, to verify the correctness of the declaration, and that material has not been diverted to any undeclared activity. Such inspections have been performed in Iraq on a continuing basis. The most recent took place in June 2003, following reports of looting of nuclear material at the Tuwaitha complex; IAEA inspectors recovered, repackaged and resealed all but a minute amount of material. NPT safeguards inspections are limited in scope and coverage as compared to the verification activities carried out in 1991-98 and 2002-03 by the IAEA under Security Council resolution 687 and related resolutions. 'This week's mission was a good first step,' IAEA Director General Mohamed ElBaradei said. 'Now we hope to be in a position to complete the mandate entrusted to us by the Security Council, to enable the Council over time to remove all sanctions and restrictions imposed on Iraq - so that Iraq's rights as a full-fledged member of the international community can be restored.' The removal of remaining sanctions is dependent on completion of the verification process by the IAEA and the UN Monitoring, Verification and Inspection Commission (UNMOVIC). It should be noted that IAEA technical assistance to Iraq has been resumed over

  6. Order for execution of the law concerning regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1987-01-01

    Chapeter 1 specifies regulations concerning business management for refining and processing, which cover application for designation of refining operation, application for permission for processing operation, and approval of personnel responsible for handling nuclear fuel. Chapter 2 specifies regulations concerning construction and operation of nuclear reactors, which cover application for construction of nuclear reactors, reactors in a research and development stage, application for permission concerning nuclear reactors mounted on foreign nuclear powered ships, application for permission for alteration concerning construction of nuclear reactors, application for permission for alteration concerning nuclear reactors mounted on foreign nuclear powered ships, nuclear reactor facilities to be subjected to regular inspection, nuclear reactor for which submission of operation plan is not required, and application for permission for transfer of nuclear reactor. Chapter 2 also specifies regulations concerning business management for reprocessing and waste disposal. Chapter 3 stipulates regulations concerning use of nuclear fuel substances, nuclear material substances and other substances covered by international regulations, which include rules for application for permission for use of nuclear fuel substances, etc. Supplementary provisions are provided in Chapter 4. (Nogami, K.)

  7. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1962-01-01

    The first session of the symposium discussed in general the thermodynamic properties of actinides, including thorium, uranium and Plutonium which provide reactor fuel. The second session was devoted to applications of thermodynamic theory to the study of nuclear materials, while the experimental techniques for the determination of thermodynamic data were examined at the next session. The thermodynamic properties of alloys were considered at a separate session, and another session was concerned with solids other than alloys. Vaporization processes, which are of special interest in the development of high-temperature reactors, were discussed at a separate session. The discussions on the methods of developing the data and ascertaining their accuracy were especially useful in highlighting the importance of determining whether any given data are reliable before they can be put to practical application. Many alloys and refractory materials (i. e. materials which evaporate only at very high temperatures) are of great importance in nuclear technology, and some of these substances are extremely complex in their chemical composition. For example, until recently the phase composition of the oxides of thorium, uranium and plutonium had been only very imperfectly understood, and the same was true of the carbides of these elements. Recent developments in experimental techniques have made it possible to investigate the phase composition of these complex materials as well as the chemical species of these materials in the gaseous phase. Recent developments in measuring techniques, such as fluorine bomb calorimetry and Knudsen effusion technique, have greatly increased the accuracy of thermodynamic data

  8. Identification of High Confidence Nuclear Forensics Signatures. Results of a Coordinated Research Project and Related Research

    International Nuclear Information System (INIS)

    2017-08-01

    The results of a Coordinated Research Project and related research on the identification of high confidence nuclear forensic isotopic, chemical and physical data characteristics, or signatures, provides information on signatures that can help identify the origin and history of nuclear and other radioactive material encountered out of regulatory control. This research report compiles findings from investigations of materials obtained from throughout the nuclear fuel cycle to include radioactive sources. The report further provides recent results used to identify, analyse in the laboratory, predict and interpret these signatures relative to the requirements of a nuclear forensics examination. The report describes some of the controls on the incorporation and persistence of these signatures in these materials as well as their potential use in a national system of identification to include a national nuclear forensics library.

  9. Atomistic Simulations of Small-scale Materials Tests of Nuclear Materials

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2012-01-01

    Degradation of materials properties under neutron irradiation is one of the key issues affecting the lifetime of nuclear reactors. Evaluating the property changes of materials due to irradiations and understanding the role of microstructural changes on mechanical properties are required for ensuring reliable and safe operation of a nuclear reactor. However, high dose of neuron irradiation capabilities are rather limited and it is difficult to discriminate various factors affecting the property changes of materials. Ion beam irradiation can be used to investigate radiation damage to materials in a controlled way, but has the main limitation of small penetration depth in the length scale of micro meters. Over the past decade, the interest in the investigations of size-dependent mechanical properties has promoted the development of various small-scale materials tests, e.g. nanoindentation and micro/nano-pillar compression tests. Small-scale materials tests can address the issue of the limitation of small penetration depth of ion irradiation. In this paper, we present small-scale materials tests (experiments and simulation) which are applied to study the size and irradiation effects on mechanical properties. We have performed molecular dynamics simulations of nanoindentation and nanopillar compression tests. These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials

  10. Materials for Nuclear Plants From Safe Design to Residual Life Assessments

    CERN Document Server

    Hoffelner, Wolfgang

    2013-01-01

    The clamor for non-carbon dioxide emitting energy production has directly  impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments  provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts.   Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, material...

  11. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1963-01-01

    The last two decades have witnessed an enormous development in chemical analysis. The rapid progress of nuclear energy, of solid-state physics and of other fields of modern industry has extended the concept of purity to limits previously unthought of, and to reach the new dimensions of these extreme demands, entirely new techniques have been invented and applied and old ones have been refined. Recognizing these facts, the International Atomic Energy Agency convened a Panel on Analytical Chemistry of Nuclear Materials to discuss the general problems facing the analytical chemist engaged in nuclear energy development, particularly in newly developing centre and countries, to analyse the represent situation and to advise as to the directions in which research and development appear to be most necessary. The Panel also discussed the analytical programme of the Agency's laboratory at Seibersdorf, where the Agency has already started a programme of international comparison of analytical methods which may lead to the establishment of international standards for many materials of interest. Refs and tabs

  12. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    International Nuclear Information System (INIS)

    Jesse Schreiber

    2008-01-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America's nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in 'green' technology

  13. Nuclear material control in the United States

    International Nuclear Information System (INIS)

    Jaeger, C.; Waddoups, I.

    1995-01-01

    The Department of Energy has defined a safeguards system to be an integrated system of physical protection, material accounting and material control subsystems designed to deter, prevent, detect, and respond to unauthorized possession, use, or sabotage of SNM. In practice, safeguards involve the development and application of techniques and procedures dealing with the establishment and continued maintenance of a system of activities. The system must also include administrative controls and surveillance to assure that the procedures and techniques of the system are effective and are being carried out. The control of nuclear material is critical to the safeguarding of nuclear materials within the United States. The U.S. Department of Energy includes as part of material control four functional performance areas. They include access controls, material surveillance, material containment and detection/assessment. This paper will address not only these areas but also the relationship between material control and other safeguards and security functions

  14. System to detect nuclear materials by active neutron method

    International Nuclear Information System (INIS)

    Koroev, M.; Korolev, Yu.; Lopatin, Yu.; Filonov, V.

    1999-01-01

    The report presents the results of the development of the system to detect nuclear materials by active neutron method measuring delayed neutrons. As the neutron source the neutron generator was used. The neutron generator was controlled by the system. The detectors were developed on the base of the helium-3 counters. Each detector consist of 6 counters. Using a number of such detectors it is possible to verify materials stored in different geometry. There is an spectrometric scintillator detector in the system which gives an additional functional ability to the system. The system could be used to estimate the nuclear materials in waste, to detect the unauthorized transfer of the nuclear materials, to estimate the material in tubes [ru

  15. Measurement control program for nuclear material accounting

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Merrill, J.A.; Brown, W.B.

    1980-06-01

    A measurement control program for nuclear material accounting monitors and controls the quality of the measurments of special nuclear material that are involved in material balances. The quality is monitored by collecting data from which the current precision and accuracy of measurements can be evaluated. The quality is controlled by evaluations, reviews, and other administrative measures for control of selection or design of facilities, equipment and measurement methods and the training and qualification of personnel who perform SNM measurements. This report describes the most important elements of a program by which management can monitor and control measurement quality

  16. ISINN-2. Neutron spectroscopy, nuclear structure and related topics

    International Nuclear Information System (INIS)

    1994-01-01

    The proceedings contain the materials presented at the Second International Seminar on Neutron-Nucleus Interactions (ISINN-2) dealing with the problems of neutron spectroscopy, nuclear structure and related topics. The Seminar took place in Dubna on April 26-28, 1994. Over 120 scientists from Belgium, Bulgaria, Czech Republic, Germany, Holland, Italy, Japan, Latvia, Mexico, Poland, Slovakia, Slovenia, Ukraine, US and about 10 Russian research institutes took part in the Seminar. The main problems discussed are the following: P-odd and P-even angular correlation and T-reversal invariance in neutron reactions, nuclear structure investigations by neutron capture, the mechanism of neutron reactions, nuclear fission processes, as well as neutron data for nuclear astrophysics

  17. Consequences of Illicit Trafficking of Nuclear or Other Radioactive Materials

    International Nuclear Information System (INIS)

    Moore, G.M.

    2010-01-01

    Explosion of a nuclear yield device is probably the worst consequence of Illicit Trafficking of nuclear or other radioactive materials.The nuclear yield device might be a stolen nuclear weapon, or an improvised nuclear device. An improvised nuclear device requires nuclear material design, and construction ability. Use of a radioactive dispersal device probably would not result in large numbers of casualties.However economic losses can be enormous. Non-Technical effects of nuclear trafficking (e.g. public panic, work disruption, etc.) and political and psychological consequences can far exceed technical consequences

  18. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Any person who reports the transport of nuclear fuel materials shall file four copies of a notification according to the form attached to the public safety commission of the prefecture in charge of the dispatching place. When the transportation extends over the area in charge of another public safety commission, the commission which has received the notice shall report without delay date and route of the transport, kind and quantity of nuclear fuel materials and other necessary matters to the commission concerned and hear from the latter opinions on the items informed. The designation by the ordinance includes speed of the vehicle loaded with nuclear fuel materials, disposition of an accompanying car, arrangement of the line of the loaded vehicle and accompanying and other escorting cars, location of the parking, place of unloading and temporary storage, etc. Reports concerning troubles and measures taken shall be filed in ten days to the public safety commission which has received the notification, when accidents occur on the way, such as: theft or loss of nuclear fuel materials; traffic accident; irregular leaking of nuclear fuel materials and personal trouble by the transport. (Okada, K.)

  19. The changing role of nuclear materials accounting

    International Nuclear Information System (INIS)

    Gibbs, P.W.

    1995-01-01

    Nuclear materials accounting and accounting systems at what have been DOE Production sites are evolving into management decision support tools. As the sites are moving into the mode of making decisions on how to disposition complex and varied nuclear material holdings, the need for complete and many times different information has never been greater. The artificial boundaries that have historically been established between what belongs in the classic material control and accountability (MC and A) records versus what goes into the financial, radiological control, waste, or decommissioning and decontamination records are being challenged. In addition, the tools historically used to put material into different categories such as scrap codes, composition codes, etc. have been found to be inadequate for the information needs of today. In order to be cost effective and even, more importantly to effectively manage -our inventories, the new information systems the authors design have to have the flexibility to serve many needs. In addition, those tasked with the responsibility of managing the inventories must also expand beyond the same artificial boundaries. This paper addresses some of the things occurring at the Savannah River Site to support the changing role of nuclear materials accounting

  20. Analysis of difficulties accounting and evaluating nuclear material of PWR fuel plant

    International Nuclear Information System (INIS)

    Zhang Min; Jue Ji; Liu Tianshu

    2013-01-01

    Background: Nuclear materials accountancy must be developed for nuclear facilities, which is required by regulatory in China. Currently, there are some unresolved problems for nuclear materials accountancy of bulk nuclear facilities. Purpose: The retention values and measurement errors are analyzed in nuclear materials accountancy of Power Water Reactor (PWR) fuel plant to meet the regulatory requirements. Methods: On the basis of nuclear material accounting and evaluation data of PWR fuel plant, a deep analysis research including ratio among random error variance, long-term systematic error variance, short-term systematic error variance and total error involving Material Unaccounted For (MUF) evaluation is developed by the retention value measure in equipment and pipeline. Results: In the equipment pipeline, the holdup estimation error and its total proportion are not more than 5% and 1.5%, respectively. And the holdup estimation can be regraded as a constant in the PWR nuclear material accountancy. Random error variance, long-term systematic error variance, short-term systematic error variance of overall measurement, and analytical and sampling methods are also obtained. A valuable reference is provided for nuclear material accountancy. Conclusion: In nuclear material accountancy, the retention value can be considered as a constant. The long-term systematic error is a main factor in all errors, especially in overall measurement error and sampling error: The long-term systematic errors of overall measurement and sampling are considered important in the PWR nuclear material accountancy. The proposals and measures are applied to the nuclear materials accountancy of PWR fuel plant, and the capacity of nuclear materials accountancy is improved. (authors)

  1. Test and evaluation of computerized nuclear material accounting methods. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    In accordance with the definition of a Material Balance Area (MBA) as a well-defined geographical area involving an Integral operation, the building housing the BFS-1 and BFS-1 critical facilities is considered to consist of one MBA. The BFS materials are in the form of small disks clad in stainless steel and each disk with nuclear material has its own serial number. Fissile material disks in the BFS MBA can be located at three key monitoring points: BFS-1 facility, BFS-2 facility and main storage of BFS fissile materials (storage 1). When used in the BFS-1 or BFS-2 critical facilities, the fissile material disks are loaded in tubes (fuel rods) forming critical assembly cores. The following specific features of the BFS MBA should be taken into account for the purpose of computerized accounting of nuclear material: (1) very large number of nuclear material items (about 70,000 fissile material items); and (2) periodically very intensive shuffling of nuclear material items. Requirements for the computerized system are determined by basic objectives of nuclear material accounting: (1) providing accurate information on the identity and location of all items in the BFS material balance area; (2) providing accurate information on location and identity of tamper-indicating devices; (3) tracking nuclear material inventories; (4) issuing periodic reports; (5) assisting with the detection of material gains or losses; (6) providing a history of nuclear material transactions; (7) preventing unauthorized access to the system and data falsification. In August 1995, the prototype computerized accounting system was installed on the BFS facility for trial operation. Information on two nuclear material types was entered into the data base: weapon-grade plutonium metal and 36% enriched uranium dioxide. The total number of the weapon-grade plutonium disks is 12,690 and the total number of the uranium dioxide disks is 1,700

  2. Evaluating the Aspect of Nuclear Material in Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Shunsuke; Pickett, Susan; Oda, Takuji; Choi, Jor-Shan; Kuno, Yusuke; Takana, Satoru [Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8685 (Japan); Nagasaki, Shinya [Nuclear Professional School, The University of Tokyo (Japan)

    2009-06-15

    The increasing number of countries that wish to introduce nuclear power plants raises attention to proliferation resistance in nuclear power plants, and nuclear fuel cycle facilities. In order to achieve adequate proliferation resistance, it is important to evaluate it and to construct effective international institutional frameworks as well as technologies involving high level of proliferation resistance. Although some methods have been proposed for evaluation of the proliferation resistance, their validities have not been investigated in detail. In the present paper, therefore, we compare some of the proposed methodologies. It is essential to detect the abuse or diversion of nuclear material before the nuclear explosive device can be manufactured in order to prevent proliferation. The time needed for the detection of material primary depends on the safeguards that the country applies, and the time needed for fabrication mainly depends on the attributes of the nuclear material. Hence, we divided the proliferation resistance into two parts: the level of safeguards and the material. For examination of evaluation methods such as the one proposed by Charlton [1] or the figure of merit (FOM) [2], sensitivity analysis was performed on weighting factors and scenarios. The validity and characteristics of each method were discussed, focusing on the applicability of each method to the assessment of multi-national approaches such as GNEP. [1] W. S. Charlton, R. L. LeBouf, C. Gariazzo, D. G. Ford, C. Beard, S. Landeberger, M. Whitaker, 'Proliferation resistance assessment methodology for nuclear fuel cycles', Nuclear Technology, 157, 1 (2007). [2] C.G. Bathke et al, 'An assessment of the proliferation resistance of materials in advanced nuclear fuel cycles', 8. International Conference on Facility Operations (2008). (authors)

  3. Control and Management of Small Quantity Nuclear Material (SQNM) on Safeguards

    International Nuclear Information System (INIS)

    Park, Jae Hwan; Shin, Byung Woo; Park, Jae Beom

    2009-01-01

    Small Quantity Nuclear Material (SQNM) is defined as the nuclear material that is below the amount approved in atomic energy act. SQNM generally lists depleted uranium (DU) used as a catalyst or shielding material in exposure devices in industries. The SQNM users have a duty to report information on possessing and using SQNM regularly to the government. All nuclear materials must be included in IAEA reporting lists according to safeguards agreement and additional protocol regardless of amount. However, it is difficult to investigate the status of nuclear material possessed in industries because SQNM is excepted regulation item list in atomic energy act. Most SQNM user industries are small companies so they have some problems like the loss of nuclear material after bankruptcy. Even though the damage of radiation leakage is very low, loss or careless management of nuclear material causes confusion. Thus, developing a control and management system for SQNM is essential. This paper discusses the present condition and prospect of control and management SQNM in Korea

  4. Some issues on the Law for the Regulations of Nuclear Source Material, Nuclear Fuel Material and Reactors Amendment after JCO criticality accident

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    2001-01-01

    As the Amendment of the Law for the Regulation of Nuclear Material, Nuclear Fuel Material and Reactors on an opportunity of the JCO criticality accident can be almost evaluated at a viewpoint of upgrading on effectiveness of safety regulation, it is thought to remain a large problem to rely on only enforcement of regulation due to amendment of the Law at future accident. In future, it can be also said to be important subjects to further expand a philosophy on the regulation (material regulation) focussed to hazards of nuclear material itself, not only to secure effectiveness on the multi-complementary safety regulation due to the administrative agency and the Nuclear Safety Commission but also to prepare a mechanism reflexible of a new information to the safety regulation, and to prepare a mechanism to assist adequate business execution and so forth of enterprises. (G.K.)

  5. A system design for the nuclear material accounting reports control based on the intra-net

    International Nuclear Information System (INIS)

    Jeon, I.; Park, S. J.; Min, K. S.

    2003-01-01

    The 34 nuclear facilities, including the nuclear power plants, were on operating in Korea and the Technology Center for Nuclear Control(TCNC) has been submit the nuclear material accounting reports to the government and IAEA. At the start point of this work, all reports were controlled via manually and at now, they were controlled based on the client/server system. The fast progress of the computer and internet communication changes the environment of computing from disk operating system to web based system using internet. So, a new system to access the safeguards information and nuclear material accounting system more convenient was needed. In this thesis, a safeguards information control system including the nuclear material accounting reports at the state level based on the web was designed. The oracle RDBMS (Relational Data Base Management System) was adopted for data base management. And all users can access this program via inter-net using their own computer

  6. Changing relations between civil and military nuclear technology

    International Nuclear Information System (INIS)

    Walker, W.B.

    1999-01-01

    Nuclear energy has inhabited two distinct environments since its inception - the environments of nuclear deterrence and of electricity supply. The relationships between the technologies and institutions inhabiting these environments have been both intimate and troublesome. As both nuclear weapons and nuclear power rely upon the fission energy of uranium and plutonium, and as both generate harmful by-products, they are bound to have technologies, materials and liabilities in common. However, nuclear deterrence belongs in the realm of high politics, whilst electricity production is part of the commercial world rooted in civil society. Establishing a political, industrial and regulatory framework that allows nuclear activities to develop safely and acceptably in both domains has been a difficult and contentious task. In this paper I wish to make some observations about the relations between military and civil nuclear technology at the end of this century, and about their likely character in years ahead. My main contention is that developments in the military sector and in international security will remain influential, but that their consequences will be of a different kind than in the past. (orig.)

  7. The nuclear materials control system: Safeguards - circa 1957

    International Nuclear Information System (INIS)

    Thomas, C.C. Jr.

    1992-01-01

    In the late 1950s, the Westinghouse Electric Corporation undertook a nuclear materials control study for the Division of International Affairs of the US Atomic Energy Commission (AEC). The objective of the study was to develop a Nuclear Materials Control System (NMCS) that could be used under the US bilateral agreements or by the International Atomic Energy Agency. Phase I was a system study to determine the requirements for an NMCS for an assumed nuclear fuel complex. This paper summarizes aspects of Phase I studies addressing facility types, measurement points, and instrumentation needs and Phase II studies covering chemistry/chemical engineering, nuclear, special devices, and security devices and techniques. 1 fig

  8. Central eastern Europe approach to the security over nuclear materials

    International Nuclear Information System (INIS)

    Smagala, G.

    2002-01-01

    Full text: This paper presents an overview of the national approaches to physical protection of nuclear materials in Central Eastern Europe (CEE), with an emphasis on Poland. Soviet influence in the past led to inadequate safety culture in nuclear activities and insufficient security of nuclear materials and facilities in the region. In the centralized economies all aspects of nuclear activities, including ownership of the nuclear facilities, were the responsibility of the state with no clear separation between regulating and promoting functions. During the last decade a significant progress has been made in the region to clean up the legacy of the past and to improve practices in physical protection of nuclear materials. The countries of Central Eastern Europe have had many similar deficiencies in nuclear field and problems to overcome, but cannot be viewed as a uniform block. There are local variations within the region in a size of nuclear activities, formulated respective regulations and adopted measures to secure nuclear materials and facilities. Nevertheless, all twelve nations, with nuclear reactors and without nuclear facilities, have joined the convention on the physical protection of nuclear material and most of them declare that they have followed the IAEA recommendations INFCIRC/225/Rev.4 to elaborate and implement their physical protection systems of nuclear materials and facilities. The largest request for an international advisory mission (IPPAS) to review states' physical protection systems and to address needs for improvement was received from the countries of Central Eastern Europe. Poland belongs to the beneficiaries where the IPPAS mission and later follow-up consultations resulted in physical protection upgrade of the research reactor under the IAEA/US/UK technical assistance project. A powerful incentive to the progress made in a number of CEE countries was the goal of accession to the European Union. The physical protection of nuclear

  9. The Application of materials attractiveness in a graded approach to nuclear materials security

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Bathke, C. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Dalton, D.; Murphy, J. [National Nuclear Security Administration, US Department of Energy, 1000 Independent Ave., S. W. Washington, DC 20585 (United States)

    2013-07-01

    The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that is necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED.

  10. Development of stainless steels for nuclear power plant - Advanced nuclear materials development -

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Ryu, Woo Seog; Chi, Se Hwan; Lee, Bong Sang; Oh, Yong Jun; Byun, Thak Sang; Oh, Jong Myung

    1994-07-01

    This report reviews the status of R and D and the material specifications of nuclear components in order to develop the stainless steels for nuclear applications, and the technology of computer-assisted alloy design is developed to establish the thermodynamic data of Fe-Cr-Ni-Mo-Si-C-N system which is the basic stainless steel systems. High strength and corrosion resistant stainless steels, 316LN and super clean 347, are developed, and the manufacturing processes and heat treatment conditions are determined. In addition, a martensitic steel is produced as a model alloy for turbine blade, and characterized. The material properties showed a good performance for nuclear applications. (Author)

  11. Accounting for and control of nuclear material at the Central Institute of Nuclear Research, Rossendorf

    International Nuclear Information System (INIS)

    Heidel, S.; Rossbander, W.; Helming, M.

    1983-01-01

    A survey is given of the system of accounting for and control of nuclear material at the Central Institute for Nuclear Research, Rossendorf. It includes 3 material balance areas. Control is implemented at both the institute and the MBA levels on the basis of concepts which are coordinated with the national control authority of the IAEA. The system applied enables national and international nuclear material control to be carried out effectively and economically at a minimum of interference with operational procedures. (author)

  12. New materials options for nuclear systems

    International Nuclear Information System (INIS)

    Jones, R.H.; Garner, F.A.; Bruemmer, S.M.; Gelles, D.S.

    1989-01-01

    Development of new materials for nuclear reactor systems is continuing to produce options for improved reactor designs. Materials with reduced environment-induced crack growth is a key materials issue for the light water reactor (LWR) industry while the development of low activation ferritic, austenitic and vanadium alloys has been an active area for materials development for fusion reactor structural applications. Development of advanced materials such as metal matrix and ceramic matrix composites for reactor systems have received a limited amount of attention. (author)

  13. Some technical aspects of the nuclear material accounting and control at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Miller, O.A.; Babaev, N.S.; Gryazev, V.M.; Gadzhiev, G.I.; Gabeskiriya, V.Ya.

    1977-01-01

    The possibilities of nuclear material accounting and control are discussed at nuclear facilities of fuel cycle (WWER-type reactor, fuel fabrication plant, reprocessing plant and uranium enrichment facility) and zero energy fast reactor facility. It is shown that for nuclear material control the main method is the accounting with the application isotopic correlations at the reprocessing plant and enrichment facility. Possibilities and limitations of the application of destructive and non-destructive methods are discussed for nuclear material determinations at fuel facilities and their role in the accounting and safeguards systems as well as possibilities of the application of neutron method at a zero energy fast reactor facility [ru

  14. Basic research for nuclear energy. y Study on the nuclear materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, I H; Lee, H S; Jeong, Y H; Sung, K W; Han, J H; Lee, J T; Lee, H K; Kim, S J; Kang, H S; An, D H; Kim, K R; Park, S D; Han, C H; Jung, M K; Oh, Y J; Kim, K H; Kim, S H; Back, J H; Kim, C H; Lim, K S; Kim, Y Y; Na, J W; Ku, J H; Lee, D H

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs.

  15. Basic research for nuclear energy. y Study on the nuclear materials technology

    International Nuclear Information System (INIS)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs

  16. Safeguarding nuclear weapon: Usable materials in Russia

    International Nuclear Information System (INIS)

    Cochran, T.

    1998-01-01

    Both the United States and Russia are retaining as strategic reserves more plutonium and HEU for potential reuse as weapons, than is legitimately needed. Both have engaged in discussions and have programs in various stages of development to dispose of excess plutonium and HEU. These fissile material disposition programs will take decades to complete. In the interim there will be, as there is now, hundreds of tons of separated weapon-usable fissile material stored in tens of thousands of transportable canisters, each containing from a few to several tons of kgs of weapon-usable fissile material. This material must be secured against theft and unauthorized use. To have high confidence that the material is secure, one must establish criteria against which the adequacy of the protective systems can be judged. For example, one finds such criteria in US Nuclear Regulatory Commission (USNRC) regulations for the protection of special nuclear materials

  17. Control and accountancy of nuclear materials in a uranium enrichment plant

    International Nuclear Information System (INIS)

    Hurt, N.H.

    1985-01-01

    A nuclear material control and accountancy system has been developed by Goodyear Atomic Corporation to meet safeguards and security requirements. It comprises three major elements: physical security, nuclear material control, and nuclear material accounting. This safeguards system is called Dynamic Material Control and Accountancy System (DYMCAS). The system approaches real-time computer control on a transaction-by-transaction basis

  18. Guidance and considerations for implementation of INFCIRC/225/Rev.3, the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1997-09-01

    The Physical Protection of Nuclear Material, INFCIRC/225/Rev.3, provides recommendations for the physical protection of nuclear material against theft in use, storage and transport, whether national or international and whether peaceful or military, and contains provisions relating to the sabotage of nuclear material or facilities. The recommendations contained in INFCIRC/225/Rev.3 detail the elements that should be included in a State's system of physical protection. It also recognizes the adverse health and safety consequences arising from the theft of nuclear material and the sabotage of nuclear material or facilities. Most industrial and developing countries use these recommendations to some extent in the establishment and operation of their physical protection systems. Although INFCIRC/225/Rev.3 provides recommendations for protecting materials and facilities from theft or sabotage, it does not provide in-depth details for these recommendations. In June 1996, the IAEA convened a consultants meeting to consider this matter. This report is the result of continuing discussions and drafts over a period of nine months. The intent of this guidance is to provide a broader basis for relevant State organizations to prescribe appropriate requirements for the use of nuclear materials which are compatible with accepted international practice

  19. Accounting systems for special nuclear material control. Technical report

    International Nuclear Information System (INIS)

    Korstad, P.A.

    1980-05-01

    Nuclear material accounting systems were examined and compared to financial double-entry accounting systems. Effective nuclear material accounting systems have been designed using the principles of double-entry financial accounting. The modified double-entry systems presently employed are acceptable if they provide adequate control over the recording and summarizing of transactions. Strong internal controls, based on principles of financial accounting, can help protect nuclear materials and produce accurate, reliable accounting data. An electronic data processing system can more accurately maintain large volumes of data and provide management with more current, reliable information

  20. An accountancy system for nuclear materials control in research centres

    International Nuclear Information System (INIS)

    Buttler, R.; Bueker, H.; Vallee, J.

    1979-01-01

    The Nuclear Accountancy and Control System (NACS) was developed at KFA Juelich in accordance with the requirements of the Non-Proliferation Treaty. The main features are (1) recording of nuclear material in inventory items. These are combined to form batches wherever suitable; (2) extrapolation of accounting data as a replacement for detailed measurement of inventory items data. Recording and control of nuclear material are carried out on two levels with access to a common data bank. The lower level deals with nuclear materials handling plus internal management while on the upper level there is a central control point which is responsible for nuclear safeguarding within the entire research centre. By keeping the organizational and technical infrastructure it was possible to develop a system which is both economical and operator-oriented. In this system the emphasis of nuclear safeguarding is placed on the acquisition of the nuclear material inventory. As much consideration has been given to the interests of the various operational levels and organizational units as to internal and national regulations. Since it is part of the safeguarding and control system, access to the NACS must be restricted to a limited number of users only. Furthermore, it must include facilities for manual control in the form of records. Authorization for access must correspond with the various tasks of different user groups. All necessary data are acquired decentrally in the organizational units and entered via a terminal. It is available to the user groups on both levels through a central data bank. To meet all requirements, the NACS has been designed as an integrated, computer-assisted information system for the automated processing of extensive and multi-level nuclear materials data. As part of the preventive measures entailed with nuclear safeguarding, the accountancy system enables the operator of a nuclear plant to furnish proof of non-diversion of nuclear material. (author)

  1. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    Energy Technology Data Exchange (ETDEWEB)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  2. Concerning enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material

    International Nuclear Information System (INIS)

    1988-01-01

    The Atomic Safety Commission of Japan, after examining a report submitted by the Science and Technology Agency concerning the enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material, has approved the plan given in the report. Thus, laws and regulations concerning procedures for application for waste burying business, technical standards for implementation of waste burying operation, and measures to be taken for security should be established to ensure the following. Matters to be described in the application for the approval of such business and materials to be attached to the application should be stipulated. Technical standards concerning inspection of waste burying operation should be stipulated. Measures to be taken for the security of waste burying facilities and security concerning the transportation and disposal of nuclear fuel material should be stipulated. Matters to be specified in the security rules should be stipulated. Matters to be recorded by waste burying business operators, measures to be taken to overcome dangers and matters to be reported to the Science and Technology Agency should be stipulated. (Nogami, K.)

  3. Securing nuclear warheads and materials: seven steps for immediate action

    International Nuclear Information System (INIS)

    Bunn, M.

    2002-01-01

    Full text: In the last decade, substantial progress has been made in improving security and accounting for nuclear weapons and weapons-usable nuclear material worldwide, both by states' own domestic actions and through international cooperation. Thousands of nuclear warheads and hundreds of tons of nuclear material are demonstrably more secure than they were before, and through programs such as the U.S.-Russian Highly Enriched Uranium (He) Purchase Agreement, enough potentially vulnerable bomb material for thousands of nuclear weapons has been verifiably destroyed. Since the attacks of September 11, 2001, the international community has attempted to expand and accelerate these efforts. But much more remains to be done. This paper summarizes a recent report from Harvard University, which recommended seven further steps for immediate action in U.S.-Russian and international cooperation. It covers two recommendations that may be of particular interest to this audience in detail. The first is a proposed program to remove nuclear material entirely from many of the most vulnerable sites around the world (by offering incentives targeted to the needs of each facility to give up the material at that site). The second is a suggestion that participants in the global partnership against the spread of weapons and materials of mass destruction announced at the June 2002 Group of Eight summit make a political commitment to meet stringent security standards for nuclear materials on their territories, and urge (and assist) other states to do likewise. (author)

  4. The declaration regime: An efficient tool to improve control and protection of nuclear materials in France

    International Nuclear Information System (INIS)

    Pillette-Cousin, L.

    2001-01-01

    Full text: The French Government set up a national safeguards system under the authority of the Ministry for Industry to control nuclear materials within national boundaries and to ensure physical protection for nuclear materials, even for the small quantities held by users in industrial, medical and research areas. The main nuclear materials detained by small owners are depleted uranium and thorium. These materials are present in manufactured equipment (radiation shielding in industrial gammagraphy and radiotherapy, collimation devices and other accessories) which are used or unused, which may be damaged or left as scraps. The French protection and control system of nuclear materials is an original system based on detailed and comprehensive regulations, taking into account in a specific way the small users of nuclear materials. The decree no. 81-512 of 12 May 1981 establishes three different regimes: licensing, declaration and exemption, according to the nature and quantity of nuclear materials involved. Typically, the declaration regime applies to quantities of depleted uranium or thorium, greater than 1 kg and lower than 500 kg. The Order of 14 March 1984 sets the requirements related to the control and physical protection of nuclear materials in the frame of the declaration regime. A declaration must be established every year by the operator and sent to the IPSN, acting as technical support body of the national authority. This declaration provides the stock of all nuclear materials held by the operator and stock variations occurred during the previous year, including the identification of senders and receivers. Before fulfilling its annual declaration, the operator must carry out a physical inventory of all nuclear material, both used and unused. The declaration also describes the main features concerning facility layout related to surveillance and physical protection of materials. With respect to physical protection requirements, nuclear materials should be

  5. Fugitive binder for nuclear fuel materials

    International Nuclear Information System (INIS)

    Gallivan, T.J.

    1977-01-01

    A process for fabricating a body of a nuclear fuel material has the steps of admixing the nuclear fuel material in powder form wih a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions, forming the resulting mixture into a green body such as by die pressing, heating the green body to decompose substantially all of the binder into gases, further heating the body to produce a sintered body, and cooling the sintered body in a controlled atmosphere. Preferred binders used in the practice of this invention include ammonium bicarbonate, ammonium carbonate, ammonium bicarbonate carbamate, ammonium sesquicarbonate, ammonium carbamate and mixtures thereof. This invention includes a composition of matter in the form of a compacted structure suitable for sintering comprising a mixture of a nuclear fuel material and a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions. 9 claims, 4 figures

  6. Experience of air transport of nuclear fuel material in Japan

    International Nuclear Information System (INIS)

    Yamashita, T.; Toguri, D.; Kawasaki, M.

    2004-01-01

    Certified Reference Materials (hereafter called as to CRMs), which are indispensable for Quality Assurance and Material Accountability in nuclear fuel plants, are being provided by overseas suppliers to Japanese nuclear entities as Type A package (non-fissile) through air transport. However, after the criticality accident at JCO in Japan, special law defining nuclear disaster countermeasures (hereafter called as to the LAW) has been newly enforced in June 2000. Thereafter, nuclear fuel materials must meet not only to the existing transport regulations but also to the LAW for its transport

  7. Global risks due to illicit trafficking of nuclear and radiological materials

    International Nuclear Information System (INIS)

    Barakat, M. F.

    2012-01-01

    The global widespread applications of of the peaceful uses of atomic energy resulted in the production and accumulation of huge amounts of dangerous nuclear wastes and nuclear materials, the greater part of which is left either unattended or insufficiently protected. In the mean time, many terrorist groups appeared in the international arena aiming at fighting against all forms of pressure, discrimination or injustice in the international relations among developed and developing countries particularly in politically unstable regions of the world. Unfortunately, these terrorist groups were inclined to adopt the use of nuclear or radiological rather crude weapons to improve their methods and efforts in imposing situations of maximum horror possible to subjected communities. In the present work a brief study of the dimensions of nuclear terrorism, its forms and means directed to its support , has been carried out. The efforts to combat against nuclear proliferation in Central Asia as a region in which most of the violations of the non proliferation efforts occurred has been treated. In contrast, the prevailing conditions and efforts in the Americas region are discussed being a region in which combined efforts of the united states with other American countries were rather successful in combating nuclear proliferation. Some recommendations have been given concerning the necessary measures to face the global risk of illicit trafficking of nuclear materials all over the world. (author)

  8. Fieldable Nuclear Material Identification System

    International Nuclear Information System (INIS)

    Radle, James E.; Archer, Daniel E.; Carter, Robert J.; Mullens, James Allen; Mihalczo, John T.; Britton, Charles L. Jr.; Lind, Randall F.; Wright, Michael C.

    2010-01-01

    The Fieldable Nuclear Material Identification System (FNMIS), funded by the NA-241 Office of Dismantlement and Transparency, provides information to determine the material attributes and identity of heavily shielded nuclear objects. This information will provide future treaty participants with verifiable information required by the treaty regime. The neutron interrogation technology uses a combination of information from induced fission neutron radiation and transmitted neutron imaging information to provide high confidence that the shielded item is consistent with the host's declaration. The combination of material identification information and the shape and configuration of the item are very difficult to spoof. When used at various points in the warhead dismantlement sequence, the information complimented by tags and seals can be used to track subassembly and piece part information as the disassembly occurs. The neutron transmission imaging has been developed during the last seven years and the signature analysis over the last several decades. The FNMIS is the culmination of the effort to put the technology in a usable configuration for potential treaty verification purposes.

  9. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Libby, R.A.; Segal, J.E.; Stanbro, W.D.; Davis, C.

    1995-08-01

    This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.

  10. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3

    International Nuclear Information System (INIS)

    Libby, R.A.; Segal, J.E.; Stanbro, W.D.; Davis, C.

    1995-08-01

    This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials

  11. Transportation of nuclear materials

    International Nuclear Information System (INIS)

    Brobst, W.A.

    1977-01-01

    Twenty years of almost accident-free transport of nuclear materials is pointed to as evidence of a fundamentally correct approach to the problems involved. The increased volume and new technical problems in the future will require extension of these good practices in both regulations and packaging. The general principles of safety in the transport of radioactive materials are discussed first, followed by the transport of spent fuel and of radioactive waste. The security and physical protection of nuclear shipments is then treated. In discussing future problems, the question of public understanding and acceptance is taken first, thereafter transport safeguards and the technical bases for the safety regulations. There is also said to be a need for a new technology for spent fuel casks, while a re-examination of the IAEA transport standards for radiation doses is recommended. The IAEA regulations regarding quality assurance are said to be incomplete, and more information is required on correlations between engineering analysis, scale model testing and full scale crash testing. Transport stresses on contents need to be considered while administrative controls have been neglected. (JIW)

  12. The IAEA inventory databases related to radioactive material entering the marine environment

    International Nuclear Information System (INIS)

    Rastogi, R.C.; Sjoeblom, K.L.

    1999-01-01

    Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and other Matter (LC 1972) have requested the IAEA to develop an inventory of radioactive material entering the marine environment from all sources. The rationale for developing and maintaining the inventory is related to its use as an information base with which the impact of radionuclides entering the marine environment from different sources can be assessed and compared. Five anthropogenic sources of radionuclides entering the marine environment can be identified. These sources are: radioactive waste disposal at sea; accidents and losses at sea involving radioactive material; discharge of low level liquid effluents from land-based nuclear facilities; the fallout from nuclear weapons testing; and accidental releases from land-based nuclear facilities. The first two of these sources are most closely related to the objective of the LC 1972 and its request to the IAEA. This paper deals with the Agency's work on developing a database on radioactive material entering the marine environment from these two sources. The database has the acronym RAMEM (RAdioactive Material Entering the Marine Environment). It includes two modules: inventory of radioactive waste disposal at sea and inventory of accidents and losses at sea involving radioactive material

  13. Nuclear materials teaching and research at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Olander, D.R.; Roberts, J.T.A.

    1985-01-01

    In academic nuclear engineering departments, research and teaching in the specialized subdiscipline of nuclear materials is usually a one-person or at best a two-person operation. These subcritical sizes invariably result in inadequate overall representation of the many topics in nuclear materials in the research program of the department, although broader coverage of the field is possible in course offerings. Even in course-work, the full range of materials problems important in nuclear technology cannot be dealt with in detail because the small number of faculty involved restricts staffing to as little as a single summary course and generally no more than three courses in this specialty. The contents of the two nuclear materials courses taught at the University of California at Berkeley are listed. Materials research in most US nuclear engineering departments focuses on irradiation effects on metals, but at UC Berkeley, the principal interest is in the high-temperature materials chemistry of UO 2 fuel and Zircaloy cladding

  14. Fourth Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Reilly, D.; Marsden, O.

    2018-01-01

    The Nuclear Forensics International Technical Working Group is a community of nuclear forensic practitioners who respond to incidents involving nuclear and other radioactive material out of regulatory control. The Group is dedicated to advancing nuclear forensic science in part through periodic participation in materials exercises. The Group completed its fourth Collaborative Materials Exercise in 2015 in which laboratories from 15 countries and one multinational organization analyzed three samples of special nuclear material in support of a mock nuclear forensic investigation. This special section of the Journal for Radioanalytical and Nuclear Chemistry is devoted to summarizing highlights from this exercise. (author)

  15. NECSA'S Need to Establish a Nuclear Forensics Specific NDA Facility for On-Site Categorization of Seized Nuclear Materials

    International Nuclear Information System (INIS)

    Boshielo, P.; Mogafe, R.

    2015-01-01

    The increase of nuclear material that are out of regulatory control is becoming a serious concern and threat and thereby continuously seeking urgent interventions and counteractions from the international community aspiring effective control over all nuclear material and peaceful uses of nuclear technologies globally. In South Africa the nuclear forensics initiative approach and its execution have been adopted, established and managed by the South African Nuclear Energy Corporation (NECSA) to support the country's nuclear safeguards system and nuclear security investigations plan to fight against the illicit trafficking of nuclear and radioactive materials. On this nuclear forensics initiative approach adopted by Necsa, the development and later execution of a Non-Destructive Analyses (NDA) facility capability for quick categorization of any seized nuclear material by law-enforcement agencies is currently envisaged as a critical initiative to comprehend nuclear forensics Laboratory analytical or characterization techniques. The main objective for this NDA facility is planned to be used for performing nuclear material screening process for material categorization purposes to generate information and results which will be open to law enforcement agencies for prosecution processes and also for the safeguards reporting to the IAEA (ITDB). The NDA technique is therefore found to be a critical tool needed at NECSA as an Early-Checking-Point or first-line material check point for all seized nuclear materials in determining some characteristics of the materials and collection of data without having to destroy or changing the morphology of the material. (author)

  16. Materials characterization center workshop on compositional and microstructural analysis of nuclear waste materials. Summary report

    International Nuclear Information System (INIS)

    Daniel, J.L.; Strachan, D.M.; Shade, J.W.; Thomas, M.T.

    1981-06-01

    The purpose of the Workshop on Compositional and Microstructural Analysis of Nuclear Waste Materials, conducted November 11 and 12, 1980, was to critically examine and evaluate the various methods currently used to study non-radioactive, simulated, nuclear waste-form performance. Workshop participants recognized that most of the Materials Characterization Center (MCC) test data for inclusion in the Nuclear Waste Materials Handbook will result from application of appropriate analytical procedures to waste-package materials or to the products of performance tests. Therefore, the analytical methods must be reliable and of known accuracy and precision, and results must be directly comparable with those from other laboratories and from other nuclear waste materials. The 41 participants representing 18 laboratories in the United States and Canada were organized into three working groups: Analysis of Liquids and Solutions, Quantitative Analysis of Solids, and Phase and Microstructure Analysis. Each group identified the analytical methods favored by their respective laboratories, discussed areas needing attention, listed standards and reference materials currently used, and recommended means of verifying interlaboratory comparability of data. The major conclusions from this workshop are presented

  17. Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Holzemer, Michael; Carvo, Alan

    2012-01-01

    Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC and A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material has been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S and S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.

  18. Safeguarding nuclear materials in the former Soviet Republics through computerized materials protection, control and accountability

    International Nuclear Information System (INIS)

    Roumiantsev, A.N.; Ostroumov, Y.A.; Whiteson, R.; Seitz, S.L.; Landry, R.P.; Martinez, B.J.; Boor, M.G.; Anderson, L.K.; Gary, S.P.

    1997-01-01

    The threat of nuclear weapons proliferation is a problem of global concern. International efforts at nonproliferation focus on preventing acquisition of weapons-grade nuclear materials by unauthorized states, organizations, or individuals. Nonproliferation can best be accomplished through international cooperation in the application of advanced science and technology to the management and control of nuclear materials. Computerized systems for nuclear material protection, control, and accountability (MPC and A) are a vital component of integrated nuclear safeguards programs. This paper describes the progress of scientists in the United States and former Soviet Republics in creating customized, computerized MPC and A systems. The authors discuss implementation of the Core Material Accountability System (CoreMAS), which was developed at Los Alamos National Laboratory by the US Department of Energy and incorporates, in condensed and integrated form, the most valuable experience gained by US nuclear enterprises in accounting for and controlling nuclear materials. The CoreMAS approach and corresponding software package have been made available to sites internationally. CoreMAS provides methods to evaluate their existing systems and to examine advantages and disadvantages of customizing CoreMAS or improving their own existing systems. The sites can also address crucial issues of software assurance, data security, and system performance; compare operational experiences at sites with functioning computerized systems; and reasonably evaluate future efforts. The goal of the CoreMAS project is to introduce facilities at sites all over the world to modern international MPC and A practices and to help them implement effective, modern, computerized MPC and A systems to account for their nuclear materials, and thus reduce the likelihood of theft or diversion. Sites are assisted with MPC and A concepts and the implementation of an effective computerized MPC and A system

  19. Non destructive assay techniques applied to nuclear materials

    International Nuclear Information System (INIS)

    Gavron, A.

    2001-01-01

    Nondestructive assay is a suite of techniques that has matured and become precise, easily implementable, and remotely usable. These techniques provide elaborate safeguards of nuclear material by providing the necessary information for materials accounting. NDA techniques are ubiquitous, reliable, essentially tamper proof, and simple to use. They make the world a safer place to live in, and they make nuclear energy viable. (author)

  20. Prevention of the inadvertent movement and illicit trafficking of radioactive and nuclear materials in Argentine border

    International Nuclear Information System (INIS)

    Bonet Duran, Stella M.; Canibano, Javier A.; Menossi, Sergio A.; Rodriguez, Carlos E.

    2004-01-01

    organization to prevent the occurrence of such events. This paper describes the current nuclear regulatory system aiming at controlling all activities involving radioactive materials in the Country, focusing on particular emphasis in those related to border control to prevent and minimize illicit movements of nuclear and other radioactive materials across the borders. (author)

  1. Bar code usage in nuclear materials accountability

    International Nuclear Information System (INIS)

    Mee, W.T.

    1983-01-01

    The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At this time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable, however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented

  2. Methodology for categorization of nuclear material in pyroprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chanki; Choi, Sungyeol [UNIST, Ulsan (Korea, Republic of); Kim, Woo Jin; Kim, Min Su; Jeong, Yon Hong [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    For the pyroprocessing facility to be commercialized in future, current regulations should be evaluated and developed in advance, based on the new types of nuclear materials in the facility. Physical protection system, especially, requires reasonable and reliable categorization of nuclear materials, to prevent from the theft of nuclear materials. In this paper, therefore, current categorization methods of nuclear material are investigated and applied to the pyroprocessing facility. After inconsistencies and gaps are found among methods, they are compared and discussed based on eight considering points (i.e, degrees of attractiveness, levels of category, discount factor, physical barriers, chemical barriers, isotopic barriers, radiological barriers, and capabilities of adversaries), to roughly suggest a new method for categorization. Current categorization methods of nuclear material, including IAEA's INFCIRC/225, U.S. DOE's method, newly expected U.S. NRC's method, FOM, and Bunn's approach, are different and can bring inconsistencies of physical protection requirements. The gap among methods will be significant if advanced fuel cycles are applied to them for the future. For example, the categorization results of 5 target materials in pyroprocessing facility show clear inconsistencies, while TRU ingot is considered the most attractive material. To resolve inconsistencies, it is necessary to determine new method suitable to pyroproessing facility, by considering the effects of eight points (i.e, degrees of attractiveness, levels of category, discount factor, physical barriers, chemical barriers, isotopic barriers, radiological barriers, and capabilities of adversaries)

  3. Methodology for categorization of nuclear material in pyroprocessing facility

    International Nuclear Information System (INIS)

    Lee, Chanki; Choi, Sungyeol; Kim, Woo Jin; Kim, Min Su; Jeong, Yon Hong

    2016-01-01

    For the pyroprocessing facility to be commercialized in future, current regulations should be evaluated and developed in advance, based on the new types of nuclear materials in the facility. Physical protection system, especially, requires reasonable and reliable categorization of nuclear materials, to prevent from the theft of nuclear materials. In this paper, therefore, current categorization methods of nuclear material are investigated and applied to the pyroprocessing facility. After inconsistencies and gaps are found among methods, they are compared and discussed based on eight considering points (i.e, degrees of attractiveness, levels of category, discount factor, physical barriers, chemical barriers, isotopic barriers, radiological barriers, and capabilities of adversaries), to roughly suggest a new method for categorization. Current categorization methods of nuclear material, including IAEA's INFCIRC/225, U.S. DOE's method, newly expected U.S. NRC's method, FOM, and Bunn's approach, are different and can bring inconsistencies of physical protection requirements. The gap among methods will be significant if advanced fuel cycles are applied to them for the future. For example, the categorization results of 5 target materials in pyroprocessing facility show clear inconsistencies, while TRU ingot is considered the most attractive material. To resolve inconsistencies, it is necessary to determine new method suitable to pyroproessing facility, by considering the effects of eight points (i.e, degrees of attractiveness, levels of category, discount factor, physical barriers, chemical barriers, isotopic barriers, radiological barriers, and capabilities of adversaries)

  4. German Democratic Republic State system of accounting for and control of nuclear material

    International Nuclear Information System (INIS)

    Roehnsch, W.; Gegusch, M.

    1976-01-01

    The system of accountancy for and control of nuclear material in the German Democratic Republic (GDR) with its legal bases and components is embedded in the overall State system of protection in the peaceful uses of nuclear energy. As the competent State authority, the Nuclear Safety and Radiation Protection Board of the GDR is also responsible for meeting the GDR's national and international tasks in the control of nuclear material. At enterprise level, the observance of all safety regulations for nuclear material, including the regulations for the control, is within the responsibility of managers of establishments, which are in any way concerned with the handling of nuclear material. To support managers and to function as internal control authorities, nuclear material officers have been appointed in these establishments. Design information, operating data, physical inventory of nuclear material and the respective enterprise records and reports are subject to State control by the Nuclear Material Inspectorate of the Nuclear Safety and Radiation Protection Board. This Inspectorate keeps the central records on nuclear material, forwards reports and information to, and maintains the necessary contacts with, the IAEA. For the nuclear material in the GDR four material balance areas have been established for control purposes. To rationalize central recording and reporting, electronic data processing is increasingly made use of. In a year-long national and international control of nuclear material, the State control system has stood the test and successfully co-operates with the IAEA. (author)

  5. Nuclear security recommendations on nuclear and other radioactive material out of regulatory control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this publication is to provide guidance to States in strengthening their nuclear security regimes, and thereby contributing to an effective global nuclear security framework, by providing: - Recommendations to States and their competent authorities on the establishment or improvement of the capabilities of their nuclear security regimes, for carrying out effective strategies to deter, detect and respond to a criminal act, or an unauthorized act, with nuclear security implications, involving nuclear or other radioactive material that is out of regulatory control; - Recommendations to States in support of international cooperation aimed at ensuring that any nuclear or other radioactive material that is out of regulatory control, whether originating from within the State or from outside that State, is placed under regulatory control and the alleged offenders are, as appropriate, prosecuted or extradited

  6. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1985-01-01

    In the Law for the Regulations of Nuclear Source Material, Nuclear Fuel Material and Reactors, the regulations have all been revised on the fabrication business of nuclear fuel materials. The revised regulations are given : application for permission of the fabrication business, application for permission of the alteration, application for approval of the design and the construction methods, application for approval of the alteration, application for the facilities inspection, facilities inspection, recordings, entry limitations etc. for controlled areas, measures concerning exposure radiation doses etc., operation of the fabrication facilities, transport within the site of the business, storage, disposal within the site of the business, security regulations, designation etc. of the licensed engineer of nuclear fuels, collection of reports, etc. (Mori, K.)

  7. Study of Nuclear Environment and Material Strategy

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    Progress of global warming requires us to establish a low-carbon society. Carbon-dioxide (CO 2 ) is emitted from two major sectors in the world. The largest CO 2 emitting sector is power sector having 46 % of the world share. Nuclear power has an important role because it does not emit CO 2 while it produces electricity. The second largest sector is transportation and has about 23 % of the world share. 73 % of transportation is land-transportation, that is to say automobile. Therefore, lots of motor-car companies are expressing their vision to supply electric vehicle (EV) or hybrid vehicle (HV) in these few years. In order to manufacture EV and HV, rare-earth materials such as neodymium (Nd) and dysprosium (Dy) are necessary. EV and HV are driven by an electric motor using permanent magnet. Nd is used to improve torque of permanent magnet. Dy is used as supplement for the case of HV in order to enhance thermal resistance because electric motor is exposed to high temperature circumference with combustion engine. 97 % of world supply of rare-earth production is shared by China. The reduction of exportation amount of rare-earth from China to Japan have brought a significant impact on Japan's industries especially for motor-car companies, which are going to supply EV and HV. Japan is going to develop new rare-earth mines outside of China such as in Vietnam. The most important problem relating to rare-earth mining is 'thorium'. The popular minerals containing rare-earth are monazite, bastnasite and so on. Thorium is mostly included in the same minerals. Therefore, thorium is separated whenever rare-earth is refined. Thorium separated in China can be stored for future usage as nuclear fuel. Though thorium began to be considered also in a working group of Atomic Energy Society of Japan since 2010, it is not clear when thorium starts to be used and how much amount of thorium will be consumed. It is estimated that consumption of thorium will be smaller than the production

  8. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  9. Transportation of nuclear materials: the nuclear focus of the 80's

    International Nuclear Information System (INIS)

    Meyers, S.; Hardin, E.C. Jr.; Jefferson, R.M.

    1980-01-01

    The transport of radioactive material has been carried out since the inception of the nuclear age (over 30 years) with an unparralled safety record. Despite these achievements, there is a need to strive for improvements, to develop safer and more efficient transportation systems, moreover to perform these tasks in a highly visible manner so that public concern can be allayed. But, in the same vein that the past record is not of itself sufficient, neither is public participation the solution to all the issues surrounding the transportation of radioactive materials. The solutions to the problems facing the nuclear transport industry involve many disciplines, much of which rest on a foundation of sound technology. This conference is built around a core of papers on the developing technology of nuclear transportation: on systems, their design and development, their manufacturing processes, their operation and the methodologies of quality assurance in each of these activities. The role of IAEA in the collecting of data to compile information on the flow of radioactive materials, the mode of transport and the corresponding accident/incident experience, as well as its role in initiating a program to develop a worldwide uniform methodology to address the risks of transporting radioactive materials are covered in this symposium

  10. Development of data base system for nuclear material accountancy data at PNC

    International Nuclear Information System (INIS)

    Hirosawa, N.; Akiba, Mitsunori; Nakagima, Kiyoshi; Usui, Shinichi; Tosa, Kiyofumi; Hashimoto, Kazuyuki.

    1993-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty(NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to inquiries from STA can be carried out by the data base system which has free item searching procedure. The present paper introduces 'Development of Data Base System for Nuclear Material Accountancy Data at PNC'. (author)

  11. Test-qualification experience with non-destructive material analysis system performed at Paks Nuclear Power Plant and its usage in non-nuclear fields

    International Nuclear Information System (INIS)

    Somogyi, Gy.; Szabo, D.

    2003-01-01

    The need for qualification of non-destructive material analysis has been recognised in controlling nuclear energy production process. This test-qualification has been performed as first of its kind after the task has been assigned by the National Nuclear Energy Agency. The input documents for the test were. Technical Specification, Analysis Technology, Technical Justification. Test-qualification has been performed with real form control bodies developed by the Rez Nuclear Research Institute, in which the planned defects has been produced by spark-chipping. The qualification procedure has been summarized in a Qualification Folder and given to the national agency to issue a qualification certificate. The procedure might be interesting mostly for companies delivering nuclear power plant assemblies. Similar needs are formulated in standards relative to the qualification of non-nuclear material testing methods (MSZ EN 17025 and EU). (Gy.M.)

  12. Law nr 2015-588 of June 2, 2015 related to the strengthening of the protection of civil nuclear installations housing nuclear materials

    International Nuclear Information System (INIS)

    Hollande, Francois; Valls, Manuel; Taubira, Christiane; Le Drian, Jean-Yves; Cazeneuve, Bernard

    2015-01-01

    This publication contains the official text of a law adopted by the French Parliament for the strengthening of civil nuclear installations housing nuclear materials. The first article of this law is made of modifications introduced in the Defence Code. The second article states that a report is to be submitted by the Government to the Parliament on the risk and threat assessment of illegal UAVs flyovers, and on technical solutions to improve the detection and neutralisation of these aircraft, as well as on necessary legal adaptations to punish such infringements

  13. Materials science for nuclear detection

    OpenAIRE

    Peurrung, Anthony

    2008-01-01

    The increasing importance of nuclear detection technology has led to a variety of research efforts that seek to accelerate the discovery and development of useful new radiation detection materials. These efforts aim to improve our understanding of how these materials perform, develop formalized discovery tools, and enable rapid and effective performance characterization. We provide an overview of these efforts along with an introduction to the history, physics, and taxonomy of radiation detec...

  14. Developments related to the National Nuclear Safety Authority of Romania

    International Nuclear Information System (INIS)

    Baciu, Florin

    1998-01-01

    The contribution presents the status of the National Commission for Nuclear Activity Control (CNCAN) as indicated by the provisions of a Romanian Government Decision of May 1998. As specified in the art.3 the main tasks of the Commission are the following: to issue authorization and exercise permits of activities in nuclear field; to supervise the applications of the provisions stipulated by the law concerning development in safety conditions of nuclear activities; to develop instructions as well as nuclear safety regulations to ensure the quality assurance and functioning in safety conditions of the nuclear facilities and plants, the protection against nuclear radiation of the professionally exposed personnel, of the population, of the environment and of the material goods, the physical protection, the records, preservation and transport of radioactive material and of fissionable materials as well as the management of radioactive waste; organizes expert and is responsible for the state control concerning the integrated application of the law provisions in the field of quality constructions in which nuclear installations of national interest are located, during all the phases and for all the components of the quality system in this field; issues specialty and information documentation specific to its own activity, provides the information of the public through official publication, official statements to the press and other specific form of information; carries out any other tasks provided by law in the field of regulations and control of nuclear activity. Author presents also the CNCAN staff number evolution, the new structure, the staff distribution at headquarters, local agencies and national radiation monitoring network. Finally, the author discusses the legal provisions related to management manual procedures

  15. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  16. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear terrorism and the illicit trafficking of nuclear and other radioactive material threaten the security of all States. There are large quantities of diverse radioactive material in existence, which are used in areas such as health, the environment, agriculture and industry. The possibility that nuclear and other radioactive material may be used for terrorist acts cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material, and to establish capabilities for detection and response to nuclear and other radioactive material out of regulatory control. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This approach recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in nuclear and other radioactive material; national response plans; and contingency measures. Within its nuclear security programme, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking; and to detect and respond to nuclear security events. This is an Implementing Guide on nuclear security systems and measures for the detection of nuclear and other radioactive material out of regulatory control. The objective of the publication is to provide guidance to Member States for the

  17. Development of an Origin Trace Method based on Bayesian Inference and Artificial Neural Network for Missing or Stolen Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bin, Yim Ho; Min, Lee Seung; Min, Kim Kyung; Jeong, Hong Yoon; Kim, Jae Kwang [Nuclear Security Div., Daejeon (Korea, Republic of)

    2014-05-15

    Thus, 'to put nuclear materials under control' is an important issue for prosperity mankind. Unfortunately, numbers of illicit trafficking of nuclear materials have been increased for decades. Consequently, security of nuclear materials is recently spotlighted. After the 2{sup nd} Nuclear Security Summit in Seoul in 2012, the president of Korea had showed his devotion to nuclear security. One of the main responses for nuclear security related interest of Korea was to develop a national nuclear forensic support system. International Atomic Energy Agency (IAEA) published the document of Nuclear Security Series No.2 'Nuclear Forensics Support' in 2006 to encourage international cooperation of all IAEA member states for tracking nuclear attributions. There are two main questions related to nuclear forensics to answer in the document. The first question is 'what type of material is it?', and the second one is 'where did the material come from?' Korea Nuclear Forensic Library (K-NFL) and mathematical methods to trace origins of missing or stolen nuclear materials (MSNMs) are being developed by Korea Institute of Nuclear Non-proliferation and Control (KINAC) to answer those questions. Although the K-NFL has been designed to perform many functions, K-NFL is being developed to effectively trace the origin of MSNMs and tested to validate suitability of trace methods. New fuels and spent fuels need each trace method because of the different nature of data acquisition. An inductive logic was found to be appropriate for new fuels, which had values as well as a bistable property. On the other hand, machine learning was suitable for spent fuels, which were unable to measure, and thus needed simulation.

  18. Positron annihilation studies on structural materials for nuclear reactors

    International Nuclear Information System (INIS)

    Rajaraman, R.; Amarendra, G.; Sundar, C.S.

    2012-01-01

    Structural steels for nuclear reactors have renewed interest owing to the future advanced fission reactor design with increased burn-up goals as well as for fusion reactor applications. While modified austenitic steels continue to be the main cladding materials for fast breeder reactors, Ferritic/martensitic steels and oxide dispersion strengthened ferritic steels are the candidate materials for future reactors applications in India. Sensitivity and selectivity of positron annihilation spectroscopy to open volume type defects and nano clusters have been extensively utilized in studying reactor materials. We have recently reviewed the application of positron techniques to reactor structural steels. In this talk, we will present successful application of positron annihilation spectroscopy to probe various structural materials such as D9, ferritic/martensitic, oxide dispersion strengthened (ODS) steels and related model alloys, highlighting our recent studies. (author)

  19. Integrating the stabilization of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H.F. [Department of Energy, Washington, DC (United States)

    1996-05-01

    In response to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board, the Department of Energy committed to stabilizing specific nuclear materials within 3 and 8 years. These efforts are underway. The Department has already repackaged the plutonium at Rocky Flats and metal turnings at Savannah River that had been in contact with plastic. As this effort proceeds, we begin to look at activities beyond stabilization and prepare for the final disposition of these materials. To describe the plutonium materials being stabilize, Figure 1 illustrates the quantities of plutonium in various forms that will be stabilized. Plutonium as metal comprises 8.5 metric tons. Plutonium oxide contains 5.5 metric tons of plutonium. Plutonium residues and solutions, together, contain 7 metric tons of plutonium. Figure 2 shows the quantity of plutonium-bearing material in these four categories. In this depiction, 200 metric tons of plutonium residues and 400 metric tons of solutions containing plutonium constitute most of the material in the stabilization program. So, it is not surprising that much of the work in stabilization is directed toward the residues and solutions, even though they contain less of the plutonium.

  20. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    International Nuclear Information System (INIS)

    Villa-Aleman, E.; Houk, A.; Spencer, W.

    2017-01-01

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  1. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Houk, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  2. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  3. Safeguards against use of nuclear material for weapons

    International Nuclear Information System (INIS)

    Sanders, B.; Rometsch, R.

    1975-01-01

    The history of safeguards is traced from the first session of the United Nations Atomic Energy Commission in 1946, through the various stages of the IAEA safeguard system for nuclear materials and to the initiation of the Treaty on the Non-proliferation of Nuclear Weapons in 1968. The role of the IAEA under the treaty is discussed. The structure and content of safeguards agreements in connection with the treaty were laid down and the objective of safeguards clearly defined. The methods of verification by the IAEA of the facility operator's material accountancy through inspection and statistical analysis and evaluation of 'material unaccounted for' are explained. The extent to which the IAEA may make use of the State's system of accounting and control of nuclear materials is considered. Reference is also made to the question of protection against theft and sabotage. Finally the scope of safeguards work for the next 15 years is forecast. (U.K.)

  4. Evaluation of excess nuclear materials suitability for international safeguards

    International Nuclear Information System (INIS)

    Newton, J.W.; White, W.C.; Davis, R.M.; Cherry, R.C.

    1996-01-01

    President Clinton announced in March 1995 the permanent withdrawal of 200 tons of fissile material from the US nuclear stockpile. This action was made possible by the dramatic reduction in nuclear weapons stockpile size and a desire to demonstrate the US'' commitment to nonproliferation goals. To provide further assurance of that commitment, the US is addressing placement of these materials under International Atomic Energy Agency (IAEA) safeguards. An initial step of this overall assessment was evaluation of the nuclear materials'' suitability for international safeguards. US Department of Energy (DOE) field organizations reviewed a detailed listing of all candidate materials with respect to characterization status, security classification, and acceptability for international safeguards compared to specified criteria. These criteria included form, location, environment and safety considerations, measurability, and stability. The evaluation resulted in broad categorizations of all materials with respect to preparing and placing materials under IAEA safeguards and provided essential information for decisions on the timing for offering materials as a function of materials attributes. A plan is being prepared to determine the availability of these materials for IAEA safeguards considering important factors such as costs, processes and facilities required to prepare materials, and impacts on other programs

  5. Application of ceramic and glass materials in nuclear power plants

    International Nuclear Information System (INIS)

    Hamnabard, Z.

    2008-01-01

    Ceramic and glass are high temperature materials that can be used in many fields of application in nuclear industries. First, it is known that nuclear fuel UO 2 is a ceramic material. Also, ability to absorb neutrons without forming long lived radio-nuclides make the non-oxide ceramics attractive as an absorbent for neutron radiation arising in nuclear power plants. Glass-ceramic materials are a new type of ceramic that produced by the controlled nucleation and crystallization of glass, and have several advantages such as very low or null porosity, uniformity of microstructure, high chemical resistance etc. over conventional powder processed ceramics. These ceramic materials are synthesized in different systems based on their properties and applications. In nuclear industries, those are resistant to leaching and radiation damage for thousands of years, Such as glass-ceramics designed for radioactive waste immobilization and machinable glass-ceramics are used. This article introduces requirements of different glass and ceramic materials used in nuclear power plants and have been focused on developments in properties and application of them

  6. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Managing nuclear knowledge: IAEA activities and international coordination. Including resource material full text CD-ROM

    International Nuclear Information System (INIS)

    2005-06-01

    The present CD-ROM summarizes some activities carried out by the Departments of Nuclear Energy and Nuclear Safety and Security in the area of nuclear knowledge management in the period 2003-2005. It comprises, as open resource, most of the relevant documents in full text, including policy level documents, reports, presentation material by Member States and meeting summaries. The collection starts with a reprint of the report to the IAEA General Conference 2004 on Nuclear Knowledge [GOV/2004/56-GC(48)/12] summarizing the developments in nuclear knowledge management since the 47th session of the General Conference in 2003 and covers Managing Nuclear Knowledge including safety issues and Information and Strengthening Education and Training for Capacity Building. It contains an excerpt on Nuclear Knowledge from the General Conference Resolution [GC(48)/RES/13] on Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications. On the CD-ROM itself, all documents can easily be accessed by clicking on their titles on the subject pages (also printed at the end of this Working Material). Part 1 of the CD-ROM covers the activities in the period 2003-2005 and part 2 presents a resource material full text CD-ROM on Managing Nuclear Knowledge issued in October 2003

  8. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  9. Measures Against-Illicit Trafficking of Nuclear Materials and Other Radioactive Sources

    International Nuclear Information System (INIS)

    Barakat, M.B.; Nassef, M.H.; El Mongy, S.A.

    2008-01-01

    Since the early nineties, illicit trafficking (IT) of nuclear materials and radioactive sources appeared as a new trend which raised the concern of the international community due to the grave consequences that would merge if these materials or radioactive sources fell into the hands of terrorist groups. However, by the end of the last century illicit trafficking of nuclear materials and radioactive sources lost its considerable salience, in spite of seizure of considerable amounts of 2 '3'5U (76% enrichment) in Bulgaria (May 1999) and also 235 U (30% enrichment) in Georgia (April 2000). Nevertheless, IT should be always considered as a continued and viable threat to the international community. Awareness of the problem should be developed and maintained among concerned circles as the first step towards combating illicit trafficking of nuclear materials and radioactive sources. Illicit trafficking of nuclear and radioactive materials needs serious consideration and proper attention by the governmental law enforcement authorities. Measures to combat with IT of nuclear material or radioactive sources should be effective in recovery, of stolen, removed or lost nuclear materials or radioactive sources due to the failure of the physical protection system or the State System Accounting and Control (SSAC) system which are normally applied for protecting these materials against illegal actions. Measures such as use of modern and efficient radiation monitoring equipment at the borders inspection points, is an important step in preventing the illicit trafficking of nuclear and radioactive materials across the borders. Also providing radiological training to specific personnel and workers in this field will minimize the consequences of a radiological attack in case of its occurrence. There is a real need to start to enter into cooperative agreements to strengthen borders security under the umbrella of IAEA to faster as an international cooperation in the illicit trafficking

  10. Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste

    International Nuclear Information System (INIS)

    Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

    2002-01-01

    Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES and H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial. Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing

  11. Physical protection of nuclear materials and facilities in CEA

    International Nuclear Information System (INIS)

    Garnier-Gratia, M.-H.; Jorda, A.

    2001-01-01

    Full text: CEA (Commissariat a l'Energie Atomique), as nuclear operator, is responsible for the control and protection of their nuclear materials. Inside CEA, DCS (Central Security Division) is in charge of the security matters, DCS defines the CEA strategy in this field, especially in physical protection. The paper will present the physical protection strategy of CEA. DCS defines the rules and methods; the operators have to apply in order to fulfill the security objectives of CEA. CEA has to provide the regulatory authority with documents proving that it is in accordance with the requirements of the 25th July 1980 law and 12th May 1981 decree. It has to implement all the necessary means in order to achieve the results requested by the regulatory authority. All these arrangements are described in the 'license and control file'. This file should specify the facility safeguards and physical protection system. Accounting measures are also described. In this file, the petitioner has to justify its capacity for holding nuclear materials and for exercising authorized activities on them. So the organization and the installed means have to be described in this authorization file. For physical protection, containment, surveillance and physical protection measures are presented: Containment measures must prevent the unauthorized or unjustified movements of nuclear material in the framework of the authorized activities; Surveillance measures must guarantee the integrity of the containment, check that no material is exiting by an abnormal channel; Physical protection measures for the materials, the premises and the facilities are intended to protect them against malevolent actions by means of security systems. The Central Security Division has established guidelines to provide guidance to the nuclear materials holders in writing such files. Each holding unit has to establish a 'license and control file' and each CEA site establishes a 'site license and control file

  12. Nuclear waste transmutation and related innovative technologies

    International Nuclear Information System (INIS)

    2002-01-01

    The main topics of the summer school meeting were 1. Motivation and programs for waste transmutation: The scientific perspective roadmaps; 2. The physics and scenarios of transmutation: The physics of transmutation and adapted reactor types. Impact on the fuel cycle and possible scenarios; 3. Accelerator driven systems and components: High intensity accelerators. Spallation targets and experiments. The sub critical core safety and simulation physics experiments; 4. Technologies and materials: Specific issues related to transmutation: Dedicated fuels for transmutation. Fuel processing - the role of pyrochemistry. Materials of irradiation. Lead/lead alloys. 5. Nuclear data: The N-TOF facility. Intermediate energy data and experiments. (orig./GL)

  13. Fusion-related work at the Nuclear Energy Agency Data Bank

    International Nuclear Information System (INIS)

    Henriksson, H.; Mompean, F.J.; Kodeli, I.

    2007-01-01

    The OECD Nuclear Energy Agency (NEA) Data Bank is part of an international network of data centres in charge of the compilation and dissemination of basic nuclear reaction data. Through its activities in the reaction data field, the NEA participates in the preparation of data for the modelling of future nuclear facility concepts and the development of reactor installations. A working party at the NEA on international nuclear data evaluation cooperation (WPEC) is established to promote the exchange of nuclear data evaluations, measurements, nuclear model calculations and validation. WPEC provides a framework for co-operative activities, such as the high priority request list for experimental data of special interest for certain applications, such as IFMIF or ITER. The NEA Data Bank administrates the collection and validation as well as the distribution of the Joint Evaluated Fusion and Fission (JEFF) library, where the activities in the European Fusion and Activation File projects (EFF and EAF respectively) play an important role for new data evaluations. The topics cover verification of activation and transport data, calculation methods and validation via integral experiments. The EFF project brings together all available expertise in Europe related to the nuclear data requirements of existing and future fusion devices, and the project contributed greatly to the internationally recognised nuclear data library JEFF-3.1, released in May 2005. The NEA also provides tools for the EFF project, such as computer codes for nuclear energy and radiation physics applications. Of special interest for fusion applications are the integral experiments collected in the Shielding Integral Benchmark Archive Database (SINBAD) database. SINBAD is an internationally established set of radiation shielding and dosimetry data containing over 80 experiments relevant for reactor and accelerator shielding. About 30 of these experiments are dedicated to fusion blanket neutronics. Materials

  14. Introduction to Special Edition (of the Journal of Nuclear Materials Management) on Reducing the Threat from Radioactive Materials

    International Nuclear Information System (INIS)

    Mladineo, Stephen V.

    2007-01-01

    Introductory article for special edition of the JOURNAL OF NUCLEAR MATERIALS MANAGEMENT outlining the Institute of Nuclear Materials Management Nonproliferation and Arms Control Technical Division. In particular the International Nuclear and Radiological Security Standing Committee and its initial focus covering four topical areas--Radiological Threat Reduction, Nuclear Smuggling and Illicit Trafficking, Countering Nuclear Terrorism, and Radiological Terrorism Consequence Management

  15. International nuclear safety center database on material properties

    International Nuclear Information System (INIS)

    Fink, J.K.

    1996-01-01

    International nuclear safety center database on the following material properties is described: fuel, cladding,absorbers, moderators, structural materials, coolants, concretes, liquid mixtures, uranium dioxide

  16. Dealing with the regional challenge of physical protection of nuclear materials

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    2002-01-01

    Full text: The problem of protecting sensitive fissile and fissionable nuclear materials of misuses by governments has been the subject of the convention on physical protection of nuclear material (CPPNM), which entered into force on February 8, 1987. However, in May 2001 the final report of the expert meeting had already recognized 'a clear need to strengthen the international physical protection regime'. The board of governors of the International Atomic Energy Agency (IAEA) decided then to convene a group, which would meet in Vienna from 3 to 7 December 2001, to draft on amendment to the CPPNM. The tragic occurrences of September 11, 2001, however, changed the then generally accepted view on the problem of physical protection, because nuclear materials had to be protected from falling into the hands of terrorists rather than of governments thirst of nuclear sensitive materials. Moreover, crude explosive devices could be made by terrorists, or hired scientists, using readily available radioactive materials, like 226 Ra or 137 Cs to inflict damage to civilians. Thus physical protection of those and other radioactive materials became an instant challenge for national and international authorities to prevent the use of such materials in terrorist actions. The prevention of illicit trafficking of radioactive materials is now in the priority list of these authorities. Fortunately; an international conference on 'Measures to Detect, Intercept and Respond to the Illicit Uses of Nuclear Materials and Radioactive Sources' was held in Stockholm, Sweden, in May 2001. An IAEA document - GOV/2001/37-GC(45)/20 - recommended in its plan of activities a series of projects to be implemented between 2002 and 2005, which included developing and providing assistance for the application of: (i) standards for physical protection of nuclear materials and nuclear facilities in member states; (ii) norms and guidelines for nuclear material accounting and control in member states; (iii

  17. Safeguards for nuclear material transparency monitoring

    International Nuclear Information System (INIS)

    MacArthur, D.A.; Wolford, J.K.

    1999-01-01

    The US and the Russian Federation are currently engaged in negotiating or implementing several nuclear arms and nuclear material control agreements. These involve placing nuclear material in specially designed containers within controlled facilities. Some of the agreements require the removal of nuclear components from stockpile weapons. These components are placed in steel containers that are then sealed and tagged. Current strategies for monitoring the agreements involve taking neutron and gamma radiation measurements of components in their containers to monitor the presence, mass, and composition of plutonium or highly enriched uranium, as well as other attributes that indicate the use of the material in a weapon. If accurate enough to be useful, these measurements will yield data containing information about the design of the weapon being monitored. In each case, the design data are considered sensitive by one or both parties to the agreement. To prevent the disclosure of this information in a bilateral or trilateral inspection scenario, so-called information barriers have evolved. These barriers combine hardware, software, and procedural safeguards to contain the sensitive data within a protected volume, presenting to the inspector only the processed results needed for verification. Interlocks and volatile memory guard against disclosure in case of failure. Implementing these safeguards requires innovation in radiation measurement instruments and data security. Demonstrating their reliability requires independent testing to uncover any flaws in design. This study discusses the general problem and gives a proposed solution for a high resolution gamma ray detection system. It uses historical examples to illustrate the evolution of other successful systems

  18. 37. annual meeting of the Institute of Nuclear Materials Management

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The following subjects were covered in this meeting: waste management; nuclear materials management -- safety and health; international safeguards; measurement control and statistics for nuclear materials management; material control and accountability; packaging and transportation; nonproliferation and arms control; and physical protection. Separate papers were prepared for 74 items of this meeting

  19. Development of an integrated system for nuclear material accountancy and control at JAERI

    International Nuclear Information System (INIS)

    Nishimura, Hideo; Nishizawa, Satoshi

    1993-01-01

    This paper describes the design concept and the current status of an integrated system for nuclear material accountancy and control, which is under development at JAERI. We, at JAERI, have decided to update the current system for material accountancy and control and to develop the integrated new system with a consolidated data base in order to augment transparency, credibility and promptness of the system, to materialize a prudent control of obligations required by bilateral nuclear cooperation agreements, and to give information for the physical protection, safely handling, property control and cost-effective use of nuclear material and for public relations. The system is composed of two work-stations operated by UNIX, one for implementation and the other for development, and many terminals located at the headquarters, administrative offices, and research facilities and laboratories. It is connected with a mainframe computer. There are many files on the data base to record inventory changes, book and physical inventories, and statistics on material balances. These files are controlled by a commercial data base management system which enables us to make access to data on the files with a simple query language, spread sheet type software or an application program. (author)

  20. Physical protection of export/import and transportation of nuclear material in the Slovak Republic

    International Nuclear Information System (INIS)

    Vaclav, J

    2002-01-01

    Full text: The paper contains short overview about average amount of nuclear materials transported on the territory of the Slovak Republic in a year, and the physical protection of these nuclear materials. There are several types of transportation and export/import of nuclear materials in the SR: fresh fuel import; import of other unirradiated nuclear materials (e.g. depleted uranium, natural uranium); export of unirradiated nuclear materials (e.g. natural uranium); internal transportation of fresh fuel; internal transportation of other unirradiated nuclear materials; internal transportation of spent fuel. The main objective of the nuclear regulatory authority SR is to supervise observation of the national legislation as follows: the act no. 130 / 1998 on peaceful use of nuclear energy; UJD SR's regulation no. 186/1999 which details the physical protection of the nuclear facilities, nuclear materials, and radioactive waste (following requirements of INFCIRC 225 / Rev. 4); UJD SR's regulation no. 284 / 1999 which details conditions of nuclear material and radioactive wastes transportation. (author)

  1. Nuclear Material (Offences) Act 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The main purpose of this Act is to enable the United Kingdom to ratify the Convention on the Physical Protection of Nuclear Material which opened for signature at Vienne and New York on 3 March 1980. The Act extends throughout the United Kingdom. (NEA) [fr

  2. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1978-01-01

    This law has following two purposes. At first, it exercises necessary controls concerning nuclear source material, nuclear fuel material and reactors in order to: (a) limit their uses to those for the peaceful purpose; (b) ensure planned uses of them; and (c) ensure the public safety by preventing accidents from their uses. Necessary controls are to be made concerning the refining, fabricating and reprocessing businesses, as well as the construction and operation of reactors. The second purpose of the law is to exercise necessary controls concerning internationally controlled material in order to execute the treaties and other international agreements on the research, development and use of atomic energy (the first chapter). In the second and following chapters the law prescribes controls for the persons who wish to carry on the refining and fabricating businesses, to construct and operate reactors, and to conduct the reprocessing business, as well as for those who use the internationally controlled material, respectively in separate chapters by the category of those businesses. For example, the controls to the person who wishes to construct and operate reactors are: (a) the permission of the business after the examination; (b) the examination and approval of the design and methods of construction prior to the construction; (c) the inspection of the facilities prior to their use; (d) periodic inspections of the facilities; (e) the establishment of requirements for safety measures and punishments to their violations. (Matsushima, A.)

  3. On evaluated nuclear data for beta-delayed gamma rays following of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Mencarini, Leonardo de H.; Caldeira, Alexandre D., E-mail: mencarini@ieav.cta.b, E-mail: alexdc@ieav.cta.b [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    In this paper, a new type of information available in ENDF is discussed. During a consistency check of the evaluated nuclear data library ENDF/B-VII.0 performed at the Nuclear Data Subdivision of the Institute for Advanced Studies, the size of the files for some materials drew the attention of one of the authors. Almost 94 % of all available information for these special nuclear materials is used to represent the beta-delayed gamma rays following fission. This is the first time this information is included in an ENDF version. (author)

  4. On evaluated nuclear data for beta-delayed gamma rays following of special nuclear materials

    International Nuclear Information System (INIS)

    Mencarini, Leonardo de H.; Caldeira, Alexandre D.

    2011-01-01

    In this paper, a new type of information available in ENDF is discussed. During a consistency check of the evaluated nuclear data library ENDF/B-VII.0 performed at the Nuclear Data Subdivision of the Institute for Advanced Studies, the size of the files for some materials drew the attention of one of the authors. Almost 94 % of all available information for these special nuclear materials is used to represent the beta-delayed gamma rays following fission. This is the first time this information is included in an ENDF version. (author)

  5. Technology development for nuclear material accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Choi, Hyoung Nae; Park, Ho Jun.

    1990-01-01

    Neutron yields from 19 F(α,n) 22 Na reaction of uranium neutron interaction with uranium-bass materials, and the characteristics of shielded neutron assay probe have been studied. On the basis of the above examination, U-235 enrichment in UF 6 cylinders like model 30B and model 48Y was measured by the reaction and U-235 contents in the containers by non-destructive total passive neutron assay method. Total measurement efficiency as a result was found to be 6.44 x 10 -4 and 1.25 x 10 -4 for model 30B and model 40Y UF 6 cylinder, respectively. The uncertainty of measured enrichment as compared to Tag value obtained from chemical analysis approached about 5 % of relative error at 95 % confidence interval. In the follow-up action for the previously developed (1988) computer system of nuclear material accounting the error searching and treatment routine in accordance with code 10, of IAEA and respective facility attachment has been added to easing the burden of manual error correction by operator. In addition, the procedure for LEMUF calculation has been prepared to help bulk facility operators evaluating MUF in the period of material balance. (author)

  6. Development of proactive technology against nuclear materials degradation

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Kim, Hong Pyo; Lee, Bong Sang

    2012-04-01

    As the nuclear power plants are getting older, the extent of materials degradation increases and unexpected degradation mechanisms may occur under complex environments, including high-temperature and pressure, radiation and coolant. The components in the primary system are maintained at the temperature of 320 .deg. C, pressure of 2500 psi, and reactor internals are exposed to fast neutrons. The pipes and nozzles are affected by the mechanical, thermal and corrosive cyclic fatigue stresses. Since the steam generator tubes are affected by both primary and secondary coolants, the materials degradation mechanisms are dependent upon the multiple or complex factors. In this report, we make contribution to the enhancement of reactor safety by developing techniques for predicting and evaluating materials behaviors in nuclear environments. The research product in the following five areas, described in this report, plays a vital role in improving the safe operation of nuclear reactors, upgrading the level of skills and extending the use of nuclear power. Development of corrosion control and protection technology Development of fracture mechanical evaluation model of reactor pressure Development of prediction and analysis technology for radiation damage Development of advanced diagnostic techniques for micro-materials degradation Development of core technology for control of steam generator degradation

  7. Significance of Alkali-Silica reaction in nuclear safety-related concrete structures

    International Nuclear Information System (INIS)

    Le Pape, Y.; Field, K.G.; Mattus, C.H.; Naus, D.J.; Busby, J.T.; Saouma, V.; Ma, Z.J.; Cabage, J.V.; Guimaraes, M.

    2015-01-01

    Nuclear Power Plant license renewal up to 60 years and possible life extension beyond has established a renewed focus on long-term aging of nuclear generating stations materials, and particularly, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete components. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the U.S. Nuclear Regulatory Commission, the Academia and the Power Generation Industry, identified the need to develop a consistent knowledge base of alkali-silica reaction (ASR) within concrete as an urgent priority (Graves et al., 2014). ASR results in an expansion of Concrete produced by the reaction between alkali (generally from cement), reactive aggregate (like amorphous silica) and water absorption. ASR causes expansion, cracking and loss of mechanical properties. Considering that US commercial reactors in operation enter the age when ASR distress can be potentially observed and that numerous non-nuclear infrastructures (transportation, energy production) in a majority of the States have already experienced ASR-related concrete degradation, the susceptibility and significance of ASR for nuclear concrete structures must be addressed. This paper outlines an on-going research program including the investigation of the possibility of ASR in nuclear power plants, and the assessment of the residual shear bearing capacity of ASR-subjected nuclear structures. (authors)

  8. Detecting nuclear materials smuggling: performance evaluation of container inspection policies.

    Science.gov (United States)

    Gaukler, Gary M; Li, Chenhua; Ding, Yu; Chirayath, Sunil S

    2012-03-01

    In recent years, the United States, along with many other countries, has significantly increased its detection and defense mechanisms against terrorist attacks. A potential attack with a nuclear weapon, using nuclear materials smuggled into the country, has been identified as a particularly grave threat. The system for detecting illicit nuclear materials that is currently in place at U.S. ports of entry relies heavily on passive radiation detectors and a risk-scoring approach using the automated targeting system (ATS). In this article we analyze this existing inspection system and demonstrate its performance for several smuggling scenarios. We provide evidence that the current inspection system is inherently incapable of reliably detecting sophisticated smuggling attempts that use small quantities of well-shielded nuclear material. To counter the weaknesses of the current ATS-based inspection system, we propose two new inspection systems: the hardness control system (HCS) and the hybrid inspection system (HYB). The HCS uses radiography information to classify incoming containers based on their cargo content into "hard" or "soft" containers, which then go through different inspection treatment. The HYB combines the radiography information with the intelligence information from the ATS. We compare and contrast the relative performance of these two new inspection systems with the existing ATS-based system. Our studies indicate that the HCS and HYB policies outperform the ATS-based policy for a wide range of realistic smuggling scenarios. We also examine the impact of changes in adversary behavior on the new inspection systems and find that they effectively preclude strategic gaming behavior of the adversary. © 2011 Society for Risk Analysis.

  9. The standardization of data relational mode in the materials database for nuclear power engineering

    International Nuclear Information System (INIS)

    Wang Xinxuan

    1996-01-01

    A relational database needs standard data relation ships. The data relation ships include hierarchical structures and repeat set records. Code database is created and the relational database is created between spare parts and materials and properties of the materials. The data relation ships which are not standard are eliminated and all the relation modes are made to meet the demands of the 3NF (Third Norm Form)

  10. Experience of air transport of nuclear fuel material as type A package

    International Nuclear Information System (INIS)

    Kawasaki, Masashi; Kageyama, Tomio; Suzuki, Toru

    2004-01-01

    Special law on nuclear disaster countermeasures (hereafter called as to nuclear disaster countermeasures low) that is domestic law for dealing with measures for nuclear disaster, was enforced in June, 2000. Therefore, nuclear enterprise was obliged to report accidents as required by nuclear disaster countermeasures law, besides meeting the technical requirement of existent transport regulation. For overseas procurement of plutonium reference materials that are needed for material accountability, A Type package must be transported by air. Therefore, concept of air transport of nuclear fuel materials according to the nuclear disaster countermeasures law was discussed, and the manual including measures against accident in air transport was prepared for the oversea procurement. In this presentation, the concept of air transport of A Type package containing nuclear fuel materials according to the nuclear disaster countermeasures law, and the experience of a transportation of plutonium solution from France are shown. (author)

  11. Compositional characterization of hafnium alloy used as control rod material in nuclear reactor

    International Nuclear Information System (INIS)

    Sharma, P.K.; Bassan, M.K.T.; Avhad, D.K.; Singhal, R.K.

    2014-01-01

    Hafnium (Hf) is a heavy, steel-gray metal in the reactive metals group that is very closely related to zirconium (Zr) and forms a continuous solid-solution at all concentrations of zirconium and hafnium. Hafnium occurs naturally with zirconium at a ratio of approximately 1:50 and is produced exclusively as a co-product of nuclear-grade zirconium. It is used in a variety of applications where few substitutes are available. Thus with its relatively high thermal neutron absorption cross-section, hafnium's biggest application is as control rod material in nuclear reactors. During this work, major (Zirconium (Zr), Cobalt (Co) and Molybdenum (Mo)) and trace ((Iron (Fe), Nickel (Ni) and Titanium (Ti)) elements were measured in the bulk matrices of Hf. These materials are also associated with other impurities such as O, N, H etc.

  12. The use of measurement uncertainty in nuclear materials accuracy and verification

    International Nuclear Information System (INIS)

    Alique, O.; Vaccaro, S.; Svedkauskaite, J.

    2015-01-01

    EURATOM nuclear safeguards are based on the nuclear operators’ accounting for and declaring of the amounts of nuclear materials in their possession, as well as on the European Commission verifying the correctness and completeness of such declarations by means of conformity assessment practices. Both the accountancy and the verification processes comprise the measurements of amounts and characteristics of nuclear materials. The uncertainties associated to these measurements play an important role in the reliability of the results of nuclear material accountancy and verification. The document “JCGM 100:2008 Evaluation of measurement data – Guide to the expression of uncertainty in measurement” - issued jointly by the International Bureau of Weights and Measures (BIPM) and international organisations for metrology, standardisation and accreditation in chemistry, physics and electro technology - describes a universal, internally consistent, transparent and applicable method for the evaluation and expression of uncertainty in measurements. This paper discusses different processes of nuclear materials accountancy and verification where measurement uncertainty plays a significant role. It also suggests the way measurement uncertainty could be used to enhance the reliability of the results of the nuclear materials accountancy and verification processes.

  13. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    1993-09-01

    Technical Committee met 21-25 June 1993 to consider changes to INFCIRC/225/Rev.2. The revised document, INFCIRC/225/Rev.3, reflects the Technical Committee recommendations for changes to the text as well as other modifications determined necessary to advance the consistency of the Categorization Table in INFCIRC/225/Rev.2 with the categorization table contained in The Convention of the Physical Protection of Nuclear Material and to reflect additional improvements presented by the experts. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  14. The physical protection of nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Technical Committee met 21-25 June 1993 to consider changes to INFCIRC/225/Rev.2. The revised document, INFCIRC/225/Rev.3, reflects the Technical Committee recommendations for changes to the text as well as other modifications determined necessary to advance the consistency of the Categorization Table in INFCIRC/225/Rev.2 with the categorization table contained in The Convention of the Physical Protection of Nuclear Material and to reflect additional improvements presented by the experts. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  15. Physical Protection of Nuclear Material and Nuclear Facilities (Implementation of INFCIRC/225/Revision 5). Implementing Guide

    International Nuclear Information System (INIS)

    2018-01-01

    This publication is the lead Implementing Guide in a suite of guidance on implementing the Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5), IAEA Nuclear Security Series No. 13. It provides guidance and suggestions to assist States and their competent authorities in establishing, strengthening and sustaining their national physical protection regime and implementing the associated systems and measures, including operators’ physical protection systems. The structure of this publication is as follows. After this introduction, Section 2 describes the objectives of physical protection and the overall approach to managing the risks of the unauthorized removal of nuclear material and the sabotage of nuclear facilities. Section 3 provides guidance for the State and its competent authorities on the physical protection elements of the nuclear security regime; this guidance is based on the fundamental principles set out in the Recommendations publication. Section 4 provides guidance on the operator’s physical protection system and describes a systematic, integrated approach. Appendix I gives an annotated outline of the typical contents of an operator’s security plan. Appendix II provides similar guidance for the contingency plan. Appendix III provides a description of nuclear material aggregation that can be used to categorize nuclear material and determine the appropriate level of protection against unauthorized removal. Appendix IV presents a table of paragraph cross-references between the Recommendations publication and this Implementing Guide.

  16. Reuse of contaminated material from nuclear-power plants

    International Nuclear Information System (INIS)

    Melichar, Z.

    1988-01-01

    Some building structures of decommissioned nuclear power plants are contaminated to a very low extent. Little experience is so far available concerning the recycling and furher exploitation of such materials, the majority of which is constituted by concrete and steel. The mass and activities of the metal parts of the Bohunice A-1 nuclear power plant are estimated and the major contaminant radionuclides are listed. Czechoslovak as well as foreign regulations concerning radioactive material handling are cited and criteria for releasing such materials for further use are discussed. (M.D.). 7 tabs., 3 figs, 28 refs

  17. International control of nuclear materials

    International Nuclear Information System (INIS)

    Koponen, Hannu

    1989-01-01

    Nuclear materials are subject to both national and international safeguards control. The International Atomic Energy Agency (IAEA) takes care of the international safeguards control. The control activities, which are discussed in this article, are carried out according to the agreements between various countries and the IAEA

  18. Regulation on the transport of nuclear fuel materials by vehicles

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations applying to the transport of nuclear fuel materials by vehicles, mentioned in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The transport is for outside of the factories and the site of enterprises by such modes of transport as rail, trucks, etc. Covered are the following: definitions of terms, places of fuel materials handling, loading methods, limitations on mix loading with other cargo, radiation dose rates concerning the containers and the vehicles, transport indexes, signs and indications, limitations on train linkage during transport by rail, security guards, transport of empty containers, etc. together with ordinary rail cargo and so on. (Mori, K.)

  19. Approach to a generalized real-time nuclear materials control system

    International Nuclear Information System (INIS)

    Jarsch, V.; Onnen, S.; Polster, F.J.; Woit, J.

    1978-01-01

    Untrained users and a large amount of--at first glance incompatible--processes and materials are the environment of computer-aided nuclear materials control systems. To find an efficient model of the real processes and materials descriptions and to allow the operating personnel to communicate with the system in his everyday symbolism are goals in the development of the concept presented in this paper. According to this concept a real-time minicomputer-based materials control system is being implemented in the Nuclear Research Center of Karlsruhe. The chosen approach satisfies the heterogeneous requirements of the various institutes of the Center and is also applicable to other nuclear plants

  20. Management of Materials from the Decommissioning of Nuclear Reactors

    International Nuclear Information System (INIS)

    Braehler, Georg

    2014-01-01

    Georg Braehler of the World Nuclear Association (WNA) gave an insightful presentation on what can be done with materials from the decommissioning of nuclear reactors. The presentation showed that, although the volumes of waste generated seem large, they are in fact small compared to the conventional recycling market and should not have much impact on operations. The main issue surrounding the recycling of these materials is acceptance, both from a public and a legal perspective which are needed to promote a sustainable route for the recovered materials. Georg concluded that recycling is the most practical and affordable process to minimise the environmental impact. Several questions were raised following the presentation about the issue of public acceptance in Germany of recycling metal that has been cleared for release. The main reason for the current public acceptance is that nothing has happened to generate distrust. A comment was also raised about the limited scale of materials from the nuclear industry. The small volumes of metal generated could deter the conventional waste market from accepting the perceived risk of recycling cleared metals from the nuclear industry

  1. Performance analysis of nuclear materials accounting systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Shipley, J.P.

    1979-01-01

    Techniques for analyzing the level of performance of nuclear materials accounting systems in terms of the four performance measures, total amount of loss, loss-detection time, loss-detection probability, and false-alarm probability, are presented. These techniques are especially useful for analyzing the expected performance of near-real-time (dynamic) accounting systems. A conservative estimate of system performance is provided by the CUSUM (cumulative summation of materials balances) test. Graphical displays, called performance surfaces, are developed as convenient tools for representing systems performance, and examples from a recent safeguards study of a nuclear fuels reprocessing plant are given. 6 refs

  2. Approach on origin management of nuclear materials at KAERI

    International Nuclear Information System (INIS)

    Kim, Hyun-Jo; Lee, Sung-Ho; Lee, Byung-Doo; Kim, In-Chul; Kim, Hyun-Sook; Jung, Juang

    2017-01-01

    This paper describes the current origin management approach and reviews the requirement to be reflected to meet the bilateral agreements. KAERI developed the origin management system to efficiently and effectively manage the origin information. The system is connected with KASIS to share the information on the inventory changes of nuclear material. After development of the system, however, the new concept of obligated nuclear material is introduced according to the amended ROK-US agreement. Also, the origin management system based on IAEA accounting reports needs to revise to include the nuclear material exempted from safeguards. Therefore KAERI will improve the origin management system to meet the requirement of bilateral agreements and NSSC notice to be revised.

  3. Calcium phosphate nuclear materials: apatitic ceramics for separated wastes

    International Nuclear Information System (INIS)

    Carpena, J.; Lacout, J.L.

    2005-01-01

    Is it feasible to elaborate conditioning materials for separated high activity nuclear wastes, as actinides or fission products? Specific materials have been elaborated so that the waste is incorporated within the crystalline structure of the most stable calcium phosphate, i.e. apatite. This mineral is able to sustain high irradiation doses assuming a well chosen chemical composition. Mainly two different ways of synthesis have been developed to produce hard apatite ceramics that can be used to condition nuclear wastes. Here we present a data synthesis regarding the elaboration of these apatite nuclear materials that includes experiments on crystallo-chemistry, chemical analysis, leaching and irradiation tests performed for the past fifteen years. (authors)

  4. Illicit trafficking of radiological and nuclear materials: modeling and analysis of trafficking trends and risks

    International Nuclear Information System (INIS)

    York, David L.; Love, Tracia L.; Rochau, Gary Eugene

    2005-01-01

    Concerns over the illicit trafficking of radiological and nuclear materials were focused originally on the lack of security and accountability of such material throughout the former Soviet states. This is primarily attributed to the frequency of events that have occurred involving the theft and trafficking of critical material components that could be used to construct a Radiological Dispersal Device (RDD) or even a rudimentary nuclear device. However, with the continued expansion of nuclear technology and the deployment of a global nuclear fuel cycle these materials have become increasingly prevalent, affording a more diverse inventory of dangerous materials and dual-use items. To further complicate the matter, the list of nuclear consumers has grown to include: (1) Nation-states that have gone beyond the IAEA agreed framework and additional protocols concerning multiple nuclear fuel cycles and processes that reuse the fuel through reprocessing to exploit technologies previously confined to the more industrialized world; (2) Terrorist organizations seeking to acquire nuclear and radiological material due to the potential devastation and psychological effect of their use; (3) Organized crime, which has discovered a lucrative market in trafficking of illicit material to international actors and/or countries; and (4) Amateur smugglers trying to feed their families in a post-Soviet era. An initial look at trafficking trends of this type seems scattered and erratic, localized primarily to a select group of countries. This is not necessarily the case. The success with which other contraband has been smuggled throughout the world suggests that nuclear trafficking may be carried out with relative ease along the same routes by the same criminals or criminal organizations. Because of the inordinately high threat posed by terrorist or extremist groups acquiring the ingredients for unconventional weapons, it is necessary that illicit trafficking of these materials be better

  5. The Physical Protection of Nuclear Material and Nuclear Facilities; Proteccion Fisica De Los Materiales Y Las Instalaciones Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-15

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [Spanish] La proteccion fisica contra el robo o la desviacion no autorizada de materiales nucleares y contra el sabotaje de las instalaciones nucleares por parte de individuos o grupos es motivo de preocupacion nacional e internacional desde hace mucho tiempo. Aunque la obligacion de crear y hacer funcionar un sistema completo de proteccion fisica de las instalaciones y materiales nucleares en el territorio de un Estado determinado incumbe exclusivamente al Gobierno de dicho Estado, el que esa obligacion se cumpla o no, y si se cumple, en que medida o hasta que punto, son cosas que no dejan indiferentes a los demas Estados. Por ello, la proteccion fisica se ha convertido en motivo de interes y cooperacion internacional. La necesidad de la cooperacion internacional se hace evidente en los casos en que la eficacia de la proteccion fisica en el territorio de un Estado depende de que otros Estados tomen tambien medidas apropiadas para evitar o hacer fracasar los actos hostiles dirigidos contra instalaciones y

  6. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  7. The Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios

    International Nuclear Information System (INIS)

    Bathke, C.G.; Wallace, R.K.; Ireland, J.R.; Johnson, M.W.; Hase, Kevin R.; Jarvinen, G.D.; Ebbinghaus, B.B.; Sleaford, Brad W.; Bradley, Keith S.; Collins, Brian A.; Smith, Brian W.; Prichard, Andrew W.

    2010-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

  8. The attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios

    International Nuclear Information System (INIS)

    Bathke, Charles G.; Wallace, Richard K.; Ireland, John R.; Johnson, M.W.; Hase, Kevin R.; Jarvinen, Gordon D.; Ebbinghaus, Bartley B.; Sleaford, Brad A.; Bradley, Keith S.; Collins, Brian W.; Smith, Brian W.; Prichard, Andrew W.

    2009-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

  9. International dimension of illicit trafficking in nuclear and other radioactive material

    International Nuclear Information System (INIS)

    Zaitseva, L.; Bunn, G.; Steinhaeusler, F.

    2002-01-01

    Full text: Illicit trafficking in nuclear and other radioactive material is primarily associated with Russia and other former Soviet republics. Indeed, with the collapse of the former Soviet Union (FSU) in 1991, hundreds of tons of weapons-usable nuclear material and thousands of radiation sources were left without adequate control and protection, thus posing a risk for sabotage, theft and diversion. Out of 700 illicit trafficking incidents recorded in the Stanford's database on nuclear smuggling, theft and orphan radiation sources (DSTO), over 450 either took place in the former Soviet Union or involved material that had reportedly originated from the FSU. In the period 1992-1994, Western and Eastern Europe were heavily affected by the inflow of nuclear material smuggled from the FSU. Since then, various measures were taken by the European countries and former Soviet republics to prevent the trafficking of radioactive substances ranging from the improvement of physical security at nuclear facilities to the installation of detection equipment at international borders. However, although the number of illicit trafficking incidents in Western Europe has decreased dramatically since 1994 and the overall annual number of such cases has been lower than in 1994, evidence suggests that diverted nuclear material is still being smuggled out of the FSU. An increased number of interceptions of nuclear and other radioactive material in the Caucasus, Turkey and Central Asia, well-known for their drugs and arms smuggling routes, over the past three years demonstrates that the material may now be moving south rather than west. This is particularly alarming considering the proximity of three countries to the potential end-users of nuclear and other radioactive material, such as AI Qaida terrorist network and aspiring nuclear weapon states in the Middle East. Although the FSU remains the major potential source of nuclear and other radioactive material, it is not the only one. Thefts

  10. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    International Nuclear Information System (INIS)

    Michalske, T.A.

    2013-01-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

  11. Investigation on candidates of principal facilities for exposure dose to public for the facilities using nuclear material

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Sawahata, Hiroaki; Takada, Shoji; Fujimoto, Nozomu

    2015-01-01

    HTTR holds the nuclear fuel material use facilities in its reactor facilities, for the purpose of study on the fracture behavior of fuel and release behavior of fission products, development of high-performance fuel, and measurement of neutron flux. Due to the revision of the 'Act on the regulation of nuclear source material, nuclear fuel material and reactor', the facilities having the 'Important safety-related facilities' among the facilities applicable to the Enforcement Ordinance Article 41 (Article 41 facilities) has come to need to conform to the 'Regulations concerning standards for the location, structure, and equipment of used facilities and others'. In this case, actions such as modification by all possible means are required. The nuclear fuel substance use facilities of HTTR correspond to Article 41 facilities. So, whether it is a candidate for the 'Important safety-related facilities' has been examined. As a result, it is confirmed that the facilities are not correspond to the 'Important safety-related facilities', and it has been concluded that modification measures for the purpose of conforming to this approval standard rule are not necessary as of the present. (A.O.)

  12. Methodologies for nuclear material accounting and control: challenges and expectations

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2007-01-01

    Nuclear Material Accounting and Control (NUMAC) represents one of the most important and indispensable responsibilities of any nuclear installation. The emphasis is to ensure that the nuclear material being handled in the nuclear installation is properly accounted for with the expected accuracy and confidence levels. A number of analytical methods based on both destructive and non-destructive assay techniques are available at the disposal of the nuclear analytical scientists for this purpose and they have been enumerated extensively in literature. Instead of recounting the analytical methodologies available, an attempt has been made in this paper to highlight some of the challenges. (author)

  13. Special nuclear material information, security classification guidance. Instruction

    International Nuclear Information System (INIS)

    Flickinger, A.

    1982-01-01

    The Instruction reissues DoD Instruction 5210.67, July 5, 1979, and provides security classification guidance for information concerning significant quantities of special nuclear material, other than that contained in nuclear weapons and that used in the production of energy in the reactor plant of nuclear-powered ships. Security classification guidance for these data in the latter two applications is contained in Joint DoE/DoD Nuclear Weapons Classification Guide and Joint DoE/DoD Classification Guide for the Naval Nuclear Propulsion Program

  14. Communications received from certain member states regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    1993-04-01

    The document reproduces the text of a Note Verbale dated 5 March 1993 received by the Director General from the Ministry of Foreign Affairs of the Slovak Republic, in order to provide information on that Government's Guidelines for Nuclear Transfer and for Transfers of Nuclear - Related Dual-Use Equipment, Material and Related Technology

  15. Software for MUF evaluating in item nuclear material accounting

    International Nuclear Information System (INIS)

    Wang Dong; Zhang Quanhu; He Bin; Wang Hua; Yang Daojun

    2009-01-01

    Nuclear material accounting is a key measure for nuclear safeguard. Software for MUF evaluation in item nuclear material accounting was worked out in this paper. It is composed of several models, including input model, data processing model, data inquiring model, data print model, system setting model etc. It could be used to check the variance of the measurement and estimate the confidence interval according to the MUF value. To insure security of the data multi-user management function was applied in the software. (authors)

  16. Material control and accounting in the Department of Energy's nuclear fuel complex

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-01-01

    Material control and accounting takes place within an envelope of activities related to safeguards and security, as well as to safety, health, and environment, all of which need to be managed to assure that the entire nuclear fuel complex can operate in a societally accepted manner. Within this envelope the committee was directed to carry out the following scope of work: (1) Review the MCandA systems in use at selected DOE facilities that are processing special nuclear material (SNM) in various physical and chemical forms. (2) Design and convene a workshop for senior representatives from each of DOE's facilities on the flows and inventories of nuclear materials. (3) Plan and conduct a series of site visits to each of the facilities to observe first hand the processing operations and the related MCandA systems. (4) Review the potential improvement in overall safeguard systems effectiveness, as measured by expected reduction in inventory difference control limits and inventory differences for materials balance accounts and facilities, or other criteria as appropriate. Indicate how this affects the relative degree of uncertainty in the system. (5) Review the efficiency of operating the MCandA system with and without the upgrading options and assess whether upgrading will contribute further efficiencies in operation, which may reduce many of the current operations costs. Determine if the current system is cost-effective. (6) Recommend the most promising technical approaches for further development by DOE and further study as warranted.

  17. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    International Nuclear Information System (INIS)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.; Garcia, Ben J.; Sweet, Lucas E.; Carman, April J.; Eiden, Gregory C.

    2013-01-01

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in

  18. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  19. Nuclear material accountancy for and control of in Czech and Slovak Federal Republic

    International Nuclear Information System (INIS)

    Hladik, I.

    1991-01-01

    The Czechoslovak State System of Accounting for and Control of (SSAC) is described. It is discussed the organizational chart and role of the Czechoslovak Atomic Energy Commission as the State Authority in the Safeguards as well as its functions in the related fields (nuclear safety, physical protection) are mentioned. The individual nuclear facilities from the nuclear material accountancy point of view are shortly described and the necessity of well functioned facility level accountancy system is expressed. The cooperation between the SSAC and IAEA is mentioned and experience gained is briefly summarized

  20. The regulations concerning the uses of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and provisions concerning the uses of nuclear fuel materials in the order for execution of the law. Basic concepts and terms are explained, such as: exposure dose; accumulative dose; controlled area; inspected surrounding area and employee. The application for permission shall state the expected period and amount of the uses for each kind of nuclear fuel materials. Persons to whom spent fuels shall be sold, lent or returned and the method of disposal of such fuels shall be also indicated. Records shall be made and kept for particular periods for each works and enterprise on inspection of facilities, control of dose, maintenance and accident of facilities in use. The application for permission of the safeguard regulations shall report rules for each works and enterprise on the faculty and organization of controllers of facilities in use, safeguard education of employees, operation of apparatus which needs special control for prevention of disaster, establishment of controlled and inspected surrounding areas, entrance limitation, inspection of exposure dose, etc. Technical standards of the uses of nuclear fuel materials, disposal and transportation in the works and the enterprise and storage are stipulated in detail. Reports on exposure dose of employees and other specified matters shall be submitted every year to the Director General of Science and Technology Agency according to the forms attached. (Okada, K.)