WorldWideScience

Sample records for nuclear related materials

  1. Constitutive relations for nuclear reactor core materials

    International Nuclear Information System (INIS)

    Zaverl, F. Jr.; Lee, D.

    1978-01-01

    A strain rate dependent constitutive equation is proposed which is capable of describing inelastic deformation behavior of anisotropic metals, such as Zircaloys, under complex loading conditions. The salient features of the constitutive equations are that they describe history dependent inelastic deformation behaviour of anisotropic metals under three-dimensional stress states in the presence of fast neutron flux. It is shown that the general form of the constitutive relations is consistent with experimental observations made under both unirradiated and irradiated conditions. The utility of the model is demonstrated by examining the analytical results obtained for a segment of tubing undergoing different loading histories in a reactor. (Auth.)

  2. Holdup-related issues in safeguarding of nuclear materials

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1988-03-01

    Residual inventories of special nuclear materials (SNM) remaining in processing facilities (holdup) are recognized as an insidious problem for both safety and safeguards. This paper identifies some of the issues that are of concern to the safeguards community at-large that are related to holdup of SNM in large-scale process equipment. These issues range from basic technologies of SNM production to changing regulatory requirements to meet the needs of safeguarding nuclear materials. Although there are no magic formulas to resolve these issues, there are several initiatives that could be taken in areas of facility design, plant operation, personnel training, SNM monitoring, and regulatory guidelines to minimize the problems of holdup and thereby improve both safety and safeguards at nuclear material processing plants. 8 refs

  3. Some political issues related to future special nuclear materials production

    International Nuclear Information System (INIS)

    Peaslee, A.T. Jr.

    1981-08-01

    The Federal Government must take action to assure the future adequate supply of special nuclear materials for nuclear weapons. Existing statutes permit the construction of advanced defense production reactors and the reprocessing of commercial spent fuel for the production of special materials. Such actions would not only benefit the US nuclear reactor manufacturers, but also the US electric utilities that use nuclear reactors

  4. Nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    In 1998, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) performed 38 inspections, 25 of them were performed in co-operation with IAEA inspectors. There is no fresh nuclear fuel at Bohunice A-1 NPP at present. Fresh fuel of Bohunice V-1 and V-2 NPPs is inspected in the fresh fuel storage.There are 327 fresh fuel assemblies in Mochovce NPP fresh fuel storage. In addition to that, are also 71 small users of nuclear materials in Slovakia. In most cases they use: covers made of depleted uranium for non-destructive works, detection of level in production plants, covers for therapeutical sources at medical facilities. In. 1995, NRA SR issued 4 new licences for nuclear material withdrawal. In the next part manipulation with nuclear materials, spent fuel stores and illegal trafficking in nuclear materials are reported

  5. Analysis on Domestic Law and Management Trend Related to Small-Quantity Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Beom; Lee, Kyong Woo; Shim, Hye Won; Min, Gyung Sik [National Nuclear Management and Control Agency, Daejeon (Korea, Republic of)

    2005-07-01

    International Atomic Energy Agency (IAEA) has requested Korea to establish and manage the law ruling all nuclear materials through the INFCIRC/153. Now, it has been 30 years since Korea made the agreement, INFCIRC/153, with IAEA. Korea has tried their best to accomplish the international standard in nuclear control field and it is a fact that Korea finally produced some results in the nuclear control field. Related to nuclear material control, Korea is above the common level appropriately ranked 6th in the world in terms of nuclear power. Before 2000, Korea was making the foundation secure in the nuclear control. IAEA did not urge to establish the law supervising the small-quantity nuclear material and depleted uranium (DU). In a turnaround from early IAEA moderate line to Korea, the situation was changed. Since IAEA brought up the agenda to 2000 Joint Review Meeting between Korea-IAEA, IAEA has asked Korea to establish the control system for smallquantity nuclear material and DU. In 2003, the Korean government set up a project establishing the control system about all nuclear material including small-quantity nuclear material and DU. National Nuclear Management and Control Agency (NNCA), delegating the business relating to international controlling materials from government, developed some modules in nuclear material control system and operated it. The system includes a controlling system for small-quantity nuclear material. NNCA on behalf of government has collected the information and Korea Ministry of Science and Technology (MOST) has reported the information to the IAEA. This paper introduces you the background of controlling the small-quantity nuclear material and the system of controlling nuclear material in Korea. And it will suggest the improvement of the management method in the system for small-quantity nuclear material.

  6. Analysis on Domestic Law and Management Trend Related to Small-Quantity Nuclear Material

    International Nuclear Information System (INIS)

    Park, Jae Beom; Lee, Kyong Woo; Shim, Hye Won; Min, Gyung Sik

    2005-01-01

    International Atomic Energy Agency (IAEA) has requested Korea to establish and manage the law ruling all nuclear materials through the INFCIRC/153. Now, it has been 30 years since Korea made the agreement, INFCIRC/153, with IAEA. Korea has tried their best to accomplish the international standard in nuclear control field and it is a fact that Korea finally produced some results in the nuclear control field. Related to nuclear material control, Korea is above the common level appropriately ranked 6th in the world in terms of nuclear power. Before 2000, Korea was making the foundation secure in the nuclear control. IAEA did not urge to establish the law supervising the small-quantity nuclear material and depleted uranium (DU). In a turnaround from early IAEA moderate line to Korea, the situation was changed. Since IAEA brought up the agenda to 2000 Joint Review Meeting between Korea-IAEA, IAEA has asked Korea to establish the control system for smallquantity nuclear material and DU. In 2003, the Korean government set up a project establishing the control system about all nuclear material including small-quantity nuclear material and DU. National Nuclear Management and Control Agency (NNCA), delegating the business relating to international controlling materials from government, developed some modules in nuclear material control system and operated it. The system includes a controlling system for small-quantity nuclear material. NNCA on behalf of government has collected the information and Korea Ministry of Science and Technology (MOST) has reported the information to the IAEA. This paper introduces you the background of controlling the small-quantity nuclear material and the system of controlling nuclear material in Korea. And it will suggest the improvement of the management method in the system for small-quantity nuclear material

  7. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  8. Concerning major items in government ordinance requiring modification of part of enforcement regulation for law relating to control of nuclear material, nuclear fuel and nuclear reactor

    International Nuclear Information System (INIS)

    1989-01-01

    The report describes major items planned to be incorporated into the enforcement regulations for laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The modifications have become necessary for the nation to conclude a nuclear material protection treaty with other countries. The modification include the definitions of 'special nuclear fuel substances' and 'special nuclear fuel substances' and 'special nuclear fuel substances subject to protection'. The modifications require that protective measures be taken when handling and transporting special nuclear fuel substances subject to protection. Transport of special nuclear fuel substances requires approval from the Prime Minister or Transport Minister. Transport of special nuclear fuel substances subject to protection should be conducted after notifying the prefectural Public Safety Commission. Transport of special nuclear fuel substances subject to protection requires the conclusion of arrangements among responsible persons and approval of them from the Prime Minister. (N.K.)

  9. 'Low-activation' fusion materials development and related nuclear data needs

    International Nuclear Information System (INIS)

    Cierjacks, S.

    1990-01-01

    So-called ''low-activation'' materials are presently considered as an important means of improving the safety characteristics of future DT fusion reactors. Essential benefits are expected in various problem areas ranging from operation considerations to aspects of decommissioning and waste disposal. Present programs on ''low-activation'' materials development depend strongly on reliable activity calculations for a wide range of technologically important materials. The related nuclear data requirements and important needs for more and improved nuclear data are discussed. (author). 32 refs, 4 figs, 4 tabs

  10. Hot cell works and related irradiation tests in fission reactor for development of new materials for nuclear application

    International Nuclear Information System (INIS)

    Shikama, Tatsuo

    1999-01-01

    Present status of research works in Oarai Branch, Institute for Materials Research, Tohoku University, utilizing Japan Materials Testing Reactor and related hot cells will be described.Topics are mainly related with nuclear materials studies, excluding fissile materials, which is mainly aiming for development of materials for advanced nuclear systems such as a nuclear fusion reactor. Conflict between traditional and routined procedures and new demands will be described and future perspective is discussed. (author)

  11. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    conditions. There was also a session on accident analysis, a very important topic in today's nuclear technology. Other topics related to fission reactor technology included thermodynamics in waste management and fuel reprocessing. One severe limitation to scientists working in applied thermodynamics has been the lack of basic or fundamental thermodynamic data. Accordingly, several sessions of the Symposium were devoted to basic data on nuclear fuels as well as fundamental data on the thermodynamic properties of nuclear materials. The Symposium was indeed a timely one. It served as a mechanism by which the participants gained a comprehensive and complete picture of the current status of international thermodynamic investigations on nuclear materials. The data presented at the Symposium is not the final answer to nuclear material problems, but it will serve as a guide for further investigations. (author)

  12. MAT-DB - A database for nuclear energy related materials data

    International Nuclear Information System (INIS)

    Over, H.H.

    2009-01-01

    The web-enabled materials database (Mat-DB) of JRC-IE has a long-term history in storing materials test data resulting from European and international research projects. The database structure and the user-guidance has bee permanently updated improved and optimized. The database is implemented in the secure ODIN portal: https://odin.jrc.ec.europa.eu of JRC-IE. This architecture guarantees fast access to confidential and public data and documentation which are stored in an inter-related document management database (DoMa). It is a part of JRC's nuclear knowledge management. Mat-DB hosts the whole pool of IAEA surveillance data of reactor pressure vessel materials from different nuclear power plants of the member states. Mat-DB contains also thousands of European GEN IV reactor systems related R and D materials data which are an important basis for the evaluating and extrapolating design data for candidate materials and setting up design rules covering high temperature exposure, irradiation and corrosion. Those data and rules would match also fusion related components. Mat-DB covers thermo-mechanical and thermo-physical properties data of engineering alloys at low, elevated and high temperatures for base materials and joints, including irradiated materials for nuclear fission and fusion applications, thermal barrier coated materials for gas turbines and properties of corroded materials. The corrosion part refers to weight gain/loss data of high temperature exposed engineering alloys and ceramic materials. For each test type the database structure reflects international test standards and recommendations. Mat-DB features an extensive library of evaluation programs for web-enabled assessment of uniaxial creep, fatigue, crack growth and high temperature corrosion properties. Evaluations can be performed after data retrieval or independently of Mat-DB by transferring other materials data in a given format to the programs. The fast evaluation processes help the user to

  13. Communications Received from Certain Member States Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology. Nuclear Transfers and Nuclear-Related Dual-Use Transfers

    International Nuclear Information System (INIS)

    1993-04-01

    The Director General has received a Note Verbale dated 5 March 1993 from the Ministry of Foreign Affairs of the Slovak Republic. The purpose of the Note Verbale is to provide information on that Governments' guidelines for Nuclear Transfers and for Transfers of of Nuclear-related Dual-use Equipment, Material and Related Technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Note Verbale is annexed hereto [fr

  14. Communications Received from Certain Member States Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology. Nuclear Transfers and Nuclear-Related Dual-Use Transfers

    International Nuclear Information System (INIS)

    1993-04-01

    The Director General has received a Note Ver bale dated 5 March 1993 from the Ministry of Foreign Affairs of the Slovak Republic. The purpose of the Note Ver bale is to provide information on that Governments' guidelines for Nuclear Transfers and for Transfers of of Nuclear-related Dual-use Equipment, Material and Related Technology. In the light of the wish expressed at the end of each Note Ver bale, the text of the Note Ver bale is annexed hereto

  15. Communications Received from Certain Member States Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology. Nuclear Transfers and Nuclear-Related Dual-Use Transfers

    International Nuclear Information System (INIS)

    1993-04-01

    The Director General has received a Note Verbale dated 5 March 1993 from the Ministry of Foreign Affairs of the Slovak Republic. The purpose of the Note Verbale is to provide information on that Governments' guidelines for Nuclear Transfers and for Transfers of of Nuclear-related Dual-use Equipment, Material and Related Technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Note Verbale is annexed hereto [es

  16. Decree no 2007-1557 from November 2, 2007, relative to basic nuclear facilities and to the nuclear safety control of nuclear materials transport

    International Nuclear Information System (INIS)

    2007-11-01

    This decree concerns the enforcement of articles 5, 17 and 36 of the law 2006-686 from June 13, 2006, relative to the transparency and safety in the nuclear domain. A consultative commission of basic nuclear facilities is established. The decree presents the general dispositions relative to basic nuclear facilities, the dispositions relative to their creation and operation, to their shutdown and dismantling. It precises the dispositions in the domain of public utility services, administrative procedures and sanctions. It stipulates also the particular dispositions relative to other facilities located in the vicinity of nuclear facilities, relative to the use of pressure systems, and relative to the transport of radioactive materials. (J.S.)

  17. Development of a relational database for nuclear material (NM) accounting in RC and I Group

    International Nuclear Information System (INIS)

    Yadav, M.B.; Ramakumar, K.L.; Venugopal, V.

    2011-01-01

    A relational database for the nuclear material accounting in RC and I Group has been developed with MYSQL for Back-End and JAVA for Front-End development. Back-End has been developed to avoid any data redundancy, to provide random access of the data and to retrieve the required information from database easily. JAVA Applet and Java Swing components of JAVA programming have been used in the Front-End development. Front-End has been developed to provide data security, data integrity, to generate inventory status report at the end of accounting period, and also to have a quick look of some required information on computer screen. The database has been tested for the data of three quarters of the year 2009. It has been implemented from 1st January, 2010 for the accounting of nuclear material in RC and I Group. (author)

  18. Development of a relational database for nuclear material (NM) accounting in RC and I Group

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, M B; Ramakumar, K L; Venugopal, V [Radioanalytical Chemistry Division, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    A relational database for the nuclear material accounting in RC and I Group has been developed with MYSQL for Back-End and JAVA for Front-End development. Back-End has been developed to avoid any data redundancy, to provide random access of the data and to retrieve the required information from database easily. JAVA Applet and Java Swing components of JAVA programming have been used in the Front-End development. Front-End has been developed to provide data security, data integrity, to generate inventory status report at the end of accounting period, and also to have a quick look of some required information on computer screen. The database has been tested for the data of three quarters of the year 2009. It has been implemented from 1st January, 2010 for the accounting of nuclear material in RC and I Group. (author)

  19. Review of the IAEA Nuclear Fuel Cycle Materials Section activities related to WWER fuel

    International Nuclear Information System (INIS)

    Killeen, J.

    2003-01-01

    The IAEA Nuclear Fuel Cycle Programme, designated as Programme B, has the main objective of supporting Member States in policy making, strategic planning, developing technology and addressing issues with respect to safe, reliable, economically efficient, proliferation resistant and environmentally sound nuclear fuel cycle. This paper is concentrated on describing the work within Sub-programme B.2 'Fuel Performance and Technology'. Two Technical Working Groups assist in the preparation of the IAEA programme in the nuclear fuel cycle area - Technical Working Group on Water Reactor Fuel Performance and Technology and Technical Working Group on Nuclear Fuel Cycle Options. The activities of the Unit within the Nuclear Fuel Cycle and Materials Section working on Fuel Performance and Technology are given, based on the sub-programme structure of the Agency programme and budget for 2002-2003. Within the framework of Co-ordinated Research Projects a study of the delayed hydride cracking (DHC) of the zirconium alloys used in pressurised heavy water reactors (PHWR) involving 10 countries has been completed. It achieved very effective transfer of know-how at the laboratory level in three technologically important areas: 1) Controlled hydriding of samples to predetermined levels; 2) Accurate measurement of hydrogen concentrations at the relatively low levels found in pressure tubes and RBMK channel tubes; and 3) In the determination of DHC rates under various conditions of temperature and stress. A new project has been started on the 'Improvement of Models used for Fuel Behaviour Simulation' (FUMEX II) to assist Member States in improving the predictive capabilities of computer codes used in modelling fuel behaviour for extended burnup. The IAEA also collaborates with organisations in the Member States to support activities and meetings on nuclear fuel cycle related topics

  20. Nuclear material accounting handbook

    International Nuclear Information System (INIS)

    2008-01-01

    The handbook documents existing best practices and methods used to account for nuclear material and to prepare the required nuclear material accounting reports for submission to the IAEA. It provides a description of the processes and steps necessary for the establishment, implementation and maintenance of nuclear material accounting and control at the material balance area, facility and State levels, and defines the relevant terms. This handbook serves the needs of State personnel at various levels, including State authorities, facility operators and participants in training programmes. It can assist in developing and maintaining accounting systems which will support a State's ability to account for its nuclear material such that the IAEA can verify State declarations, and at the same time support the State's ability to ensure its nuclear security. In addition, the handbook is useful for IAEA staff, who is closely involved with nuclear material accounting. The handbook includes the steps and procedures a State needs to set up and maintain to provide assurance that it can account for its nuclear material and submit the prescribed nuclear material accounting reports defined in Section 1 and described in Sections 3 and 4 in terms of the relevant agreement(s), thereby enabling the IAEA to discharge its verification function as defined in Section 1 and described in Sections 3 and 4. The contents of the handbook are based on the model safeguards agreement and, where applicable, there will also be reference to the model additional protocol. As a State using The handbook consists of five sections. In Section 1, definitions or descriptions of terms used are provided in relation to where the IAEA applies safeguards or, for that matter, accounting for and control of nuclear material in a State. The IAEA's approach in applying safeguards in a State is also defined and briefly described, with special emphasis on verification. In Section 2, the obligations of the State

  1. International nuclear material safeguards

    International Nuclear Information System (INIS)

    Syed Azmi Syed Ali

    1985-01-01

    History can be a very dull subject if it relates to events which have long since lost their relevance. The factors which led to the creation of the International Atomic Energy Agency (IAEA), however, are as important and relevant today as they were when the Agency was first created. Without understanding these factors it is impossible to realise how important the Agency is in the present world or to understand some of the controversies surrounding its future. Central to these controversies is the question of how best to promote the international transfer of nuclear technology without contributing further to the problem of proliferating nuclear explosives or explosive capabilities. One effective means is to subject nuclear materials (see accompanying article in box), which forms the basic link between the manufacture of nuclear explosives and nuclear power generation, to international safeguards. This was realized very early in the development of nuclear power and was given greater emphasis following the deployment of the first two atomic bombs towards the end of World War II. (author)

  2. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel

    International Nuclear Information System (INIS)

    1988-07-01

    This paper is primarily concerned with Section 11 of INFCIRC/153 which provides for the possible termination of safeguards based on a determination that the nuclear material in question has been consumed, has been diluted, or has become practicably irrecoverable. Two distinctly different categories of nuclear material have been suggested for possible termination of safeguards based on a determination that the nuclear material has become practicably irrecoverable: One relates to a variety of low concentration waste materials, meaning thereby materials which the State or plant operator considers to be of questionable economic recoverability and the other relates to the spent fuel placed in facilities described as ''permanent repositories'' which are at least claimed to represent ''final disposal'' facilities and are candidates for a possible determination of practicably irrecoverable. 26 refs, tabs

  3. Safeguards for special nuclear materials

    International Nuclear Information System (INIS)

    Carlson, R.L.

    1979-12-01

    Safeguards, accountability, and nuclear materials are defined. The accuracy of measuring nuclear materials is discussed. The use of computers in nuclear materials accounting is described. Measures taken to physically protect nuclear materials are described

  4. The position of IAEA safeguards relative to nuclear material control accountancy by States

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards, which are always implemented on the basis of agreements which are concluded between one or more Governments and the IAEA, lay down the rights and obligations of the parties; and the more modern types of agreement, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do this in quite some detail. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. These are based on two basic obligations - that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the IAEA to ascertain the absence of diversion of nuclear material by verifying the findings of the States' systems, inter alia through independent measurements and observations. Other articles dealing also with the working relations between States and the IAEA rule that the IAEA should take due account of the technical effectiveness of the States' systems and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy on that of the facility operator. However, quantitative relationships in this respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rationale has been developed and possible practical arrangements discussed with several States concerned. The rationale for co-ordinating the work of the States' inspectorate with that of the IAEA was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted so as to reduce to a certain extent the IAEA's independent verification work in case the States would themselves do extensive verifications in a manner transparent to the IAEA. However, in practice it proved that there are a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards

  5. The position of IAEA safeguards relative to nuclear material control accountancy by states

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards are always implemented on the basis of agreements which are concluded between one or more Governments and the Agency. They lay down the rights and obligations of the parties; the more modern types of agreements, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do that in quite some details. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. Those are based on two basic obligations: that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the Agency to ascertain the absence of diversion of nuclear material by verifying the findings of the States' system, inter alia through independent measurements and observations. Other articles dealing also with the working relations States - IAEA rule that the Agency should take due account of the technical effectiveness of the States' system and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy from that of the facility operator. However, quantitative relationships in that respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rational has been developed and possible practical arrangements discussed with several States concerned. The rational for coordinating the work of the States' inspectorate with IAEA's inspectorate was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted in order to reduce to a certain extent the Agency's independent verification work in case the States would do extensive verifications themselves in a manner transparent to IAEA. However, in practice it proved that there are quite a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards objective

  6. Details of criminological investigations of large-valued thefts related to nuclear materials (diversion safeguards program)

    International Nuclear Information System (INIS)

    Leachman, R.B.; Cornella, A.P.

    1972-06-01

    Studies were made of five areas of criminology which have great similarity to the case of nuclear materials. Actual cases of crimes were analyzed by experts in law enforcement and criminal justice. To identify fields of analogous criminology, possible characteristics of nuclear material thefts were considered: total value, high unit cost, limited marketability, special technology for handling, and licensing. The items considered to be analogous to nuclear materials in these aspects were: narcotics, data (as exists in computer memories, tapes, or discs), precious metal and gems, objects of art, and weapons. A criminology survey was conducted in which 509 individuals received one or more questionnaires soliciting opinion responses. Sixty-five questionnaires were returned. Eighty-four individuals replied by letter indicating inadequate knowledge of the crimes being surveyed. The questionnaire was supplemented by 18 interviews with criminal justice and industry personnel for more definitive information on diversion problems. Results of this survey are reported

  7. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  8. Comprehensive nuclear materials

    CERN Document Server

    Allen, Todd; Stoller, Roger; Yamanaka, Shinsuke

    2012-01-01

    Comprehensive Nuclear Materials encapsulates a panorama of fundamental information on the vast variety of materials employed in the broad field of nuclear technology. The work addresses, in five volumes, 3,400 pages and over 120 chapter-length articles, the full panorama of historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. It synthesizes the most pertinent research to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

  9. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  10. Royal order relating to the transfer of nuclear materials and technology to non-nuclear weapon states

    International Nuclear Information System (INIS)

    1989-05-01

    In implementation of the Act of 1981 on conditions for the export of nuclear materials, equipment and technological data, this Order sets down the detailed mechanisms for such transfers. Its object is to ensure that they will be carried out exclusively for peaceful purposes and in conformity with the NPT [fr

  11. The standardization of data relational mode in the materials database for nuclear power engineering

    International Nuclear Information System (INIS)

    Wang Xinxuan

    1996-01-01

    A relational database needs standard data relation ships. The data relation ships include hierarchical structures and repeat set records. Code database is created and the relational database is created between spare parts and materials and properties of the materials. The data relation ships which are not standard are eliminated and all the relation modes are made to meet the demands of the 3NF (Third Norm Form)

  12. Nuclear materials management procedures

    International Nuclear Information System (INIS)

    Veevers, K.; Silver, J.M.; Quealy, K.J.; Steege, E. van der.

    1987-10-01

    This manual describes the procedures for the management of nuclear materials and associated materials at the Lucas Heights Research Laboratories. The procedures are designed to comply with Australia's nuclear non-proliferation obligations to the International Atomic Energy Agency (IAEA), bilateral agreements with other countries and ANSTO's responsibilities under the Nuclear Non-Proliferation (Safeguards) Act, 1987. The manual replaces those issued by the Australian Atomic Energy Commission in 1959, 1960 and 1969

  13. The nuclear materials contraband

    International Nuclear Information System (INIS)

    Williams, P.; Woessner, P.

    1996-01-01

    Several seizures of nuclear materials carried by contraband have been achieved. Some countries or criminal organizations could manufacture atomic bombs and use them. This alarming situation is described into details. Only 40% of drugs are seized by the American police and probably less in western Europe. The nuclear materials market is smaller than the drugs'one but the customs has also less experience to intercept the uranium dispatch for instance more especially as the peddlers are well organized. A severe control of the international transports would certainly allow to seize a large part of nuclear contraband materials but some dangerous isotopes as uranium 235 or plutonium 239 are little radioactive and which prevents their detection by the Geiger-Mueller counters. In France, some regulations allow to control the materials used to manufacture the nuclear weapons, and diminish thus the risk of a nuclear materials contraband. (O.L.). 4 refs., 2 figs

  14. Regulatory problems relating to physical protection of nuclear plants and materials in Italy

    International Nuclear Information System (INIS)

    Nocera, F.

    1981-10-01

    Although the questions raised by physical protection have an international charater, it is important to know of national regulations in that field since exchange of information and study of common problems help to achieve satisfactory results. This paper analyses the Italian situation, by illustrating legislative and administrative actions undertaken as well as the practices adopted in Italy to meet problems of prevention of malevolent acts against nuclear installations and substances, until such time an Act is passed in this respect. Finally, the author is in favour of the 1980 Convention of Physical Protection of Nuclear Material being ratified soon by a large number of countries. (NEA) [fr

  15. Auditing nuclear materials statements

    International Nuclear Information System (INIS)

    Anon.

    1973-01-01

    A standard that may be used as a guide for persons making independent examinations of nuclear materials statements or reports regarding inventory quantities on hand, receipts, production, shipment, losses, etc. is presented. The objective of the examination of nuclear materials statements by the independent auditor is the expression of an opinion on the fairness with which the statements present the nuclear materials position of a nuclear materials facility and the movement of such inventory materials for the period under review. The opinion is based upon an examination made in accordance with auditing criteria, including an evaluation of internal control, a test of recorded transactions, and a review of measured discards and materials unaccounted for (MUF). The standard draws heavily upon financial auditing standards and procedures published by the American Institute of Certified Public Accountants

  16. Supply of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    Any large-scale atomic energy programme is inherently dependent on the availability of materials that can be used as fuel in reactors, and the International Atomic Energy Agency, at its inception, was intended to act as a bank for the flow of materials between Member States. According to its Statute, one of its primary functions is to provide materials 'to meet the needs of research on, and development and practical application of, atomic energy for peaceful purposes, including the production of electric power, with due consideration for the needs of the under-developed areas of the world'. If the Agency is to fulfil its Statutory function, it would be essential for it to have not only some ready sources of supply, but also an established framework of general terms and conditions on which it could secure the supplies. The latter would eliminate the need for going through elaborate procedural formalities whenever the Agency receives a new request for materials. Such a framework has now been established with the signing of broad agreements with three countries which had offered to supply various quantities of special fissionable materials to the Agency. These agreements, signed in Vienna on 11 May 1959, with the USSR, the UK and the USA, lay down the basic terms and conditions on which these three countries will make nuclear materials available when needed by the Agency. The USSR has agreed to make available to the Agency 50 kg of uranium-235, the UK 20 kg and the USA 5 000 kg. The material will be supplied in the form of enriched uranium in any concentration up to 20 per cent; the amounts mentioned relate to the 235-isotope content of the materials. The UK and the USA have agreed that the parties to a particular supply agreement may decide on higher enrichment of uranium to be used for research reactors, material testing reactors or for other research purposes. The USA has also agreed to make available to the Agency such additional supplies as would match in amount

  17. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  18. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  19. Nuclear material operations manuals

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1979-06-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  20. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.; Gassman, L.D.

    1978-04-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations--management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of ''play-scripts'' in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  1. Smuggling special nuclear materials

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    1999-01-01

    Ever since the collapse of the former Soviet Union reports have circulated with increasing frequency concerning attempts to smuggle materials from that country's civil and military nuclear programs. Such an increase obviously raises a number of concerns (outlined in the author's introduction), chief among which is the possibility that these materials might eventually fall into the hands of proliferant states or terrorist groups. The following issues are presented: significance of materials being smuggled; sources and smuggling routes; potential customers; international efforts to reduce nuclear smuggling; long-term disposition of fissile materials. (author)

  2. Nuclear public relations campaign

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    A two-day hearing to investigate DOE's participation in a $30 million nuclear public relations program at a time when the country is asked to decrease spending and in conjunction with similar efforts by the nuclear industry focused on the issue of whether ratepayers or shareholders should finance the effort. Shelby Brewer, Assistant Secretary for Nuclear Energy, defended the expenditures as a response to public demand for information and the need to correct misinformation. The testimony of 14 other witnesses includes the views of citizen and professional groups, utilities, and government agencies. Their testimony is followed by additional material submitted for the record. (DCK)

  3. Automated nuclear materials accounting

    International Nuclear Information System (INIS)

    Pacak, P.; Moravec, J.

    1982-01-01

    An automated state system of accounting for nuclear materials data was established in Czechoslovakia in 1979. A file was compiled of 12 programs in the PL/1 language. The file is divided into four groups according to logical associations, namely programs for data input and checking, programs for handling the basic data file, programs for report outputs in the form of worksheets and magnetic tape records, and programs for book inventory listing, document inventory handling and materials balance listing. A similar automated system of nuclear fuel inventory for a light water reactor was introduced for internal purposes in the Institute of Nuclear Research (UJV). (H.S.)

  4. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  5. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel (AGM-660)

    International Nuclear Information System (INIS)

    1988-12-01

    The Advisory Group was asked to advise the Agency on the circumstances under which the Agency might logically implement Section 11 of INFCIRC/153, or the comparable Section 26c of INFCIRC/66/rev2, which provides for a determination that nuclear material is 'practicably irrecoverable', and that therefore safeguards could be terminated. This advice was sought, and in the paragraphs that follow is given, in two areas. One relates to 'waste', which the Group understands as referring to material which contains nuclear material that the State/facility operator believes has no economically recoverable value and for which no further use is foreseen. The other relates to spent fuel, which in some cases may be placed in geological 'permanent repositories'

  6. Hydrological dispersion of radioactive material in relation to nuclear power plant siting

    International Nuclear Information System (INIS)

    1985-01-01

    This Guide discusses the dispersion of normal and accidental releases of radioactive materials from nuclear power plants into surface water, including the washout of airborne radionuclides, and gives recommendations on information to be collected during the various stages of the siting procedure, a minimum measurement programme and the selection and validation of appropriate mathematical models for predicting dispersion. Guidelines are also provided for the optimal use of models for a specific site situation and for defining the necessary input parameters. Results of existing validation studies are given

  7. Professional Nuclear Materials Management

    International Nuclear Information System (INIS)

    Forcella, A.A.; O'Leary, W.J.

    1966-01-01

    This paper describes the scope of nuclear materials management for a typical power reactor in the United States of America. Since this power reactor is financed by private capital, one of the principal obligations of the reactor operator is to ensure that the investment is protected and will furnish an adequate financial return. Because of the high intrinsic value of nuclear materials, appropriate security and accountability must be continually exercised to minimize losses beyond security and accountability for the nuclear materials. Intelligent forethought and planning must be employed to ensure that additional capital is not lost as avoidable additional costs or loss of revenue in a number of areas. The nuclear materials manager must therefore provide in advance against the following contingencies and maintain constant control or liaison against deviations from planning during (a) pre-reactor acquisition of fuel and fuel elements, (b) in-reactor utilization of the fuel elements, and (c) post-reactor recovery of fuel values. During pre-reactor planning and operations, it is important that the fuel element be designed for economy in manufacture, handling, shipping, and replaceability. The time schedule for manufacturing operations must minimize losses of revenue from unproductive dead storage of high cost materials. For in-reactor operations, the maximum achievable burn-up of the fissionable material must be obtained by means of appropriate fuel rearrangement schemes. Concurrently the unproductive down-time of the reactor for fuel rearrangement, inspections, and the like must be minimized. In the post-reactor period, when the fuel has reached a predetermined depletion of fissionable material, the nuclear materials manager must provide for the most economical reprocessing and recovery of fissionable values and by-products. Nuclear materials management is consequently an essential factor in achieving competitive fuel cycle and unit energy costs with power reactors

  8. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  9. Detecting Illicit Nuclear Materials

    International Nuclear Information System (INIS)

    Kouzes, Richard T.

    2005-01-01

    The threat that weapons of mass destruction might enter the United States has led to a number of efforts for the detection and interdiction of nuclear, radiological, chemical, and biological weapons at our borders. There have been multiple deployments of instrumentation to detect radiation signatures to interdict radiological material, including weapons and weapons material worldwide

  10. Neutron imaging methods for the investigation of energy related materials. Fuel cells, battery, hydrogen storage and nuclear fuel

    Science.gov (United States)

    Lehmann, Eberhard H.; Boillat, Pierre; Kaestner, Anders; Vontobel, Peter; Mannes, David

    2015-10-01

    After a short explanation of the state-of-the-art in the field of neutron imaging we give some examples how energy related materials can be studied successfully. These are in particular fuel cell studies, battery research approaches, the storage of hydrogen, but also some investigations with nuclear fuel components. The high contrast for light isotopes like H-1, Li-6 or B-10 are used to trace low amounts of material even within compact sealing of metals which are relatively transparent for neutrons at the same time.

  11. Safeguards on nuclear materials

    International Nuclear Information System (INIS)

    Cisar, V.; Keselica, M.; Bezak, S.

    2001-01-01

    The article describes the implementation of IAEA safeguards for nuclear materials in the Czech and Slovak Republics, the establishment and development of the State System of Accounting for and Control of Nuclear Material (SSAC) at the levels of the state regulatory body and of the operator, particularly at the Dukovany nuclear power plant. A brief overview of the historical development is given. Attention is concentrated on the basic concepts and legal regulation accepted by the Czech and Slovak Republics in accordance with the new approach to create a complete legislative package in the area of nuclear energy uses. The basic intention is to demonstrate the functions of the entire system, including safeguards information processing and technical support of the system. Perspectives of the Integrated Safeguards System are highlighted. The possible ways for approximation of the two national systems to the Safeguards System within the EU (EURATOM) are outlined, and the necessary regulatory and operators' roles in this process are described. (author)

  12. Materials interactions relating to long-term geologic disposal of nuclear waste glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jantzen, C.M.

    1987-01-01

    In the geologic disposal of nuclear waste glass, the glass will eventually interact with groundwater in the repository system. Interactions can also occur between the glass and other waste package materials that are present. These include the steel canister that holds the glass, the metal overpack over the canister, backfill materials that may be used, and the repository host rock. This review paper systematizes the additional interactions that materials in the waste package will impose on the borosilicate glass waste form-groundwater interactions. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g. oxic vs anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interactions is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. It is noted when further tests of repository interactions are needed before long-term predictions can be made. 63 references, 1 table

  13. On the importance of organic materials in environmental systems in relation with nuclear waste disposals

    International Nuclear Information System (INIS)

    Moulin, V.; Moulin, C.

    1995-01-01

    The occurrence of humic substances (humic and fulvic acids) in natural systems at different concentration ranges (from some ppm to several hundred ppm) according to the geological environment (crystalline, sedimentary,...) will strongly affect the speciation of radionuclides due to their strong complexing properties towards cations. In order to predict the fate of these radionuclides in conditions relevant to those occurring around nuclear waste disposals in geological formations, the knowledge of the characteristics of the humic materials (occurrence, properties) and their complexing properties towards radionuclides should be assess in order to be able to introduce them into geochemical codes. The methods of extraction, separation and characterisation of humic substances occurring in a granitic environment are presented with results concerning their proportion in the natural water and their main specificities (elementary analysis, size analysis, binding site content,...). The complexation of fluorescent actinide (Cm, U) and lanthanide (Dy) cations with humic substances is investigated through the use of Time-Resolved Laser-Induced Spectrofluorometry (TRLIS) under various experimental conditions (pH (4-7), ionic strength (0.001 M to 0.1 M), cation concentrations (from nM to μM)). Spectrophotometry has been used to study the complexation of a non-fluorescent cation (Np) with humic substances. The principle of these techniques (non-destructive) is based on the titration of the cation by the organic ligand (inducing either a change in the fluorescence signal or a shift in the absorbance spectrum) which allows interaction constant and complexing capacity determination. The results obtained for each cation representative of tri-, penta- and hexavalent actinides of interest for safety assessment of nuclear waste disposals are presented, compared and discussed. From the data here obtained, actinide speciation under conditions relevant to nuclear waste disposal in

  14. Problems in complying with regulations related to low activity materials: Nuclear fuel cycle issues

    International Nuclear Information System (INIS)

    Coates, R.

    1997-01-01

    The range of issues relating to exemption and clearance within the nuclear fuel cycle is reviewed. It is concluded that current regulatory systems and the underpinning technical criteria are potentially inflexible and over-conservative, resulting in an imbalance in the use of society's resources. Proposals are developed for establishing practical requirements which would ensure that resource allocation is commensurate with the magnitude of the risks and in broad proportion to the other risks affecting society. Such an approach would be consistent with the concept of sustainability and could support wider public acceptance of these issues. Within this approach the practical distinction between exemption and clearance is challenged. (author)

  15. Global partnering related to nuclear materials safeguards and security - A pragmatic approach to international safeguards work

    International Nuclear Information System (INIS)

    Stanford, Dennis

    2007-01-01

    This paper documents issues Nuclear Fuel Services, Inc. has addressed in the performance of international work to safeguards and security work. It begins with a description of the package we put together for a sample proposal for the Global Threat Reduction Initiative, for which we were ranked number one for technical approach and cost, and concludes with a discussion of approaches that we have taken to performing this work, including issues related to performing the work as part of a team. The primary focus is on communication, workforce, equipment, and coordination issues. Finally, the paper documents the rules that we use to assure the work is performed safely and successfully. (author)

  16. Communications received from certain Member States regarding guidelines for the export of nuclear material, equipment and technology. Nuclear-related dual-use transfers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The Director General has received notes verbales dated 30 June 1995 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Bulgaria, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, the Slovak Republic, South Africa, Spain, Sweden, Switzerland, the United Kingdom of Great Britain and Northern Ireland, and the United States of America relating to the export of nuclear material, equipment and technology. The purpose of the notes verbales is to provide further information on those Governments` Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material and related Technology. In the light of the wish expressed at the end of each note verbale, the text of the notes verbales is annexed hereto. The enclosure to these notes verbales is also reproduced in full in the Annex.

  17. Communications received from certain Member States regarding guidelines for the export of nuclear material, equipment and technology. Nuclear-related dual-use transfers

    International Nuclear Information System (INIS)

    1995-10-01

    The Director General has received notes verbales dated 30 June 1995 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Bulgaria, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, the Slovak Republic, South Africa, Spain, Sweden, Switzerland, the United Kingdom of Great Britain and Northern Ireland, and the United States of America relating to the export of nuclear material, equipment and technology. The purpose of the notes verbales is to provide further information on those Governments' Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material and related Technology. In the light of the wish expressed at the end of each note verbale, the text of the notes verbales is annexed hereto. The enclosure to these notes verbales is also reproduced in full in the Annex

  18. Materials-related issues in the safety and licensing of nuclear fusion facilities

    Science.gov (United States)

    Taylor, N.; Merrill, B.; Cadwallader, L.; Di Pace, L.; El-Guebaly, L.; Humrickhouse, P.; Panayotov, D.; Pinna, T.; Porfiri, M.-T.; Reyes, S.; Shimada, M.; Willms, S.

    2017-09-01

    Fusion power holds the promise of electricity production with a high degree of safety and low environmental impact. Favourable characteristics of fusion as an energy source provide the potential for this very good safety and environmental performance. But to fully realize the potential, attention must be paid in the design of a demonstration fusion power plant (DEMO) or a commercial power plant to minimize the radiological hazards. These hazards arise principally from the inventory of tritium and from materials that become activated by neutrons from the plasma. The confinement of these radioactive substances, and prevention of radiation exposure, are the primary goals of the safety approach for fusion, in order to minimize the potential for harm to personnel, the public, and the environment. The safety functions that are implemented in the design to achieve these goals are dependent on the performance of a range of materials. Degradation of the properties of materials can lead to challenges to key safety functions such as confinement. In this paper the principal types of material that have some role in safety are recalled. These either represent a potential source of hazard or contribute to the amelioration of hazards; in each case the related issues are reviewed. The resolution of these issues lead, in some instances, to requirements on materials specifications or to limits on their performance.

  19. Nuclear materials transportation

    International Nuclear Information System (INIS)

    Ushakov, B.A.

    1986-01-01

    Various methods of nuclear materials transportation at different stages of the fuel cycle (U 3 O 8 , UF 6 production enrichment, fuel element manufacturing, storage) are considered. The advantages and drawbacks of railway, automobile, maritime and air transport are analyzed. Some types of containers are characterized

  20. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2003-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbales dated 28 February 2003 from the Resident Representatives to the Agency of Argentina, Austria, Belgium, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Japan, Kazakhstan, Latvia, Netherlands, Norway, Portugal, Republic of Korea, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland, and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology. The purpose of the Note Verbales is to provide further information on those Governments' Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbales is attached. The attachment to these Notes Verbales is also reproduced in full

  1. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2005-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbales dated 25 October 2004 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Brazil, Canada, Cyprus, Czech Republic, Estonia, Finland, France, Greece, Hungary, Italy, Japan, Malta, Netherlands, Norway, Republic of Korea, South Africa, Spain, Sweden, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology. The purpose of the Notes Verbales is to provide further information on those Governments' guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbales is attached. The attachment to these Notes Verbales is also reproduced in full

  2. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-16

    The Director General of the International Atomic Energy Agency has received Notes Verbales dated 28 February 2003 from the Resident Representatives to the Agency of Argentina, Austria, Belgium, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Japan, Kazakhstan, Latvia, Netherlands, Norway, Portugal, Republic of Korea, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland, and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology. The purpose of the Note Verbales is to provide further information on those Governments' Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbales is attached. The attachment to these Notes Verbales is also reproduced in full.

  3. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-23

    The Director General of the International Atomic Energy Agency has received Notes Verbales dated 25 October 2004 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Brazil, Canada, Cyprus, Czech Republic, Estonia, Finland, France, Greece, Hungary, Italy, Japan, Malta, Netherlands, Norway, Republic of Korea, South Africa, Spain, Sweden, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology. The purpose of the Notes Verbales is to provide further information on those Governments' guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbales is attached. The attachment to these Notes Verbales is also reproduced in full.

  4. Nuclear materials transport worldwide

    International Nuclear Information System (INIS)

    Stellpflug, J.

    1987-01-01

    This Greenpeace report shows: nuclear materials transport is an extremely hazardous business. There is no safe protection against accidents, kidnapping, or sabotage. Any moment of a day, at any place, a nuclear transport accident may bring the world to disaster, releasing plutonium or radioactive fission products to the environment. Such an event is not less probable than the MCA at Chernobyl. The author of the book in hand follows the secret track of radioactive materials around the world, from uranium mines to the nuclear power plants, from reprocessing facilities to the waste repositories. He explores the routes of transport and the risks involved, he gives the names of transport firms and discloses incidents and carelessness, tells about damaged waste drums and plutonium that 'disappeared'. He also tells about worldwide, organised resistance to such nuclear transports, explaining the Greenpeace missions on the open sea, or the 'day X' operation at the Gorleben site, informing the reader about protests and actions for a world freed from the threat of nuclear energy. (orig./HP) [de

  5. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1962-01-01

    The first session of the symposium discussed in general the thermodynamic properties of actinides, including thorium, uranium and Plutonium which provide reactor fuel. The second session was devoted to applications of thermodynamic theory to the study of nuclear materials, while the experimental techniques for the determination of thermodynamic data were examined at the next session. The thermodynamic properties of alloys were considered at a separate session, and another session was concerned with solids other than alloys. Vaporization processes, which are of special interest in the development of high-temperature reactors, were discussed at a separate session. The discussions on the methods of developing the data and ascertaining their accuracy were especially useful in highlighting the importance of determining whether any given data are reliable before they can be put to practical application. Many alloys and refractory materials (i. e. materials which evaporate only at very high temperatures) are of great importance in nuclear technology, and some of these substances are extremely complex in their chemical composition. For example, until recently the phase composition of the oxides of thorium, uranium and plutonium had been only very imperfectly understood, and the same was true of the carbides of these elements. Recent developments in experimental techniques have made it possible to investigate the phase composition of these complex materials as well as the chemical species of these materials in the gaseous phase. Recent developments in measuring techniques, such as fluorine bomb calorimetry and Knudsen effusion technique, have greatly increased the accuracy of thermodynamic data

  6. Communications Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2006-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbales, dated 1 December 2005, from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, Croatia, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, New Zealand, Poland, Portugal, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology [es

  7. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-09

    The document reproduces the text of the Notes Verbales received by the Director General of the IAEA on 20 October 1999 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, the Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, the Slovak Republic, South Africa, Spain, Sweden, Switzerland, Ukraine, the United Kingdom, and the United States of America relating to the transfers of nuclear-related dual-use equipment, materials, software and related technology.

  8. Communications received from certain Member States regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Notes Verbales received by the Director General of the IAEA on 20 October 1999 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, the Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, the Slovak Republic, South Africa, Spain, Sweden, Switzerland, Ukraine, the United Kingdom, and the United States of America relating to the transfers of nuclear-related dual-use equipment, materials, software and related technology

  9. Communications Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2006-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbales, dated 1 December 2005, from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, Croatia, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, New Zealand, Poland, Portugal, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology

  10. Communications Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2006-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbales, dated 1 December 2005, from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, Croatia, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, New Zealand, Poland, Portugal, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology [fr

  11. Transportation of nuclear materials

    International Nuclear Information System (INIS)

    Brobst, W.A.

    1977-01-01

    Twenty years of almost accident-free transport of nuclear materials is pointed to as evidence of a fundamentally correct approach to the problems involved. The increased volume and new technical problems in the future will require extension of these good practices in both regulations and packaging. The general principles of safety in the transport of radioactive materials are discussed first, followed by the transport of spent fuel and of radioactive waste. The security and physical protection of nuclear shipments is then treated. In discussing future problems, the question of public understanding and acceptance is taken first, thereafter transport safeguards and the technical bases for the safety regulations. There is also said to be a need for a new technology for spent fuel casks, while a re-examination of the IAEA transport standards for radiation doses is recommended. The IAEA regulations regarding quality assurance are said to be incomplete, and more information is required on correlations between engineering analysis, scale model testing and full scale crash testing. Transport stresses on contents need to be considered while administrative controls have been neglected. (JIW)

  12. NA Departmental Activities Related to Nuclear Materials for Advanced Reactor Systems

    International Nuclear Information System (INIS)

    Zeman, Andrej

    2013-01-01

    Overview of completed and ongoing coordinated research projects which address the following issues: (1) Better understanding of radiation effects and mechanisms of material damage and basic physics of accelerator irradiation under specific conditions, (2) Improvement of knowledge and data for the present and new generation of structural materials, (3) Contribution to developmental of theoretical models for radiation degradation mechanism, (4) Fostering of advanced and innovative technologies by support of Round Robin testing, collaboration and networking

  13. Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste

    International Nuclear Information System (INIS)

    Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

    2002-01-01

    Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES and H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial. Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing

  14. Material interactions relating to long-term geologic disposal of nuclear waste glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jantzen, C.M.

    1986-01-01

    This review paper systematizes the additional interactions that materials in a geologic repository will impose on the borosilicate glass waste form-groundwater interactions. These materials are the steel canister that holds the glass, the steel overpack over the canister, backfill materials that may be used, and last, the repository host rock. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g., oxic vs anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interaction(s) is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. Repository relevant interactions testing that requires further study before long-term predictions can be made are noted. 62 refs

  15. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  16. Study of nuclear material accounting

    International Nuclear Information System (INIS)

    Ruderman, H.

    1977-01-01

    The implications of deliberate diversion of nuclear materials on materials accounting, the validity of the MUF concept to establish assurance concerning the possible diversion of special nuclear materials, and an economic analysis to permit cost comparison of varying the inventory frequency are being studied. An inventory cost model, the statistical hypothesis testing approach, the game theoretic approach, and analysis of generic plants are considered

  17. Global nuclear material control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  18. Environmental-impact appraisal related to special nuclear materials. License No. SNM-696; Docket No. 70-734

    International Nuclear Information System (INIS)

    1983-06-01

    This Environmental Impact Appraisal is issued by the US Nuclear Regulatory Commission in response to an application by GA Technologies, Inc., (GA) for renewal of Special Nuclear Material (SNM) License No. SNM-696 covering plant operations at San Diego, California. The proposed action provides for continuing research, development, and production activities involving SNM, uranium enriched in the U-235 and U-233 isotopes, and plutonium

  19. Nuclear materials inventory plan

    International Nuclear Information System (INIS)

    Doerr, R.W.; Nichols, D.H.

    1982-03-01

    In any processing, manufacturing, or active storage facility it is impractical to assume that any physical security system can prevent the diversion of Special Nuclear Material (SNM). It is, therefore, the responsibility of any DOE Contractor, Licensee, or other holder of SNM to provide assurance that loss or diversion of a significant quantity of SNM is detectable. This ability to detect must be accomplishable within a reasonable time interval and can be accomplished only by taking physical inventories. The information gained and decisions resulting from these inventories can be no better than the SNM accounting system and the quality of measurements performed for each receipt, removal and inventory. Inventories interrupt processing or production operations, increase personnel exposures, and can add significantly to the cost of any operation. Therefore, realistic goals for the inventory must be defined and the relationship of the inherent parameters used in its validation be determined. Purpose of this document is to provide a statement of goals and a plan of action to achieve them

  20. Better materials for nuclear energy

    International Nuclear Information System (INIS)

    Banerjee, S.

    2005-01-01

    material joining are some outstanding issues, which need to be addressed for the successful development of high temperature reactor systems. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  1. Illicit diversion of nuclear materials

    International Nuclear Information System (INIS)

    Bett, F.L.

    1975-08-01

    This paper discusses the means of preventing illegal use of nuclear material by terrorists or other sub-national groups and by governments. With respect to sub-national groups, it concludes that the preventive measures of national safeguards systems, when taken together with the practical difficulties of using nuclear material, would make the diversion and illegal use of nuclear material unattractive in comparison with other avenues open to these groups to attain their ends. It notes that there are only certain areas in the nuclear fuel cycle, e.g. production of some types of nuclear fuel embodying highly enriched uranium and shipment of strategically significant nuclear material, which contain material potentially useful to these groups. It also discusses the difficult practical problems, e.g. coping with radiation, which would face the groups in making use of the materials for terrorist purposes. Concerning illegal use by Governments, the paper describes the role of international safeguards, as applied by the International Atomic Energy Agency, and the real deterrent effect of these safeguards which is achieved through the requirements to maintain comprehensive operating records of the use of nuclear material and by regular inspections to verify these records. The paper makes the point that Australia would not consider supplying nuclear material unless it were subject to international safeguards. (author)

  2. Nuclear material control in Spain

    International Nuclear Information System (INIS)

    Velilla, A.

    1988-01-01

    A general view about the safeguards activities in Spain is presented. The national system of accounting for and control of nuclear materials is described. The safeguards agreements signed by Spain are presented and the facilities and nuclear materials under these agreements are listed. (E.G.) [pt

  3. Nuclear material control in Brazil

    International Nuclear Information System (INIS)

    Marzo, M.A.S.; Iskin, M.C.L.; Palhares, L.C.; Almeida, S.G. de.

    1988-01-01

    A general view about the safeguards activities in Brazil is presented. The national system of accounting for and control of nuclear materials is described. The safeguards agreements signed by Brazil are presented, the facilities and nuclear material under these agreements are listed, and the dificulties on the pratical implementation are discussed. (E.G.) [pt

  4. District file of major risks for the Moselle district: B6 - The nuclear risk; B7 - The risk related to radioactive material transport

    International Nuclear Information System (INIS)

    2013-10-01

    A first document addresses the nuclear risk with some generalities (definition, occurrence, consequences for people and for the environment with an indication of exposure thresholds, presentation of individual safety directives), a discussion of the nuclear risk level in the district (history, contamination threats, preventive actions for the Cattenom nuclear plant, existence of a triple barrier for radioactive product containment, other factors aimed at nuclear safety, urban development control, control of nuclear activities, information, rescue organisation, map of concerned communes). The second document addresses the risk related to radioactive material transport with some generalities (definition, occurrence, consequences for persons and goods, individual safety directive in case of road or railway accident), a more detailed analysis of the risk in the district (situation of the radioactive material transport in the district, risk history, human and environmental stakes, preventive actions, radiation protection safety challenges, safety factors, control of transports, rescue organisation)

  5. Identification and Assessment of Material Models for Age-Related Degradation of Structures and Passive Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nie,J.; Braverman, J.; Hofmayer, C.; Kim, M. K.; Choi, I-K.

    2009-04-27

    When performing seismic safety assessments of nuclear power plants (NPPs), the potential effects of age-related degradation on structures, systems, and components (SSCs) should be considered. To address the issue of aging degradation, the Korea Atomic Energy Research Institute (KAERI) has embarked on a five-year research project to develop a realistic seismic risk evaluation system which will include the consideration of aging of structures and components in NPPs. Three specific areas that are included in the KAERI research project, related to seismic probabilistic risk assessment (PRA), are probabilistic seismic hazard analysis, seismic fragility analysis including the effects of aging, and a plant seismic risk analysis. To support the development of seismic capability evaluation technology for degraded structures and components, KAERI entered into a collaboration agreement with Brookhaven National Laboratory (BNL) in 2007. The collaborative research effort is intended to continue over a five year period with the goal of developing seismic fragility analysis methods that consider the potential effects of age-related degradation of SSCs, and using these results as input to seismic PRAs. In the Year 1 scope of work BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations that will be performed in the subsequent evaluations in the years that follow. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. This report

  6. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  7. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  8. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  9. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  10. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  11. Nuclear measurements and reference materials

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes the progress of the JRC programs on nuclear data, nuclear metrology, nuclear reference materials and non-nuclear reference materials. Budget restrictions and personnel difficulties were encountered during 1987. Fission properties of 235 U as a function of neutron energy and of the resonances can be successfully described on the basis of a three exit channel fission model. Double differential neutron emission cross-sections were accomplished on 7 Li and were started for the tritium production cross-section of 9 Be. Reference materials of uranium minerals and ores were prepared. Special nuclear targets were prepared. A batch of 250 g of Pu0 2 was characterized in view of certification as reference material for the elemental assay of plutonium

  12. A study on strengthening measures of non-proliferation regime through the export control system of sensitive materials, equipment and technology related to nuclear activities

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Kurosawa, Mitsuru; Komizo, Yasuyoshi

    2004-01-01

    The strengthened safeguards caused from safeguards experiences to Iraq and DPRK leads to the expansion of the IAEA's activities for verification of all nuclear activities as well as verification of nuclear material in the States. The purpose of the activities, of course, includes detection of undeclared exports and imports of specified equipment and non-nuclear material. The Additional Protocol to the agreements between States and the IAEA for the application of safeguards requires to the States to declare the exports and imports information regarding specified equipment and non-nuclear material corresponding to the export control list that is established by the nuclear suppliers group. The Additional Protocol also insists the IAEA's right to access to the location identified by the State to resolve a question related to the declarations. Recently, the IAEA detected the black market group of the sensitive materials, equipment and technologies relevant to the nuclear proliferation through the safeguards activities to Iran and Libya. International community stated deeply concerns to the indecent facts. This paper would discuss and propose the supplemental strengthening measures of non-proliferation regime by effective combination of the safeguards activities under additional protocol and the export control regime. (author)

  13. Computerized reactor protection and safety related systems in nuclear power plants. Proceedings of a specialists' meeting. Working material

    International Nuclear Information System (INIS)

    1998-01-01

    Though the majority of existing control and protection systems in nuclear power plants use old analogue technology and design philosophy, the use of computers in safety and safety related systems is becoming a current practice. The Specialists Meeting on ''Computerized Reactor Protection and Safety Related Systems in Nuclear Power Plants'' was organized by IAEA (jointly by the Division of Nuclear Power and the Fuel Cycle and the Division of Nuclear Installation Safety), in co-operation with Paks Nuclear Power Plant in Hungary and was held from 27-29 October 1997 in Budapest, Hungary. The meeting focused on computerized safety systems under refurbishment, software reliability issues, licensing experiences and experiences in implemented computerized safety and safety related systems. Within a meeting programme a technical visit to Paks NPP was organized. The objective of the meeting was to provide an international forum for the presentation and discussion on R and D, in-plant experiences in I and C important to safety, backfits and arguments for and reservations against the digital safety systems. The meeting was attended by 70 participants from 16 countries representing NPPs and utility organizations, design/engineering, research and development, and regulatory organizations. In the course of 4 sessions 25 technical presentations were made. The present volume contains the papers presented by national delegates and the conclusions drawn from the final general discussion

  14. Materials. The Argentine nuclear policy

    International Nuclear Information System (INIS)

    Strasser, H.

    1982-01-01

    Part A of the volume contains a literature search on proliferation and the Third World and on the nuclear technology of Argentina. The materials in part B are divided in: 1. Nonproliferation discussion and the Third World. 2. Development and state of nuclear technology in Argentina. 3. Argentina's international contacts in the field of nuclear energy 1. Federal Republic of Germany, 2. Soviet Union, 3. Brazil. (orig./HP) [de

  15. Survey of naturally occurring hazardous materials in deep geologic formations: a perspective on the relative hazard of deep burial of nuclear wastes

    International Nuclear Information System (INIS)

    Tonnessen, K.A.; Cohen, J.J.

    1977-01-01

    Hazards associated with deep burial of solidified nuclear waste are considered with reference to toxic elements in naturally occurring ore deposits. This problem is put into perspective by relating the hazard of a radioactive waste repository to that of naturally occurring geologic formations. The basis for comparison derives from a consideration of safe drinking water levels. Calculations for relative toxicity of FBR waste and light water reactor (LWR) waste in an underground repository are compared with the relative toxicity indices obtained for average concentration ore deposits. Results indicate that, over time, nuclear waste toxicity decreases to levels below those of naturally occurring hazardous materials

  16. Supplier responsibility for nuclear material quality

    International Nuclear Information System (INIS)

    Stuart, P.S.; Dohna, A.E.

    1976-01-01

    Nuclear materials must be delivered by either the manufacturer or the distributor with objective, documented evidence that the material was manufactured, inspected, and tested by proven techniques performed by qualified personnel working to documented procedures. Measurement devices used for acceptance must be of proven accuracy. The material and all records must be identified for positive traceability as part of the quality history of the nuclear components, system, or structure in which the material was used. In conclusion, the nuclear material supplier must join the fabricator, the installer, and the user in effective implementation of the total systems approach to the application of quality assurance principles to all phases of procurement, fabrication, installation, and use of the safety-related components, systems, and structures in a nuclear power plant

  17. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  18. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  19. Law nr 2015-588 of June 2, 2015 related to the strengthening of the protection of civil nuclear installations housing nuclear materials

    International Nuclear Information System (INIS)

    Hollande, Francois; Valls, Manuel; Taubira, Christiane; Le Drian, Jean-Yves; Cazeneuve, Bernard

    2015-01-01

    This publication contains the official text of a law adopted by the French Parliament for the strengthening of civil nuclear installations housing nuclear materials. The first article of this law is made of modifications introduced in the Defence Code. The second article states that a report is to be submitted by the Government to the Parliament on the risk and threat assessment of illegal UAVs flyovers, and on technical solutions to improve the detection and neutralisation of these aircraft, as well as on necessary legal adaptations to punish such infringements

  20. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  1. Transport of nuclear materials

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During november and december 2001, 2 events concerning nuclear transport were reported and classified on the first grade (grade 1) of the INES scale. The first event concerns a hole in a transport cask of contaminated tools. The hole seems to have been made by the fork of a handling equipment. The second event concerns the loss of a parcel containing a technetium generator, this generator represented an activity of about 141 G Becquerel of 99 Mo the day it left the premises of CIS-bio in Saclay. (A.C.)

  2. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  3. Study of nuclear environment and material strategy

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    There is a concern about the environmental hazard caused by radioactive materials coming with the expansion of nuclear power and even by renewable energies, which are used as countermeasures against global warming to construct a sustainable society. A concept to internalize the pollution caused by radioactive materials, which are directly or indirectly related to nuclear power, to economical activities by adopting externality is proposed. Energy and industrial productions are strongly related to the supply of material. Therefore material flow is also part of this internalization concept. The concept is named 'NEMS (Nuclear Environment and Material Strategy)'. Fission products and transuranic isotopes from nuclear power such as plutonium are considered in this concept. Thorium, which comes from the material flow of rare-earth production to support the elaboration of renewable energies including electric vehicles on the consumer side, is considered as an externality of the non-nuclear power field. Fission products contain some rare-earth materials. Thus, these rare-earth materials, which are extracted by the advanced ORIENT (Optimization by Recycling Instructive Elements) cycle, are internalized as rare-earth supplier in economy. However, the supply quantity is limited. Therefore rare-earth production itself is still needed. The externality of rare-earth production is thorium and is internalized by using it as nuclear fuel. In this case, the demand of thorium is still small within these few decades compared to the production of thorium as byproduct of the rare-earth production. A thorium energy bank (The Bank) is advanced to regulate the storage of the excess amount of thorium inside of an international framework in order to prevent environmental hazard resulting from the illegal disposal of thorium. In this paper, the material flows of thorium and rare-earth are outlined. Their material balance are demonstrated based on the prediction of rare-earth mining and an

  4. Introduction to nuclear material safeguards

    International Nuclear Information System (INIS)

    Kuroi, Hideo

    1986-01-01

    This article is aimed at outlining the nuclear material safeguards. The International Atomic Energy Agency (IAEA) was established in 1957 and safeguards inspection was started in 1962. It is stressed that any damage resulting from nuclear proliferation would be triggered by a human intentional act. Various measures have been taken by international societies and nations, of which the safeguards are the only means which relay mainly on technical procedures. There are two modes of diversing nuclear materials to military purposes. One would be done by national intension while the other by indivisulas or expert groups, i.e., sub-national intention. IAEA is responsible for the prevention of diversification by nations, for which the international safeguards are being used. Measures against the latter mode of diversification are called nuclear protection, for which each nation is responsible. The aim of the safeguards under the Nonproliferation Treaty is to detect the diversification of a significant amount of nuclear materials from non-military purposes to production of nuclear explosion devices such as atomic weapons or to unidentified uses. Major technical methods used for the safeguards include various destructive and non-destructive tests as well as containment and monitoring techniques. System techniques are to be employed for automatic containment and monitoring procedures. Appropriate nuclear protection system techniques should also be developed. (Nogami, K.)

  5. Physical protection of nuclear material

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: An Advisory Group met to consider the up-dating and extension of the Recommendations for the Physical Protection of Nuclear Material, produced in 1972. Twenty-seven experts from 11 countries and EURATOM were present. Growing concern has been expressed in many countries that nuclear material may one day be used for acts of sabotage or terrorism. Serious attention is therefore being given to the need for States to develop national systems for the physical protection of nuclear materials during use, storage and transport throughout the nuclear fuel cycle which should minimize risks of sabotage or theft. The revised Recommendations formulated by the Advisory Group include new definitions of the objectives of national systems of physical protection and proposals for minimizing possibilities of unauthorized removal and sabotage to nuclear facilities. The Recommendations also describe administrative or organizational steps to be taken for this purpose and the essential technical requirements of physical protection for various types and locations of nuclear material, e.g., the setting up of protected areas, the use of physical barriers and alarms, the need for security survey, and the need of advance arrangements between the States concerned in case of international transportation, among others. (author)

  6. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  7. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  8. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  9. Nuclear material shipment study

    International Nuclear Information System (INIS)

    Shepherd, E.W.

    1980-01-01

    The Radioactive Material Transport Assessment Study is expected to provide a flexible set of capabilities and useful information to the public, industry and government users by using a system design to assure obtaining high quality data from selected industry sources at acceptable cost. It is expected that the shipping record approach coupled with an efficient sampling strategy will accomplish this. The study is also designed to yield analytical capabilities and statistical output to serve public, industry and government users. The information provided by the study will make a valuable contribution to environmental and accident risk assessment, policy development and operational planning and management activities

  10. The century of nuclear materials

    Science.gov (United States)

    Mansur, Lou; Was, Gary S.; Zinkle, Steve; Petti, David; Ukai, Shigeharu

    2018-03-01

    In the spring of 1959 the well-read metallurgist would have noticed the first issue of an infant Journal, one dedicated to a unique and fast growing field of materials issues associated with nuclear energy systems. The periodical, Journal of Nuclear Materials (JNM), is now the leading publication in the field from which it takes its name, thriving beyond the rosiest expectations of its founders. The discipline is well into the second half-century. During that time much has been achieved in nuclear materials; the Journal provides the authoritative record of virtually all those accomplishments. These pages introduce the 500th volume, a significant measure in the world of publishing. The Editors reflect on the progress in the field and the role of this journal.

  11. LECI Department of Nuclear Materials

    International Nuclear Information System (INIS)

    2006-01-01

    The LECI is a 'hot' laboratory dedicated mostly to the characterization of irradiated materials. It has, however, limited activities on fuel, as a back up to the LECA STAR in Cadarache. The LECI belongs to the Section of Research on Irradiated Materials (Department of Nuclear Materials). The Department for Nuclear Materials (DMN) has for its missions: - to contribute, through theoretical and experimental investigations, to the development of knowledge in materials science in order to be able to predict the evolution of the material physical and mechanical properties under service conditions (irradiation, thermomechanical solicitations, influence of the environment,..); - to characterize the properties of the materials used in the nuclear industry in order to determine their performance and to be able to predict their life expectancy, in particular via modelling. These materials can be irradiated or not, and originate from surveillance programs, experimental neutron irradiations or simulated irradiations with charged particles; - to establish, maintain and make use of the databases generated by these data; - to propose new or optimized materials, satisfying future service conditions and extend the life or the competitiveness of the associated systems; - to establish constitutive laws and models for the materials in service, incidental, accidental and storage conditions, and contribute to the development of the associated design codes in order to support the safety argumentation of utilities and vendors; - to provide expertise on industrial components, in particular to investigate strain or rupture mechanisms and to offer leads for improvement. This document presents, first, the purpose of the LECI (Historical data, Strategy, I and K shielded cell lines (building 605), M shielded cell line (building 625), Authorized materials). Then, it presents the microscopy and irradiation damage studies laboratory of the Saclay centre (Building 605) Which belongs to the Nuclear

  12. Nuclear power plant cable materials :

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  13. New materials in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Iwata, Shuichi

    1988-01-01

    In the autumn of 1987, the critical condition was attained in the JET in Europe and Japanese JT-60, thus the first subject in the physical verification of nuclear fusion reactors was resolved, and the challenge to the next attainment of self ignition condition started. As the development process of nuclear fusion reactors, there are the steps of engineering, economical and social verifications after this physical verification, and in respective steps, there are the critical problems related to materials, therefore the development of new materials must be advanced. The condition of using nuclear fusion reactors is characterized by high fluence, high thermal flux and strong magnetic field, and under such extreme condition, the microscopic structures of materials change, and they behave much differently from usual case. The subjects of material development for nuclear fusion reactors, the material data base being built up, the materials for facing plasma and high thermal flux, first walls, blanket structures, electric insulators and others are described. The serious effect of irradiation and the rate of defect inducement must be taken in consideration in the structural materials for nuclear fusion reactors. (Kako, I.)

  14. Nuclear data information system for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji; Utsumi, Misako

    1996-01-01

    The conceptual system for nuclear material design is considered and some trials on WWW server with functions of the easily accessible simulation of nuclear reactions are introduced. Moreover, as an example of the simulation on the system using nuclear data, transmutation calculation was made for candidate first wall materials such as 9Cr-2W steel, V-5Cr-5Ti and SiC in SUS316/Li 2 O/H 2 O(SUS), 9Cr-2W/Li 2 O/H 2 O(RAF), V alloy/Li/Be(V), and SiC/Li 2 ZrO 3 /He(SiC) blanket/shield systems based on ITER design model. Neutron spectrum varies with different blanket/shield compositions. The flux of low energy neutrons decreases in order of V< SiC< RAF< SUS blanket/shield systems. Fair amounts of W depletion in 9Cr-2W steel and the increase of Cr content in V-5Cr-5Ti were predicted in SUS or RAF systems. Concentration change in W and Cr is estimated to be suppressed if Li coolant is used in place of water. Helium and hydrogen production are not strongly affected by the different blanket/shield compositions. (author)

  15. Materials science for nuclear detection

    OpenAIRE

    Peurrung, Anthony

    2008-01-01

    The increasing importance of nuclear detection technology has led to a variety of research efforts that seek to accelerate the discovery and development of useful new radiation detection materials. These efforts aim to improve our understanding of how these materials perform, develop formalized discovery tools, and enable rapid and effective performance characterization. We provide an overview of these efforts along with an introduction to the history, physics, and taxonomy of radiation detec...

  16. Guidelines for verification and validation of software related to nuclear power plant control and instrumentation. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    The main purpose of the consultancy organized by the IAEA and held form 6 to 10 September 1993 was to prepare an extended outline of a new technical document in which a current status of Verification and Validation of software related to NPP I and C systems and guidance on the practical use of Verification and Validation methods for solving special problems in design, operation and maintenance of nuclear power plants are to be presented. The present volume contains: (1) report of the meeting; (2) reports presented by the national delegates; and (3) technical draft document. Ref and figs

  17. Communication Received from the Permanent Mission of Mexico to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 15 June 2012 from the Permanent Mission of Mexico to the International Atomic Energy Agency providing information on the decision of the Government of Mexico to act in accordance with the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2

  18. Communication Received from the PermanentMission of Mexico to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 15 June 2012 from the Permanent Mission of Mexico to the International Atomic Energy Agency providing information on the decision of the Government of Mexico to act in accordance with the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2

  19. Communication Received from the Permanent Mission of the Republic of Serbia to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 28 September 2012 from the Permanent Mission of Serbia to the International Atomic Energy Agency providing information on the decision of the Government of Serbia to adhere to the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2 [fr

  20. Communication Received from the PermanentMission of Mexico to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-19

    The Director General has received a note verbale dated 15 June 2012 from the Permanent Mission of Mexico to the International Atomic Energy Agency providing information on the decision of the Government of Mexico to act in accordance with the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2.

  1. Communication Received from the Permanent Mission of Mexico to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-19

    The Director General has received a note verbale dated 15 June 2012 from the Permanent Mission of Mexico to the International Atomic Energy Agency providing information on the decision of the Government of Mexico to act in accordance with the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2.

  2. Communication Received from the Permanent Mission of the Republic of Serbia to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 28 September 2012 from the Permanent Mission of Serbia to the International Atomic Energy Agency providing information on the decision of the Government of Serbia to adhere to the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2 [es

  3. Communication Received from the Permanent Mission of the Republic of Serbia to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 28 September 2012 from the Permanent Mission of Serbia to the International Atomic Energy Agency providing information on the decision of the Government of Serbia to adhere to the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2

  4. Pakistan's national legislation entitled: 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'

    International Nuclear Information System (INIS)

    2004-01-01

    The Director General has received a letter from the Permanent Mission of Pakistan, dated 4 November 2004, concerning Pakistan's national legislation entitled 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'. As requested by the Permanent Mission of Pakistan, the letter and the Export Control Act of 2004, are reproduced herein for the information of the Member States

  5. Nuclear Material (Offences) Act 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The main purpose of this Act is to enable the United Kingdom to ratify the Convention on the Physical Protection of Nuclear Material which opened for signature at Vienne and New York on 3 March 1980. The Act extends throughout the United Kingdom. (NEA) [fr

  6. International control of nuclear materials

    International Nuclear Information System (INIS)

    Koponen, Hannu

    1989-01-01

    Nuclear materials are subject to both national and international safeguards control. The International Atomic Energy Agency (IAEA) takes care of the international safeguards control. The control activities, which are discussed in this article, are carried out according to the agreements between various countries and the IAEA

  7. Responsible stewardship of nuclear materials

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1994-01-01

    The ability to tap the massive energy potential of nuclear fission was first developed as a weapon to end a terrible world war. Nuclear fission is also a virtually inexhaustible energy resource, and is the only energy supply in certain areas in Russia, Kazakhstan and elsewhere. The potential link between civilian and military applications has been and continues to be a source of concern. With the end of the Cold War, this issue has taken a dramatic turn. The U.S. and Russia have agreed to reduce their nuclear weapons stockpiles by as much as two-thirds. This will make some 100 tonnes of separated plutonium and 500 tonnes of highly enriched uranium available, in a form that is obviously directly usable for weapons. The total world inventory of plutonium is now around 1000 tonnes and is increasing at 60-70 tonnes per year. There is even more highly enriched uranium. Fortunately the correct answer to what to do with excess weapons material is also the most attractive. It should be used and reused as fuel for fast reactors. Material in use (particularly nuclear material) is very easy to monitor and control, and is quite unattractive for diversion. Active management of fissile materials not only makes a major contribution to economic stability and well-being, but also simplifies accountability, inspection and other safeguards processes; provides a revenue stream to pay for the necessary safeguards; and, most importantly, limits the prospective world inventory of plutonium to only that which is used and useful

  8. Nuclear and hazardous material perspective

    International Nuclear Information System (INIS)

    Sandquist, Gary M.; Kunze, Jay F.; Rogers, Vern C.

    2007-01-01

    The reemerging nuclear enterprise in the 21. century empowering the power industry and nuclear technology is still viewed with fear and concern by many of the public and many political leaders. Nuclear phobia is also exhibited by many nuclear professionals. The fears and concerns of these groups are complex and varied, but focus primarily on (1) management and disposal of radioactive waste [especially spent nuclear fuel and low level radioactive waste], (2) radiation exposures at any level, and (3) the threat nuclear terrorism. The root cause of all these concerns is the exaggerated risk perceived to human health from radiation exposure. These risks from radiation exposure are compounded by the universal threat of nuclear weapons and the disastrous consequences if these weapons or materials become available to terrorists or rogue nations. This paper addresses the bases and rationality for these fears and considers methods and options for mitigating these fears. Scientific evidence and actual data are provided. Radiation risks are compared to similar risks from common chemicals and familiar human activities that are routinely accepted. (authors)

  9. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-04

    The document reproduces the text of the Note Verbale received by the Director General of the IAEA from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology.

  10. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Note Verbale received by the Director General of the IAEA from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology

  11. The physical protection of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  12. The physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  13. Nuclear material statistical accountancy system

    International Nuclear Information System (INIS)

    Argentest, F.; Casilli, T.; Franklin, M.

    1979-01-01

    The statistical accountancy system developed at JRC Ispra is refered as 'NUMSAS', ie Nuclear Material Statistical Accountancy System. The principal feature of NUMSAS is that in addition to an ordinary material balance calcultation, NUMSAS can calculate an estimate of the standard deviation of the measurement error accumulated in the material balance calculation. The purpose of the report is to describe in detail, the statistical model on wich the standard deviation calculation is based; the computational formula which is used by NUMSAS in calculating the standard deviation and the information about nuclear material measurements and the plant measurement system which are required as data for NUMSAS. The material balance records require processing and interpretation before the material balance calculation is begun. The material balance calculation is the last of four phases of data processing undertaken by NUMSAS. Each of these phases is implemented by a different computer program. The activities which are carried out in each phase can be summarised as follows; the pre-processing phase; the selection and up-date phase; the transformation phase, and the computation phase

  14. Passive nondestructive assay of nuclear materials

    International Nuclear Information System (INIS)

    Reilly, D.; Ensslin, N.; Smith, H. Jr.; Kreiner, S.

    1991-03-01

    The term nondestructive assay (NDA) is applied to a series of measurement techniques for nuclear fuel materials. The techniques measure radiation induced or emitted spontaneously from the nuclear material; the measurements are nondestructive in that they do not alter the physical or chemical state of the nuclear material. NDA techniques are characterized as passive or active depending on whether they measure radiation from the spontaneous decay of the nuclear material or radiation induced by an external source. This book emphasizes passive NDA techniques, although certain active techniques like gamma-ray absorption densitometry and x-ray fluorescence are discussed here because of their intimate relation to passive assay techniques. The principal NDA techniques are classified as gamma-ray assay, neutron assay, and calorimetry. Gamma-ray assay techniques are treated in Chapters 1--10. Neutron assay techniques are the subject of Chapters 11--17. Chapters 11--13 cover the origin of neutrons, neutron interactions, and neutron detectors. Chapters 14--17 cover the theory and applications of total and coincidence neutron counting. Chapter 18 deals with the assay of irradiated nuclear fuel, which uses both gamma-ray and neutron assay techniques. Chapter 19 covers perimeter monitoring, which uses gamma-ray and neutron detectors of high sensitivity to check that no unauthorized nuclear material crosses a facility boundary. The subject of Chapter 20 is attribute and semiquantitative measurements. The goal of these measurements is a rapid verification of the contents of nuclear material containers to assist physical inventory verifications. Waste and holdup measurements are also treated in this chapter. Chapters 21 and 22 cover calorimetry theory and application, and Chapter 23 is a brief application guide to illustrate which techniques can be used to solve certain measurement problems

  15. Physics and technology of nuclear materials

    International Nuclear Information System (INIS)

    Ursu, I.

    1985-01-01

    The subject is covered in chapters, entitled; elements of nuclear reactor physics; structure and properties of materials (including radiation effects); fuel materials (uranium, plutonium, thorium); structural materials (including - aluminium, zirconium, stainless steels, ferritic steels, magnesium alloys, neutron irradiation induced changes in the mechanical properties of structural materials); moderator materials (including - nuclear graphite, natural (light) water, heavy water, beryllium, metal hydrides); materials for reactor reactivity control; coolant materials; shielding materials; nuclear fuel elements; nuclear material recovery from irradiated fuel and recycling; quality control of nuclear materials; materials for fusion reactors (thermonuclear fusion reaction, physical processes in fusion reactors, fuel materials, materials for blanket and cooling system, structural materials, materials for magnetic devices, specific problems of material irradiation). (U.K.)

  16. Communications Received from Certain Member States Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology. Nuclear Transfers and Nuclear-Related Dual-Use Transfers; Comunicaciones Recibidas De Diversos Estados Miembros Relativas A Las Directrices Para La Exportacion De Tecnologia, Equipo Y Materiales Nucleares. Transferencias Nucleares Y Transferencias De Equipo, Materiales V Tecnologia Afin Al Doble Uso En Materia Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-04-15

    The Director General has received a Note Verbale dated 5 March 1993 from the Ministry of Foreign Affairs of the Slovak Republic. The purpose of the Note Verbale is to provide information on that Governments' guidelines for Nuclear Transfers and for Transfers of of Nuclear-related Dual-use Equipment, Material and Related Technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Note Verbale is annexed hereto [Spanish] El Director General ha recibido una nota verbal de fecha 5 de marzo de 1993 del Ministerio de Relaciones Exteriores de la RepUblica Eslovaca. El objetivo de la nota verbal es proporcionar informaciOn sobre las Directrices para las transferencias nucleares y las Directrices para la transferencia de equipo, materiales y tecnologia afin al doble uso en materia nuclear, de dicho Gobierno. Atendiendo a los deseos expresados al final de la nota verbal, se adjunta al presente documento el texto de la nota verbal.

  17. Special nuclear material simulation device

    Science.gov (United States)

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  18. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  19. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1966-01-01

    The second panel on the Analytical Chemistry of Nuclear Materials was organized for two purposes: first, to advise the Seibersdorf Laboratory of the Agency on its future programme, and second, to review the results of the Second International Comparison of routine analysis of trace impurities in uranium and also the action taken as a result of the recommendations of the first panel in 1962. Refs, figs and tabs

  20. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  1. Control of nuclear material specified equipment and specified material

    International Nuclear Information System (INIS)

    1982-04-01

    The goal and application field of NE 2.02 regulatory guide of CNEN (Comissao Nacional de Energia Nuclear), are described. This regulatory guide is about nuclear material management, specified equipment and specified material. (E.G.) [pt

  2. Control of Nuclear Materials and Special Equipment (Nuclear Safety Regulations)

    International Nuclear Information System (INIS)

    Cizmek, A.; Prah, M.; Medakovic, S.; Ilijas, B.

    2008-01-01

    Based on Nuclear Safety Act (OG 173/03) the State Office for Nuclear Safety (SONS) in 2008 adopted beside Ordinance on performing nuclear activities (OG 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (OG 74/06) the new Ordinance on the control of nuclear material and special equipment (OG 15/08). Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a license to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance also lays down the manner in which nuclear material records have to be kept, the procedure for notifying the State administration organization (regulatory body) responsible for nuclear safety by the nuclear material user, and the keeping of registers of nuclear activities, nuclear material and special equipment by the State administration organization (regulatory body) responsible for nuclear safety, as well as the form and content of official nuclear safety inspector identification card and badge.(author)

  3. Expanding Nuclear Power Programmes - Romanian experience: Master - Nuclear Materials and Technologies Educational Plan

    International Nuclear Information System (INIS)

    Valeca, S.; Valeca, M.

    2012-01-01

    The main objectives of the Master Nuclear Materials and Technologies Educational Plan are: 1. To deliver higher education and training in the following specific domains, such as: Powders Technology and Ceramic Materials, Techniques of Structural Analysis, Composite Materials, Semiconductor Materials and Components, Metals and Metallic Alloys, Optoelectronic Materials and Devices, Nuclear Materials, The Engineering of Special Nuclear Materials, 2. To train managers of the Nuclear Waste Products and Nuclear Safety, 3. To qualify in ICT Systems for Nuclear Process Guidance, 4. To qualify in Environmental Protection System at the Level of Nuclear Power Stations, 5. To train managers for Quality Assurance of Nuclear Energetic Processes, 6. To deliver higher education and training regarding the International Treatises, Conventions and Settlements in force in the field of nuclear related activities. (author)

  4. Materials aspects of nuclear waste isolation

    International Nuclear Information System (INIS)

    Bennett, J.W.

    1984-01-01

    This paper is intended to provide an overview of the nuclear waste repository performance requirements and the roles which we expect materials to play in meeting these requirements. The objective of the U.S. Dept. of Energy's (DOE) program is to provide for the safe, permanent isolation of high-level radioactive wastes from the public. The Nuclear Waste Policy Act of 1982 (the Act) provides the mandate to accomplish this objective by establishing a program timetable, a schedule of procedures to be followed, and program funding (1 mil/kwhr for all nuclear generated electricity). The centerpiece of this plan is the design and operation of a mined geologic repository system for the permanent isolation of radioactive wastes. A nuclear waste repository contains several thousand acres of tunnels and drifts into which the nuclear waste will be emplaced, and several hundred acres for the facilities on the surface in which the waste is received, handled, and prepared for movement underground. With the exception of the nuclear material-related facilities, a repository is similar to a standard mining operation. The difference comes in what a repository is supposed to do - to contain an isolate nuclear waste from man and the environment

  5. Procedures for the accounting and control of nuclear materials in large research centres, as related to the needs of international safeguards

    International Nuclear Information System (INIS)

    Kotte, U.; Bueker, H.; Stein, G.

    1976-07-01

    In signatory states of the Non-Proliferation Treaty nuclear material is subject to the supervision of the International Atomic Energy Agency. The IAEA safeguards concept intended for nuclear material has, so far, been predominantly applied to nuclear facilities of the nuclear fuel cycle. It is the aim of this report to consider the applicability of these control measures to a nuclear research centre. The report refers to the concrete example of the Juelich Nuclear Research Centre (KFA). The particular features of a nuclear research centre and the handling of nuclear material in the KFA are described. A review is given of the various licence areas and permitted handling quantities as well as of the inventories and flow of nuclear material. The concept of a control system for a nuclear research centre satisfying the operator's requirements, national requirement and international obligations at the same time is developed along these lines. The essential characteristic of the concept is a far-reaching clarity of the distribution of nuclear material items within the Nuclear Research Centre. The clarity desired will be achieved by means of an integrated accountancy system processing all necessary data with the aid of a central computer and remote terminals. The availability of information is based on differentiated material acountancy in conjunction with adequate measurement of nuclear material data. In the case of the KFA two groups are formed by research reactors and critical assemblies. Research institutes and central departments the permitted handling quantities of which do not exceed 5 eff.kg constitute a further group. Two further groups are formed for cases where the permitted handling quantities are above or below 1 eff.kg. The report shows the safeguards measures that can be applied in certain circumstances and conditions in a nuclear research centre

  6. Nuclear data of the major actinide fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, W.P.; Saussure, G. De

    1984-01-01

    The effect of nuclear data of the major actinide fuel materials on the design accuracy, economics and safety of nuclear power systems is discussed. Since most of the data are measured relative to measurement standards, in particular the fission cross-section of /sup 235/U, data must be examined to ensure that absolute measurements and relative measurements are correctly handled. Nuclear data of fissile materials, fertile materials and minor plutonium isotopes are discussed.

  7. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1963-01-01

    The last two decades have witnessed an enormous development in chemical analysis. The rapid progress of nuclear energy, of solid-state physics and of other fields of modern industry has extended the concept of purity to limits previously unthought of, and to reach the new dimensions of these extreme demands, entirely new techniques have been invented and applied and old ones have been refined. Recognizing these facts, the International Atomic Energy Agency convened a Panel on Analytical Chemistry of Nuclear Materials to discuss the general problems facing the analytical chemist engaged in nuclear energy development, particularly in newly developing centre and countries, to analyse the represent situation and to advise as to the directions in which research and development appear to be most necessary. The Panel also discussed the analytical programme of the Agency's laboratory at Seibersdorf, where the Agency has already started a programme of international comparison of analytical methods which may lead to the establishment of international standards for many materials of interest. Refs and tabs

  8. Nuclear materials for fission reactors

    International Nuclear Information System (INIS)

    Matzke, H.; Schumacher, G.

    1992-01-01

    This volume brings together 47 papers from scientists involved in the fabrication of new nuclear fuels, in basic research of nuclear materials, their application and technology as well as in computer codes and modelling of fuel behaviour. The main emphasis is on progress in the development of non -oxide fuels besides reporting advances in the more conventional oxide fuels. The two currently performed large reactor safety programmes CORA and PHEBUS-FP are described in invited lectures. The contributions review basic property measurements, as well as the present state of fuel performance modelling. The performance of today's nuclear fuel, hence UO 2 , at high burnup is also reviewed with particular emphasis on the recently observed phenomenon of grain subdivision in the cold part of the oxide fuel at high burnup, the so-called 'rim' effect. Similar phenomena can be simulated by ion implantation in order to better elucidate the underlying mechanism and reviews on high resolution electron microscopy provide further information. The papers will provide a useful treatise of views, ideas and new results for all those scientists and engineers involved in the specific questions of current nuclear waste management

  9. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  10. Study on interface between nuclear material accounting system and national nuclear forensic library

    International Nuclear Information System (INIS)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho

    2016-01-01

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library

  11. Study on interface between nuclear material accounting system and national nuclear forensic library

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library.

  12. Fieldable Nuclear Material Identification System

    International Nuclear Information System (INIS)

    Radle, James E.; Archer, Daniel E.; Carter, Robert J.; Mullens, James Allen; Mihalczo, John T.; Britton, Charles L. Jr.; Lind, Randall F.; Wright, Michael C.

    2010-01-01

    The Fieldable Nuclear Material Identification System (FNMIS), funded by the NA-241 Office of Dismantlement and Transparency, provides information to determine the material attributes and identity of heavily shielded nuclear objects. This information will provide future treaty participants with verifiable information required by the treaty regime. The neutron interrogation technology uses a combination of information from induced fission neutron radiation and transmitted neutron imaging information to provide high confidence that the shielded item is consistent with the host's declaration. The combination of material identification information and the shape and configuration of the item are very difficult to spoof. When used at various points in the warhead dismantlement sequence, the information complimented by tags and seals can be used to track subassembly and piece part information as the disassembly occurs. The neutron transmission imaging has been developed during the last seven years and the signature analysis over the last several decades. The FNMIS is the culmination of the effort to put the technology in a usable configuration for potential treaty verification purposes.

  13. Overview of nuclear materials transportation

    International Nuclear Information System (INIS)

    Grella, A.W.

    1986-01-01

    This presentation is an overview of transportation as it relates to one specific type of material, low specific activity (LSA) material. It is the predominant type of material that fits into the low-level waste category. An attempt is made to discuss how LSA is regulated, setting forth the requirements. First the general scheme of regulations are reviewed. In addition future changes in the regulations which will affect transportation of LSA materials and, which quite likely, will have an impact on R and D needs in this area are presented

  14. Inquiry relating to safety due to modification of usage of nuclear fuel material (establishment of waste safety testing facility) in Tokai Laboratory, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the director of the Science and Technology Agency (STA) for the license relating to the modification of usage of nuclear fuel material (the establishment of waste safety testing facility) from the director of the Japan Atomic Energy Research Institute on November 30, 1978. After passing through the safety evaluation in the Nuclear Safety Bureau of STA, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on June 6, 1979, from the director of the STA. The head of AESC directed to conduct the safety examination to the head of the Nuclear Fuel Safety Examination Specialist Committee on June 7, 1979. The content of the modification of usage of nuclear fuel material is the establishment of waste safety testing facility to study and test the safety relating to the treatment and disposal of high level radioactive liquid wastes due to the reprocessing of spent fuel. As for the results of the safety examination, the siting of the waste safety testing facility which is located in the Tokai Laboratory, Japan Atomic Energy Research Institute (JAERI), and the test plan of the glass solidification of high level radioactive liquid are presented as the outline of the study plan. The building, main equipments including six cells, the isolation room and the glove box, the storage, and the disposal facilities for gas, liquid and solid wastes are explained as the outline of the facilities. Concerning the items from the viewpoint of safety, aseismatic design, slightly vacuum operation, shielding, decay heat removal, fire protection, explosion protection, criticality management, radiation management and environmental effect were evaluated, and the safety was confirmed. (Nakai, Y.)

  15. National and international nuclear material monitoring

    International Nuclear Information System (INIS)

    Waddoups, I.G.

    1996-01-01

    The status of nuclear materials in both the U.S. and Former Soviet Union is changing based upon the execution of agreements relative to weapons materials production and weapon dismantlement. The result of these activities is that a considerably different emphasis is being placed on how nuclear materials are viewed and utilized. Even though much effort is being expended on the final disposition of these materials, the interim need for storage and security of the material is increasing. Both safety and security requirements exist to govern activities when these materials are placed in storage. These requirements are intended to provide confidence that the material is not being misused and that the storage operations are conducted safely. Both of these goals can be significantly enhanced if technological monitoring of the material is performed. This paper will briefly discuss the traditional manual methods of U.S. and international material monitoring and then present approaches and technology that are available to achieve the same goals under the evolving environment

  16. Protection and control of nuclear materials

    International Nuclear Information System (INIS)

    Jalouneix, J.; Winter, D.

    2007-01-01

    In the framework of the French regulation on nuclear materials possession, the first liability is the one of operators who have to know at any time the quantity, quality and localization of any nuclear material in their possession. This requires an organization of the follow up and of the inventory of these materials together with an efficient protection against theft or sabotage. The French organization foresees a control of the implementation of this regulation at nuclear facilities and during the transport of nuclear materials by the minister of industry with the sustain of the institute of radiation protection and nuclear safety (IRSN). This article presents this organization: 1 - protection against malevolence; 2 - national protection and control of nuclear materials: goals, administrative organization, legal and regulatory content (authorization, control, sanctions), nuclear materials protection inside facilities (physical protection, follow up and inventory, security studies), protection of nuclear material transports (physical protection, follow up), control of nuclear materials (inspection at facilities, control of nuclear material measurements, inspection of nuclear materials during transport); 3 - international commitments of France: non-proliferation treaty, EURATOM regulation, international convention on the physical protection of nuclear materials, enforcement in France. (J.S.)

  17. Legal aspects of transport of nuclear materials

    International Nuclear Information System (INIS)

    Jacobsson, Mans.

    The Paris Convention and the Brussels Supplementary Convention are briefly discussed and other conventions in the field of civil liability for nuclear damage are mentioned: the Vienna Convention, the Nuclear Ships Convention and the 1971 Convention relating to civil liability in the field of maritime carriage of nuclear material. Legislation on civil liability in the Nordic countries, which is based on the Paris Convention and the Supplementary Convention is discussed, notably the principle of channelling of liability and exceptions from that principle due to rules of liability in older transport conventions and certain problems due to the limited geographical scope of the Paris Convention and the Supplementary Convention. Insurance problems arising in connection with transport of nuclear materials are surveyed and an outline is given of the administrative provisions concerning transport (based on the IAEA transport regulations) which govern transport of radioactive materials by different means: road, rail, sea and air. Finally, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons is discussed. (NEA) [fr

  18. Perspective on transporting nuclear materials

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1975-01-01

    An evaluation is made of the material flow to be expected up to the year 2000 to and from the various steps in the nuclear cycle. These include the reactors, reprocessing plants, enrichment plants, U mills, U conversion plants, and fuel fabrication plants. A somewhat more-detailed discussion is given of the safety engineering that goes into the design of containers and packages and the selection of the mode of transportation. The relationship of shipping to siting and transportation accidents is considered briefly

  19. Reliability of structural materials in nuclear industry

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1996-01-01

    The reliability of nuclear installations is a fundamental point for the exploitation of nuclear energy. It requires an extensive knowledge of the behaviour of materials in the operating conditions and during the expected service life of the installations. In nuclear power plants multiple risks of failure can exist and are expressed by corrosion and deformation phenomena or by modification in the mechanical characteristics of materials. The knowledge of the evolution with time of a given material requires to take into account the data relative to the material itself, to its environment and to the physical conditions of this environment. The study of materials aging needs a more precise knowledge of the kinetics of phenomena at any scale and of their interactions, and a micro- or macro-modeling of their behaviour during long periods of time. This paper gives an overview of the aging phenomena that occur in the structural materials involved in PWR and fast neutron reactors: thermal aging, generalized corrosion, corrosion under constraint, intergranular corrosion, crack growth under loading, wear, irradiation etc.. (J.S.)

  20. Statistical methods for nuclear material management

    Energy Technology Data Exchange (ETDEWEB)

    Bowen W.M.; Bennett, C.A. (eds.)

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  1. Statistical methods for nuclear material management

    International Nuclear Information System (INIS)

    Bowen, W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems

  2. Problems on shipping high-enriched nuclear materials

    International Nuclear Information System (INIS)

    Ganzha, V.V.; Demko, N.A.; Deryavko, I.I.; Zelenski, D.I.; Kolbaenkov, A.N.; Pivovarov, O.S.; Storozhenko, A.N.; Chernyad'ev, V.V.; Yakovlev, V.V.; Gorin, N.V.; Prokhod'ko, A.I.; Sherbina, A.N.; Barsanov, V.I.; Dyakov, E.K.; Tishenko, M.F.; Khlystov, A.I.; Vasil'ev, A.P.; Smetannikov, V.P.

    1998-01-01

    In 1996-1998 all Russian nuclear materials were taken out of the Institute of Atomic Energy of Kazakhstan National Nuclear Centre (IAE NNC RK). In this report there are basic tasks related to the performance of this work. They are: 1) Preparation of Russian nuclear materials (NM) kept at IAE NNC RK for transportation; 2) accounting and control of Russian nuclear materials kept at IAE NNC RK; 3) arrangement of permit papers for NM transportation; 4) NM transportation from IAE NNC RK to the enterprises of Russian MINATOM; 5) provision of nuclear and radiation safety in the course of operations with NM; 6) provision of physical protection for Russian NM

  3. Identification and Assessment of Material Models for Age-Related Degradation of Structures and Passive Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, In Kil; Kim, Min Kyu; Hofmayer, Charles; Braverman, Joseph; Nie, Jinsuo

    2009-03-01

    This report describes the research effort performed by BNL for the Year 2 scope of work. This research focused on methods that could be used to represent the long-term behavior of materials used at NPPs. To achieve this BNL reviewed time-dependent models which can approximate the degradation effects of the key materials used in the construction of structures and passive components determined to be of interest in the Year 1 effort. The intent was to review the degradation models that would cover the most common time-dependent changes in material properties for concrete and steel components

  4. Nuclear data and related services

    International Nuclear Information System (INIS)

    Tuli, J.K.

    1985-01-01

    National Nuclear Data Center (NNDC) maintains a number of data bases containing bibliographic information and evaluated as well as experimental nuclear properties. An evaluated computer file maintained by the NNDC, called the Evaluated Nuclear Structure Data File (ENSDF), contains nuclear structure information for all known nuclides. The ENSDF is the source for the journal Nuclear Data Sheets which is produced and edited by NNDC. The Evaluated Nuclear Data File (ENDF), on the other hand is designed for storage and retrieval of such evaluated nuclear data as are used in neutronic, photonic, and decay heat calculations in a large variety of applications. The NNDC maintains three bibliographic files: NSR - for nuclear structure and decay data related references, CINDA - a bibliographic file for neutron induced reactions, and CPBIB - for charged particle reactions. Selected retrievals from evaluated data and bibliographic files are possible on-line or on request from NNDC

  5. Nuclear material measurement system in Brazil

    International Nuclear Information System (INIS)

    Almeida, S.G. de.

    1988-01-01

    The description of the activities developed at the Safeguards Laboratory of Brazilian Nuclear Energy Commission is done. The methods and techniques used for measuring and evaluating nuclear materials and facilities are presented. (E.G.) [pt

  6. Guide to the declaration procedure and coding system for criteria concerning significant events related to safety, radiation protection or the environment, applicable to basic nuclear installations and the transport of radioactive materials

    International Nuclear Information System (INIS)

    Lacoste, Andre-Claude

    2005-01-01

    This guide notably contains various forms associated with the declaration of significant events, and explanations to fill them in: significant event declaration form for a basic nuclear installation, significant event declaration form for radioactive material transport, significant event report for a basic nuclear installation, significant event report for radioactive material transport, declaration criteria for significant events related to the safety of non-PWR basic nuclear installations, declaration criteria for significant events related to PWR safety, significant events declared further to events resulting in group 1 unavailability and non-compliance with technical operating specifications, declaration criteria for significant events concerning radiation protection for basic nuclear installations, declaration criteria for significant events concerning environmental protection, applicable to basic nuclear installations, and declaration criteria for significant events concerning radioactive material transport

  7. Nuclear material management: challenges and prospects

    International Nuclear Information System (INIS)

    Rieu, J.; Besnainou, J.; Leboucher, I.; Chiguer, M.; Capus, G.; Greneche, D.; Durret, L.F.; Carbonnier, J.L.; Delpech, M.; Loaec, Ch.; Devezeaux de Lavergne, J.G.; Granger, S.; Devid, S.; Bidaud, A.; Jalouneix, J.; Toubon, H.; Pochon, E.; Bariteau, J.P.; Bernard, P.; Krellmann, J.; Sicard, B.

    2008-01-01

    The articles in this dossier were derived from the papers of the yearly S.F.E.N. convention, which took place in Paris, 12-13 March 2008. They deal with the new challenges and prospects in the field of nuclear material management, throughout the nuclear whole fuel cycle, namely: the institutional frame of nuclear materials management, the recycling, the uranium market, the enrichment market, the different scenarios for the management of civil nuclear materials, the technical possibilities of spent fuels utilization, the option of thorium, the convention on the physical protection of nuclear materials and installations, the characterisation of nuclear materials by nondestructive nuclear measurements, the proliferation from civil installations, the use of plutonium ( from military origin) and the international agreements. (N.C.)

  8. Basic components of a national control system for nuclear materials

    International Nuclear Information System (INIS)

    Rabot, G.

    1986-01-01

    The paper presents the different aspects related to the organization and the functioning of a national control and accounting system for nuclear materials. The legal aspects and the relations with the IAEA are included

  9. Techniques and methods in nuclear materials traceability

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1996-01-01

    The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials

  10. Hungarian national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Lendvai, O.

    1985-01-01

    The Hungarian system for nuclear materials control and accounting is briefly described. Sections include a historical overview, a description of nuclear activities and an outline of the organizational structure of the materials management system. Subsequent sections discuss accounting, verification and international relations

  11. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  12. Tracer techniques in estimating nuclear materials holdup

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1987-01-01

    Residual inventory of nuclear materials remaining in processing facilities (holdup) is recognized as an insidious problem for safety of plant operations and safeguarding of special nuclear materials (SNM). This paper reports on an experimental study where a well-known method of radioanalytical chemistry, namely tracer technique, was successfully used to improve nondestructive measurements of holdup of nuclear materials in a variety of plant equipment. Such controlled measurements can improve the sensitivity of measurements of residual inventories of nuclear materials in process equipment by several orders of magnitude and the good quality data obtained lend themselves to developing mathematical models of holdup of SNM during stable plant operations

  13. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  14. A review on nuclear forensic methodology for analysis of nuclear material of unknown origin

    International Nuclear Information System (INIS)

    Deshmukh, A.V.; Raghav, N.K.; Fatangare, N.M.; Jagtap, S.S.

    2014-01-01

    With the growing use of nuclear power and threat from illegal nuclear smuggling nuclear forensic provides an aid to the law enforcement to trace back modus operandi of such threats. Extensive nuclear proliferation, race among countries to acquire nuclear capability and global terrorism scenario has mandated Nuclear Forensic Science technology to tackle nuclear threats. Gamma spectrometry, alpha spectrometry, thermal ionization mass spectrometry, inductively coupled plasma mass spectrometry are employed for characterization and relative isotopic composition determinant of Nuclear material and techniques like SEM transmission electron TEM, FT-IR, GC-MS, Electrophoretic technique are used to characterize the contaminated materials in order to deceive investigative agencies. The present paper provide systematic forensic methodology for nuclear and radioactive materials encountered at any crime scene due to any accidental discharges or military activities. (author)

  15. The establishment of computer system for nuclear material accounting

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Park, Ho Joon

    1988-01-01

    Computer based nuclear material accountancy system will not only increase the credibility of KOREA-IAEA safeguards agreement and bilateral agreements but also decrease the man-power needed to carry out the inspection activity at state level and at facility level. Computer software for nuclear material accounting for and control has been materialized the application to both item and bulk facilities and software for database at state level has been also established to maintain up -to-date status of nation-wide nuclear material inventory. Computer recordings and reporting have been realized to fulfill the national and international commitments to nuclear material accounting for and control. The exchange of information related to nuclear material accounting for has become possible by PC diskettes. (Author)

  16. Uncertainty estimation in nuclear material weighing

    Energy Technology Data Exchange (ETDEWEB)

    Thaure, Bernard [Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, (France)

    2011-12-15

    The assessment of nuclear material quantities located in nuclear plants requires knowledge of additions and subtractions of amounts of different types of materials. Most generally, the quantity of nuclear material held is deduced from 3 parameters: a mass (or a volume of product); a concentration of nuclear material in the product considered; and an isotopic composition. Global uncertainties associated with nuclear material quantities depend upon the confidence level of results obtained in the measurement of every different parameter. Uncertainties are generally estimated by considering five influencing parameters (ISHIKAWA's rule): the material itself; the measurement system; the applied method; the environmental conditions; and the operator. A good practice guide, to be used to deal with weighing errors and problems encountered, is presented in the paper.

  17. Development of nuclear material accountancy control system

    International Nuclear Information System (INIS)

    Hirosawa, Naonori; Kashima, Sadamitsu; Akiba, Mitsunori

    1992-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty (NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to various inquiries can be carried out by the data base system which has free item searching procedure. (author)

  18. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  19. Base isolation for nuclear power and nuclear material facilities

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Kircher, C.A.; Vaidya, N.; Constantinou, M.; Kelly, J.M.; Seidensticker, R.; Tajirian, F.F.; Ovadia, D.

    1989-01-01

    This report serves to document the status of the practice for the use of base isolation systems in the design and construction of nuclear power and nuclear material facilities. The report first describes past and current (1989) applications of base isolation in nuclear facilities. The report then provides a brief discussion of non-nuclear applications. Finally, the report summarizes the status of known base-isolation codes and standards

  20. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-10

    The Director General of the International Atomic Energy Agency has received a Note Verbale from the Permanent Mission of the Russian Federation providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of the Note Verbale, the text of the Note Verbale is attached. The attachment to the Note Verbale was issued previously as INFCIRC/2541Rev. 4/Part 2.

  1. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2001-01-01

    The Director General of the International Atomic Energy Agency has received a Note Verbale from the Permanent Mission of the Russian Federation providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of the Note Verbale, the text of the Note Verbale is attached. The attachment to the Note Verbale was issued previously as INFCIRC/2541Rev. 4/Part 2

  2. Communication from the Permanent Missions of Brazil and Romania to the International Atomic Energy Agency Regarding Guidelines for the Transfers of Nuclear-Related Dual-Use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2003-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbale from the Permanent Missions of Brazil and Romania, dated 28 February 2003, providing information on the export policies and practices of the Governments of Brazil and Romania with respect to the export of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbale is attached. The attachment referenced in the Note Verbale was issued previously as INFCIRC/254/Rev.5/Part 2

  3. Definition of Nuclear Material in Aspects of Nuclear Nonproliferation and Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ji Hye; Lee, Chan Suh [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2014-10-15

    Nuclear safety accidents directly affect human health but nuclear security incidents indirectly influence human, which demonstrates the reason why security receives less attention. However, it is acknowledged that nuclear terrorism is indeed one of the most dreadful threat humanity faces. As part of strengthening nuclear security as well as nonproliferation to response to the threat, we need a better understanding of the nuclear material which needs to be safe under the objective of nuclear security. In reality, practitioners implement safeguards and physical protection in compliance with the regulation text in domestic legislation. Thus, it is important to specify nuclear material clearly in law for effective implementation. Therefore, the definition of terminology related to nuclear material is explored herein, within the highest-level legislation on the safeguards and physical protection. First the definition in Korean legislation is analyzed. Then, so as to suggest some improvements, other international efforts are examined and some case studies are conducted on other states which have similar level of nuclear technology and industry to Korea. Finally, a draft of definition on nuclear material in perspective of nuclear nonproliferation and security is suggested based on the analysis below. The recommendation showed the draft nuclear material definition in nuclear control. The text will facilitate the understanding of nuclear material in the context of nuclear nonproliferation and security. It might provide appropriate provision for future legislation related to nuclear nonproliferation and security. For effective safeguards and physical protection measures, nuclear material should be presented with in a consistent manner as shown in the case of United Kingdom. It will be much more helpful if further material engineering studies on each nuclear material are produced. Multi-dimensional approach is required for the studies on the degree of efforts to divert

  4. Definition of Nuclear Material in Aspects of Nuclear Nonproliferation and Security

    International Nuclear Information System (INIS)

    Jeon, Ji Hye; Lee, Chan Suh

    2014-01-01

    Nuclear safety accidents directly affect human health but nuclear security incidents indirectly influence human, which demonstrates the reason why security receives less attention. However, it is acknowledged that nuclear terrorism is indeed one of the most dreadful threat humanity faces. As part of strengthening nuclear security as well as nonproliferation to response to the threat, we need a better understanding of the nuclear material which needs to be safe under the objective of nuclear security. In reality, practitioners implement safeguards and physical protection in compliance with the regulation text in domestic legislation. Thus, it is important to specify nuclear material clearly in law for effective implementation. Therefore, the definition of terminology related to nuclear material is explored herein, within the highest-level legislation on the safeguards and physical protection. First the definition in Korean legislation is analyzed. Then, so as to suggest some improvements, other international efforts are examined and some case studies are conducted on other states which have similar level of nuclear technology and industry to Korea. Finally, a draft of definition on nuclear material in perspective of nuclear nonproliferation and security is suggested based on the analysis below. The recommendation showed the draft nuclear material definition in nuclear control. The text will facilitate the understanding of nuclear material in the context of nuclear nonproliferation and security. It might provide appropriate provision for future legislation related to nuclear nonproliferation and security. For effective safeguards and physical protection measures, nuclear material should be presented with in a consistent manner as shown in the case of United Kingdom. It will be much more helpful if further material engineering studies on each nuclear material are produced. Multi-dimensional approach is required for the studies on the degree of efforts to divert

  5. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1987-01-01

    General provisions specify the purpose of the Law and definitions of terms used in it. Provisions relating to control of business management for refining cover designation of business operation, requirements for designation, permission and report of alteration, report of commencement of business operation, revocation of designation, recording, and measures for wastes. Provisions relating to control of business management for processing cover permission of operation, requirements for permission, approval of design and construction plan, inspection of facilities, report of commencement of business management, measures for maintenance, suspension of use of facilities, responsible personnel for handling nuclear fuel, and permit, obligations, etc. of responsible personnel for handing nuclear fuel. Provisions relating to control of construction and operation of nuclear reactor cover permission of construction, permission concerning nuclear reactor mounted on foreign nuclear powered ships, requirements for permission, etc. Other articles stipulate provisions relating to control of business management for reprocessing, use of nuclear fuel substances, use of materials and substances covered by international regulations, designation of inspection organizations, and other rules. (Nogami, K.)

  6. Metabonomics for detection of nuclear materials processing.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; Luxon, Bruce A. (University Texas Medical Branch); Neerathilingam, Muniasamy (University Texas Medical Branch); Ansari, S. (University Texas Medical Branch); Volk, David (University Texas Medical Branch); Sarkar, S. (University Texas Medical Branch); Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  7. Metabonomics for detection of nuclear materials processing

    International Nuclear Information System (INIS)

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-01-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  8. Control of Nuclear Material in Republic of Croatia

    International Nuclear Information System (INIS)

    Cizmek, A.; Medakovic, S.; Prah, M.; Novosel, N.

    2008-01-01

    State Office for Nuclear Safety (SONS) is established based on 'Nuclear Safety Act' (Official Gazette No. 173/2003) as an independent state organization responsible for all questions in connection with safe use of nuclear energy and technology, for expert matters of preparedness in the case of nuclear emergency, as well as for international co-operation in these fields (regulatory body). In the second half of year 2006, stationary detection systems for nuclear and other radioactive materials were installed on Border Crossing Bregana, Croatia. Yantar 2U, which is the commercial name of the system, is integrated automatic system capable of detection of nuclear and other radioactive materials prepared for fixed-site customs applications (Russian origin). Installed system contains portal monitors, camera, communication lines and communication boxes and server. Two fully functional separate systems has been installed on BC Bregana, one on truck entrance and another one on car entrance. In this article the operational experience of installed system is presented. This includes statistical analysis of recorded alarms, evaluation of procedures for operational stuff and maintenance and typical malfunction experience, as well as some of the recommendation for future use of detection systems. Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08) lays down the list of nuclear materials and special equipment as well as the list of other activities related to the production of special equipment and non-nuclear materials; the contents of the declaration of intent form for export/import of goods, the form for notifying export/import of goods, the form for notifying transport of nuclear material, the form for notifying the activity related to producing of special equipment and non-nuclear material, as well as of the form of the report on nuclear material balance in the user's material balance area. This Ordinance lays down the method of

  9. Concepts of IAEA nuclear materials accounting

    International Nuclear Information System (INIS)

    Oakberg, John A.

    2001-01-01

    The paper describes nuclear material accounting from the standpoint of IAEA Safeguards and how this accounting is applied by the Agency. The basic concepts of nuclear material accounting are defined and the way these apply to States with INFCIRC/153-type safeguards agreements is presented. (author)

  10. Decree no 2007-1557 from November 2, 2007, relative to basic nuclear facilities and to the nuclear safety control of nuclear materials transport; Decret no 2007-1557 du 2 novembre 2007 relatif aux installations nucleaires de base et au controle, en matiere de surete nucleaire, du transport de substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    This decree concerns the enforcement of articles 5, 17 and 36 of the law 2006-686 from June 13, 2006, relative to the transparency and safety in the nuclear domain. A consultative commission of basic nuclear facilities is established. The decree presents the general dispositions relative to basic nuclear facilities, the dispositions relative to their creation and operation, to their shutdown and dismantling. It precises the dispositions in the domain of public utility services, administrative procedures and sanctions. It stipulates also the particular dispositions relative to other facilities located in the vicinity of nuclear facilities, relative to the use of pressure systems, and relative to the transport of radioactive materials. (J.S.)

  11. System of accounting and control of nuclear materials (MCA) relative to IAEA safeguards and improvement of radioecological situation of the Joint Stock Company ULBA Metallurgical Plant

    International Nuclear Information System (INIS)

    Kuznetsov, B.; Khadeev, V.; Antonov, N.; Gradelnikov, K.

    1996-01-01

    Following goals must be accomplished following this Project : - Develop computerized and automated MCA data system; - Provide up-to-date and reliable accounting and control of availability and transfer of nuclear materials, detect loss or theft of nuclear materials; - Improve book keeping of nuclear materials, provide paperwork for raw materials and finished products sales and purchase control, process nuclear materials shipment data; - Reduce sampling error and to obtain precise measure of nuclear materials to obtain ESADRA target values; - Thorium concentrates transfer preliminary released from raw Beryllium to the new storage to prevent environment radiation pollution and obvious fire accidents; - Improve radioecological situation of the territory caused by old storage dismantling and decontamination of site; - Improve accounting, storing and Physical Protection of Thorium Following is the proposal to obtain goals of the Project : - Develop accounting and control systems - Develop basic standards and procedures for MCA system - Develop users specifications of MCA data system - Develop software of MCA data system - Assembly and adjustment of local network at the production facilities - Automated MCA data system personnel training - Develop measurement system - Determination of the mistakes in sampling and measurement of Uranium and isotopes content - Develop the procedures of sampling and measurement of Uranium and isotopes content providing ESADRA target values - Develop measure control program covering scales and analytical equipment and measuring methods - Develop software for measure control program support - Thorium shipment, decontamination and improvement of Physical Protection of Thorium storage - Accounting of Thorium containing materials when transferring to the new storage - Arrange storage decontamination - Develop new systems of Thorium Containment/Surveillance and Physical Protection

  12. Automated processing of nuclear materials accounting data

    International Nuclear Information System (INIS)

    Straka, J.; Pacak, P.; Moravec, J.

    1980-01-01

    An automated system was developed of nuclear materials accounting in Czechoslovakia. The system allows automating data processing including data storage. It comprises keeping records of inventories and material balance. In designing the system, the aim of the IAEA was taken into consideration, ie., building a unified information system interconnected with state-run systems of accounting and checking nuclear materials in the signatory countries of the non-proliferation treaty. The nuclear materials accounting programs were written in PL-1 and were tested at an EC 1040 computer at UJV Rez where also the routine data processing takes place. (B.S.)

  13. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-08-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  14. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [es

  15. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  16. Nuclear battery materials and application of nuclear batteries

    International Nuclear Information System (INIS)

    Hao Shaochang; Lu Zhenming; Fu Xiaoming; Liang Tongxiang

    2006-01-01

    Nuclear battery has lots of advantages such as small volume, longevity, environal stability and so on, therefore, it was widely used in aerospace, deep-sea, polar region, heart pacemaker, micro-electromotor and other fields etc. The application of nuclear battery and the development of its materials promote each other. In this paper the development and the latest research progress of nuclear battery materials has been introduced from the view of radioisotope, electric energy conversion and encapsulation. And the current and potential applications of the nuclear battery are also summarized. (authors)

  17. Aims and methods of nuclear materials management

    International Nuclear Information System (INIS)

    Leven, D.; Schier, H.

    1979-05-01

    Whilst international safeguarding of fissile materials against abuse has been the subject of extensive debate, little public attention has so far been devoted to the internal security of these materials. All countries using nuclear energy for peaceful purposes have laid down appropriate regulations. In the Federal Republic of Germany safeguards are required, for instance, by the Atomic Energy Act, and are therefore a prerequisite for licensing. The aims and methods of national nuclear materials management are contrasted with viewpoints on international safeguards

  18. Linear filtering applied to safeguards of nuclear material

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.; Holland, C.W.

    1975-01-01

    In regard to the problem of nuclear materials theft or diversion in the fuel cycle, a method is needed to detect continual thefts of relatively small amounts of material. It is suggested that Kalman filtering techniques be used. A hypothetical material flow situation is used to illustrate the technique; losses could be detected in as few as 5 months. (DLC)

  19. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    1989-12-01

    A Technical Committee on Physical Protection of Nuclear Material met in April-May 1989 to advise on the need to update the recommendations contained in document INFCIRC/225/Rev.1 and on any changes considered to be necessary. The Technical Committee indicated a number of such changes, reflecting mainly: the international consensus established in respect of the Convention on the Physical Protection of Nuclear Material; the experience gained since 1977; and a wish to give equal treatment to protection against the theft of nuclear material and protection against the sabotage of nuclear facilities. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. 1 tab

  20. Communication Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material, Software and Related Technology

    International Nuclear Information System (INIS)

    2010-01-01

    The Agency has received a Note Verbale from the Permanent Mission of Hungary, dated 14 June 2010, in which it requests that the Agency circulate to all Member States a letter of 7 May 2010 from the Chairman of the Nuclear Suppliers Group, Ambassador Ms. Gyorgyi Martin Zanathy, to the Director General, on behalf of the Governments of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, China, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Kazakhstan, Republic of Korea, Latvia, Lithuania, Luxemburg, Malta, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America,1 providing further information on those Governments’ Guidelines for Nuclear Transfers [es

  1. Communication Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material, Software and Related Technology

    International Nuclear Information System (INIS)

    2010-01-01

    The Agency has received a Note Verbale from the Permanent Mission of Hungary, dated 14 June 2010, in which it requests that the Agency circulate to all Member States a letter of 7 May 2010 from the Chairman of the Nuclear Suppliers Group, Ambassador Ms. Gyorgyi Martin Zanathy, to the Director General, on behalf of the Governments of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, China, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Kazakhstan, Republic of Korea, Latvia, Lithuania, Luxemburg, Malta, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America,1 providing further information on those Governments’ Guidelines for Nuclear Transfers [fr

  2. Communication Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material, Software and Related Technology

    International Nuclear Information System (INIS)

    2010-01-01

    The Agency has received a Note Verbale from the Permanent Mission of Hungary, dated 14 June 2010, in which it requests that the Agency circulate to all Member States a letter of 7 May 2010 from the Chairman of the Nuclear Suppliers Group, Ambassador Ms. Gyorgyi Martin Zanathy, to the Director General, on behalf of the Governments of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, China, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Kazakhstan, Republic of Korea, Latvia, Lithuania, Luxemburg, Malta, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America,1 providing further information on those Governments’ Guidelines for Nuclear Transfers

  3. Communication Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material, Software and Related Technology

    International Nuclear Information System (INIS)

    2010-07-01

    The Agency has received a Note Verbale from the Permanent Mission of Hungary, dated 14 June 2010, in which it requests that the Agency circulate to all Member States a letter of 7 May 2010 from the Chairman of the Nuclear Suppliers Group, Ambassador Ms. Gyorgyi Martin Zanathy, to the Director General, on behalf of the Governments of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, China, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Kazakhstan, Republic of Korea, Latvia, Lithuania, Luxemburg, Malta, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America,1 providing further information on those Governments’ Guidelines for Nuclear Transfers

  4. Integrated Global Nuclear Materials Management Preliminary Concepts

    International Nuclear Information System (INIS)

    Jones, E; Dreicer, M.

    2006-01-01

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  5. Croatian National System of Nuclear Materials Control

    International Nuclear Information System (INIS)

    Biscan, R.

    1998-01-01

    In the process of economic and technological development of Croatia by using or introducing nuclear power or in the case of international co-operation in the field of peaceful nuclear activities, including international exchange of nuclear material, Croatia should establish and implement National System of Nuclear Materials Control. Croatian National System of accounting for and control of all nuclear material will be subjected to safeguards under requirements of Agreement and Additional Protocol between the Republic of Croatia and the International Atomic Energy Agency (IAEA) for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The decision by NPT parties at the 1995 NPT Review and Extension Conference to endorse the Fullscope IAEA Safeguards Standard (FSS) as a necessary precondition of nuclear supply means that states are obliged to ensure that the recipient country has a FSS agreement in place before any nuclear transfer can take place (Ref. 1). The FSS standard of nuclear supply is a central element of the Nuclear Suppliers Group (NSG) Guidelines which the NSG adopted in 1992 and should be applied to members and non-members of the NSG. The FSS standard of nuclear supply in general allows for NPT parties or countries which have undertaken the same obligations through other treaty arrangements, to receive favourable treatment in nuclear supply arrangements. However, the Iraqi experience demonstrate that trade in nuclear and dual-use items, if not properly monitored, can contribute to a nuclear weapons program in countries acting contrary to their non-proliferation obligation. Multilateral nuclear export control mechanisms, including the FSS supply standard, provide the basis for co-ordination and standardisation of export control measures. (author)

  6. Study of Nuclear Environment and Material Strategy

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    Progress of global warming requires us to establish a low-carbon society. Carbon-dioxide (CO 2 ) is emitted from two major sectors in the world. The largest CO 2 emitting sector is power sector having 46 % of the world share. Nuclear power has an important role because it does not emit CO 2 while it produces electricity. The second largest sector is transportation and has about 23 % of the world share. 73 % of transportation is land-transportation, that is to say automobile. Therefore, lots of motor-car companies are expressing their vision to supply electric vehicle (EV) or hybrid vehicle (HV) in these few years. In order to manufacture EV and HV, rare-earth materials such as neodymium (Nd) and dysprosium (Dy) are necessary. EV and HV are driven by an electric motor using permanent magnet. Nd is used to improve torque of permanent magnet. Dy is used as supplement for the case of HV in order to enhance thermal resistance because electric motor is exposed to high temperature circumference with combustion engine. 97 % of world supply of rare-earth production is shared by China. The reduction of exportation amount of rare-earth from China to Japan have brought a significant impact on Japan's industries especially for motor-car companies, which are going to supply EV and HV. Japan is going to develop new rare-earth mines outside of China such as in Vietnam. The most important problem relating to rare-earth mining is 'thorium'. The popular minerals containing rare-earth are monazite, bastnasite and so on. Thorium is mostly included in the same minerals. Therefore, thorium is separated whenever rare-earth is refined. Thorium separated in China can be stored for future usage as nuclear fuel. Though thorium began to be considered also in a working group of Atomic Energy Society of Japan since 2010, it is not clear when thorium starts to be used and how much amount of thorium will be consumed. It is estimated that consumption of thorium will be smaller than the production

  7. Dynamic nuclear polarization of irradiated target materials

    International Nuclear Information System (INIS)

    Seely, M.L.

    1982-01-01

    Polarized nucleon targets used in high energy physics experiments usually employ the method of dynamic nuclear polarization (DNP) to polarize the protons or deuterons in an alcohol. DNP requires the presence of paramagnetic centers, which are customarily provided by a chemical dopant. These chemically doped targets have a relatively low polarizable nucleon content and suffer from loss of polarization when subjected to high doses of ionizing radiation. If the paramagnetic centers formed when the target is irradiated can be used in the DNP process, it becomes possible to produce targets using materials which have a relatively high polarizable nucleon content, but which are not easily doped by chemical means. Furthermore, the polarization of such targets may be much more radiation resistant. Dynamic nuclear polarization in ammonia, deuterated ammonia, ammonium hydroxide, methylamine, borane ammonia, butonal, ethane and lithium borohydride has been studied. These studies were conducted at the Stanford Linear Accelerator Center using the Yale-SLAC polarized target system. Results indicate that the use of ammonia and deuterated ammonia as polarized target materials would make significant increases in polarized target performance possible

  8. Transportation of hazardous and nuclear materials

    International Nuclear Information System (INIS)

    Boryczka, M.; Shaver, D.

    1989-01-01

    Transportation of hazardous and radioactive materials is a vital part of the nation's economy. In recent years public concern over the relative safety of transporting hazardous materials has risen sharply. The United States has a long history of transporting hazardous and radioactive material; rocket propellants, commercial spent fuel, low-level and high-level radioactive waste has been shipped for years. While the track record for shipping these materials is excellent, the knowledge that hazardous materials are passing through communities raises the ire of citizens and local governments. Public outcry over shipments containing hazardous cargo has been especially prominent when shippers have attempted to transport rocket propellants or spent nuclear fuel. Studies of recent shipments have provided insight into the difficulties of shipping in a politically charged environment, the major issues of concern to citizens, and some of the more successful methods of dealing with public concerns. This paper focuses on lessons learned from these studies which include interviews with shippers, carriers, and regulators

  9. Nuclear materials stewardship: Our enduring mission

    International Nuclear Information System (INIS)

    Isaacs, T.H.

    1998-01-01

    The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now the attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country's nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national

  10. Control of nuclear materials and materials in Argentina

    International Nuclear Information System (INIS)

    Arbor G, A.; Fernandes M, S.

    1988-01-01

    A general view about the safeguards activities in Argentina is presented. The national system of accounting for and control of nuclear materials is described. The safeguards agreement signed by Argentina are presented. (E.G.) [pt

  11. Welcome from INMM (Institute of Nuclear Materials Management)

    International Nuclear Information System (INIS)

    Satkowiak, L.

    2015-01-01

    The Institute of Nuclear Materials Management (INMM) is the premier professional society focused on safe and secure use of Nuclear Materials and the related nuclear scientific technology and knowledge. Its international membership includes government, academia, non-governmental organizations and industry, spanning the full spectrum all the way from policy to technology. The Institute's primary role include the promotion of research, the establishment of standards and the development of best practices, all centered around nuclear materials. It then disseminates this information through meetings, professional contacts, reports, papers, discussions, and publications. The formal structure of the INMM includes six technical divisions: Facility Operation; Materials Control and Accountability; Nonproliferation and Arms Control; Nuclear Security and Physical Protection; Packaging, Transportation and Disposition

  12. U.S. national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Taylor, S; Terentiev, V G

    1998-01-01

    Issues related to nuclear material control and accounting and illegal dealing in these materials were discussed at the April 19--20, 1996 Moscow summit meeting (G7 + Russia). The declaration from this meeting reaffirmed that governments are responsible for the safety of all nuclear materials in their possession and for the effectiveness of the national control and accounting system for these materials. The Russian delegation at this meeting stated that ''the creation of a nuclear materials accounting, control, and physical protection system has become a government priority''. Therefore, in order to create a government nuclear material control and accounting system for the Russian Federation, it is critical to study the structure, operating principles, and regulations supporting the control and accounting of nuclear materials in the national systems of nuclear powers. In particular, Russian specialists have a definite interest in learning about the National Nuclear Material Control and Accounting System of the US, which has been operating successfully as an automated system since 1968

  13. Regulation on control of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ikeda, Kaname

    1976-01-01

    Some comment is made on the present laws and the future course of consolidating the regulation of nuclear fuel materials. The first part gives the definitions of the nuclear fuel materials in the laws. The second part deals with the classification and regulation in material handling. Refinement undertaking, fabrication undertaking, reprocessing undertaking, the permission of the government to use the materials, the permission of the government to use the materials under international control, the restriction of transfer and receipt, the reporting, and the safeguard measures are commented. The third part deals with the strengthening of regulation. The nuclear fuel safety deliberation special committee will be established at some opportunity of revising the ordinance. The nuclear material safeguard special committee has been established in the Atomic Energy Commission. The last part deals with the future course of legal consolidation. The safety control will be strengthened. The early investigation of waste handling is necessary, because low level solid wastes are accumulating at each establishment. The law for transporting nuclear materials must be consolidated as early as possible to correspond to foreign transportation laws. Physical protection is awaiting the conclusions of the nuclear fuel safeguard special committee. The control and information systems for the safeguard measures must be consolidated in the laws. (Iwakiri, K.)

  14. Structural materials for innovative nuclear systems (SMINS)

    International Nuclear Information System (INIS)

    2008-01-01

    Structural materials research is a field of growing relevance in the nuclear sector, especially for the different innovative reactor systems being developed within the Generation IV International Forum (GIF), for critical and subcritical transmutation systems, and of interest to the Global Nuclear Energy Partnership (GNEP). Under the auspices of the NEA Nuclear Science Committee (NSC) the Workshop on Structural Materials for Innovative Nuclear Systems (SMINS) was organised in collaboration with the Forschungszentrum Karlsruhe in Germany. The objectives of the workshop were to exchange information on structural materials research issues and to discuss ongoing programmes, both experimental and in the field of advanced modelling. These proceedings include the papers and the poster session materials presented at the workshop, representing the international state of the art in this domain. (author)

  15. Automated accounting systems for nuclear materials

    International Nuclear Information System (INIS)

    Erkkila, B.

    1994-01-01

    History of the development of nuclear materials accounting systems in USA and their purposes are considered. Many present accounting systems are based on mainframe computers with multiple terminal access. Problems of future improvement accounting systems are discussed

  16. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-01-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  17. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [es

  18. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [fr

  19. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  20. List of Nuclear Materials Licensing Actions Received

    Data.gov (United States)

    Nuclear Regulatory Commission — A catalog of all Materials Licensing Actions received for review. The catalog lists the name of the entity submitting the license application, their city and state,...

  1. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  2. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  3. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  4. Estimation methods for special nuclear materials holdup

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Picard, R.R.

    1984-01-01

    The potential value of statistical models for the estimation of residual inventories of special nuclear materials was examined using holdup data from processing facilities and through controlled experiments. Although the measurement of hidden inventories of special nuclear materials in large facilities is a challenging task, reliable estimates of these inventories can be developed through a combination of good measurements and the use of statistical models. 7 references, 5 figures

  5. Fundamentals of materials accounting for nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. (comp.)

    1989-04-01

    Materials accounting is essential to providing the necessary assurance for verifying the effectiveness of a safeguards system. The use of measurements, analyses, records, and reports to maintain knowledge of the quantities of nuclear material present in a defined area of a facility and the use of physical inventories and materials balances to verify the presence of special nuclear materials are collectively known as materials accounting for nuclear safeguards. This manual, prepared as part of the resource materials for the Safeguards Technology Training Program of the US Department of Energy, addresses fundamental aspects of materials accounting, enriching and complementing them with the first-hand experiences of authors from varied disciplines. The topics range from highly technical subjects to site-specific system designs and policy discussions. This collection of papers is prepared by more than 25 professionals from the nuclear safeguards field. Representing research institutions, industries, and regulatory agencies, the authors create a unique resource for the annual course titled ''Materials Accounting for Nuclear Safeguards,'' which is offered at the Los Alamos National Laboratory.

  6. Resources of nuclear fuels and materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, K [Tokyo Inst. of Tech. (Japan); Kamiyama, Teiji; Hayashi, S; Hida, Noboru; Okano, T

    1974-11-01

    In this explanatory article, data on the world resources of nuclear fuels and materials, their production, and the present state of utilization are presented by specialists in varied fields. Main materials taken up are uranium, thorium, beryllium, zirconium, niobium, rare earth elements, graphite, and materials for nuclear fusion (heavy hydrogen and tritium). World reserves and annual production of these materials listed in a number of tables are cited from statistics of the period 1970-1973 or given by estimation. These data may be used as valuable numerical data for various projects and problems of atomic power industries.

  7. Nuclear material control in the United States

    International Nuclear Information System (INIS)

    Jaeger, C.; Waddoups, I.

    1995-01-01

    The Department of Energy has defined a safeguards system to be an integrated system of physical protection, material accounting and material control subsystems designed to deter, prevent, detect, and respond to unauthorized possession, use, or sabotage of SNM. In practice, safeguards involve the development and application of techniques and procedures dealing with the establishment and continued maintenance of a system of activities. The system must also include administrative controls and surveillance to assure that the procedures and techniques of the system are effective and are being carried out. The control of nuclear material is critical to the safeguarding of nuclear materials within the United States. The U.S. Department of Energy includes as part of material control four functional performance areas. They include access controls, material surveillance, material containment and detection/assessment. This paper will address not only these areas but also the relationship between material control and other safeguards and security functions

  8. The use of modern databases in managing nuclear material inventories

    International Nuclear Information System (INIS)

    Behrens, R.G.

    1994-01-01

    The need for a useful nuclear materials database to assist in the management of nuclear materials within the Department of Energy (DOE) Weapons Complex is becoming significantly more important as the mission of the DOE Complex changes and both international safeguards and storage issues become drivers in determining how these materials are managed. A well designed nuclear material inventory database can provide the Nuclear Materials Manager with an essential cost effective tool for timely analysis and reporting of inventories. This paper discusses the use of databases as a management tool to meet increasing requirements for accurate and timely information on nuclear material inventories and related information. From the end user perspective, this paper discusses the rationale, philosophy, and technical requirements for an integrated database to meet the needs for a variety of users such as those working in the areas of Safeguards, Materials Control and Accountability (MC ampersand A), Nuclear Materials Management, Waste Management, materials processing, packaging and inspection, and interim/long term storage

  9. Considerations for sampling nuclear materials for SNM accounting measurements. Special nuclear material accountability report

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Upson, U.L.

    1978-05-01

    This report presents principles and guidelines for sampling nuclear materials to measure chemical and isotopic content of the material. Development of sampling plans and procedures that maintain the random and systematic errors of sampling within acceptable limits for SNM(Special Nuclear Materials) accounting purposes are emphasized

  10. Overview moderator material for nuclear reactor components

    International Nuclear Information System (INIS)

    Mairing Manutu Pongtuluran; Hendra Prihatnadi

    2009-01-01

    In order for a reactor design is considered acceptable absolute technical requirement is fulfilled because the most important part of a reactor design. Safety considerations emphasis on the handling of radioactive substances emitted during the operation of a reactor and radioactive waste handling. Moderator material is a layer that interacts directly with neutrons split the nuclear fuel that will lead to changes in physical properties, nuclear properties, mechanical properties and chemical properties. Reviews moderator of this time is of the types of moderator is often used to meet the requirements as nuclear material. (author)

  11. Material degradation - a nuclear utility's view

    International Nuclear Information System (INIS)

    Spekkens, P.

    2007-01-01

    Degradation of nuclear plant materials has been responsible for major costs and unit outage time. As such, nuclear utilities are important end users of the information produced by R and D on material degradation. This plenary describes the significance of material degradation for the nuclear utilities, and how utilities use information about material degradation in their short, medium and long term planning activities. Utilities invest in R and D programs to assist them in their business objective of operating safely, reliably and cost competitively. Material degradation impacts all three of these business drivers. Utilities make decisions on life cycle planning, unit refurbishment and 'new build' projects on the basis of their understanding of the behaviour of a variety of materials in a broad range of environments. The R and D being carried out today will determine the future business success of the nuclear utilities. The R and D program needs to be broadly based to include a range of materials, environments and time-frames, particularly any new materials proposed for use in new units. The R and D community needs to help the utility managers make choices that will result in an optimized materials R and D program

  12. International safeguards: Accounting for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  13. International safeguards: Accounting for nuclear materials

    International Nuclear Information System (INIS)

    Fishbone, L.G.

    1988-01-01

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the ''non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs

  14. Nuclear Space Power Systems Materials Requirements

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    2004-01-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited

  15. Evaluation of Terminated Nuclear Material Licenses

    International Nuclear Information System (INIS)

    Spencer, K.M.; Zeighami, E.A.

    1999-01-01

    This report presents the results of a six-year project that reviewed material licenses that had been terminated during the period from inception of licensing until approximately late-1994. The material licenses covered in the review project were Part 30, byproduct material licenses; Part 40, source material licenses; and Part 70, special nuclear material licenses. This report describes the methodology developed for the project, summarizes the findings of the license file inventory process, and describes the findings of the reviews or evaluations of the license files. The evaluation identified nuclear material use sites that need review of the licensing material or more direct follow-up of some type. The review process also identified licenses authorized to possess sealed sources for which there was incomplete or missing documentation of the fate of the sources

  16. Safeguards and Nuclear Material Management

    International Nuclear Information System (INIS)

    Stanchi, L.

    1991-01-01

    The book contains contributed papers from various authors on the following subjects: Safeguards systems and implementation, Measurement techniques: general, Measurement techniques: destructive analysis, Measurement techniques: non-destructive assay, Containment and surveillance, Spent fuel strategies, Material accounting and data evaluation

  17. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    Bethge, K.; Baumann, H.; Jex, H.; Rauch, F.

    1980-01-01

    Proceedings of the seventh divisional conference of the Nuclear Physics Division held at Darmstadt, Germany, from 23rd through 26th of September, 1980. The scope of this conference was defined as follows: i) to inform solid state physicists and materials scientists about the application of nuclear physics methods; ii) to show to nuclear physicists open questions and problems in solid state physics and materials science to which their methods can be applied. According to the intentions of the conference, the various nuclear physics methods utilized in solid state physics and materials science and especially new developments were reviewed by invited speakers. Detailed aspects of the methods and typical examples extending over a wide range of applications were presented as contributions in poster sessions. The Proceedings contain all the invited papers and about 90% of the contributed papers. (orig./RW)

  18. Nuclear materials transport in France

    International Nuclear Information System (INIS)

    Korycanek, J.

    1990-01-01

    About 1.5 million tons of uranium ore, 8000 tons of uranium concentrate, 1000 tons of UF 6 , 340 spent fuel containers, and 30 000 m 3 of nuclear wastes are transported annually by trucks, trains and ships in France. Annual costs of this transportation amount to 500-600 million FRF, and about 200 employees are engaged in this activity. Transportation of spent fuel to the La Hague and Marcoule fuel reprocessing plants, and the transport of plutonium are dealt with in detail. (Z.M.). 5 figs., 1 ref

  19. Verification and nuclear material security

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2001-01-01

    Full text: The Director General will open the symposium by presenting a series of challenges facing the international safeguards community: the need to ensure a robust system, with strong verification tools and a sound research and development programme; the importance of securing the necessary support for the system, in terms of resources; the effort to achieve universal participation in the non-proliferation regime; and the necessity of re-energizing disarmament efforts. Special focus will be given to the challenge underscored by recent events, of strengthening international efforts to combat nuclear terrorism. (author)

  20. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  1. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  2. Polymers for nuclear materials processing

    International Nuclear Information System (INIS)

    Jarvinen, G.; Benicewicz, B.; Duke, J.

    1996-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The use of open-celled microcellular foams as solid sorbents for metal ions and other solutes could provide a revolutionary development in separation science. Macroreticular and gel-bead materials are the current state-of-the-art for solid sorbents to separate metal ions and other solutes from solution. The new polymer materials examined in this effort offer a number of advantages over the older materials that can have a large impact on industrial separations. The advantages include larger usable surface area in contact with the solution, faster sorption kinetics, ability to tailor the uniform cell size to a specific application, and elimination of channeling and packing instability

  3. Measurement control program for nuclear material accounting

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Merrill, J.A.; Brown, W.B.

    1980-06-01

    A measurement control program for nuclear material accounting monitors and controls the quality of the measurments of special nuclear material that are involved in material balances. The quality is monitored by collecting data from which the current precision and accuracy of measurements can be evaluated. The quality is controlled by evaluations, reviews, and other administrative measures for control of selection or design of facilities, equipment and measurement methods and the training and qualification of personnel who perform SNM measurements. This report describes the most important elements of a program by which management can monitor and control measurement quality

  4. Security Culture in Physical Protection of Nuclear Material and Facility

    International Nuclear Information System (INIS)

    Susyanta-Widyatmaka; Koraag, Venuesiana-Dewi; Taswanda-Taryo

    2005-01-01

    In nuclear related field, there are three different cultures: safety, safeguards and security culture. Safety culture has established mostly in nuclear industries, meanwhile safeguards and security culture are relatively new and still developing. The latter is intended to improve the physical protection of material and nuclear facility. This paper describes concept, properties and factors affecting security culture and interactions among these cultures. The analysis indicates that anybody involving in nuclear material and facility should have strong commitment and awareness of such culture to establish it. It is concluded that the assessment of security culture outlined in this paper is still preliminary for developing and conduction rigorous security culture implemented in a much more complex facility such as nuclear power plant

  5. Country Presentation on Illicit Trafficking of Nuclear Materials

    International Nuclear Information System (INIS)

    Mwandime, C.

    2010-01-01

    Assess the role of various agences in Kenya in fighting illicit traficking of nuclear materials. These includes the police, customs, National Council for Science and Technology, Radiation and Protection Board. Gives incidences of trafficking of various materials in Kenya and related activities like the 1998 terrorist attack of American Embassy in Nairobi and the Kikambala Tourist Hotel in Mombasa

  6. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions concerning refining business in the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for the execution of this law, and to enforce them. Basic terms are defined, such as: exposure radiation dose, cumulative dose, control area, surrounding monitoring area and worker. The application for the designation for refining business under the law shall be classified into the facilities for crushing and leaching-filtration, thikening, and refining, the storage facilities for nuclear raw materials and nuclear fuel materials, and the disposal facilities for radioactive wastes, etc. To the application, shall be attached business plans, the explanations concerning the technical abilities of applicants and the prevention of hazards by nuclear raw materials and nuclear fuel materials regarding refining facilities, etc. Records shall be made on the accept, delivery and stock of each kind of nuclear raw materials and nuclear fuel materials, radiation control, the maintenance of and accidents in refining facilities, and kept for specified periods, respectively. Security regulations shall be enacted for each works or enterprise on the functions and organizations of persons engaged in the control of refining facilities, the operation of the apparatuses which must be controlled for the prevention of accidents, and the establishment of control area and surrounding monitoring area, etc. The report on the usage of internationally regulated goods and the measures taken at the time of danger are defined particularly. (Okada, K.)

  7. Nuclear Security Recommendations on Nuclear and other Radioactive Material out of Regulatory Control: Recommendations (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  8. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the ? field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  9. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications

  10. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Russian Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  11. Nuclear material accounting software for Ukraine

    International Nuclear Information System (INIS)

    Doll, M.; Ewing, T.; Lindley, R.; McWilliams, C.; Roche, C.; Sakunov, I.; Walters, G.

    1999-01-01

    Among the needs identified during initial surveys of nuclear facilities in Ukraine was improved accounting software for reporting material inventories to the regulatory body. AIMAS (Automated Inventory/Material Accounting System) is a PC-based application written in Microsoft Access that was jointly designed by an US/Ukraine development team. The design is highly flexible and configurable, and supports a wide range of computing infrastructure needs and facility requirements including situations where networks are not available or reliable. AIMAS has both English and Russian-language options for displays and reports, and it operates under Windows 3.1, 95, or NT 4.0trademark. AIMAS functions include basic physical inventory tracking, transaction histories, reporting, and system administration functions (system configuration, security, data backup and recovery). Security measures include multilevel password access control, all transactions logged with the user identification, and system administration control. Interfaces to external modules provide nuclear fuel burn-up adjustment and barcode scanning capabilities for physical inventory taking. AIMAS has been installed at Kiev Institute of Nuclear Research (KINR), South Ukraine Nuclear Power Plant (SUNPP), Kharkov Institute of Physics and Technology (KIPT), Sevastopol Institute of Nuclear Energy and Industry (SINEI), and the Ministry of Environmental Protection and Nuclear Safety/Nuclear Regulatory Administration (MEPNS/NRA). Facility specialists are being trained to use the application to track material movement and report to the national regulatory authority

  12. Safeguarding nuclear weapon: Usable materials in Russia

    International Nuclear Information System (INIS)

    Cochran, T.

    1998-01-01

    Both the United States and Russia are retaining as strategic reserves more plutonium and HEU for potential reuse as weapons, than is legitimately needed. Both have engaged in discussions and have programs in various stages of development to dispose of excess plutonium and HEU. These fissile material disposition programs will take decades to complete. In the interim there will be, as there is now, hundreds of tons of separated weapon-usable fissile material stored in tens of thousands of transportable canisters, each containing from a few to several tons of kgs of weapon-usable fissile material. This material must be secured against theft and unauthorized use. To have high confidence that the material is secure, one must establish criteria against which the adequacy of the protective systems can be judged. For example, one finds such criteria in US Nuclear Regulatory Commission (USNRC) regulations for the protection of special nuclear materials

  13. Technology development for nuclear material accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Choi, Hyoung Nae; Park, Ho Jun.

    1990-01-01

    Neutron yields from 19 F(α,n) 22 Na reaction of uranium neutron interaction with uranium-bass materials, and the characteristics of shielded neutron assay probe have been studied. On the basis of the above examination, U-235 enrichment in UF 6 cylinders like model 30B and model 48Y was measured by the reaction and U-235 contents in the containers by non-destructive total passive neutron assay method. Total measurement efficiency as a result was found to be 6.44 x 10 -4 and 1.25 x 10 -4 for model 30B and model 40Y UF 6 cylinder, respectively. The uncertainty of measured enrichment as compared to Tag value obtained from chemical analysis approached about 5 % of relative error at 95 % confidence interval. In the follow-up action for the previously developed (1988) computer system of nuclear material accounting the error searching and treatment routine in accordance with code 10, of IAEA and respective facility attachment has been added to easing the burden of manual error correction by operator. In addition, the procedure for LEMUF calculation has been prepared to help bulk facility operators evaluating MUF in the period of material balance. (author)

  14. Mass spectrometry of nuclear materials

    International Nuclear Information System (INIS)

    Shields, W.R.

    1989-01-01

    Measurements of the 235 U/ 238 U ratio in product-quality material have improved from uncertainties of 0.1 percent (rel) to 0.2 percent since the Manhattan Project. The hardware and procedural changes responsible for these measurement improvements are traced and discussed

  15. Chimera of new nuclear materials

    International Nuclear Information System (INIS)

    Bush, S.H.

    1975-01-01

    The current and future needs in materials for light water reactors and liquid metal fast breeder reactors are reviewed. Information and discussions are included on boiling water reactors, pressurized water reactors, liquid metal fast breeder reactors, corrosion of piping systems and steam generators, ferritic steels, stainless steels, Inconel 600, pressure vessels, and radiation damage. (U.S.)

  16. Uncontrolled transport of nuclear materials

    International Nuclear Information System (INIS)

    Wassermann, U.

    1985-01-01

    An account is given of international transport of plutonium, uranium oxides, uranium hexafluoride, enriched uranium and irradiated fuel for reprocessing. Referring to the sinking of the 'Mont Louis', it is stated that the International Maritime Organization has been asked by the National Union of Seamen and 'Greenpeace' to bar shipment of radioactive material until stricter international safety regulations are introduced. (U.K.)

  17. Software development for managing nuclear material database

    International Nuclear Information System (INIS)

    Tondin, Julio Benedito Marin

    2011-01-01

    In nuclear facilities, the nuclear material control is one of the most important activities. The Brazilian National Commission of Nuclear Energy (CNEN) and the International Atomic Energy Agency (IAEA), when inspecting routinely, regards the data provided as a major safety factor. Having a control system of nuclear material that allows the amount and location of the various items to be inspected, at any time, is a key factor today. The objective of this work was to enhance the existing system using a more friendly platform of development, through the VisualBasic programming language (Microsoft Corporation), to facilitate the operation team of the reactor IEA-R1 Reactor tasks, providing data that enable a better and prompter control of the IEA-R1 nuclear material. These data have allowed the development of papers presented at national and international conferences and the development of master's dissertations and doctorate theses. The software object of this study was designed to meet the requirements of the CNEN and the IAEA safeguard rules, but its functions may be expanded in accordance with future needs. The program developed can be used in other reactors to be built in the country, since it is very practical and allows an effective control of the nuclear material in the facilities. (author)

  18. Gamma spectrometric discrimination of special nuclear materials

    International Nuclear Information System (INIS)

    Dowdall, M.; Mattila, A.; Ramebaeck, H.; Aage, H.K.; Palsson, S.E.

    2012-12-01

    This report presents details pertaining to an exercise conducted as part of the NKS-B programme using synthetic gamma ray spectra to simulate the type of data that may be encountered in the interception of material potentially containing special nuclear materials. A range of scenarios were developed involving sources that may or may not contain special nuclear materials. Gamma spectral data was provided to participants as well as ancillary data and participants were asked, under time constraint, to determine whether or not the data was indicative of circumstances involving special nuclear materials. The situations varied such that different approaches were required in order to obtain the correct result in each context. In the majority of cases participants were able to correctly ascertain whether or not the situations involved special nuclear material. Although fulfilling the primary goal of the exercise, some participants were not in a position to correctly identify with certainty the material involved, Situations in which the smuggled material was being masked by another source proved to be the most challenging for participants. (Author)

  19. Modernizing computerized nuclear material accounting systems

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Claborn, J.

    1995-01-01

    DOE Orders and draft orders for nuclear material control and accountability address a complete material control and accountability (MC and A) program for all DOE contractors processing, using, or storing nuclear materials. A critical element of an MC and A program is the accounting system used to track and record all inventories of nuclear material and movements of materials in those inventories. Most DOE facilities use computerized accounting systems to facilitate the task of accounting for all their inventory of nuclear materials. Many facilities still use a mixture of a manual paper system with a computerized system. Also, facilities may use multiple systems to support information needed for MC and A. For real-time accounting it is desirable to implement a single integrated data base management system for a variety of users. In addition to accountability needs, waste management, material management, and production operations must be supported. Information in these systems can also support criticality safety and other safety issues. Modern networked microcomputers provide extensive processing and reporting capabilities that single mainframe computer systems struggle with. This paper describes an approach being developed at Los Alamos to address these problems

  20. Gamma spectrometric discrimination of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Dowdall, M. [Norwegian Radiation Protection Authority (Norway); Mattila, A. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Ramebaeck, H. [Swedish Defence Research Agency, Stockholm (Sweden); Aage, H.K. [Danish Emergency Management Agency, Birkeroed (Denmark); Palsson, S.E. [Icelandic Radiation Safety Authority, Reykjavik (Iceland)

    2012-12-15

    This report presents details pertaining to an exercise conducted as part of the NKS-B programme using synthetic gamma ray spectra to simulate the type of data that may be encountered in the interception of material potentially containing special nuclear materials. A range of scenarios were developed involving sources that may or may not contain special nuclear materials. Gamma spectral data was provided to participants as well as ancillary data and participants were asked, under time constraint, to determine whether or not the data was indicative of circumstances involving special nuclear materials. The situations varied such that different approaches were required in order to obtain the correct result in each context. In the majority of cases participants were able to correctly ascertain whether or not the situations involved special nuclear material. Although fulfilling the primary goal of the exercise, some participants were not in a position to correctly identify with certainty the material involved, Situations in which the smuggled material was being masked by another source proved to be the most challenging for participants. (Author)

  1. New materials options for nuclear systems

    International Nuclear Information System (INIS)

    Jones, R.H.; Garner, F.A.; Bruemmer, S.M.; Gelles, D.S.

    1989-01-01

    Development of new materials for nuclear reactor systems is continuing to produce options for improved reactor designs. Materials with reduced environment-induced crack growth is a key materials issue for the light water reactor (LWR) industry while the development of low activation ferritic, austenitic and vanadium alloys has been an active area for materials development for fusion reactor structural applications. Development of advanced materials such as metal matrix and ceramic matrix composites for reactor systems have received a limited amount of attention. (author)

  2. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  3. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are provided for under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and provisions concerning refining business in the enforcement order for the law. The basic concepts and terms are defined, such as: exposure dose, accumulative dose; controlled area; inspected surrounding area and employee. Refining facilities listed in the application for designation shall be classified into clushing and leaching, thickning, refining facilities, storage facilities of nuclear source materials and nuclear fuel materials, disposal facilities of contaminated substances and building for refining, etc. Business program attached to the application shall include expected time of beginning of refining, estimated production amount of nuclear source materials or nuclear fuel materials for the first three years and funds necessary for construction, etc. Records shall be made and kept for particular periods on delivery and storage of nuclear source materials and nuclear fuel materials, control of radiation, maintenance and accidents of refining facilities. Safety securing, application of internationally regulated substances and measures in dangerous situations are stipulated respectively. Exposure dose of employees and other specified matters shall be reported by the refiner yearly to the Director General of Science and Technology Agency and the Minister of International Trade and Industry. (Okada, K.)

  4. Materials analysis with a nuclear microprobe

    International Nuclear Information System (INIS)

    Maggiore, C.J.

    1980-01-01

    The ability to produce focused beams of a few MeV light ions from Van de Graaff accelerators has resulted in the development of nuclear microprobes. Rutherford backscattering, nuclear reactions, and particle-induced x-ray emission are used to provide spatially resolved information from the near surface region of materials. Rutherford backscattering provides nondestructive depth and mass resolution. Nuclear reactions are sensitive to light elements (Z < 15). Particle-induced x-ray analysis is similar to electron microprobe analysis, but 2 orders of magnitude more sensitive. The focused beams are usually produced with specially designed multiplets of magnetic quadrupoles. The LASL microprobe uses a superconducting solenoid as a final lens. The data are acquired by a computer interfaced to the experiment with CAMAC. The characteristics of the information acquired with a nuclear microprobe are discussed; the means of producing the beams of nuclear particles are described; and the limitations and applications of such systems are given

  5. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  6. Subcritical calculation of the nuclear material warehouse

    International Nuclear Information System (INIS)

    Garcia M, T.; Mazon R, R.

    2009-01-01

    In this work the subcritical calculation of the nuclear material warehouse of the Reactor TRIGA Mark III labyrinth in the Mexico Nuclear Center is presented. During the adaptation of the nuclear warehouse (vault I), the fuel was temporarily changed to the warehouse (vault II) and it was also carried out the subcritical calculation for this temporary arrangement. The code used for the calculation of the effective multiplication factor, it was the Monte Carlo N-Particle Extended code known as MCNPX, developed by the National Laboratory of Los Alamos, for the particles transport. (Author)

  7. Plans of reorganization of USA nuclear military complex and provision of military program by special nuclear materials

    International Nuclear Information System (INIS)

    Semenovskaya, I.V.

    1996-01-01

    Consideration is given to plans and implementation of the program of reorganization of USA nuclear military complex, related with conducted reduction of nuclear arsenal after concluding the Strategic Nuclear Armament Reduction Treaty. Particular attention is paid to problems of satisfying short-term and long-term requirements in special nuclear materials and in tritium in particular

  8. Nuclear science in the 20th century. Nuclear technology applications in material science

    International Nuclear Information System (INIS)

    Pei Junchen; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear technology to material science has led to a new cross subject, nuclear material science (also named nuclear solid physics) which covers material analysis, material modification and new material synthesis. This paper reviews the development of nuclear technical applications in material science and the basic physics involved

  9. Technologies for detection of nuclear materials

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1996-01-01

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling

  10. Nuclear waste transmutation and related innovative technologies

    International Nuclear Information System (INIS)

    2002-01-01

    The main topics of the summer school meeting were 1. Motivation and programs for waste transmutation: The scientific perspective roadmaps; 2. The physics and scenarios of transmutation: The physics of transmutation and adapted reactor types. Impact on the fuel cycle and possible scenarios; 3. Accelerator driven systems and components: High intensity accelerators. Spallation targets and experiments. The sub critical core safety and simulation physics experiments; 4. Technologies and materials: Specific issues related to transmutation: Dedicated fuels for transmutation. Fuel processing - the role of pyrochemistry. Materials of irradiation. Lead/lead alloys. 5. Nuclear data: The N-TOF facility. Intermediate energy data and experiments. (orig./GL)

  11. Evaluation and development of advanced nuclear materials: IAEA activities

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Basak, U.; Killeen, J.; Dyck, G.; Zeman, A.; )

    2011-01-01

    structural materials' and 'Various issues related to thorium fuel cycle for thermal and fast reactors ' (all planned for 2011). Information is also provided about projects aimed at sharing experience in advances in the operation of existing nuclear units, such as on fuel modelling at high burn-ups, analysis of fuel failures, data bases development and training programmes. (author)

  12. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  13. Performance analysis of nuclear materials accounting systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Shipley, J.P.

    1979-01-01

    Techniques for analyzing the level of performance of nuclear materials accounting systems in terms of the four performance measures, total amount of loss, loss-detection time, loss-detection probability, and false-alarm probability, are presented. These techniques are especially useful for analyzing the expected performance of near-real-time (dynamic) accounting systems. A conservative estimate of system performance is provided by the CUSUM (cumulative summation of materials balances) test. Graphical displays, called performance surfaces, are developed as convenient tools for representing systems performance, and examples from a recent safeguards study of a nuclear fuels reprocessing plant are given. 6 refs

  14. Education and training in nuclear materials

    International Nuclear Information System (INIS)

    Falcon, S.; Marco, M.

    2014-01-01

    CIEMAT participates in the European project Matisse (Materials Innovations for a Safe and Sustainable nuclear in Europe) belonging to FP7, whose main objective is to promote the link between the respective national research programs through networking and integration of activities for innovation in materials for advanced nuclear systems, sharing among partners best practices and implementation of training tools and efficient communication. The draft four years, from 2013 to 2017, includes aspects such as the interaction between infrastructure, R and D programs and postgraduate education and training. (Author)

  15. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  16. Bar code usage in nuclear materials accountability

    International Nuclear Information System (INIS)

    Mee, W.T.

    1983-01-01

    The age old method of physically taking an inventory of materials by listing each item's identification number has lived beyond its usefulness. In this age of computerization, which offers the local grocery store a quick, sure, and easy means to inventory, it is time for nuclear materials facilities to automate accountability activities. The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At that time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable; however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented

  17. New challenges in nuclear material detection

    International Nuclear Information System (INIS)

    Dunlop, W.; Sale, K.; Dougan, A.; Luke, J.; Suski, N.

    2002-01-01

    Full text: Even before the attacks of September 11, 2001 the International Safeguards community recognized the magnitude of the threat posed by illicit trafficking of nuclear materials and the need for enhanced physical protection. For the first time, separate sessions on illicit trafficking and physical protection of nuclear materials were included in the IAEA Safeguards Symposium. In the aftermath of September 11, it is clear that the magnitude of the problem and the urgency with which it must be addressed will be a significant driver for advanced nuclear materials detection technologies for years to come. Trafficking in nuclear material and other radioactive sources is a global concern. According to the IAEA Illicit Trafficking Database Program, there have been confirmed cases in more than 40 countries and the number of cases per year have nearly doubled since 1996. The challenge of combating nuclear terrorism also brings with it many opportunities for the development of new tools and new approaches. In addition to the traditional gamma-ray imaging, spectrometry and neutron interrogation, there is a need for smaller, smarter, more energy-efficient sensors and sensor systems for detecting and tracking threats. These systems go by many names - correlated sensor networks, wide-area tracking systems, sensor or network fabrics - but the concept behind them is the same. Take a number of wireless sensors and tie them together with a communications network, develop a scheme for fusing the data and make the system easy to deploy. This paper will present a brief survey of nuclear materials detection capability, and discuss some advances in research and development that are particularly suited for illicit trafficking, detection of shielded highly enriched uranium, and border security. (author)

  18. Training-related activities for nuclear power plant personnel in the countries of Central and Eastern Europe and the former Soviet Union. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    A Technical Cooperation Meeting on Training-Related Activities for NPP Personnel in the Countries of Central and Eastern Europe and the Former Soviet Union was held at the IAEA, Vienna. The main objective of the meeting was to identify, through information exchange and discussion, possible TC projects and assistance related to nuclear power plant (NPP) personnel training, which would meet overall coherent national goals and would demonstrate and important impact and relevance for national policy priorities. An array of such projects were identified for each participating country of the CEEC and FSU as were a number of regional cooperation projects. Refs, figs and tabs

  19. Interatomic potentials for materials of nuclear interest

    International Nuclear Information System (INIS)

    Fernandez, Julian R.; Monti, Ana M.; Pasianot, Roberto C.; Simonelli, G.

    2007-01-01

    Procedures to develop embedded atom method (EAM) interatomic potentials are described, with foreseeable applications in nuclear materials. Their reliability is shown by evaluating relevant properties. The studied materials are Nb, Zr and U. The first two were then used to develop an inter species potential for the Zr-Nb binary system. In this sense, the Fe-Cu system was also studied starting from Fe and Cu potentials extracted from the literature. (author) [es

  20. Radiation damage in nuclear waste materials

    International Nuclear Information System (INIS)

    Jencic, I.

    2000-01-01

    Final disposal of high-level radioactive nuclear waste is usually envisioned in some sort of ceramic material. The physical and chemical properties of host materials for nuclear waste can be altered by internal radiation and consequently their structural integrity can be jeopardized. Assessment of long-term performance of these ceramic materials is therefore vital for a safe and successful disposal. This paper presents an overview of studies on several possible candidate materials for immobilization of fission products and actinides, such as spinel (MgAl 2 O 4 ), perovskite (CaTiO 3 ), zircon (ZrSiO 4 ), and pyrochlore (Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 ). The basic microscopic picture of radiation damage in ceramics consists of atomic displacements and ionization. In many cases these processes result in amorphization (metaminctization) of irradiated material. The evolution of microscopic structure during irradiation leads to various macroscopic radiation effects. The connection between microscopic and macroscopic picture is in most cases at least qualitatively known and studies of radiation induced microscopic changes are therefore an essential step in the design of a reliable nuclear waste host material. The relevance of these technologically important results on our general understanding of radiation damage processes and on current research efforts in Slovenia is also addressed. (author)

  1. Characteristics of X-ray fluorescence of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seunghoon; Kwak, Sung-Woo; Shin, Jung-Ki; Park, Uk-Rayng; Jung, Heejun [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    LED is a technique of determination of uranium concentration as a continuous X-ray energy beams transmit a uranium liquid sample for safeguards. Compared to K-edge densitometer, due to relatively lower energy (L-edge energy is 17.17 keV) of Uranium L series energy than K-series energy, L-edge densitometer does not require high purity germanium detector with liquid nitride cooling. Therefore, the Ledge densitometer is appropriate for portable equipment for on-site nuclear material inspection and safeguards at facility sites. XRF combined with LED is a technique of finding of nuclear materials from reflected characteristic X-ray photons. In this study, characteristics of XRF of nuclear materials are simulated Monte Carlo method (Geant4) for feasibility of the system for determination of concentration of nuclear species. The analysis method of uranium concentration or minor actinides is applied using combination of linear extrapolation from jump of L-edge of sample and ratio between uranium and minor actinide from XRF measurement. In this study, The XRF ch aracteristics was simulated from Monte Carlo method. The peaks were obtained from nuclear material mixture. The estimated nuclear material concentration is low due to the volume effect of the sample. The correction factor or minimization of the effect is required.

  2. Materials technologies for advanced nuclear energy concepts

    International Nuclear Information System (INIS)

    DiStefano, J.; Harms, B.

    1983-01-01

    High-performance, advanced nuclear power plant concepts have emerged with major emphasis on lower capital costs, inherent safety, and increased reliability. The materials problems posed by these concepts are discussed and how the scientists and technologists at ORNL plan to solve them is described

  3. Enforcement agreement between the French atomic energy commission and the federal atomic energy agency for the implementation of the framework-agreement dispositions related to the environmental multilateral program in the nuclear domain in Russian Federations during the nuclear cooperation in the framework of the G8 world partnership against the proliferation of mass destruction weapons and their related materials

    International Nuclear Information System (INIS)

    2007-01-01

    In order to give assistance to the Russian Federations, the G8 partners have agreed to carry on joint actions in the following domains: dismantling of out-of-service nuclear submarines of the Russian navy, management of the spent fuels and wastes generated by this dismantlement, rehabilitation of fuel storage and waste management facilities, management of nuclear materials and safety of facilities or sites with a potential radiological risk. This document defines the domain of cooperation between France (CEA) and the Russian federal atomic energy agency: creation of a coordination parity technical committee, financing conditions and conclusion of contracts for joint actions, access to sites, exchange of informations, intellectual property, nuclear safety and radioprotection, changes and amendments to the agreement, enforcement and duration. A protocol relative to the access of French representatives to Russian work sites is attached. (J.S.)

  4. Nuclear material inventory estimation in a nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Bennett, J.E.; Beyerlein, A.L.

    1981-01-01

    A new approach in the application of modern system identification and estimation techniques is proposed to help nuclear reprocessing facilities meet the nuclear accountability requirement proposed by the International Atomic Energy Agency. The proposed identification and estimation method considers the material inventory in a portion of the chemical separations area of a reprocessing facility. The method addresses the nonlinear aspects of the problem, the time delay through the separation facility, and the lack of measurement access. The method utilizes only input-output measured data and knowledge of the uncertainties associated with the process and measured data. 14 refs

  5. Questions raised on transport of nuclear material

    International Nuclear Information System (INIS)

    Lubinska, A.

    1984-01-01

    Public opinion is demanding safer rules for the shipment of radioactive materials since the recent collision and sinking of a French freighter carrying uranium hexafluoride. At issue is the secrecy of the cargo, the delay in releasing information to the public and salvage crews, and the use of unmarked trucks. The nuclear industry points out that no recent incidents have led to the loss of human life, but there is concern among European Community members that a number of countries have yet to ratify international conventions and agreements on hazardous materials transport, that none of these agreements are mandatory, and that none address the transfrontier movement of waste materials

  6. New technologies for monitoring nuclear materials

    International Nuclear Information System (INIS)

    Moran, B.W.

    1993-01-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items

  7. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  8. The changing role of nuclear materials accounting

    International Nuclear Information System (INIS)

    Gibbs, P.W.

    1995-01-01

    Nuclear materials accounting and accounting systems at what have been DOE Production sites are evolving into management decision support tools. As the sites are moving into the mode of making decisions on how to disposition complex and varied nuclear material holdings, the need for complete and many times different information has never been greater. The artificial boundaries that have historically been established between what belongs in the classic material control and accountability (MC and A) records versus what goes into the financial, radiological control, waste, or decommissioning and decontamination records are being challenged. In addition, the tools historically used to put material into different categories such as scrap codes, composition codes, etc. have been found to be inadequate for the information needs of today. In order to be cost effective and even, more importantly to effectively manage -our inventories, the new information systems the authors design have to have the flexibility to serve many needs. In addition, those tasked with the responsibility of managing the inventories must also expand beyond the same artificial boundaries. This paper addresses some of the things occurring at the Savannah River Site to support the changing role of nuclear materials accounting

  9. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  10. National practices in physical protection of nuclear materials. Regulatory basis

    International Nuclear Information System (INIS)

    Goltsov, V.Y.

    2002-01-01

    criminal code of Russian Federation regarding improper execution of duties on and theft of nuclear materials and equipment that could be used for weapons of mass destruction construction. Minatom of Russia is actively elaborating ministerial documents on physical protection. Since 1995 till 2001 there were developed and put in force 21 this topic related documents including the following: physical protection terminology; general approaches to physical protection ensuring; vulnerability analysis of nuclear-hazardous facilities; physical protection systems designing; organizing of safeguards and security services at nuclear-hazardous facilities; operation of automated physical protection systems; communication and data exchange in physical protection systems; certification of technical means of physical protection; physical protection system information protection; ministerial on-site guarding of nuclear-hazardous facilities; provision of ministerial control of physical protection condition; interaction of different entities participating physical protection at ministerial level. (author)

  11. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-10-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely-activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. A list of measures is given for assessing overall physical protection system performance. (auth)

  12. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major US Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed in this paper. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. Finally, a list of measures is given for assessing overall physical protection system performance. (author)

  13. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    International Nuclear Information System (INIS)

    Michalske, T.A.

    2013-01-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

  14. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    Energy Technology Data Exchange (ETDEWEB)

    Michalske, T.A. [Savannah River National Laboratory (United States)

    2013-07-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the

  15. Safeguards: Modelling of the Detection and Characterization of Nuclear Materials

    International Nuclear Information System (INIS)

    Enqvist, Andreas

    2010-01-01

    Nuclear safeguards is a collective term for the tools and methods needed to ensure nonproliferation and safety in connection to utilization of nuclear materials. It encompasses a variety of concepts from legislation to measurement equipment. The objective of this thesis is to present a number of research results related to nuclear materials control and accountability, especially the area of nondestructive assay. Physical aspects of nuclear materials are often the same as for materials encountered in everyday life. One special aspect though is that nuclear materials also emit radiation allowing them to be qualitatively and quantitatively measured without direct interaction with the material. For the successful assay of the material, the particle generation and detection needs to be well understood, and verified with measurements, simulations and models. Four topics of research are included in the thesis. First the generation and multiplication of neutrons and gamma rays in a fissile multiplying sample is treated. The formalism used enables investigation of the number of generated, absorbed and detected particles, offering understanding of the different processes involved. Secondly, the issue of relating the coincident detector signals, generated by both neutrons and gamma rays, to sample parameters is dealt with. Fission rate depends directly on the sample mass, while parameters such as neutron generation by alpha decay and neutron leakage multiplication are parameters that depend on the size, composition and geometry of the sample. Artificial neural networks are utilized to solve the inverse problem of finding sample characteristics from the measured rates of particle multiples. In the third part the interactions between neutrons and organic scintillation detectors are treated. The detector material consists of hydrogen and carbon, on which the neutrons scatter and transfer energy. The problem shares many characteristics with the area of neutron moderation found in

  16. Nuclear Fuels & Materials Spotlight Volume 5

    International Nuclear Information System (INIS)

    Petti, David Andrew

    2016-01-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  17. Nuclear Fuels & Materials Spotlight Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  18. Robot development for nuclear material processing

    International Nuclear Information System (INIS)

    Pedrotti, L.R.; Armantrout, G.A.; Allen, D.C.; Sievers, R.H. Sr.

    1991-07-01

    The Department of Energy is seeking to modernize its special nuclear material (SNM) production facilities and concurrently reduce radiation exposures and process and incidental radioactive waste generated. As part of this program, Lawrence Livermore National Laboratory (LLNL) lead team is developing and adapting generic and specific applications of commercial robotic technologies to SNM pyrochemical processing and other operations. A working gantry robot within a sealed processing glove box and a telerobot control test bed are manifestations of this effort. This paper describes the development challenges and progress in adapting processing, robotic, and nuclear safety technologies to the application. 3 figs

  19. Materials for generation-IV nuclear reactors

    International Nuclear Information System (INIS)

    Alvarez, M. G.

    2009-01-01

    Materials science and materials development are key issues for the implementation of innovative reactor systems such as those defined in the framework of the Generation IV. Six systems have been selected for Generation IV consideration: gas-cooled fast reactor, lead-cooled fast reactor, molten salt-cooled reactor, sodium-cooled fast reactor, supercritical water-cooled reactor, and very high temperature reactor. The structural materials need to resist much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. For this reason, the first consideration in the development of Generation-IV concepts is selection and deployment of materials that operate successfully in the aggressive operating environments expected in the Gen-IV concepts. This paper summarizes the Gen-IV operating environments and describes the various candidate materials under consideration for use in different structural applications. (author)

  20. Transport of nuclear material under the 1971 Brussels Convention

    International Nuclear Information System (INIS)

    Lagorce, M.

    1975-01-01

    The legal regime in force before entry into force of the 1971 Brussels Convention relating to civil liability for the maritime carriage of nuclear material created serious difficulties for maritime carriers, regarding both the financial risks entailed and restrictions on enjoyment of the rights granted by civil liability conventions. The 1971 Convention exonerates from liability any person likely to be held liable for nuclear damage under maritime law, provided another person is liable under the nuclear conventions or an equivalent national law. A problem remaining is that of compensation of nuclear damage to the means of transport for countries not having opted for re-inclusion of such damage in the nuclear law regime; this does not apply however to countries having ratified the Convention to date. A feature of the latter is that it establishes as extensively as possible the priority of nuclear law over maritime law. Furthermore the new regime continues to preserve efficiently the interests of victims of nuclear incidents. It is therefore to be hoped that insurers will no longer hesitate to cover international maritime carriage of nuclear material [fr

  1. Evaluation of nonaqueous processes for nuclear materials

    International Nuclear Information System (INIS)

    Musgrave, B.C.; Grens, J.Z.; Knighton, J.B.; Coops, M.S.

    1983-12-01

    A working group was assigned the task of evaluating the status of nonaqueous processes for nuclear materials and the prospects for successful deployment of these technologies in the future. In the initial evaluation, the study was narrowed to the pyrochemical/pyrometallurgical processes closely related to the processes used for purification of plutonium and its conversion to metal. The status of the chemistry and process hardware were reviewed and the development needs in both chemistry and process equipment technology were evaluated. Finally, the requirements were established for successful deployment of this technology. The status of the technology was evaluated along three lines: (1) first the current applications were examined for completeness, (2) an attempt was made to construct closed-cycle flow sheets for several proposed applications, (3) and finally the status of technical development and future development needs for general applications were reviewed. By using these three evaluations, three different perspectives were constructed that together present a clear picture of how complete the technical development of these processes are

  2. Transcending sovereignty. In the management and control of nuclear material

    International Nuclear Information System (INIS)

    Scheinman, Lawrence

    2001-01-01

    Effective control of nuclear material is fundamentally important to the credibility and reliability of the nuclear non-proliferation regime. Under the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), international safeguards are applied to non-nuclear- weapon State Parties for the purpose of verifying compliance with their undertakings not to seek to acquire nuclear weapons or explosive devices by assuring that safeguarded nuclear activities and material are not diverted from their intended peaceful use. Reflecting the sovereign State basis upon which the international system rests, the control and protection of nuclear materials within the State are the responsibility of the national authority. This division of responsibility between international verification of non-diversion on the one hand and national responsibility for material protection on the other has worked quite well over time. But it has not created a seamless web of fully effective control over nuclear material. 34 In so far as safeguards are concerned, six points are to be made: 1. INFCIRC/153 Agreements: Completion by all NPT Parties of the required safeguards agreements with the IAEA. Fifty States Party to the NPT still have not entered into treaty-obligated safeguards agreements with the IAEA. 2. Adherence by all States having full-scope safeguards INFCIRC/540. As noted, very few States have thus far negotiated and implemented the strengthened safeguards arrangements. 3. United Nations Security Council action to take its 1992 assertions (related to compliance and enforcement) on proliferation and safeguards a step further. 4. Non-NPT Party support for international Safeguards. 5. Safeguards financing. 6. IAEA Access to export license information

  3. The development of nuclear material accountability system - software user's manual

    International Nuclear Information System (INIS)

    Byeon, Kee Hoh; Kim, Ho Dong; Song, Dae Yong; Ko, Won Il; Hong, Jong Sook; Lee, Byung Doo

    1999-07-01

    We have developed the near-real time nuclear material accountability system, named by DMAS, for DUPIC Test Facility in the basis of the survey of DUPIC process and activities for the accountability of the system, and the review of the rules and regulations related to the nuclear material accounting. Our system adopts the structure and technologies used in COREMAS which was developed by LANL. This technical report illustrates the system structure and program usage as a user manual for DMAS. (author). 56 tabs., 1 fig

  4. Retrieval system of nuclear data for transmutation of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Utsumi, Misako; Noda, Tetsuji [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1997-03-01

    A database storing the data on nuclear reaction was built to calculate for simulating transmutation behaviours of materials /1/-/3/. In order to retrieve and maintain the database, the user interface for the data retrieval was developed where special knowledge on handling of the database or the machine structure is not required for end-user. It is indicated that using the database, the possibility of He formation and radioactivity in a material can be easily retrieved though the evaluation is qualitatively. (author)

  5. Use of some nuclear methods for materials analysis

    International Nuclear Information System (INIS)

    Habbani, Farouk

    1994-01-01

    A review is given about the use of two nuclear-related analytical methods, namely: X-ray fluorescence (XRF) and neutron activation analysis (NAA), for the determination of elemental composition of various materials. Special emphasis is given to the use of XRF for the analysis of geological samples, and NAA for the analysis of food - stuffs for their protein content. (Author)

  6. Enhancing materials management programs in nuclear power plants

    International Nuclear Information System (INIS)

    Hassaballa, M.M.; Malak, S.M.

    1992-01-01

    Materials management programs for the nuclear utilities in the United States are continually being affected, concurrent with the gradual disappearance of qualified component and replacement parts vendors by regulatory concerns about procurement and materials management. In addition, current economic and competitive pressures are forcing utilities to seek avenues for reducing procurement costs for safety-related items. In response to these concerns, initiatives have been undertaken and engineering guidelines have been developed by the nuclear power industry-sponsored organizations, such as the Electric Power Research Institute and the Nuclear Management Resources Council. It is our experience that successful materials management programs require a multitude of engineering disciplines and experience and are composed of three major elements: strategic procurement plan, parts classification and procurement data base, and enhancement tools. This paper provides a brief description of each of the three elements

  7. The physical protection of nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Technical Committee met 21-25 June 1993 to consider changes to INFCIRC/225/Rev.2. The revised document, INFCIRC/225/Rev.3, reflects the Technical Committee recommendations for changes to the text as well as other modifications determined necessary to advance the consistency of the Categorization Table in INFCIRC/225/Rev.2 with the categorization table contained in The Convention of the Physical Protection of Nuclear Material and to reflect additional improvements presented by the experts. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  8. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    1993-09-01

    Technical Committee met 21-25 June 1993 to consider changes to INFCIRC/225/Rev.2. The revised document, INFCIRC/225/Rev.3, reflects the Technical Committee recommendations for changes to the text as well as other modifications determined necessary to advance the consistency of the Categorization Table in INFCIRC/225/Rev.2 with the categorization table contained in The Convention of the Physical Protection of Nuclear Material and to reflect additional improvements presented by the experts. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  9. Contributions to radiochemical and nuclear materials research

    International Nuclear Information System (INIS)

    Matzke, H.

    1982-01-01

    Series of talks given during a seminar of the European Institute for Transuranium Elements in april 1981 in honor of R. LINDNER on the occasion of his 60th birth day. The topics include general aspects of research practice and science prognosis, retrospective essays about the discovery of nuclear fission by O. HAHN as well as surveys of actual research activities concerning a radiochemistry and the use of radioactivity in material science

  10. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    1980-01-01

    The brochure contains the abstracts of the papers presented at the 7th EPS meeting 1980 in Darmstadt. The main subjects were: a) Neutron scattering and Moessbauer effect in materials research, b) ion implantation in micrometallurgy, c) applications of nuclear reactions and radioisotopes in research on solids, d) recent developments in activation analysis and e) pions, positrons, and heavy ions applied in solid state physics. (RW) [de

  11. Nuclear data needs for material analysis

    International Nuclear Information System (INIS)

    Molnar, Gabor L.

    2001-01-01

    Nuclear data for material analysis using neutron-based methods are examined. Besides a critical review of the available data, emphasis is given to emerging application areas and new experimental techniques. Neutron scattering and reaction data, as well as decay data for delayed and prompt gamma activation analysis are all discussed in detail. Conclusions are formed concerning the need of new measurement, calculation, evaluation and dissemination activities. (author)

  12. Radioactive materials released from nuclear power plants

    International Nuclear Information System (INIS)

    Tichler, J.; Norden, K.; Congemi, J.

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs

  13. Institutional issues affecting transportation of nuclear materials

    International Nuclear Information System (INIS)

    Reese, R.T.; Luna, R.E.

    1980-01-01

    The institutional issues affecting transportation of nuclear materials in the United States represent significant barriers to meeting future needs in the transport of radioactive waste materials to their ultimate repository. While technological problems which must be overcome to perform such movements seem to be within the state-of-the-art, the timely resolution of these institutional issues seems less assured. However, the definition of these issues, as attempted in this paper, together with systematic analysis of cause and possible solutions are the essential elements of the Transportation Technology Center's Institutional Issues Program

  14. Materials qualification for nuclear power plants

    International Nuclear Information System (INIS)

    Braconi, F.

    1987-01-01

    The supply of materials to be used in the fabrication of components submitted to pressure destined to Atucha II nuclear power plant must fulfill the quality assurance requirements in accordance with the international standards. With the aim of promoting the national participation in CNA II, ENACE had the need to adapt these requirements to the national industry conditions and to the availability of official entities' qualification and inspection. As a uniform and normalized assessment for the qualification of materials did not exist in the country, ENACE had to develop a materials suppliers qualification system. This paper presents a suppliers qualification procedure, its application limits and the alternative procedures for the acceptance of individual stock and for the stock materials purchase. (Author)

  15. Nuclear Fuels & Materials Spotlight Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  16. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    Concerning refining, fabrication and reprocessing operations of such materials as well as the installation and operation of reactors, necessary regulations are carried out. Namely, in case of establishing the business of refining, fabricating and reprocessing nuclear materials as well as installing nuclear reactors, applications for the permission of the Prime Minister and the Minister of International Trade and Industry should be filed. Change of such operations should be permitted after filing applications. These permissions are retractable. As regards the reactors installed aboard foreign ships, it must be reported to enter Japanese waters and the permission by the Prime Minister must be obtained. In case of nuclear fuel fabricators, a chief technician of nuclear fuel materials (qualified) must be appointed per each fabricator. In case of installing nuclear reactors, the design and methods of construction should be permitted by the Prime Minister. The standard for such permission is specified, and a chief engineer for operating reactors (qualified) must be appointed. Successors inherit the positions of ones who have operated nuclear material refining, fabrication and reprocessing businesses or operated nuclear reactors. (Rikitake, Y.)

  17. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1980-01-01

    The law intends under the principles of the atomic energy act to regulate the refining, processing and reprocessing businesses of nuclear raw and fuel metarials and the installation and operation of reactors for the peaceful and systematic utilization of such materials and reactors and for securing public safety by preventing disasters, as well as to control internationally regulated things for effecting the international agreements on the research, development and utilization of atomic energy. Basic terms are defined, such as atomic energy; nuclear fuel material; nuclear raw material; nuclear reactor; refining; processing; reprocessing; internationally regulated thing. Any person who is going to engage in refining businesses other than the Power Reactor and Nuclear Fuel Development Corporation shall get the special designation by the Prime Minister and the Minister of International Trade Industry. Any person who is going to engage in processing businesses shall get the particular admission of the Prime Minister. Any person who is going to establish reactors shall get the particular admission of the Prime Minister, The Minister of International Trade and Industry or the Minister of Transportation according to the kinds of specified reactors, respectively. Any person who is going to engage in reprocessing businesses other than the Power Reactor and Nuclear Fuel Development Corporation and the Japan Atomic Energy Research Institute shall get the special designation by the Prime Minister. The employment of nuclear fuel materials and internationally regulated things is defined in detail. (Okada, K.)

  18. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for designation of undertakings of refining (spallation and eaching filtration facilities, thickening facilities, refining facilities, nuclear material substances or nuclear fuel substances storage facilities, waste disposal facilities, etc.), application for permission for alteration (business management plan, procurement plan, fund raising plan, etc.), application for approval of merger (procedure, conditions, reason and date of merger, etc.), submission of report on alteration (location, structure, arrangements processes and construction plan for refining facilities, etc.), revocation of designation, rules for records, rules for safety (personnel, organization, safety training for employees, handling of important apparatus and tools, monitoring and removal of comtaminants, management of radioactivity measuring devices, inspection and testing, acceptance, transport and storage of nuclear material and fuel, etc.), measures for emergency, submission of report on abolition of an undertaking, submission of report on disorganization, measures required in the wake of revocation of designation, submission of information report (exposure to radioactive rays, stolen or missing nuclear material or nuclear fuel, unusual leak of nuclear fuel or material contaminated with nuclear fuel), etc. (Nogami, K.)

  19. Integrating the stabilization of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H.F. [Department of Energy, Washington, DC (United States)

    1996-05-01

    In response to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board, the Department of Energy committed to stabilizing specific nuclear materials within 3 and 8 years. These efforts are underway. The Department has already repackaged the plutonium at Rocky Flats and metal turnings at Savannah River that had been in contact with plastic. As this effort proceeds, we begin to look at activities beyond stabilization and prepare for the final disposition of these materials. To describe the plutonium materials being stabilize, Figure 1 illustrates the quantities of plutonium in various forms that will be stabilized. Plutonium as metal comprises 8.5 metric tons. Plutonium oxide contains 5.5 metric tons of plutonium. Plutonium residues and solutions, together, contain 7 metric tons of plutonium. Figure 2 shows the quantity of plutonium-bearing material in these four categories. In this depiction, 200 metric tons of plutonium residues and 400 metric tons of solutions containing plutonium constitute most of the material in the stabilization program. So, it is not surprising that much of the work in stabilization is directed toward the residues and solutions, even though they contain less of the plutonium.

  20. Mobile Techniques for Rapid Detection of Concealed Nuclear Material

    International Nuclear Information System (INIS)

    Rosenstock, W.; Koeble, T.; Risse, M.; Berky, W.

    2015-01-01

    To prevent the diversion of nuclear material as well as illicit production, transport and use of nuclear material we investigated in mobile techniques to detect and identify such material in the field as early as possible. For that purpose we use a highly sensitive gamma measurement system installed in a car. It consists of two large volume plastic scintillators, one on each side of the car, each scintillator with 12 l active volume, and two extreme sensitive high purity Germanium detectors with 57 cm 2 crystal diameter, cooled electrically. The measured data are processed immediately with integrated, appropriate analysis software for direct assessment including material identification and classification within seconds. The software for the plastic scintillators can differentiate between natural and artificial radioactivity, thus giving a clear hint for the existence of unexpected material. In addition, the system is equipped with highly sensitive neutron detectors. We have performed numerous measurements by passing different radioactive and nuclear sources in relatively large distances with this measurement car. Even shielded as well as masked material was detected and identified in most of the cases. We will report on the measurements performed in the field (on an exercise area) and in the lab and discuss the capabilities of the system, especially with respect to timeliness and identification. This system will improve the nuclear verification capabilities also. (author)

  1. Bar code usage in nuclear materials accountability

    International Nuclear Information System (INIS)

    Mee, W.T.

    1983-01-01

    The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At this time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable, however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented

  2. Fugitive binder for nuclear fuel materials

    International Nuclear Information System (INIS)

    Gallivan, T.J.

    1977-01-01

    A process for fabricating a body of a nuclear fuel material has the steps of admixing the nuclear fuel material in powder form wih a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions, forming the resulting mixture into a green body such as by die pressing, heating the green body to decompose substantially all of the binder into gases, further heating the body to produce a sintered body, and cooling the sintered body in a controlled atmosphere. Preferred binders used in the practice of this invention include ammonium bicarbonate, ammonium carbonate, ammonium bicarbonate carbamate, ammonium sesquicarbonate, ammonium carbamate and mixtures thereof. This invention includes a composition of matter in the form of a compacted structure suitable for sintering comprising a mixture of a nuclear fuel material and a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions. 9 claims, 4 figures

  3. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    International Nuclear Information System (INIS)

    Powell, Danny H.; Elwood, Robert H. Jr.; Roche, Charles T.; Campbell, Billy J.; Hammond, Glenn A.; Meppen, Bruce W.; Brown, Richard F.

    2011-01-01

    A nuclear material control and accountability (MC and A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC and A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC and A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC and A system (2) A fault tree of the operating MC and A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC and A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area (MBA)) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance

  4. Relative costs to nuclear plants: international experience

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1992-03-01

    This work approaches the relative costs to nuclear plants in the Brazil. It also presents the calculation methods and its hypothesis to determinate the costs, and the nacional experience in costs of investment, operating and maintenance of the nuclear plants

  5. Nuclear reactions and self-shielding effects of gamma-ray database for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Noda, Tetsuji [National Research Institute for Metals, Tsukuba, Ibaraki (Japan)

    2001-03-01

    A database for transmutation and radioactivity of nuclear materials is required for selection and design of materials used in various nuclear reactors. The database based on the FENDL/A-2.0 on the Internet and the additional data collected from several references has been developed in NRIM site of 'Data-Free-Way' on the Internet. Recently, the function predicted self-shielding effect of materials for {gamma}-ray was added to this database. The user interface for this database has been constructed for retrieval of necessary data and for graphical presentation of the relation between the energy spectrum of neutron and neutron capture cross section. It is demonstrated that the possibility of chemical compositional change and radioactivity in a material caused by nuclear reactions can be easily retrieved using a browser such as Netscape or Explorer. (author)

  6. Nuclear reactions and self-shielding effects of gamma-ray database for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji

    2001-01-01

    A database for transmutation and radioactivity of nuclear materials is required for selection and design of materials used in various nuclear reactors. The database based on the FENDL/A-2.0 on the Internet and the additional data collected from several references has been developed in NRIM site of 'Data-Free-Way' on the Internet. Recently, the function predicted self-shielding effect of materials for γ-ray was added to this database. The user interface for this database has been constructed for retrieval of necessary data and for graphical presentation of the relation between the energy spectrum of neutron and neutron capture cross section. It is demonstrated that the possibility of chemical compositional change and radioactivity in a material caused by nuclear reactions can be easily retrieved using a browser such as Netscape or Explorer. (author)

  7. Safeguards for nuclear material transparency monitoring

    International Nuclear Information System (INIS)

    MacArthur, D.A.; Wolford, J.K.

    1999-01-01

    The US and the Russian Federation are currently engaged in negotiating or implementing several nuclear arms and nuclear material control agreements. These involve placing nuclear material in specially designed containers within controlled facilities. Some of the agreements require the removal of nuclear components from stockpile weapons. These components are placed in steel containers that are then sealed and tagged. Current strategies for monitoring the agreements involve taking neutron and gamma radiation measurements of components in their containers to monitor the presence, mass, and composition of plutonium or highly enriched uranium, as well as other attributes that indicate the use of the material in a weapon. If accurate enough to be useful, these measurements will yield data containing information about the design of the weapon being monitored. In each case, the design data are considered sensitive by one or both parties to the agreement. To prevent the disclosure of this information in a bilateral or trilateral inspection scenario, so-called information barriers have evolved. These barriers combine hardware, software, and procedural safeguards to contain the sensitive data within a protected volume, presenting to the inspector only the processed results needed for verification. Interlocks and volatile memory guard against disclosure in case of failure. Implementing these safeguards requires innovation in radiation measurement instruments and data security. Demonstrating their reliability requires independent testing to uncover any flaws in design. This study discusses the general problem and gives a proposed solution for a high resolution gamma ray detection system. It uses historical examples to illustrate the evolution of other successful systems

  8. Recovery of fissile materials from nuclear wastes

    Science.gov (United States)

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  9. Nuclear material inventory estimation in solvent extraction contactors

    International Nuclear Information System (INIS)

    Beyerlein, A.; Geldard, J.

    1986-06-01

    This report describes the development of simple nuclear material (uranium and plutonium) inventory relations for mixer-settler solvent extraction contactors used in reprocessing spent nuclear fuels. The relations are developed for light water reactor fuels where the organic phase is 30% tri-n-butylphosphate (TBP) by volume. For reprocessing plants using mixer-settler contactors as much as 50% of the nuclear material within the contactors is contained in A type (aqueous to organic extraction) contactors. Another very significant portion of the contactor inventory is in the partitioning contactors. The stripping contactors contain a substantial uranium inventory but contain a very small plutonium inventory (about 5 to 10% of the total contactor inventory). The simplified inventory relations developed in this work for mixer-settler contactors reproduce the PUBG databases within about a 5% standard deviation. They can be formulated to explicitly show the dependence of the inventory on nuclear material concentrations in the aqueous feed streams. The dependence of the inventory on contactor volumes, phase volume ratios, and acid and TBP concentrations are implicitly contained in parameters that can be calculated for a particular reprocessing plant from nominal flow sheet data. The terms in the inventory relations that represent the larger portion of the inventory in A type and partitioning contactors can be extended to pulsed columns virtually without change

  10. Current trends in nuclear material transportation

    International Nuclear Information System (INIS)

    Ravenscroft, Norman; Oshinowo, Franchone

    1997-01-01

    The business of radioactive material transportation has evolved considerably in the past 40 years. Current practices reflect extensive international experience in handling radioactive cargo within a mature and tested regulatory framework. Nevertheless, new developments continue to have an impact on how shipments of nuclear material are planned and carried out. Entities involved in the transport of radioactive materials must keep abreast of these developments and work together to find innovative solutions to ensure that safe, smooth transport activities may continue. Several recent trends in the regulatory environment and political atmosphere require attention. There are four key trends that we'll be examining today: 1) the reduction in the pool of available commercial carriers; 2) routing restrictions; 3) package validation issues; and 4) increasing political sensitivities. Careful planning and cooperative measures are necessary to alleviate problems in each of these areas. (author)

  11. International nuclear safety center database on material properties

    International Nuclear Information System (INIS)

    Fink, J.K.

    1996-01-01

    International nuclear safety center database on the following material properties is described: fuel, cladding,absorbers, moderators, structural materials, coolants, concretes, liquid mixtures, uranium dioxide

  12. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... Systems for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  13. ANCRE alliance: Road-map for nuclear materials

    International Nuclear Information System (INIS)

    Touboul, F.; Carre, F.

    2013-01-01

    Created in 2009 by the Higher Education and Research ministry and by the Ecology ministry, ANCRE, the National Alliance for Energy Research Coordination aims at enhancing the efficiency of French research in the field of energy by promoting partnerships and synergies between public and private sectors (research organizations, universities and companies). ANCRE aims to propose a coordinated strategy for research and innovation projects. Beyond its four founding members, CEA, CNRS, IFPEN and CPU, ANCRE brings together all the French public research organizations concerned with energy issues, and has strong links with the industrial sector. Among the 10 programmatic groups of ANCRE, one is specifically dedicated to Nuclear Energies (fission and fusion). This group has proposed road-maps in five scientific fields, considered as strategic for R and D, in relation to industrial objectives and scientific bottlenecks: nuclear materials, nuclear chemistry, reactor physics, instrumentation and fusion. For twenty to thirty years, R and D on nuclear materials has evolved from the heavy metallurgy of the first generation of power reactors to the nano-materials science under extreme conditions for present and future needs. Nuclear systems are characterized by extreme operating conditions: high temperatures, mechanical stresses, radiations, corrosive environment, and long durations. In order to deal with these extreme conditions, it is necessary to have a sound knowledge of the materials, to the finest scale. R and D development was made possible by advances in materials science, in relation to more efficient observation means (now reaching the atom scale) and deeper control of the microstructure. Development of simulation methods at the atomic level (ab initio, classical molecular dynamics, kinetic Monte Carlo, etc.) have also allowed a better understanding of phenomena at their most fundamental level. Material performance issues, however, remain significant, as the performance

  14. Inventory of nuclear materials in case of emergency

    International Nuclear Information System (INIS)

    Portugal, J.L.; Zanetti, S.

    2001-01-01

    The crisis situations for nuclear materials in nuclear facilities are provided for in the French regulation, as the decree of 12 May 1981 specifies that 'In any circumstance, the Ministry of Industry can order a physical inventory of the materials and its comparison with the accountancy records'. Such an inventory can be ordered in facilities holding category I nuclear materials, in case of a theft for example. The operators must be able to establish quickly if the stolen materials come from their facility. To test the organization set at the operators and competent authority levels respectively, five exercises of increasing complexity have already been carried out. These exercises have permitted the validation of procedures, composition of the various crisis centers, methodology for such an inventory and use of protected communication means. The authority crisis center includes members of the competent Authority and it's technical support body: staff members of the IPSN. It is in charge of the national managing of the operations, in relation with one or several site crisis centers. The site crisis center is the interface between the authorities and the facility crisis center. The operations of inventory are carried out from the roughest checking to the finest ones. To be efficient during the first hours of the crisis, the authority crisis center must have data bases at the disposal of its experts, containing information about physical protection and accountancy of the nuclear materials detained by the site and the relevant facilities. (authors)

  15. United States Department of Energy Nuclear Materials Stewardship

    International Nuclear Information System (INIS)

    Newton, J. W.

    2002-01-01

    The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials

  16. Uranium as Raw Material for Nuclear Energy

    International Nuclear Information System (INIS)

    Lelek, V.

    2006-01-01

    There is lot of information bringing our attention to the problem of limited raw material resources. Fortunately uranium for nuclear energy is very concentrated source and that is why its transport brings no problems and could be realized from anywhere. Second question is if overall resources are available for current nuclear energy development. Data documenting reasons for nowadays price growth are presenting and it is clearly shown that the most probable explanation is that there is gap in new uranium mines preparation and the lot of smaller mines were closed in the period of low uranium prices. Conclusion is that there is at least for the first half of this century even for thermal reactors enough uranium. Situation could be changed if there will massive production of liquid fuel using hydrogen, produced through nuclear heating. Public information about former military uranium resources are also included. Contemporary about one half of US nuclear power-stations is using high enriched uranium diluted with natural uranium - it is expected to continue this way up to 2012. Uranium is complicated market (Authors)

  17. Technology development for nuclear material accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Choi, Hyoung Nai; Park, Ho Joon

    1991-03-01

    Using Segmented Gamma Scanning(SGS) System and coaxical Ge detector, the amounts of uranium in 55 gallon waste drums mixed with low density matrix material were determined by segmented gamma-scanning method. Various factors that influence sample measurement were identified as attenuation effects against sample container and matrix material counting loss effect by dead time and signal pile-up and radial and axial non-uniformity effects of sample. External transmission source, Yb-169, was used to correct gamma-ray attenuation by matrix material. The measure deviation caused by non-uniform distribution in the drum was minimized by rotating and dividing the drum. To calibrate the measurement system, calibration sources were prepared in the range of 50g, 100g, 300g, and 500g of U0 2 powder which let it stick to thin gummed papers and mix with other matrix materials such as papers, vinyl sheets, pieces of rubber gloves in 4 each drum. Under the calibrated assay system the uncertainty of measured amounts of UO 2 powder approached about 10% of absolute value at 1σ and a normal flow of waste stream can be maintained at least one drum per hour. On the other hand, in an effort to ease the nuclear material accounting for and control the flow of nuclear material in CANDU Fuel Fabrication Facility was analyzed to develope a model computer network interfaced with hardwares, structual design of network, computer operating system, and hardware set-up were studied to draw out the most practical network system. (Author)

  18. The convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1980-05-01

    This document contains the full text of a convention to facilitate the safe transfer of nuclear material, and to insure the physical protection of nuclear material in domestic use, storage, and transport. Two annexes are included, which establish categories of nuclear materials and levels of physical protection to be applied in international transport

  19. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  20. Materials for the nuclear - Modelling and simulation of structure materials

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Cappelaere, Chantal; Andrieux, Catherine; Athenes, Manuel; Baldinozzi, Guido; Bechade, Jean-Luc; Bonin, Bernard; Boutard, Jean-Louis; Brechet, Yves; Bruneval, Fabien; Carassou, Sebastien; Castelier, Etienne; Chartier, Alain; Clouet, Emmanuel; Marinica, Mihai-Cosmin; Crocombette, Jean-Paul; Dupuy, Laurent; Forget, Pierre; Fu, Chu Chun; Garnier, Jerome; Gelebart, Lionel; Henry, Jean; Jourdan, Thomas; Luneville, Laurence; Marini, Bernard; Meslin, Estelle; Nastar, Maylise; Onimus, Fabien; Poussard, Christophe; Proville, Laurent; Ribis, Joel; Robertson, Christian; Rodney, David; Roma, Guido; Sauzay, Maxime; Simeone, David; Soisson, Frederic; Tanguy, Benoit; Toffolon-Masclet, Caroline; Trocellier, Patrick; Van Brutzel, Laurent; Ventelon, Usa; Vincent, Ludovic; Willaime, Francois; Yvon, Pascal; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2016-01-01

    This collective publication proposes presentations of scientific approaches implemented to model and simulate the behaviour of materials submitted to irradiation, of associated experimental methods, and of some recent important results. After an introduction presenting the various materials used in different types of nuclear reactors (PWR, etc.), the effects of irradiation at the macroscopic or at the atomic scale, and the multi-scale (time and space) approach to the modelling of these materials, a chapter proposes an overview of modelling tools: multi-scale approach, electronic calculations for condensed matter, inter-atomic potentials, molecular dynamics simulation, thermodynamic and medium force potentials, phase diagrams, simulation of primary damages in reactor materials, kinetic models, dislocation dynamics, production of microstructures for simulation, crystalline visco-plasticity, homogenization methods in continuum mechanics, local approach and probabilistic approach in material fracture. The next part presents tools for experimental validation: tools for microscopic characterization or for mechanical characterization, experimental reactors and tests in atomic pile, tools for irradiation by charged particles. The next chapters presents different examples of thermodynamic and kinetic modelling in the case of various alloys (zirconium alloys, iron-chromium alloys, silicon carbide, austenitic alloys), of plasticity and failure modelling

  1. Strategies and technologies for nuclear materials stewardship

    International Nuclear Information System (INIS)

    Cunningham, P.T.; Arthur, E.D.; Wagner, R.L. Jr.; Hanson, E.M.

    1997-01-01

    A strategy for future nuclear materials management and utilization from proliferation and long-term waste perspectives is described. It is aimed at providing flexible and robust responses to foreseeable nuclear energy scenarios. The strategy also provides for a smooth transition, in terms of technology development and facility implementation, to possible future use of breeder reactor technology. The strategy incorporates features that include minimization of stocks of separated plutonium; creation of a network of secure interim, retrievable storage facilities; and development and implementation of a system of Integrated Actinide Conversion Systems (IACS) aimed at near and far-term management of plutonium and other actinides. Technologies applicable to such IACS concepts are discussed as well as a high-level approach for implementation. (author)

  2. Strategies and technologies for nuclear materials stewardship

    International Nuclear Information System (INIS)

    Cunningham, P.T.; Arthur, E.D.; Wagner, R.L. Jr.; Hanson, E.M.

    1997-01-01

    A strategy for future nuclear materials management and utilization from proliferation and long-term waste perspectives is described. It is aimed at providing flexible and robust responses to foreseeable nuclear energy scenarios. The strategy also provides for a smooth transition, in terms of technology development and facility implementation, to possible future use of breeder reactor technology. The strategy incorporates features that include minimization of stocks of separated plutonium; creation of a network of secure interim, retrievable storage facilities; and development and implementation of a system of Integrated Actinide Conversion Systems (IACS) aimed at near and far-term management of plutonium and other actinides. Technologies applicable to such IACS concepts are discussed as well as a high-level approach for implementation

  3. Special nuclear material inventory sampling plans

    International Nuclear Information System (INIS)

    Vaccaro, H.; Goldman, A.

    1987-01-01

    Since their introduction in 1942, sampling inspection procedures have been common quality assurance practice. The U.S. Department of Energy (DOE) supports such sampling of special nuclear materials inventories. The DOE Order 5630.7 states, Operations Offices may develop and use statistically valid sampling plans appropriate for their site-specific needs. The benefits for nuclear facilities operations include reduced worker exposure and reduced work load. Improved procedures have been developed for obtaining statistically valid sampling plans that maximize these benefits. The double sampling concept is described and the resulting sample sizes for double sample plans are compared with other plans. An algorithm is given for finding optimal double sampling plans that assist in choosing the appropriate detection and false alarm probabilities for various sampling plans

  4. Nuclear-waste-package materials degradation modes and accelerated testing

    International Nuclear Information System (INIS)

    1981-09-01

    This report reviews the materials degradation modes that may affect the long-term behavior of waste packages for the containment of nuclear waste. It recommends an approach to accelerated testing that can lead to the qualification of waste package materials in specific repository environments in times that are short relative to the time period over which the waste package is expected to provide containment. This report is not a testing plan but rather discusses the direction for research that might be considered in developing plans for accelerated testing of waste package materials and waste forms

  5. Nuclear materials management for safety and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-15

    The use of nuclear materials in industrial processes presents management with some special problems which are peculiar to the atomic energy industry. If reactor fuel costs are to be kept low, too, each fuel element must yield the maximum economic 'bum-up' before it is withdrawn from service, and this calls for reliable non-destructive methods of measurement of 'burn-up' and appropriate records and fuel-changing schedules. The special hazards of radioactive materials call for special precautions and appropriate systems of handling and storage. A further danger unique to atomic energy is that of criticality - the possibility that an excessive concentration of fissile material may result in a chain reaction. Every part of the processing plant must be surveyed and checked to ensure that there is no build-up of fissile residues; in storage or transit there must be no aggregation of small lots. In the nuclear energy industry, too, the standards of purity required are much higher than in most other large-scale operation, so that stringent quality checks are needed

  6. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    1996-01-01

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B 4 C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs

  7. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, A A [Materials Division, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B{sub 4} C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs.

  8. Accountability of Radioactive Materials in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Noor Fadilla Ismail; Wan Saffiey Wan Abdullah; Khairuddin Mohamad Kontol; Azimawati Ahmad; Suzilawati Muhd Sarowi; Mohd Fazlie Abdul Rashid

    2016-01-01

    Radioactive materials possessed in Malaysian Nuclear Agency have many beneficial applications for research and development, calibration, tracer and irradiation. There are two types of radioactive materials which consist of sealed sourced and unsealed sourced shall be accounted for and secured at all the times by following the security aspect. The Health Physics Group in the Department of Radiation Safety and Health Division is responsible to manage the issues related to any accountability for all radioactive material purchased or received under the radioactive material protocol. The accountability of radioactive materials in Malaysian Nuclear Agency is very important to ensure the security and control the radioactive materials to not to be lost or fall into the hands of people who do not have permission to possess or use it. The accountability of radioactive materials considered as a mandatory to maintaining accountability by complying the requirements of the Atomic Energy Licensing Act 1984 (Act 304) and regulations made thereunder and the conditions of license LPTA / A / 724. In this report describes the important element of accountability of radioactive materials in order to enhances security standard by allowing tracking of the locations of sources and to reduce the risk of radioactive materials falling into the wrong hands. (author)

  9. Chemical characterization of nuclear materials: recent trends

    International Nuclear Information System (INIS)

    Prakash, Amrit; Nandi, C.; Patil, A.B.; Khan, K.B.

    2013-01-01

    Analytical chemistry plays a very important role for nuclear fuel activities be it fuel fabrication, waste management or reprocessing. Nuclear fuels are selected based on the type of reactor. The nuclear fuel has to conform to stringent chemical specifications like boron, cadmium, rare earths, hydrogen, oxygen to metal ratio, total gas, heavy metal content, chlorine and fluorine etc. Selection of technique is very important to evaluate the true specification. This is important particularly when the analyses have to perform inside leak tight enclosure. The present paper describes the details of advanced analytical techniques being developed and used in chemical characterization of nuclear materials specially fuels during their fabrication. Nuclear fuels comprise of fuels based on UO 2 , PUO 2 , ThO 2 and combination of (U+Pu)O 2 , (Th+U)O 2 , (Th+Pu)O 2 , (U+Pu)C, (U+Pu)N etc depending on the type of reactors chosen Viz. Pressurized Heavy water Reactor (PHWR), Boiling Water Reactor (BWR), Fast Breeder Test Reactor and Prototype Fast Breeder Reactor (PFBR). Chemical characterization of these fuels is very important for performance of fuel in the reactor. It provides means to ascertain that the quality of the fabricated fuel conforms to the chemical specifications for the fuel laid down by the designer. The batches of sintered/degassed pellets are subjected to comprehensive chemical quality control for trace constituents, stoichiometry and isotopic composition. Chemical Quality Control of fuel is carried out at different stages of manufacture namely feed materials, sintering, vacuum degassing and fuel element welding. Advanced analytical technique based on titrimetry, spectroscopy, thermogravimetry, XRF and XRD have largely been used for this purpose. Since they have to be handled inside special enclosures, extreme care are being taken during handling. Instruments are being developed/modified for ease of handling and maintenance. The method should be fast to reduce

  10. Consequences of Illicit Trafficking of Nuclear or Other Radioactive Materials

    International Nuclear Information System (INIS)

    Moore, G.M.

    2010-01-01

    Explosion of a nuclear yield device is probably the worst consequence of Illicit Trafficking of nuclear or other radioactive materials.The nuclear yield device might be a stolen nuclear weapon, or an improvised nuclear device. An improvised nuclear device requires nuclear material design, and construction ability. Use of a radioactive dispersal device probably would not result in large numbers of casualties.However economic losses can be enormous. Non-Technical effects of nuclear trafficking (e.g. public panic, work disruption, etc.) and political and psychological consequences can far exceed technical consequences

  11. Development of materials for the fusion nuclear energy system

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, S. H.; Jang, J. S.; Kim, W. J.; Jung, C. H.; Jun, B. H.; Maeng, W. Y.; Kwon, J. H.; Kim, H. P.; Hong, J. H.

    2005-01-01

    A state of the art on the nuclear material development has been reviewed based on the each component of the Tokamak typed fusion reactor. The current status of the development of structural materials such as FM steels, ODS steels, vanadium alloys and SiCf/SiC composites are introduced. The application of Li-based ceramics as a ceramic breeder and W-based alloys and C/C composites as plasma facing components for the divertor were also investigated, respectively. Some evaluation methods and results of the computational material simulation for irradiation damages and the compatibility between materials and coolant are described. Additionally, the material related research activities of ITER and ITER TBM and the collaboration activities on fusion materials between Japan and USA are briefly summarized

  12. Fugitive binder for nuclear fuel materials

    International Nuclear Information System (INIS)

    Gallivan, T.J.

    1980-01-01

    A compound consisting of ammonium cations and carbonate, bicarbonate, or carbamate anions, or a mixture of such compounds, is useful as a binder for uranium dioxide fuel pellets for which it is desired to maintain a certain degree of porosity, uniformity of pore size, a lack of interconnections between the pores, and the shape or configuration of the base material particles in the final article after sintering. Upon heating, these binders decompose into gases and leave substantially no impurities. A process for sintering green nuclear fuel pellets using these binders is provided. (LL)

  13. Nuclear material production cycle vulnerability analysis

    International Nuclear Information System (INIS)

    Bott, T.F.

    1996-01-01

    This paper discusses a method for rapidly and systematically identifying vulnerable equipment in a nuclear material or similar production process and ranking that equipment according to its attractiveness to a malevolent attacker. A multistep approach was used in the analysis. First, the entire production cycle was modeled as a flow diagram. This flow diagram was analyzed using graph theoretical methods to identify processes in the production cycle and their locations. Models of processes that were judged to be particularly vulnerable based on the cycle analysis then were developed in greater detail to identify equipment in that process that is vulnerable to intentional damage

  14. Chemical characterization of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2011-01-01

    India is fabricating nuclear fuels for various types of reactors, for example, (U-Pu) MOX fuel of varying Pu content for boiling water reactors (BWRs), pressurized heavy water reactors (PHWRs), prototype fast breeder reactors (PFBRs), (U-Pu) carbide fuel fast breeder test reactor (FBTR), and U-based fuels for research reactors. Nuclear fuel being the heart of the reactor, its chemical and physical characterisation is an important component of this design. Both the fuel materials and finished fuel products are to be characterised for this purpose. Quality control (both chemical and physical) provides a means to ensure that the quality of the fabricated fuel conforms to the specifications for the fuel laid down by the fuel designer. Chemical specifications are worked out for the major and minor constituents which affect the fuel properties and hence its performance under conditions prevailing in an operating reactor. Each fuel batch has to be subjected to comprehensive chemical quality control for trace constituents, stoichiometry and isotopic composition. A number of advanced process and quality control steps are required to ensure the quality of the fuels. Further more, in the case of Pu-based fuels, it is necessary to extract maximum quality data by employing different evaluation techniques which would result in minimum scrap/waste generation of valuable plutonium. The task of quality control during fabrication of nuclear fuels of various types is both challenging and difficult. The underlying philosophy is total quality control of the fuel by proper mix of process and quality control steps at various stages of fuel manufacture starting from the feed materials. It is also desirable to adapt more than one analytical technique to increase the confidence and reliability of the quality data generated. This is all the most required when certified reference materials are not available. In addition, the adaptation of non-destructive techniques in the chemical quality

  15. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    According to the provisions of The Law, those stipulated as internationally controlled materials are nuclear source materials, nuclear fuel materials, moderating materials, reactors and facilities, transferred from such as the U.S.A., the U.K. and Canada on the agreements of peaceful uses of atomic energy, and nuclear fuel materials accruing therefrom. (Mori, K.)

  16. Applying RFID technology in nuclear materials management

    International Nuclear Information System (INIS)

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J.P.; Bellamy, S.; Shuler, J.

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness

  17. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  18. Passive sensor systems for nuclear material monitoring

    International Nuclear Information System (INIS)

    Simpson, M.L.; Boatner, L.A.; Holcomb, D.E.; McElhaney, S.A.; Mihalczo, J.T.; Muhs, J.D.; Roberts, M.R.; Hill, N.W.

    1993-01-01

    Passive fiber optic sensor systems capable of confirming the presence of special nuclear materials in storage or process facilities are being developed at Oak Ridge National Laboratory (ORNL). These sensors provide completely passive, remote measurement capability. No power supplies, amplifiers, or other active components that could degrade system reliability are required at the sensor location. ORNL, through its research programs in scintillator materials, has developed a variety of materials for use in alpha-, beta-, gamma-, and neutron-sensitive scintillator detectors. In addition to sensors for measuring radiation flux, new sensor materials have been developed which are capable of measuring weight, temperature, and source location. An example of a passive sensor for temperature measurement is the combination of a thermophosphor (e.g., rare-earth activated Y 2 O 3 ) with 6 LiF (95% 6 Li). This combination results in a new class of scintillators for thermal neutrons that absorb energy from the radiation particles and remit the energy as a light pulse, the decay rate of which, over a specified temperature range, is temperature dependent. Other passive sensors being developed include pressure-sensitive triboluminescent materials, weight-sensitive silicone rubber fibers, scintillating fibers, and other materials for gamma and neutron detection. The light from the scintillator materials of each sensor would be sent through optical fibers to a monitoring station, where the attribute quantity could be measured and compared with previously recorded emission levels. Confirmatory measurement applications of these technologies are being evaluated to reduce the effort, costs, and employee exposures associated with inventorying stockpiles of highly enriched uranium at the Oak Ridge Y-12 Plant

  19. Scanning of vehicles for nuclear materials

    International Nuclear Information System (INIS)

    Katz, J. I.

    2014-01-01

    Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost and disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself

  20. Microchannel plate special nuclear materials sensor

    International Nuclear Information System (INIS)

    Feller, W.B.; White, P.L.; White, P.B.; Siegmund, O.H.W.; Martin, A.P.; Vallerga, J.V.

    2011-01-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR no. HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3 He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10 B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3 He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3 He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3 He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252 Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3 He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  1. Scanning of vehicles for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J. I. [Dept. Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States)

    2014-05-09

    Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost and disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself.

  2. Co-ordinated research programme on benchmark study for the seismic analysis and testing of WWER-type nuclear power plants. V. 1. Data related to sites and plants: Paks NPP, Kozloduy NPP. Working material

    International Nuclear Information System (INIS)

    1995-01-01

    The Co-ordinated research programme on the benchmark study for the seismic analysis and testing of WWER-type nuclear power plants was initiated subsequent to the request from representatives of Member States. The conclusions adopted at the Technical Committee Meeting on Seismic Issues related to existing nuclear power plants held in Tokyo in 1991 called for the harmonization of methods and criteria used in Member States in issues related to seismic safety. The Consulltants' Meeting which followed resulted in producing a working document for CRP. It was decided that a benchmark study is the most effective way to achieve the principal objective. Two types of WWER reactors (WWER-440/213 and WWER-1000) were selected as prototypes for the benchmark exercise to be tested on a full scale using explosions and/or vibration generators. The two prototypes are Kozloduy Units 5/6 for WWER-1000 and Paks for WWER-440/213 nuclear power plants. This volume of Working material contains reports on data related to sites and NPPs Paks and Kozloduy

  3. Co-ordinated research programme on benchmark study for the seismic analysis and testing of WWER-type nuclear power plants. V. 1. Data related to sites and plants: Paks NPP, Kozloduy NPP. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Co-ordinated research programme on the benchmark study for the seismic analysis and testing of WWER-type nuclear power plants was initiated subsequent to the request from representatives of Member States. The conclusions adopted at the Technical Committee Meeting on Seismic Issues related to existing nuclear power plants held in Tokyo in 1991 called for the harmonization of methods and criteria used in Member States in issues related to seismic safety. The Consulltants' Meeting which followed resulted in producing a working document for CRP. It was decided that a benchmark study is the most effective way to achieve the principal objective. Two types of WWER reactors (WWER-440/213 and WWER-1000) were selected as prototypes for the benchmark exercise to be tested on a full scale using explosions and/or vibration generators. The two prototypes are Kozloduy Units 5/6 for WWER-1000 and Paks for WWER-440/213 nuclear power plants. This volume of Working material contains reports on data related to sites and NPPs Paks and Kozloduy.

  4. Tracking and Monitoring Nuclear Materials During Transit

    International Nuclear Information System (INIS)

    Kelly M, Suzanne; Pregent, William

    1999-01-01

    Sandia National Laboratories (SNL) has completed a prototype Cargo Monitoring System (CMS). The system illustrates a method to provide status on nuclear material or waste while in transit during normal and potentially, abnormal scenarios. This accomplishment is tied to a concept to provide ''seamless continuity of knowledge'' for nuclear materials, whether they are being processed, stored, or transported. The system divides the transportation-tracking problem into four domains. Each domain has a well-defined interface that allows each domain to be developed independently. This paper will describe the key technologies employed in the system. Sandia is developing a modular tag that can be affixed to cargo. The tag supports a variety of sensor types. The input can be Boolean or analog. The tag uses RF to communicate with a transportation data unit that manages and monitors the cargo. Any alarm conditions are relayed to a central hub. The hub was developed using the Configurable Transportation Security and Information Management System (CTSS) software library of transportation components, which was designed to facilitate rapid development of new systems. CTSS can develop systems that reside in the vehicle host(s) and in a centralized command center

  5. The system of nuclear material control of Kazakhstan

    International Nuclear Information System (INIS)

    Yeligbayeva, G.Zh.

    2001-01-01

    Full text: The State system for nuclear material control consists of three integral components. The efficiency of each is to guarantee the non-proliferation regime in Kazakhstan. The components are the following: accounting, export and import control and physical protection of nuclear materials. First, the implementation of the goals of accounting and control bring into force, by the organization of the system for accounting and measurement of nuclear materials to determine present quantity. Organizing the accounting for nuclear material at facilities will ensure the efficiency of accountancy and reporting information. This defines the effectiveness of the state system for the accounting for the Kazakhstan's nuclear materials. Currently, Kazakhstan's nuclear material is fully safeguarded in designated secure locations. Kazakhstan has a nuclear power plant, 4 research reactors and a fuel fabrication plant. The governmental information system for nuclear materials control consist of two level: Governmental level - KAEA collects reports from facilities and prepares the reports for International Atomic Energy Agency, keeping of supporting documents and other necessary information, a data base of export and import, a data base of nuclear material inventory. Facility level - registration and processing information from key measurement points, formation the facility's nuclear materials accounting database. All facilities have computerized systems. Currently, all facilities are safeguarded under IAEA safeguarding standards, through IAEA inspections. Annually, IAEA verifies all nuclear materials at all Kazakhstan nuclear facilities. The government reporting system discloses the existence of all nuclear material and its transfer intended for interaction through the export control system and the nuclear control accounting system. Nuclear material export is regulated by the regulations of the Nuclear Export Control Law. The standard operating procedure is the primary means for

  6. Molecular forensic science of nuclear materials

    International Nuclear Information System (INIS)

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO 2 (An: U, Pu) to form non-stoichiometric species described as AnO 2+x . Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  7. Nuclear materials management handbook. Safeguards, physical protection of nuclear material. 1995 ed.

    International Nuclear Information System (INIS)

    1995-01-01

    Now, very safe and stable supply of electric power has become to be obtained by nuclear energy, and Japan has steadily promoted nuclear power as the basic energy that contributes to overcome the unstable structure of energy supply in Japan highly depending on foreign countries, as shown in the long term plan of the research, development and utilization of nuclear power. Great progress was observed in nuclear fuel recycling in Japan such as the attainment of initial criticality of the prototype FBR 'Monju' and the start of construction of the commercial fuel reprocessing plant in Rokkasho. Recently the recognition of the importance of nuclear substance management has heightened, and the measures for maintaining and strengthening the reliability of nuclear nonproliferation system are investigated. It is important that Japan strictly observes the nuclear nonproliferation system based on the NPT which was extended infinitely. In this handbook, the outline of the measures for nuclear nonproliferation and safeguard and the protection of nuclear substances, the treaties and agreements and the national laws related to these are described. (K.I.)

  8. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to perform regulations on enterprises of refining, processing and reprocessing of nuclear source and fuel materials and on establishment and operation of reactors to realize the peaceful and deliberate utilization of atomic energy according to the principle of the atomic energy basic law. Regulations of use of internationally regulated substances are also envisaged to observe international agreements. Basic concepts and terms are defined, such as: atomic energy; nuclear fuel material; nuclear source material; reactor; refining; processing; reprocessing and internationally regulated substance. Any person besides the Power Reactor and Nuclear Fuel Material Developing Corporation who undertakes refining shall be designated by the Prime Minister and the Minister of International Trade and Industry. An application shall be filed to the ministers concerned, listing name and address of the person, name and location of the refining works, equipment and method of refining, etc. The permission of the Prime Minister is necessary for any person who engages in processing. An application shall be filed to the Prime Minister, listing name and address of the person, name and location of the processing works and equipment and method of processing, etc. Permission of the Prime Minister, the Minister of International Trade and Industry or the Minister of Transport is necessary for any person who sets up reactors. An application shall be filed to the minister concerned, listing name and address of the person, purpose of operation, style, thermal output of reactor and number of units, etc. (Okada, K.)

  9. Evaluating the attractiveness of nuclear material for proliferation-resistance and nuclear security

    International Nuclear Information System (INIS)

    Choi, Jor-Shan; Ikegame, Kou; Kuno, Yusuke

    2011-01-01

    The attractiveness of nuclear material, defined as a function of the isotopic composition of the nuclear material in formulas expressing the material's intrinsic properties, is of considerably debate in recent developments of proliferation-resistance measures of a nuclear energy system. A reason for such debate arises from the fact that the concept of nuclear material attractiveness can be confusing because the desirability of a material for nuclear explosive use depends on many tangible and intangible factors including the intent and capability of the adversary. In addition, a material that is unattractive to an advanced nation (in the case of proliferation) may be very attractive to a terrorist (in the case of physical protection and nuclear security). Hence, the concept of 'Nuclear Material Attractiveness' for different nuclear materials must be considered in the context of safeguards and security. The development of a ranking scheme on the attractiveness of nuclear materials could be a useful concept to start-off the strategies for safeguards and security on a new footing (i.e., why and how nuclear material is attractive, and what are the quantifiable basis). Japan may benefit from such concept regarding the attractiveness of nuclear materials when recovering nuclear materials from the damaged cores in Fukushima because safety, security, and safeguards (3S) would be a prominent consideration for the recovery operation, and it would be the first time such operation is performed in a non-nuclear weapons state. (author)

  10. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Establishment of ultra trace nuclear material analysis system

    International Nuclear Information System (INIS)

    Song, Kyuseok; Jee, Kwangyong; Lee, Changheon

    2012-05-01

    Highly accurate and precise analysis of ultra trace nuclear materials contained in swipe samples and environmental samples is required to improve the national nuclear transparency and the international nuclear security. The objectives of the first stage of this project are to develop the techniques for bulk analysis of environmental samples and the elemental techniques for particle analysis using FT-TIMS. To accomplish the objectives, state-of-the-art analytical instruments were set up followed by the development of the techniques for screening of nuclear materials, chemical treatement, particle handling, isotopic measurements using TIMS and ICP-MS, and fabrication of uranium microparticles. The verifications of the developed techniques were carried out by measurement of reference materials, and by participation to interlaboratory comparison programs. In additon, the establishement of a quality management system and the performance of the analysis of QC samples for IAEA-NWAL qualification were carried out to obtain the international accreditation for the related analytical system. In this report, the results of research and developments, and the achievements to obtain the international accreditation were summarized

  12. Variance and covariance calculations for nuclear materials accounting using ''MAVARIC''

    International Nuclear Information System (INIS)

    Nasseri, K.K.

    1987-07-01

    Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined

  13. Variance and covariance calculations for nuclear materials accounting using 'MAVARIC'

    International Nuclear Information System (INIS)

    Nasseri, K.K.

    1987-01-01

    Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined

  14. Communications Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology; Comunicaciones recibidas de diversos Estados Miembros relativas a las directrices para las transferencias de equipos, materiales y programas informaticos (software) de doble uso del ambito nuclear y tecnologia relacionada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-11

    The Director General of the International Atomic Energy Agency has received Notes Verbales, dated 1 December 2005, from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, Croatia, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, New Zealand, Poland, Portugal, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom of Great Britain and Northern Ireland and the United States of America, relating to transfers of nuclear-related dual-use equipment, materials, software and related technology [Spanish] El Director General del Organismo Internacional de Energia Atomica ha recibido Notas verbales de fecha 1 de diciembre de 2005 de los Representantes Permanentes ante el Organismo de Alemania, Argentina, Australia, Austria, Belarus, Belgica, Brasil, Bulgaria, Canada, Croacia, Eslovenia, Espana, Estados Unidos de America, Estonia, Finlandia, Francia, Grecia, Hungria, Irlanda, Italia, Japon, Letonia, Lituania, Luxemburgo, Malta, Nueva Zelandia, Paises Bajos, Polonia, Portugal, Reino Unido de Gran Bretana e Irlanda del Norte, Republica Checa, Republica de Corea, Sudafrica, Suecia, Suiza, Turquia y Ucrania relativas a las transferencias de equipos, materiales y programas informaticos de doble uso del ambito nuclear y tecnologia relacionada.

  15. Project of law authorizing the approval of the agreement between the government of the French republic and the government of the Russian federation relative to the civil liability by way of nuclear damage owing to the supply of materials from the French republic devoted to nuclear facilities in the Russian federation

    International Nuclear Information System (INIS)

    Raffarin, J.P.; Villepin, D. de

    2002-01-01

    An agreement between France and Russia was signed on June 20, 2000 about the civil liability of Russia because of the supply of French material devoted to Russian nuclear facilities. This agreement was necessary because Russia do not belong to any of the two big international civil liability systems relative to nuclear energy, i.e. the Paris convention from July 29, 1960 (in the OECD framework) and the Vienna convention from May 21, 1963 (in the IAEA framework). This agreement offers a protection to the French nuclear suppliers against any damage claims in the case of a nuclear accident occurring on the Russian federation territory. This project of law aims at approving this agreement. (J.S.)

  16. Protecting nuclear material and facilities: Is a new approach needed?

    International Nuclear Information System (INIS)

    Steinhausler, F.; Bunn, G.

    2002-01-01

    Full text: The main reason why national physical protection (PP) systems for nuclear and other radioactive material need to be strengthened further is that, after the attacks on the US on 11 September 2001, the threat of dangerous, suicidal radiological and nuclear terrorism can no longer be excluded as a possibility. Existing PP systems were not designed to deal with the threat of suicidal terrorists having the numbers, skills, training, and resources available to the commandos attacking on 11 September. Moreover, there are no mandatory international standards for domestic PP systems for nuclear or radioactive material, and this has produced great variation in protection provided from country to country. IAEA recommended standards, while useful, were not designed with the new terrorist threat in mind. Moreover, they are often not followed in practice. The result is inadequate protection against the new form of terrorism in most countries. The Director General of the IAEA expressed a similar view after 11 September, but achieving a consensus to amend the Convention on the Physical Protection of Nuclear Material (CPPNM) to require specific standards of protection for different amounts and kinds of nuclear material used or stored domestically (not in international transport) has been impossible in the year since 11 September. In the case of radiological materials, a new effort to provide required international standards for protection against the new form of terrorism has not begun. In the summer of 2001, leaders of the G-8 countries agreed to a Global Partnership to prevent the new terrorists from acquiring nuclear and radiological as well as other materials related to weapons of mass destruction. Perhaps in part because of the failure to date to achieve agreement on an effective amendment to the CPPNM, the first principle of this partnership is to strengthen 'multilateral treaties and other instruments whose aim is to prevent the proliferation or illicit

  17. Nuclear Materials Management. Proceedings of the Symposium on Nuclear Materials Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-02-15

    An increasing number of countries are using nuclear materials which, because of their high value and the potential hazards involved, require special methods of handling. To discuss these and to provide a forum at which different systems for achieving the necessary economy and safety could be compared, the International Atomic Energy Agency held a Symposium at Vienna on Nuclear Materials Management from 30 August to 3 September, 1965. It was attended by 115 participants from 19 Member States and two international organizations. Nuclear materials are already being used on an industrial scale and their high cost demands close and continuous control to ensure that they are delivered precisely on time and that they are used to the fullest possible extent before they are withdrawn from service. Routine industrial methods of material control and verification are widely used to ensure safe and economical operation and handling in nuclear power stations, in fuel-element fabrication and reprocessing plants, and in storage facilities. In addition special refinements are needed to take account of the value and the degree of purity required of nuclear materials. Quality as well as quantity has to be checked thoroughly and the utmost economy in processing is necessary. The radioactivity of the material poses special problems of handling and storage and creates a potential hazard to health. A further problem is that of criticality. These dangers and the means of averting them are well understood, as is evidenced by the outstandingly good safety record of the atomic energy industry. But besides accommodating all these special problems, day-to-day procedures must be simple enough to fit in with industrial conditions. Many of the 58 papers presented at the Symposium emphasized that records, checks, measurements and handling precautions, if suitably devised, provide the control vital to efficient operation, serve as checks against loss or waste of valuable materials and help meet the

  18. Towards a new system of accounting of nuclear material

    International Nuclear Information System (INIS)

    Maceiras, Elena; Fernandez Moreno, Sonia; Castro, Laura B.; Saavedra, Analia D.; Mairal, M.L.; Valentino, Lucia I.; Vicens, Hugo E.; Llacer, Carlos D.

    1999-01-01

    The Nuclear Regulatory Authority (NRA) of Argentina has, among other functions, to ensure the fulfilment of national nuclear regulatory standards and all international safeguards commitments assumed by Argentina, particularly those related to the accounting and control of nuclear materials. To fulfil this responsibility, national inspections and audits of the operator's accounting and measurement systems are carried out, generating a great deal of data to be processed and evaluated. To manage this information in an efficient way, the RNA has implemented a control system composed by three database: SCMN, SIS and SOP, which interact amongst them. The objectives and functions of this integrated system and the achieved results to date are described in the present paper. (author)

  19. Creep consolidation of nuclear depository backfill materials

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1980-10-01

    Evaluation of the effects of backfilling nuclear waste repository rooms is an important aspect of waste repository design. Consolidation of the porous backfill takes place as the room closes with time, causing the supporting stress exerted by the backfill against the intact rock to increase. Estimation of the rate of backfill consolidation is required for closure rate predictions and should be possible if the creep law for the solid constituent is known. A simple theory describing consolidation with a spherical void model is derived to illustrate this relationship. Although the present form of the theory assumes a homogeneous isotropic incompressible material atypical of most rocks, it may be applicable to rock salt, which exhibits considerable plasticity under confined pressure. Application of the theory is illustrated assuming a simple steady-state creep law, to show that the consolidation rate depends on the externally applied stress, temperature, and porosity

  20. Fuzzy controllers in nuclear material accounting

    International Nuclear Information System (INIS)

    Zardecki, A.

    1994-01-01

    Fuzzy controllers are applied to predicting and modeling a time series, with particular emphasis on anomaly detection in nuclear material inventory differences. As compared to neural networks, the fuzzy controllers can operate in real time; their learning process does not require many iterations to converge. For this reason fuzzy controllers are potentially useful in time series forecasting, where the authors want to detect and identify trends in real time. They describe an object-oriented implementation of the algorithm advanced by Wang and Mendel. Numerical results are presented both for inventory data and time series corresponding to chaotic situations, such as encountered in the context of strange attractors. In the latter case, the effects of noise on the predictive power of the fuzzy controller are explored

  1. Nuclear materials identification by photon interrogation

    International Nuclear Information System (INIS)

    Pozzi, S.A.; Monville, M.; Padovani, E.

    2005-01-01

    We describe a preliminary modification to the Monte Carlo codes MCNP-X and MCNP-PoliMi that is aimed at simulating the neutron and photon field generated by interrogating fissile (and non-fissile) material with a high energy photon source. Photo-atomic and photo-nuclear collisions are modeled, with particular emphasis on the generation of secondary particles that are emitted as a result of these interactions. The simulations can be used to design and analyze measurements that are performed in a wide variety of scenarios. An application of the methodology to the interrogation of packages on a luggage belt conveyor is presented. Preliminary results show that it is possible to detect 5 Kg of highly enriched uranium in a package by measuring the correlation function between 2 detectors. This correlation function is based on the detection of prompt radiation from photonuclear events

  2. Security robots for nuclear materials management

    International Nuclear Information System (INIS)

    Deming, R.

    1986-01-01

    Robots have successfully invaded industry where they have replaced costly personnel performing their tasks cheaper and better in most cases. There may be a place for a unique class of robots, security robots, in nuclear materials management. Robots could be employed in the functions of general response, patrol and neutralizing dangerous situations. The last is perhaps most important. Ion Track Instruments of Burlington, Massachusetts has designed an excellent unit to protect life in hazardous situations. The unit can detect, disrupt or remove explosives. It can enter dangerous areas to reconnoiter the extent of danger. It can communicate with those in a dangerous area. It can fight fires or clean an area using a 2 1/2 inch, two man hose. If necessary, it can engage an adversary in a fire fight using a twelve gauge shot gun

  3. Development of the seal for nuclear material

    International Nuclear Information System (INIS)

    Lu Feng; Lu Zhao; Zhao Yonggang; Zhang Qixin; Xiao Xuefu

    2000-01-01

    Two kinds of double cap metallic seal and an adhesive seal are developed for the purpose of the accounting for and control of nuclear material. Two kinds of double cap metallic seal are made of stainless steel and copper, respectively and the self-locked technique is used. The number and the random pattern are carved out side and in side of a cap, respectively, for the seal. The random pattern carved inside of a cap for seal is taken a picture using numeral camera and memorized in computer. Special software is developed for verification of the random pattern memorized in computer. The adhesive seal is made of special adhesive paper for purpose of security, and a special pattern guarded against falsification is printed on seal paper using ultraviolet fluorescent light technique

  4. Nuclear fuels for material test reactors

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Durazzo, M.; Freitas, C.T. de

    1982-01-01

    Experimental results related do the development of nuclear fuels for reactors cooled and moderated by water have been presented cylindrical and plate type fuels have been described in which the core consists of U compouns dispersed in an Al matrix and is clad with aluminium. Fabrication details involving rollmilling, swaging or hot pressing have been described. Corrosion and irradiation test results are also discussed. The performance of the different types of fuels indicates that it is possible to locally fabricate fuel plates with U 3 O 8 +Al cores (20% enriched U) for use in operating Brazilian research reactors. (Author) [pt

  5. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  6. Development of comprehensive material performance database for nuclear applications

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Yokoyama, Norio; Tsukada, Takashi; Nakajima, Hajime

    1993-01-01

    This paper introduces the present status of the comprehensive material performance database for nuclear applications, which was named JAERI Material Performance Database (JMPD), and examples of its utilization. The JMPD has been developed since 1986 in JAERI with a view to utilizing various kinds of characteristics data of nuclear materials efficiently. Management system of relational database, PLANNER, was employed, and supporting systems for data retrieval and output were expanded. In order to improve user-friendliness of the retrieval system, the menu selection type procedures have been developed where knowledge of the system or the data structures are not required for end-users. As to utilization of the JMPD, two types of data analyses are mentioned as follows: (1) A series of statistical analyses was performed in order to estimate the design values both of the yield strength (Sy) and the tensile strength (Su) for aluminum alloys which are widely used as structural materials for research reactors. (2) Statistical analyses were accomplished by using the cyclic crack growth rate data for nuclear pressure vessel steels, and comparisons were made on variability and/or reproducibility of the data between obtained by ΔK-increasing and ΔK-constant type tests. (author)

  7. Computerized nuclear material database management system for power reactors

    International Nuclear Information System (INIS)

    Cheng Binghao; Zhu Rongbao; Liu Daming; Cao Bin; Liu Ling; Tan Yajun; Jiang Jincai

    1994-01-01

    The software packages for nuclear material database management for power reactors are described. The database structure, data flow and model for management of the database are analysed. Also mentioned are the main functions and characterizations of the software packages, which are successfully installed and used at both the Daya Bay Nuclear Power Plant and the Qinshan Nuclear Power Plant for the purposed of handling nuclear material database automatically

  8. 37. annual meeting of the Institute of Nuclear Materials Management

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The following subjects were covered in this meeting: waste management; nuclear materials management -- safety and health; international safeguards; measurement control and statistics for nuclear materials management; material control and accountability; packaging and transportation; nonproliferation and arms control; and physical protection. Separate papers were prepared for 74 items of this meeting

  9. IAEA receives Iraq's nuclear-related declaration

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The Director General of the International Atomic Energy Agency, Mohamed ElBaradei, announced that the IAEA received this evening, Sunday, 8 December 2002, at its Headquarters in Vienna, an approximately 2400 page declaration on Iraq's nuclear programme. The declaration consists of about 2100 pages in English and 300 pages in Arabic. The declaration was submitted by the Government of Iraq in response to paragraph 3 of Security Council resolution 1441 (8 November 2002), which requires Iraq to provide to UNMOVIC, the IAEA and to the Security Council, not later than 30 days of the date of that resolution, with 'currently accurate, full, and complete declaration of all aspects of its programmes to develop chemical, biological, and nuclear weapons, ballistic missiles, and other delivery systems... as well as all other chemical, biological, and nuclear programmes, including any which it claims are for purposes not related to weapon production or material'. 'The IAEA will immediately begin to assess this important new document,' said Mr. ElBaradei, 'including the painstaking and systematic cross-checking of the information provided by Iraq against information which the IAEA already has, information that it expects to receive from other Member States, as contemplated in resolution 1441, and results of past and present Agency verification activities.' Complete assessment of the declaration will be time consuming, particularly in light of the need to translate the 300 pages of Arabic text into English. However, the IAEA expects to be able to provide a preliminary analysis of the document to the Security Council within the next ten days, with a fuller assessment to be provided when it reports to the Council at the end of January. (IAEA)

  10. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de

  11. Management review of nuclear material control and accounting systems

    International Nuclear Information System (INIS)

    1975-06-01

    Section 70.58, ''Fundamental Nuclear Material Controls,'' of 10 CFR Part 70, ''Special Nuclear Materials,'' requires, in paragraph 70.58(c), that certain licensees authorized to possess more than one effective kilogram of special nuclear material establish a management system to provide for the development, revision, implementation, and enforcement of nuclear material control and accounting procedures. Such a system must provide for a review of the nuclear material control system at least every 12 months. This guide describes the purpose and scope, personnel qualifications, depth of detail, and procedures that are acceptable to the NRC staff for the management review of nuclear material control systems required under paragraph 70.58(c) of 10 CFR Part 70. (U.S.)

  12. Experience of the Russian Federation in the field of the nuclear material control

    International Nuclear Information System (INIS)

    1998-01-01

    The paper deals with the develop met of new approaches concerning safeguards for specific nuclear materials, specific facilities which used Russian technology and design and situation of storing the nuclear materials. The role od IAEA safeguards is emphasised in view of verification and inspection of all the related issues

  13. Positron annihilation studies on structural materials for nuclear reactors

    International Nuclear Information System (INIS)

    Rajaraman, R.; Amarendra, G.; Sundar, C.S.

    2012-01-01

    Structural steels for nuclear reactors have renewed interest owing to the future advanced fission reactor design with increased burn-up goals as well as for fusion reactor applications. While modified austenitic steels continue to be the main cladding materials for fast breeder reactors, Ferritic/martensitic steels and oxide dispersion strengthened ferritic steels are the candidate materials for future reactors applications in India. Sensitivity and selectivity of positron annihilation spectroscopy to open volume type defects and nano clusters have been extensively utilized in studying reactor materials. We have recently reviewed the application of positron techniques to reactor structural steels. In this talk, we will present successful application of positron annihilation spectroscopy to probe various structural materials such as D9, ferritic/martensitic, oxide dispersion strengthened (ODS) steels and related model alloys, highlighting our recent studies. (author)

  14. Basic fracture toughness requirements for ferritic materials of nuclear class pressure retaining equipment in NPP

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2005-01-01

    In this paper, theory basis on cold brittleness and anti-brittle fracture design of ferritic materials are introduced summarily and fracture toughness requirements for ferritic materials in ASME code for nuclear safety class pressure retaining equipment in NPP are summarized and evaluated. The results show that notch impact toughness requirements for materials relate to nuclear safety class of materials so as to ensure that brittle fracture of retaining pressure boundary in NPP can not occur. (authors)

  15. Absolute nuclear material assay using count distribution (LAMBDA) space

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Preliminary assessment on the differences of nuclear terrorism convention from the convention on the physical protection of nuclear material and amendment to the convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    Midiana Ariethia; Muhamad Ilman A A; Mas Pungky Hendrawijaya

    2011-01-01

    The threat of acts of nuclear terrorism in all its forms and manifestations create the urgent need to enhance international cooperation between countries in designing and following practical and effective measures for the prevention of acts of terrorism and to counter and punish its offenders. Several United Nations Security Council Resolutions, such as UNSCR Number 1373 (2001), and UNSCR Number 1540 (2005), and the result of Nuclear Security Summit in 2010 that encourage the member countries of IAEA to ratify nuclear conventions as soon as possible, are the reasons that the Indonesian Government planning on ratifying The International Convention for The Suppression of Acts of Nuclear Terrorism (Nuclear Terrorism Convention). Nuclear Terrorism Convention is one of the 16 (sixteen) international instruments that must be ratified by the member countries of IAEA. Of the 16 (sixteen) international instruments, 3 (three) conventions are related to nuclear; Convention on the Physical Protection of Nuclear Material, Amendment to the Convention on the Physical Protection of Nuclear Material, dan Nuclear Terrorism Convention. This paper presents the preliminary assessment on the differences of Nuclear Terrorism Convention to The Convention on The Physical Protection of Nuclear Material and Amendment to The Convention on The Physical Protection of Nuclear Material. This assessment is important due to the plan of the Indonesian Government to ratify the Nuclear Terrorism Convention. The result of this assessment could be used by BAPETEN in the ratification process of the Nuclear Terrorism Convention. The method used in this assessment is references assessment. (author)

  17. Role of nuclear material accounting and control on nuclear security. Countermeasure against insider threat

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    2014-01-01

    Possibility on unauthorized removal (theft) of nuclear material by a facility insider is a recognized as a serious threat. An insider could take advantage or knowledge of control system and access to nuclear material to intercept facility's system designed to protect theft of nuclear material by an insider. This paper will address how the facility level Nuclear Material Accounting and Control (NMAC) System should be designed and implemented to enhance deterring and detect theft of nuclear material by a facility insider. (author)

  18. Experience in safeguarding nuclear material at the Rheinsberg nuclear power station

    International Nuclear Information System (INIS)

    Winkler, R.

    1976-01-01

    The three years' experience that has been gained in application of the Safeguards Agreement shows that the carrying out of inspections at the nuclear power plant has virtually no effect on operating conditions. In future it will be possible to reduce this effect even further and still maintain the operational reliability of the station. Verification of the transfer of nuclear material and detection of possible violations have proved relatively simple. The labour requirement of each unit at the station for the performance of inspections is not more that thirty man-days. Constructive collaboration between power station staff and inspectors is of great importance in improving the safeguards procedures. (author)

  19. Isotopically enriched structural materials in nuclear devices

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, L.W.G., E-mail: Lee.Morgan@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shimwell, J. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Gilbert, M.R. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2015-01-15

    decommissioning are considered. It is shown that the addition of molybdenum and nickel in small concentrations (<2% mass) could have the potential to increase availability to such an extent that the capital investment associated with isotope enrichment is negated and profits from electricity sale increased. Another important issue for materials exposed to neutron irradiation is the production of gases, in particular helium, as a result of nuclear interactions. Helium accumulation in materials can cause embrittlement and so mitigating the rate of production is an important consideration when selecting materials. The second part of this paper considers whether helium production can be reduced in CuCrZr by isotopic tailoring. CuCrZr is a candidate bonding material for tungsten at first wall locations, however it suffers from degradation due to helium production. Inventory calculations show that isotopically enriching the copper, in CuCrZr, can reduce helium production by approximately 50%. However, cost–benefit analysis suggests that the cost of enriching copper is not cost-effective due to the high price of electromagnetic enrichment that is required for copper.

  20. IBA studies of helium mobility in nuclear materials revisited

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P., E-mail: patrick.trocellier@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Agarwal, S.; Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Vaubaillon, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); CEA, INSTN, UEPTN, F-91191 Gif-sur-Yvette (France); Leprêtre, F.; Serruys, Y. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-12-15

    The aim of this paper is to point out and to discuss some features extracted from the study of helium migration in nuclear materials performed during the last fifteen years using ion beam analysis (IBA) measurements. The first part of this paper is devoted to a brief description of the two main IBA methods used, i.e. deuteron induced nuclear reaction for {sup 3}He depth profiling and high-energy heavy-ion induced elastic recoil detection analysis for {sup 4}He measurement. In the second part, we provide an overview of the different studies carried out on model nuclear waste matrices and model nuclear reactor structure materials in order to illustrate and discuss specific results in terms of key influence parameters in relation with thermal or radiation activated migration of helium. Finally, we show that among the key parameters we have investigated as able to influence the height of the helium migration barrier, the following can be considered as pertinent: the experimental conditions used to introduce helium (implanted ion energy and implantation fluence), the grain size of the matrix, the lattice cell volume, the Young's modulus, the ionicity degree of the chemical bond between the transition metal atom M and the non-metal atom X, and the width of the band gap.

  1. Regulatory good practices relating to monitoring and assessment of ageing nuclear power plants. A compilation of the 1991/92 Peer Group discussion considerations as they relate to operational plants. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    In 1974 the IAEA established a Nuclear Safety Standards (NUSS) programme within which 5 Codes and 55 Safety Guides have been produced in the areas of Governmental Organization, Siting, Design, Operation and Quality Assurance. The NUSS Codes and Guides are a collection of basic and derived requirements for the safety of nuclear power plants with thermal neutron reactors. They have been developed in such a manner as to ensure the broadest international consensus. This broad consensus is one of the reasons for the relatively general wording of the main principles and sometimes causes problems when these principles are applied in the design of nuclear power plants. The requirements, particularly those of the Codes, often need interpretation in specific cases. In many areas national regulations and technical standards are available, but often these leave some questions unanswered and their practical application on a case-by-case basis is necessary. To assist in the application and interpretation of the NUSS Safety Standards and Safety Guides, the preparation of a number of Safety Practices publications has been commenced. Ibis publication is intended to assist regulators and also operating organizations. It is a compilation of the reports of the 1991/92 Peer Group discussions which considered regulatory good practices relating to monitoring and assessment of the ageing of nuclear power plants. Therefore names of participated countries in this documents are those at time of 1991/92 Peer Group discussions. It identifies those common regulatory features which require continuous reinforcement and examples of good regulatory practices that were recommended by senior regulators in the Peer Group discussions. The purpose of this publication is to provide a compilation of the 1991/92 Peer Group discussions relating to operational plant. This document the covers practices in the 20 countries participating in this round of Peer Group discussions. The document is a synopsis of

  2. Regulatory good practices relating to monitoring and assessment of ageing nuclear power plants. A compilation of the 1991/92 Peer Group discussion considerations as they relate to operational plants. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    In 1974 the IAEA established a Nuclear Safety Standards (NUSS) programme within which 5 Codes and 55 Safety Guides have been produced in the areas of Governmental Organization, Siting, Design, Operation and Quality Assurance. The NUSS Codes and Guides are a collection of basic and derived requirements for the safety of nuclear power plants with thermal neutron reactors. They have been developed in such a manner as to ensure the broadest international consensus. This broad consensus is one of the reasons for the relatively general wording of the main principles and sometimes causes problems when these principles are applied in the design of nuclear power plants. The requirements, particularly those of the Codes, often need interpretation in specific cases. In many areas national regulations and technical standards are available, but often these leave some questions unanswered and their practical application on a case-by-case basis is necessary. To assist in the application and interpretation of the NUSS Safety Standards and Safety Guides, the preparation of a number of Safety Practices publications has been commenced. Ibis publication is intended to assist regulators and also operating organizations. It is a compilation of the reports of the 1991/92 Peer Group discussions which considered regulatory good practices relating to monitoring and assessment of the ageing of nuclear power plants. Therefore names of participated countries in this documents are those at time of 1991/92 Peer Group discussions. It identifies those common regulatory features which require continuous reinforcement and examples of good regulatory practices that were recommended by senior regulators in the Peer Group discussions. The purpose of this publication is to provide a compilation of the 1991/92 Peer Group discussions relating to operational plant. This document the covers practices in the 20 countries participating in this round of Peer Group discussions. The document is a synopsis of

  3. Neutron spectroscopy, nuclear structure, related topics. Abstracts

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.

    1996-01-01

    Neutron spectroscopy, nuclear structure and related topics are considered. P, T-breaking, neutron beta decay, neutron radiative capture and neutron polarizability are discussed. Reaction with fast neutrons, methodical aspect low-energy fission are considered too

  4. IAEA inspectors complete verification of nuclear material in Iraq

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: At the request of the Government of Iraq and pursuant to the NPT Safeguards Agreement with Iraq, a team of IAEA safeguards inspectors has completed the annual Physical Inventory Verification of declared nuclear material in Iraq, and is returning to Vienna. The material - natural or low-enriched uranium - is not sensitive from a proliferation perspective and is consolidated at a storage facility near the Tuwaitha complex, south of Baghdad. This inspection was conducted with the logistical and security assistance of the Multinational Force and the Office of the UN Security Coordinator. Inspections such as this are required by safeguards agreements with every non-nuclear-weapon state party to the NPT that has declared holdings of nuclear material, to verify the correctness of the declaration, and that material has not been diverted to any undeclared activity. Such inspections have been performed in Iraq on a continuing basis. The most recent took place in June 2003, following reports of looting of nuclear material at the Tuwaitha complex; IAEA inspectors recovered, repackaged and resealed all but a minute amount of material. NPT safeguards inspections are limited in scope and coverage as compared to the verification activities carried out in 1991-98 and 2002-03 by the IAEA under Security Council resolution 687 and related resolutions. 'This week's mission was a good first step,' IAEA Director General Mohamed ElBaradei said. 'Now we hope to be in a position to complete the mandate entrusted to us by the Security Council, to enable the Council over time to remove all sanctions and restrictions imposed on Iraq - so that Iraq's rights as a full-fledged member of the international community can be restored.' The removal of remaining sanctions is dependent on completion of the verification process by the IAEA and the UN Monitoring, Verification and Inspection Commission (UNMOVIC). It should be noted that IAEA technical assistance to Iraq has been resumed over

  5. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The internationally controlled materials determined according to the law for nuclear source materials, etc. are the following: nuclear source materials, nuclear fuel materials, moderating materials, facilities including reactors, etc. sold, transferred, etc. to Japan according to the agreements for peaceful uses of atomic energy between Japan, and the United States, the United Kingdom, Canada, Australia and France by the respective governments and those organs under them; nuclear fuel materials resulting from usage of the above sold and transferred materials, facilities; nuclear fuel materials sold to Japan according to agreements set by the International Atomic Energy Agency; nuclear fuel materials involved with the safeguards in nuclear weapons non-proliferation treaty with IAEA. (Mori, K.)

  6. The regulations concerning the uses of nuclear source materials

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for the execution of this law, and to enforce them. Basic terms are defined, such as exposure radiation dose, cumulative dose, control area, surrounding monitoring area, worker and radioactive waste. Nuclear raw materials shall be used at the facilities for using them, and control areas and surrounding monitoring areas shall be set up. Cumulative dose and exposure radiation dose of workers shall not exceed the permissible quantities defined by the General Director of the Science and Technology Agency. Records shall be made in each works or enterprise on the accept, delivery and stock of each kind of nuclear raw materials, radiation control and the accidents in the facilities of using nuclear raw materials, and kept for specified periods, respectively. The users of nuclear raw materials shall present reports in each works or enterprise on the stock of these materials on July 30 and December 31, every year. They shall submit reports immediately to the Director General on the particular accidents concerning nuclear raw materials and their facilities and on the circumstances and the measures taken against such accidents within ten days. These reports shall be presented on internationally regulated raw materials too. (Okada, K.)

  7. Strengthened implementation of physical protection of nuclear material and nuclear facilities in the Republic of Korea

    International Nuclear Information System (INIS)

    Shim, H.-W.; Lee, J.-U.

    2005-01-01

    Full text: Since the 9.11 terror, strengthening physical protection has been an accelerated trend internationally. IAEA has been requesting that member states implement a strengthened physical protection of nuclear facilities on the basis of threat assessments. In order to cope with this demand, the Korean government promulgated the 'Law for Physical Protection and Radiological Emergency Preparedness (LPPRE)' as a substantial countermeasure against possible threats. Pursuant to LPPRE, which entered into force on February 16, 2004, nuclear enterprisers are obliged to implement an effective physical protection of nuclear materials, get approval for its physical protection system, and be constantly inspected on. The Ministry of Science and Technology (MOST) approved physical protection regulations of 24 domestic facilities operated by 14 enterprisers. National Nuclear management and Control Agency (NNCA) is entrusted with physical protection related duty and has been conducting physical protection inspection on nuclear materials in use, storage and transport. In addition, NNCA has established the methodology of threat assessment that entails organizing the threat assessment working group to develop a design basis threat (DBT). Korea is putting its best efforts to construct the threat assessment system and strengthen domestic physical protection regime in cooperation with competent authorities. (author)

  8. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1978-01-01

    This law has following two purposes. At first, it exercises necessary controls concerning nuclear source material, nuclear fuel material and reactors in order to: (a) limit their uses to those for the peaceful purpose; (b) ensure planned uses of them; and (c) ensure the public safety by preventing accidents from their uses. Necessary controls are to be made concerning the refining, fabricating and reprocessing businesses, as well as the construction and operation of reactors. The second purpose of the law is to exercise necessary controls concerning internationally controlled material in order to execute the treaties and other international agreements on the research, development and use of atomic energy (the first chapter). In the second and following chapters the law prescribes controls for the persons who wish to carry on the refining and fabricating businesses, to construct and operate reactors, and to conduct the reprocessing business, as well as for those who use the internationally controlled material, respectively in separate chapters by the category of those businesses. For example, the controls to the person who wishes to construct and operate reactors are: (a) the permission of the business after the examination; (b) the examination and approval of the design and methods of construction prior to the construction; (c) the inspection of the facilities prior to their use; (d) periodic inspections of the facilities; (e) the establishment of requirements for safety measures and punishments to their violations. (Matsushima, A.)

  9. Japan's regulatory and safety issues regarding nuclear materials transport

    International Nuclear Information System (INIS)

    Saito, T.; Yamanaka, T.

    2004-01-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses

  10. A new Brazilian regulation for the security of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    Tavares, Renato L.A.; Filho, Josélio S.M.; Torres, Luiz F.B.; Lima, Alexandre R.; Lima, Fabiano P.C.

    2017-01-01

    The present paper aims to outline the challenges related to the elaboration and concepts involved in a regulatory transition from a purely prescriptive approach to a combined approach that mixes performance-based concepts and evaluation metrics based on statistical data of equipment and personnel. This methodology might represent an improvement compared to a purely prescriptive approach, in which the regulatory authority defines the measures to be taken by operators of nuclear facilities to prevent theft, sabotage events, and mitigate their consequences. The prescriptive approach, despite having the advantages of clarity in the definition of requirements, simplicity in regulatory terms (inspections to verify compliance), and homogeneity in relation to various facilities, does not allow a clear and effective performance measurement, may provide insufficient or excessive security measures (with excessive expenditure of material and human resources), and the possibility of providing a false sense of security. It is known that, in many countries, the state-sponsored nuclear security regime mixes elements of the two mentioned approaches, prescriptive and based on performance, which is not Brazilian practice nowadays. Such methodological developments happened globally due to the increase of threat level for nuclear facilities and materials. The currently regulation in force is CNEN-NE 2.01, which provides a set of measures intended to implement Physical Protection Systems in Nuclear, Radiological Facilities as well as Transport Operations, and all documents related to security of such issues. The new regulation, named CNEN-NN 2.01, will focus only on Nuclear Material and Facilities (two other regulations specific for Security of Radioactive Sources and Transport Operations are under elaboration process). CNEN NN 2.01 is intended to provide further adherence to new international recommendations, e.g, IAEA INFCIRC 225 Rev.5 (NSS 13), which is currently regarded as the

  11. A new Brazilian regulation for the security of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Renato L.A.; Filho, Josélio S.M.; Torres, Luiz F.B.; Lima, Alexandre R., E-mail: renato.tavares@cnen.gov.br, E-mail: joselio@cnen.gov.br, E-mail: ltorres@cnen.gov.br, E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear; Lima, Fabiano P.C., E-mail: fabianopetruceli@outlook.com [Presidência da República, Brasilia, DF (Brazil). Gabinete de Segurança Institucional

    2017-07-01

    The present paper aims to outline the challenges related to the elaboration and concepts involved in a regulatory transition from a purely prescriptive approach to a combined approach that mixes performance-based concepts and evaluation metrics based on statistical data of equipment and personnel. This methodology might represent an improvement compared to a purely prescriptive approach, in which the regulatory authority defines the measures to be taken by operators of nuclear facilities to prevent theft, sabotage events, and mitigate their consequences. The prescriptive approach, despite having the advantages of clarity in the definition of requirements, simplicity in regulatory terms (inspections to verify compliance), and homogeneity in relation to various facilities, does not allow a clear and effective performance measurement, may provide insufficient or excessive security measures (with excessive expenditure of material and human resources), and the possibility of providing a false sense of security. It is known that, in many countries, the state-sponsored nuclear security regime mixes elements of the two mentioned approaches, prescriptive and based on performance, which is not Brazilian practice nowadays. Such methodological developments happened globally due to the increase of threat level for nuclear facilities and materials. The currently regulation in force is CNEN-NE 2.01, which provides a set of measures intended to implement Physical Protection Systems in Nuclear, Radiological Facilities as well as Transport Operations, and all documents related to security of such issues. The new regulation, named CNEN-NN 2.01, will focus only on Nuclear Material and Facilities (two other regulations specific for Security of Radioactive Sources and Transport Operations are under elaboration process). CNEN NN 2.01 is intended to provide further adherence to new international recommendations, e.g, IAEA INFCIRC 225 Rev.5 (NSS 13), which is currently regarded as the

  12. Nuclear material attractiveness: an assessment of material associated with a closed fuel cycle

    International Nuclear Information System (INIS)

    Bathke, C.G.; Wallace, R.K.; Hase, K.R.; Jarvinen, G.D.; Ireland, J.R.; Johnson, M.W.; Ebbinghaus, B.B.; Sleaford, B.W.; Robel, M.; Bradley, K.S.; Collins, B.A.; Prichard, A.W.; Smith, B.W.

    2010-01-01

    This paper examines the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the various processing steps required for a closed fuel cycle. This paper combines the results from earlier studies that examined the attractiveness of SNM associated with the processing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR with new results for the final, repeated burning of SNM in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). The results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, or undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed. (authors)

  13. Nuclear Material Attractiveness: An Assessment Of Material Associated With A Closed Fuel Cycle

    International Nuclear Information System (INIS)

    Bathke, C.G.; Ebbinghaus, B.; Sleaford, Brad W.; Wallace, R.K.; Collins, Brian A.; Hase, Kevin R.; Robel, Martin; Jarvinen, G.D.; Bradley, Keith S.; Ireland, J.R.; Johnson, M.W.; Prichard, Andrew W.; Smith, Brian W.

    2010-01-01

    This paper examines the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the various processing steps required for a closed fuel cycle. This paper combines the results from earlier studies that examined the attractiveness of SNM associated with the processing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR with new results for the final, repeated burning of SNM in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). The results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, or undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.

  14. Methodologies for nuclear material accounting and control: challenges and expectations

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2007-01-01

    Nuclear Material Accounting and Control (NUMAC) represents one of the most important and indispensable responsibilities of any nuclear installation. The emphasis is to ensure that the nuclear material being handled in the nuclear installation is properly accounted for with the expected accuracy and confidence levels. A number of analytical methods based on both destructive and non-destructive assay techniques are available at the disposal of the nuclear analytical scientists for this purpose and they have been enumerated extensively in literature. Instead of recounting the analytical methodologies available, an attempt has been made in this paper to highlight some of the challenges. (author)

  15. Safeguards considerations related to the decontamination and decommissioning of former nuclear weapons facilities

    International Nuclear Information System (INIS)

    Crawford, D.

    1995-01-01

    In response to the post-Cold War environment and the changes in the U. S. Department of Energy defense mission, many former nuclear operations are being permanently shut down. These operations include facilities where nuclear materials production, processing, and weapons manufacturing have occurred in support of the nation's defense industry. Since defense-related operations have ceased, many of the classification and sensitive information concerns do not exist. However, nuclear materials found at these sites are of interest to the DOE from environmental, safety and health, and materials management perspectives. Since these facilities played a role in defense activities, the nuclear materials found at these facilities are considered special nuclear materials, primarily highly enriched uranium and/or plutonium. Consequently, these materials pose significant diversion, theft, and sabotage threats, and significant nuclear security issues exist that must be addressed. This paper focuses on the nuclear materials protection issues associated with facility decommissioning and decontamination, primarily safeguards

  16. Experience of air transport of nuclear fuel material in Japan

    International Nuclear Information System (INIS)

    Yamashita, T.; Toguri, D.; Kawasaki, M.

    2004-01-01

    Certified Reference Materials (hereafter called as to CRMs), which are indispensable for Quality Assurance and Material Accountability in nuclear fuel plants, are being provided by overseas suppliers to Japanese nuclear entities as Type A package (non-fissile) through air transport. However, after the criticality accident at JCO in Japan, special law defining nuclear disaster countermeasures (hereafter called as to the LAW) has been newly enforced in June 2000. Thereafter, nuclear fuel materials must meet not only to the existing transport regulations but also to the LAW for its transport

  17. Risk Prevention for Nuclear Materials and Radioactive Sources

    International Nuclear Information System (INIS)

    Badawy, I.

    2008-01-01

    The present paper investigates the parameters which may have effects on the safety of nuclear materials and other radioactive sources used in peaceful applications of atomic energy. The emergency response planning in such situations are also indicated. In synergy with nuclear safety measures, an approach is developed in this study for risk prevention. It takes into consideration the collective implementation of measures of nuclear material accounting and control, physical protection and monitoring of such strategic and dangerous materials in an integrated and coordinated real-time mode at a nuclear or radiation facility and in any time

  18. Study on CPPNM Interpretation of the Physical Protection Regulatory Aspects for International Transport of Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-jin; Yang, Seong-hyo; Hyung, Sang-chul [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    Nuclear energy has been regulated by various international agreements or treaties due to the potential dangers. In case of export or import of nuclear material, it is important to comply with international norms and domestic laws related to nonproliferation and physical protection of nuclear material. Because, if non-compliant, it can be taken nuclear sanctions from the international community, and thus the domestic nuclear activities can be under a negative impact. Recently, international interests in nuclear security have been increased, it has become very sensitive to whether or not to join, and to comply with international treaties during international transportation of nuclear materials. Currently it is not discussed yet how to present and interpret the relevant provisions in CPPNM. However, it is necessary to prepare for the dispute among the parties that we don't know when it happens.

  19. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5): Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  20. US develops neutron to sniff out nuclear material

    CERN Document Server

    2002-01-01

    The USA has developed a tiny portable neutron device that can detect hidden nuclear materials. The device is undergoing trials in the Argonne National Laboratory to see if it could be used to stop smuggling and unauthorised use of nuclear weapons and materials (1/2 page).

  1. Non destructive assay techniques applied to nuclear materials

    International Nuclear Information System (INIS)

    Gavron, A.

    2001-01-01

    Nondestructive assay is a suite of techniques that has matured and become precise, easily implementable, and remotely usable. These techniques provide elaborate safeguards of nuclear material by providing the necessary information for materials accounting. NDA techniques are ubiquitous, reliable, essentially tamper proof, and simple to use. They make the world a safer place to live in, and they make nuclear energy viable. (author)

  2. Virtual reality. Fundamentals and nuclear related applications

    International Nuclear Information System (INIS)

    Ishii, Hirotake

    2010-01-01

    Since the first virtual reality (VR) system was developed by Dr. Ivan Sutherland in the 1960s, various research and development have been conducted to apply VR to many fields. One promising applications is a nuclear-related one. VR is useful for control room design support, operation training, maintenance training, decommissioning planning support, nuclear education, work image sharing, telecollaboration, and even providing an experimental test-bed. In this lecture note, fundamental knowledge of VR is presented first, and various VR applications to nuclear fields are stated along with their advantages. Then appropriate cases for introducing VR are summarized and future prospects are given. (author)

  3. Risk Informed Approach for Nuclear Security Measures for Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to States for developing a risk informed approach and for conducting threat and risk assessments as the basis for the design and implementation of sustainable nuclear security systems and measures for prevention of, detection of, and response to criminal and intentional unauthorised acts involving nuclear and other radioactive material out of regulatory control. It describes concepts and methodologies for a risk informed approach, including identification and assessment of threats, targets, and potential consequences; threat and risk assessment methodologies, and the use of risk informed approaches as the basis for informing the development and implementation of nuclear security systems and measures. The publication is an Implementing Guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, law enforcement agencies and experts from competent authorities and other relevant organizations involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures related to nuclear and other radioactive material out of regulatory control

  4. Circular from January 26, 2004, taken for the enforcement of the by-law from January 26, 2004, relative to the national defense secrecy protection in the domain of nuclear materials protection and control; Circulaire du 26 janvier 2004 prise pour l'application de l'arrete du 26 janvier 2004 relatif a la protection du secret de la defense nationale dans le domaine de la protection et du controle des matieres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-15

    The by-law of January 26, 2004 gives a regulatory foundation to the classification of sensible informations relative to the security and physical protection of nuclear materials. This circular recalls, in this framework, the conditions of implementation of the regulation relative to the protection of national defense secrecies in the domain of the protection of nuclear facilities and materials. (J.S.)

  5. Detecting nuclear materials smuggling: performance evaluation of container inspection policies.

    Science.gov (United States)

    Gaukler, Gary M; Li, Chenhua; Ding, Yu; Chirayath, Sunil S

    2012-03-01

    In recent years, the United States, along with many other countries, has significantly increased its detection and defense mechanisms against terrorist attacks. A potential attack with a nuclear weapon, using nuclear materials smuggled into the country, has been identified as a particularly grave threat. The system for detecting illicit nuclear materials that is currently in place at U.S. ports of entry relies heavily on passive radiation detectors and a risk-scoring approach using the automated targeting system (ATS). In this article we analyze this existing inspection system and demonstrate its performance for several smuggling scenarios. We provide evidence that the current inspection system is inherently incapable of reliably detecting sophisticated smuggling attempts that use small quantities of well-shielded nuclear material. To counter the weaknesses of the current ATS-based inspection system, we propose two new inspection systems: the hardness control system (HCS) and the hybrid inspection system (HYB). The HCS uses radiography information to classify incoming containers based on their cargo content into "hard" or "soft" containers, which then go through different inspection treatment. The HYB combines the radiography information with the intelligence information from the ATS. We compare and contrast the relative performance of these two new inspection systems with the existing ATS-based system. Our studies indicate that the HCS and HYB policies outperform the ATS-based policy for a wide range of realistic smuggling scenarios. We also examine the impact of changes in adversary behavior on the new inspection systems and find that they effectively preclude strategic gaming behavior of the adversary. © 2011 Society for Risk Analysis.

  6. Conformity Assessment in Nuclear Material and Environmental Sample Analysis

    International Nuclear Information System (INIS)

    Aregbe, Y.; Jakopic, R.; Richter, S.; Venchiarutti, C.

    2015-01-01

    Safeguards conclusions are based to a large extent on comparison of measurement results between operator and safeguards laboratories. Measurement results must state traceability and uncertainties to be comparable. Recent workshops held at the IAEA and in the frame of the European Safeguards Research and Development Association (ESARDA), reviewed different approaches for Nuclear Material Balance Evaluation (MBE). Among those, the ''bottom-up'' approach requires assessment of operators and safeguards laboratories measurement systems and capabilities. Therefore, inter-laboratory comparisons (ILCs) with independent reference values provided for decades by JRC-IRMM, CEA/CETAMA and US DOE are instrumental to shed light on the current state of practice in measurements of nuclear material and environmental swipe samples. Participating laboratories are requested to report the measurement results with associated uncertainties, and have the possibility to benchmark those results against independent and traceable reference values. The measurement capability of both the IAEA Network of Analytical Laboratories (NWAL) and the nuclear operator's analytical services participating in ILCs can be assessed against the independent reference values as well as against internationally agreed quality goals, in compliance with ISO 13528:2005. The quality goals for nuclear material analysis are the relative combined standard uncertainties listed in the ITV2010. Concerning environmental swipe sample analysis, the IAEA defined measurement quality goals applied in conformity assessment. The paper reports examples from relevant inter-laboratory comparisons, looking at laboratory performance according to the purpose of the measurement and the possible use of the result in line with the IUPAC International Harmonized Protocol. Tendencies of laboratories to either overestimate and/or underestimate uncertainties are discussed using straightforward graphical tools to evaluate

  7. The regulations concerning the uses of nuclear fuel materials

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulations are established on the basis of ''The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Provisions concerning the usage of nuclear fuel materials'' in the Enforcement Ordinance of the Law, to enforce such provisions. Terms are explained, such as exposure radiation dose, cumulative dose, control area, surrounding inspection area, persons engaging in works, area for incoming and outgoing of materials, batch, real stocks, effective value and main measuring points. In the applications for the permission to use nuclear fuel materials, the expected period and quantity of usage of each kind of such materials and the other party and the method of selling, lending and returning spent fuel or the process of disposal of such fuel must be written. Explanations concerning the technical ability required for the usage of nuclear fuel materials shall be attached to the applications. Applications shall be filed for the inspection of facilities for use, in which the name and the address of the applicant, the name and the address of the factory or the establishment, the range of the facilities for use, the maximum quantity of nuclear fuel materials to be used or stocked, and the date, the place and the kind of the expected inspection are written. Prescriptions cover the records to be held, safety regulations, the technical standards for usage, the disposal, transport and storage of nuclear fuel materials and the reports to be filed. (Okada, K.)

  8. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is revised on the basis of ''The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Provisions concerning the enterprises processing nuclear fuel materials'' in the Enforcement Ordinance for the Law, to enforce such provisions. This is the complete revision of the regulation of the same name in 1957. Terms are explained, such as exposure radiation dose, cumulative dose, control area, surrounding inspection area, persons engaged in works, radioactive wastes, area for incoming and outgoing of materials, fluctuation of stocks, batch, real stocks, effective value and main measuring points. For the applications for the permission of the enterprises processing nuclear fuel materials, the location of an enterprise, the construction of buildings and the construction of and the equipments for facilities of chemical processing, forming, coating, assembling, storage of nuclear fuel materials, disposal of radioactive wastes and radiation control must be written. Records shall be made and maintained for the periods specified on the inspection of processing facilities, nuclear fuel materials, radiation control, operation, maintainance, accidents of processing facilities and weather. Limit to entrance into the control area, measures for exposure radiation dose, patrol and inspection, operation of processing facilities, transport of materials, disposal of radioactive wastes, safety regulations are provided for. Reports to be filed by the persons engaging in the enterprises processing nuclear fuel materials are prescribed. (Okada, K.)

  9. Meta-material for nuclear particle detection

    Science.gov (United States)

    Merlo, V.; Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.; Celentano, G.; Pietropaolo, A.

    2017-02-01

    Superconducting strips coated with boron were engineered with a view to subnuclear particle detection. Combining the characteristics of boron as a generator of α-particles (as a consequence of neutron absorption) and the ability of superconducting strips to act as resistive switches, it is shown that fabricated Nb-boron and NbN-boron strips represent a promising basis for implementing neutron detection devices. In particular, the superconducting transition of boron-coated NbN strips generates voltage outputs of the order of a few volts thanks to the relatively higher normal state resitivity of NbN with respect to Nb. This result, combined with the relatively high transition temperature of NbN (of the order of 16 K for the bulk material), is an appealing prospect for future developments. The coated strips are meta-devices since their constituting material does not exist in nature and it is engineered to accomplish a specific task, i.e. generate an output voltage signal upon α-particle irradiation.

  10. The national nuclear material tracking system. A Korea's countermeasure against nuclear terrorism

    International Nuclear Information System (INIS)

    Moon, Joo Hyun

    2011-01-01

    Since nuclear terrorism has been identified as a real threat, the Korean government has earnestly developed elementary technologies and sub-systems for establishing an integrated defensive system against nuclear terrorism, which is based on the concept of defense-in-depth. This paper introduces the gist and implications of the studies that have been conducted in building the national nuclear material tracking system for preventing and intercepting the illicit trafficking and transporting of nuclear material in Korea. (orig.)

  11. The national nuclear material tracking system. A Korea's countermeasure against nuclear terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyun [Dongguk Univ., Gyeongbuk (Korea, Republic of)

    2011-07-15

    Since nuclear terrorism has been identified as a real threat, the Korean government has earnestly developed elementary technologies and sub-systems for establishing an integrated defensive system against nuclear terrorism, which is based on the concept of defense-in-depth. This paper introduces the gist and implications of the studies that have been conducted in building the national nuclear material tracking system for preventing and intercepting the illicit trafficking and transporting of nuclear material in Korea. (orig.)

  12. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  13. Regulation on the transport of nuclear fuel materials by vehicles

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations applying to the transport of nuclear fuel materials by vehicles, mentioned in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The transport is for outside of the factories and the site of enterprises by such modes of transport as rail, trucks, etc. Covered are the following: definitions of terms, places of fuel materials handling, loading methods, limitations on mix loading with other cargo, radiation dose rates concerning the containers and the vehicles, transport indexes, signs and indications, limitations on train linkage during transport by rail, security guards, transport of empty containers, etc. together with ordinary rail cargo and so on. (Mori, K.)

  14. THE NUCLEAR MATERIAL MEASUREMENT PROGRAM PLAN FOR GOSATOMNADZOR OF RUSSIA

    International Nuclear Information System (INIS)

    Bokov, Dmitry; Byers, Kenneth R.

    2003-01-01

    As the Russian State regulatory agency responsible for oversight of nuclear material control and accounting (MC and A), Gosatomnadzor of Russia determines the status of the MC and A programs at Russian facilites by testing the nuclear material inventory for accounting record accuracy. Currently, Gosatomnadzor is developing and implementing an approach to planning and conducting MC and A inspections using non-destructive assay (NDA) instruments that will provide for consistent application of MC and A measurement inspection objectives throughtout Russia. This Gosatomnadzor NDA Program Plan documents current NDA measurement capability in all regions of Gosatomnadzor; provides justification for upgrades to equipment, procedures and training; and defines the inspector-facility operator interface as it relates to NDA measurement equipment use. This plan covers a three-year measurement program cycle, but will be reviewed and updated annually to ensure that adequate inspection resources are available to meet the demands of the inspection schedule. This paper presents the elements of this plan and describes the process by which Gosatomnadzor ensures that its NDA instruments are effectively utilized, procedures are developed and certified, and inspection personnel are properly trained to provide assurance that Russian nuclear facilities are in compliance with Russian MC and A regulations.

  15. Resolution 62/96 Regulation for the accounting and control of the nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    The present Regulation is a complementary disposition of the ordinance number 208 of May 24 National System of Accounting and Control of Nuclear Materials and it has as objective to establish the relative norms to this System. As for the responsibilities it establish that the National Center of Nuclear Security (CNSN) it is the responsible for the execution from the relative tasks to the National System of Accounting and Control of Nuclear Materials. It establishes the regulations for the following aspects: licenses and authorizations for the transportation of the nuclear material and important components, Of the ceasing of the Accounting and Control, Of the Accounting and Control of the Nuclear Materials, Control of the Important Components, The Inspections, International Organism of the Atomic Energy Safeguards

  16. Materials for Children about Nuclear War.

    Science.gov (United States)

    Eiss, Harry

    President Reagan's Fiscal Year 1987 budget was an attempt to increase dramatically spending on national defense, on nuclear weapons, while cutting back on social programs. The increases for almost all nuclear weapons indicate the Administration of the United States saw its major responsibility as one of providing a strong military, one centered on…

  17. Material development for India's nuclear power programme

    Indian Academy of Sciences (India)

    rials with emphasis on development of fabrication routes of zirconium alloys for .... nuclear power programme, which envisages design and construction of thermal breeder ... Production of Hf-free nuclear grade zirconium ..... Later on for pressure tubes specified limit for hydrogen content in the as manufactured condition.

  18. Management of Global Nuclear Materials for International Security

    International Nuclear Information System (INIS)

    Isaacs, T; Choi, J-S

    2003-01-01

    Nuclear materials were first used to end the World War II. They were produced and maintained during the cold war for global security reasons. In the succeeding 50 years since the Atoms for Peace Initiative, nuclear materials were produced and used in global civilian reactors and fuel cycles intended for peaceful purposes. The Nonproliferation Treaty (NPT) of 1970 established a framework for appropriate applications of both defense and civilian nuclear activities by nuclear weapons states and non-nuclear weapons states. As global inventories of nuclear materials continue to grow, in a diverse and dynamically changing manner, it is time to evaluate current and future trends and needed actions: what are the current circumstances, what has been done to date, what has worked and what hasn't? The aim is to identify mutually reinforcing programmatic directions, leading to global partnerships that measurably enhance international security. Essential elements are material protection, control and accountability (MPC and A) of separated nuclear materials, interim storage, and geologic repositories for all nuclear materials destined for final disposal. Cooperation among key partners, such as the MPC and A program between the U.S. and Russia for nuclear materials from dismantled weapons, is necessary for interim storage and final disposal of nuclear materials. Such cooperative partnerships can lead to a new nuclear regime where a complete fuel cycle service with fuel leasing and spent fuel take-back can be offered to reactor users. The service can effectively minimize or even eliminate the incentive or rationale for the user-countries to develop their indigenous enrichment and reprocessing technologies. International cooperation, supported by governments of key countries can be best to facilitate the forum for formation of such cooperative partnerships

  19. Selection of materials in nuclear fuel: present and future

    International Nuclear Information System (INIS)

    Munoz-Reja, C.; Fuentes, L.; Garcia de la Infanta, J. M.; Munoz Sicilia, A.

    2013-01-01

    One of the main aspects of the nuclear fuel is the selection of materials for the components. The operating conditions of the fuel elements impose a major challenge to materials: high temperature, corrosive aqueous environment, high mechanical properties, long periods of time under these extreme conditions and what is the differentiating factor; the effect of irradiation. The materials are selected to fulfill these severe requirements and also to be able to control and to predict its behavior in the working conditions. Their development, in terms of composition and processing, is based on the continuous follow-up of the operation behavior. Many of these materials are specific of the nuclear industry, such as the uranium dioxide and the zirconium alloys. This article presents the selection and development of the nuclear fuel materials as a function of the services requirements. It also includes a view of the new nuclear fuels materials that are being raised after Fukushima accident. (Author)

  20. Measures for prevention illicit trafficking of nuclear and radioactive materials

    International Nuclear Information System (INIS)

    Strezov, A.

    2002-01-01

    Full text: In the early 1990ies the number of illicit trafficking cases with nuclear material and radioactive sources began to appear in the press more often than before. This fact became of great concern among international organizations and different states that the nuclear material subjected to trafficking might become in possession of rogue states and be implicated in weapons production or that stolen radioactive sources may cause health and safety effects to the population or to the environment. The creation and proposition of a model scheme procedure for the developing countries is important for starting the initial process of preventing and combating the illicit traffic of nuclear materials. Particular efforts have been directed for the protection of fissile materials. The reported incidents for diversion of nuclear materials have raised the problem of potential nuclear terrorism and also for countries of proliferation to take a short cut to the bomb. There is a need of rapid implementation of comprehensive, mutually reinforcing strategy to control the existing stockpiles of fissile material and to lower the future production and use of such materials. The illicit traffic of nuclear materials is a new threat, which requires new efforts, new approaches and coordination of services and institutions and even new legislation. The propositions of a model-procedure will allow better and quicker upgrade of developing countries capabilities for combating illicit nuclear trafficking. (author)

  1. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    International Nuclear Information System (INIS)

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-01-01

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials

  2. Energy-range relations for hadrons in nuclear matter

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  3. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  4. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  5. Accounting for and control of nuclear material at the Central Institute of Nuclear Research, Rossendorf

    International Nuclear Information System (INIS)

    Heidel, S.; Rossbander, W.; Helming, M.

    1983-01-01

    A survey is given of the system of accounting for and control of nuclear material at the Central Institute for Nuclear Research, Rossendorf. It includes 3 material balance areas. Control is implemented at both the institute and the MBA levels on the basis of concepts which are coordinated with the national control authority of the IAEA. The system applied enables national and international nuclear material control to be carried out effectively and economically at a minimum of interference with operational procedures. (author)

  6. Peculiarities of physical protection assurance of the nuclear materials at nuclear installation decommissioning stage

    International Nuclear Information System (INIS)

    Pinchuk, M.G.

    2001-01-01

    On December 15, 2000 Unit 3 of Chernobyl NPP, which is the last one in Ukraine having RBMK-type reactor, was permanently shutdown before the end of its lifetime. A number of projects related to establishing infrastructure for the plant decommissioning are being implemented in compliance with the Ukraine's commitments. Decommissioning stage includes activities on fuel unloading from the cores of Unit I and Unit 3, fuel cooling in the ponds followed by the fuel transportation to the spent fuel dry storage facility (currently under construction) for its safe long-term storage. Special facilities are being created for liquid and solid radioactive waste treatment. Besides, it is planned to implement a number of projects to convert Shelter Object in environmentally safe structure. Physical protection work being an essential part of the nuclear material management is organized in line with the recommendations of the IAEA, and the Laws of Ukraine 'On Nuclear Energy Utilization and Radiation Safety', 'On Physical Protection of Nuclear Installations and Materials', 'Regulations on Physical Protection of Nuclear Materials and Installations', other codes and standards. While organizing physical protection on ChNPP decommissioning stage we have to deal with some specific features, namely: Significant amount of fuel assemblies, which are continuously transferred between various storage and operation facilities; Big amount of odd nuclear material at Shelter Object; 'Theft of new fuel fragments from the central hall of the Shelter Object in 1995 with the intention of their further sale. The thieves were detained and sentenced. The stolen material was withdrawn, that prevented its possible proliferation and illicit trafficking. At present physical protection of ChNPP does not fully satisfy the needs of the decommissioning stage and Ukraine's commitments on non-admission of illicit trafficking. Work is carried out, aimed to improve nuclear material physical protection, whose main

  7. Convention on the Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1980-01-01

    The convention on the Physical Protection of Nuclear Material is composed of the text of 23 articles, annex 1 showing the levels of physical protection and annex 2 which is the categorization list of nuclear material. The text consists of definitions (article 1), the scope of applications (2), liability of protecting nuclear material during international transport (3 and 4), duty of mutual cooperation (5 and 6), responsibility for criminal punishment (7 to 13), and final provisions (14 to 23). It is to be noted that the nuclear material for military purposes and domestic nuclear facilities are excluded in the connection. After the brief description of the course leading to the establishment of the convention, individual articles and annexes and the respective Japanese version, and the explanation based on the intergovernmental meeting discussion on the draft convention are described. (J.P.N.)

  8. Approaches to characterization of nuclear material for establishment of nuclear forensics

    International Nuclear Information System (INIS)

    Okazaki, Hiro; Sumi, Mika; Sato, Mitsuhiro; Kayano, Masashi; Kageyama, Tomio; Shinohara, Nobuo; Martinez, Patrick; Xu, Ning; Thomas, Mariam; Porterfield, Donivan; Colletti, Lisa; Schwartz, Dan; Tandon, Lav

    2014-01-01

    The Plutonium Fuel Development Center (PFDC) of Japan Atomic Energy Agency has been analyzing isotopic compositions and contents of plutonium and uranium as well as trace impurities and physics in the nuclear fuel from MOX fuel fabrication process for accountancy and process control purpose. These analytical techniques are also effective for nuclear forensics to identify such as source, history, and route of the material by determining a composition and characterization of nuclear material. Therefore, PFDC cooperates with Los Alamos National Laboratory which has broad experience and established measurement skill for nuclear forensics, and evaluates the each method, procedure and analytical data toward R and D of characterizing a nuclear material for forensic purposes. This paper describes the approaches to develop characterization techniques of nuclear material for nuclear forensics purposes at PFDC. (author)

  9. The nuclear materials control system: Safeguards - circa 1957

    International Nuclear Information System (INIS)

    Thomas, C.C. Jr.

    1992-01-01

    In the late 1950s, the Westinghouse Electric Corporation undertook a nuclear materials control study for the Division of International Affairs of the US Atomic Energy Commission (AEC). The objective of the study was to develop a Nuclear Materials Control System (NMCS) that could be used under the US bilateral agreements or by the International Atomic Energy Agency. Phase I was a system study to determine the requirements for an NMCS for an assumed nuclear fuel complex. This paper summarizes aspects of Phase I studies addressing facility types, measurement points, and instrumentation needs and Phase II studies covering chemistry/chemical engineering, nuclear, special devices, and security devices and techniques. 1 fig

  10. U.S.-origin nuclear material removal program

    Energy Technology Data Exchange (ETDEWEB)

    Messick, C.E.; Galan, J.J. [U.S. Department of Energy, Washington, DC (United States). U.S.-Origin Nuclear Material Removal Program

    2014-12-15

    The United States (U.S.) Department of Energy (DOE) Global Threat Reduction Initiative's (GTRI) U.S.-Origin Nuclear Material Removal program, also known as the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (FRR SNF AP), was established by the U.S. Department of Energy in May 1996. The program's mission provides a disposition pathway for certain U.S. origin spent nuclear fuel and other weapons-grade nuclear material. The program will continue until May 2016 with an additional three year window for fuel cooldown and transportation. This paper provides an update on recent program accomplishments, current program initiatives and future activities.

  11. U.S.-origin nuclear material removal program

    International Nuclear Information System (INIS)

    Messick, C.E.; Galan, J.J.

    2014-01-01

    The United States (U.S.) Department of Energy (DOE) Global Threat Reduction Initiative's (GTRI) U.S.-Origin Nuclear Material Removal program, also known as the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (FRR SNF AP), was established by the U.S. Department of Energy in May 1996. The program's mission provides a disposition pathway for certain U.S. origin spent nuclear fuel and other weapons-grade nuclear material. The program will continue until May 2016 with an additional three year window for fuel cooldown and transportation. This paper provides an update on recent program accomplishments, current program initiatives and future activities.

  12. Asymmetrical sabotage tactics, nuclear facilities/materials, and vulnerability analysis

    International Nuclear Information System (INIS)

    Ballard, J.D.

    2002-01-01

    Full text: The emerging paradigm of a global community wherein post-modern political violence is a fact of life that must be dealt with by safety and security planners is discussed. This paradigm shift in the philosophy of terrorism is documented by analysis of the emerging pattern of asymmetrical tactics being employed by terrorists. Such philosophical developments in violent political movements suggest a shift in the risks that security and safety personnel must account for in their planning for physical protection of fixed site nuclear source facilities like power generation stations and the eventual storage and transportation of the by-products of these facilities like spent nuclear fuel and other high level wastes. This paper presents a framework for identifying these new political realities and related threat profiles, suggests ways in which security planners and administrators can design physical protection practices to meet these emerging threats, and argues for global adoption of standards for the protection of nuclear facilities that could be used as a source site from which terrorists could inflict a mass contamination event and for standards related to the protection of the waste materials that can be used in the production of radiological weapons of mass victimization. (author)

  13. Nuclear energy and materials in the 21st century

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-01-01

    The Global Nuclear Vision Project at the Los Alamos National Laboratory is examining a range of long- term nuclear energy futures as well as exploring and assessing optimal nuclear fuel-cycle and material strategies. An established global energy, economics, environmental (E 3 ) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed, where future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term (∼2100) demographic, economic, policy, and technological drivers. A spectrum of futures is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. The results reported examine departures from a ''basis scenario'' and are presented in the following order of increasing specificity: a) definition and parametric variations the basis scenario; b) comparison of the basis scenario with other recent studies; c) parametric studies that vary upper-level hierarchical scenario attributes (external drivers); and d) variations of the lower-level scenario attributes (internal drivers). Impacts of a range of nuclear fuel cycle scenarios are reflected back to the higher-level scenario attributes that characterize particular nuclear energy scenarios. Special attention is given to the role of nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy, the future competitiveness of both conventional and advanced nuclear reactors, and proliferation risk. (author)

  14. Nuclear energy and materials in the 21st century

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.

    1997-05-01

    The Global Nuclear Vision Project at the Los Alamos National Laboratory is examining a range of long-term nuclear energy futures as well as exploring and assessing optimal nuclear fuel-cycle and material strategies. An established global energy, economics, environmental (E 3 ) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed, where future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term (∼2100) demographic, economic, policy, and technological drivers. A spectrum of futures is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. The result reported examine departures from a basis scenario and are presented in the following order of increasing specificity: (a) definition and parametric variations of the basis scenario; (b) comparison of the basis scenario with other recent studies; (c) parametric studies that vary upper-level hierarchical scenario attributes (external drivers); and (d) variations of the lower-level scenario attributes (internal drivers). Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes that characterize particular nuclear energy scenarios. Special attention is given to the role of nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy, the future competitiveness of both conventional and advanced nuclear reactors, and proliferation risk

  15. Securing nuclear warheads and materials: seven steps for immediate action

    International Nuclear Information System (INIS)

    Bunn, M.

    2002-01-01

    Full text: In the last decade, substantial progress has been made in improving security and accounting for nuclear weapons and weapons-usable nuclear material worldwide, both by states' own domestic actions and through international cooperation. Thousands of nuclear warheads and hundreds of tons of nuclear material are demonstrably more secure than they were before, and through programs such as the U.S.-Russian Highly Enriched Uranium (He) Purchase Agreement, enough potentially vulnerable bomb material for thousands of nuclear weapons has been verifiably destroyed. Since the attacks of September 11, 2001, the international community has attempted to expand and accelerate these efforts. But much more remains to be done. This paper summarizes a recent report from Harvard University, which recommended seven further steps for immediate action in U.S.-Russian and international cooperation. It covers two recommendations that may be of particular interest to this audience in detail. The first is a proposed program to remove nuclear material entirely from many of the most vulnerable sites around the world (by offering incentives targeted to the needs of each facility to give up the material at that site). The second is a suggestion that participants in the global partnership against the spread of weapons and materials of mass destruction announced at the June 2002 Group of Eight summit make a political commitment to meet stringent security standards for nuclear materials on their territories, and urge (and assist) other states to do likewise. (author)

  16. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Any person who reports the transport of nuclear fuel materials shall file four copies of a notification according to the form attached to the public safety commission of the prefecture in charge of the dispatching place. When the transportation extends over the area in charge of another public safety commission, the commission which has received the notice shall report without delay date and route of the transport, kind and quantity of nuclear fuel materials and other necessary matters to the commission concerned and hear from the latter opinions on the items informed. The designation by the ordinance includes speed of the vehicle loaded with nuclear fuel materials, disposition of an accompanying car, arrangement of the line of the loaded vehicle and accompanying and other escorting cars, location of the parking, place of unloading and temporary storage, etc. Reports concerning troubles and measures taken shall be filed in ten days to the public safety commission which has received the notification, when accidents occur on the way, such as: theft or loss of nuclear fuel materials; traffic accident; irregular leaking of nuclear fuel materials and personal trouble by the transport. (Okada, K.)

  17. The application of a figure of merit for nuclear explosive utility as a metric for material attractiveness in a nuclear material theft scenario

    International Nuclear Information System (INIS)

    King, Wayne E.; Bradley, Keith; Jones, Edwin D.; Kramer, Kevin J.; Latkowski, Jeffery F.; Robel, Martin; Sleaford, Brad W.

    2010-01-01

    Effective integration of nonproliferation management into the design process is key to the broad deployment of advanced nuclear energy systems, and is an explicit goal of the Laser Inertial Fusion Energy (LIFE) project at Lawrence Livermore National Laboratory. The nuclear explosives utility of a nuclear material to a state (proliferator) or sub-state (terrorist) is a critical factor to be assessed and is one aspect of material attractiveness. In this work, we approached nuclear explosives utility through the calculation of a 'figure of merit' (FOM) that has recently been developed to capture the relative viability and difficulty of constructing nuclear explosives starting from various nuclear material forms and compositions. We discuss the integration of the figure of merit into an assessment of a nuclear material theft scenario and its use in the assessment. This paper demonstrates that material attractiveness is a multidimensional concept that embodies more than the FOM. It also seeks to propose that other attributes may be able to be quantified through analogous FOMs (e.g., transformation) and that, with quantification, aggregation may be possible using concepts from the risk community.

  18. The application of a figure of merit for nuclear explosive utility as a metric for material attractiveness in a nuclear material theft scenario

    Energy Technology Data Exchange (ETDEWEB)

    King, Wayne E., E-mail: weking@llnl.go [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Bradley, Keith [Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Jones, Edwin D. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Kramer, Kevin J.; Latkowski, Jeffery F. [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Robel, Martin [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Sleaford, Brad W. [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2010-11-15

    Effective integration of nonproliferation management into the design process is key to the broad deployment of advanced nuclear energy systems, and is an explicit goal of the Laser Inertial Fusion Energy (LIFE) project at Lawrence Livermore National Laboratory. The nuclear explosives utility of a nuclear material to a state (proliferator) or sub-state (terrorist) is a critical factor to be assessed and is one aspect of material attractiveness. In this work, we approached nuclear explosives utility through the calculation of a 'figure of merit' (FOM) that has recently been developed to capture the relative viability and difficulty of constructing nuclear explosives starting from various nuclear material forms and compositions. We discuss the integration of the figure of merit into an assessment of a nuclear material theft scenario and its use in the assessment. This paper demonstrates that material attractiveness is a multidimensional concept that embodies more than the FOM. It also seeks to propose that other attributes may be able to be quantified through analogous FOMs (e.g., transformation) and that, with quantification, aggregation may be possible using concepts from the risk community.

  19. Special nuclear material information, security classification guidance. Instruction

    International Nuclear Information System (INIS)

    Flickinger, A.

    1982-01-01

    The Instruction reissues DoD Instruction 5210.67, July 5, 1979, and provides security classification guidance for information concerning significant quantities of special nuclear material, other than that contained in nuclear weapons and that used in the production of energy in the reactor plant of nuclear-powered ships. Security classification guidance for these data in the latter two applications is contained in Joint DoE/DoD Nuclear Weapons Classification Guide and Joint DoE/DoD Classification Guide for the Naval Nuclear Propulsion Program

  20. Communications received from certain Member States regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    1993-01-01

    The document reproduces the Note Verbale dated 2 December 1992 received by the Director General from the Resident Representative of Argentina to the Agency relating to the export of nuclear material, equipment or technology, in order to provide information on that Government's Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material and related Technology

  1. Developments related to the National Nuclear Safety Authority of Romania

    International Nuclear Information System (INIS)

    Baciu, Florin

    1998-01-01

    The contribution presents the status of the National Commission for Nuclear Activity Control (CNCAN) as indicated by the provisions of a Romanian Government Decision of May 1998. As specified in the art.3 the main tasks of the Commission are the following: to issue authorization and exercise permits of activities in nuclear field; to supervise the applications of the provisions stipulated by the law concerning development in safety conditions of nuclear activities; to develop instructions as well as nuclear safety regulations to ensure the quality assurance and functioning in safety conditions of the nuclear facilities and plants, the protection against nuclear radiation of the professionally exposed personnel, of the population, of the environment and of the material goods, the physical protection, the records, preservation and transport of radioactive material and of fissionable materials as well as the management of radioactive waste; organizes expert and is responsible for the state control concerning the integrated application of the law provisions in the field of quality constructions in which nuclear installations of national interest are located, during all the phases and for all the components of the quality system in this field; issues specialty and information documentation specific to its own activity, provides the information of the public through official publication, official statements to the press and other specific form of information; carries out any other tasks provided by law in the field of regulations and control of nuclear activity. Author presents also the CNCAN staff number evolution, the new structure, the staff distribution at headquarters, local agencies and national radiation monitoring network. Finally, the author discusses the legal provisions related to management manual procedures

  2. A system design for the nuclear material accounting reports control based on the intra-net

    International Nuclear Information System (INIS)

    Jeon, I.; Park, S. J.; Min, K. S.

    2003-01-01

    The 34 nuclear facilities, including the nuclear power plants, were on operating in Korea and the Technology Center for Nuclear Control(TCNC) has been submit the nuclear material accounting reports to the government and IAEA. At the start point of this work, all reports were controlled via manually and at now, they were controlled based on the client/server system. The fast progress of the computer and internet communication changes the environment of computing from disk operating system to web based system using internet. So, a new system to access the safeguards information and nuclear material accounting system more convenient was needed. In this thesis, a safeguards information control system including the nuclear material accounting reports at the state level based on the web was designed. The oracle RDBMS (Relational Data Base Management System) was adopted for data base management. And all users can access this program via inter-net using their own computer

  3. ISINN-2. Neutron spectroscopy, nuclear structure and related topics

    International Nuclear Information System (INIS)

    1994-01-01

    The proceedings contain the materials presented at the Second International Seminar on Neutron-Nucleus Interactions (ISINN-2) dealing with the problems of neutron spectroscopy, nuclear structure and related topics. The Seminar took place in Dubna on April 26-28, 1994. Over 120 scientists from Belgium, Bulgaria, Czech Republic, Germany, Holland, Italy, Japan, Latvia, Mexico, Poland, Slovakia, Slovenia, Ukraine, US and about 10 Russian research institutes took part in the Seminar. The main problems discussed are the following: P-odd and P-even angular correlation and T-reversal invariance in neutron reactions, nuclear structure investigations by neutron capture, the mechanism of neutron reactions, nuclear fission processes, as well as neutron data for nuclear astrophysics

  4. An accountancy system for nuclear materials control in research centres

    International Nuclear Information System (INIS)

    Buttler, R.; Bueker, H.; Vallee, J.

    1979-01-01

    The Nuclear Accountancy and Control System (NACS) was developed at KFA Juelich in accordance with the requirements of the Non-Proliferation Treaty. The main features are (1) recording of nuclear material in inventory items. These are combined to form batches wherever suitable; (2) extrapolation of accounting data as a replacement for detailed measurement of inventory items data. Recording and control of nuclear material are carried out on two levels with access to a common data bank. The lower level deals with nuclear materials handling plus internal management while on the upper level there is a central control point which is responsible for nuclear safeguarding within the entire research centre. By keeping the organizational and technical infrastructure it was possible to develop a system which is both economical and operator-oriented. In this system the emphasis of nuclear safeguarding is placed on the acquisition of the nuclear material inventory. As much consideration has been given to the interests of the various operational levels and organizational units as to internal and national regulations. Since it is part of the safeguarding and control system, access to the NACS must be restricted to a limited number of users only. Furthermore, it must include facilities for manual control in the form of records. Authorization for access must correspond with the various tasks of different user groups. All necessary data are acquired decentrally in the organizational units and entered via a terminal. It is available to the user groups on both levels through a central data bank. To meet all requirements, the NACS has been designed as an integrated, computer-assisted information system for the automated processing of extensive and multi-level nuclear materials data. As part of the preventive measures entailed with nuclear safeguarding, the accountancy system enables the operator of a nuclear plant to furnish proof of non-diversion of nuclear material. (author)

  5. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and reactors, and the former notification No. 26, 1961, is hereby abolished. Internationally regulated goods under the law are as follows: nuclear raw materials, nuclear fuel materials and moderator materials transferred by sale or other means from the governments of the U.S., U.K., Canada, Australia and France or the persons under their jurisdictions according to the agreements concluded between the governments of Japan and these countries, respectively, the nuclear fuel materials recovered from these materials or produced by their usage, nuclear reactors, the facilities and heavy water transferred by sale or other means from these governments or the persons under their jurisdictions, the nuclear fuel materials produced by the usage of such reactors, facilities and heavy water, the nuclear fuel materials sold by the International Atomic Energy Agency under the contract between the Japanese government and the IAEA, the nuclear fuel materials recovered from these materials or produced by their usage, the heavy water produced by the facilities themselves transferred from the Canadian government, Canadian governmental enterprises or the persons under the jurisdiction of the Canadian government or produced by the usage of these facilities, etc. (Okada, K.)

  6. Accounting systems for special nuclear material control. Technical report

    International Nuclear Information System (INIS)

    Korstad, P.A.

    1980-05-01

    Nuclear material accounting systems were examined and compared to financial double-entry accounting systems. Effective nuclear material accounting systems have been designed using the principles of double-entry financial accounting. The modified double-entry systems presently employed are acceptable if they provide adequate control over the recording and summarizing of transactions. Strong internal controls, based on principles of financial accounting, can help protect nuclear materials and produce accurate, reliable accounting data. An electronic data processing system can more accurately maintain large volumes of data and provide management with more current, reliable information

  7. Large area nuclear particle detectors using ET materials

    International Nuclear Information System (INIS)

    1987-08-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated

  8. Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management

    International Nuclear Information System (INIS)

    Jardine, L.J.; Peddicord, K.L.; Witmer, F.E.; Krumpe, P.F.; Lazarev, L.; Moshkov, M.

    1997-01-01

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment

  9. Report on the behalf of the Commission for Foreign Affairs, Defence and Armed Forces on the bill proposition adopted by the National Assembly, related on the strengthening of the protection of civil installations containing nuclear materials. Nr 446

    International Nuclear Information System (INIS)

    Pintat, Xavier

    2015-01-01

    In its first part, this report presents the nuclear sector as a sensitive sector under strict surveillance: a sector of critical importance (safety policy with its actors and its multi-level planning, a safety arrangement for the nuclear energy sector), a regulation specific to the nuclear sector, and specialised protection forces. It also addresses the issues of intrusions and over-flights (overview of intrusions, unsuitable penal repression, and new dimension of air safety due to the development of civil uses of drones). The next part comments the content of the bill proposition, and addresses the lack of a suitable penal regime for the protection of nuclear materials and of areas regarding defence. The scope of application of the bill proposition is discussed, as well as the applicable and additional penalties. A list of hearings is provided as well as non adopted amendments and a table proposing a comparison between different versions of the text

  10. Annual Report 2007 - ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2007-01-01

    This document reports activities during the year 2007 related to: technical activities as application of safeguards; management of the Quadripartite Agreement and the SCCC - Common System for Accounting and Control of Nuclear Materials; training; technical cooperation; outlook for 2008 and; institutional, administrative and financial activities; technical glossary; list of brazilian facilities; list of argentine facilities and a list of institution of nuclear area

  11. Order for execution of the law concerning regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1987-01-01

    Chapeter 1 specifies regulations concerning business management for refining and processing, which cover application for designation of refining operation, application for permission for processing operation, and approval of personnel responsible for handling nuclear fuel. Chapter 2 specifies regulations concerning construction and operation of nuclear reactors, which cover application for construction of nuclear reactors, reactors in a research and development stage, application for permission concerning nuclear reactors mounted on foreign nuclear powered ships, application for permission for alteration concerning construction of nuclear reactors, application for permission for alteration concerning nuclear reactors mounted on foreign nuclear powered ships, nuclear reactor facilities to be subjected to regular inspection, nuclear reactor for which submission of operation plan is not required, and application for permission for transfer of nuclear reactor. Chapter 2 also specifies regulations concerning business management for reprocessing and waste disposal. Chapter 3 stipulates regulations concerning use of nuclear fuel substances, nuclear material substances and other substances covered by international regulations, which include rules for application for permission for use of nuclear fuel substances, etc. Supplementary provisions are provided in Chapter 4. (Nogami, K.)

  12. Chapter No.5. Nuclear materials and physical protection of nuclear installations

    International Nuclear Information System (INIS)

    2002-01-01

    The State System of Accounting for and Control of Nuclear Material (SSAC) is based on requirements resulting from the Safeguards Agreement between the Government of the Slovak Republic and the IAEA. UJD performs this activity according to the 'Atomic Act' and relevant decree. The purpose of the SSAC is also to prevent unauthorised use of nuclear materials, to detect loses of nuclear materials and provide information that could lead to the recovery of missing material. The main part of nuclear materials under jurisdiction of the Slovak Republic is located at NPP Jaslovske Bohunice, NPP Mochovce and at interim storage in Jaslovske Bohunice. Even though that there are located more then 99% of nuclear materials in these nuclear facilities, there are not any significant problems with their accountancy and control due to very simply identification of accountancy units - fuel assemblies, and due to stability of legal subjects responsible for operation and for keeping of information continuity, which is necessary for fulfilling requirements of the Agreement. The nuclear material located outside nuclear facilities is a special category. There are 81 such subjects of different types and orientations on the territory of the Slovak Republic. These subjects use mainly depleted uranium as a shielding and small quantity of natural uranium, low enrichment uranium and thorium for experimental purposes and education. Frequent changes of these subjects, their transformations into the other subjects, extinction and very high fluctuation of employees causes loss of information about nuclear materials and creates problems with fulfilling requirements resulting from the Agreement. In 2001, the UJD carried out 51 inspections of nuclear materials, of which 31 inspections were performed at nuclear installations in co-operation with the IAEA inspectors. No discrepancies concerning the management of nuclear materials were found out during inspections and safeguards goals in year 2001 were

  13. Outline of a computerized nuclear material accounting system applicable to nuclear power reactors

    International Nuclear Information System (INIS)

    Handshuh, J.W.

    1975-01-01

    A computerized nuclear material accounting system is described which enables a utility to account for its material throughout the entire fuel cycle. From input of transactions, the system records and reports inventories and transactions by accounts which the user may establish for discrete locations, item control areas, further subdivisions, and material types. Account numbers are designed so that accounts and records are automatically sorted in the order desired. The system also generates the Material Status Reports for the Nuclear Regulatory Commission

  14. Liability and insurance aspects of international transport of nuclear materials

    International Nuclear Information System (INIS)

    van Gijn, S.H.

    1985-01-01

    The Paris and Vienna Conventions do not affect the application of any international transport agreement already in force. However, in certain circumstances both the nuclear operator and the carrier may be held liable for nuclear damage which arises during international transports of nuclear materials. The ensuing cumulation of liabilities under the Nuclear and Transport Conventions may cause serious problems in obtaining adequate insurance cover for such transports. The 1971 Brussels Convention seeks to solve this problem by exonerating any person who might be held liable for nuclear damage under an international maritime convention or national law. Similar difficulties are encountered in the case of transports of nuclear materials between states which have and states which have not ratified the Paris and Vienna Conventions. (NEA) [fr

  15. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    Energy Technology Data Exchange (ETDEWEB)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  16. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    Science.gov (United States)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  17. In-field analysis and assessment of nuclear material

    International Nuclear Information System (INIS)

    Morgado, R.E.; Myers, W.S.; Olivares, J.A.; Phillips, J.R.; York, R.L.

    1996-01-01

    Los Alamos National Laboratory has actively developed and implemented a number of instruments to monitor, detect, and analyze nuclear materials in the field. Many of these technologies, developed under existing US Department of Energy programs, can also be used to effectively interdict nuclear materials smuggled across or within national borders. In particular, two instruments are suitable for immediate implementation: the NAVI-2, a hand-held gamma-ray and neutron system for the detection and rapid identification of radioactive materials, and the portable mass spectrometer for the rapid analysis of minute quantities of radioactive materials. Both instruments provide not only critical information about the characteristics of the nuclear material for law-enforcement agencies and national authorities but also supply health and safety information for personnel handling the suspect materials

  18. Some technical aspects of the nuclear material accounting and control at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Miller, O.A.; Babaev, N.S.; Gryazev, V.M.; Gadzhiev, G.I.; Gabeskiriya, V.Ya.

    1977-01-01

    The possibilities of nuclear material accounting and control are discussed at nuclear facilities of fuel cycle (WWER-type reactor, fuel fabrication plant, reprocessing plant and uranium enrichment facility) and zero energy fast reactor facility. It is shown that for nuclear material control the main method is the accounting with the application isotopic correlations at the reprocessing plant and enrichment facility. Possibilities and limitations of the application of destructive and non-destructive methods are discussed for nuclear material determinations at fuel facilities and their role in the accounting and safeguards systems as well as possibilities of the application of neutron method at a zero energy fast reactor facility [ru

  19. Nonlinear constitutive relations for anisotropic elastic materials

    Science.gov (United States)

    Sokolova, Marina; Khristich, Dmitrii

    2018-03-01

    A general approach to constructing of nonlinear variants of connection between stresses and strains in anisotropic materials with different types of symmetry of properties is considered. This approach is based on the concept of elastic proper subspaces of anisotropic materials introduced in the mechanics of solids by J. Rychlewski and on the particular postulate of isotropy proposed by A. A. Il’yushin. The generalization of the particular postulate on the case of nonlinear anisotropic materials is formulated. Systems of invariants of deformations as lengths of projections of the strain vector into proper subspaces are developed. Some variants of nonlinear constitutive relations for anisotropic materials are offered. The analysis of these relations from the point of view of their satisfaction to general and limit forms of generalization of partial isotropy postulate on anisotropic materials is performed. The relations for particular cases of anisotropy are written.

  20. Management of Small Quantity of Nuclear Material at Locations Outside Facilities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Sik; Kim, Ki Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Small quantity of nuclear material (SQNM) is prescribed to be less than specified minimum quantities of nuclear material in a facility. SQNM is used at the locations called locations outside facilities (LOFs). LOFs are used to control the locations and installations that store nuclear materials under one effective Kg, respectively. Holders of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or neither report them to the System of Accounting for and Control of nuclear material (SSAC) under specified quantities according to the Atomic Safety Law. Well defined safeguards law is fundamental to the effective control of nuclear material, facilities and nuclear related activities. In the current nuclear safety legislation, there are some exceptive clauses. Users of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or not report them to the national authority below specified amount.

  1. Management of Small Quantity of Nuclear Material at Locations Outside Facilities in Korea

    International Nuclear Information System (INIS)

    Park, Seung Sik; Kim, Ki Hyun

    2016-01-01

    Small quantity of nuclear material (SQNM) is prescribed to be less than specified minimum quantities of nuclear material in a facility. SQNM is used at the locations called locations outside facilities (LOFs). LOFs are used to control the locations and installations that store nuclear materials under one effective Kg, respectively. Holders of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or neither report them to the System of Accounting for and Control of nuclear material (SSAC) under specified quantities according to the Atomic Safety Law. Well defined safeguards law is fundamental to the effective control of nuclear material, facilities and nuclear related activities. In the current nuclear safety legislation, there are some exceptive clauses. Users of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or not report them to the national authority below specified amount

  2. Report on strategic special nuclear material inventory differences

    International Nuclear Information System (INIS)

    1977-08-01

    Information concerning accounting for significant quantities of strategic special nuclear material (SSNM) in ERDA facilities is reported. Inventory difference data are provided for fiscal year 1976 for ERDA and ERDA contractor facilities that possessed significant quantities of SSNM

  3. Sample size optimization in nuclear material control. 1

    International Nuclear Information System (INIS)

    Gladitz, J.

    1982-01-01

    Equations have been derived and exemplified which allow the determination of the minimum variables sample size for given false alarm and detection probabilities of nuclear material losses and diversions, respectively. (author)

  4. Real-Time Characterization of Special Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Walston, Sean [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Candy, Jim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chambers, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chandrasekaran, Hema [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, Neal [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-04

    When confronting an item that may contain nuclear material, it is urgently necessary to determine its characteristics. Our goal is to provide accurate information with high-con dence as rapidly as possible.

  5. Changing relations between civil and military nuclear technology

    International Nuclear Information System (INIS)

    Walker, W.B.

    1999-01-01

    Nuclear energy has inhabited two distinct environments since its inception - the environments of nuclear deterrence and of electricity supply. The relationships between the technologies and institutions inhabiting these environments have been both intimate and troublesome. As both nuclear weapons and nuclear power rely upon the fission energy of uranium and plutonium, and as both generate harmful by-products, they are bound to have technologies, materials and liabilities in common. However, nuclear deterrence belongs in the realm of high politics, whilst electricity production is part of the commercial world rooted in civil society. Establishing a political, industrial and regulatory framework that allows nuclear activities to develop safely and acceptably in both domains has been a difficult and contentious task. In this paper I wish to make some observations about the relations between military and civil nuclear technology at the end of this century, and about their likely character in years ahead. My main contention is that developments in the military sector and in international security will remain influential, but that their consequences will be of a different kind than in the past. (orig.)

  6. Effect of material environment on a class of nuclear lifetimes

    International Nuclear Information System (INIS)

    Perlow, G.J.

    1988-01-01

    The connection between internal conversion of a nuclear transition and EXAFS is pointed out. A prediction is made of sizable variations of lifetimes of nuclear states depending on the surrounding material environment, provided that the transition energy is just above threshold and the internal conversion coefficient is appreciable. 12 refs., 2 figs

  7. Evaluation method for change of concentration of nuclear fuel material

    International Nuclear Information System (INIS)

    Kiyono, Takeshi; Ando, Ryohei.

    1997-01-01

    The present invention provides a method of evaluating the change of concentration of compositions of nuclear fuel element materials loaded to a reactor along with neutron irradiation based on analytic calculation not relying on integration with time. Namely, the method of evaluating the change of concentration of nuclear fuel materials comprises evaluating the changing concentration of nuclear fuel materials based on nuclear fission, capturing of neutrons and radioactive decaying along with neutron irradiation. In this case, an optional nuclide on a nuclear conversion chain is determined as a standard nuclide. When the main fuel material is Pu-239, it is determined as the standard nuclide. The ratio of the concentration of the standard nuclide to that of the nuclide as an object of the evaluation can be expressed by the ratio of the cross sectional area of neutron nuclear reaction of the standard nuclide to the cross sectional area of the neutron nuclear reaction of the nuclide as the object of the evaluation. Accordingly, the concentration of the nuclide as the object of the evaluation can be expressed by an analysis formula shown by an analysis function for the ratio of the concentration of the standard nuclide to the cross section of the neutron nuclear reaction. As a result, by giving an optional concentration of the standard nuclide to the analysis formula, the concentration of each of other nuclides can be determined analytically. (I.S.)

  8. Material control and accountability in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rumyantsev, A.N.

    2006-01-01

    It is proposed to unify the complexes, used in the systems for control and accountability of nuclear materials, and to use the successful experience of developing these complexes. It is shown that the problem of control, accountability and physical protection may by achieved by using the developed complex Probabilistic expert-advising system, permitting to analyse the safety in nuclear fuel cycles [ru

  9. Application of artificial neural network to identify nuclear materials

    International Nuclear Information System (INIS)

    Xu Peng; Wang Zhe; Li Tiantuo

    2005-01-01

    Applying the neutral network, the article studied the technology of identifying the gamma spectra of the nuclear material in the nuclear components. In the article, theory of the network identifying the spectra is described, and the results of identification of gamma spectra are given.(authors)

  10. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  11. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Science.gov (United States)

    2010-01-01

    ... and maintain a measurement system which assures that all quantities in the material accounting records...) In each inventory period, control total material control and accounting measurement uncertainty so... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special...

  12. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary

    2010-08-13

    Nanoscale ionic materials (NIMs) are a new class of nanomaterials that exhibit interesting properties including negligible vapor pressures and tunable physical states, among others. In this study, we analyzed the temperature-wise performance of NIMs using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core and the sulfonate group and determined relative concentrations of aromatic and aliphatic hydrocarbons. These findings serve as first hand proof-of-concept for the usefulness of NMR analyses in further studies on the diffusive properties of NIMs. © 2010 The Electrochemical Society.

  13. Special nuclear material inventory sampling plans

    International Nuclear Information System (INIS)

    Vaccaro, H.S.; Goldman, A.S.

    1987-01-01

    This paper presents improved procedures for obtaining statistically valid sampling plans for nuclear facilities. The double sampling concept and methods for developing optimal double sampling plans are described. An algorithm is described that is satisfactory for finding optimal double sampling plans and choosing appropriate detection and false alarm probabilities

  14. Central eastern Europe approach to the security over nuclear materials

    International Nuclear Information System (INIS)

    Smagala, G.

    2002-01-01

    Full text: This paper presents an overview of the national approaches to physical protection of nuclear materials in Central Eastern Europe (CEE), with an emphasis on Poland. Soviet influence in the past led to inadequate safety culture in nuclear activities and insufficient security of nuclear materials and facilities in the region. In the centralized economies all aspects of nuclear activities, including ownership of the nuclear facilities, were the responsibility of the state with no clear separation between regulating and promoting functions. During the last decade a significant progress has been made in the region to clean up the legacy of the past and to improve practices in physical protection of nuclear materials. The countries of Central Eastern Europe have had many similar deficiencies in nuclear field and problems to overcome, but cannot be viewed as a uniform block. There are local variations within the region in a size of nuclear activities, formulated respective regulations and adopted measures to secure nuclear materials and facilities. Nevertheless, all twelve nations, with nuclear reactors and without nuclear facilities, have joined the convention on the physical protection of nuclear material and most of them declare that they have followed the IAEA recommendations INFCIRC/225/Rev.4 to elaborate and implement their physical protection systems of nuclear materials and facilities. The largest request for an international advisory mission (IPPAS) to review states' physical protection systems and to address needs for improvement was received from the countries of Central Eastern Europe. Poland belongs to the beneficiaries where the IPPAS mission and later follow-up consultations resulted in physical protection upgrade of the research reactor under the IAEA/US/UK technical assistance project. A powerful incentive to the progress made in a number of CEE countries was the goal of accession to the European Union. The physical protection of nuclear

  15. Russia-U.S. joint program on the safe management of nuclear materials

    International Nuclear Information System (INIS)

    Witmer, F.E.; Krumpe, P.F.; Carlson, D.D.

    1998-06-01

    The Russia-US joint program on the safe management of nuclear materials was initiated to address common technical issues confronting the US and Russia in the management of excess weapons grade nuclear materials. The program was initiated after the 1993 Tomsk-7 accident. This paper provides an update on program activities since 1996. The Fourth US Russia Nuclear Materials Safety Management Workshop was conducted in March 1997. In addition, a number of contracts with Russian Institutes have been placed by Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL). These contracts support research related to the safe disposition of excess plutonium (Pu) and highly enriched uranium (HEU). Topics investigated by Russian scientists under contracts with SNL and LLNL include accident consequence studies, the safety of anion exchange processes, underground isolation of nuclear materials, and the development of materials for the immobilization of excess weapons Pu

  16. Structural integrity of materials in nuclear service: a bibliography

    International Nuclear Information System (INIS)

    Heddleson, F.A.

    1977-01-01

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user

  17. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  18. Structural integrity of materials in nuclear service: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Heddleson, F.A.

    1977-06-07

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.

  19. Nuclear energy: strategy of public relations

    Energy Technology Data Exchange (ETDEWEB)

    Timell, S [Swedish Power Association, Stockholm, Sweden

    1981-02-21

    A referendum was held in Sweden on 23rd March 1980, stimulated by the Three Mile Island accident in USA, to determine the future nuclear power development policy. The electricity supply background is that in 1980, 65% of power was hydro, 25% nuclear and 10% coal and oil. In terms of total power consumption, the country is heavily dependent on oil, which represents about 75%. The intensive public relations activity previous to the referendum is described, and this involved fact accumulation and assimilation, dissemination through various media, including brochures, displays, films and leaflets. In the political arena three lines developed: (1) (Conservatives); continue nuclear power, building at least 12 reactors, (2) (Social democrats and liberals); similar to (1), but more cautious, with emphasis on energy conservation, (3) (Centre parties and communists); no more nuclear power, and prevention of uranium extraction in Sweden. The voting was (1) 18.9%, (2) 39.1%, (3) 38.7%, (No dec of the most topical is concerned with the inventory of risks due to each industrial energy sector. This session was in two parts, the first devoted to problems specific to each source of energy including nuclear, the second to commo The extension to longer distances may be made with caution and to the satisfaction of the regulatory authority.

  20. Security of nuclear materials using fusion multi sensor wavelett

    International Nuclear Information System (INIS)

    Djoko Hari Nugroho

    2010-01-01

    Security of a nuclear material in an installation is determined by how far the installation is to assure that nuclear material remains at a predetermined location. This paper observed a preliminary design on nuclear material tracking system in the installation for decision making support based on multi sensor fusion that is reliable and accurate to ensure that the nuclear material remains inside the control area. Capability on decision making in the Management Information System is represented by an understanding of perception in the third level of abstraction. The second level will be achieved with the support of image analysis and organizing data. The first level of abstraction is constructed by merger between several CCD camera sensors distributed in a building in a data fusion representation. Data fusion is processed based on Wavelett approach. Simulation utilizing Matlab programming shows that Wavelett fuses multi information from sensors as well. Hope that when the nuclear material out of control regions which have been predetermined before, there will arise a warning alarm and a message in the Management Information System display. Thus the nuclear material movement time event can be obtained and tracked as well. (author)