WorldWideScience

Sample records for nuclear receptor functions

  1. Cardiac nuclear receptors: architects of mitochondrial structure and function.

    Science.gov (United States)

    Vega, Rick B; Kelly, Daniel P

    2017-04-03

    The adult heart is uniquely designed and equipped to provide a continuous supply of energy in the form of ATP to support persistent contractile function. This high-capacity energy transduction system is the result of a remarkable surge in mitochondrial biogenesis and maturation during the fetal-to-adult transition in cardiac development. Substantial evidence indicates that nuclear receptor signaling is integral to dynamic changes in the cardiac mitochondrial phenotype in response to developmental cues, in response to diverse postnatal physiologic conditions, and in disease states such as heart failure. A subset of cardiac-enriched nuclear receptors serve to match mitochondrial fuel preferences and capacity for ATP production with changing energy demands of the heart. In this Review, we describe the role of specific nuclear receptors and their coregulators in the dynamic control of mitochondrial biogenesis and energy metabolism in the normal and diseased heart.

  2. Elevated copper impairs hepatic nuclear receptor function in Wilson's disease.

    Science.gov (United States)

    Wooton-Kee, Clavia Ruth; Jain, Ajay K; Wagner, Martin; Grusak, Michael A; Finegold, Milton J; Lutsenko, Svetlana; Moore, David D

    2015-09-01

    Wilson's disease (WD) is an autosomal recessive disorder that results in accumulation of copper in the liver as a consequence of mutations in the gene encoding the copper-transporting P-type ATPase (ATP7B). WD is a chronic liver disorder, and individuals with the disease present with a variety of complications, including steatosis, cholestasis, cirrhosis, and liver failure. Similar to patients with WD, Atp7b⁻/⁻ mice have markedly elevated levels of hepatic copper and liver pathology. Previous studies have demonstrated that replacement of zinc in the DNA-binding domain of the estrogen receptor (ER) with copper disrupts specific binding to DNA response elements. Here, we found decreased binding of the nuclear receptors FXR, RXR, HNF4α, and LRH-1 to promoter response elements and decreased mRNA expression of nuclear receptor target genes in Atp7b⁻/⁻ mice, as well as in adult and pediatric WD patients. Excessive hepatic copper has been described in progressive familial cholestasis (PFIC), and we found that similar to individuals with WD, patients with PFIC2 or PFIC3 who have clinically elevated hepatic copper levels exhibit impaired nuclear receptor activity. Together, these data demonstrate that copper-mediated nuclear receptor dysfunction disrupts liver function in WD and potentially in other disorders associated with increased hepatic copper levels.

  3. Nuclear hormone receptor co-repressors: Structure and function

    OpenAIRE

    2012-01-01

    Co-repressor proteins, such as SMRT and NCoR, mediate the repressive activity of unliganded nuclear receptors and other transcription factors. They appear to act as intrinsically disordered “hub proteins” that integrate the activities of a range of transcription factors with a number of histone modifying enzymes. Although these co-repressor proteins are challenging targets for structural studies due to their largely unstructured character, a number of structures have recently been determined ...

  4. The Roles of Orphan Nuclear Receptors in the Development and Function of the Immune System

    Institute of Scientific and Technical Information of China (English)

    Ivan Dzhagalov; Nu Zhang; You-Wen He

    2004-01-01

    Hormones and their receptors regulate cell growth, differentiation and apoptosis and also play important roles in immune function. Recent studies on the subfamily of the orphan nuclear receptors known as retinoid-acid related orphan receptors (ROR) have shed important insights on the roles of this group of nuclear proteins in the development and function of the immune system. RORα regulates inflammatory cytokine production in both innate and adaptive immune system while RORγ regulates the normal development of T lymphocyte repertoire and secondary lymphoid organs. Cellular & Molecular Immunology. 2004;1(6):401-407.

  5. The Roles of Orphan Nuclear Receptors in the Development and Function of the Immune System

    Institute of Scientific and Technical Information of China (English)

    IvanDzhagalov; NuZhang; You-WenHe

    2004-01-01

    Hormones and their receptors regulate cell growth, differentiation and apoptosis and also play important roles in immune function. Recent studies on the subfamily of the orphan nuclear receptors known as retinoid-acid related orphan receptors (ROR) have shed important insights on the roles of this group of nuclear proteins in the development and function of the immune system. RORα regulates inflammatory cytokine production in both innate and adaptive immune system while RORγ, regulates the normal development of T lymphocyte repertoire and secondary lymphoid organs. Cellular & Molecular Immunology. 2004;1(6):401-407.

  6. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition.

  7. Elevated copper impairs hepatic nuclear receptor function in Wilson’s disease

    Science.gov (United States)

    Wooton-Kee, Clavia Ruth; Jain, Ajay K.; Wagner, Martin; Grusak, Michael A.; Finegold, Milton J.; Lutsenko, Svetlana; Moore, David D.

    2015-01-01

    Wilson’s disease (WD) is an autosomal recessive disorder that results in accumulation of copper in the liver as a consequence of mutations in the gene encoding the copper-transporting P-type ATPase (ATP7B). WD is a chronic liver disorder, and individuals with the disease present with a variety of complications, including steatosis, cholestasis, cirrhosis, and liver failure. Similar to patients with WD, Atp7b–/– mice have markedly elevated levels of hepatic copper and liver pathology. Previous studies have demonstrated that replacement of zinc in the DNA-binding domain of the estrogen receptor (ER) with copper disrupts specific binding to DNA response elements. Here, we found decreased binding of the nuclear receptors FXR, RXR, HNF4α, and LRH-1 to promoter response elements and decreased mRNA expression of nuclear receptor target genes in Atp7b–/– mice, as well as in adult and pediatric WD patients. Excessive hepatic copper has been described in progressive familial cholestasis (PFIC), and we found that similar to individuals with WD, patients with PFIC2 or PFIC3 who have clinically elevated hepatic copper levels exhibit impaired nuclear receptor activity. Together, these data demonstrate that copper-mediated nuclear receptor dysfunction disrupts liver function in WD and potentially in other disorders associated with increased hepatic copper levels. PMID:26241054

  8. Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production.

    Science.gov (United States)

    Gwathmey, Tanya M; Shaltout, Hossam A; Pendergrass, Karl D; Pirro, Nancy T; Figueroa, Jorge P; Rose, James C; Diz, Debra I; Chappell, Mark C

    2009-06-01

    Expression of nuclear angiotensin II type 1 (AT(1)) receptors in rat kidney provides further support for the concept of an intracellular renin-angiotensin system. Thus we examined the cellular distribution of renal ANG II receptors in sheep to determine the existence and functional roles of intracellular ANG receptors in higher order species. Receptor binding was performed using the nonselective ANG II antagonist (125)I-[Sar(1),Thr(8)]-ANG II ((125)I-sarthran) with the AT(1) antagonist losartan (LOS) or the AT(2) antagonist PD123319 (PD) in isolated nuclei (NUC) and plasma membrane (PM) fractions obtained by differential centrifugation or density gradient separation. In both fetal and adult sheep kidney, PD competed for the majority of cortical NUC (> or =70%) and PM (> or =80%) sites while LOS competition predominated in medullary NUC (> or =75%) and PM (> or =70%). Immunodetection with an AT(2) antibody revealed a single approximately 42-kDa band in both NUC and PM extracts, suggesting a mature molecular form of the NUC receptor. Autoradiography for receptor subtypes localized AT(2) in the tubulointerstitium, AT(1) in the medulla and vasa recta, and both AT(1) and AT(2) in glomeruli. Loading of NUC with the fluorescent nitric oxide (NO) detector DAF showed increased NO production with ANG II (1 nM), which was abolished by PD and N-nitro-l-arginine methyl ester, but not LOS. Our studies demonstrate ANG II receptor subtypes are differentially expressed in ovine kidney, while nuclear AT(2) receptors are functionally linked to NO production. These findings provide further evidence of a functional intracellular renin-angiotensin system within the kidney, which may represent a therapeutic target for the regulation of blood pressure.

  9. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct

    Science.gov (United States)

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In

  10. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  11. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  12. Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family.

    Science.gov (United States)

    Pecenova, L; Farkas, Robert

    2016-07-01

    Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways.

  13. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Directory of Open Access Journals (Sweden)

    Wang Ying-Nai

    2012-04-01

    Full Text Available Abstract Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application.

  14. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    Science.gov (United States)

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents.

  15. Nuclear progesterone receptor isoforms and their functions in the female reproductive tract.

    Science.gov (United States)

    Rekawiecki, R; Kowalik, M K; Kotwica, J

    2011-01-01

    Progesterone (P4), which is produced by the corpus luteum (CL), creates proper conditions for the embryo implantation, its development, and ensures proper conditions for the duration of pregnancy. Besides the non-genomic activity of P4 on target cells, its main physiological effect is caused through genomic action by the progesterone nuclear receptor (PGR). This nuclear progesterone receptor occurs in two specific isoforms, PGRA and PGRB. PGRA isoform acts as an inhibitor of transcriptional action of PGRB. The inactive receptor is connected with chaperone proteins and attachment of P4 causes disconnection of chaperones and unveiling of DNA binding domain (DBD). After receptor dimerization in the cells' nucleus and interaction with hormone response element (HRE), the receptor coactivators are connected and transcription is initiated. The ratio of these isoforms changes during the estrous cycle and reflects the different levels of P4 effect on the reproductive system. Both isoforms, PGRA and PGRB, also show a different response to the P4 receptor antagonist activity. Connection of the antagonist to PGRA can block PGRB, but acting through the PGRB isoform, P4 receptor antagonist may undergo conversion to a strongly receptor agonist. A third isoform, PGRC, has also been revealed. This isoform is the shortest and does not have transcriptional activity. Alternative splicing and insertion of additional exons may lead to the formation of different PGR isoforms. This paper summarizes the available data on the progesterone receptor isoforms and its regulatory action within the female reproductive system.

  16. Nuclear Receptors, RXR, and the Big Bang.

    Science.gov (United States)

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism.

  17. The oncoprotein BCL11A binds to orphan nuclear receptor TLX and potentiates its transrepressive function.

    Directory of Open Access Journals (Sweden)

    Sara B Estruch

    Full Text Available Nuclear orphan receptor TLX (NR2E1 functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1, a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9, a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain.

  18. The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane.

    Directory of Open Access Journals (Sweden)

    Michelle Re

    Full Text Available The mammalian type I gonadotropin releasing hormone receptor (GnRH-R is a structurally unique G protein-coupled receptor (GPCR that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME. Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor.

  19. The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane.

    Science.gov (United States)

    Re, Michelle; Pampillo, Macarena; Savard, Martin; Dubuc, Céléna; McArdle, Craig A; Millar, Robert P; Conn, P Michael; Gobeil, Fernand; Bhattacharya, Moshmi; Babwah, Andy V

    2010-07-08

    The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor.

  20. Meeting report: nuclear receptors

    DEFF Research Database (Denmark)

    Tuckermann, Jan; Bourguet, William; Mandrup, Susanne

    2010-01-01

    The biannual European Molecular Biology Organization (EMBO) conference on nuclear receptors was organized by Beatrice Desvergne and Laszlo Nagy and took place in Cavtat near Dubrovnik on the Adriatic coast of Croatia September 25-29, 2009. The meeting brought together researchers from all over...

  1. Nuclear receptors and nonalcoholic fatty liver disease.

    Science.gov (United States)

    Cave, Matthew C; Clair, Heather B; Hardesty, Josiah E; Falkner, K Cameron; Feng, Wenke; Clark, Barbara J; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A; McClain, Craig J; Prough, Russell A

    2016-09-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  2. Chemical Approaches to Nuclear Receptors in Metabolism

    Science.gov (United States)

    Margolis, Ronald N.; Moore, David D.; Willson, Timothy M.; Guy, R. Kip

    2017-01-01

    The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) sponsored a workshop, “Chemical Approaches to Nuclear Receptors and Metabolism,” in April 2009 to explore how chemical and molecular biology and physiology can be exploited to further our understanding of nuclear receptor structure, function, and role in disease. Signaling cascades involving nuclear receptors are more complex and interrelated than once thought. Nuclear receptors continue to be attractive targets for drug discovery. The overall goal of this workshop was to identify gaps in our understanding of the complexity of ligand activities and begin to address them by (i) increasing the collaboration of investigators from different disciplines, (ii) developing a better understanding of chemical modulation of nuclear receptor action, and (iii) identifying opportunities and roadblocks in the path of translating basic research to discovery of new therapeutics. PMID:19654413

  3. Cysteine (C-x-C receptor 4 undergoes transportin 1-dependent nuclear localization and remains functional at the nucleus of metastatic prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Ayesha S Don-Salu-Hewage

    Full Text Available The G-protein coupled receptor (GPCR, Cysteine (C-X-C Receptor 4 (CXCR4, plays an important role in prostate cancer metastasis. CXCR4 is generally regarded as a plasma membrane receptor where it transmits signals that support transformation, progression and eventual metastasis. Due to the central role of CXCR4 in tumorigenesis, therapeutics approaches such as antagonist and monoclonal antibodies have focused on receptors that exist on the plasma membrane. An emerging concept for G-protein coupled receptors is that they may localize to and associate with the nucleus where they retain function and mediate nuclear signaling. Herein, we demonstrate that CXCR4 associated with the nucleus of malignant prostate cancer tissues. Likewise, expression of CXCR4 was detected in nuclear fractions among several prostate cancer cell lines, compared to normal prostate epithelial cells. Our studies identified a nuclear pool of CXCR4 and we defined a nuclear transport pathway for CXCR4. We reveal a putative nuclear localization sequence (NLS, 'RPRK', within CXCR4 that contributed to nuclear localization. Additionally, nuclear CXCR4 interacted with Transportinβ1 and Transportinβ1-binding to CXCR4 promoted its nuclear translocation. Importantly, Gαi immunoprecipitation and calcium mobilization studies indicated that nuclear CXCR4 was functional and participated in G-protein signaling, revealing that the nuclear pool of CXCR4 retained function. Given the suggestion that functional, nuclear CXCR4 may be a mechanism underlying prostate cancer recurrence, increased metastatic ability and poorer prognosis after tumors have been treated with therapy that targets plasma membrane CXCR4, these studies addresses a novel mechanism of nuclear signaling for CXCR4, a novel mechanism of clinical targeting, and demonstrate an active nuclear pool that provides important new information to illuminate what has been primarily clinical reports of nuclear CXCR4.

  4. Loss of function of the retinoid-related nuclear receptor (RORB) gene and epilepsy

    DEFF Research Database (Denmark)

    Rudolf, Gabrielle; Lesca, Gaetan; Mehrjouy, Mana M

    2016-01-01

    nuclear receptor (RORβ), in four affected family members. In addition, two de novo variants (c.218T>C/p.(Leu73Pro); c.1249_1251delACG/p.(Thr417del)) were identified in sporadic patients by trio-based exome sequencing. We also found two de novo deletions in patients with behavioral and cognitive impairment...... in various types of epilepsies in the past few years. In the present study, we performed whole-exome sequencing in a family with GGE consistent with the diagnosis of eyelid myoclonia with absences. We found a nonsense variant (c.196C>T/p.(Arg66*)) in RORB, which encodes the beta retinoid-related orphan...

  5. Crystallographic Identification and Functional Characterization of Phospholipids as Ligands for the Orphan Nuclear Receptor Steroidogenic Factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong; Choi, Mihwa; Cavey, Greg; Daugherty, Jennifer; Suino, Kelly; Kovach, Amanda; Bingham, Nathan C.; Kliewer, Steven A.; Xu, H.Eric (Van Andel); (U. of Texas-SMED)

    2010-11-10

    The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 {angstrom} crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket ({approx}1600 {angstrom}{sup 3}), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed to reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.

  6. Stress- (and diet-) related regulation of hepatic nuclear receptors and its relevance for ABC-transporter functions.

    Science.gov (United States)

    Stienstra, Rinke; Lichtenauer-Kaligis, Elgin; Müller, Michael

    2004-05-01

    Nuclear receptors (NRs) play an important role in maintaining cellular homeostasis. With clearly established roles in fatty acid metabolism and inflammation, peroxisome proliferator activated receptors (PPARs) and other nuclear receptors are essential in liver functioning. However, much less is known about the regulation of NRs themselves during inflammatory processes in the liver. Interestingly PPARs and other NRs are negative acute phase proteins because they become rapidly downregulated during the acute phase response. However, PPARs have important roles in modulating inflammatory responses. One of the mechanisms by which dietary or inflammatory stress is relieved involves the hepatic adenosine triphosphate-binding cassette (ABC) transporter proteins, which import and export a wide variety of substrates. These ABC transporters are under close control of several NRs. Because NRs play important roles in fatty acid metabolism and inflammation as well as in the regulation of bile production, they are reviewed here with respect to their role in dietary and stress-related responses of the liver and their impact on the regulation and function of hepatic ABC transporters.

  7. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    Science.gov (United States)

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  8. Expression level of nuclear steroid hormone receptors in endometrium influence on female reproductive function

    Directory of Open Access Journals (Sweden)

    N. V. Avramenko

    2015-10-01

    Full Text Available Background. In recent years, rate of hyperplastic processes of reproductive system that relate to the common genital pathology in women of all age groups increased and ranges from 17 to 59% of all gynecological pathology. Recent studies have shown that the functional state of the endometrium is determined by the number of endometrial tissue receptors to corresponding steroid hormones. Objective. To explore the state of steroid hormones receptors in endometrial hyperplasia in compare with ultrasound, hysteroscopy and histological and hormonal background data research to improve diagnosis and recovery endometrium state. Methods: medical history analysis, clinical laboratory analysis, ultrasound diagnostics, hysteroscopy, histological methods. Hormones levels (FSH, LH, prolactin, estradiol, free testosterone, and expression of estrogen and progesterone receptors in the stroma and glands was evaluated by Histochemical score. Results. 50 women of 23–52 years with hyperplasia of endometrim, were divided into 3 randomized groups: I – 20 women with primary infertility, II – 13 women with secondary infertility, III – 17 women without infertility. Early sexual activity was almost twice as often observed in the first two groups of women (respectively 61.54%, 60.00% against 29.41% in the third group. Gynecological history was weighed almost all three groups of women with chronic bilateral salpingoophoritis, obesity (I gr. – 85%, II in December. – 76.92%, III gr. – 76.47%. Uterine leiomyoma found in every second woman III gr. – 9 (52.94%, p <0.05, 3 women (15%. At primary infertility there was US endometrial hyperplasia in every from four women, endometrial thickness less than the corresponding day of the cycle, which may indicate a lack of estrogen effect on the endometrium. In secondary infertility hyperplasia was detected in 14.29% of cases, in the third group – 7.14%. Estrogen (more and progesterone (less receptors level inhibition on

  9. Nuclear hormone receptors in podocytes

    Directory of Open Access Journals (Sweden)

    Khurana Simran

    2012-09-01

    Full Text Available Abstract Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses.

  10. The Orphan Nuclear Receptor NR4A3 Is Involved in the Function of Dendritic Cells.

    Science.gov (United States)

    Nagaoka, Masanori; Yashiro, Takuya; Uchida, Yuna; Ando, Tomoaki; Hara, Mutsuko; Arai, Hajime; Ogawa, Hideoki; Okumura, Ko; Kasakura, Kazumi; Nishiyama, Chiharu

    2017-09-11

    NR4A3/NOR1 belongs to the NR4A subfamily of the nuclear hormone receptor superfamily, which is activated in a ligand-independent manner. To examine the role of NR4A3 in gene expression of dendritic cells (DCs), we introduced NR4A3 small interfering RNA (siRNA) into bone marrow-derived DCs and determined the expression levels of mRNA and proteins of cytokines, cell surface molecules, NF-κB signaling-related proteins, and transcription factors. The expression level of NR4A3 was markedly upregulated by TLR-mediated stimulation in DCs. NR4A3 knockdown significantly suppressed LPS, CpG, or poly(I:C)-mediated upregulation of CD80, CD86, IL-10, IL-6, and IL-12. Proliferation and IL-2 production levels of T cells cocultured with NR4A3 knocked-down DCs were significantly lower than that of T cells cocultured with control DCs. Furthermore, the expression of IKKβ, IRF4, and IRF8 was significantly decreased in NR4A3 siRNA-introduced bone marrow-derived DCs. The knockdown experiments using siRNAs for IKKβ, IRF4, and/or IRF8 indicated that LPS-induced upregulation of IL-10 and IL-6 was reduced in IKKβ knocked-down cells, and that the upregulation of IL-12 was suppressed by the knockdown of IRF4 and IRF8. Taken together, these results indicate that NR4A3 is involved in TLR-mediated activation and gene expression of DCs. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  12. The optimal corepressor function of nuclear receptor corepressor (NCoR) for peroxisome proliferator-activated receptor γ requires G protein pathway suppressor 2.

    Science.gov (United States)

    Guo, Chun; Li, Yali; Gow, Chien-Hung; Wong, Madeline; Zha, Jikun; Yan, Chunxia; Liu, Hongqi; Wang, Yongjun; Burris, Thomas P; Zhang, Jinsong

    2015-02-06

    Repression of peroxisome proliferator-activated receptor γ (PPARγ)-dependent transcription by the nuclear receptor corepressor (NCoR) is important for homeostatic expression of PPARγ target genes in vivo. The current model states that NCoR-mediated repression requires its direct interaction with PPARγ in the repressive conformation. Previous studies, however, have shown that DNA-bound PPARγ is incompatible with a direct, high-affinity association with NCoR because of the inherent ability of PPARγ to adopt the active conformation. Here we show that NCoR acquires the ability to repress active PPARγ-mediated transcription via G protein pathway suppressor 2 (GPS2), a component of the NCoR corepressor complex. Unlike NCoR, GPS2 can recognize and bind the active state of PPARγ. In GPS2-deficient mouse embryonic fibroblast cells, loss of GPS2 markedly reduces the corepressor function of NCoR for PPARγ, leading to constitutive activation of PPARγ target genes and spontaneous adipogenesis of the cells. GPS2, however, is dispensable for repression mediated by unliganded thyroid hormone receptor α or a PPARγ mutant unable to adopt the active conformation. This study shows that GPS2, although dispensable for the intrinsic repression function of NCoR, can mediate a novel corepressor repression pathway that allows NCoR to directly repress active PPARγ-mediated transcription, which is important for the optimal corepressor function of NCoR for PPARγ. Interestingly, GPS2-dependent repression specifically targets PPARγ but not PPARα or PPARδ. Therefore, GPS2 may serve as a unique target to manipulate PPARγ signaling in diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Nuclear receptor complement of the cnidarian Nematostella vectensis: phylogenetic relationships and developmental expression patterns

    Directory of Open Access Journals (Sweden)

    Tarrant Ann M

    2009-09-01

    Full Text Available Abstract Background Nuclear receptors are a superfamily of metazoan transcription factors that regulate diverse developmental and physiological processes. Sequenced genomes from an increasing number of bilaterians have provided a more complete picture of duplication and loss of nuclear receptors in protostomes and deuterostomes but have left open the question of which nuclear receptors were present in the cnidarian-bilaterian ancestor. In addition, nuclear receptor expression and function are largely uncharacterized within cnidarians, preventing determination of conserved and novel nuclear receptor functions in the context of animal evolution. Results Here we report the first complete set of nuclear receptors from a cnidarian, the starlet sea anemone Nematostella vectensis. Genomic searches using conserved DNA- and ligand-binding domains revealed seventeen nuclear receptors in N. vectensis. Phylogenetic analyses support N. vectensis orthologs of bilaterian nuclear receptors in four nuclear receptor subfamilies within nuclear receptor family 2 (COUP-TF, TLL, HNF4, TR2/4 and one putative ortholog of GCNF (nuclear receptor family 6. Other N. vectensis genes grouped well with nuclear receptor family 2 but represented lineage-specific duplications somewhere within the cnidarian lineage and were not clear orthologs of bilaterian genes. Three nuclear receptors were not well-supported within any particular nuclear receptor family. The seventeen nuclear receptors exhibited distinct developmental expression patterns, with expression of several nuclear receptors limited to a subset of developmental stages. Conclusion N. vectensis contains a diverse complement of nuclear receptors including orthologs of several bilaterian nuclear receptors. Novel nuclear receptors in N. vectensis may be ancient genes lost from triploblastic lineages or may represent cnidarian-specific radiations. Nuclear receptors exhibited distinct developmental expression patterns, which

  14. Nuclear receptors of the NR4a family are not required for the development and function of follicular T helper cells.

    Science.gov (United States)

    Ma, Weiwei; Zhao, Ruozhu; Yang, Runqing; Liu, Bo; Chen, Xin; Wu, Longyan; Qi, Hai

    2015-10-01

    Follicular T helper (Tfh) cells promote germinal center (GC) reaction and high-affinity antibody production. The molecular mechanisms that regulate development and function of Tfh cells are not fully understood. Here we report that ligand-independent nuclear receptors of the Nr4a family are highly expressed in Tfh cells. In a well-established adoptive transfer model, enforced expression of Nr4a receptors reduces helper T cell expansion but apparently increased the T cell capacity to promote the GC response. On the other hand, deletion of all Nr4a receptors in T cells did not significantly affect expansion or differentiation of Tfh cells or the development of GC reaction. These findings suggest that Nr4a receptors may promote but are not necessary for Tfh development or function in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Analysis of C. elegans NR2E nuclear receptors defines three conserved clades and ligand-independent functions

    Directory of Open Access Journals (Sweden)

    Weber Katherine P

    2012-06-01

    Full Text Available Abstract Background The nuclear receptors (NRs are an important class of transcription factors that are conserved across animal phyla. Canonical NRs consist of a DNA-binding domain (DBD and ligand-binding domain (LBD. While most animals have 20–40 NRs, nematodes of the genus Caenorhabditis have experienced a spectacular proliferation and divergence of NR genes. The LBDs of evolutionarily-conserved Caenorhabditis NRs have diverged sharply from their Drosophila and vertebrate orthologs, while the DBDs have been strongly conserved. The NR2E family of NRs play critical roles in development, especially in the nervous system. In this study, we explore the phylogenetics and function of the NR2E family of Caenorhabditis elegans, using an in vivo assay to test LBD function. Results Phylogenetic analysis reveals that the NR2E family of NRs consists of three broadly-conserved clades of orthologous NRs. In C. elegans, these clades are defined by nhr-67, fax-1 and nhr-239. The vertebrate orthologs of nhr-67 and fax-1 are Tlx and PNR, respectively. While the nhr-239 clade includes orthologs in insects (Hr83, an echinoderm, and a hemichordate, the gene appears to have been lost from vertebrate lineages. The C. elegans and C. briggsae nhr-239 genes have an apparently-truncated and highly-diverged LBD region. An additional C. elegans NR2E gene, nhr-111, appears to be a recently-evolved paralog of fax-1; it is present in C. elegans, but not C. briggsae or other animals with completely-sequenced genomes. Analysis of the relatively unstudied nhr-111 and nhr-239 genes demonstrates that they are both expressed—nhr-111 very broadly and nhr-239 in a small subset of neurons. Analysis of the FAX-1 LBD in an in vivo assay revealed that it is not required for at least some developmental functions. Conclusions Our analysis supports three conserved clades of NR2E receptors, only two of which are represented in vertebrates, indicating three ancestral NR2E genes in the

  16. Nuclear receptor Rev-erb alpha (Nr1d1 functions in concert with Nr2e3 to regulate transcriptional networks in the retina.

    Directory of Open Access Journals (Sweden)

    Nissa J Mollema

    Full Text Available The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function.

  17. Nuclear receptor Rev-erb alpha (Nr1d1) functions in concert with Nr2e3 to regulate transcriptional networks in the retina.

    Science.gov (United States)

    Mollema, Nissa J; Yuan, Yang; Jelcick, Austin S; Sachs, Andrew J; von Alpen, Désirée; Schorderet, Daniel; Escher, Pascal; Haider, Neena B

    2011-03-08

    The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function.

  18. Targeting Nuclear Receptors with Marine Natural Products

    Directory of Open Access Journals (Sweden)

    Chunyan Yang

    2014-01-01

    Full Text Available Nuclear receptors (NRs are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.

  19. Phenobarbital Meets Phosphorylation of Nuclear Receptors.

    Science.gov (United States)

    Negishi, Masahiko

    2017-05-01

    Phenobarbital was the first therapeutic drug to be characterized for its induction of hepatic drug metabolism. Essentially at the same time, cytochrome P450, an enzyme that metabolizes drugs, was discovered. After nearly 50 years of investigation, the molecular target of phenobarbital induction has now been delineated to phosphorylation at threonine 38 of the constitutive androstane receptor (NR1I3), a member of the nuclear receptor superfamily. Determining this mechanism has provided us with the molecular basis to understand drug induction of drug metabolism and disposition. Threonine 38 is conserved as a phosphorylation motif in the majority of both mouse and human nuclear receptors, providing us with an opportunity to integrate diverse functions of nuclear receptors. Here, I review the works and accomplishments of my laboratory at the National Institutes of Health National Institute of Environmental Health Sciences and the future research directions of where our study of the constitutive androstane receptor might take us. U.S. Government work not protected by U.S. copyright.

  20. Progress in Biological Functions of Nuclear Receptors in Drosophila Melanogaster%果蝇核受体生物学功能研究进展

    Institute of Scientific and Technical Information of China (English)

    刘婷; 赵晓俊; 顾蔚

    2012-01-01

    Nuclear receptors; NRs> belong to a superfamily of ligand-activated transcription factors that can bind directly to DNA and regulate expression of downstream target genes involved in avariety of important biological processes in organism, such as metabolism, reproduction and development. Drosophila have 21NRs. They play crucial roles for Drosophila in regulating embryonic development, molting, metamorphosis, reproduction and metabolism. Here, we summarize the constitution of nuclear receptors, focusing on biological functions of themselve and their interactions. All these investigations will potentially supply new understanding of endocrine mechanism in insect.%核受体(nuclear receptors,NRs) 是配体依赖性转录因子超家族,能够直接与DNA结合,调节下游靶基因的表达,与机体代谢、生殖、发育等多种生理过程密切相关;果蝇中含有21个核受体,它们在果蝇的胚胎发育、蜕皮、变态、生殖及代谢中起着重要作用.本文描述了果蝇核受体的结构,并着重讨论了21个核受体的生物学功能和相互作用关系,为昆虫内分泌机制的探究提供新思路.

  1. Nuclear Parton Distribution Functions

    Energy Technology Data Exchange (ETDEWEB)

    I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens

    2009-06-01

    We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a {chi}{sup 2} analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x{sub Bj}-dependent and Q{sup 2}-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x{sub Bj}, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.

  2. Physiological and receptor-selective retinoids modulate interferon gamma signaling by increasing the expression, nuclear localization, and functional activity of interferon regulatory factor-1.

    Science.gov (United States)

    Luo, Xin M; Ross, A Catharine

    2005-10-28

    Synergistic actions between all-trans-retinoic acid (atRA) and interferon gamma (IFNgamma) on modulation of cellular functions have been reported both in vitro and in vivo. However, the mechanism of atRA-mediated regulation of IFNgamma signaling is poorly understood. In this study, we have used the human lung epithelial cell line A549 to examine the effect of atRA on IFNgamma-induced expression of IFN regulatory factor-1 (IRF-1), an important transcription factor involved in cell growth and apoptosis, differentiation, and antiviral and antibacterial immune responses. At least 4 h of pretreatment with atRA followed by suboptimal concentrations of IFNgamma induced a faster, higher, and more stable expression of IRF-1 than IFNgamma alone. Actinomycin D completely blocked the induction of IRF-1 by the combination, suggesting regulation at the transcriptional level. Further, we found that activation of signal transducer and activator of transcription-1 was induced more dramatically by atRA and IFNgamma than by IFNgamma alone. Expression of IFNgamma receptor-1 on the cell surface was also increased upon atRA pretreatment. Experiments using receptor-selective retinoids revealed that ligands for retinoic acid receptor-alpha (RARalpha), including atRA, 9-cis-retinoic acid, and Am580, sequentially increased the levels of IFNgamma receptor-1, activated signal transducer and activator of transcription-1, and IRF-1 and that an RARalpha antagonist was able to inhibit the effects of atRA and Am580. In addition, atRA pretreatment affected the transcriptional functions of IFNgamma-induced IRF-1, increasing its nuclear localization and DNA binding activity as well as the transcript levels of IRF-1 target genes. These results suggest that atRA, an RARalpha ligand, regulates IFNgamma-induced IRF-1 by affecting multiple components of the IFNgamma signaling pathway, from the plasma membrane to the nuclear transcription factors.

  3. Nuclear hormone receptors put immunity on sterols.

    Science.gov (United States)

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.

  4. Studying Nuclear Receptor Complexes in the Cellular Environment.

    Science.gov (United States)

    Schaufele, Fred

    2016-01-01

    The ligand-regulated structure and biochemistry of nuclear receptor complexes are commonly determined by in vitro studies of isolated receptors, cofactors, and their fragments. However, in the living cell, the complexes that form are governed not just by the relative affinities of isolated cofactors for the receptor but also by the cell-specific sequestration or concentration of subsets of competing or cooperating cofactors, receptors, and other effectors into distinct subcellular domains and/or their temporary diversion into other cellular activities. Most methods developed to understand nuclear receptor function in the cellular environment involve the direct tagging of the nuclear receptor or its cofactors with fluorescent proteins (FPs) and the tracking of those FP-tagged factors by fluorescence microscopy. One of those approaches, Förster resonance energy transfer (FRET) microscopy, quantifies the transfer of energy from a higher energy "donor" FP to a lower energy "acceptor" FP attached to a single protein or to interacting proteins. The amount of FRET is influenced by the ligand-induced changes in the proximities and orientations of the FPs within the tagged nuclear receptor complexes, which is an indicator of the structure of the complexes, and by the kinetics of the interaction between FP-tagged factors. Here, we provide a guide for parsing information about the structure and biochemistry of nuclear receptor complexes from FRET measurements in living cells.

  5. Brain nuclear receptors and body weight regulation

    Science.gov (United States)

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essent...

  6. Research Resources for Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    McKenna, Neil J

    2016-08-01

    Nuclear receptor (NR) signaling pathways impact cellular function in a broad variety of tissues in both normal physiology and disease states. The complex tissue-specific biology of these pathways is an enduring impediment to the development of clinical NR small-molecule modulators that combine therapeutically desirable effects in specific target tissues with suppression of off-target effects in other tissues. Supporting the important primary research in this area is a variety of web-based resources that assist researchers in gaining an appreciation of the molecular determinants of the pharmacology of a NR pathway in a given tissue. In this study, selected representative examples of these tools are reviewed, along with discussions on how current and future generations of tools might optimally adapt to the future of NR signaling research. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. [Mechanism for subcellular localization of nuclear receptor CAR].

    Science.gov (United States)

    Kanno, Yuichiro; Inouye, Yoshio

    2011-03-01

    Animals including human beings have defense mechanisms against the toxicity of xenobiotics such as medicinal compounds and environmental pollutants. Receptor-type transcriptional factors, such as aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and pregnane X receptor (PXR), play important roles in the defense against xenobiotic toxicities. In the absence of stimuli, these receptors are distributed predominantly in the cytoplasmic compartment. Following xenobiotic stimuli, receptors translocate into the nucleus and transactivate its target genes. However, the exogenously expressed CAR translocates spontaneously into the nucleus in immortal cells. Previously, we identified subcellular localization signals in rat CAR: nuclear localization signal (NLS), nuclear export signal (NES) and cytoplasmic retention region (CRR). Lack of CRR function might be responsible for the spontaneous nuclear accumulation of CAR in immortal cells. Further, the nuclear import of CAR is regulated by the importin-Ran system, which is required for maintaining an intact microtubule network. Clarifying the mechanisms underlying the nuclear translocation of CAR would be useful for the establishment of novel assay systems for the screening of ligands and activators of CAR using immortal cells without sacrificing animals.

  8. Regulation of adipogenesis by nuclear receptor PPARγ is modulated by the histone demethylase JMJD2C

    National Research Council Canada - National Science Library

    Lizcano, Fernando; Romero, Carolina; Vargas, Diana

    2011-01-01

    .... The nuclear receptor Peroxisome Proliferator-activated receptor gamma (PPARγ) is the master regulator of adipose cell differentiation and its functional activation is currently used as a therapeutic approach for Diabetes Mellitus type 2...

  9. Pan-cancer analyses of the nuclear receptor superfamily

    Science.gov (United States)

    Long, Mark D.; Campbell, Moray J.

    2016-01-01

    Nuclear receptors (NR) act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate). Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV) we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g. NR3C2/MR and NR5A2/LRH-1)) whereas others were uniquely down-regulated in one tumor (e.g. NR1B3/RARG). The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression. PMID:27200367

  10. Pan-Cancer Analyses of the Nuclear Receptor Superfamily

    Directory of Open Access Journals (Sweden)

    Mark D. Long

    2015-12-01

    Full Text Available Nuclear receptors (NR act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate. Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g., NR3C2/MR and NR5A2/LRH-1 whereas others were uniquely down-regulated in one tumor (e.g., NR1B3/RARG. The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression.

  11. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Tonatiuh Barrios-García

    2016-06-01

    Full Text Available Tristetraprolin (TTP is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα, which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR, glucocorticoid receptor (GR and androgen receptor (AR. In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors.

  12. Functional evolution of nuclear structure

    OpenAIRE

    Wilson, Katherine L.; Dawson, Scott C.

    2011-01-01

    The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These compo...

  13. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  14. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  15. THE NUCLEAR RECEPTOR E75A HAS A NOVEL PAIR-RULE-LIKE FUNCTION IN PATTERNING THE MILKWEED BUG, ONCOPELTUS FASCIATUS

    Science.gov (United States)

    Erezyilmaz, Deniz F.; Kelstrup, Hans C.; Riddiford, Lynn M.

    2009-01-01

    Genetic studies of the fruit fly Drosophila have revealed a hierarchy of segmentation genes (maternal, gap, pair-rule and HOX) that subdivide the syncytial blastoderm into sequentially finer scale coordinates. Within this hierarchy, the pair-rule genes translate gradients of information into periodic stripes of expression. How pair-rule genes function during the progressive mode of segmentation seen in short and intermediate-germ insects is an ongoing question. Here we report that the nuclear receptor Of’E75A is expressed with double segment periodicity in the head and thorax. In the abdomen, Of’E75A is expressed in a unique pattern during posterior elongation, and briefly resembles a sequence that is typical of pair-rule genes. Depletion of Of’E75A mRNA caused loss of a subset of odd-numbered parasegments, as well as parasegment 6. Because these parasegments straddle segment boundaries, we observe fusions between adjacent segments. Finally, expression of Of’E75A in the blastoderm requires even-skipped, which is a gap gene in Oncopeltus. These data show that the function of Of’E75A during embryogenesis shares many properties with canonical pair-rule genes in other insects. They further suggest that parasegment specification may occur through irregular and episodic pair-rule-like activity. PMID:19580803

  16. The nuclear receptor E75A has a novel pair-rule-like function in patterning the milkweed bug, Oncopeltus fasciatus.

    Science.gov (United States)

    Erezyilmaz, Deniz F; Kelstrup, Hans C; Riddiford, Lynn M

    2009-10-01

    Genetic studies of the fruit fly Drosophila have revealed a hierarchy of segmentation genes (maternal, gap, pair-rule and HOX) that subdivide the syncytial blastoderm into sequentially finer-scale coordinates. Within this hierarchy, the pair-rule genes translate gradients of information into periodic stripes of expression. How pair-rule genes function during the progressive mode of segmentation seen in short and intermediate-germ insects is an ongoing question. Here we report that the nuclear receptor Of'E75A is expressed with double segment periodicity in the head and thorax. In the abdomen, Of'E75A is expressed in a unique pattern during posterior elongation, and briefly resembles a sequence that is typical of pair-rule genes. Depletion of Of'E75A mRNA caused loss of a subset of odd-numbered parasegments, as well as parasegment 6. Because these parasegments straddle segment boundaries, we observe fusions between adjacent segments. Finally, expression of Of'E75A in the blastoderm requires even-skipped, which is a gap gene in Oncopeltus. These data show that the function of Of'E75A during embryogenesis shares many properties with canonical pair-rule genes in other insects. They further suggest that parasegment specification may occur through irregular and episodic pair-rule-like activity.

  17. Nuclear overlap functions

    Energy Technology Data Exchange (ETDEWEB)

    Eskola, K.J. [Univ. of Helsinki (Finland); Vogt, R.; Wang, X.N. [Lawrence Berkeley Lab., CA (United States)

    1995-07-01

    A three parameter Wood-Saxon shape is used to describe the nuclear density distribution, which R{sub A} is the nuclear radius, {approx} is the surface thickness, and {omega} allows for central irregularities. The electron scattering data is used where available for R{sub A}, z, and {omega}. When data is unavailable, the parameters {omega} = O, z = 0.54 fm and R{sub A} = 1.19 A{sup 1/3} - 1.61 A{sup -1/3} fm are used. The central density {rho}{sub 0} is found from the normalization {infinity} d{sup 3}r{rho}{sub A}(r) = A.

  18. Functional evolution of nuclear structure

    Science.gov (United States)

    Dawson, Scott C.

    2011-01-01

    The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These components include diverse chromatin-binding membrane proteins, and membrane proteins with adhesive lumenal domains that may have contributed to the evolution of nuclear membrane architecture. Further discoveries about the nucleoskeleton suggest that the evolution of nuclear structure was tightly coupled to genome partitioning during mitosis. PMID:22006947

  19. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  20. The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor.

    Science.gov (United States)

    Zhou, X Edward; Suino-Powell, Kelly M; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W; Reynolds, Ross; Engel, James Douglas; Xu, H Eric

    2011-01-28

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  1. Nuclear Receptor Signaling: a home for nuclear receptor and coregulator signaling research.

    Science.gov (United States)

    McKenna, Neil J; Evans, Ronald M; O'Malley, Bert W

    2014-01-01

    The field of nuclear receptor and coregulator signaling has grown into one of the most active and interdisciplinary in eukaryotic biology. Papers in this field are spread widely across a vast number of journals, which complicates the task of investigators in keeping current with the literature in the field. In 2003, we launched Nuclear Receptor Signaling as an Open Access reviews, perspectives and methods journal for the nuclear receptor signaling field. Building on its success and impact on the community, we have added primary research and dataset articles to this list of article categories, and we now announce the re-launch of the journal this month. Here we will summarize the rationale that informed the creation and expansion of the journal, and discuss the possibilities for its future development.

  2. Coordinate regulation of lipid metabolism by novel nuclear receptor partnerships.

    Directory of Open Access Journals (Sweden)

    Pranali P Pathare

    Full Text Available Mammalian nuclear receptors broadly influence metabolic fitness and serve as popular targets for developing drugs to treat cardiovascular disease, obesity, and diabetes. However, the molecular mechanisms and regulatory pathways that govern lipid metabolism remain poorly understood. We previously found that the Caenorhabditis elegans nuclear hormone receptor NHR-49 regulates multiple genes in the fatty acid beta-oxidation and desaturation pathways. Here, we identify additional NHR-49 targets that include sphingolipid processing and lipid remodeling genes. We show that NHR-49 regulates distinct subsets of its target genes by partnering with at least two other distinct nuclear receptors. Gene expression profiles suggest that NHR-49 partners with NHR-66 to regulate sphingolipid and lipid remodeling genes and with NHR-80 to regulate genes involved in fatty acid desaturation. In addition, although we did not detect a direct physical interaction between NHR-49 and NHR-13, we demonstrate that NHR-13 also regulates genes involved in the desaturase pathway. Consistent with this, gene knockouts of these receptors display a host of phenotypes that reflect their gene expression profile. Our data suggest that NHR-80 and NHR-13's modulation of NHR-49 regulated fatty acid desaturase genes contribute to the shortened lifespan phenotype of nhr-49 deletion mutant animals. In addition, we observed that nhr-49 animals had significantly altered mitochondrial morphology and function, and that distinct aspects of this phenotype can be ascribed to defects in NHR-66- and NHR-80-mediated activities. Identification of NHR-49's binding partners facilitates a fine-scale dissection of its myriad regulatory roles in C. elegans. Our findings also provide further insights into the functions of the mammalian lipid-sensing nuclear receptors HNF4α and PPARα.

  3. Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation.

    Science.gov (United States)

    Nayebosadri, Arman; Ji, Julie Y

    2013-08-01

    The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm(2)) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction.

  4. Non-canonical modulators of nuclear receptors.

    Science.gov (United States)

    Tice, Colin M; Zheng, Ya-Jun

    2016-09-01

    Like G protein-coupled receptors (GPCRs) and protein kinases, nuclear receptors (NRs) are a rich source of pharmaceutical targets. Over 80 NR-targeting drugs have been approved for 18 NRs. The focus of drug discovery in NRs has hitherto been on identifying ligands that bind to the canonical ligand binding pockets of the C-terminal ligand binding domains (LBDs). Due to the development of drug resistance and selectivity concerns, there has been considerable interest in exploring other, non-canonical ligand binding sites. Unfortunately, the potencies of compounds binding at other sites have generally not been sufficient for clinical development. However, the situation has changed dramatically over the last 3years, as compounds with sufficient potency have been reported for several NR targets. Here we review recent developments in this area from a medicinal chemistry point of view in the hope of stimulating further interest in this area of research.

  5. Transmembrane helices in "classical" nuclear reproductive steroid receptors: a perspective.

    Science.gov (United States)

    Morrill, Gene A; Kostellow, Adele B; Gupta, Raj K

    2015-01-01

    Steroid receptors of the nuclear receptor superfamily are proposed to be either: 1) located in the cytosol and moved to the cell nucleus upon activation, 2) tethered to the inside of the plasma membrane, or 3) retained in the nucleus until free steroid hormone enters and activates specific receptors. Using computational methods to analyze peptide receptor topology, we find that the "classical" nuclear receptors for progesterone (PRB/PGR), androgen (ARB/AR) and estrogen (ER1/ESR1) contain two transmembrane helices (TMH) within their ligand-binding domains (LBD).The MEMSAT-SVM algorithm indicates that ARB and ER2 (but not PRB or ER1) contain a pore-lining (channel-forming) region which may merge with other pore-lining regions to form a membrane channel. ER2 lacks a TMH, but contains a single pore-lining region. The MemBrain algorithm predicts that PRB, ARB and ER1 each contain one TMH plus a half TMH separated by 51 amino acids.ER2 contains two half helices. The TM-2 helices of ARB, ER1 and ER2 each contain 9-13 amino acid motifs reported to translocate the receptor to the plasma membrane, as well as cysteine palmitoylation sites. PoreWalker analysis of X-ray crystallographic data identifies a pore or channel within the LBDs of ARB and ER1 and predicts that 70 and 72 residues are pore-lining residues, respectively. The data suggest that (except for ER2), cytosolic receptors become anchored to the plasma membrane following synthesis. Half-helices and pore-lining regions in turn form functional ion channels and/or facilitate passive steroid uptake into the cell. In perspective, steroid-dependent insertion of "classical" receptors containing pore-lining regions into the plasma membrane may regulate permeability to ions such as Ca(2+), Na(+) or K(+), as well as facilitate steroid translocation into the nucleus.

  6. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases

    Directory of Open Access Journals (Sweden)

    Sandeep Tyagi

    2011-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of the following three subtypes: PPARα, PPARγ, and PPARβ/δ. Activation of PPAR-α reduces triglyceride level and is involved in regulation of energy homeostasis. Activation of PPAR-γ causes insulin sensitization and enhances glucose metabolism, whereas activation of PPAR- β/δ enhances fatty acids metabolism. Thus, PPAR family of nuclear receptors plays a major regulatory role in energy homeostasis and metabolic function. The present review critically analyzes the protective and detrimental effect of PPAR agonists in dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity.

  7. Nuclear receptor 4a3 (nr4a3 regulates murine mast cell responses and granule content.

    Directory of Open Access Journals (Sweden)

    Gianni Garcia-Faroldi

    Full Text Available Nuclear receptor 4a3 (Nr4a3 is a transcription factor implicated in various settings such as vascular biology and inflammation. We have recently shown that mast cells dramatically upregulate Nuclear receptor 4a3 upon activation, and here we investigated the functional impact of Nuclear receptor 4a3 on mast cell responses. We show that Nuclear receptor 4a3 is involved in the regulation of cytokine/chemokine secretion in mast cells following activation via the high affinity IgE receptor. Moreover, Nuclear receptor 4a3 negatively affects the transcript and protein levels of mast cell tryptase as well as the mast cell's responsiveness to allergen. Together, these findings identify Nuclear receptor 4a3 as a novel regulator of mast cell function.

  8. Receptors and ionic transporters in nuclear membranes: new targets for therapeutical pharmacological interventions.

    Science.gov (United States)

    Bkaily, Ghassan; Avedanian, Levon; Al-Khoury, Johny; Ahmarani, Lena; Perreault, Claudine; Jacques, Danielle

    2012-08-01

    Work from our group and other laboratories showed that the nucleus could be considered as a cell within a cell. This is based on growing evidence of the presence and role of nuclear membrane G-protein coupled receptors and ionic transporters in the nuclear membranes of many cell types, including vascular endothelial cells, endocardial endothelial cells, vascular smooth muscle cells, cardiomyocytes, and hepatocytes. The nuclear membrane receptors were found to modulate the functioning of ionic transporters at the nuclear level, and thus contribute to regulation of nuclear ionic homeostasis. Nuclear membranes of the mentioned types of cells possess the same ionic transporters; however, the type of receptors is cell-type dependent. Regulation of cytosolic and nuclear ionic homeostasis was found to be dependent upon a tight crosstalk between receptors and ionic transporters of the plasma membranes and those of the nuclear membrane. This crosstalk seems to be the basis for excitation-contraction coupling, excitation-secretion coupling, and excitation - gene expression coupling. Further advancement in this field will certainly shed light on the role of nuclear membrane receptors and transporters in health and disease. This will in turn enable the successful design of a new class of drugs that specifically target such highly vital nuclear receptors and ionic transporters.

  9. Role of nuclear receptor Nur77 during inflammation

    NARCIS (Netherlands)

    Hamers, A.A.J.

    2015-01-01

    Nuclear Receptors play key roles in cell differentiation and development, homeostasis and in many diseases such as diabetes, cancer, cardiovascular disease, reproductive abnormalities and obesity; and are therefore major targets for drug discovery. Nur77 is, like most nuclear receptors, a transcript

  10. Nuclear receptors as drug targets for metabolic disease

    NARCIS (Netherlands)

    Schulman, Ira G.

    2010-01-01

    Nuclear hormone receptors comprise a superfamily of ligand-activated transcription factors that control development, differentiation, and homeostasis. Over the last 15 years a growing number of nuclear receptors have been identified that coordinate genetic networks regulating lipid metabolism and en

  11. Nuclear receptors as drug targets for metabolic disease

    NARCIS (Netherlands)

    Schulman, Ira G.

    2010-01-01

    Nuclear hormone receptors comprise a superfamily of ligand-activated transcription factors that control development, differentiation, and homeostasis. Over the last 15 years a growing number of nuclear receptors have been identified that coordinate genetic networks regulating lipid metabolism and en

  12. Computational characterization of modes of transcriptional regulation of nuclear receptor genes.

    Directory of Open Access Journals (Sweden)

    Yogita Sharma

    Full Text Available BACKGROUND: Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding of the diversity of their biochemical and biophysical roles and their role in disease and therapy. Even though they share evolutionary history, nuclear receptor genes have fundamentally different expression patterns, ranging from ubiquitously expressed to tissue-specific and spatiotemporally complex. However, current understanding of regulation in nuclear receptor gene family is still nascent. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigate the relationship between long-range regulation of nuclear receptor family and their known functionality. Towards this goal, we identify the nuclear receptor genes that are potential targets based on counts of highly conserved non-coding elements. We validate our results using publicly available expression (RNA-seq and histone modification (ChIP-seq data from the ENCODE project. We find that nuclear receptor genes involved in developmental roles show strong evidence of long-range mechanism of transcription regulation with distinct cis-regulatory content they feature clusters of highly conserved non-coding elements distributed in regions spanning several Megabases, long and multiple CpG islands, bivalent promoter marks and statistically significant higher enrichment of enhancer mark around their gene loci. On the other hand nuclear receptor genes that are involved in tissue-specific roles lack these features, having simple transcriptional controls and a greater variety of mechanisms for producing paralogs. We

  13. Modeling nuclear parton distribution functions

    CERN Document Server

    Honkanen, H; Guzey, V

    2013-01-01

    The presence of nuclear medium and collective phenomena which involve several nucleons modify the parton distribution functions of nuclei (nPDFs) compared to those of a free nucleon. These modifications have been investigated by different groups using global analyses of high energy nuclear reaction world data resulting in modern nPDF parametrizations with error estimates, such as EPS09(s), HKN07 and nDS. These phenomenological nPDF sets roughly agree within their uncertainty bands, but have antiquarks for large-$x$ and gluons for the whole $x$-range poorly constrained by the available data. In the kinematics accessible at the LHC this has negative impact on the interpretation of the heavy-ion collision data, especially for the $p + A$ benchmarking runs. The EMC region is also sensitive to the proper definition of $x$, where the nuclear binding effects have to be taken into account, and for heavy nuclei one also needs to take into account that a fraction of the nucleus momentum is carried by the equivalent pho...

  14. Cell cycle phase regulates glucocorticoid receptor function.

    Directory of Open Access Journals (Sweden)

    Laura Matthews

    Full Text Available The glucocorticoid receptor (GR is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. In contrast to many other nuclear receptors, GR is thought to be exclusively cytoplasmic in quiescent cells, and only translocate to the nucleus on ligand binding. We now demonstrate significant nuclear GR in the absence of ligand, which requires nuclear localisation signal 1 (NLS1. Live cell imaging reveals dramatic GR import into the nucleus through interphase and rapid exclusion of the GR from the nucleus at the onset of mitosis, which persists into early G(1. This suggests that the heterogeneity in GR distribution is reflective of cell cycle phase. The impact of cell cycle-driven GR trafficking on a panel of glucocorticoid actions was profiled. In G2/M-enriched cells there was marked prolongation of glucocorticoid-induced ERK activation. This was accompanied by DNA template-specific, ligand-independent GR transactivation. Using chimeric and domain-deleted receptors we demonstrate that this transactivation effect is mediated by the AF1 transactivation domain. AF-1 harbours multiple phosphorylation sites, which are consensus sequences for kinases including CDKs, whose activity changes during the cell cycle. In G2/M there was clear ligand independent induction of GR phosphorylation on residues 203 and 211, both of which are phosphorylated after ligand activation. Ligand-independent transactivation required induction of phospho-S211GR but not S203GR, thereby directly linking cell cycle driven GR modification with altered GR function. Cell cycle phase therefore regulates GR localisation and post-translational modification which selectively impacts GR activity. This suggests that cell cycle phase is an important determinant in the cellular response to Gc, and that mitotic index contributes to tissue Gc sensitivity.

  15. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group.

    Science.gov (United States)

    Vogeler, Susanne; Galloway, Tamara S; Lyons, Brett P; Bean, Tim P

    2014-05-15

    Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.

  16. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells.

  17. Regulation of hepatic energy metabolism by the nuclear receptor PXR.

    Science.gov (United States)

    Hakkola, Jukka; Rysä, Jaana; Hukkanen, Janne

    2016-09-01

    The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  18. Nuclear receptor conformation, coregulators, and tamoxifen-resistant breast cancer.

    Science.gov (United States)

    Graham, J D; Bain, D L; Richer, J K; Jackson, T A; Tung, L; Horwitz, K B

    2000-01-01

    The development of tamoxifen resistance and consequent disease progression are common occurrences in breast cancers, often despite the continuing expression of estrogen receptors (ER). Tamoxifen is a mixed antagonist, having both agonist and antagonist properties. We have suggested that the development of tamoxifen resistance is associated with an increase in its agonist-like properties, resulting in loss of antagonist effects or even inappropriate tumor stimulation. Nuclear receptor function is influenced by a family of transcriptional coregulators, that either enhance or suppress transcriptional activity. Using a mixed antagonist-biased two-hybrid screening strategy, we identified two such proteins: the human homolog of the nuclear receptor corepressor, N-CoR, and a novel coactivator, L7/SPA (Switch Protein for Antagonists). In transcriptional studies, N-CoR suppressed the agonist properties of tamoxifen and RU486, and L7/SPA increased agonist effects. We speculated that the relative levels of these coactivators and corepressors may determine the balance of agonist and antagonist properties of mixed antagonists, such as tamoxifen. Using quantitative RT-PCR, we, therefore, measured the levels of transcripts encoding these coregulators, as well as the corepressor SMRT, and the coactivator SRC-1, in a small cohort of tamoxifen-resistant and sensitive breast tumors. The results suggest that tumor sensitivity to mixed antagonists may be governed by a complex set of transcription factors, which we are only now beginning to understand.

  19. Bile acid nuclear receptor FXR and digestive system diseases

    Directory of Open Access Journals (Sweden)

    Lili Ding

    2015-03-01

    Full Text Available Bile acids (BAs are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR, plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases.

  20. Research resource: Comparative nuclear receptor atlas: basal and activated peritoneal B-1 and B-2 cells.

    Science.gov (United States)

    Diehl, Cody J; Barish, Grant D; Downes, Michael; Chou, Meng-Yun; Heinz, Sven; Glass, Christopher K; Evans, Ronald M; Witztum, Joseph L

    2011-03-01

    Naïve murine B cells are typically divided into three subsets based on functional and phenotypic characteristics: innate-like B-1 and marginal zone B cells vs. adaptive B-2 cells, also known as follicular or conventional B cells. B-1 cells, the innate-immune-like component of the B cell lineage are the primary source of natural antibodies and have been shown to modulate autoimmune diseases, human B-cell leukemias, and inflammatory disorders such as atherosclerosis. On the other hand, B-2 cells are the principal mediators of the adaptive humoral immune response and represent an important pharmacological target for various conditions including rheumatoid arthritis, lupus erythematosus, and lymphomas. Using the resources of the Nuclear Receptor Signaling Atlas program, we used quantitative real-time PCR to assess the complement of the 49 murine nuclear receptor superfamily expressed in quiescent and toll-like receptor (TLR)-stimulated peritoneal B-1 and B-2 cells. We report the expression of 24 nuclear receptors in basal B-1 cells and 25 nuclear receptors in basal B-2 cells, with, in some cases, dramatic changes in response to TLR 4 or TLR 2/1 stimulation. Comparative nuclear receptor profiling between B-1 and peritoneal B-2 cells reveals a highly concordant expression pattern, albeit at quantitatively dissimilar levels. We also found that splenic B cells express 23 nuclear receptors. This catalog of nuclear receptor expression in B-1 and B-2 cells provides data to be used to better understand the specific roles of nuclear receptors in B cell function, chronic inflammation, and autoimmune disease.

  1. Dual activities of odorants on olfactory and nuclear hormone receptors.

    Science.gov (United States)

    Pick, Horst; Etter, Sylvain; Baud, Olivia; Schmauder, Ralf; Bordoli, Lorenza; Schwede, Torsten; Vogel, Horst

    2009-10-30

    We have screened an odorant compound library and discovered molecules acting as chemical signals that specifically activate both G-protein-coupled olfactory receptors (ORs) on the cell surface of olfactory sensory neurons and the human nuclear estrogen receptor alpha (ER) involved in transcriptional regulation of cellular differentiation and proliferation in a wide variety of tissues. Hence, these apparent dual active odorants induce distinct signal transduction pathways at different subcellular localizations, which affect both neuronal signaling, resulting in odor perception, and the ER-dependent transcriptional control of specific genes. We demonstrate these effects using fluorescence-based in vitro and cellular assays. Among these odorants, we have identified synthetic sandalwood compounds, an important class of molecules used in the fragrance industry. For one estrogenic odorant we have also identified the cognate OR. This prompted us to compare basic molecular recognition principles of odorants on the two structurally and apparent functionally non-related receptors using computational modeling in combination with functional assays. Faced with the increasing evidence that ORs may perform chemosensory functions in a number of tissues outside of the nasal olfactory epithelium, the unraveling of these molecular ligand-receptor interaction principles is of critical importance. In addition the evidence that certain olfactory sensory neurons naturally co-express ORs and ERs may provide a direct functional link between the olfactory and hormonal systems in humans. Our results are therefore useful for defining the structural and functional characteristics of ER-specific odorants and the role of odorant molecules in cellular processes other than olfaction.

  2. [Nucleotide receptors and renal function].

    Science.gov (United States)

    Jankowski, Maciej

    2014-01-01

    Kidney plays a key role in homeostasis of human body. It has heterogenic structure and is characterized by complicated vascular beds and numbers of sympathetic nerves endings. Nucleotides receptors are involved in the regulation of blood flow, a fundamental process for renal function. Plasma is filtrated in renal glomerulus and activity of nucleotides receptors located on cells of glomerular filter modifies the physi- cochemical properties of filter and affects the filtration process. Electrolytes, water and low molecular weight molecules are reabsorbed from tubular fluid or secreted into fluid in proximal and distal tubules. Glomerular filtration rate and activity of tubular processes are regulated via nucleotides receptors by glomerulotubularbalance and tubuloglomerular feedback. Nucleotides receptors are involved in systemic regulation of blood pressure and carbohydrate metabolism.

  3. Diverse coactivator recruitment through differential PPARγ nuclear receptor agonism

    Directory of Open Access Journals (Sweden)

    Fernando Lizcano

    2013-01-01

    Full Text Available The PPARγ nuclear receptor regulates the expression of genes involved in lipid and carbohydrate metabolism, and it has protective effects in some patients with type 2 diabetes. Nevertheless, the therapeutic value of the PPARγ nuclear receptor protein is limited due to the secondary effects of some PPARγ ligands. Because the downstream effects of PPARγ are determined by the binding of specific cofactors that are mediated by ligand-induced conformational changes, we evaluated the differential effects of various ligands on the binding of certain cofactors associated with PPARγ. The ligands used were rosiglitazone for treating type 2 diabetes and telmisartan for treating arterial hypertension. Functional, phenotypic, and molecular studies were conducted on pre-adipocyte 3T3-L1 and functional studies in U2OS cells. The moderating influence of various cofactor families was evaluated using transient transfection assays. Our findings confirm that telmisartan has a partial modulating effect on PPARγ activity compared to rosiglitazone. The cofactors SRC1 and GRIP1 mediate the activity of telmisartan and rosiglitazone and partially determine the difference in their effects. Studying the modulating activity of these cofactors can provide interesting insights for developing new therapeutic approaches for certain metabolic diseases.

  4. Transcriptional Crosstalk between Nuclear Receptors and Cytokine Signal Transduction Pathways in Immunity

    Institute of Scientific and Technical Information of China (English)

    Lihua Wang; Xiaohu Zhang; William L. Farrar; Xiaoyi Yang

    2004-01-01

    The nuclear receptor superfamily and the transcriptional factors associated with cytokines are inherently different families of signaling molecules and activate gene transcription by binding to their respective responsive element. However, it has become increasingly clear from our works and others that nuclear receptors are important regulators of cytokine production and function through complex and varied interactions between these distinct transcriptional factors. This review provides a general overview of the mechanism of action of nuclear receptors and their transcriptional crosstalk with transcriptional factors associated with cytokine transduction pathways. One of the most important mechanistic aspects is protein to protein interaction through a direct or co-regulator-mediated indirect manner. Such crosstalk is crucially involved in physiological and therapeutic roles of nuclear receptors and their ligands in immunity,inflammation and cytokine-related tumors. Cellular & Molecular Immunology. 2004;1(6):416-424.

  5. Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c.

    Science.gov (United States)

    Ponugoti, Bhaskar; Fang, Sungsoon; Kemper, Jongsook Kim

    2007-11-01

    Insulin inhibits transcription of cholesterol 7alpha-hydroxylase (Cyp7a1), a key gene in bile acid synthesis, and the hepatic nuclear factor-4 (HNF-4) site in the promoter was identified as a negative insulin response sequence. Using a fasting/feeding protocol in mice and insulin treatment in HepG2 cells, we explored the inhibition mechanisms. Expression of sterol regulatory element-binding protein-1c (SREBP-1c), an insulin-induced lipogenic factor, inversely correlated with Cyp7a1 expression in mouse liver. Interaction of HNF-4 with its coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), was observed in livers of fasted mice and was reduced after feeding. Conversely, HNF-4 interaction with SREBP-1c was increased after feeding. In vitro studies suggested that SREBP-1c competed with PGC-1alpha for direct interaction with the AF2 domain of HNF-4. Reporter assays showed that SREBP-1c, but not of a SREBP-1c mutant lacking the HNF-4 interacting domain, inhibited HNF-4/PGC-1alpha transactivation of Cyp7a1. SREBP-1c also inhibited PGC-1alpha-coactivation of estrogen receptor, constitutive androstane receptor, pregnane X receptor, and farnesoid X receptor, implying inhibition of HNF-4 by SREBP-1c could extend to other nuclear receptors. In chromatin immunoprecipitation studies, HNF-4 binding to the promoter was not altered, but PGC-1alpha was dissociated, SREBP-1c and histone deacetylase-2 (HDAC2) were recruited, and acetylation of histone H3 was decreased upon feeding. Adenovirus-mediated expression of a SREBP-1c dominant-negative mutant, which blocks the interaction of SREBP-1c and HNF-4, partially but significantly reversed the inhibition of Cyp7a1 after feeding. Our data show that SREBP-1c functions as a non-DNA-binding inhibitor and mediates, in part, suppression of Cyp7a1 by blocking functional interaction of HNF-4 and PGC-1alpha. This mechanism may be relevant to known repression of many other HNF-4 target genes upon

  6. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer.

    LENUS (Irish Health Repository)

    Mohan, Helen M

    2012-06-15

    Nuclear receptors are of integral importance in carcinogenesis. Manipulation of classic ligand-activated nuclear receptors, such as estrogen receptor blockade in breast cancer, is an important established cancer therapy. Orphan nuclear receptors, such as nuclear family 4 subgroup A (NR4A) receptors, have no known natural ligand(s). These elusive receptors are increasingly recognized as molecular switches in cell survival and a molecular link between inflammation and cancer. NR4A receptors act as transcription factors, altering expression of downstream genes in apoptosis (Fas-ligand, TRAIL), proliferation, DNA repair, metabolism, cell migration, inflammation (interleukin-8), and angiogenesis (VEGF). NR4A receptors are modulated by multiple cell-signaling pathways, including protein kinase A\\/CREB, NF-κB, phosphoinositide 3-kinase\\/AKT, c-jun-NH(2)-kinase, Wnt, and mitogen-activated protein kinase pathways. NR4A receptor effects are context and tissue specific, influenced by their levels of expression, posttranslational modification, and interaction with other transcription factors (RXR, PPAR-Υ). The subcellular location of NR4A "nuclear receptors" is also important functionally; novel roles have been described in the cytoplasm where NR4A proteins act both indirectly and directly on the mitochondria to promote apoptosis via Bcl-2. NR4A receptors are implicated in a wide variety of malignancies, including breast, lung, colon, bladder, and prostate cancer; glioblastoma multiforme; sarcoma; and acute and\\/or chronic myeloid leukemia. NR4A receptors modulate response to conventional chemotherapy and represent an exciting frontier for chemotherapeutic intervention, as novel agents targeting NR4A receptors have now been developed. This review provides a concise clinical overview of current knowledge of NR4A signaling in cancer and the potential for therapeutic manipulation.

  7. The association between nuclear receptors and ocular diseases.

    Science.gov (United States)

    Liu, Ke; Zou, Chang; Qin, Bo

    2017-02-07

    Nuclear hormone receptors (NRs) are one of the most abundant transcription factors in the human cells. They regulate expression of genes via interactions with corresponding ligands, co-activators, and co-repressors. These molecular pathways play important roles in the development, cell differentiation, and physiologic and metabolic processes. Increasingly, targeting nuclear receptors is becoming a promising strategy for new drug development. The aim of this review is to discuss the association between nuclear receptors and eye development, and expand their role in various ocular diseases such as keratitis, cataract, glaucoma, uveitis, retinopathy, and ophthalmic tumors. Recent studies in this area are highlighted as well as future research directions and potential clinical applications. Finally, various strategies will be elucidated to inspire more targeted therapies for ocular diseases through the use of nuclear receptors.

  8. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    Science.gov (United States)

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  9. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    Science.gov (United States)

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  10. Diverse coactivator recruitment through differential PPARγ nuclear receptor agonism

    OpenAIRE

    Fernando Lizcano; Diana Vargas

    2013-01-01

    The PPARγ nuclear receptor regulates the expression of genes involved in lipid and carbohydrate metabolism, and it has protective effects in some patients with type 2 diabetes. Nevertheless, the therapeutic value of the PPARγ nuclear receptor protein is limited due to the secondary effects of some PPARγ ligands. Because the downstream effects of PPARγ are determined by the binding of specific cofactors that are mediated by ligand-induced conformational changes, we evaluate...

  11. CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant.

    Science.gov (United States)

    Sauvé, F; McBroom, L D; Gallant, J; Moraitis, A N; Labrie, F; Giguère, V

    2001-01-01

    Coregulators for nuclear receptors (NR) are factors that either enhance or repress their transcriptional activity. Both coactivators and corepressors have been shown to use similar but functionally distinct NR interacting determinants containing the core motifs LxxLL and PhixxPhiPhi, respectively. These interactions occur through a hydrophobic cleft located on the surface of the ligand-binding domain (LBD) of the NR and are regulated by ligand-dependent activation function 2 (AF-2). In an effort to identify novel coregulators that function independently of AF-2, we used the LBD of the orphan receptor RVR (which lacks AF-2) as bait in a yeast two-hybrid screen. This strategy led to the cloning of a nuclear protein referred to as CIA (coactivator independent of AF-2 function) that possesses both repressor and activator functions. Strikingly, we observed that CIA not only interacts with RVR and Rev-ErbAalpha in a ligand-independent manner but can also form complexes with estrogen receptor alpha (ERalpha) and ERbeta in vitro and enhances ERalpha transcriptional activity in the presence of estradiol (E(2)). CIA-ERalpha interactions were found to be independent of AF-2 and enhanced by the antiestrogens EM-652 and ICI 182,780 but not by 4-hydroxytamoxifen and raloxifene. We further demonstrate that CIA-ERalpha interactions require the presence within CIA of a novel bifunctional NR recognition determinant containing overlapping LxxLL and PhixxPhiPhi motifs. The identification and functional characterization of CIA suggest that hormone binding can create a functional coactivator interaction interface in the absence of AF-2.

  12. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhang

    2016-07-01

    Full Text Available Aquaporin-2 (AQP2 is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function.

  13. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: a gapped landscape.

    Directory of Open Access Journals (Sweden)

    Virginie eRouiller-Fabre

    2015-05-01

    Full Text Available During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food and many consumer products, several can act as endocrine disrupting compounds (EDCs, thus interfering with the endocrine system. Phthalates, bisphenol A (BPA and diethylstilbestrol (DES have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review we discuss the role of classical nuclear receptors (genomic pathway in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA and DES. Among the nuclear receptors we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR, androgen receptor (AR, estrogen receptors (ERα and β, liver X receptors (LXR and small heterodimer partner (SHP. First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s. We also point-out the involvement of other receptors and nuclear receptor-independent pathways.

  14. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: a gapped landscape.

    Science.gov (United States)

    Rouiller-Fabre, Virginie; Guerquin, Marie Justine; N'Tumba-Byn, Thierry; Muczynski, Vincent; Moison, Delphine; Tourpin, Sophie; Messiaen, Sébastien; Habert, René; Livera, Gabriel

    2015-01-01

    During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food, and many consumer products), several can act as endocrine disrupting compounds (EDCs), thus interfering with the endocrine system. Phthalates, bisphenol A (BPA), and diethylstilbestrol (DES) have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review, we discuss the role of classical nuclear receptors (genomic pathway) in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA, and DES. Among the nuclear receptors, we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR), androgen receptor (AR), estrogen receptors (ERα and β), liver X receptors (LXR), and small heterodimer partner (SHP). First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models) of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s). We also point-out the involvement of other receptors and nuclear receptor-independent pathways.

  15. Molecular basis for gene-specific transactivation by nuclear receptors

    DEFF Research Database (Denmark)

    Jørgensen, Mads Aagaard; Siersbæk, Rasmus; Mandrup, Susanne

    2010-01-01

    most likely be accounted for by mechanisms involving receptor-specific interactions with DNA as well as receptor-specific interactions with protein complexes binding to adjacent and distant DNA sequences. Here, we review key molecular aspects of transactivation by NRs with special emphasis......Nuclear receptors (NRs) are key transcriptional regulators of metazoan physiology and metabolism. Different NRs bind to similar or even identical core response elements; however, they regulate transcription in a highly receptor- and gene-specific manner. These differences in gene activation can...... on the recent advances in the molecular mechanisms responsible for receptor- and gene-specific transcriptional activation. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease....

  16. Common polymorphisms within the NR4A3 locus, encoding the orphan nuclear receptor Nor-1, are associated with enhanced β-cell function in non-diabetic subjects

    Directory of Open Access Journals (Sweden)

    Kuusisto Johanna

    2009-08-01

    Full Text Available Abstract Background Neuron-derived orphan receptor (Nor 1, nuclear receptor (Nur 77, and nuclear receptor-related protein (Nurr 1 constitute the NR4A family of orphan nuclear receptors which were recently found to modulate hepatic glucose production, insulin signalling in adipocytes, and oxidative metabolism in skeletal muscle. In this study, we assessed whether common genetic variation within the NR4A3 locus, encoding Nor-1, contributes to the development of prediabetic phenotypes, such as glucose intolerance, insulin resistance, or β-cell dysfunction. Methods We genotyped 1495 non-diabetic subjects from Southern Germany for the five tagging single nucleotide polymorphisms (SNPs rs7047636, rs1526267, rs2416879, rs12686676, and rs10819699 (minor allele frequencies ≥ 0.05 covering 100% of genetic variation within the NR4A3 locus (with D' = 1.0, r2 ≥ 0.9 and assessed their association with metabolic data derived from the fasting state, an oral glucose tolerance test (OGTT, and a hyperinsulinemic-euglycemic clamp (subgroup, N = 506. SNPs that revealed consistent associations with prediabetic phenotypes were subsequently genotyped in a second cohort (METSIM Study; Finland; N = 5265 for replication. Results All five SNPs were in Hardy-Weinberg equilibrium (p ≥ 0.7, all. The minor alleles of three SNPs, i.e., rs1526267, rs12686676, and rs10819699, consistently tended to associate with higher insulin release as derived from plasma insulin at 30 min(OGTT, AUCC-peptide-to-AUCGluc ratio and the AUCIns30-to-AUCGluc30 ratio with rs12686676 reaching the level of significance (p ≤ 0.03, all; additive model. The association of the SNP rs12686676 with insulin secretion was replicated in the METSIM cohort (p ≤ 0.03, additive model. There was no consistent association with glucose tolerance or insulin resistance in both study cohorts. Conclusion We conclude that common genetic variation within the NR4A3 locus determines insulin secretion. Thus, NR4A3

  17. NucleaRDB: information system for nuclear receptors.

    Science.gov (United States)

    Vroling, Bas; Thorne, David; McDermott, Philip; Joosten, Henk-Jan; Attwood, Teresa K; Pettifer, Steve; Vriend, Gert

    2012-01-01

    The NucleaRDB is a Molecular Class-Specific Information System that collects, combines, validates and disseminates large amounts of heterogeneous data on nuclear hormone receptors. It contains both experimental and computationally derived data. The data and knowledge present in the NucleaRDB can be accessed using a number of different interactive and programmatic methods and query systems. A nuclear hormone receptor-specific PDF reader interface is available that can integrate the contents of the NucleaRDB with full-text scientific articles. The NucleaRDB is freely available at http://www.receptors.org/nucleardb.

  18. Nuclear effects in the structure functions

    Indian Academy of Sciences (India)

    E Marco; E Oset; S K Singh

    2003-11-01

    By using a relativistic framework and accurate nuclear spectral function the structure functions 2 and 3 of deep inelastic charged lepton and neutrino scattering are calculated in nuclei and results are presented.

  19. A new system for regulated functional gene expression for gene therapy applications: nuclear delivery of a p16INK4A-estrogen receptor carboxy terminal fusion protein only in the presence of estrogen.

    Science.gov (United States)

    Tamura, Tomohiro; Kanuma, Tatsuya; Nakazato, Tomoko; Faried, Leri S; Aoki, Hiroshi; Minegishi, Takashi

    2010-04-01

    The clinical use of gene therapy requires tight regulation of the gene of interest and functional expression only when it is needed. Thus, it is necessary to develop ways of regulating functional gene expression with exogenous stimuli. Many regulatable systems are currently under development. For example, the tetracycline-dependent transcriptional switch has been successfully employed for in vivo preclinical applications. However, there are no examples of regulatable systems that have been employed in human clinical trials. In the present study, we established an adenovirus-delivered functional gene expression system that is regulated by estrogen. This system uses p16INK4A fused at its C-terminus to the ligand-binding domain of the estrogen receptor (DeltaERalpha). We were able to establish cell lines expressing this gene wherein the functional expression of p16INK4A is estrogen-dependent and causes the arrest of several ovarian cancer cell lines. This inducible and adenovirus-mediated gene transfer system may allow gene therapy using nuclear functioning genes in postmenopausal or ovariectomized women.

  20. Meson's Correlation Functions in a Nuclear Medium

    CERN Document Server

    Park, Chanyong

    2016-01-01

    We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the rho-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.

  1. Meson's correlation functions in a nuclear medium

    Science.gov (United States)

    Park, Chanyong

    2016-09-01

    We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.

  2. Regulation of adipogenesis by nuclear receptor PPARγ is modulated by the histone demethylase JMJD2C

    OpenAIRE

    Lizcano Fernando; Romero Carolina; Diana Vargas

    2011-01-01

    A potential strategy to combat obesity and its associated complications involves modifying gene expression in adipose cells to reduce lipid accumulation. The nuclear receptor Peroxisome Proliferator-activated receptor gamma (PPARγ) is the master regulator of adipose cell differentiation and its functional activation is currently used as a therapeutic approach for Diabetes Mellitus type 2. However, total activation of PPARγ induces undesirable secondary effects that might be set with...

  3. Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles.

    Science.gov (United States)

    Read, Jolene; Ingram, Alistair; Al Saleh, Hassan A; Platko, Khrystyna; Gabriel, Kathleen; Kapoor, Anil; Pinthus, Jehonathan; Majeed, Fadwa; Qureshi, Talha; Al-Nedawi, Khalid

    2017-01-01

    Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.

  4. Universal Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  5. Relativistic density functional for nuclear structure

    CERN Document Server

    2016-01-01

    This book aims to provide a detailed introduction to the state-of-the-art covariant density functional theory, which follows the Lorentz invariance from the very beginning and is able to describe nuclear many-body quantum systems microscopically and self-consistently. Covariant density functional theory was introduced in nuclear physics in the 1970s and has since been developed and used to describe the diversity of nuclear properties and phenomena with great success. In order to provide an advanced and updated textbook of covariant density functional theory for graduate students and nuclear physics researchers, this book summarizes the enormous amount of material that has accumulated in the field of covariant density functional theory over the last few decades as well as the latest developments in this area. Moreover, the book contains enough details for readers to follow the formalism and theoretical results, and provides exhaustive references to explore the research literature.

  6. Clustering aspects in nuclear structure functions

    CERN Document Server

    Hirai, M; Saito, K; Watanabe, T

    2010-01-01

    For understanding an anomalous nuclear effect experimentally observed for the beryllium-9 nucleus at the Thomas Jefferson National Accelerator Facility (JLab), clustering aspects are studied in structure functions of deep inelastic lepton-nucleus scattering by using momentum distributions calculated in antisymmetrized (or fermionic) molecular dynamics (AMD) and also in a simple shell model for comparison. According to the AMD, the Be-9 nucleus consists of two alpha-like clusters with a surrounding neutron. The clustering produces high-momentum components in nuclear wave functions, which affects nuclear modifications of the structure functions. We investigated whether clustering features could appear in the structure function F_2 of Be-9 along with studies for other light nuclei. We found that nuclear modifications of F_2 are similar in both AMD and shell models within our simple convolution description although there are slight differences in Be-9. It indicates that the anomalous Be-9 result should be explain...

  7. Progress on nuclear modifications of structure functions

    CERN Document Server

    Kumano, S

    2016-01-01

    We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrino-oscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function $b_1$ is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact ...

  8. Steroid receptors and their ligands: Effects on male gamete functions

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  9. Application of computational approaches to study signalling networks of nuclear and Tyrosine kinase receptors

    Directory of Open Access Journals (Sweden)

    Rebaï Ahmed

    2010-10-01

    Full Text Available Abstract Background Nuclear receptors (NRs and Receptor tyrosine kinases (RTKs are essential proteins in many cellular processes and sequence variations in their genes have been reported to be involved in many diseases including cancer. Although crosstalk between RTK and NR signalling and their contribution to the development of endocrine regulated cancers have been areas of intense investigation, the direct coupling of their signalling pathways remains elusive. In our understanding of the role and function of nuclear receptors on the cell membrane the interactions between nuclear receptors and tyrosine kinase receptors deserve further attention. Results We constructed a human signalling network containing nuclear receptors and tyrosine kinase receptors that identified a network topology involving eleven highly connected hubs. We further developed an integrated knowledge database, denominated NR-RTK database dedicated to human RTKs and NRs and their vertebrate orthologs and their interactions. These interactions were inferred using computational tools and those supported by literature evidence are indicated. NR-RTK database contains links to other relevant resources and includes data on receptor ligands. It aims to provide a comprehensive interaction map that identifies complex dynamics and potential crosstalk involved. Availability: NR-RTK database is accessible at http://www.bioinfo-cbs.org/NR-RTK/ Conclusions We infer that the NR-RTK interaction network is scale-free topology. We also uncovered the key receptors mediating the signal transduction between these two types of receptors. Furthermore, NR-RTK database is expected to be useful for researchers working on various aspects of the molecular basis of signal transduction by RTKs and NRs. Reviewers This article was reviewed by Professor Paul Harrison (nominated by Dr. Mark Gerstein, Dr. Arcady Mushegian and Dr. Anthony Almudevar.

  10. Design principles of nuclear receptor signaling: How complex networking improves signal transduction

    NARCIS (Netherlands)

    A.N. Kolodkin (Alexey); F.J. Bruggeman (Frank); N. Plant (Nick); M.J. Moné (Martijn); B.M. Bakker (Barbara); M.J. Campbell (Moray); J.P.T.M. van Leeuwen (Hans); C. Carlberg (Carsten); J.L. Snoep (Jacky); H.V. Westerhoff (Hans)

    2010-01-01

    textabstractThe topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of design aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic

  11. Design principles of nuclear receptor signaling : how complex networking improves signal transduction

    NARCIS (Netherlands)

    Kolodkin, Alexey N.; Bruggeman, Frank J.; Plant, Nick; Mone, Martijn J.; Bakker, Barbara M.; Campbell, Moray J.; van Leeuwen, Johannes P. T. M.; Carlberg, Carsten; Snoep, Jacky L.; Westerhoff, Hans V.

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of 'design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of

  12. Design principles of nuclear receptor signaling: How complex networking improves signal transduction

    NARCIS (Netherlands)

    A.N. Kolodkin (Alexey); F.J. Bruggeman (Frank); N. Plant (Nick); M.J. Moné (Martijn); B.M. Bakker (Barbara); M.J. Campbell (Moray); J.P.T.M. van Leeuwen (Hans); C. Carlberg (Carsten); J.L. Snoep (Jacky); H.V. Westerhoff (Hans)

    2010-01-01

    textabstractThe topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of design aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic

  13. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Science.gov (United States)

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  14. Nuclear translocation of EGF receptor regulated by Epstein-Barr virus encoded latent membrane protein 1

    Institute of Scientific and Technical Information of China (English)

    TAO; Yongguang; SONG; Xin; TAN; Yunnian; LIN; Xiaofeng; ZH

    2004-01-01

    Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV encoded proteins, and also it has always been the core of the oncogenic mechanism of EBV. Traditional receptor theory demonstrates that cell surface receptors exert biological functions on the membrane, which neither enter into the nucleus nor directly affect the transcription of the target genes. But, advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly developed our knowledge of the biological function of cell surface receptors. In this study, we used Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1 integrated NPC cell line and the expression of LMP1 in which could be regulated by Tet system. We found that LMP1 could regulate the nuclear translocation of EGFR in a dose-dependent manner from both quantitative and qualitative levels through the Western blot analysis and the immunofluorescent analysis with a laser scanning confocal microscope. We further demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation, and the nuclear accumulation of EGFR regulated by LMP1 was in a ligand-independent manner. These findings provide a novel view that the regulation of LMP1 on the nuclear translocation of EGFR is critical for the process of nasopharyngeal carcinoma.

  15. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    Science.gov (United States)

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  16. Review: Receptor Targeted Nuclear Imaging of Breast Cancer.

    Science.gov (United States)

    Dalm, Simone U; Verzijlbergen, John Fred; De Jong, Marion

    2017-01-26

    Receptor targeted nuclear imaging directed against molecular markers overexpressed on breast cancer (BC) cells offers a sensitive and specific method for BC imaging. Currently, a few targets such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), somatostatin receptor (SSTR), and the gastrin releasing peptide receptor (GRPR) are being investigated for this purpose. Expression of these targets is BC subtype dependent and information that can be gained from lesion visualization is dependent on the target; ER-targeting radiotracers, e.g., can be used to monitor response to anti-estrogen treatment. Here we give an overview of the studies currently under investigation for receptor targeted nuclear imaging of BC. Main findings of imaging studies are summarized and (potential) purposes of lesion visualization by targeting these molecular markers are discussed. Since BC is a very heterogeneous disease and molecular target expression can vary per subtype, but also during disease progression or under influence of treatment, radiotracers for selected imaging purposes should be chosen carefully.

  17. Review: Receptor Targeted Nuclear Imaging of Breast Cancer

    Science.gov (United States)

    Dalm, Simone U.; Verzijlbergen, John Fred; De Jong, Marion

    2017-01-01

    Receptor targeted nuclear imaging directed against molecular markers overexpressed on breast cancer (BC) cells offers a sensitive and specific method for BC imaging. Currently, a few targets such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), somatostatin receptor (SSTR), and the gastrin releasing peptide receptor (GRPR) are being investigated for this purpose. Expression of these targets is BC subtype dependent and information that can be gained from lesion visualization is dependent on the target; ER-targeting radiotracers, e.g., can be used to monitor response to anti-estrogen treatment. Here we give an overview of the studies currently under investigation for receptor targeted nuclear imaging of BC. Main findings of imaging studies are summarized and (potential) purposes of lesion visualization by targeting these molecular markers are discussed. Since BC is a very heterogeneous disease and molecular target expression can vary per subtype, but also during disease progression or under influence of treatment, radiotracers for selected imaging purposes should be chosen carefully. PMID:28134770

  18. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  19. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  20. Evolution: functional evolution of nuclear structure.

    Science.gov (United States)

    Wilson, Katherine L; Dawson, Scott C

    2011-10-17

    The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These components include diverse chromatin-binding membrane proteins, and membrane proteins with adhesive lumenal domains that may have contributed to the evolution of nuclear membrane architecture. Further discoveries about the nucleoskeleton suggest that the evolution of nuclear structure was tightly coupled to genome partitioning during mitosis.

  1. Nuclear receptors : mediators and modifiers of inflammation-induced cholestasis

    NARCIS (Netherlands)

    Mulder, Jaap; Karpen, Saul J.; Tietge, Uwe J. F.; Kuipers, Folkert

    2009-01-01

    Inflammation-induced cholestasis (IIC) is a frequently occurring phenomenon. A central role in its pathogenesis is played by nuclear receptors (NRs). These ligand-activated transcription factors not only regulate basal expression of hepatobiliary transport systems, but also mediate adaptive response

  2. NucleaRDB: information system for nuclear receptors.

    NARCIS (Netherlands)

    Vroling, B.; Thorne, D.; McDermott, P.; Joosten, H.J.; Attwood, T.K.; Pettifer, S.; Vriend, G.

    2012-01-01

    The NucleaRDB is a Molecular Class-Specific Information System that collects, combines, validates and disseminates large amounts of heterogeneous data on nuclear hormone receptors. It contains both experimental and computationally derived data. The data and knowledge present in the NucleaRDB can be

  3. NucleaRDB: information system for nuclear receptors.

    NARCIS (Netherlands)

    Vroling, B.; Thorne, D.; McDermott, P.; Joosten, H.J.; Attwood, T.K.; Pettifer, S.; Vriend, G.

    2012-01-01

    The NucleaRDB is a Molecular Class-Specific Information System that collects, combines, validates and disseminates large amounts of heterogeneous data on nuclear hormone receptors. It contains both experimental and computationally derived data. The data and knowledge present in the NucleaRDB can be

  4. Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent.

    Science.gov (United States)

    Kren, Nancy P; Zagon, Ian S; McLaughlin, Patricia J

    2016-02-01

    Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner.

  5. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    Science.gov (United States)

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B.

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  6. PPARs: Nuclear Receptors Controlled by, and Controlling, Nutrient Handling through Nuclear and Cytosolic Signaling

    Directory of Open Access Journals (Sweden)

    Maria Moreno

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs, which are known to regulate lipid homeostasis, are tightly controlled by nutrient availability, and they control nutrient handling. In this paper, we focus on how nutrients control the expression and action of PPARs and how cellular signaling events regulate the action of PPARs in metabolically active tissues (e.g., liver, skeletal muscle, heart, and white adipose tissue. We address the structure and function of the PPARs, and their interaction with other nuclear receptors, including PPAR cross-talk. We further discuss the roles played by different kinase pathways, including the extracellular signal-regulated kinases/mitogen-activated protein kinase (ERK MAPK, AMP-activated protein kinase (AMPK, Akt/protein kinase B (Akt/PKB, and the NAD+-regulated protein deacetylase SIRT1, serving to control the activity of the PPARs themselves as well as that of a key nutrient-related PPAR coactivator, PPARγ coactivator-1α (PGC-1α. We also highlight how currently applied nutrigenomic strategies will increase our understanding on how nutrients regulate metabolic homeostasis through PPAR signaling.

  7. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  8. Nuclear modifications of Parton Distribution Functions

    Science.gov (United States)

    Adeluyi, Adeola Adeleke

    This dissertation addresses a central question of modern nuclear physics: how does the behavior of fundamental degrees of freedom (quarks and gluons) change in the nuclear environment? This is an important aspect of experimental studies at current facilities such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Laboratory (JLAB). It is also highly relevant to planned experimental efforts at the Large Hadron Collider (LHC) and the future Electron Ion Collider (EIC). All these facilities probe matter via collisions involving nuclei; thus complications arise due to the presence of the attendant nuclear medium. Theoretical efforts to understand and interpret experimental results from such collisions are therefore largely dependent on the resolution of this question. The development of nuclear physics demonstrates that theoretical description is most efficient in terms of the effective degrees of freedom relevant to the scale (energy) being probed. Thus at low energies, nuclei are described as bound states of protons and neutrons (nucleons). At higher energies, the nucleons are no longer elementary, but are revealed to possess an underlying substructure: they are made up of quarks and gluons, collectively termed partons. The mometum distributions of these partons in the nucleon are referred to as Parton Distribution Functions (PDFs). Parton distributions can be determined from experimental measurements of structure functions. The ratio of nuclear structure functions to nucleon structure functions (generically referred to as nuclear ratio) is a measure of the nuclear modifications of the free nucleon PDFs. Thus a study of the nuclear ratio suffices to gain an understanding of nuclear modifications. In this dissertation we aim to describe theoretically nuclear modifications in a restricted region where the nuclear ratio is less than unity, the so

  9. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    Directory of Open Access Journals (Sweden)

    Chandra Prakash

    2015-12-01

    Full Text Available Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs, and transport proteins coordinate drug influx (phase 0 and drug/drug-metabolite efflux (phase III. Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs, i.e. PXR (pregnane X receptor and CAR (constitutive androstane receptor, and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR, due to transactivation of xenobiotic-response elements (XREs present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse

  10. DMPD: Nuclear receptor signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14698033 Nuclear receptor signaling in macrophages. Valledor AF, Ricote M. Biochem ...Pharmacol. 2004 Jan 15;67(2):201-12. (.png) (.svg) (.html) (.csml) Show Nuclear receptor signaling in macrop...hages. PubmedID 14698033 Title Nuclear receptor signaling in macrophages. Authors Valledor AF, Ricote M. Pub

  11. Nuclear exportin receptor CAS regulates the NPI-1-mediated nuclear import of HIV-1 Vpr.

    Directory of Open Access Journals (Sweden)

    Eri Takeda

    Full Text Available Vpr, an accessory protein of human immunodeficiency virus type 1, is a multifunctional protein that plays an important role in viral replication. We have previously shown that the region between residues 17 and 74 of Vpr (Vpr(N17C74 contained a bona fide nuclear localization signal and it is targeted Vpr(N17C74 to the nuclear envelope and then imported into the nucleus by importin α (Impα alone. The interaction between Impα and Vpr is important not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages; however, it was unclear whether full-length Vpr enters the nucleus in a manner similar to Vpr(N17C74. This study investigated the nuclear import of full-length Vpr using the three typical Impα isoforms, Rch1, Qip1 and NPI-1, and revealed that full-length Vpr is selectively imported by NPI-1, but not Rch1 and Qip1, after it makes contact with the perinuclear region in digitonin-permeabilized cells. A binding assay using the three Impα isoforms showed that Vpr bound preferentially to the ninth armadillo repeat (ARM region (which is also essential for the binding of CAS, the export receptor for Impα in all three isoforms. Comparison of biochemical binding affinities between Vpr and the Impα isoforms using surface plasmon resonance analysis demonstrated almost identical values for the binding of Vpr to the full-length isoforms and to their C-terminal domains. By contrast, the data showed that, in the presence of CAS, Vpr was released from the Vpr/NPI-1 complex but was not released from Rch1 or Qip1. Finally, the NPI-1-mediated nuclear import of Vpr was greatly reduced in semi-intact CAS knocked-down cells and was recovered by the addition of exogenous CAS. This report is the first to show the requirement for and the regulation of CAS in the functioning of the Vpr-Impα complex.

  12. Identification of a putative nuclear localization sequence within ANG II AT(1A) receptor associated with nuclear activation.

    Science.gov (United States)

    Morinelli, Thomas A; Raymond, John R; Baldys, Aleksander; Yang, Qing; Lee, Mi-Hye; Luttrell, Louis; Ullian, Michael E

    2007-04-01

    Angiotensin II (ANG II) type 1 (AT(1)) receptors, similar to other G protein-coupled receptors, undergo desensitization and internalization, and potentially nuclear localization, subsequent to agonist interaction. Evidence suggests that the carboxy-terminal tail may be involved in receptor nuclear localization. In the present study, we examined the carboxy-terminal tail of the receptor for specific regions responsible for the nuclear translocation phenomenon and resultant nuclear activation. Human embryonic kidney cells stably expressing either a wild-type AT(1A) receptor-green fluorescent protein (AT(1A)R/GFP) construct or a site-directed mutation of a putative nuclear localization sequence (NLS) [K307Q]AT(1A)R/GFP (KQ/AT(1A)R/GFP), were examined for differences in receptor nuclear trafficking and nuclear activation. Receptor expression, intracellular signaling, and ANG II-induced internalization of the wild-type/GFP construct and of the KQ/AT(1A)R/GFP mutant was similar. Laser scanning confocal microscopy showed that in cells expressing the AT(1A)R/GFP, trafficking of the receptor to the nuclear area and colocalization with lamin B occurred within 30 min of ANG II (100 nM) stimulation, whereas the KQ/AT(1A)R/GFP mutant failed to demonstrate nuclear localization. Immunoblotting of nuclear lysates with an anti-GFP antibody confirmed these observations. Nuclear localization of the wild-type receptor correlated with increase transcription for both EGR-1 and PTGS-2 genes while the nuclear-deficient KQ/AT(1A)R/GFP mutant demonstrated increases for only the EGR-1 gene. These results suggest that a NLS (KKFKKY; aa307-312) is located within the cytoplasmic tail of the AT(1A) receptor and that nuclear localization of the receptor corresponds with specific activation of transcription for the COX-2 gene PTGS-2.

  13. Meson's correlation functions in a nuclear medium

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2016-09-01

    Full Text Available We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.

  14. Bile Acid Nuclear Receptor Farnesoid X Receptor: Therapeutic Target for Nonalcoholic Fatty Liver Disease

    Science.gov (United States)

    Kim, Sun-Gi; Kim, Byung-Kwon; Kim, Kyumin

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the causes of fatty liver, occurring when fat is accumulated in the liver without alcohol consumption. NAFLD is the most common liver disorder in advanced countries. NAFLD is a spectrum of pathology involving hepatic steatosis with/without inflammation and nonalcoholic steatohepatitis with accumulation of hepatocyte damage and hepatic fibrosis. Recent studies have revealed that NAFLD results in the progression of cryptogenic cirrhosis that leads to hepatocarcinoma and cardiovascular diseases such as heart failure. The main causes of NAFLD have not been revealed yet, metabolic syndromes including obesity and insulin resistance are widely accepted for the critical risk factors for the pathogenesis of NAFLD. Nuclear receptors (NRs) are transcriptional factors that sense environmental or hormonal signals and regulate expression of genes, involved in cellular growth, development, and metabolism. Several NRs have been reported to regulate genes involved in energy and xenobiotic metabolism and inflammation. Among various NRs, farnesoid X receptor (FXR) is abundantly expressed in the liver and a key regulator to control various metabolic processes in the liver. Recent studies have shown that NAFLD is associated with inappropriate function of FXR. The impact of FXR transcriptional activity in NAFLD is likely to be potential therapeutic strategy, but still requires to elucidate underlying potent therapeutic mechanisms of FXR for the treatment of NAFLD. This article will focus the physiological roles of FXR and establish the correlation between FXR transcriptional activity and the pathogenesis of NAFLD. PMID:28029021

  15. Bile Acid Nuclear Receptor Farnesoid X Receptor: Therapeutic Target for Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Sun-Gi Kim

    2016-12-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is one of the causes of fatty liver, occurring when fat is accumulated in the liver without alcohol consumption. NAFLD is the most common liver disorder in advanced countries. NAFLD is a spectrum of pathology involving hepatic steatosis with/without inflammation and nonalcoholic steatohepatitis with accumulation of hepatocyte damage and hepatic fibrosis. Recent studies have revealed that NAFLD results in the progression of cryptogenic cirrhosis that leads to hepatocarcinoma and cardiovascular diseases such as heart failure. The main causes of NAFLD have not been revealed yet, metabolic syndromes including obesity and insulin resistance are widely accepted for the critical risk factors for the pathogenesis of NAFLD. Nuclear receptors (NRs are transcriptional factors that sense environmental or hormonal signals and regulate expression of genes, involved in cellular growth, development, and metabolism. Several NRs have been reported to regulate genes involved in energy and xenobiotic metabolism and inflammation. Among various NRs, farnesoid X receptor (FXR is abundantly expressed in the liver and a key regulator to control various metabolic processes in the liver. Recent studies have shown that NAFLD is associated with inappropriate function of FXR. The impact of FXR transcriptional activity in NAFLD is likely to be potential therapeutic strategy, but still requires to elucidate underlying potent therapeutic mechanisms of FXR for the treatment of NAFLD. This article will focus the physiological roles of FXR and establish the correlation between FXR transcriptional activity and the pathogenesis of NAFLD.

  16. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2015-03-01

    Full Text Available The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs are ligands of farnesoid X receptor (FXR, a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.

  17. Progress on nuclear modifications of structure functions

    Directory of Open Access Journals (Sweden)

    Kumano S.

    2016-01-01

    Full Text Available We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrinooscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function b1 is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact suggests that a new hadronic phenomenon should exist in the tensor-polarized deuteron at high energies, and it will be experimentally investigated at JLab from the end of 2010’s.

  18. Chromatin remodeling regulated by steroid and nuclear receptors

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Coactivators and corepressors regulate transcription by controlling interactions between sequence-specific transcription factors,the basal transcriptional machinery and the chromatin environment,This review consider the access of nuclear and steroid receptors to chromatin,their use of corepressors and coactivators to modify chromatin structure and the implications for transcriptional control.The assembly of specific nucleoprotein architectures and targeted histone modification emerge as central controlling elements for gene expression.

  19. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  20. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  1. Covariant density functional theory for nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Badarch, U.

    2007-07-01

    The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)

  2. The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract.

    Science.gov (United States)

    Kowalik, Magdalena K; Rekawiecki, Robert; Kotwica, Jan

    2013-12-01

    Progesterone produced by the corpus luteum (CL) is a key regulator of normal cyclical reproductive functions in the females of mammalian species. The physiological effects of progesterone are mediated by the canonical genomic pathway after binding of progesterone to its specific nuclear progesterone receptor (PGR), which acts as a ligand-activated transcription factor and has two main isoforms, PGRA and PGRB. These PGR isoforms play different roles in the cell; PGRB acts as an activator of progesterone-responsive genes, while PGRA can inhibit the activity of PGRB. The ratio of these isoforms changes during the estrous cycle and pregnancy, and it corresponds to the different levels of progesterone signaling occurring in the reproductive tract. Progesterone exerts its effects on cells also by a non-genomic mechanism by the interaction with the progesterone-binding membrane proteins including the progesterone membrane component (PGRMC) 1 and 2, and the membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and subsequently they can initiate specific cell responses or modulate genomic cell responses. The diversity of progesterone receptors and their cellular actions enhances the role of progesterone as a factor regulating the function of the reproductive system and other organs. This paper deals with the possible involvement of nuclear and membrane-bound progesterone receptors in the function of target cells within the female reproductive tract.

  3. A Comprehensive Nuclear Receptor Network for Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ralf Kittler

    2013-02-01

    Full Text Available In breast cancer, nuclear receptors (NRs play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer.

  4. Adenosine Receptors: Expression, Function and Regulation

    Directory of Open Access Journals (Sweden)

    Sandeep Sheth

    2014-01-01

    Full Text Available Adenosine receptors (ARs comprise a group of G protein-coupled receptors (GPCR which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.

  5. Bisphenol A affects androgen receptor function via multiple mechanisms.

    Science.gov (United States)

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR.

  6. Nuclear export of RNA: Different sizes, shapes and functions.

    Science.gov (United States)

    Williams, Tobias; Ngo, Linh H; Wickramasinghe, Vihandha O

    2017-09-01

    Export of protein-coding and non-coding RNA molecules from the nucleus to the cytoplasm is critical for gene expression. This necessitates the continuous transport of RNA species of different size, shape and function through nuclear pore complexes via export receptors and adaptor proteins. Here, we provide an overview of the major RNA export pathways in humans, highlighting the similarities and differences between each. Its importance is underscored by the growing appreciation that deregulation of RNA export pathways is associated with human diseases like cancer. Copyright © 2017. Published by Elsevier Ltd.

  7. Building a Universal Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe A. [Michigan State Univ., East Lansing, MI (United States); Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  8. Building a Universal Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold:  First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties;  Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data;  Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  9. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  10. Current Developments in Nuclear Density Functional Methods

    CERN Document Server

    Dobaczewski, J

    2010-01-01

    Density functional theory (DFT) became a universal approach to compute ground-state and excited configurations of many-electron systems held together by an external one-body potential in condensed-matter, atomic, and molecular physics. At present, the DFT strategy is also intensely studied and applied in the area of nuclear structure. The nuclear DFT, a natural extension of the self-consistent mean-field theory, is a tool of choice for computations of ground-state properties and low-lying excitations of medium-mass and heavy nuclei. Over the past thirty-odd years, a lot of experience was accumulated in implementing, adjusting, and using the density-functional methods in nuclei. This research direction is still extremely actively pursued. In particular, current developments concentrate on (i) attempts to improve the performance and precision delivered by the nuclear density-functional methods, (ii) derivations of density functionals from first principles rooted in the low-energy chromodynamics and effective th...

  11. The roles of nuclear receptors CAR and PXR in hepatic energy metabolism.

    Science.gov (United States)

    Konno, Yoshihiro; Negishi, Masahiko; Kodama, Susumu

    2008-01-01

    Nuclear receptors constitutive active/androstane receptor (CAR) and pregnane X receptor (PXR) were originally characterized as transcription factors regulating the hepatic genes that encode drug metabolizing enzymes. Recent works have now revealed that these nuclear receptors also play the critical roles in modulating hepatic energy metabolism. While CAR and PXR directly bind to their response sequences phenobarbital-responsive enhancer module (PBREM) and xenobiotic responsive enhancer module (XREM) in the promoter of target genes to increase drug metabolism, the receptors also cross talk with various hormone responsive transcription factors such as forkhead box O1 (FoxO1), forkhead box A2 (FoxA2), cAMP-response element binding protein, and peroxisome proliferator activated receptor gamma coactivator 1alpha (PGC 1alpha) to decrease energy metabolism through down-regulating gluconeogenesis, fatty acid oxidation and ketogenesis and up-regulating lipogenesis. In addition, CAR modulates thyroid hormone activity by regulating type 1 deiodinase in the regenerating liver. Thus, CAR and PXR are now placed at the crossroad where both xenobiotics and endogenous stimuli co-regulate liver function.

  12. DMPD: Nuclear receptors in macrophages: a link between metabolism and inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18022390 Nuclear receptors in macrophages: a link between metabolism and inflammati...on. Szanto A, Roszer T. FEBS Lett. 2008 Jan 9;582(1):106-16. Epub 2007 Nov 20. (.png) (.svg) (.html) (.csml) Show Nuclear... receptors in macrophages: a link between metabolism and inflammation. PubmedID 18022390 Title Nuclear

  13. Mycotoxins and Nuclear Receptors: A Still Underexplored Issue

    Directory of Open Access Journals (Sweden)

    C. Dall'Asta

    2016-12-01

    Full Text Available Mycotoxins are fungal secondary metabolites that can be found in food commodities worldwide. They exert a wide range of adverse effects towards humans and animals. Although toxicological studies have addressed these food contaminants over decades, their mode of actions as well as their synergistic effects are still to be deeply clarified. Among the toxicological targets, nuclear receptors have been identified by several studies. Besides the estrogenic effect, a wider range of endocrine and neuroendocrine disrupting effects have been reported so far. This review is aimed at addressing the recent advances in toxicology, and at highlighting possible gaps of knowledge.

  14. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  15. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    Science.gov (United States)

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  16. Nuclear Energy Density Functional for KIDS

    CERN Document Server

    Gil, Hana; Hyun, Chang Ho; Park, Tae-Sun; Oh, Yongseok

    2016-01-01

    The density functional theory (DFT) is based on the existence and uniqueness of a universal functional $E[\\rho]$, which determines the dependence of the total energy on single-particle density distributions. However, DFT says nothing about the form of the functional. Our strategy is to first look at what we know, from independent considerations, about the analytical density dependence of the energy of nuclear matter and then, for practical applications, to obtain an appropriate density-dependent effective interaction by reverse engineering. In a previous work on homogeneous matter, we identified the most essential terms to include in our "KIDS" functional, named after the early-stage participating institutes. We now present first results for finite nuclei, namely the energies and radii of $^{16,28}$O, $^{40,60}$Ca.

  17. Mammalian odorant receptors: functional evolution and variation.

    Science.gov (United States)

    Jiang, Yue; Matsunami, Hiroaki

    2015-10-01

    In mammals, the perception of smell starts with the activation of odorant receptors (ORs) by volatile molecules in the environment. The mammalian OR repertoire has been subject to rapid evolution, and is highly diverse within the human population. Recent advances in the functional expression and ligand identification of ORs allow for functional analysis of OR evolution, and reveal that changes in OR protein sequences translate into high degrees of functional variations. Moreover, in several cases the functional variation of a single OR affects the perception of its cognate odor ligand, providing clues as to how an odor is coded at the receptor level.

  18. The NR4A nuclear receptors as potential targets for anti-aging interventions.

    Science.gov (United States)

    Paillasse, Michael R; de Medina, Philippe

    2015-02-01

    The development of innovative anti-aging strategy is urgently needed to promote healthy aging and overcome the occurrence of age-related diseases such as cancer, diabetes, cardiovascular and neurodegenerative diseases. Genomic instability, deregulated nutrient sensing and mitochondrial dysfunction are established hallmark of aging. Interestingly, the orphan nuclear receptors NR4A subfamily (NR4A1, NR4A2 and NR4A3) are nutrient sensors that trigger mitochondria biogenesis and improve intrinsic mitochondrial function. In addition, NR4A receptors are components of DNA repair machinery and promote DNA repair. Members of the NR4A subfamily should also be involved in anti-aging properties of hormesis since these receptors are induced by various form of cellular stress and stimulate protective cells response such as anti-oxidative activity and DNA repair. Previous studies reported that NR4A nuclear receptors subfamily is potential therapeutic targets for the treatment of age related disorders (e.g. metabolic syndromes, diabetes and neurodegenerative diseases). Consequently, we propose that targeting NR4A receptors might constitute a new approach to delay aging and the onset of diseases affecting our aging population.

  19. Meaning of the nuclear wave function

    CERN Document Server

    Terry, John D

    2016-01-01

    Background The intense current experimental interest in studying the structure of the deuteron and using it to enable accurate studies of neutron structure motivate us to examine the four-dimensional space-time nature of the nuclear wave function, and the various approximations used to reduce it to an object that depends only on three spatial variables. Purpose: The aim is to determine if the ability to understand and analyze measured experimental cross sections is compromised by making the reduction from four to three dimensions. Method: Simple, exactly-calculable, covariant models of a bound-state wave state wave function (a scalar boson made of two constituent-scalar bosons) with parameters chosen to represent a deuteron are used to investigate the accuracy of using different approximations to the nuclear wave function to compute the quasi-elastic scattering cross section. Four different versions of the wave function are defined (light-front spectator, light-front, light-front with scaling and non-relativi...

  20. Clustering nuclear receptors in liver regeneration identifies candidate modulators of hepatocyte proliferation and hepatocarcinoma.

    Directory of Open Access Journals (Sweden)

    Michele Vacca

    Full Text Available BACKGROUND & AIMS: Liver regeneration (LR is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis. METHODS & RESULTS: We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs and oxysterol (liver X receptors, Lxrs sensors, circadian masters RevErbα and RevErbβ, glucocorticoid receptor (Gr and constitutive androxane receptor (Car. In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrβ; Pparδ as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARδ agonist GW501516 reduces the proliferative potential of hepatoma cells. CONCLUSIONS: Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation.

  1. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.

    Science.gov (United States)

    Preidis, Geoffrey A; Kim, Kang Ho; Moore, David D

    2017-04-03

    The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

  2. Role of nuclear receptors in breast cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Alessio; Papi; Marina; Orlandi

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells(CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs(BCSCs) are likely to sustain the growth of the primary tumour mass, as wellas to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and proinflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the antiinflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.

  3. Atypical nuclear localization of VIP receptors in glioma cell lines and patients.

    Science.gov (United States)

    Barbarin, Alice; Séité, Paule; Godet, Julie; Bensalma, Souheyla; Muller, Jean-Marc; Chadéneau, Corinne

    2014-11-28

    An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  4. Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells

    Science.gov (United States)

    Baek, Sung Hee; Ohgi, Kenneth A.; Nelson, Charles A.; Welsbie, Derek; Chen, Charlie; Sawyers, Charles L.; Rose, David W.; Rosenfeld, Michael G.

    2006-01-01

    The androgen receptor not only mediates prostate development but also serves as a key regulator of primary prostatic cancer growth. Although initially responsive to selective androgen receptor modulators (SARMs), which cause recruitment of the nuclear receptor–corepressor (N-CoR) complex, resistance invariably occurs, perhaps in response to inflammatory signals. Here we report that dismissal of nuclear receptor–corepressor complexes by specific signals or androgen receptor overexpression results in recruitment of many of the cohorts of coactivator complexes that permits SARMs and natural ligands to function as agonists. SARM-bound androgen receptors appear to exhibit failure to recruit specific components of the coactivators generally bound by liganded nuclear receptors, including cAMP response element-binding protein (CBP)/p300 or coactivator-associated arginine methyltransferase 1 (CARM1) to the SARM-bound androgen receptor, although still causing transcriptional activation of androgen receptor target genes. SARM-bound androgen receptors use distinct LXXLL (L, leucine; X, any amino acid) helices in the p160 nuclear receptor interaction domains that may impose selective allosteric effects, providing a component of the molecular basis of differential responses to different classes of ligands by androgen receptor. PMID:16492776

  5. Correlated Strength in Nuclear Spectral Function

    CERN Document Server

    Rohe, D; Asaturyan, R; Baker, O K; Bültmann, S; Carasco, C C; Day, D; Ent, R; Fenker, H C; Garrow, K; Gasparian, A; Gueye, P; Hauger, M; Honegger, A; Jourdan, J; Keppel, C E; Kubon, G; Lindgren, R; Lung, A; Mack, D J; Mitchell, J H; Mkrtchyan, H G; Mocelj, D; Normand, K; Petitjean, T; Rondon, Oscar A; Segbefia, E; Sick, I; Stepanyan, S; Tang, L; Tiefenbacher, F; Vulcan, W F; Warren, G; Wood, S A; Yuan, L; Zeier, M; Zhu, H; Zihlmann, B

    2004-01-01

    We have carried out an (e,e'p) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment confirms by direct measurement the correlated strength predicted by theory.

  6. Correlated Strength in the Nuclear Spectral Function

    Energy Technology Data Exchange (ETDEWEB)

    D. Rohe; C. S. Armstrong; R. Asaturyan; O. K. Baker; S. Bueltmann; C. Carasco; D. Day; R. Ent; H. C. Fenker; K. Garrow; A. Gasparian; P. Gueye; M. Hauger; A. Honegger; J. Jourdan; C. E. Keppel; G. Kubon; R. Lindgren; A. Lung; D. J. Mack; J. H. Mitchell; H. Mkrtchyan; D. Mocelj; K. Normand; T. Petitjean; O. Rondon; E. Segbefia; I. Sick; S. Stepanyan; L. Tang; F. Tiefenbacher; W. F. Vulcan; G. Warren; S. A. Wood; L. Yuan; M. Zeier; H. Zhu; B. Zihlmann

    2004-10-01

    We have carried out an (e,ep) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment locates by direct measurement the correlated strength predicted by theory.

  7. Nuclear Structure Functions from Constituent Quark Model

    CERN Document Server

    Arash, F; Arash, Firooz; Atashbar-Tehrani, Shahin

    1999-01-01

    We have used the notion of the constituent quark model of nucleon, where a constituent quark carries its own internal structure, and applied it to determine nuclear structure functions ratios. It is found that the description of experimental data require the inclusion of strong shadowing effect for $x<0.01$. Using the idea of vector meson dominance model and other ingredients this effect is calculated in the context of the constituent quark model. It is rather striking that the constituent quark model, used here, gives a good account of the data for a wide range of atomic mass number from A=4 to A=204.

  8. The molecular mechanism of bisphenol A (BPA as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD simulations.

    Directory of Open Access Journals (Sweden)

    Lanlan Li

    Full Text Available Bisphenol A (BPA can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA.

  9. Conformational regulation of urokinase receptor function

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Jacobsen, Benedikte; Kriegbaum, Mette C

    2011-01-01

    PA per se into the hydrophobic ligand binding cavity of uPAR that modulates the function of this receptor. Based on these data, we now propose a model in which the inherent interdomain mobility in uPAR plays a major role in modulating its function. Particularly one uPAR conformation, which is stabilized...

  10. Nuclear receptor 4A (NR4A) family - orphans no more.

    Science.gov (United States)

    Safe, Stephen; Jin, Un-Ho; Morpurgo, Benjamin; Abudayyeh, Ala; Singh, Mandip; Tjalkens, Ronald B

    2016-03-01

    The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by multiple stressors, and the NR4A receptors play an important role in maintaining cellular homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, cardiovascular and neurological functions and also in inflammation and inflammatory diseases and in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-specific functions. Although endogenous ligands for NR4A receptors have not been identified, there is increasing evidence that structurally-diverse synthetic molecules can directly interact with the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, there are opportunities for the future development of NR4A ligands for clinical applications in treating multiple health problems including metabolic, neurologic and cardiovascular diseases, other inflammatory conditions, and cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nanostructured sensors containing immobilized nuclear receptors for thyroid hormone detection.

    Science.gov (United States)

    Bendo, Luana; Casanova, Monise; Figueira, Ana Carolina M; Polikarpov, Igor; Zucolotto, Valtencir

    2014-05-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptors (NRs) superfamily, being encoded by two genes: TRa and TRbeta. In this paper, the ligand-binding domain (LBD) of the TRbeta1 isoform was immobilized on the surface of nanostructured electrodes for TR detection. The platforms containing TRbeta1-LBD were applied to the detection of specific ligand agonists, including the natural hormones T3 (triiodothyronine) and T4 (thyroxine), and the synthetic agonists TRIAC (3,5,3'-triiodothyroacetic acid) and GC-1 [3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl phenoxy) acetic acid]. Detection was performed via impedance spectroscopy. The biosensors were capable of distinguishing between the thyroid hormones T3 and T4, and/or the analogues TRIAC and GC-1 at concentrations as low as 50 nM. The detection and separation of thyroid hormones and analogue ligands by impedance techniques represents an innovative tool in the field of nanomedicine because it allows the design of inexpensive devices for the rapid and real-time detection of distinct ligand/receptor systems.

  12. Hepatic drug transporters and nuclear receptors: Regulation by therapeutic agents

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The canalicular membrane represents the excretory pole of hepatocytes. Bile is an important route of elimina-tion of potentially toxic endo- and xenobiotics (including drugs and toxins), mediated by the major canalicular transporters: multidrug resistance protein 1 (MDR1, ABCB1), also known as P-glycoprotein, multidrug re-sistance-associated protein 2 (MRP2, ABCC2), and the breast cancer resistance protein (BCRP, ABCG2). Their activities depend on regulation of expression and proper localization at the canalicular membrane, as regulated by transcriptional and post-transcriptional events, re-spectively. At transcriptional level, specific nuclear re-ceptors (NR)s modulated by ligands, co-activators and co-repressors, mediate the physiological requirements of these transporters. This complex system is also re-sponsible for alterations occurring in specific liver pa-thologies. We briefly describe the major Class Ⅱ NRs, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and their role in regulating expression of multidrug resistance proteins. Several therapeutic agents regulate the expression of relevant drug trans-porters through activation/inactivation of these NRs. We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition, involve CAR or PXR as mediators.

  13. The nuclear matrix and virus function.

    Science.gov (United States)

    Deppert, W; Schirmbeck, R

    1995-01-01

    Replication of the small DNA tumor virus, simian virus 40 (SV40), is largely dependent on host cell functions, because SV40, in addition to virion proteins, codes only for a few regulatory proteins, the most important one being the SV40 large tumor antigen (T-antigen). This renders SV40 an excellent tool for studying complex cellular and viral processes. In this review we summarize and discuss data providing evidence for virtually all major viral processes during the life cycle of SV40 from viral DNA replication to virion formation, being performed at or within structural systems of the nucleus, in particular the chromatin and the nuclear matrix. These data further support the concept that viral replication in the nucleus is structurally organized and demonstrate that viruses are excellent tools for analyzing the underlying cellular processes. The analysis of viral replication at nuclear structures might also provide a means for specifically interfering with viral processes without interfering with the corresponding cellular functions.

  14. Controlling Androgen receptor nuclear localization by dendrimer conjugates

    Science.gov (United States)

    Wang, Haoyu

    Androgen Receptor (AR) antagonists, such as bicalutamide and flutamide have been used widely in the treatment of prostate cancer. Although initial treatment is effective, prostate cancer cells often acquire antiandrogen resistance with prolonged treatment. AR over-expression and AR mutations contribute to the development of antiandrogen resistant cancer. Second generation antiandrogens such as enzalutamide are more effective and show reduced AR nuclear localization. In this study, derivatives of PAN52, a small molecule antiandrogen previously developed in our lab, were conjugated to the surface of generation 4 and generation 6 PAMAM dendrimers to obtain antiandrogen PAMAM dendrimer conjugates (APDC). APDCs readily enter cells and associate with AR in the cytoplasm. Due to their large size and positive charge, they can not enter the nucleus, thus retaining AR in the cytoplasm. In addition, APDCs are effective in decreasing AR mediated transcription and cell proliferation. APDC is the first AR antagonists that inhibit DHT-induced nuclear localization of AR. By inhibiting AR nuclear localization, APDC represents a new class of antiandrogens that offer an alternative approach to addressing antiandrogen-resistant prostate cancer. Lysine post-translational modification of AR Nuclear Localization Sequence (NLS) has great impact on AR cellular localization. It is of interest to understand which modifications modulate AR translocation into the nucleus. In this study, we prepared dendrimer-based acetyltransferase mimetic (DATM), DATM is able to catalytically acetylate AR in CWR22Rv1 cells, which will be a useful tool for studying AR modification effect on AR cellular localization. Derivatives of DATM, which transfer other chemical groups to AR, can be prepared similarly, and with more dendrimer based AR modification tools prepared in future, we will be able to understand and control AR cellular localization through AR modification.

  15. Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells.

    Science.gov (United States)

    Li, Zhaosha; Kruijt, J Kar; van der Sluis, Ronald J; Van Berkel, Theo J C; Hoekstra, Menno

    2013-04-01

    The liver consists of different cell types that together synchronize crucial roles in liver homeostasis. Since nuclear receptors constitute an important class of drug targets that are involved in a wide variety of physiological processes, we have composed the hepatic cell type-specific expression profile of nuclear receptors to uncover the pharmacological potential of liver-enriched nuclear receptors. Parenchymal liver cells (hepatocytes) and liver endothelial and Kupffer cells were isolated from virgin female C57BL/6 wild-type mice using collagenase perfusion and counterflow centrifugal elutriation. The hepatic expression pattern of 49 nuclear receptors was generated by real-time quantitative PCR using the NUclear Receptor Signaling Atlas (NURSA) program resources. Thirty-six nuclear receptors were expressed in total liver. FXR-α, EAR2, LXR-α, HNF4-α, and CAR were the most abundantly expressed nuclear receptors in liver parenchymal cells. In contrast, NUR77, COUP-TFII, LXR-α/β, FXR-α, and EAR2 were the most highly expressed nuclear receptors in endothelial and Kupffer cells. Interestingly, members of orphan receptor COUP-TF family showed a distinct expression pattern. EAR2 was highly and exclusively expressed in parenchymal cells, while COUP-TFII was moderately and exclusively expressed in endothelial and Kupffer cells. Of interest, the orphan receptor TR4 showed a similar expression pattern as the established lipid sensor PPAR-γ. In conclusion, our study provides the most complete quantitative assessment of the nuclear receptor distribution in liver reported to date. Our gene expression catalog suggests that orphan nuclear receptors such as COUP-TFII, EAR2, and TR4 may be of significant importance as novel targets for pharmaceutical interventions in liver.

  16. Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles.

    Science.gov (United States)

    Park, So-Jung; Kufareva, Irina; Abagyan, Ruben

    2010-05-01

    Nuclear receptors (NRs) are ligand dependent transcriptional factors and play a key role in reproduction, development, and homeostasis of organism. NRs are potential targets for treatment of cancer and other diseases such as inflammatory diseases, and diabetes. In this study, we present a comprehensive library of pocket conformational ensembles of thirteen human nuclear receptors (NRs), and test the ability of these ensembles to recognize their ligands in virtual screening, as well as predict their binding geometry, functional type, and relative binding affinity. 157 known NR modulators and 66 structures were used as a benchmark. Our pocket ensemble library correctly predicted the ligand binding poses in 94% of the cases. The models were also highly selective for the active ligands in virtual screening, with the areas under the ROC curves ranging from 82 to a remarkable 99%. Using the computationally determined receptor-specific binding energy offsets, we showed that the ensembles can be used for predicting selectivity profiles of NR ligands. Our results evaluate and demonstrate the advantages of using receptor ensembles for compound docking, screening, and profiling.

  17. The Nuclear Hormone Receptor PPARγ as a Therapeutic Target in Major Diseases

    Directory of Open Access Journals (Sweden)

    Martina Victoria Schmidt

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor γ (PPARγ belongs to the nuclear hormone receptor superfamily and regulates gene expression upon heterodimerization with the retinoid X receptor by ligating to peroxisome proliferator response elements (PPREs in the promoter region of target genes. Originally, PPARγ was identified as being essential for glucose metabolism. Thus, synthetic PPARγ agonists, the thiazolidinediones (TZDs, are used in type 2 diabetes therapy as insulin sensitizers. More recent evidence implied an important role for the nuclear hormone receptor PPARγ in controlling various diseases based on its anti-inflammatory, cell cycle arresting, and proapoptotic properties. In this regard, expression of PPARγ is not restricted to adipocytes, but is also found in immune cells, such as B and T lymphocytes, monocytes, macrophages, dendritic cells, and granulocytes. The expression of PPARγ in lymphoid organs and its modulation of macrophage inflammatory responses, lymphocyte proliferation, cytokine production, and apoptosis underscore its immune regulating functions. Moreover, PPARγ expression is found in tumor cells, where its activation facilitates antitumorigenic actions. This review provides an overview about the role of PPARγ as a possible therapeutic target approaching major, severe diseases, such as sepsis, cancer, and atherosclerosis.

  18. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, Monica A., E-mail: monicai@scripps.edu [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Nussler, Andreas K., E-mail: nuessler@uchir.me.tum.de [Department of Traumatology, Technical University Munich, Ismaningerstr. 22, 81675 Munich (Germany); Eichelbaum, Michel, E-mail: michel.eichelbaum@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Burk, Oliver, E-mail: oliver.burk@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany)

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  19. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    Science.gov (United States)

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  20. Loss of the nuclear receptor corepressor SLIRP compromises male fertility.

    Directory of Open Access Journals (Sweden)

    Shane M Colley

    Full Text Available Nuclear receptors (NRs and their coregulators play fundamental roles in initiating and directing gene expression influencing mammalian reproduction, development and metabolism. SRA stem Loop Interacting RNA-binding Protein (SLIRP is a Steroid receptor RNA Activator (SRA RNA-binding protein that is a potent repressor of NR activity. SLIRP is present in complexes associated with NR target genes in the nucleus; however, it is also abundant in mitochondria where it affects mitochondrial mRNA transcription and energy turnover. In further characterisation studies, we observed SLIRP protein in the testis where its localization pattern changes from mitochondrial in diploid cells to peri-acrosomal and the tail in mature sperm. To investigate the in vivo effects of SLIRP, we generated a SLIRP knockout (KO mouse. This animal is viable, but sub-fertile. Specifically, when homozygous KO males are crossed with wild type (WT females the resultant average litter size is reduced by approximately one third compared with those produced by WT males and females. Further, SLIRP KO mice produced significantly fewer progressively motile sperm than WT animals. Electron microscopy identified disruption of the mid-piece/annulus junction in homozygous KO sperm and altered mitochondrial morphology. In sum, our data implicates SLIRP in regulating male fertility, wherein its loss results in asthenozoospermia associated with compromised sperm structure and mitochondrial morphology.

  1. Nuclear receptors in inflammation control: repression by GR and beyond.

    Science.gov (United States)

    Chinenov, Yurii; Gupte, Rebecca; Rogatsky, Inez

    2013-11-05

    Inflammation is a protective response of organisms to pathogens, irritation or injury. Primary inflammatory sensors activate an array of signaling pathways that ultimately converge upon a few transcription factors such as AP1, NFκB and STATs that in turn stimulate expression of inflammatory genes to ultimately eradicate infection and repair the damage. A disturbed balance between activation and inhibition of inflammatory pathways can set the stage for chronic inflammation which is increasingly recognized as a key pathogenic component of autoimmune, metabolic, cardiovascular and neurodegenerative disorders. Nuclear receptors (NRs) are a large family of transcription factors many of which are known for their potent anti-inflammatory actions. Activated by small lipophilic ligands, NRs interact with a wide range of transcription factors, cofactors and chromatin-modifying enzymes, assembling numerous cell- and tissue-specific DNA-protein transcriptional regulatory complexes with diverse activities. Here we discuss established and emerging roles and mechanisms by which NRs and, in particular, the glucocorticoid receptor (GR) repress genes encoding cytokines, chemokines and other pro-inflammatory mediators.

  2. Pharmacology and function of melatonin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dubocovich, M.L.

    1988-09-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-(125I)iodomelatonin are identical. It is proposed that 2-(125I)iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-(125I)iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references.

  3. Mapping C-terminal transactivation domains of the nuclear HER family receptor tyrosine kinase HER3.

    Science.gov (United States)

    Brand, Toni M; Iida, Mari; Luthar, Neha; Wleklinski, Matthew J; Starr, Megan M; Wheeler, Deric L

    2013-01-01

    Nuclear localized HER family receptor tyrosine kinases (RTKs) have been observed in primary tumor specimens and cancer cell lines for nearly two decades. Inside the nucleus, HER family members (EGFR, HER2, and HER3) have been shown to function as co-transcriptional activators for various cancer-promoting genes. However, the regions of each receptor that confer transcriptional potential remain poorly defined. The current study aimed to map the putative transactivation domains (TADs) of the HER3 receptor. To accomplish this goal, various intracellular regions of HER3 were fused to the DNA binding domain of the yeast transcription factor Gal4 (Gal4DBD) and tested for their ability to transactivate Gal4 UAS-luciferase. Results from these analyses demonstrated that the C-terminal domain of HER3 (CTD, amino acids distal to the tyrosine kinase domain) contained potent transactivation potential. Next, nine HER3-CTD truncation mutants were constructed to map minimal regions of transactivation potential using the Gal4 UAS-luciferase based system. These analyses identified a bipartite region of 34 (B₁) and 27 (B₂) amino acids in length that conferred the majority of HER3's transactivation potential. Next, we identified full-length nuclear HER3 association and regulation of a 122 bp region of the cyclin D1 promoter. To understand how the B₁ and B₂ regions influenced the transcriptional functions of nuclear HER3, we performed cyclin D1 promoter-luciferase assays in which HER3 deleted of the B₁ and B₂ regions was severely hindered in regulating this promoter. Further, the overexpression of HER3 enhanced cyclin D1 mRNA expression, while HER3 deleted of its identified TADs was hindered at doing so. Thus, the ability for HER3 to function as a transcriptional co-activator may be dependent on specific C-terminal TADs.

  4. Multiple Novel Signals Mediate Thyroid Hormone Receptor Nuclear Import and Export*

    OpenAIRE

    Mavinakere, Manohara S.; Powers, Jeremy M.; Subramanian, Kelly S.; Roggero, Vincent R.; Allison, Lizabeth A.

    2012-01-01

    Thyroid hormone receptor (TR) is a member of the nuclear receptor superfamily that shuttles between the cytosol and nucleus. The fine balance between nuclear import and export of TR has emerged as a critical control point for modulating thyroid hormone-responsive gene expression; however, sequence motifs of TR that mediate shuttling are not fully defined. Here, we characterized multiple signals that direct TR shuttling. Along with the known nuclear localization signal in the hinge domain, we ...

  5. Characterization of nuclear localization signals and cytoplasmic retention region in the nuclear receptor CAR.

    Science.gov (United States)

    Kanno, Yuichiro; Suzuki, Motoyoshi; Nakahama, Takayuki; Inouye, Yoshio

    2005-09-10

    The constitutive androstane receptor (CAR) is a ligand/activator-dependent transactivation factor that resides in the cytoplasm and forms part of an as yet unidentified protein complex. Upon stimulation, CAR translocates into the nucleus where it modulates the transactivation of target genes. However, CAR exogenously expressed in rat liver RL-34 cells is located in the nucleus even in the absence of activators. By transiently transfecting RL-34 cells with various mutated rat CAR segments, we identified two nuclear localization signals: a basic amino acid-rich sequence (RRARQARRR) between amino acids 100 and 108; and an assembly of noncontiguous residues widely spread over amino acid residues 111 to 320 within the ligand binding domain. A C-terminal leucine-rich segment corresponding to a previously reported murine xenochemical response signal was not found to exhibit nuclear import activity in cultured cells. Using rat primary hepatocytes transfected with various CAR segments, we identified the region required for the cytoplasmic retention of CAR. Based on these results, the intracellular localization of CAR would be determined by the combined effects of nuclear localization signals, the xenochemical response signal, and the cytoplasmic retention region.

  6. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    Science.gov (United States)

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  7. A Structural Investigation into Oct4 Regulation by Orphan Nuclear Receptors, Germ Cell Nuclear Factor (GCNF) and Liver Receptor Homolog-1 (LRH-1).

    Science.gov (United States)

    Weikum, Emily R; Tuntland, Micheal L; Murphy, Michael N; Ortlund, Eric A

    2016-10-27

    Oct4 is a transcription factor required for maintaining pluripotency and self-renewal in stem cells. Prior to differentiation, Oct4 must be silenced to allow for the development of the three germ layers in the developing embryo. This fine-tuning is controlled by the nuclear receptors, liver receptor homolog-1 and germ cell nuclear factor. Liver receptor homolog-1 is responsible for driving the expression of Oct4 where germ cell nuclear factor represses its expression upon differentiation. Both receptors bind to a DR0 motif located within the Oct4 promoter. Here, we present the first structure of mouse germ cell nuclear factor DNA binding domain in complex with the Oct4 DR0. The overall structure revealed two molecules bound in a head-to-tail fashion on opposite sides of the DNA. Additionally, we solved the structure of the human liver receptor homolog-1 DNA binding domain bound to the same element. We explore the structural elements that govern Oct4 recognition by these two nuclear receptors.

  8. Two-level convolution formula for nuclear structure function

    Science.gov (United States)

    Ma, Boqiang

    1990-05-01

    A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions.

  9. Differential modulation of androgen receptor transcriptional activity by the nuclear receptor co-repressor (N-CoR).

    NARCIS (Netherlands)

    C.A. Berrevoets (Cor); A. Umar (Arzu); A.O. Brinkmann (Albert); J. Trapman (Jan)

    2004-01-01

    textabstractAntiandrogens are widely used agents in the treatment of prostate cancer, as inhibitors of AR (androgen receptor) action. Although the precise mechanism of antiandrogen action is not yet elucidated, recent studies indicate the involvement of nuclear receptor co-represso

  10. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  11. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  12. Nuclear Receptor Small Heterodimer Partner in Apoptosis Signaling and Liver Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxia; Wang, Li, E-mail: l.wang@hsc.utah.edu [Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States)

    2011-01-05

    Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear receptor that contains the dimerization and a putative ligand-binding domain, but lacks the conserved DNA binding domain. SHP exerts its physiological function as an inhibitor of gene transcription through physical interaction with multiple nuclear receptors and transcriptional factors. SHP is a critical transcriptional regulator affecting diverse biological functions, including bile acid, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology. Recently, we and others have demonstrated that SHP is an epigenetically regulated transcriptional repressor that suppresses the development of liver cancer. In this review, we summarize recent major findings regarding the role of SHP in cell proliferation, apoptosis, and DNA methylation, and discuss recent progress in understanding the function of SHP as a tumor suppressor in the development of liver cancer. Future study will be focused on identifying SHP associated novel prooncogenes and anti-oncogenes in liver cancer progression and applying the knowledge gained on SHP in liver cancer prevention, diagnosis and treatment.

  13. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Directory of Open Access Journals (Sweden)

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  14. [Functional selectivity of opioid receptors ligands].

    Science.gov (United States)

    Audet, Nicolas; Archer-Lahlou, Elodie; Richard-Lalonde, Mélissa; Piñeyro-Filpo, Graciela

    2010-01-01

    Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.

  15. HIV-1 infection is associated with changes in nuclear receptor transcriptome, pro-inflammatory and lipid profile of monocytes

    Directory of Open Access Journals (Sweden)

    Renga Barbara

    2012-10-01

    Full Text Available Abstract Background Persistent residual immune activation and lipid dysmetabolism are characteristics of HIV positive patients receiving an highly active antiretroviral therapy (HAART. Nuclear Receptors are transcription factors involved in the regulation of immune and metabolic functions through the modulation of gene transcription. The objective of the present study was to investigate for the relative abundance of members of the nuclear receptor family in monocytic cells isolated from HIV positive patients treated or not treated with HAART. Methods Monocytes isolated from peripheral blood mononuclear cells (PBMC were used for analysis of the relative mRNA expressions of FXR, PXR, LXR, VDR, RARα, RXR, PPARα, PPARβ, PPARγ and GR by Real-Time polymerase chain reaction (PCR. The expression of a selected subset of inflammatory and metabolic genes MCP-1, ICAM-1, CD36 and ABCA1 was also measured. Results Monocytes isolated from HIV infected patients expressed an altered pattern of nuclear receptors characterized by a profound reduction in the expressions of FXR, PXR, PPARα, GR, RARα and RXR. Of interest, the deregulated expression of nuclear receptors was not restored under HAART and was linked to an altered expression of genes which supports both an immune activation and altered lipid metabolism in monocytes. Conclusions Altered expression of genes mediating reciprocal regulation of lipid metabolism and immune function in monocytes occurs in HIV. The present findings provide a mechanistic explanation for immune activation and lipid dysmetabolism occurring in HIV infected patients and could lead to the identification of novel potential therapeutic targets.

  16. HIV-1 infection is associated with changes in nuclear receptor transcriptome, pro-inflammatory and lipid profile of monocytes.

    Science.gov (United States)

    Renga, Barbara; Francisci, Daniela; D'Amore, Claudio; Schiaroli, Elisabetta; Carino, Adriana; Baldelli, Franco; Fiorucci, Stefano

    2012-10-29

    Persistent residual immune activation and lipid dysmetabolism are characteristics of HIV positive patients receiving an highly active antiretroviral therapy (HAART). Nuclear Receptors are transcription factors involved in the regulation of immune and metabolic functions through the modulation of gene transcription. The objective of the present study was to investigate for the relative abundance of members of the nuclear receptor family in monocytic cells isolated from HIV positive patients treated or not treated with HAART. Monocytes isolated from peripheral blood mononuclear cells (PBMC) were used for analysis of the relative mRNA expressions of FXR, PXR, LXR, VDR, RARα, RXR, PPARα, PPARβ, PPARγ and GR by Real-Time polymerase chain reaction (PCR). The expression of a selected subset of inflammatory and metabolic genes MCP-1, ICAM-1, CD36 and ABCA1 was also measured. Monocytes isolated from HIV infected patients expressed an altered pattern of nuclear receptors characterized by a profound reduction in the expressions of FXR, PXR, PPARα, GR, RARα and RXR. Of interest, the deregulated expression of nuclear receptors was not restored under HAART and was linked to an altered expression of genes which supports both an immune activation and altered lipid metabolism in monocytes. Altered expression of genes mediating reciprocal regulation of lipid metabolism and immune function in monocytes occurs in HIV. The present findings provide a mechanistic explanation for immune activation and lipid dysmetabolism occurring in HIV infected patients and could lead to the identification of novel potential therapeutic targets.

  17. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II dependent oxygenase activity

    Directory of Open Access Journals (Sweden)

    Stiening Beate

    2004-06-01

    Full Text Available Abstract Background Apoptotic cell death plays an essential part in embryogenesis, development and maintenance of tissue homeostasis in metazoan animals. The culmination of apoptosis in vivo is the phagocytosis of cellular corpses. One morphological characteristic of cells undergoing apoptosis is loss of plasma membrane phospholipid asymmetry and exposure of phosphatidylserine on the outer leaflet. Surface exposure of phosphatidylserine is recognised by a specific receptor (phosphatidylserine receptor, PSR and is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. Results We have cloned the PSR receptor from Hydra in order to investigate its function in this early metazoan. Bioinformatic analysis of the Hydra PSR protein structure revealed the presence of three nuclear localisation signals, an AT-hook like DNA binding motif and a putative 2-oxoglutarate (2OG-and Fe(II-dependent oxygenase activity. All of these features are conserved from human PSR to Hydra PSR. Expression of GFP tagged Hydra PSR in hydra cells revealed clear nuclear localisation. Deletion of one of the three NLS sequences strongly diminished nuclear localisation of the protein. Membrane localisation was never detected. Conclusions Our results suggest that Hydra PSR is a nuclear 2-oxoglutarate (2OG-and Fe(II-dependent oxygenase. This is in contrast with the proposed function of Hydra PSR as a cell surface receptor involved in the recognition of apoptotic cells displaying phosphatidylserine on their surface. The conservation of the protein from Hydra to human infers that our results also apply to PSR from higher animals.

  18. Molecular mechanism for the involvement of nuclear receptor FXR in HBV-associated hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Yong-dong Niu

    2011-08-01

    Full Text Available Farnesoid X receptor (FXR, also termed nuclear receptor NR1H4 is critically involved in the regulation of nascent bile formation and bile acid enterohepatic circulation. FXR and bile acids have been shown to play roles in liver regeneration and inflammatory responses. There is increasing evidence suggesting that FXR and the FXR signaling pathway are involved in the pathophysiology of a wide range of liver diseases, such as viral hepatitis, cirrhosis, and hepatocellular carcinoma (HCC. Here we discuss the latest discoveries of FXR functions with relevance to bile acid metabolism and HBV-associated HCC. More specifically, the goal of this review is to discuss the roles of FXR and bile acids in regulating HBV replication and how disregulation of the FXR-bile acid signaling pathway is involved in HBV-associated hepatocarcinogenesis.

  19. Lessons about likelihood functions from nuclear physics

    CERN Document Server

    Hanson, Kenneth M

    2007-01-01

    Least-squares data analysis is based on the assumption that the normal (Gaussian) distribution appropriately characterizes the likelihood, that is, the conditional probability of each measurement d, given a measured quantity y, p(d | y). On the other hand, there is ample evidence in nuclear physics of significant disagreements among measurements, which are inconsistent with the normal distribution, given their stated uncertainties. In this study the histories of 99 measurements of the lifetimes of five elementary particles are examined to determine what can be inferred about the distribution of their values relative to their stated uncertainties. Taken as a whole, the variations in the data are somewhat larger than their quoted uncertainties would indicate. These data strongly support using a Student t distribution for the likelihood function instead of a normal. The most probable value for the order of the t distribution is 2.6 +/- 0.9. It is shown that analyses based on long-tailed t-distribution likelihood...

  20. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function.

    Science.gov (United States)

    Sarin, Hemant

    2015-11-26

    Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre

  1. Nuclear and extra-nuclear effects of retinoid acid receptors: how they are interconnected.

    Science.gov (United States)

    Piskunov, Aleksandr; Al Tanoury, Ziad; Rochette-Egly, Cécile

    2014-01-01

    The nuclear retinoic acid receptors (RAR α, β and γ) and their isoforms are ligand-dependent regulators of transcription Transcription , which mediate the effects of all-trans retinoic acid (RA), the active endogenous metabolite of Vitamin A. They heterodimerize with Retinoid X Receptors (RXRs α, β and γ), and regulate the expression of a battery of target genes Target genes involved in cell growth and differentiation Differentiation . During the two last decades, the description of the crystallographic structures of RARs, the characterization of the polymorphic response elements of their target genes Target genes , and the identification of the multiprotein complexes involved in their transcriptional activity have provided a wealth of information on their pleiotropic effects. However, the regulatory scenario became even more complicated once it was discovered that RARs are phosphoproteins and that RA can activate kinase signaling cascades via a pool of RARs present in membrane lipid rafts. Now it is known that these RA-activated kinases Kinases translocate to the nucleus where they phosphorylate RARs and other retinoid signaling factors. The phosphorylation Phosphorylation state of the RARs dictates whether the transcriptional programs which are known to be induced by RA are facilitated and/or switched on. Thus, kinase signaling pathways appear to be crucial for fine-tuning the appropriate physiological activity of RARs.

  2. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer.

    Science.gov (United States)

    Bennett, Richard L; Swaroop, Alok; Troche, Catalina; Licht, Jonathan D

    2017-06-01

    The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  3. Quantification of Uncertainties in Nuclear Density Functional theory

    CERN Document Server

    Schunck, N; Higdon, D; Sarich, J; Wild, S

    2014-01-01

    Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.

  4. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR.

    Science.gov (United States)

    Calkin, Anna C; Tontonoz, Peter

    2012-03-14

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism.

  5. Detection and functional portrayal of a novel class of dihydrotestosterone derived selective progesterone receptor modulators (SPRM).

    Science.gov (United States)

    Andrieu, Thomas; Mani, Orlando; Goepfert, Christine; Bertolini, Reto; Guettinger, Andreas; Setoud, Raschid; Uh, Kayla Y; Baker, Michael E; Frey, Felix J; Frey, Brigitte M

    2015-03-01

    In early pregnancy, abortion can be induced by blocking the actions of progesterone receptors (PR). However, the PR antagonist, mifepristone (RU38486), is rather unselective in clinical use because it also cross-reacts with other nuclear receptors. Since the ligand-binding domain of human progesterone receptor (hPR) and androgen receptor (hAR) share 54% identity, we hypothesized that derivatives of dihydrotestosterone (DHT), the cognate ligand for hAR, might also regulate the hPR. Compounds designed and synthesized in our laboratory were investigated for their affinities for hPRB, hAR, glucocorticoid receptor (hGRα) and mineralocorticoid receptor (hMR), using whole cell receptor competitive binding assays. Agonistic and antagonistic activities were characterized by reporter assays. Nuclear translocation was monitored using cherry-hPRB and GFP-hAR chimeric receptors. Cytostatic properties and apoptosis were tested on breast cancer cells (MCF7, T-47D). One compound presented a favorable profile with an apparent neutral hPRB antagonistic function, a selective cherry-hPRB nuclear translocation and a cytostatic effect. 3D models of human PR and AR with this ligand were constructed to investigate the molecular basis of selectivity. Our data suggest that these novel DHT-derivatives provide suitable templates for the development of new selective steroidal hPR antagonists.

  6. The nuclear matrix: a structural milieu for genomic function.

    Science.gov (United States)

    Berezney, R; Mortillaro, M J; Ma, H; Wei, X; Samarabandu, J

    1995-01-01

    While significant progress has been made in elucidating molecular properties of specific genes and their regulation, our understanding of how the whole genome is coordinated has lagged behind. To understand how the genome functions as a coordinated whole, we must understand how the nucleus is put together and functions as a whole. An important step in that direction occurred with the isolation and characterization of the nuclear matrix. Aside from the plethora of functional properties associated with these isolated nuclear structures, they have enabled the first direct examination and molecular cloning of specific nuclear matrix proteins. The isolated nuclear matrix can be used for providing an in vitro model for understanding nuclear matrix organization in whole cells. Recent development of high-resolution and three-dimensional approaches for visualizing domains of genomic organization and function in situ has provided corroborative evidence for the nuclear matrix as the site of organization for replication, transcription, and post-transcriptional processing. As more is learned about these in situ functional sites, appropriate experiments could be designed to test molecular mechanisms with the in vitro nuclear matrix systems. This is illustrated in this chapter by the studies of nuclear matrix-associated DNA replication which have evolved from biochemical studies of in vitro nuclear matrix systems toward three-dimensional computer image analysis of replication sites for individual genes.

  7. Targeting Nuclear Receptors with Lentivirus-Delivered Small RNAs in Primary Human Hepatocytes

    Directory of Open Access Journals (Sweden)

    Maria Thomas

    2014-07-01

    Full Text Available Background: RNA interference (RNAi has tremendous potential for investigating gene function and for developing new therapies. Primary human hepatocytes (PHH are the “gold standard” for studying the regulation of hepatic metabolism in vitro. However, application of RNAi in PHH has some technical hurdles. The objective of this study was to develop effective and robust protocol for transduction of PHH with lentiviral vectors. Methods: We used lentiviral vectors to transduce PHH for introduction of short hairpin RNAs (shRNAs targeting constitutive androstane receptor (CAR, peroxisome proliferator activated receptor alpha (PPARα, and microRNA, miR-143. Infection efficiency was quantitatively analyzed by flow cytometry and microscopy. Target gene expression was assessed using quantitative real-time (qRT-PCR method. Results: Lentiviral vector transduction resulted in ≥95% of infected cells at low multiplicity of infection (MOI of 3, which did not impair cellular viability. We demonstrated the feasibility of this technique in studies on targeting nuclear receptors, PPARα and CAR, with shRNAs as well as in lentivirus-mediated overexpression and knock-down of miRNA-143 experiments. Conclusions: We developed an efficient and robust protocol with standardized procedures for virus production, method of titer determination, and infection procedure for RNAi in primary human hepatocytes based on delivery of shRNAs, microRNAs or anti-microRNAs in different laboratory settings. This approach should be useful to study not only the regulation via nuclear receptors but also other biological, pharmacological, and toxicological aspects of drug metabolism.

  8. Genetic and Functional Analysis of Androgen Receptor Gene Mutations

    NARCIS (Netherlands)

    H.T. Brüggenwirth (Hennie)

    1998-01-01

    textabstractNuclear hormone receptors (NHRs) are intermediary factors through which extracellular signals regulate expression of genes that are involved in homeostasis, development, and differentiation (Beato et al. '995, Mangelsdorf and Evans 1995). These receptors are characterized by a modular st

  9. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression (S)

    Science.gov (United States)

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  10. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression

    Science.gov (United States)

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  11. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors

    Science.gov (United States)

    The bacteriostat triclosan (2,4,40-trichloro-20-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergenc...

  12. LASSO-ing Potential Nuclear Receptor Agonists and Antagonists: A New Computational Method for Database Screening

    Science.gov (United States)

    Nuclear receptors (NRs) are important biological macromolecular transcription factors that are implicated in multiple biological pathways and may interact with other xenobiotics that are endocrine disruptors present in the environment. Examples of important NRs include the androg...

  13. ONRLDB--manually curated database of experimentally validated ligands for orphan nuclear receptors: insights into new drug discovery.

    Science.gov (United States)

    Nanduri, Ravikanth; Bhutani, Isha; Somavarapu, Arun Kumar; Mahajan, Sahil; Parkesh, Raman; Gupta, Pawan

    2015-01-01

    Orphan nuclear receptors are potential therapeutic targets. The Orphan Nuclear Receptor Ligand Binding Database (ONRLDB) is an interactive, comprehensive and manually curated database of small molecule ligands targeting orphan nuclear receptors. Currently, ONRLDB consists of ∼11,000 ligands, of which ∼6500 are unique. All entries include information for the ligand, such as EC50 and IC50, number of aromatic rings and rotatable bonds, XlogP, hydrogen donor and acceptor count, molecular weight (MW) and structure. ONRLDB is a cross-platform database, where either the cognate small molecule modulators of a receptor or the cognate receptors to a ligand can be searched. The database can be searched using three methods: text search, advanced search or similarity search. Substructure search, cataloguing tools, and clustering tools can be used to perform advanced analysis of the ligand based on chemical similarity fingerprints, hierarchical clustering, binning partition and multidimensional scaling. These tools, together with the Tree function provided, deliver an interactive platform and a comprehensive resource for identification of common and unique scaffolds. As demonstrated, ONRLDB is designed to allow selection of ligands based on various properties and for designing novel ligands or to improve the existing ones. Database URL: http://www.onrldb.org/.

  14. Annotation of the Daphnia magna nuclear receptors: comparison to Daphnia pulex.

    Science.gov (United States)

    Litoff, Elizabeth J; Garriott, Travis E; Ginjupalli, Gautam K; Butler, LaToya; Gay, Claudy; Scott, Kiandra; Baldwin, William S

    2014-11-15

    Most nuclear receptors (NRs) are ligand-dependent transcription factors crucial in homeostatic physiological responses or environmental responses. We annotated the Daphnia magna NRs and compared them to Daphnia pulex and other species, primarily through phylogenetic analysis. Daphnia species contain 26 NRs spanning all seven gene subfamilies. Thirteen of the 26 receptors found in Daphnia species phylogenetically segregate into the NR1 subfamily, primarily involved in energy metabolism and resource allocation. Some of the Daphnia NRs, such as RXR, HR96, and E75 show strong conservation between D. magna and D. pulex. Other receptors, such as EcRb, THRL-11 and RARL-10 have diverged considerably and therefore may show different functions in the two species. Curiously, there is an inverse association between the number of NR splice variants and conservation of the LBD. Overall, D. pulex and D. magna possess the same NRs; however not all of the NRs demonstrate high conservation indicating the potential for a divergence of function. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function.

    Science.gov (United States)

    Condon, Jennifer C; Hardy, Daniel B; Kovaric, Kelly; Mendelson, Carole R

    2006-04-01

    Progesterone acting via the progesterone receptor (PR) plays a critical role in maintaining uterine quiescence during pregnancy. In the present study, we tested the hypothesis that the transactivating capability of the PR is down-regulated in the myometrium at term by a change in uterine PR isoform ratio resulting from local activation of the nuclear factor (NF)-kappaB pathway. Overexpression of the truncated PR-C isoform in human myometrial cells inhibited PR-B transactivation. Expression of PR isoforms, PR-A, PR-B, and PR-C, was characterized by immunoblotting and quantitative PCR (Q-PCR) in fundal and lower uterine segment myometrium from pregnant women in labor and not in labor and in the pregnant mouse uterus during late gestation. We observed a marked increase in levels of PR-C and transcriptionally active PR-B specifically in fundal myometrium of women in labor. In pregnant mouse uterus, levels of PR-B and PR-C also increased between 15 days post coitum and term, whereas expression of PR-A was dramatically up-regulated at 19 days post coitum. In studies of uterine tissues of mice injected intraamniotically with surfactant protein A and of human myometrial and T47D breast cancer cells in culture, up-regulation of PR isoform expression was observed in response to activation of the NF-kappaB pathway. Chromatin immunoprecipitation analysis revealed IL-1beta induced binding of NF-kappaB to the PR promoter. Collectively, these findings suggest that up-regulation of inhibitory PR isoform expression by NF-kappaB activation in both laboring human fundus and pregnant mouse uterus near term may inhibit PR transactivation and thereby lead to a loss of uterine quiescence and the onset of labor.

  16. Extracting nucleon spin structure functions from nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, A.W.; Afnan, I.R.; Bissey, F. [CSSM, University of Adelaide (Australia)

    2000-05-01

    The determination of the spin-dependent structure functions of the nucleons from nuclear data requires a knowledge of the changes induced by the nuclear medium. This is especially important for the neutron because there are no free neutron targets. We present the results of a study of the accuracy with which one can extract the neutron spin structure function from data on polarized {sup 3}He. This study is based on a three-body calculation of the wave function of the A=3 system, which is then used to calculate the nuclear structure functions including binding and off-shell effects. (author)

  17. Estrogen receptors and function in the male reproductive system

    OpenAIRE

    Lazari, Maria de Fatima Magalhaes [UNIFESP; Lucas, Thais Fabiana Gameiro [UNIFESP; Yasuhara, Fabiana [UNIFESP; Gomes, Gisele Renata de Oliveira [UNIFESP; Siu, Erica Rosanna; Royer, Carine [UNIFESP; Fernandes, Sheilla Alessandra Ferreira [UNIFESP; Porto, Catarina Segreti [UNIFESP

    2009-01-01

    A substantial advance in our understanding on the estrogen signaling occurred in the last decade. Estrogens interact with two receptors, ESR1 and ESR2, also known as ERα and ERβ, respectively. ESR1 and ESR2 belong to the nuclear receptor family of transcription factors. In addition to the well established transcriptional effects, estrogens can mediate rapid signaling, triggered within seconds or minutes. These rapid effects can be mediated by ESRs or the G protein-coupled estrogen receptor GP...

  18. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes.

    Science.gov (United States)

    Kandel, Benjamin A; Thomas, Maria; Winter, Stefan; Damm, Georg; Seehofer, Daniel; Burk, Oliver; Schwab, Matthias; Zanger, Ulrich M

    2016-09-01

    The ligand-activated nuclear receptor pregnane X receptor (PXR, NR1I2) and the constitutive androstane receptor (CAR, NR1I3) are two master transcriptional regulators of many important drug metabolizing enzymes and transporter genes (DMET) in response to xenobiotics including many drugs. The peroxisome proliferator-activated receptor alpha (PPARα, NR1C1), the target of lipid lowering fibrate drugs, primarily regulates fatty acid catabolism and energy-homeostasis. Recent research has shown that there are substantial overlaps in the regulated genes of these receptors. For example, both CAR and PXR also modulate the transcription of key enzymes involved in lipid and glucose metabolism and PPARα also functions as a direct transcriptional regulator of important DMET genes including cytochrome P450s CYP3A4 and CYP2C8. Despite their important and widespread influence on liver metabolism, comparative data are scarce, particularly at a global level and in humans. The major objective of this study was to directly compare the genome-wide transcriptional changes elucidated by the activation of these three nuclear receptors in primary human hepatocytes. Cultures from six individual donors were treated with the prototypical ligands for CAR (CITCO), PXR (rifampicin) and PPARα (WY14,643) or DMSO as vehicle control. Genomewide mRNA profiles determined with Affymetrix microarrays were analyzed for differentially expressed genes and metabolic functions. The results confirmed known prototype target genes and revealed strongly overlapping sets of coregulated but also distinctly regulated and novel responsive genes and pathways. The results further specify the role of PPARα as a regulator of drug metabolism and the role of the xenosensors PXR and CAR in lipid metabolism and energy homeostasis. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  19. Nuclear charge radii: Density functional theory meets Bayesian neural networks

    CERN Document Server

    Utama, Raditya; Piekarewicz, Jorge

    2016-01-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. We explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonst...

  20. Nuclear Energy Density Functionals: What do we really know?

    CERN Document Server

    Bulgac, Aurel; Jin, Shi

    2015-01-01

    We present the simplest nuclear energy density functional (NEDF) to date, determined by only 4 significant phenomenological parameters, yet capable of fitting measured nuclear masses with better accuracy than the Bethe-Weizs\\"acker mass formula, while also describing density structures (charge radii, neutron skins etc.) and time-dependent phenomena (induced fission, giant resonances, low energy nuclear collisions, etc.). The 4 significant parameters are necessary to describe bulk nuclear properties (binding energies and charge radii); an additional 2 to 3 parameters have little influence on the bulk nuclear properties, but allow independent control of the density dependence of the symmetry energy and isovector excitations, in particular the Thomas-Reiche-Kuhn sum rule. This Hohenberg-Kohn-style of density functional theory successfully realizes Weizs\\"acker's ideas and provides a computationally tractable model for a variety of static nuclear properties and dynamics, from finite nuclei to neutron stars, where...

  1. Breast cancer prognosis predicted by nuclear receptor-coregulator networks.

    Science.gov (United States)

    Doan, Tram B; Eriksson, Natalie A; Graham, Dinny; Funder, John W; Simpson, Evan R; Kuczek, Elizabeth S; Clyne, Colin; Leedman, Peter J; Tilley, Wayne D; Fuller, Peter J; Muscat, George E O; Clarke, Christine L

    2014-07-01

    Although molecular signatures based on transcript expression in breast cancer samples have provided new insights into breast cancer classification and prognosis, there are acknowledged limitations in current signatures. To provide rational, pathway-based signatures of disrupted physiology in cancer tissues that may be relevant to prognosis, this study has directly quantitated changed gene expression, between normal breast and cancer tissue, as a basis for signature development. The nuclear receptor (NR) family of transcription factors, and their coregulators, are fundamental regulators of every aspect of metazoan life, and were rigorously quantified in normal breast tissues and ERα positive and ERα negative breast cancers. Coregulator expression was highly correlated with that of selected NR in normal breast, particularly from postmenopausal women. These associations were markedly decreased in breast cancer, and the expression of the majority of coregulators was down-regulated in cancer tissues compared with normal. While in cancer the loss of NR-coregulator associations observed in normal breast was common, a small number of NR (Rev-ERBβ, GR, NOR1, LRH-1 and PGR) acquired new associations with coregulators in cancer tissues. Elevated expression of these NR in cancers was associated with poorer outcome in large clinical cohorts, as well as suggesting the activation of ERα -related, but ERα-independent, pathways in ERα negative cancers. In addition, the combined expression of small numbers of NR and coregulators in breast cancer was identified as a signature predicting outcome in ERα negative breast cancer patients, not linked to proliferation and with predictive power superior to existing signatures containing many more genes. These findings highlight the power of predictive signatures derived from the quantitative determination of altered gene expression between normal breast and breast cancers. Taken together, the findings of this study identify networks

  2. Transcriptomine, a web resource for nuclear receptor signaling transcriptomes.

    Science.gov (United States)

    Ochsner, Scott A; Watkins, Christopher M; McOwiti, Apollo; Xu, Xueping; Darlington, Yolanda F; Dehart, Michael D; Cooney, Austin J; Steffen, David L; Becnel, Lauren B; McKenna, Neil J

    2012-09-01

    The nuclear receptor (NR) superfamily of ligand-regulated transcription factors directs ligand- and tissue-specific transcriptomes in myriad developmental, metabolic, immunological, and reproductive processes. The NR signaling field has generated a wealth of genome-wide expression data points, but due to deficits in their accessibility, annotation, and integration, the full potential of these studies has not yet been realized. We searched public gene expression databases and MEDLINE for global transcriptomic datasets relevant to NRs, their ligands, and coregulators. We carried out extensive, deep reannotation of the datasets using controlled vocabularies for RNA Source and regulating molecule and resolved disparate gene identifiers to official gene symbols to facilitate comparison of fold changes and their significance across multiple datasets. We assembled these data points into a database, Transcriptomine (http://www.nursa.org/transcriptomine), that allows for multiple, menu-driven querying strategies of this transcriptomic "superdataset," including single and multiple genes, Gene Ontology terms, disease terms, and uploaded custom gene lists. Experimental variables such as regulating molecule, RNA Source, as well as fold-change and P value cutoff values can be modified, and full data records can be either browsed or downloaded for downstream analysis. We demonstrate the utility of Transcriptomine as a hypothesis generation and validation tool using in silico and experimental use cases. Our resource empowers users to instantly and routinely mine the collective biology of millions of previously disparate transcriptomic data points. By incorporating future transcriptome-wide datasets in the NR signaling field, we anticipate Transcriptomine developing into a powerful resource for the NR- and other signal transduction research communities.

  3. Identification and function of coactivator of estrogen receptor: ERIAP

    Institute of Scientific and Technical Information of China (English)

    孟庆慧; 周立新; 曹建平; 高斌; 邵荣光; 李及友; 樊赛军

    2003-01-01

    Estrogen receptor (ER), one member of nuclear hormone receptor (NR) family, is an estrogen-dependent transcriptional factor that plays an important role in development, progression and treatment of breast cancer. Transcriptional co-factors (co-activators and co-repressors) are critical for ER to transduce hormone and metabolic signaling to target genes. A number of functional and structural studies have elucidated the precise mechanisms of co-activator interaction with the ligand-inducible activation domain in ER via one and several LXXLL motifs (where X is any amino acid) known as NR-Box. By the yeast two-hybrid system we have identified a novel ER-αinteracting protein ERIAP (Estrogen Receptor Interacting and Activating Protein) which contains two consensus LXXLL motifs. ERIAP associated with ER-α in a ligand-dependent manner, as demonstrated by in vivo immunoprecipitation and in vitro GST capture assays. The two NR boxes were essential for ERIAP interaction with ER-α. Furthermore, ERIAP specifically enhanced ligand-mediated ER-α transcriptional activity in a dose-dependent fasion and increased the expression of estrogen-responsive gene pS2. Thus, our present findings indicate that ERIAP funcions as a new coactivator for ER-α transcriptional activity, which may play an important role in development and progression of breast cancer.

  4. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cross-regulation of protein stability by p53 and nuclear receptor SHP.

    Directory of Open Access Journals (Sweden)

    Zhihong Yang

    Full Text Available We report here a novel interplay between tumor suppressor p53 and nuclear receptor SHP that controls p53 and SHP stability. Overexpression of p53 causes rapid SHP protein degradation, which does not require the presence of Mdm2 and is mediated by the proteosome pathway. Overexpressing SHP alone does not affect p53 stability. However, SHP destabilizes p53 by augmentation of Mdm2 ubiquitin ligase activity toward p53. The single amino acid substitution in the SHP protein SHPK170R increases SHP binding to p53 relative to SHP wild-type, whereas SHPG171A variant shows a diminished p53 binding. As a result of the cross-regulation, the tumor suppressor function of p53 and SHP in inhibition of colon cancer growth is compromised. Our findings reveal a unique scenario for a cross-inhibition between two tumor suppressors to keep their expression and function in check.

  6. Minireview: nuclear receptor coregulators of the p160 family: insights into inflammation and metabolism.

    Science.gov (United States)

    Rollins, David A; Coppo, Maddalena; Rogatsky, Inez

    2015-04-01

    Nuclear receptor coactivators (NCOAs) are multifunctional transcriptional coregulators for a growing number of signal-activated transcription factors. The members of the p160 family (NCOA1/2/3) are increasingly recognized as essential and nonredundant players in a number of physiological processes. In particular, accumulating evidence points to the pivotal roles that these coregulators play in inflammatory and metabolic pathways, both under homeostasis and in disease. Given that chronic inflammation of metabolic tissues ("metainflammation") is a driving force for the widespread epidemic of obesity, insulin resistance, cardiovascular disease, and associated comorbidities, deciphering the role of NCOAs in "normal" vs "pathological" inflammation and in metabolic processes is indeed a subject of extreme biomedical importance. Here, we review the evolving and, at times, contradictory, literature on the pleiotropic functions of NCOA1/2/3 in inflammation and metabolism as related to nuclear receptor actions and beyond. We then briefly discuss the potential utility of NCOAs as predictive markers for disease and/or possible therapeutic targets once a better understanding of their molecular and physiological actions is achieved.

  7. The orphan nuclear receptor SHP regulates PGC-1alpha expression and energy production in brown adipocytes.

    Science.gov (United States)

    Wang, Li; Liu, Jun; Saha, Pradip; Huang, Jiansheng; Chan, Lawrence; Spiegelman, Bruce; Moore, David D

    2005-10-01

    Brown adipocytes increase energy production in response to induction of PGC-1alpha, a dominant regulator of energy metabolism. We have found that the orphan nuclear receptor SHP (NR0B2) is a negative regulator of PGC-1alpha expression in brown adipocytes. Mice lacking SHP show increased basal expression of PGC-1alpha, increased energy expenditure, and resistance to diet-induced obesity. Increased PGC-1alpha expression in SHP null brown adipose tissue is not due to beta-adrenergic activation, since it is also observed in primary cultures of SHP(-/-) brown adipocytes that are not exposed to such stimuli. In addition, acute inhibition of SHP expression in cultured wild-type brown adipocytes increases basal PGC-1alpha expression, and SHP overexpression in SHP null brown adipocytes decreases it. The orphan nuclear receptor ERRgamma is expressed in BAT and its transactivation of the PGC-1alpha promoter is potently inhibited by SHP. We conclude that SHP functions as a negative regulator of energy production in BAT.

  8. A nuclear receptor-like pathway regulating multidrug resistance in fungi.

    Science.gov (United States)

    Thakur, Jitendra K; Arthanari, Haribabu; Yang, Fajun; Pan, Shih-Jung; Fan, Xiaochun; Breger, Julia; Frueh, Dominique P; Gulshan, Kailash; Li, Darrick K; Mylonakis, Eleftherios; Struhl, Kevin; Moye-Rowley, W Scott; Cormack, Brendan P; Wagner, Gerhard; Näär, Anders M

    2008-04-03

    Multidrug resistance (MDR) is a serious complication during treatment of opportunistic fungal infections that frequently afflict immunocompromised individuals, such as transplant recipients and cancer patients undergoing cytotoxic chemotherapy. Improved knowledge of the molecular pathways controlling MDR in pathogenic fungi should facilitate the development of novel therapies to combat these intransigent infections. MDR is often caused by upregulation of drug efflux pumps by members of the fungal zinc-cluster transcription-factor family (for example Pdr1p orthologues). However, the molecular mechanisms are poorly understood. Here we show that Pdr1p family members in Saccharomyces cerevisiae and the human pathogen Candida glabrata directly bind to structurally diverse drugs and xenobiotics, resulting in stimulated expression of drug efflux pumps and induction of MDR. Notably, this is mechanistically similar to regulation of MDR in vertebrates by the PXR nuclear receptor, revealing an unexpected functional analogy of fungal and metazoan regulators of MDR. We have also uncovered a critical and specific role of the Gal11p/MED15 subunit of the Mediator co-activator and its activator-targeted KIX domain in antifungal/xenobiotic-dependent regulation of MDR. This detailed mechanistic understanding of a fungal nuclear receptor-like gene regulatory pathway provides novel therapeutic targets for the treatment of multidrug-resistant fungal infections.

  9. Nuclear effects in the deuteron structure function

    Energy Technology Data Exchange (ETDEWEB)

    Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Sassot, R. (Lab. de Fisica Teorica, Dept. de Fisica, Univ. Nacional de La Plata (Argentina))

    1992-08-06

    An analysis of nuclear effects in the deuteron quark distributions is carried out in connection with the Gottfried sum rule (GSR), the Drell-Yan proton-neutron asymmetry and the Bjorken sum rule (BSR). It is shown that the small amount of nuclear effects necessary to saturate the GSR experimental data modifies the Drell-Yan asymmetry in an entirely different way as an asymmetric sea does. These effects are of little consequence in the convergence of the BSR to the expected value. (orig.).

  10. Crystal Structures of the Nuclear Receptor, Liver Receptor Homolog 1, Bound to Synthetic Agonists.

    Science.gov (United States)

    Mays, Suzanne G; Okafor, C Denise; Whitby, Richard J; Goswami, Devrishi; Stec, Józef; Flynn, Autumn R; Dugan, Michael C; Jui, Nathan T; Griffin, Patrick R; Ortlund, Eric A

    2016-12-02

    Liver receptor homolog 1 (NR5A2, LRH-1) is an orphan nuclear hormone receptor that regulates diverse biological processes, including metabolism, proliferation, and the resolution of endoplasmic reticulum stress. Although preclinical and cellular studies demonstrate that LRH-1 has great potential as a therapeutic target for metabolic diseases and cancer, development of LRH-1 modulators has been difficult. Recently, systematic modifications to one of the few known chemical scaffolds capable of activating LRH-1 failed to improve efficacy substantially. Moreover, mechanisms through which LRH-1 is activated by synthetic ligands are entirely unknown. Here, we use x-ray crystallography and other structural methods to explore conformational changes and receptor-ligand interactions associated with LRH-1 activation by a set of related agonists. Unlike phospholipid LRH-1 ligands, these agonists bind deep in the pocket and do not interact with residues near the mouth nor do they expand the pocket like phospholipids. Unexpectedly, two closely related agonists with similar efficacies (GSK8470 and RJW100) exhibit completely different binding modes. The dramatic repositioning is influenced by a differential ability to establish stable face-to-face π-π-stacking with the LRH-1 residue His-390, as well as by a novel polar interaction mediated by the RJW100 hydroxyl group. The differing binding modes result in distinct mechanisms of action for the two agonists. Finally, we identify a network of conserved water molecules near the ligand-binding site that are important for activation by both agonists. This work reveals a previously unappreciated complexity associated with LRH-1 agonist development and offers insights into rational design strategies.

  11. Role of nuclear progesterone receptor isoforms in uterine pathophysiology.

    Science.gov (United States)

    Patel, Bansari; Elguero, Sonia; Thakore, Suruchi; Dahoud, Wissam; Bedaiwy, Mohamed; Mesiano, Sam

    2015-01-01

    Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key cellular signaling pathways

  12. A novel nuclear role for the Vav3 nucleotide exchange factor in androgen receptor coactivation in prostate cancer.

    Science.gov (United States)

    Rao, S; Lyons, L S; Fahrenholtz, C D; Wu, F; Farooq, A; Balkan, W; Burnstein, K L

    2012-02-01

    Increased androgen receptor (AR) transcriptional activity mediated by coactivator proteins may drive castration-resistant prostate cancer (CRPC) growth. Vav3, a Rho GTPase guanine nucleotide exchange factor (GEF), is overexpressed in human prostate cancers, particularly in models of CRPC progression. Vav3 coactivates AR in a Vav3 pleckstrin homology (PH) domain-dependent but GEF-independent manner. Ectopic expression of Vav3 in androgen-dependent human prostate cancer cells conferred robust castration-resistant xenograft tumor growth. Vav3 but not a Vav3 PH mutant greatly stimulated interaction between the AR amino and carboxyl termini (N-C interaction), which is required for maximal receptor transcriptional activity. Vav3 was distributed between the cytoplasm and nucleus with nuclear localization-dependent on the Vav3 PH domain. Membrane targeting of Vav3 abolished Vav3 potentiation of AR activity, whereas nuclear targeting of a Vav3 PH mutant rescued AR coactivation, suggesting that nuclear localization is an important function of the Vav3 PH domain. A nuclear role for Vav3 was further demonstrated by sequential chromatin immunoprecipitation assays, which revealed that Vav3 and AR were recruited to the same transcriptional complexes of an AR target gene enhancer. These data demonstrate the importance of Vav3 in CRPC and define a novel nuclear function of Vav3 in regulating AR activity.

  13. Functional genomics and proteomics - the role of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, U. [Heidelberg Univ. (Germany). Abt. fuer Klinische Nuklearmedizin; German Cancer Research Center, Heidelberg (Germany); Altmann, A. [German Cancer Research Center, Heidelberg (Germany); Eisenhut, M. [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiopharmacy

    2002-01-01

    Now that the sequencing of the human genome has been completed, the basic challenges are finding the genes, locating their coding regions and predicting their functions. This will result in a new understanding of human biology as well as in the design of new molecular structures as potential novel diagnostic or drug discovery targets. The assessment of gene function may be performed using the tools of the genome program. These tools represent high-throughput methods used to evaluate changes in the expression of many or all genes of an organism at the same time in order to investigate genetic pathways for normal development and disease. This will lead to a shift in the scientific paradigm: In the pre-proteomics era, functional assignments were derived from hypothesis-driven experiments designed to understand specific cellular processes. The new tools describe proteins on a proteome-wide scale, thereby creating a new way of doing cell research which results in the determination of three-dimensional protein structures and the description of protein networks. These descriptions may then be used for the design of new hypotheses and experiments in the traditional physiological, biochemical and pharmacological sense. The evaluation of genetically manipulated animals or newly designed biomolecules will require a thorough understanding of physiology, biochemistry and pharmacology and the experimental approaches will involve many new technologies, including in vivo imaging with single-photon emission tomography and positron emission tomography. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in vivo reporter genes such as enzymes, receptors, antigens or transporters. Pharmacogenomics will identify new surrogate markers for therapy monitoring which may represent potential new tracers for imaging. Also, drug distribution studies for new therapeutic biomolecules are needed, at least

  14. Linear response of homogeneous nuclear matter with energy density functionals

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, A. [Institut d’Astronomie et d’Astrophysique, CP 226, Université Libre de Bruxelles, B-1050 Bruxelles (Belgium); Davesne, D., E-mail: davesne@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, CNRS-IN2P3, UMR 5822, Université Lyon 1, F-69622 Villeurbanne (France); Navarro, J. [IFIC (CSIC University of Valencia), Apdo. Postal 22085, E-46071 Valencia (Spain)

    2015-03-01

    Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin–orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe–Salpeter equation for the particle–hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin–isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.

  15. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.

    Science.gov (United States)

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A

    2015-10-22

    The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.

  16. Androgen receptor non-nuclear regulation of prostate cancer cell invasion mediated by Src and matriptase.

    Science.gov (United States)

    Zarif, Jelani C; Lamb, Laura E; Schulz, Veronique V; Nollet, Eric A; Miranti, Cindy K

    2015-03-30

    Castration-resistant prostate cancers still depend on nuclear androgen receptor (AR) function despite their lack of dependence on exogenous androgen. Second generation anti-androgen therapies are more efficient at blocking nuclear AR; however resistant tumors still develop. Recent studies indicate Src is highly active in these resistant tumors. By manipulating AR activity in several different prostate cancer cell lines through RNAi, drug treatment, and the use of a nuclear-deficient AR mutant, we demonstrate that androgen acting on cytoplasmic AR rapidly stimulates Src tyrosine kinase via a non-genomic mechanism. Cytoplasmic AR, acting through Src enhances laminin integrin-dependent invasion. Active Matriptase, which cleaves laminin, is elevated within minutes after androgen stimulation, and is subsequently shed into the medium. Matriptase activation and shedding induced by cytoplasmic AR is dependent on Src. Concomitantly, CDCP1/gp140, a Matriptase and Src substrate that controls integrin-based migration, is activated. However, only inhibition of Matriptase, but not CDCP1, suppresses the AR/Src-dependent increase in invasion. Matriptase, present in conditioned medium from AR-stimulated cells, is sufficient to enhance invasion in the absence of androgen. Thus, invasion is stimulated by a rapid but sustained increase in Src activity, mediated non-genomically by cytoplasmic AR, leading to rapid activation and shedding of the laminin protease Matriptase.

  17. Structural Basis of Natural Promoter Recognition by a Unique Nuclear Receptor, HNF4[alpha

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Peng; Rha, Geun Bae; Melikishvili, Manana; Wu, Guangteng; Adkins, Brandon C.; Fried, Michael G.; Chi, Young-In (Kentucky)

    2010-11-09

    HNF4{alpha} (hepatocyte nuclear factor 4{alpha}) plays an essential role in the development and function of vertebrate organs, including hepatocytes and pancreatic {beta}-cells by regulating expression of multiple genes involved in organ development, nutrient transport, and diverse metabolic pathways. As such, HNF4{alpha} is a culprit gene product for a monogenic and dominantly inherited form of diabetes, known as maturity onset diabetes of the young (MODY). As a unique member of the nuclear receptor superfamily, HNF4{alpha} recognizes target genes containing two hexanucleotide direct repeat DNA-response elements separated by one base pair (DR1) by exclusively forming a cooperative homodimer. We describe here the 2.0 {angstrom} crystal structure of human HNF4{alpha} DNA binding domain in complex with a high affinity promoter element of another MODY gene, HNF1{alpha}, which reveals the molecular basis of unique target gene selection/recognition, DNA binding cooperativity, and dysfunction caused by diabetes-causing mutations. The predicted effects of MODY mutations have been tested by a set of biochemical and functional studies, which show that, in contrast to other MODY gene products, the subtle disruption of HNF4{alpha} molecular function can cause significant effects in afflicted MODY patients.

  18. Inactivation of the Nuclear Orphan Receptor COUP-TFII by Small Chemicals.

    Science.gov (United States)

    Le Guével, Rémy; Oger, Frédérik; Martinez-Jimenez, Celia P; Bizot, Maud; Gheeraert, Céline; Firmin, François; Ploton, Maheul; Kretova, Miroslava; Palierne, Gaëlle; Staels, Bart; Barath, Peter; Talianidis, Iannis; Lefebvre, Philippe; Eeckhoute, Jérôme; Salbert, Gilles

    2017-01-13

    Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII/NR2F2) is an orphan member of the nuclear receptor family of transcription factors whose activities are modulated upon binding of small molecules into an hydrophobic ligand-binding pocket (LBP). Although the LBP of COUP-TFII is filled with aromatic amino-acid side chains, alternative modes of ligand binding could potentially lead to regulation of the orphan receptor. Here, we screened a synthetic and natural compound library in a yeast one-hybrid assay and identified 4-methoxynaphthol as an inhibitor of COUP-TFII. This synthetic inhibitor was able to counteract processes either positively or negatively regulated by COUP-TFII in different mammalian cell systems. Hence, we demonstrate that the true orphan receptor COUP-TFII can be targeted by small chemicals which could be used to study the physiological functions of COUP-TFII or to counteract detrimental COUP-TFII activities in various pathological conditions.

  19. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    Science.gov (United States)

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  20. Molecular adaptation and resilience of the insect’s nuclear receptor USP

    Directory of Open Access Journals (Sweden)

    Chaumot Arnaud

    2012-10-01

    Full Text Available Abstract Background The maintenance of biological systems requires plasticity and robustness. The function of the ecdysone receptor, a heterodimer composed of the nuclear receptors ECR (NR1H1 and USP (NR2B4, was maintained in insects despite a dramatic divergence that occurred during the emergence of Mecopterida. This receptor is therefore a good model to study the evolution of plasticity. We tested the hypothesis that selection has shaped the Ligand-Binding Domain (LBD of USP during evolution of Mecopterida. Results We isolated usp and cox1 in several species of Drosophilidae, Tenebrionidae and Blattaria and estimated non-synonymous/synonymous rate ratios using maximum-likelihood methods and codon-based substitution models. Although the usp sequences were mainly under negative selection, we detected relaxation at residues located on the surface of the LBD within Mecopterida families. Using branch-site models, we also detected changes in selective constraints along three successive branches of the Mecopterida evolution. Residues located at the bottom of the ligand-binding pocket (LBP underwent strong positive selection during the emergence of Mecopterida. This change is correlated with the acquisition of a large LBP filled by phospholipids that probably allowed the stabilisation of the new Mecopterida structure. Later, when the two subgroups of Mecopterida (Amphiesmenoptera: Lepidoptera, Trichoptera; Antliophora: Diptera, Mecoptera, Siphonaptera diverged, the same positions became under purifying selection. Similarly, several positions of the heterodimerisation interface experienced positive selection during the emergence of Mecopterida, rapidly followed by a phase of constrained evolution. An enlargement of the heterodimerisation surface is specific for Mecopterida and was associated with a reinforcement of the obligatory partnership between ECR and USP, at the expense of homodimerisation. Conclusions In order to explain the episodic mode of

  1. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury.

    Science.gov (United States)

    He, Ben; Zhao, Yichao; Xu, Longwei; Gao, Lingchen; Su, Yuanyuan; Lin, Nan; Pu, Jun

    2016-04-01

    Circadian rhythm disruption or decrease in levels of circadian hormones such as melatonin increases ischemic heart disease risk. The nuclear melatonin receptors RORs are pivotally involved in circadian rhythm regulation and melatonin effects mediation. However, the functional roles of RORs in the heart have never been investigated and were therefore the subject of this study on myocardial ischemia/reperfusion (MI/R) injury pathogenesis. RORα and RORγ subtypes were detected in the adult mouse heart, and RORα but not RORγ was downregulated after MI/R. To determine the pathological consequence of MI/R-induced reduction of RORα, we subjected RORα-deficient staggerer mice and wild-type (WT) littermates to MI/R injury, resulting in significantly increased myocardial infarct size, myocardial apoptosis and exacerbated contractile dysfunction in the former. Mechanistically, RORα deficiency promoted MI/R-induced endoplasmic reticulum stress, mitochondrial impairments, and autophagy dysfunction. Moreover, RORα deficiency augmented MI/R-induced oxidative/nitrative stress. Given the emerging evidence of RORα as an essential melatonin effects mediator, we further investigated the RORα roles in melatonin-exerted cardioprotection, in particular against MI/R injury, which was significantly attenuated in RORα-deficient mice, but negligibly affected by cardiac-specific silencing of RORγ. Finally, to determine cell type-specific effects of RORα, we generated mice with cardiomyocyte-specific RORα overexpression and they were less vulnerable to MI/R injury. In summary, our study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator of melatonin-exerted cardioprotection; melatonin-RORα axis signaling thus appears important in protection against ischemic heart injury.

  2. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  3. Nuclear progesterone receptors are up-regulated by estrogens in neurons and radial glial progenitors in the brain of zebrafish.

    Directory of Open Access Journals (Sweden)

    Nicolas Diotel

    Full Text Available In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.

  4. Direct and Indirect Suppression of Interleukin-6 Gene Expression in Murine Macrophages by Nuclear Orphan Receptor REV-ERBα

    Directory of Open Access Journals (Sweden)

    Shogo Sato

    2014-01-01

    Full Text Available It is now evident that many nuclear hormone receptors can modulate target gene expression. REV-ERBα, one of the nuclear hormone receptors with the capacity to alter clock function, is critically involved in lipid metabolism, adipogenesis, and the inflammatory response. Recent studies suggest that REV-ERBα plays a key role in the mediation between clockwork and inflammation. The purpose of the current study was to investigate the role of REV-ERBα in the regulation of interleukin-6 (il6 gene expression in murine macrophages. REV-ERBα agonists, or overexpression of rev-erbα in the murine macrophage cell line RAW264 cells, suppressed the induction of il6 mRNA following a lipopolysaccharide (LPS endotoxin challenge. Also, rev-erbα overexpression decreased LPS-stimulated nuclear factor κB (NFκB activation in RAW264 cells. We showed that REV-ERBα represses il6 expression not only indirectly through an NFκB binding motif but also directly through a REV-ERBα binding motif in the murine il6 promoter region. Furthermore, peritoneal macrophages from mice lacking rev-erbα increased il6 mRNA expression. These data suggest that REV-ERBα regulates the inflammatory response of macrophages through the suppression of il6 expression. REV-ERBα may therefore be identified as a potent anti-inflammatory receptor and be a therapeutic target receptor of inflammatory diseases.

  5. Gold Nanoparticles Functionalized with Peptides for Specific Affinity Aggregation Assays of Estrogen Receptors and Their Agonists

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Takatsuji

    2012-04-01

    Full Text Available Nuclear receptors regulate the transcription of genes and various functions such as development, differentiation, homeostasis, and behavior by formation of complexes with ligand and co-activator. Recent findings have shown that agonists of a ligand may have a toxic effect on cellular/tissular function through improper activation of nuclear receptors. In this study, a simple assay system of hetero-complexes of three different molecules (estrogen receptor, ligand, and co-activator peptide has been developed. This assay system employs functionalized gold nanoparticles (GNPs: 15 nm in diameter. The surfaces of the GNPs were modified by a 12- or 20-amino-acid peptide that contains the sequence of co-activator for activating nuclear receptor by an agonist ligand. Owing to the affinity of the peptide, the functionalized GNPs aggregate faster when the nuclear receptor and the agonist ligand are also present. The aggregation of GNPs can be identified by shifts in adsorption spectrum, which give information about the specificity of agonist ligands. Similarly, this spectrum shift can measure concentration of known agonist ligand. This simple agonist screening will be employed as high through-put analysis (HTA in the discovery of drugs that act through nuclear receptors.

  6. SRC-3 Has a Role in Cancer Other Than as a Nuclear Receptor Coactivator

    Directory of Open Access Journals (Sweden)

    Gang Ma, Yu Ren, Ke Wang, Jianjun He

    2011-01-01

    Full Text Available Steroid receptor coactivator-3 (SRC-3, also known as AIB1, is a member of the p160 steroid receptor coactivator family. Since SRC-3 was found to be amplified in breast cancer in 1997, the role of SRC-3 in cancer has been broadly investigated. SRC-3 initially was identified as a transcriptional coactivator for nuclear receptors such as the estrogen receptor (ER, involved in the proliferation of hormone-dependent cancers. However, increasing clinical evidence shows that dysregulation of SRC-3 expression in several human hormone-independent cancers is correlated with pathological factors and clinical prognosis. Recently, both in vivo and in vitro studies demonstrate that SRC-3 may influence a number of cancer cellular processes in several ways independent of nuclear receptor signaling. In addition, an SRC-3 transgenic mice model shows that SRC-3 induces tumors in several mouse tissues. These results indicate that the role of SRC-3 in cancer is not just as a nuclear receptor coactivator. The focus of this review is to examine possible SRC-3 roles in cancer, other than as a nuclear receptor coactivator.

  7. Nuclear medium modification of the F2 structure function

    CERN Document Server

    Athar, M Sajjad; Vacas, M J Vicente

    2009-01-01

    We study the nuclear effects in the electromagnetic structure function $F_{2}(x, Q^2)$ in nuclei in the deep inelastic lepton nucleus scattering process by taking into account Fermi motion, binding, pion and rho meson cloud contributions. Calculations have been done in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations for nuclear matter. The ratios $R_{F2}^A(x,Q^2)=\\frac{2F_2^A(x,Q^2)}{AF_{2}^{Deut}(x,Q^2)}$ are obtained and compared with the recent JLAB results for light nuclei that show a non trivial A dependence.

  8. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation.

    Science.gov (United States)

    Douglas, Steven D; Leeman, Susan E

    2011-01-01

    The G protein-coupled receptor (GPCR), neurokinin-1 receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and SP are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa B (NF-κB) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by SP are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major class 1, rhodopsin-like GPCR ligand-receptor interaction.

  9. Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Martin Ligr

    Full Text Available Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR and estrogen receptor (ER in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis.

  10. Factorized molecular wave functions: Analysis of the nuclear factor

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, R., E-mail: roland.lefebvre@u-psud.fr [Institut des Sciences Moléculaires d’ Orsay, Bâtiment 350, UMR8214, CNRS- Université. Paris-Sud, 91405 Orsay, France and Sorbonne Universités, UPMC Univ Paris 06, UFR925, F-75005 Paris (France)

    2015-06-07

    The exact factorization of molecular wave functions leads to nuclear factors which should be nodeless functions. We reconsider the case of vibrational perturbations in a diatomic species, a situation usually treated by combining Born-Oppenheimer products. It was shown [R. Lefebvre, J. Chem. Phys. 142, 074106 (2015)] that it is possible to derive, from the solutions of coupled equations, the form of the factorized function. By increasing artificially the interstate coupling in the usual approach, the adiabatic regime can be reached, whereby the wave function can be reduced to a single product. The nuclear factor of this product is determined by the lowest of the two potentials obtained by diagonalization of the potential matrix. By comparison with the nuclear wave function of the factorized scheme, it is shown that by a simple rectification, an agreement is obtained between the modified nodeless function and that of the adiabatic scheme.

  11. Relations among several nuclear and electronic density functional reactivity indexes

    Science.gov (United States)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  12. BRET biosensor analysis of receptor tyrosine kinase functionality

    Directory of Open Access Journals (Sweden)

    Sana eSiddiqui

    2013-04-01

    Full Text Available Bioluminescence resonance energy transfer (BRET is an improved version of earlier resonance energy transfer technologies used for the analysis of biomolecular protein interaction. BRET analysis can be applied to many transmembrane receptor classes, however the majority of the early published literature on BRET has focused on G protein-coupled receptor (GPCR research. In contrast, there is limited scientific literature using BRET to investigate receptor tyrosine kinase (RTK activity. This limited investigation is surprising as RTKs often employ dimerization as a key factor in their activation, as well as being important therapeutic targets in medicine, especially in the cases of cancer, diabetes, neurodegenerative and respiratory conditions. In this review, we consider an array of studies pertinent to RTKs and other non-GPCR receptor protein-protein signaling interactions; more specifically we discuss receptor-protein interactions involved in the transmission of signaling communication. We have provided an overview of functional BRET studies associated with the receptor tyrosine kinase (RTK super family involving: neurotrophic receptors (e.g. tropomyosin-related kinase (Trk and p75 neurotrophin receptor (p75NTR; insulinotropic receptors (e.g. insulin receptor (IR and insulin-like growth factor receptor (IGFR and growth factor receptors (e.g. ErbB receptors including the EGFR, the fibroblast growth factor receptor (FGFR, the vascular endothelial growth factor receptor (VEGFR and the c-kit and platelet-derived growth factor receptor (PDGFR. In addition, we review BRET-mediated studies of other tyrosine kinase-associated receptors including cytokine receptors, i.e. leptin receptor (OB-R and the growth hormone receptor (GHR. It is clear even from the relatively sparse experimental RTK BRET evidence that there is tremendous potential for this technological application for the functional investigation of RTK biology.

  13. Targeting cytokine/chemokine receptors: a challenge for molecular nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Signore, A. [Nuclear Medicine Unit, Department of Clinical Sciences, Policlinico Umberto I, University ' ' La Sapienza' ' , Via del Policlinico 155, 00161 Roma (Italy); Chianelli, M. [Nuclear Medicine, ' ' Regina Apostolorum' ' Hospital, Albano (Roma) (Italy); Bei, R.; Modesti, A. [Department of Experimental Medicine and Biochemical Sciences, University ' ' Tor Vergata' ' , Roma (Italy); Oyen, W. [Department of Nuclear Medicine, University Medical Center, Nijmegen (Netherlands)

    2003-01-01

    Radiolabelled cytokines and chemokines are a group of radiopharmaceuticals that, by highlighting in vivo the binding to specific high-affinity receptors expressed on selected cell populations, allow the molecular and functional characterisation of immune-mediated processes Recently, several authors have described the use of radiolabelled cytokines and chemokines not only for imaging of inflammation and infection, but also as an approach to study in vivo the biology of primary and metastatic cancer cells. The latter avenue of research has been pursued particularly to help oncologists in therapeutic decision making and to follow up the efficacy of new immune therapies. In this paper we describe the characteristics of cytokines and chemokines, focussing on their role as radiopharmaceuticals for the imaging of cancer cells in vivo, a new challenge for molecular nuclear medicine. (orig.)

  14. Feed-forward transcriptional programming by nuclear receptors: regulatory principles and therapeutic implications.

    Science.gov (United States)

    Sasse, Sarah K; Gerber, Anthony N

    2015-01-01

    Nuclear receptors (NRs) are widely targeted to treat a range of human diseases. Feed-forward loops are an ancient mechanism through which single cell organisms organize transcriptional programming and modulate gene expression dynamics, but they have not been systematically studied as a regulatory paradigm for NR-mediated transcriptional responses. Here, we provide an overview of the basic properties of feed-forward loops as predicted by mathematical models and validated experimentally in single cell organisms. We review existing evidence implicating feed-forward loops as important in controlling clinically relevant transcriptional responses to estrogens, progestins, and glucocorticoids, among other NR ligands. We propose that feed-forward transcriptional circuits are a major mechanism through which NRs integrate signals, exert temporal control over gene regulation, and compartmentalize client transcriptomes into discrete subunits. Implications for the design and function of novel selective NR ligands are discussed.

  15. Nuclear charge radii: density functional theory meets Bayesian neural networks

    Science.gov (United States)

    Utama, R.; Chen, Wei-Chia; Piekarewicz, J.

    2016-11-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.

  16. 3'-functionalized adamantyl cannabinoid receptor probes.

    Science.gov (United States)

    Ogawa, Go; Tius, Marcus A; Zhou, Han; Nikas, Spyros P; Halikhedkar, Aneetha; Mallipeddi, Srikrishnan; Makriyannis, Alexandros

    2015-04-09

    The aliphatic side chain plays a pivotal role in determining the cannabinergic potency of tricyclic classical cannabinoids, and we have previously shown that this chain could be substituted successfully by adamantyl or other polycyclic groups. In an effort to explore the pharmacophoric features of these conformationally fixed groups, we have synthesized a series of analogues in which the C3 position is substituted directly with an adamantyl group bearing functionality at one of the tertiary carbon atoms. These substituents included the electrophilic isothiocyanate and photoactivatable azido groups, both of which are capable of covalent attachment with the target protein. Our results show that substitution at the 3'-adamantyl position can lead to ligands with improved affinities and CB1/CB2 selectivities. Our work has also led to the development of two successful covalent probes with high affinities for both cannabinoid receptors, namely, the electrophilic isothiocyanate AM994 and the photoactivatable aliphatic azido AM993 analogues.

  17. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  18. The nuclear receptor DHR3 modulates dS6 kinase-dependent growth in Drosophila.

    Science.gov (United States)

    Montagne, Jacques; Lecerf, Caroline; Parvy, Jean-Philippe; Bennion, Janis M; Radimerski, Thomas; Ruhf, Marie-Laure; Zilbermann, Frederic; Vouilloz, Nicole; Stocker, Hugo; Hafen, Ernst; Kozma, Sara C; Thomas, George

    2010-05-06

    S6 kinases (S6Ks) act to integrate nutrient and insulin signaling pathways and, as such, function as positive effectors in cell growth and organismal development. However, they also have been shown to play a key role in limiting insulin signaling and in mediating the autophagic response. To identify novel regulators of S6K signaling, we have used a Drosophila-based, sensitized, gain-of-function genetic screen. Unexpectedly, one of the strongest enhancers to emerge from this screen was the nuclear receptor (NR), Drosophila hormone receptor 3 (DHR3), a critical constituent in the coordination of Drosophila metamorphosis. Here we demonstrate that DHR3, through dS6K, also acts to regulate cell-autonomous growth. Moreover, we show that the ligand-binding domain (LBD) of DHR3 is essential for mediating this response. Consistent with these findings, we have identified an endogenous DHR3 isoform that lacks the DBD. These results provide the first molecular link between the dS6K pathway, critical in controlling nutrient-dependent growth, and that of DHR3, a major mediator of ecdysone signaling, which, acting together, coordinate metamorphosis.

  19. The nuclear receptor DHR3 modulates dS6 kinase-dependent growth in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jacques Montagne

    2010-05-01

    Full Text Available S6 kinases (S6Ks act to integrate nutrient and insulin signaling pathways and, as such, function as positive effectors in cell growth and organismal development. However, they also have been shown to play a key role in limiting insulin signaling and in mediating the autophagic response. To identify novel regulators of S6K signaling, we have used a Drosophila-based, sensitized, gain-of-function genetic screen. Unexpectedly, one of the strongest enhancers to emerge from this screen was the nuclear receptor (NR, Drosophila hormone receptor 3 (DHR3, a critical constituent in the coordination of Drosophila metamorphosis. Here we demonstrate that DHR3, through dS6K, also acts to regulate cell-autonomous growth. Moreover, we show that the ligand-binding domain (LBD of DHR3 is essential for mediating this response. Consistent with these findings, we have identified an endogenous DHR3 isoform that lacks the DBD. These results provide the first molecular link between the dS6K pathway, critical in controlling nutrient-dependent growth, and that of DHR3, a major mediator of ecdysone signaling, which, acting together, coordinate metamorphosis.

  20. Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression.

    Directory of Open Access Journals (Sweden)

    Stéphanie Bertrand

    2007-11-01

    Full Text Available Nuclear receptors (NRs are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been performed in classical model systems such as Drosophila and mouse, no systematic atlas describing NR involvement during embryonic development on a global scale has been assembled. Adopting a systems biology approach, we conducted a systematic analysis of the dynamic spatiotemporal expression of all NR genes as well as their main transcriptional coregulators during zebrafish development (101 genes using whole-mount in situ hybridization. This extensive dataset establishes overlapping expression patterns among NRs and coregulators, indicating hierarchical transcriptional networks. This complete developmental profiling provides an unprecedented examination of expression of NRs during embryogenesis, uncovering their potential function during central nervous system and retina formation. Moreover, our study reveals that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Finally, further evolutionary analyses of this global resource led us to propose that neofunctionalization of duplicated genes occurs at the levels of both protein sequence and RNA expression patterns. Altogether, this expression database of NRs provides novel routes for leading investigation into the biological function of each individual NR as well as for the study of their combinatorial regulatory circuitry within the superfamily.

  1. Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression.

    Directory of Open Access Journals (Sweden)

    Stéphanie Bertrand

    2007-11-01

    Full Text Available Nuclear receptors (NRs are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been performed in classical model systems such as Drosophila and mouse, no systematic atlas describing NR involvement during embryonic development on a global scale has been assembled. Adopting a systems biology approach, we conducted a systematic analysis of the dynamic spatiotemporal expression of all NR genes as well as their main transcriptional coregulators during zebrafish development (101 genes using whole-mount in situ hybridization. This extensive dataset establishes overlapping expression patterns among NRs and coregulators, indicating hierarchical transcriptional networks. This complete developmental profiling provides an unprecedented examination of expression of NRs during embryogenesis, uncovering their potential function during central nervous system and retina formation. Moreover, our study reveals that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Finally, further evolutionary analyses of this global resource led us to propose that neofunctionalization of duplicated genes occurs at the levels of both protein sequence and RNA expression patterns. Altogether, this expression database of NRs provides novel routes for leading investigation into the biological function of each individual NR as well as for the study of their combinatorial regulatory circuitry within the superfamily.

  2. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Directory of Open Access Journals (Sweden)

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  3. Nuclear matrix - structure, function and pathogenesis.

    Science.gov (United States)

    Wasąg, Piotr; Lenartowski, Robert

    2016-12-20

    The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chromatin. Moreover, the NM participates in several cellular processes, such as DNA replication/repair, gene expression, RNA transport, cell signaling and differentiation, cell cycle regulation, apoptosis and carcinogenesis. Short nucleotide sequences called scaffold/matrix attachment regions (S/MAR) anchor the chromatin loops to the NM proteins (NMP). The NMP composition is dynamic and depends on the cell type and differentiation stage or metabolic activity. Alterations in the NMP composition affect anchoring of the S/MARs and thus alter gene expression. This review aims to systematize information about the skeletal structure of the nucleus, with particular emphasis on the organization of the NM and its role in selected cellular processes. We also discuss several diseases that are caused by aberrant NM structure or dysfunction of individual NM elements.

  4. The nuclear import of the constitutive androstane receptor by importin/Ran-GTP systems.

    Science.gov (United States)

    Kanno, Yuichiro; Miyazaki, Yukari; Inouye, Yoshio

    2010-08-01

    The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily. The CAR is normally located in the cytoplasmic compartment of untreated liver cells and translocates to the nucleus after exposure to phenobarbital (PB) or PB-like chemicals. Previously, we identified two nuclear localization signals (NLS) in the rat constitutive androstane/active receptor (CAR), NLS1, which is located in the hinge region, and NLS2, which overlaps with the ligand-binding domain. However, the nuclear import mechanism of CAR is unclear. In this study, we show that nuclear import of CAR is regulated by importin/Ran-GTP systems. The regulation of CAR nuclear import by a Ran-GTP concentration gradient was confirmed using the dominant negative, GTPase-deficient form of Ran (RanQ69L), suggesting the involvement of transport receptors of the importinbeta family. IPO13 was shown to be involved in the PB-mediated nuclear translocation of CAR, which was found to be susceptible to inhibition by a dominant negative mutant of IPO13 in primary hepatocytes. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Function of nuclear membrane proteins in shaping the nuclear envelope integrity during closed mitosis.

    Science.gov (United States)

    Yang, Hui-Ju; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2017-06-01

    The nuclear envelope (NE) not only protects the genome from being directly accessed by detrimental agents but also regulates genome organization. Breaches in NE integrity threaten genome stability and impede cellular function. Nonetheless, the NE constantly remodels, and NE integrity is endangered in dividing or differentiating cells. Specifically, in unicellular eukaryotes undergoing closed mitosis, the NE expands instead of breaking down during chromosome segregation. The newly assembling nuclear pore complexes (NPCs) penetrate the existing NE in interphase. A peculiar example of NE remodelling during nuclear differentiation in Tetrahymena involves formation of the redundant NE and clustered NPCs. Even under these conditions, the NE remains intact. Many recent studies on unicellular organisms have revealed that nuclear membrane proteins, such as LEM-domain proteins, play a role in maintaining NE integrity. This review summarizes and discusses how nuclear membrane proteins participate in NE integrity. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  6. Coregulator control of androgen receptor action by a novel nuclear receptor-binding motif.

    Science.gov (United States)

    Jehle, Katja; Cato, Laura; Neeb, Antje; Muhle-Goll, Claudia; Jung, Nicole; Smith, Emmanuel W; Buzon, Victor; Carbó, Laia R; Estébanez-Perpiñá, Eva; Schmitz, Katja; Fruk, Ljiljana; Luy, Burkhard; Chen, Yu; Cox, Marc B; Bräse, Stefan; Brown, Myles; Cato, Andrew C B

    2014-03-28

    The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.

  7. The estrogen receptor alpha nuclear localization sequence is critical for fulvestrant-induced degradation of the receptor.

    Science.gov (United States)

    Casa, Angelo J; Hochbaum, Daniel; Sreekumar, Sreeja; Oesterreich, Steffi; Lee, Adrian V

    2015-11-01

    Fulvestrant, a selective estrogen receptor down-regulator (SERD) is a pure competitive antagonist of estrogen receptor alpha (ERα). Fulvestrant binds ERα and reduces the receptor's half-life by increasing protein turnover, however, its mechanism of action is not fully understood. In this study, we show that removal of the ERα nuclear localization sequence (ERΔNLS) resulted in a predominantly cytoplasmic ERα that was degraded in response to 17-β-estradiol (E2) but was resistant to degradation by fulvestrant. ERΔNLS bound the ligands and exhibited receptor interaction similar to ERα, indicating that the lack of degradation was not due to disruption of these processes. Forcing ERΔNLS into the nucleus with a heterologous SV40-NLS did not restore degradation, suggesting that the NLS domain itself, and not merely receptor localization, is critical for fulvestrant-induced ERα degradation. Indeed, cloning of the endogenous ERα NLS onto the N-terminus of ERΔNLS significantly restored both its nuclear localization and turnover in response to fulvestrant. Moreover, mutation of the sumoylation targets K266 and K268 within the NLS impaired fulvestrant-induced ERα degradation. In conclusion, our study provides evidence for the unique role of the ERα NLS in fulvestrant-induced degradation of the receptor.

  8. PPP1R16A, the membrane subunit of protein phosphatase 1beta, signals nuclear translocation of the nuclear receptor constitutive active/androstane receptor.

    Science.gov (United States)

    Sueyoshi, Tatsuya; Moore, Rick; Sugatani, Junko; Matsumura, Yonehiro; Negishi, Masahiko

    2008-04-01

    Constitutive active/androstane receptor (CAR), a member of the nuclear steroid/thyroid hormone receptor family, activates transcription of numerous hepatic genes upon exposure to therapeutic drugs and environmental pollutants. Sequestered in the cytoplasm, this receptor signals xenobiotic exposure, such as phenobarbital (PB), by translocating into the nucleus. Unlike other hormone receptors, translocation can be triggered indirectly without binding to xenobiotics. We have now identified a membrane-associated subunit of protein phosphatase 1 (PPP1R16A, or abbreviated as R16A) as a novel CAR-binding protein. When CAR and R16A are coexpressed in mouse liver, CAR translocates into the nucleus. Close association of R16A and CAR molecule on liver membrane was shown by fluorescence resonance energy transfer (FRET) analysis using expressed yellow fluorescent protein (YFP)-CAR and CFP-R16A fusion proteins. R16A can form dimer through its middle region, where protein kinase A phosphorylation sites are recently identified. Translocation of CAR by R16A correlates with the ability of R16A to form an intermolecular interaction via the middle region. Moreover, this interaction is enhanced by PB treatment in mouse liver. R16A specifically interacted with PP1beta in HepG2 cells despite the highly conserved structure of PP1 family molecules. PP1beta activity was inhibited by R16A in vitro and coexpression of PP1beta in liver can prevent YFP-CAR translocation into mouse liver. Taken together, R16A at the membrane may mediate the PB signal to initiate CAR nuclear translocation, through a mechanism including its dimerization and inhibition of PP1beta activity, providing a novel model for the translocation of nuclear receptors in which direct interaction of ligands and the receptors may not be crucial.

  9. Functional renormalization group studies of nuclear and neutron matter

    CERN Document Server

    Drews, Matthias

    2016-01-01

    Functional renormalization group (FRG) methods applied to calculations of isospin-symmetric and asymmetric nuclear matter as well as neutron matter are reviewed. The approach is based on a chiral Lagrangian expressed in terms of nucleon and meson degrees of freedom as appropriate for the hadronic phase of QCD with spontaneously broken chiral symmetry. Fluctuations beyond mean-field approximation are treated solving Wetterich's FRG flow equations. Nuclear thermodynamics and the nuclear liquid-gas phase transition are investigated in detail, both in symmetric matter and as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of symmetric nuclear matter and pure neutron matter are found to be in good agreement with advanced ab-initio many-body computations. Contacts with perturbative many-body approaches (in-medium chiral perturbation theory) are discussed. As an interesting test case, the density dependence of the pion mass in the medium is investigated. The questio...

  10. Clustering and pasta phases in nuclear density functional theory

    CERN Document Server

    Schuetrumpf, Bastian; Nazarewicz, Witold

    2016-01-01

    Nuclear density functional theory (DFT) is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we use the concept of nucleonic localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.

  11. Glucocorticoid-induced fetal programming alters the functional complement of angiotensin receptor subtypes within the kidney.

    Science.gov (United States)

    Gwathmey, TanYa M; Shaltout, Hossam A; Rose, James C; Diz, Debra I; Chappell, Mark C

    2011-03-01

    We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80 to 81 days gestation with full-term delivery. Renal nuclear and plasma membrane fractions were isolated from sheep age 1.0 to 1.5 years for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were significantly higher in the BMX-exposed adult offspring versus CON sheep. The proportion of nuclear AT(1) receptors sensitive to losartan was 2-fold higher (67 ± 6% vs 27 ± 9%; Pprogramming.

  12. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease.

    Science.gov (United States)

    Kalinowska, Magdalena; Francesconi, Anna

    2016-01-01

    Group I metabotropic glutamate receptors mediate slow excitatory neurotransmission in the central nervous system and are critical to activity-dependent synaptic plasticity, a cellular substrate of learning and memory. Dysregulated receptor signaling is implicated in neuropsychiatric conditions ranging from neurodevelopmental to neurodegenerative disorders. Importantly, group I metabotropic glutamate receptor signaling functions can be modulated by interacting proteins that mediate receptor trafficking, expression and coupling efficiency to signaling effectors. These interactions afford cell- or pathway-specific modulation to fine-tune receptor function, thus representing a potential target for pharmacological interventions in pathological conditions.

  13. New Generation Nuclear Plant -- High Level Functions and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  14. US Nuclear Regulatory Commission organization charts and functional statements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed.

  15. Novel splicing variant of the human orphan nuclear receptor Nurr1 gene

    Institute of Scientific and Technical Information of China (English)

    徐评议; 乐卫东

    2004-01-01

    Background Nurr1 is a member of the nuclear receptor superfamily of transcription factors. The objective of the present study was to identify novel splicing variants of the gene in neuronal and non-neuronal tissues and determine their functions. Methods Reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to screen for Nurr1 splice variants in the adult human central nervous system (CNS) and in other tissues such as lymphocytes, and liver, muscle, and kidney cells. Functional assays of the variants were performed by measuring Nurr1 response element (NuRE) transcriptional activity in vitro. Results In this study, the authors identified a novel splicing variant of Nurr1 within exon 5, found in multiple adult human tissues, including lymphocytes, and liver, muscle, and kidney cells, but not in the brain or spinal cord. Sequencing analysis showed the variant has a 75 bp deletion between nucleotides 1402 and 1476. A functional assay of the Nurr1-c splicing variant, performed by measuring NuRE transcriptional activity in vitro, detected a 39% lower level of luciferase (LUC) activity (P<0.05).Conclusion A novel splicing variant of Nurr1 exists in human non-neuronal tissues and functional assays suggest that the variant may act as an alternate transcription regulator.

  16. Evolutionary trace-based peptides identify a novel asymmetric interaction that mediates oligomerization in nuclear receptors.

    Science.gov (United States)

    Gu, Peili; Morgan, Daniel H; Sattar, Minawar; Xu, Xueping; Wagner, Ryan; Raviscioni, Michele; Lichtarge, Olivier; Cooney, Austin J

    2005-09-01

    Germ cell nuclear factor (GCNF) is an orphan nuclear receptor that plays important roles in development and reproduction, by repressing the expression of essential genes such as Oct4, GDF9, and BMP15, through binding to DR0 elements. Surprisingly, whereas recombinant GCNF binds to DR0 sequences as a homodimer, endogenous GCNF does not exist as a homodimer but rather as part of a large complex termed the transiently retinoid-induced factor (TRIF). Here, we use evolutionary trace (ET) analysis to design mutations and peptides that probe the molecular basis for the formation of this unusual complex. We find that GCNF homodimerization and TRIF complex formation are DNA-dependent, and ET suggests that dimerization involves key functional sites on both helix 3 and helix 11, which are located on opposing surfaces of the ligand binding domain. Targeted mutations in either helix of GCNF disrupt the formation of both the homodimer and the endogenous TRIF complex. Moreover, peptide mimetics of both of these ET-determined sites inhibit dimerization and TRIF complex formation. This suggests that a novel helix 3-helix 11 heterotypic interaction mediates GCNF interaction and would facilitate oligomerization. Indeed, it was determined that the endogenous TRIF complex is composed of a GCNF oligomer. These findings shed light on an evolutionarily selected mechanism that reveals the unusual DNA-binding, dimerization, and oligomerization properties of GCNF.

  17. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, Eeva; Vuorinen, Elisa [Institute of Biomedical Technology, FIN-33014 University of Tampere and BioMediTech, Biokatu 6, 33520 Tampere (Finland); Fimlab Laboratories, Biokatu 4, 33520 Tampere (Finland); Savinainen, Kimmo; Rauhala, Hanna [Institute of Biomedical Technology, FIN-33014 University of Tampere and BioMediTech, Biokatu 6, 33520 Tampere (Finland); Kallioniemi, Anne, E-mail: anne.kallioniemi@uta.fi [Institute of Biomedical Technology, FIN-33014 University of Tampere and BioMediTech, Biokatu 6, 33520 Tampere (Finland); Fimlab Laboratories, Biokatu 4, 33520 Tampere (Finland)

    2014-03-10

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy.

  18. Osteoblast regulation via ligand-activated nuclear trafficking of the oxytocin receptor

    Science.gov (United States)

    Di Benedetto, Adriana; Sun, Li; Zambonin, Carlo G.; Tamma, Roberto; Nico, Beatrice; Calvano, Cosima D.; Colaianni, Graziana; Ji, Yaoting; Mori, Giorgio; Grano, Maria; Lu, Ping; Colucci, Silvia; Yuen, Tony; New, Maria I.; Zallone, Alberta; Zaidi, Mone

    2014-01-01

    We report that oxytocin (Oxt) receptors (Oxtrs), on stimulation by the ligand Oxt, translocate into the nucleus of osteoblasts, implicating this process in the action of Oxt on osteoblast maturation. Sequential immunocytochemistry of intact cells or isolated nucleoplasts stripped of the outer nuclear membrane showed progressive nuclear localization of the Oxtr; this nuclear translocation was confirmed by monitoring the movement of Oxtr–EGFP as well as by immunogold labeling. Nuclear Oxtr localization was conclusively shown by Western immunoblotting and MS of nuclear lysate proteins. We found that the passage of Oxtrs into the nucleus was facilitated by successive interactions with β-arrestins (Arrbs), the small GTPase Rab5, importin-β (Kpnb1), and transportin-1 (Tnpo1). siRNA-mediated knockdown of Arrb1, Arrb2, or Tnpo1 abrogated Oxt-induced expression of the osteoblast differentiation genes osterix (Sp7), Atf4, bone sialoprotein (Ibsp), and osteocalcin (Bglap) without affecting Erk phosphorylation. Likewise and again, without affecting pErk, inhibiting Arrb recruitment by mutating Ser rich clusters of the nuclear localization signal to Ala abolished nuclear import and Oxtr-induced gene expression. These studies define a previously unidentified mechanism for Oxtr action on bone and open possibilities for direct transcriptional modulation by nuclear G protein-coupled receptors. PMID:25378700

  19. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  20. Nuclear receptors HNF4α and LRH-1 cooperate in regulating Cyp7a1 in vivo.

    Science.gov (United States)

    Kir, Serkan; Zhang, Yuan; Gerard, Robert D; Kliewer, Steven A; Mangelsdorf, David J

    2012-11-30

    Fibroblast growth factor 19 (FGF19) is a postprandial enterokine induced by the nuclear bile acid receptor, FXR, in ileum. FGF19 inhibits bile acid synthesis in liver through transcriptional repression of cholesterol 7α-hydroxylase (CYP7A1) via a mechanism involving the nuclear receptor SHP. Here, in a series of loss-of-function studies, we show that the nuclear receptors HNF4α and LRH-1 have dual roles in regulating Cyp7a1 in vivo. First, they cooperate in maintaining basal Cyp7a1 expression. Second, they enable SHP binding to the Cyp7a1 promoter and facilitate FGF19-mediated repression of bile acid synthesis. HNF4α and LRH-1 promote active transcription histone marks on the Cyp7a1 promoter that are reversed by FGF19 in a SHP-dependent manner. These findings demonstrate that both HNF4α and LRH-1 are important regulators of Cyp7a1 transcription in vivo.

  1. Cloning, genomic organization, and expression analysis of zebrafish nuclear receptor coactivator, TIF2.

    Science.gov (United States)

    Tan, Jee-Hian; Quek, Sue-Ing; Chan, Woon-Khiong

    2005-01-01

    Thyroid hormone receptors (TRs) are involved in numerous diverse biological processes such as growth and differentiation, thermogenesis, neurulation, homeostasis, and metamorphosis. In zebrafish, TRbeta1 has been implicated to be involved in the obligatory embryonic-to-larval transitory phase. In order to understand if nuclear receptor coactivators could modulate the transcriptional activities of TRs during this transitory phase, the transcriptionary intermediary factor 2 (TIF2), a member of the p160 coactivator, was isolated from zebrafish. The zebrafish tif2 cDNA encodes a polypeptide of 1,505 amino acids. The tif2 gene is made up of 23 exons with the AUG and stop codon located in Exon IV and XXIII, respectively. The overall genomic organization of human and zebrafish tif2 genes are very similar. Four tif2 isoforms were identified by RT-PCR. The N-terminus mRNA variants are generated as a result of multiple initiation start sites located upstream of the noncoding Exon I and Exon II. The C-terminus isoforms, E20a and E20b, resulted from the alternative splicing of Exon XX. Although E20a and E20b isoforms were ubiquitously expressed, they were very highly expressed in reproductive tissues. The availability of TIF2 cDNA will allow the analysis of its functional roles in mediating the actions of TRs in various aspects of zebrafish developmental biology.

  2. Spin constraints on nuclear energy density functionals

    CERN Document Server

    Robledo, L M; Bertsch, G F

    2013-01-01

    The Gallagher-Moszkowski rule in the spectroscopy of odd-odd nuclei imposes a new spin constraint on the energy functionals for self-consistent mean field theory. The commonly used parameterization of the effective three-body interaction in the Gogny and Skyrme families of energy functionals is ill-suited to satisfy the spin constraint. In particular, the Gogny parameterization of the three-body interaction has the opposite spin dependence to that required by the observed spectra. The two-body part has a correct sign, but in combination the rule is violated as often as not. We conclude that a new functional form is needed for the effective three-body interaction that can take into better account the different spin-isospin channels of the interaction.

  3. Regulation of Estrogen Receptor Nuclear Export by Ligand-Induced and p38-Mediated Receptor Phosphorylation

    OpenAIRE

    Lee, Heehyoung; Bai, Wenlong

    2002-01-01

    Estrogen receptors are phosphoproteins which can be activated by ligands, kinase activators, or phosphatase inhibitors. Our previous study showed that p38 mitogen-activated protein kinase was involved in estrogen receptor activation by estrogens and MEKK1. Here, we report estrogen receptor-dependent p38 activation by estrogens in endometrial adenocarcinoma cells and in vitro and in vivo phosphorylation of the estrogen receptor α mediated through p38. The phosphorylation site was identified as...

  4. Pharmacology and toxicology of fibrates as hypolipidemic drugs mediated by nuclear receptor peroxisome proliferator—activated receptor

    Institute of Scientific and Technical Information of China (English)

    SugaT

    2002-01-01

    PPAR(peroxisome proliferator-activated receptor) is a family of nuclear receptor.In recent years,it has been focused for the discovery and development of new drugs which are mediated by PPARs.Fibrate hypolipidemic drugs are the specific and potent ligands to PPAR alpha and have been widely used for the treatment of hyperlipidemia.But these drugs induce hepatocarcinogenesis in rodent animals after the long-term administration.However,there are species differences on these phenomena which are not seen in mammals ioncluding human.To clarify the mechanism of carcinogenesis by these drugs in important for the evaluation of safety of these drugs in human.

  5. Role of estrogen receptor binding and transcriptional activity in the stimulation of hyperestrogenism and nuclear bodies.

    Science.gov (United States)

    Clark, J H; Hardin, J W; Padykula, H A; Cardasis, C A

    1978-06-01

    The effects of estradiol and nafoxidine on nuclear estrogen receptor binding, RNA polymerase activities, and uterine ultrastructure were studied. Animals were either injected with estradiol, implanted with estradiol/paraffin pellets, or injected with nafoxidine. Animals treated with nafoxidine or estradiol implants showed sustained long-term nuclear retention of estrogen receptor and increased nuclear RNA polymerase activities for up to 72 hr. A single injection of estradiol caused initial increases in these variables which returned to control levels by 24 hr after hormone treatment. Uterine tissue was examined by light and electron microscopy 72 hr after hormone treatments. Uteri from eith estradiol-implanted or nafoxidine-treated animals showed markedly increased hypertrophy of the luminal epithelial cells. Nuclei in sections of the uteri of these hyperestrogenized animals displayed a large number and wide array of nuclear bodies composed of a filamentous capsule and granular cores. We conclude that hyperestrogenization, a condition that eventually results in abnormal cell growth, is correlated with increased and sustained nuclear binding of the estrogen receptor, increased and sustained RNA polymerase activity, and the appearance of nuclear bodies.

  6. Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense.

    Science.gov (United States)

    Wirthmueller, Lennart; Zhang, Yan; Jones, Jonathan D G; Parker, Jane E

    2007-12-01

    Recognition of specific pathogen molecules inside the cell by nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors constitutes an important layer of innate immunity in plants. Receptor activation triggers host cellular reprogramming involving transcriptional potentiation of basal defenses and localized programmed cell death. The sites and modes of action of NB-LRR receptors are, however, poorly understood. Arabidopsis Toll/Interleukin-1 (TIR) type NB-LRR receptor RPS4 recognizes the bacterial type III effector AvrRps4. We show that epitope-tagged RPS4 expressed under its native regulatory sequences distributes between endomembranes and nuclei in healthy and AvrRps4-triggered tissues. RPS4 accumulation in the nucleus, mediated by a bipartite nuclear localization sequence (NLS) at its C terminus, is necessary for triggering immunity through authentic activation by AvrRps4 in Arabidopsis or as an effector-independent "deregulated" receptor in tobacco. A strikingly conserved feature of TIR-NB-LRR receptors is their recruitment of the nucleocytoplasmic basal-defense regulator EDS1 in resistance to diverse pathogens. We find that EDS1 is an indispensable component of RPS4 signaling and that it functions downstream of RPS4 activation but upstream of RPS4-mediated transcriptional reprogramming in the nucleus.

  7. A-dependence of weak nuclear structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Haider, H.; Athar, M. Sajjad [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Simo, I. Ruiz [Dipartimento di Fisica, Universitá degli studi di Trento Via Sommarive 14, Povo (Trento) I-38123 (Italy)

    2015-05-15

    Effect of nuclear medium on the weak structure functions F{sub 2}{sup A}(x, Q{sup 2}) and F{sub 3}{sup A}(x, Q{sup 2}) have been studied using charged current (anti)neutrino deep inelastic scattering on various nuclear targets. Relativistic nuclear spectral function which incorporate Fermi motion, binding and nucleon correlations are used for the calculations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. Using these structure functions, F{sub i}{sup A}/F{sub i}{sup proton} and F{sub i}{sup A}/F{sub i}{sup deuteron}(i=2,3, A={sup 12}C, {sup 16}O, CH and H{sub 2}O) are obtained.

  8. Excitation function calculations for α + 93Nb nuclear reactions

    Science.gov (United States)

    Yiğit, M.; Tel, E.; Sarpün, İ. H.

    2016-10-01

    In this study, the excitation functions of alpha-induced reactions on the 93Nb target nucleus were calculated by using ALICE-ASH code. The hybrid model, Weisskopf-Ewing model and geometry dependent hybrid model in this code were used to understand the alpha-niobium interaction. The contribution on the nuclear interaction of compound and pre-compound processes, with variation of the incident alpha particle energy, was presented. Furthermore, the reaction cross sections were calculated by using different level density models such as Superfluid nuclear model, Fermi gas model and Kataria-Ramamurthy Fermi gas model. Obtaining a good agreement between the calculated and the measured cross sections, the exciton numbers and the nuclear level density models were varied. Finally, the proper choice of the exciton numbers and the nuclear level density models was found to be quite important in order to obtain the more realistic cross section values.

  9. Adrenergic Receptors From Molecular Structure to in vivo function.

    Science.gov (United States)

    Hein, L; Kobilka, B K

    1997-07-01

    Adrenergic receptors form the interface between the sympathetic nervous system and the cardiovascular system as well as many endocrine and parenchymal tissues. Although several hundred G-protein-coupled receptors have been identified, adrenergic receptors, along with the visual pigment rhodopsin, have been among the most extensively studied members of this family of receptors. This review focuses on recent advances in understanding the molecular structure, function, and regulation of adrenergic receptors using in vitro systems and integrates recent transgenic animal models that were generated to study the adrenergic system in vivo. (Trends Cardiovasc Med 1997;7:137-145). © 1997, Elsevier Science Inc.

  10. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    Energy Technology Data Exchange (ETDEWEB)

    Karimullina, Elina [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch, Yekaterinburg 620144 (Russian Federation); Li Yangchun; Ginjupalli, Gautam K. [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Baldwin, William S., E-mail: baldwin@clemson.edu [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Biological Sciences, Clemson University, Clemson, SC (United States)

    2012-07-15

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  11. Nuclear correlation functions in lattice QCD

    CERN Document Server

    Detmold, William

    2012-01-01

    We consider the problem of calculating the large number of Wick contractions necessary to compute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive approach and a determinant-based approach and show that these methods allow the required contractions to be performed in computationally manageable amount of time for certain choices of interpolating operators. Examples of correlation functions computed using these techniques are shown for the quantum numbers of the light nuclei, He, Be, C, O and Si.

  12. Nuclear cardiology: Myocardial perfusion and function

    Energy Technology Data Exchange (ETDEWEB)

    Seldin, D.W. (Lahey Clinic Medical Center, Burlington, MA (United States))

    1991-08-01

    Myocardial perfusion studies continue to be a major focus of research, with new investigations of the relationship of exercise-redistribution thallium imaging to diagnosis, prognosis, and case management. The redistribution phenomenon, which seemed to be fairly well understood a few years ago, is now recognized to be much more complex than originally thought, and various strategies have been proposed to clarify the meaning of persistent defects. Pharmacologic intervention with dipyridamole and adenosine has become available as an alternative to exercise, and comparisons with exercise imaging and catheterization results have been described. Thallium itself is no longer the sole single-photon perfusion radiopharmaceutical; two new technetium agents are now widely available. In addition to perfusion studies, advances in the study of ventricular function have been made, including reports of studies performed in conjunction with technetium perfusion studies, new insights into cardiac physiology, and the prognostic and case-management information that function studies provide. Finally, work has continued with monoclonal antibodies for the identification of areas of myocyte necrosis. 41 references.

  13. Differential transcription of the orphan receptor RORbeta in nuclear extracts derived from Neuro2A and HeLa cells.

    NARCIS (Netherlands)

    Gawlas, K.; Stunnenberg, H.G.

    2001-01-01

    An important model system for studying the process leading to productive transcription is provided by the superfamily of nuclear receptors, which are for the most part ligand-controlled transcription factors. Over the past years several 'orphan' nuclear receptors have been isolated for which no liga

  14. Role of the nuclear receptors for oxysterols LXRs in steroidogenic tissues: beyond the "foie gras", the steroids and sex?

    Science.gov (United States)

    Volle, David H; Lobaccaro, Jean-Marc A

    2007-02-01

    Various physiological functions have been ascribed to the liver X receptors (LXRs). Recently, we have identified new functions of these nuclear receptors in steroidogenic tissues. In adrenal, LXRalpha prevents accumulation of free cholesterol in mouse by controlling expression of genes involved in all aspects of cholesterol utilization. Under chronic dietary stress, adrenals from LXR-deficient mice accumulate free cholesterol while wild-type animals maintain cholesterol homeostasis through basal regulation of cholesterol efflux and storage. Hence, LXRalpha provides a safety valve to limit free cholesterol levels as a basal protective mechanism in the adrenal. Beside, mice lacking LXRalpha show lower levels of testicular testosterone while wild-type mice treated with the specific LXR agonist present an increase of testosterone production. Altogether, these data identify new roles for LXRs, in the regulation of cholesterol homeostasis in steroidogenic tissues and hormone synthesis.

  15. Effect of clomiphene on nuclear estrogen receptor of the fallopian tube during ovum transport in rabbits.

    Science.gov (United States)

    Gupta, J S; Roy, S K

    1989-01-01

    The effect of clomiphene on nuclear estrogen receptors of the Fallopian tube during ovum transport in the rabbit has been studied. Nuclear binding capacity was observed in ampulla (A), ampullary-isthmic junction (AIJ), isthmus (I), uterine-isthmic junction (UIJ) and uterus (U). Receptor concentration decreased in all segments of the tube after administration of clomiphene in mated animals. The bindings are of high affinity and low capacity. Important alterations were observed during transport when compared to that of 14, 24, 34, 48, 72, 144 and 168 hr post-coitum (p.c). At 24 hr p.c binding increased only in I and decreased in A and AIJ. Retention of eggs at I at 24 hr p.c showed as increase in binding at I. Egg transport was accelerated and eggs reached prematurely in the uterus due to the influence of clomiphene. Binding in I remained constant from 48 hr p.c to 144 hr p.c but concurrently the binding level increased in U from 34 hr p.c. The elevation of nuclear estrogen receptor level was maximum at 24 hr p.c which coincided with increased plasma estrogen level. The result of such study showed that clomiphene depleted nuclear estrogen receptor complex in the fallopian tube before transfer to the uterus. Further, observation indicated that clomiphene acted directly on the rate of egg transport because of the variations in estrogen receptors during different time periods. Thus, clomiphene reduced the quantity of estrogen receptor i.e., insensitiveness to estrogen. The variations in estrogen binding to its receptor and plasma level at different post-coital periods are modulated by clomiphene resulting in the acceleration of egg transport and prevention of pregnancy.

  16. Sloppy nuclear energy density functionals: effective model reduction

    CERN Document Server

    Niksic, Tamara

    2016-01-01

    Concepts from information geometry are used to analyse parameter sensitivity for a nuclear energy density functional, representative of a class of semi-empirical functionals that start from a microscopically motivated ansatz for the density dependence of the energy of a system of protons and neutrons. It is shown that such functionals are sloppy, characterized by an exponential range of sensitivity to parameter variations. Responsive to only a few stiff parameter combinations, they exhibit an exponential decrease of sensitivity to variations of the remaining soft parameters. By interpreting the space of model predictions as a manifold embedded in the data space, with the parameters of the functional as coordinates on the manifold, it is also shown that the exponential distribution of model manifold widths corresponds to the distribution of parameter sensitivity. Using the Manifold Boundary Approximation Method, we illustrate how to systematically construct effective nuclear density functionals of successively...

  17. Molecular determinants of angiotensin II type 1 receptor functional selectivity

    DEFF Research Database (Denmark)

    Aplin, Mark; Bonde, Marie Mi; Hansen, Jakob Lerche

    2008-01-01

    -independent recruitment of beta-arrestin-scaffolded signalling complexes that activate protein kinase pathways. Different states of receptor activation with preference for individual downstream pathways (functional selectivity) have been demonstrated in mutational studies of the AT(1) receptor and by pharmacological...... that selective blockade of G protein actions and simultaneous activation of G protein-independent signalling will prove to be a feasible strategy for improved cardiovascular therapy. The pharmacological perspectives of functional selectivity by receptors, such as the AT(1) receptor, urge the elucidation...

  18. Adenosine Receptor Heteromers and their Integrative Role in Striatal Function

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2007-01-01

    Full Text Available By analyzing the functional role of adenosine receptor heteromers, we review a series of new concepts that should modify our classical views of neurotransmission in the central nervous system (CNS. Neurotransmitter receptors cannot be considered as single functional units anymore. Heteromerization of neurotransmitter receptors confers functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Some of these characteristics can be used as a “biochemical fingerprint” to identify neurotransmitter receptor heteromers in the CNS. This is exemplified by changes in binding characteristics that are dependent on coactivation of the receptor units of different adenosine receptor heteromers. Neurotransmitter receptor heteromers can act as “processors” of computations that modulate cell signaling, sometimes critically involved in the control of pre- and postsynaptic neurotransmission. For instance, the adenosine A1-A2A receptor heteromer acts as a concentration-dependent switch that controls striatal glutamatergic neurotransmission. Neurotransmitter receptor heteromers play a particularly important integrative role in the “local module” (the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit, where they act as processors mediating computations that convey information from diverse volume-transmitted signals. For instance, the adenosine A2A-dopamine D2 receptor heteromers work as integrators of two different neurotransmitters in the striatal spine module.

  19. Research resource: nuclear receptor atlas of human retinal pigment epithelial cells: potential relevance to age-related macular degeneration.

    Science.gov (United States)

    Dwyer, Mary A; Kazmin, Dmitri; Hu, Peng; McDonnell, Donald P; Malek, Goldis

    2011-02-01

    Retinal pigment epithelial (RPE) cells play a vital role in retinal physiology by forming the outer blood-retina barrier and supporting photoreceptor function. Retinopathies including age-related macular degeneration (AMD) involve physiological and pathological changes in the epithelium, severely impairing the retina and effecting vision. Nuclear receptors (NRs), including peroxisome proliferator-activated receptor and liver X receptor, have been identified as key regulators of physiological pathways such as lipid metabolic dysregulation and inflammation, pathways that may also be involved in development of AMD. However, the expression levels of NRs in RPE cells have yet to be systematically surveyed. Furthermore, cell culture lines are widely used to study the biology of RPE cells, without knowledge of the differences or similarities in NR expression and activity between these in vitro models and in vivo RPE. Using quantitative real-time PCR, we assessed the expression patterns of all 48 members of the NR family plus aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator in human RPE cells. We profiled freshly isolated cells from donor eyes (in vivo), a spontaneously arising human cell line (in vitro), and primary cell culture lines (in vitro) to determine the extent to which NR expression in the cultured cell lines reflects that of in vivo. To evaluate the validity of using cell culture models for investigating NR receptor biology, we determined transcriptional activity and target gene expression of several moderately and highly expressed NRs in vitro. Finally, we identified a subset of NRs that may play an important role in pathobiology of AMD.

  20. Time-dependent density-functional description of nuclear dynamics

    CERN Document Server

    Nakatsukasa, Takashi; Matsuo, Masayuki; Yabana, Kazuhiro

    2016-01-01

    We present the basic concepts and recent developments in the time-dependent density functional theory (TDDFT) for describing nuclear dynamics at low energy. The symmetry breaking is inherent in nuclear energy density functionals (EDFs), which provides a practical description of important correlations at the ground state. Properties of elementary modes of excitation are strongly influenced by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent developments in the linear response calculation have demonstrated their usefulness in description of collective modes of excitation in nuclei. Unrestricted real-time calculations have also become available in recent years, with new developments for quantitative description of nuclear collision phenomena. There are, however, limitations in the real-time approach; for instance, it cannot describe the many-body quantum tunneling. Thus, we treat the quantum fluctuations associated with slow collective motions assuming that time evolution of...

  1. Uncertainty Quantification and Propagation in Nuclear Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M

    2015-03-17

    Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.

  2. BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, Witold

    2012-07-01

    The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  3. Public meetings on nuclear waste management: their function and organization

    Energy Technology Data Exchange (ETDEWEB)

    Duvernoy, E.G.; Marcus, A.A.; Overcast, T.; Schilling, A.H.

    1981-05-01

    This report focuses on public meetings as a vehicle for public participation in nuclear waste management. The nature of public meetings is reviewed and the functions served by meetings highlighted. The range of participants and their concerns are addressed, including a review of the participants from past nuclear waste management meetings. A sound understanding of the expected participants allows DOE to tailor elements of the meeting, such as notification, format, and agenda to accommodate the attendees. Finally, the report discusses the organization of public meetings on nuclear waste management in order to enhance the DOE's functions for such meetings. Possible structures are suggested for a variety of elements that are relevant prior to, during and after the public meeting. These suggestions are intended to supplement the DOE Public Participation Manual.

  4. NR4A nuclear receptors mediate carnitine palmitoyltransferase 1A gene expression by the rexinoid HX600

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, Michiyasu [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan); Kagechika, Hiroyuki [Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Makishima, Makoto, E-mail: makishima.makoto@nihon-u.ac.jp [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer The function of RXR heterodimers with NR4 receptors remains unknown. Black-Right-Pointing-Pointer The RXR ligand HX600 induces expression of carnitine palmitoyltransferase 1A (CPT1A). Black-Right-Pointing-Pointer HX600-induced CPT1A expression is mediated by the NR4 receptors, Nur77 and NURR1. Black-Right-Pointing-Pointer CPT1A induction by HX600 is not mediated by de novo protein synthesis. Black-Right-Pointing-Pointer CPT1A could be a target of the Nur77-RXR and NURR1-RXR heterodimers. -- Abstract: Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and can be activated by 9-cis retinoic acid (9CRA). RXRs form homodimers and heterodimers with other nuclear receptors such as the retinoic acid receptor and NR4 subfamily nuclear receptors, Nur77 and NURR1. Potential physiological roles of the Nur77-RXR and NURR1-RXR heterodimers have not been elucidated. In this study, we identified a gene regulated by these heterodimers utilizing HX600, a selective RXR agonist for Nur77-RXR and NURR1-RXR. While 9CRA induced many genes, including RAR-target genes, HX600 effectively induced only carnitine palmitoyltransferase 1A (CPT1A) in human teratocarcinoma NT2/D1 cells, which express RXR{alpha}, Nur77 and NURR1. HX600 also increased CPT1A expression in human embryonic kidney (HEK) 293 cells and hepatocyte-derived HepG2 cells. Although HX600 induced CPT1A less effectively than 9CRA, overexpression of Nur77 or NURR1 increased the HX600 response to levels similar to 9CRA in NT2/D1 and HEK293 cells. A dominant-negative form of Nur77 or NURR1 repressed the induction of CPT1A by HX600. A protein synthesis inhibitor did not alter HX600-dependent CPT1A induction. Thus, the rexinoid HX600 directly induces expression of CPT1A through a Nur77 or NURR1-mediated mechanism. CPT1A, a gene involved in fatty acid {beta}-oxidation, could be a target of RXR-NR4 receptor heterodimers.

  5. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goitre resection

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E; Blichert-Toft, M

    1989-01-01

    Nuclear thyroxine and triiodothyronine receptor-binding in human mononuclear blood cells were examined in 14 euthyroid persons prior to and 1, 6, 24 and 53 weeks after goitre resection. One week after resection decreased serum T3 from 1.47 nmol/l to 1.14 nmol/l (P less than 0.05), FT4I from 103 a...

  6. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization

    NARCIS (Netherlands)

    Kuznetsova, T.; Wang, S.Y.; Rao, N.A.; Mandoli, A.; Martens, J.H.; Rother, N; Aartse, A.; Groh, L.; Janssen-Megens, E.M.; Li, G.; Ruan, Y.; Logie, C.; Stunnenberg, H.G.

    2015-01-01

    BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by activ

  7. Activation of nuclear receptor Nur77 by 6-mercaptopurine protects against neointima formation

    NARCIS (Netherlands)

    Pires, N.M.M.; Pols, T.W.H.; Vries, M.R. de; Tiel, C.M.van; Bonta, P.I.; Vos, M.; Arkenbout, E.K.; Pannekoek, H.; Jukema, J.W.; Quax, P.H.A.; Vries, C.J.M. de

    2007-01-01

    BACKGROUND - Restenosis is a common complication after percutaneous coronary interventions and is characterized by excessive proliferation of vascular smooth muscle cells (SMCs). We have shown that the nuclear receptor Nur77 protects against SMC-rich lesion formation, and it has been demonstrated th

  8. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization

    NARCIS (Netherlands)

    Kuznetsova, T.; Wang, S.Y.; Rao, N.A.; Mandoli, A.; Martens, J.H.; Rother, N; Aartse, A.; Groh, L.; Janssen-Megens, E.M.; Li, G.; Ruan, Y.; Logie, C.; Stunnenberg, H.G.

    2015-01-01

    BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by

  9. Orphan nuclear receptor TR4 and fibroblast growth factor 1 in metabolism

    NARCIS (Netherlands)

    Liu, Weilin

    2016-01-01

    Metabolic homeostasis is achieved, in part, through the coordinated activities of members of the Nuclear Receptor (NR) family, a superfamily of ligand-modulated transcription factors (TFs) that mediate responses to a wide range of lipophilic signaling molecules including lipids, steroids, retinoids,

  10. Activation of nuclear receptor Nur77 by 6-mercaptopurine protects against neointima formation

    NARCIS (Netherlands)

    Pires, N.M.M.; Pols, T.W.H.; Vries, M.R. de; Tiel, C.M.van; Bonta, P.I.; Vos, M.; Arkenbout, E.K.; Pannekoek, H.; Jukema, J.W.; Quax, P.H.A.; Vries, C.J.M. de

    2007-01-01

    BACKGROUND - Restenosis is a common complication after percutaneous coronary interventions and is characterized by excessive proliferation of vascular smooth muscle cells (SMCs). We have shown that the nuclear receptor Nur77 protects against SMC-rich lesion formation, and it has been demonstrated

  11. Regulation of bile acid synthesis by the nuclear receptor Rev-erb alpha

    NARCIS (Netherlands)

    Duez, Helene; Van Der Veen, Jelske N.; Duhem, Christian; Pourcet, Benoit; Touvier, Thierry; Fontaine, Coralie; Derudas, Bruno; Bauge, Eric; Havinga, Rick; Bloks, Vincent W.; Wolters, Henk; Van Der Sluijs, Fjodor H.; Vennstrom, Bjorn; Kuipers, Folkert; Staels, Bart

    2008-01-01

    Background & Aims: Conversion into bile acids represents an important route to remove excess cholesterol from the body. Rev-erb alpha is a nuclear receptor that participates as one of the clock genes in the control of circadian rhythmicity and plays a regulatory role in lipid metabolism and adipogen

  12. [Nucleotide receptors--structure and function, history and perspectives].

    Science.gov (United States)

    Barańska, Jolanta

    2014-01-01

    First nucleotide receptors were discovered by Geoffrey Burnstock in 70ties of the last century, as a purinoreceptors activated by ATP. It was further found that they may be activated both by purine and pyrimidine nucleotides and their name was changed to nucleotide receptors. They are divided into two fsamilies: P1, activated by adenosine and P2, activated by nucleotides which are further divided into P2X and P2Y subfamilies. P2X are ionotropic receptors activated by ATP, P2Y (as the P1) are metabotropic receptors coupled with protein G. P2Y receptors are activated by ATP, ADP, UTP, UDP and UDP-sugar derivatives. This review describes early history of extracellular nucleotide signaling studies and presents current knowledge of the particular nucleotide receptors subtypes. The article also describes the structure and functional roles of these receptors and speculates about future research and therapeutic directions in this field.

  13. Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1 rescues Nr2e3 associated retinal disease.

    Directory of Open Access Journals (Sweden)

    Nelly M Cruz

    Full Text Available Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.

  14. Dose-dependent difference of nuclear receptors involved in murine liver hypertrophy by piperonyl butoxide.

    Science.gov (United States)

    Sakamoto, Yohei; Yoshida, Midori; Tamura, Kei; Takahashi, Miwa; Kodama, Yukio; Inoue, Kaoru

    2015-12-01

    Nuclear receptors play important roles in chemically induced liver hypertrophy in rodents. To clarify the involvement of constitutive androstane receptor (CAR) and other nuclear receptors in mouse liver hypertrophy induced by different doses of piperonyl butoxide (PBO), wild-type and CAR-knockout mice were administered PBO (200, 1,000, or 5,000 ppm) in the basal diet for 1 week. Increased liver weight and diffuse hepatocellular hypertrophy were observed at 5,000 ppm for both genotypes, accompanied by increased Cyp3a11 mRNA and CYP3A protein expression, suggesting that CAR-independent pathway, possibly pregnane X receptor (PXR), plays a major role in the induction of hypertrophy. Moreover, wild-type mice at 5,000 ppm showed enhanced hepatocellular hypertrophy and strong positive staining for CYP2B in the centrilobular area, suggesting the localized contribution of CAR. At 1,000 ppm, only wild-type mice showed liver weight increase and centrilobular hepatocellular hypertrophy concurrent with elevated Cyp2b10 mRNA expression and strong CYP2B staining, indicating that CAR was essential at 1,000 ppm. We concluded that high-dose PBO induced hypertrophy via CAR and another pathway, while lower dose of PBO induced a pathway mediated predominantly by CAR. The dose-responsiveness on liver hypertrophy is important for understanding the involvement of nuclear receptors.

  15. Functionally biased signalling properties of 7TM receptors - opportunities for drug development for the ghrelin receptor

    DEFF Research Database (Denmark)

    Sivertsen, B; Holliday, N; Madsen, A N

    2013-01-01

    UNLABELLED: The ghrelin receptor is a 7 transmembrane (7TM) receptor involved in a variety of physiological functions including growth hormone secretion, increased food intake and fat accumulation as well as modulation of reward and cognitive functions. Because of its important role in metabolism...... and energy expenditure, the ghrelin receptor has become an important therapeutic target for drug design and the development of anti-obesity compounds. However, none of the compounds developed so far have been approved for commercial use. Interestingly, the ghrelin receptor is able to signal through several...

  16. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    Science.gov (United States)

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β2 adrenergic receptor (β2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  17. Goal Direction and Effectiveness, Emotional Maturity, and Nuclear Family Functioning

    Science.gov (United States)

    Klever, Phillip

    2009-01-01

    Differentiation of self, a cornerstone concept in Bowen theory, has a profound influence over time on the functioning of the individual and his or her family unit. This 5-year longitudinal study tested this hypothesis with 50 developing nuclear families. The dimensions of differentiation of self that were examined were goal direction and…

  18. Functional renormalization group studies of nuclear and neutron matter

    Science.gov (United States)

    Drews, Matthias; Weise, Wolfram

    2017-03-01

    Functional renormalization group (FRG) methods applied to calculations of isospin-symmetric and asymmetric nuclear matter as well as neutron matter are reviewed. The approach is based on a chiral Lagrangian expressed in terms of nucleon and meson degrees of freedom as appropriate for the hadronic phase of QCD with spontaneously broken chiral symmetry. Fluctuations beyond mean-field approximation are treated solving Wetterich's FRG flow equations. Nuclear thermodynamics and the nuclear liquid-gas phase transition are investigated in detail, both in symmetric matter and as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of symmetric nuclear matter and pure neutron matter are found to be in good agreement with advanced ab-initio many-body computations. Contacts with perturbative many-body approaches (in-medium chiral perturbation theory) are discussed. As an interesting test case, the density dependence of the pion mass in the medium is investigated. The question of chiral symmetry restoration in nuclear and neutron matter is addressed. A stabilization of the phase with spontaneously broken chiral symmetry is found to persist up to high baryon densities once fluctuations beyond mean-field are included. Neutron star matter including beta equilibrium is discussed under the aspect of the constraints imposed by the existence of two-solar-mass neutron stars.

  19. A quantitative method to assess extrasynaptic NMDA receptor function in the protective effect of synaptic activity against neurotoxicity

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2008-01-01

    Full Text Available Abstract Background Extrasynaptic NMDA receptors couple to a CREB shut-off pathway and cause cell death, whereas synaptic NMDA receptors and nuclear calcium signaling promote CREB-mediated transcription and neuronal survival. The distribution of NMDA receptors (synaptic versus extrasynaptic may be an important parameter that determines the susceptibility of neurons to toxic insults. Changes in receptor surface expression towards more extrasynaptic NMDA receptors may lead to neurodegeneration, whereas a reduction of extrasynaptic NMDA receptors may render neurons more resistant to death. A quantitative assessment of extrasynaptic NMDA receptors in individual neurons is needed in order to investigate the role of NMDA receptor distribution in neuronal survival and death. Results Here we refined and verified a protocol previously used to isolate the effects of extrasynaptic NMDA receptors using the NMDA receptor open channel blocker, MK-801. Using this method we investigated the possibility that the known neuroprotective shield built up in hippocampal neurons after a period of action potential bursting and stimulation of synaptic NMDA receptors is due to signal-induced trafficking of extrasynaptic NMDA receptors or a reduction in extrasynaptic NMDA receptor function. We found that extrasynaptic NMDA receptor-mediated calcium responses and whole cell currents recorded under voltage clamp were surprisingly invariable and did not change even after prolonged (16 to 24 hours periods of bursting and synaptic NMDA receptor activation. Averaging a large number of calcium imaging traces yielded a small (6% reduction of extrasynaptic NMDA receptor-mediated responses in hippocampal neurons that were pretreated with prolonged bursting. Conclusion The slight reduction in extrasynaptic NMDA receptor function following action potential bursting and synaptic NMDA receptor stimulation could contribute to but is unlikely to fully account for activity

  20. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals

    Science.gov (United States)

    Montagner, Alexandra; Korecka, Agata; Polizzi, Arnaud; Lippi, Yannick; Blum, Yuna; Canlet, Cécile; Tremblay-Franco, Marie; Gautier-Stein, Amandine; Burcelin, Rémy; Yen, Yi-Chun; Je, Hyunsoo Shawn; Maha, Al-Asmakh; Mithieux, Gilles; Arulampalam, Velmurugesan; Lagarrigue, Sandrine; Guillou, Hervé; Pettersson, Sven; Wahli, Walter

    2016-01-01

    The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function. PMID:26879573

  1. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals.

    Science.gov (United States)

    Montagner, Alexandra; Korecka, Agata; Polizzi, Arnaud; Lippi, Yannick; Blum, Yuna; Canlet, Cécile; Tremblay-Franco, Marie; Gautier-Stein, Amandine; Burcelin, Rémy; Yen, Yi-Chun; Je, Hyunsoo Shawn; Al-Asmakh, Maha; Maha, Al-Asmakh; Mithieux, Gilles; Arulampalam, Velmurugesan; Lagarrigue, Sandrine; Guillou, Hervé; Pettersson, Sven; Wahli, Walter

    2016-02-16

    The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.

  2. Kar5p is required for multiple functions in both inner and outer nuclear envelope fusion in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rogers, Jason V; Rose, Mark D

    2014-12-02

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p's functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion.

  3. Modulation of lipoprotein receptor functions by intracellular adaptor proteins.

    Science.gov (United States)

    Stolt, Peggy C; Bock, Hans H

    2006-10-01

    Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.

  4. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  5. Reflection-asymmetric nuclear deformations within the Density Functional Theory

    CERN Document Server

    Olsen, E; Nazarewicz, W; Stoitsov, M; 10.1088/1742-6596/402/1/012034

    2013-01-01

    Within the nuclear density functional theory (DFT) we study the effect of reflection-asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver AxialHFB that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even-even isotopes of radium and thorium.

  6. Ly9 (CD229) Cell-Surface Receptor is Crucial for the Development of Spontaneous Autoantibody Production to Nuclear Antigens.

    Science.gov (United States)

    de Salort, Jose; Cuenca, Marta; Terhorst, Cox; Engel, Pablo; Romero, Xavier

    2013-01-01

    The Signaling Lymphocyte Activation Molecule Family (SLAMF) genes, which encode cell-surface receptors that modulate innate and adaptive immune responses, lay within a genomic region of human and mouse chromosome 1 that confers a predisposition for the development of systemic lupus erythematosus (SLE). Herein, we demonstrate that the SLAMF member Ly9 arises as a novel receptor contributing to the reinforcement of tolerance. Specifically, Ly9-deficient mice spontaneously developed features of systemic autoimmunity such as the production of anti-nuclear antibodies (ANA), -dsDNA, and -nucleosome autoantibodies, independently of genetic background [(B6.129) or (BALB/c.129)]. In aged (10- to 12-month-old) Ly9 (-/-) mice key cell subsets implicated in autoimmunity were expanded, e.g., T follicular helper (Tfh) as well as germinal center (GC) B cells. More importantly, in vitro functional experiments showed that Ly9 acts as an inhibitory receptor of IFN-γ producing CD4(+) T cells. Taken together, our findings reveal that the Ly9 receptor triggers cell intrinsic safeguarding mechanisms to prevent a breach of tolerance, emerging as a new non-redundant inhibitory cell-surface receptor capable of disabling autoantibody responses.

  7. METHODS FOR RECOMBINANT EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF HUMAN CANNABINOID RECEPTOR CB2

    Directory of Open Access Journals (Sweden)

    Alexei A. Yeliseev

    2013-03-01

    Full Text Available Cannabinoid receptor CB2 is a seven transmembrane-domain integral membrane protein that belongs to a large superfamily of G protein-coupled receptors (GPCR. CB2 is a part of the endocannabinoid system that plays vital role in regulation of immune response, inflammation, pain sensitivity, obesity and other physiological responses. Information about the structure and mechanisms of functioning of this receptor in cell membranes is essential for the rational development of specific pharmaceuticals. Here we review the methodology for recombinant expression, purification, stabilization and biochemical characterization of CB2 suitable for preparation of multi-milligram quantities of functionally active receptor. The biotechnological protocols include expression of the recombinant CB2 in E. coli cells as a fusion with the maltose binding protein, stabilization with a high affinity ligand and a derivative of cholesterol in detergent micelles, efficient purification by tandem affinity chromatography, and reconstitution of the receptor into lipid bilayers. The purified recombinant CB2 receptor is amenable to functional and structural studies including nuclear magnetic resonance spectroscopy and a wide range of biochemical and biophysical techniques.

  8. Study of the derivative expansions for the nuclear structure functions

    CERN Document Server

    Simo, I Ruiz

    2008-01-01

    We study the convergence of the series expansions sometimes used in the analysis of the nuclear effects in Deep Inelastic Scattering (DIS) proccesses induced by leptons. The recent advances in statistics and quality of the data, in particular for neutrinos calls for a good control of the theoretical uncertainties of the models used in the analysis. Using realistic nuclear spectral functions which include nucleon correlations, we find that the convergence of the derivative expansions to the full results is poor except at very low values of $x$.

  9. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Directory of Open Access Journals (Sweden)

    Marc R Van Gilst

    2005-02-01

    Full Text Available Mammalian nuclear hormone receptors (NHRs, such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs, precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  10. Photoaffinity labelling of the rat liver nuclear thyroid hormone receptor with (/sup 125/I)triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    David-Inouye, Y.; Somack, R.; Nordeen, S.K.; Apriletti, J.W.; Baxter, J.D.; Eberhardt, N.L.

    1982-11-01

    (/sup 125/I)Triiodothyronine (T3) was used as a photoreactive probe for the thyroid hormone nuclear receptor in photoaffinity labelling experiments. Autoradiograms of photolysis products electrophoresed on either one or two-dimensional gels showed that (/sup 125/I)T3 covalently, but nonspecifically, labelled many proteins in the partially purified receptor preparations used. However, one of these proteins with an estimated molecular weight of 47,000 and an isoelectric point of approximately 6.2 +/- 0.5 pH units appears to be the thyroid hormone receptor, since, in contrast to the other proteins, its photoinduced labelling was blocked by concentrations of T3 and thyroxine (T4) similar to those that inhibit binding of (/sup 125/I)T3 by the receptor in equilibrium binding assays. In addition, the isoelectric point of the photolabelled protein agrees with that determined in separate equilibrium isoelectric focusing studies. These results indicate that (/sup 125/)T3 can serve as a photoreactive probe for the thyroid hormone nuclear receptor, and they suggest that this receptor is a single polypeptide chain of molecular weight 47,000 with an isoelectric point of 6.2 +/- 0.5 pH units.

  11. Photoaffinity labelling of the rat liver nuclear thyroid hormone receptor with (/sup 125/I)triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    David-Inouye, Y. (Univ. of California, San Francisco); Somack, R; Nordeen, S.K.; Apriletti, J.W.; Baxter, J.D.; Eberhardt, N.L.

    1982-11-01

    (/sup 125/I)Triiodothyronine (T/sub 3/) was used as a photoreactive probe for the thyroid hormone nuclear receptor in photoaffinity labelling experiments. Autoradiograms of photolysis products electrophoresed on either one or two-dimensional gels showed that (/sup 125/I)T/sub 3/ covalently, but nonspecifically, labelled many proteins in the partially purified receptor preparations used. However, one of these proteins with an estimated molecular weight of 47,000 and an isoelectric point of approximately 6.2 +/- 0.5 pH units appears to be the thyroid hormone receptor, since, in contrast to the other proteins, its photoinduced labelling was blocked by concentrations of T/sub 3/ and thyroxine (T/sub 4/) similar to those that inhibit binding of (/sup 125/I)T/sub 3/ by the receptor in equilibrium binding assays. In addition, the isoelectric point of the photolabelled protein agrees with that determined in separate equilibrium isoelectric focusing studies. These results indicate that (/sup 125/I)T/sub 3/ can serve as a photoreactive probe for the thyroid hormone nuclear receptor, and they suggest that this receptor is a single polypeptide chain of molecular weight 47,000 with an isoelectric point of 6.2 +/- 0.5 pH units.

  12. PET neuroimaging of extrastriatal dopamine receptors and prefrontal cortex functions.

    Science.gov (United States)

    Takahashi, Hidehiko

    2013-12-01

    The role of prefrontal dopamine D1 receptors in prefrontal cortex (PFC) functions, including working memory, is widely investigated. However, human (healthy volunteers and schizophrenia patients) positron emission tomography (PET) studies about the relationship between prefrontal D1 receptors and PFC functions are somewhat inconsistent. We argued that several factors including an inverted U-shaped relationship between prefrontal D1 receptors and PFC functions might be responsible for these inconsistencies. In contrast to D1 receptors, relatively less attention has been paid to the role of D2 receptors in PFC functions. Several animal and human pharmacological studies have reported that the systemic administration of D2 receptor agonist/antagonist modulates PFC functions, although those studies do not tell us which region(s) is responsible for the effect. Furthermore, while prefrontal D1 receptors are primarily involved in working memory, other PFC functions such as set-shifting seem to be differentially modulated by dopamine. PET studies of extrastriatal D2 receptors including ours suggested that orchestration of prefrontal dopamine transmission and hippocampal dopamine transmission might be necessary for a broad range of normal PFC functions. In order to understand the complex effects of dopamine signaling on PFC functions, measuring a single index related to basic dopamine tone is not sufficient. For a better understanding of the meanings of PET indices related to neurotransmitters, comprehensive information (presynaptic, postsynaptic, and beyond receptor signaling) will be required. Still, an interdisciplinary approach combining molecular imaging techniques with cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of neuropsychiatric disorders and their innovative drug developments.

  13. Building A Universal Nuclear Energy Density Functional (UNEDF)

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Furnstahl, Dick [The Ohio State Univ., Columbus, OH (United States); Horoi, Mihai [Central Michigan Univ., Mount Pleasant, MI (United States); Lusk, Rusty [Argonne National Lab. (ANL), Argonne, IL (United States); Nazarewicz, Witek [Univ. of Tennessee, Knoxville, TN (United States); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vary, James [Iowa State Univ., Ames, IA (United States)

    2012-09-30

    During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

  14. RNA editing of the GABAA receptor α3 subunit alters the functional properties of recombinant receptors

    OpenAIRE

    Nimmich, Mitchell L.; Heidelberg, Laura S.; Fisher, Janet L.

    2009-01-01

    RNA editing provides a post-transcriptional mechanism to increase structural heterogeneity of gene products. Recently, the α3 subunit of the GABAA receptors has been shown to undergo RNA editing. As a result, a highly conserved isoleucine residue in the third transmembrane domain is replaced with a methionine. To determine the effect of this structural change on receptor function, we compared the GABA sensitivity, pharmacological properties and macroscopic kinetics of recombinant receptors co...

  15. Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor.

    Directory of Open Access Journals (Sweden)

    Jamie T Bridgham

    Full Text Available Understanding how protein structures and functions have diversified is a central goal in molecular evolution. Surveys of very divergent proteins from model organisms, however, are often insufficient to determine the features of ancestral proteins and to reveal the evolutionary events that yielded extant diversity. Here we combine genomic, biochemical, functional, structural, and phylogenetic analyses to reconstruct the early evolution of nuclear receptors (NRs, a diverse superfamily of transcriptional regulators that play key roles in animal development, physiology, and reproduction. By inferring the structure and functions of the ancestral NR, we show--contrary to current belief--that NRs evolved from a ligand-activated ancestral receptor that existed near the base of the Metazoa, with fatty acids as possible ancestral ligands. Evolutionary tinkering with this ancestral structure generated the extraordinary diversity of modern receptors: sensitivity to different ligands evolved because of subtle modifications of the internal cavity, and ligand-independent activation evolved repeatedly because of various mutations that stabilized the active conformation in the absence of ligand. Our findings illustrate how a mechanistic dissection of protein evolution in a phylogenetic context can reveal the deep homology that links apparently "novel" molecular functions to a common ancestral form.

  16. Topological and functional characterization of an insect gustatory receptor.

    Directory of Open Access Journals (Sweden)

    Hui-Jie Zhang

    Full Text Available Insect gustatory receptors are predicted to have a seven-transmembrane structure and are distantly related to insect olfactory receptors, which have an inverted topology compared with G-protein coupled receptors, including mammalian olfactory receptors. In contrast, the topology of insect gustatory receptors remains unknown. Except for a few examples from Drosophila, the specificity of individual insect gustatory receptors is also unknown. In this study, the total number of identified gustatory receptors in Bombyx mori was expanded from 65 to 69. BmGr8, a silkmoth gustatory receptor from the sugar receptor subfamily, was expressed in insect cells. Membrane topology studies on BmGr8 indicate that, like insect olfactory receptors, it has an inverted topology relative to G protein-coupled receptors. An orphan GR from the bitter receptor family, BmGr53, yielded similar results. We infer, from the finding that two distantly related BmGrs have an intracellular N-terminus and an odd number of transmembrane spans, that this is likely to be a general topology for all insect gustatory receptors. We also show that BmGr8 functions independently in Sf9 cells and responds in a concentration-dependent manner to the polyalcohols myo-inositol and epi-inositol but not to a range of mono- and di-saccharides. BmGr8 is the first chemoreceptor shown to respond specifically to inositol, an important or essential nutrient for some Lepidoptera. The selectivity of BmGr8 responses is consistent with the known responses of one of the gustatory receptor neurons in the lateral styloconic sensilla of B. mori, which responds to myo-inositol and epi-inositol but not to allo-inositol.

  17. Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Ze-Min Huang1,#, Jun Wu2,#, Zheng-Cai Jia1, Yi Tian1, Jun Tang3, Yan Tang1, Ying Wang2, Yu-Zhang Wu1,* & Bing Ni1,*

    2012-06-01

    Full Text Available The retinoid-related orphan nuclear receptor gamma (RORγplays critical roles in regulation of development, immunity andmetabolism. As transcription factor usually forms a proteincomplex to function, thus capturing and dissecting of theRORγ protein complex will be helpful for exploring themechanisms underlying those functions. After construction ofthe recombinant tandem affinity purification (TAP plasmid,pMSCVpuro RORγ-CTAP(SG, the nuclear localization ofRORγ-CTAP(SG fusion protein was verified. Followingisolation of RORγ protein complex by TAP strategy, sevencandidate interacting proteins were identified. Finally, the heatshock protein 90 (HSP90 and receptor-interacting protein 140(RIP140 were confirmed to interplay with RORγ byco-immunoprecipitation. Interference of HSP90 or/and RIP140genes resulted in dramatically decreased expression ofCYP2C8 gene, the RORγ target gene. Data from this studydemonstrate that HSP90 and RIP140 proteins interact withRORγ protein in a complex format and function asco-activators in the RORγ-mediated regulatory processes ofHepG2 cells.

  18. Nuclear energy density functional inspired by an effective field theory

    CERN Document Server

    Papakonstantinou, Panagiota; Lim, Yeunhwan; Hyun, Chang Ho

    2016-01-01

    Inspired by an effective field theory (EFT) for Fermi systems, we write the nuclear energy density functional (EDF) as an expansion in powers of the Fermi momentum $k_F$, or the cubic root of the density $\\rho^{1/3}$. With the help of pseudodata from microscopic calculations we fit the coefficients of the functional within a wide range of densities relevant for nuclei and neutron stars. The functional already at low order can reproduce known or adopted values of nuclear matter near saturation, a range of existing microscopic results on asymmetric matter, and a neutron-star mass-radius relation consistent with observations. Our approach leads to a transparent expansion of Skyrme-type EDFs and opens up many possibilities for future explorations in nuclei and homogeneous matter.

  19. R-ratios and moments of nuclear structure functions

    CERN Document Server

    Rinat, A S

    2000-01-01

    We study implications of a model, which links nuclear and nucleon structure functions. Computed Callen-Gross functions $\\kappa^A(x,Q^2)= 2xF_1^A(x,Q^2)/F_2^A(x,Q^2)$ appear for finite $Q^2$ to be close to their asymptotic value 1. Using those $\\kappa$, we compure $R$ ratios for $Q^2\\ge 5 GeV^2$. We review approximate methods in use for the extraction of $R$ from inclusive scattering and ENC data. Further we calcuate ratios of the moments of $F_k$ and find these to describe the data, in particular their $Q^2$ dependence. The above observables, as well as inclusive cross sections, are sensitive tests for the underlying relation between nucleonic and nuclear structure functions. In view of the overall agreement, we speculate that the above relation effectively circumvents a QCD calculation.

  20. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments

    Directory of Open Access Journals (Sweden)

    Fanchi Meng

    2015-12-01

    Full Text Available The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions.

  1. Functional domains of the poliovirus receptor

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Satoshi; Ise, Iku; Nomoto, Akio (Tokyo Metropolitan Institute of Medical Science (Japan))

    1991-05-15

    A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor. Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.

  2. $\\rho$ - meson spectral function in hot nuclear matter

    CERN Document Server

    Bhageerathi, P C Raje

    2010-01-01

    We study the $\\rho$-meson spectral function in hot nuclear matter by taking into account the isospin-symmetric pion and the nucleon loops within the quantum hadrodynamics (QHD) model as well as using an effective chiral SU(3) model. The spectral function of the $\\rho$ meson is studied in the mean field approximation (MFA) as well as in the relativistic Hartree (RHA) approximation. The inclusion of the nucleon loop considerably changes the $\\rho$-meson spectral function. Due to a larger mass drop of $ \\rho $ meson in the RHA, it is seen that the spectral function shifts towards the low invariant mass region, whereas in the MFA the spectral function is seen to be slightly shifted towards the high mass region. Moreover, while the spectral function is observed to be sharper with the nucleon-antinucleon polarization in RHA, the spectral function is seen to be broader in the MFA.

  3. Expression Profiles of the Nuclear Receptors and Their Transcriptional Coregulators During Differentiation of Neural Stem Cells

    Science.gov (United States)

    Androutsellis-Theotokis, A.; Chrousos, G. P.; McKay, R. D.; DeCherney, A. H.; Kino, T.

    2013-01-01

    Neural stem cells (NSCs) are pluripotent precursors with the ability to proliferate and differentiate into 3 neural cell lineages, neurons, astrocytes and oligodendrocytes. Elucidation of the mechanisms underlying these biologic processes is essential for understanding both physiologic and pathologic neural development and regeneration after injury. Nuclear hormone receptors (NRs) and their transcriptional coregulators also play crucial roles in neural development, functions and fate. To identify key NRs and their transcriptional regulators in NSC differentiation, we examined mRNA expression of 49 NRs and many of their coregulators during differentiation (0–5 days) of mouse embryonic NSCs induced by withdrawal of fibroblast growth factor-2 (FGF2). 37 out of 49 NRs were expressed in NSCs before induction of differentiation, while receptors known to play major roles in neural development, such as THRα, RXRs, RORs, TRs, and COUPTFs, were highly expressed. CAR, which plays important roles in xenobiotic metabolism, was also highly expressed. FGF2 withdrawal induced mRNA expression of RORγ, RXRγ, and MR by over 20-fold. Most of the transcriptional coregulators examined were expressed basally and throughout differentiation without major changes, while FGF2 withdrawal strongly induced mRNA expression of several histone deacetylases (HDACs), including HDAC11. Dexamethasone and aldosterone, respectively a synthetic glucocorticoid and natural mineralocorticoid, increased NSC numbers and induced differentiation into neurons and astrocytes. These results indicate that the NRs and their coregulators are present and/or change their expression during NSC differentiation, suggesting that they may influence development of the central nervous system in the absence or presence of their ligands. PMID:22990992

  4. Structure-Function Studies on the Prolactin Receptor

    DEFF Research Database (Denmark)

    Haxholm, Gitte Wolfsberg

    the PRLR-ICD and the ICD of the related growth hormone receptor (GHR). We showed that both ICDs were intrinsically disordered throughout their entire lengths and that they associated with lipids characteristic of the inner plasma membrane leaflet through conserved motifs, implicating the membrane......Class 1 Cytokine receptors are involved in important biological functions mediated through complex networks of intracellular signaling. However, the molecular details of how signaling is regulated are poorly understood. One of the primary reasons for this limited knowledge is the lack of structural...... information on the intracellular domains (ICDs) of these receptors. The overall aim of this study was to obtain an improved understanding of cytokine receptor signaling through structure-function studies on the prolactin receptor (PRLR). The primary focus of this thesis was to structurally characterize...

  5. Structure-Function Studies on the Prolactin Receptor

    DEFF Research Database (Denmark)

    Haxholm, Gitte Wolfsberg

    Class 1 Cytokine receptors are involved in important biological functions mediated through complex networks of intracellular signaling. However, the molecular details of how signaling is regulated are poorly understood. One of the primary reasons for this limited knowledge is the lack of structural...... information on the intracellular domains (ICDs) of these receptors. The overall aim of this study was to obtain an improved understanding of cytokine receptor signaling through structure-function studies on the prolactin receptor (PRLR). The primary focus of this thesis was to structurally characterize...... the PRLR-ICD and the ICD of the related growth hormone receptor (GHR). We showed that both ICDs were intrinsically disordered throughout their entire lengths and that they associated with lipids characteristic of the inner plasma membrane leaflet through conserved motifs, implicating the membrane...

  6. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review.

    Science.gov (United States)

    Ricketts, Marie-Louise; Moore, David D; Banz, William J; Mezei, Orsolya; Shay, Neil F

    2005-06-01

    Consumption of soy has been demonstrated to reduce circulating cholesterol levels, most notably reducing low-density lipoprotein (LDL) cholesterol levels in hypercholesterolemic individuals. The component or components that might be responsible for this effect is still a matter of debate or controversy among many researchers. Candidate agents include an activity of soy protein itself, bioactive peptides produced during the digestive process, or the soy isoflavones. Although soy intake may provide other health benefits including preventative or remediative effects on cancer, osteoporosis and symptoms of menopause, this review will focus on isoflavones as agents affecting lipid metabolism. Isoflavones were first discovered as a bioactive agent disrupting estrogen action in female sheep, thereby earning the often-used term 'phytoestrogens'. Subsequent work confirmed the ability of isoflavones to bind to estrogen receptors. Along with the cholesterol-lowering effect of soy intake, research that is more recent has pointed to a beneficial antidiabetic effect of soy intake, perhaps mediated by soy isoflavones. The two common categories of antidiabetic drugs acting on nuclear receptors known as peroxisome proliferator activated receptors (PPARs) are the fibrates and glitazones. We and others have recently asked the research question 'do the soy isoflavones have activities as either "phytofibrates" or "phytoglitazones"?' Such an activity should be able to be confirmed both in vivo and in vitro. In both the in vivo and in vitro cases, this action has indeed been confirmed. Further work suggests a possible action of isoflavones similar to the nonestrogenic ligands that bind the estrogen-related receptors (ERRs). Recently, these receptors have been demonstrated to contribute to lipolytic processes. Finally, evaluation of receptor activation studies suggests that thyroid receptor activation may provide additional clues explaining the metabolic action of isoflavones. The recent

  7. Nuclear response functions for the N-N*(1440) transition

    CERN Document Server

    Alvarez-Ruso, L; Donnelly, T W; Molinari, A

    2003-01-01

    Parity-conserving and -violating response functions are computed for the inclusive electroexcitation of the N*(1440)(Roper) resonance in nuclear matter modeled as a relativistic Fermi gas. Using various empirical parameterizations and theoretical models of the N-N*(1440) transition form factors, the sensitivity of the response functions to details of the structure of the Roper resonance is investigated. The possibility of disentangling this resonance from the contribution of Delta electroproduction in nuclei is addressed. Finally, the contributions of the Roper resonance to the longitudinal scaling function and to the Coulomb sum rule are also explored.

  8. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  9. Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention.

    Science.gov (United States)

    Romagnolo, Donato F; Zempleni, Janos; Selmin, Ornella I

    2014-07-01

    Posttranslational modifications of histones, alterations in the recruitment and functions of non-histone proteins, DNA methylation, and changes in expression of noncoding RNAs contribute to current models of epigenetic regulation. Nuclear receptors (NRs) are a group of transcription factors that, through ligand-binding, act as sensors to changes in nutritional, environmental, developmental, pathophysiologic, and endocrine conditions and drive adaptive responses via gene regulation. One mechanism through which NRs direct gene expression is the assembly of transcription complexes with cofactors and coregulators that possess chromatin-modifying properties. Chromatin modifications can be transient or become part of the cellular "memory" and contribute to genomic imprinting. Because many food components bind to NRs, they can ultimately influence transcription of genes associated with biologic processes, such as inflammation, proliferation, apoptosis, and hormonal response, and alter the susceptibility to chronic diseases (e.g., cancer, diabetes, obesity). The objective of this review is to highlight how NRs influence epigenetic regulation and the relevance of dietary compound-NR interactions in human nutrition and for disease prevention and treatment. Identifying gene targets of unliganded and bound NRs may assist in the development of epigenetic maps for food components and dietary patterns. Progress in these areas may lead to the formulation of disease-prevention models based on epigenetic control by individual or associations of food ligands of NRs.

  10. Mice lacking TR4 nuclear receptor develop mitochondrial myopathy with deficiency in complex I.

    Science.gov (United States)

    Liu, Su; Lee, Yi-Fen; Chou, Samuel; Uno, Hideo; Li, Gonghui; Brookes, Paul; Massett, Michael P; Wu, Qiao; Chen, Lu-Min; Chang, Chawnshang

    2011-08-01

    The estimated incidence of mitochondrial diseases in humans is approximately 1:5000 to 1:10,000, whereas the molecular mechanisms for more than 50% of human mitochondrial disease cases still remain unclear. Here we report that mice lacking testicular nuclear receptor 4 (TR4(-/-)) suffered mitochondrial myopathy, and histological examination of TR4(-/-) soleus muscle revealed abnormal mitochondrial accumulation. In addition, increased serum lactate levels, decreased mitochondrial ATP production, and decreased electron transport chain complex I activity were found in TR4(-/-) mice. Restoration of TR4 into TR4(-/-) myoblasts rescued mitochondrial ATP generation capacity and complex I activity. Further real-time PCR quantification and promoter studies found TR4 could modulate complex I activity via transcriptionally regulating the complex I assembly factor NDUFAF1, and restoration of NDUFAF1 level in TR4(-/-) myoblasts increased mitochondrial ATP generation capacity and complex I activity. Together, these results suggest that TR4 plays vital roles in mitochondrial function, which may help us to better understand the pathogenesis of mitochondrial myopathy, and targeting TR4 via its ligands/activators may allow us to develop better therapeutic approaches.

  11. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  12. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  13. The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression.

    Science.gov (United States)

    Much, J W; Slade, D J; Klampert, K; Garriga, G; Wightman, B

    2000-02-01

    Specification of neuron identity requires the activation of a number of discrete developmental programs. Among these is pathway selection by growth cones: in order for a neuron's growth cone to respond appropriately to guidance cues presented by other cells or the extracellular matrix, the neuron must express genes to mediate the response. The fax-1 gene of C. elegans is required for pathfinding of axons that extend along the ventral nerve cord. We show that fax-1 is also required for pathfinding of axons in the nerve ring, the largest nerve bundle in the nematode, and for normal expression of FMRFamide-like neurotransmitters in the AVK interneurons. The fax-1 gene encodes a member of the superfamily of nuclear hormone receptors and has a DNA-binding domain related to the human PNR and Drosophila Tailless proteins. We observe fax-1 expression in embryonic neurons, including the AVK interneurons, just prior to axon extension, but after neurogenesis. These data suggest that fax-1 coordinately regulates the transcription of genes that function in the selection of axon pathways, neurotransmitter expression and, perhaps, other aspects of the specification of neuron identity.

  14. NRLiSt BDB, the manually curated nuclear receptors ligands and structures benchmarking database.

    Science.gov (United States)

    Lagarde, Nathalie; Ben Nasr, Nesrine; Jérémie, Aurore; Guillemain, Hélène; Laville, Vincent; Labib, Taoufik; Zagury, Jean-François; Montes, Matthieu

    2014-04-10

    Nuclear receptors (NRs) constitute an important class of drug targets. We created the most exhaustive NR-focused benchmarking database to date, the NRLiSt BDB (NRs ligands and structures benchmarking database). The 9905 compounds and 339 structures of the NRLiSt BDB are ready for structure-based and ligand-based virtual screening. In the present study, we detail the protocol used to generate the NRLiSt BDB and its features. We also give some examples of the errors that we found in ChEMBL that convinced us to manually review all original papers. Since extensive and manually curated experimental data about NR ligands and structures are provided in the NRLiSt BDB, it should become a powerful tool to assess the performance of virtual screening methods on NRs, to assist the understanding of NR's function and modulation, and to support the discovery of new drugs targeting NRs. NRLiSt BDB is freely available online at http://nrlist.drugdesign.fr .

  15. Retinoids and nuclear retinoid receptors in white and brown adipose tissues: physiopathologic aspects.

    Science.gov (United States)

    Flajollet, Sébastien; Staels, Bart; Lefebvre, Philippe

    2013-08-01

    Vitamin A, ingested either as retinol or β-carotene from animal- or plant-derived foods respectively, is a nutrient essential for many biological functions such as embryonic development, vision, immune response, tissue remodeling, and metabolism. Its main active metabolite is all trans-retinoic acid (atRA), which regulates gene expression through the activation of α, β, and γ isotypes of the nuclear atRA receptor (RAR). More recently, retinol derivatives were also shown to control the RAR activity, enlightening the interplay between vitamin A metabolism and RAR-mediated transcriptional control. The white and brown adipose tissues regulate the energy homeostasis by providing dynamic fatty acid storing and oxidizing capacities to the organism, in connection with the other fatty acid-consuming tissues. This concerted interorgan response to fatty acid fluxes is orchestrated, in part, by the endocrine activity of the adipose tissue depots. The adipose tissues are also sites for synthesizing and storing vitamin A derivatives, which will act as hormonal cues or intracellularly to regulate essential aspects of adipocyte biology. As agents that prevent adipocyte differentiation hence, expected to decrease fat mass, and inducers of uncoupling protein expression, thus, favoring energy expenditure, retinoids have prompted many investigations to decipher their roles in adipose tissue pathophysiology, which are summarized in this review.

  16. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation

    DEFF Research Database (Denmark)

    Fontaine, Coralie; Dubois, Guillaume; Duguay, Yannick;

    2003-01-01

    Rev-Erbalpha (NR1D1) is an orphan nuclear receptor encoded on the opposite strand of the thyroid receptor alpha gene. Rev-Erbalpha mRNA is induced during adipocyte differentiation of 3T3-L1 cells, and its expression is abundant in rat adipose tissue. Peroxisome proliferator-activated receptor gamma...... (PPARgamma) (NR1C3) is a nuclear receptor controlling adipocyte differentiation and insulin sensitivity. Here we show that Rev-Erbalpha expression is induced by PPARgamma activation with rosiglitazone in rat epididymal and perirenal adipose tissues in vivo as well as in 3T3-L1 adipocytes in vitro...... for this nuclear receptor as a promoter of adipocyte differentiation....

  17. Progesterone Receptor Scaffolding Function in Breast Cancer

    Science.gov (United States)

    2012-10-01

    the population of mammary stem cells (via paracrine signaling) [22; 23] and for coordinating the dynamic (proliferative) regulation of glandular ...contrast to PR/ER expres- sion in just 7 to 10% of normal breast luminal epithelium (67). As steroid hormone receptor (SR)-positive tumors progress...mammary epithelium during puberty and pregnancy (in preparation for lactation), but may inappropriately drive early breast cancer progression of

  18. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function.

    Science.gov (United States)

    Irwin, R W; Yao, J; To, J; Hamilton, R T; Cadenas, E; Brinton, R D

    2012-01-01

    The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. Both ER selective agonists significantly increased the mitochondrial respiratory control ratio and cytochrome oxidase (COX) activity relative to vehicle. Western blots of purified whole brain mitochondria detected ERα and, to a greater extent, ERβ localisation. Pre-treatment with DPN, an ERβ agonist, significantly increased ERβ association with mitochondria. In the hippocampus, DPN activated mitochondrial DNA-encoded COX I expression, whereas PPT was ineffective, indicating that mechanistically ERβ, and not ERα, activated mitochondrial transcriptional machinery. Both selective ER agonists increased protein expression of nuclear DNA-encoded COX IV, suggesting that activation of ERβ or ERα is sufficient. Selective ER agonists up-regulated a panel of bioenergetic enzymes and antioxidant defence proteins. Up-regulated proteins included pyruvate dehydrogenase, ATP synthase, manganese superoxide dismutase and peroxiredoxin V. In vitro, whole cell metabolism was assessed in live primary cultured hippocampal neurones and mixed glia. The results of analyses conducted in vitro were consistent with data obtained in vivo. Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails

  19. The neutron polaron as a constraint on nuclear density functionals

    CERN Document Server

    Forbes, M M; Hebeler, K; Lesinski, T; Schwenk, A

    2013-01-01

    We study the energy of an impurity that interacts strongly in a sea of fermions when the effective range of the impurity-fermion interaction becomes important. This directly maps the Fermi polaron of condensed matter physics and ultracold atoms to strongly interacting neutrons. We present first Quantum Monte Carlo results for the neutron polaron and compare these with calculations based on effective field theory that also include contributions beyond effective-range effects. We show that predictions of state-of-the-art nuclear density functionals vary substantially and generally underestimate the neutron polaron energy. Our results thus provide a novel constraint for nuclear density functionals, in particular for the time-odd components.

  20. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS

    DEFF Research Database (Denmark)

    Leonhardt, Julia; Steckelings, Ulrike Muscha

    2017-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may...... indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells...... transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency...

  1. Role of nuclear receptor NR4A2 in gastrointestinal inflammation and cancers

    Institute of Scientific and Technical Information of China (English)

    Yi-Fang Han; Guang-Wen Cao

    2012-01-01

    NR4A2 is a transcription factor belonging to the steroid orphan nuclear receptor superfamily.It was originally considered to be essential in the generation and maintenance of dopaminergic neurons,and associated with neurological disorders such as Parkinson's disease.Recently,NR4A2 has been found to play a critical role in some inflammatory diseases and cancer.NR4A2 can be efficiently trans-activated by some proinflammatory cytokines,such as tumor necrosis factor-α,interleukin-1β,and vascular endothelial growth factor (VEGF).The nuclear factor-κB signaling pathway serves as a principal regulator of inducible NR4A expression in immune cells.NR4A2 can trans-activate Foxp3,a hallmark specifically expressed in regulatory T (Treg) cells,and plays a critical role in the differentiation,maintenance,and function of Treg cells.NR4A2 in T lymphocytes is pivotal for Treg cell induction and suppression of aberrant induction of Th1 under physiological and pathological conditions.High density of Foxp3+ Treg cells is significantly associated with gastrointestinal inflammation,tumor immune escape,and disease progression.NR4A2 is produced at high levels in CD133+ colorectal carcinoma (CRC) cells and significantly upregulated by cyclooxygenase-2-derived prostaglandin E2 in a cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)-dependent manner in CRC cells.The cAMP/PKA signaling pathway is the common pathway of NR4A2-related inflammation and cancer.NR4A2 trans-activates osteopontin,a direct target of the Wnt/β-catenin pathway associated with CRC invasion,metastasis,and poor prognosis.Knockdown of endogenous NR4A2 expression attenuates VEGF-induced endothelial cell proliferation,migration and in vivo angiogenesis.Taken together,NR4A2 emerges as an important nuclear factor linking gastrointestinal inflammation and cancer,especially CRC,and should serve as a candidate therapeutic target for inflammation-related gastrointestinal cancer.

  2. Reactive oxygen species and dopamine receptor function in essential hypertension.

    Science.gov (United States)

    Zeng, Chunyu; Villar, Van Anthony M; Yu, Peiying; Zhou, Lin; Jose, Pedro A

    2009-04-01

    Essential hypertension is a major risk factor for stroke, myocardial infarction, and heart and kidney failure. Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones and humoral factors. However, the mechanisms leading to impaired dopamine receptor function in hypertension states are not clear. Compelling experimental evidence indicates a role of reactive oxygen species (ROS) in hypertension, and there are increasing pieces of evidence showing that in conditions associated with oxidative stress, which is present in hypertensive states, dopamine receptor effects, such as natriuresis, diuresis, and vasodilation, are impaired. The goal of this review is to present experimental evidence that has led to the conclusion that decreased dopamine receptor function increases ROS activity and vice versa. Decreased dopamine receptor function and increased ROS production, working in concert or independent of each other, contribute to the pathogenesis of essential hypertension.

  3. Oxidative stress causes renal dopamine D1 receptor dysfunction and hypertension via mechanisms that involve nuclear factor-kappaB and protein kinase C.

    Science.gov (United States)

    Banday, Anees Ahmad; Fazili, Fatima Rizwan; Lokhandwala, Mustafa F

    2007-05-01

    Renal dopamine, via activation of D1 receptors, plays a role in maintaining sodium homeostasis and BP. There exists a defect in renal D1 receptor function in hypertension, diabetes, and aging, conditions that are associated with oxidative stress. However, the exact underlying mechanism of the oxidative stress-mediated impaired D1 receptor signaling and hypertension is not known. The effect of oxidative stress on renal D1 receptor function was investigated in healthy animals. Male Sprague-Dawley rats received tap water (vehicle) and 30 mM L-buthionine sulfoximine (BSO), an oxidant, with and without 1 mM tempol for 2 wk. Compared with vehicle, BSO treatment caused oxidative stress and increase in BP, which was accompanied by defective D1 receptor G-protein coupling and loss of natriuretic response to SKF38393. BSO treatment also increased NF-kappaB nuclear translocation, protein kinase C (PKC) activity and expression, G-protein-coupled receptor kinase-2 (GRK-2) membranous translocation, and D1 receptor serine phosphorylation. In BSO-treated rats' supplementation of tempol decreased oxidative stress, normalized BP, and restored D1 receptor G-protein coupling and natriuretic response to SKF38393. Tempol also normalized NF-kappaB translocation, PKC activity and expression, GRK-2 sequestration, and D1 receptor serine phosphorylation. In conclusion, these results show that oxidative stress activates NF-kappaB, causing an increase in PKC activity, which leads to GRK-2 translocation and subsequent D1 receptor hyper-serine phosphorylation and uncoupling. The functional consequence of this phenomenon was the inability of SKF38393 to inhibit Na/K-ATPase activity and promote sodium excretion, which may have contributed to increase in BP. Tempol reduced oxidative stress and thereby restored D1 receptor function and normalized BP.

  4. Increased receptor for advanced glycation end products in spermatozoa of diabetic men and its association with sperm nuclear DNA fragmentation.

    Science.gov (United States)

    Karimi, J; Goodarzi, M T; Tavilani, H; Khodadadi, I; Amiri, I

    2012-05-01

    Although the majority of patients with diabetes have disorders in sexual function, associations between diabetes mellitus and sperm function at the molecular level are largely unknown. As receptor for advanced glycation end products plays a key role in many diabetic complications, we hypothesised that it may be involved in sperm nuclear DNA fragmentation. RAGE levels were determined using ELISA and western blot analysis in sperm samples from 32 diabetic and 35 nondiabetic men. Sperm DNA fragmentation was assessed using TUNEL assay. Diabetic men had significantly higher mean levels of RAGE protein (P DNA fragmentation (P DNA fragmentation in diabetic men (r = 0.81, P DNA fragmentation in spermatozoa of diabetic men suggests a central role of RAGE in disturbances in sexual function of diabetic men. © 2011 Blackwell Verlag GmbH.

  5. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  6. Altered activity profile of a tertiary silanol analog of multi-targeting nuclear receptor modulator T0901317.

    Science.gov (United States)

    Toyama, Hirozumi; Sato, Shoko; Shirakawa, Hitoshi; Komai, Michio; Hashimoto, Yuichi; Fujii, Shinya

    2016-04-01

    We report the design, synthesis, and physicochemical/biological evaluation of novel silanol derivative 6 (sila-T) as a silanol analog of multi-target nuclear receptor modulator T0901317 (5). Compound 6 showed intermediate hydrophobicity between the corresponding alcohol 13 and perfluoroalcohol 5. While 5 exhibited potent activities toward liver X receptor α and β, farnesoid X receptor, pregnane X receptor (PXR) and retinoic acid receptor-related orphan receptor (ROR)γ, silanol 6 exhibited activity only toward PXR and RORs. Incorporation of silanol instead of perfluoroalcohol is a promising option for developing novel target-selective, biologically active compounds.

  7. A functional nuclear localization sequence in the C. elegans TRPV channel OCR-2.

    Directory of Open Access Journals (Sweden)

    Meredith J Ezak

    Full Text Available The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Ca(v1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS in the C. elegans transient receptor potential vanilloid (TRPV cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated.

  8. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors

    Science.gov (United States)

    O'Sullivan, S E

    2007-01-01

    Cannabinoids act at two classical cannabinoid receptors (CB1 and CB2), a 7TM orphan receptor and the transmitter-gated channel transient receptor potential vanilloid type-1 receptor. Recent evidence also points to cannabinoids acting at members of the nuclear receptor family, peroxisome proliferator-activated receptors (PPARs, with three subtypes α, β (δ) and γ), which regulate cell differentiation and lipid metabolism. Much evidence now suggests that endocannabinoids are natural activators of PPARα. Oleoylethanolamide regulates feeding and body weight, stimulates fat utilization and has neuroprotective effects mediated through activation of PPARα. Similarly, palmitoylethanolamide regulates feeding and lipid metabolism and has anti-inflammatory properties mediated by PPARα. Other endocannabinoids that activate PPARα include anandamide, virodhamine and noladin. Some (but not all) endocannabinoids also activate PPARγ; anandamide and 2-arachidonoylglycerol have anti-inflammatory properties mediated by PPARγ. Similarly, ajulemic acid, a structural analogue of a metabolite of Δ9-tetrahydrocannabinol (THC), causes anti-inflammatory effects in vivo through PPARγ. THC also activates PPARγ, leading to a time-dependent vasorelaxation in isolated arteries. Other cannabinoids which activate PPARγ include N-arachidonoyl-dopamine, HU210, WIN55212-2 and CP55940. In contrast, little research has been carried out on the effects of cannabinoids at PPARδ. In this newly emerging area, a number of research questions remain unanswered; for example, why do cannabinoids activate some isoforms and not others? How much of the chronic effects of cannabinoids are through activation of nuclear receptors? And importantly, do cannabinoids confer the same neuro- and cardioprotective benefits as other PPARα and PPARγ agonists? This review will summarize the published literature implicating cannabinoid-mediated PPAR effects and discuss the implications thereof. PMID:17704824

  9. Analysis of the heat shock response in mouse liver reveals dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARalpha)

    NARCIS (Netherlands)

    Vallanat, B.; Anderson, S.P.; Brown-Borg, H.M.; Ren, H.; Kersten, A.H.; Jonnalagadda, S.; Srinivasan, S.; Corton, J.C.

    2010-01-01

    Background - The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS) through

  10. Interactions Between IGFBP-3 and Nuclear Receptors in Prostate Cancer Apoptosis

    Science.gov (United States)

    2010-01-01

    and cytoplasmic export. We have previously described nucleo -mitochondrial translocation of nuclear receptor RXRα/Nur77 heterodimers to activate the...nloaded from mediating anti-prolific actions, recombinant IGFBP-3 was used to inhibit basal and estradiol-stimulated cell proliferation, and IGFBP-3...treatment in ECE16–1 cells (human papillomavirus-immortalized cervical epithelial cells) (7). Also, addition of mitogenic EGF to basal human keratin

  11. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, A.C.; Silva, J.E. (Univ. of Sao Paulo (Brazil) Harvard Medical School, Boston, MA (USA))

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  12. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  13. Nuclear effects in F_3 structure function of nucleon

    CERN Document Server

    Athar, M Sajjad; Vacas, M J Vicente

    2007-01-01

    We study nuclear effects in the $F^A_3(x)$ structure function in the deep inelastic neutrino reactions on iron by using a relativistic framework to describe the nucleon spectral functions in the nucleus. The results for the ratio $R(x,Q^2)=\\frac{F^A_3(x,Q^2)}{AF^N_3(x, Q^2)}$ and the Gross-Llewellyn Smith(GLS) integral $G(x,Q^2)=\\int_x^1 dx F^A_3(x,Q^2)$ in nuclei are discussed and compared with the recent results available in literature from theoretical and phenomenological analyses of experimental data.

  14. Nuclear charge and neutron radii and nuclear matter: Trend analysis in Skyrme density-functional-theory approach

    Science.gov (United States)

    Reinhard, P.-G.; Nazarewicz, W.

    2016-05-01

    Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations

  15. Class I Cytokine Receptors: Structure and function in the Membrane

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard

    Class I cytokine receptors are involved in important biological functions of both physiological and pathological nature in mammals. However, the molecular details of the cross-membrane signal transduction through these receptors remain obscure. One of the major reasons for this is the lack...... of structural knowledge on their membrane-embedded transmembrane domains (TMDs), which connect the extracellular ligand binding domains to the intracellular signaling platforms. The overall aim of this thesis work was to improve our understanding of the class I cytokine receptor signaling across the membrane...... ample material of high quality for structural studies with NMR spectroscopy of several class I cytokine receptor TMDs. Furthermore, the structure of a class I cytokine receptor TMD in DHPC micelles was solved with solution-state NMR spectroscopy. Additionally, since structural studies of intact proteins...

  16. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  17. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Compagnucci, Claudia; Barresi, Sabina [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Petrini, Stefania [Research Laboratories, Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Zanni, Ginevra, E-mail: ginevra.zanni@opbg.net [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy)

    2015-04-03

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1.

  18. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    Science.gov (United States)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  19. Plasma membrane and nuclear localization of G protein coupled receptor kinase 6A.

    Science.gov (United States)

    Jiang, Xiaoshan; Benovic, Jeffrey L; Wedegaertner, Philip B

    2007-08-01

    G protein-coupled receptor (GPCR) kinases (GRKs) specifically phosphorylate agonist-occupied GPCRs at the inner surface of the plasma membrane (PM), leading to receptor desensitization. Here we show that the C-terminal 30 amino acids of GRK6A contain multiple elements that either promote or inhibit PM localization. Disruption of palmitoylation by individual mutation of cysteine 561, 562, or 565 or treatment of cells with 2-bromopalmitate shifts GRK6A from the PM to both the cytoplasm and nucleus. Likewise, disruption of the hydrophobic nature of a predicted amphipathic helix by mutation of two leucines to alanines at positions 551 and 552 causes a loss of PM localization. Moreover, acidic amino acids in the C-terminus appear to negatively regulate PM localization; mutational replacement of several acidic residues with neutral or basic residues rescues PM localization of a palmitoylation-defective GRK6A. Last, we characterize the novel nuclear localization, showing that nuclear export of nonpalmitoylated GRK6A is sensitive to leptomycin B and that GRK6A contains a potential nuclear localization signal. Our results suggest that the C-terminus of GRK6A contains a novel electrostatic palmitoyl switch in which acidic residues weaken the membrane-binding strength of the amphipathic helix, thus allowing changes in palmitoylation to regulate PM versus cytoplasmic/nuclear localization.

  20. Plasma Membrane and Nuclear Localization of G Protein–coupled Receptor Kinase 6A

    Science.gov (United States)

    Jiang, Xiaoshan; Benovic, Jeffrey L.

    2007-01-01

    G protein–coupled receptor (GPCR) kinases (GRKs) specifically phosphorylate agonist-occupied GPCRs at the inner surface of the plasma membrane (PM), leading to receptor desensitization. Here we show that the C-terminal 30 amino acids of GRK6A contain multiple elements that either promote or inhibit PM localization. Disruption of palmitoylation by individual mutation of cysteine 561, 562, or 565 or treatment of cells with 2-bromopalmitate shifts GRK6A from the PM to both the cytoplasm and nucleus. Likewise, disruption of the hydrophobic nature of a predicted amphipathic helix by mutation of two leucines to alanines at positions 551 and 552 causes a loss of PM localization. Moreover, acidic amino acids in the C-terminus appear to negatively regulate PM localization; mutational replacement of several acidic residues with neutral or basic residues rescues PM localization of a palmitoylation-defective GRK6A. Last, we characterize the novel nuclear localization, showing that nuclear export of nonpalmitoylated GRK6A is sensitive to leptomycin B and that GRK6A contains a potential nuclear localization signal. Our results suggest that the C-terminus of GRK6A contains a novel electrostatic palmitoyl switch in which acidic residues weaken the membrane-binding strength of the amphipathic helix, thus allowing changes in palmitoylation to regulate PM versus cytoplasmic/nuclear localization. PMID:17538017

  1. Reduced osteoblast activity in the mice lacking TR4 nuclear receptor leads to osteoporosis

    Directory of Open Access Journals (Sweden)

    Lin Shin-Jen

    2012-06-01

    Full Text Available Abstract Background Early studies suggested that TR4 nuclear receptor might play important roles in the skeletal development, yet its detailed mechanism remains unclear. Methods We generated TR4 knockout mice and compared skeletal development with their wild type littermates. Primary bone marrow cells were cultured and we assayed bone differentiation by alkaline phosphatase and alizarin red staining. Primary calvaria were cultured and osteoblastic marker genes were detected by quantitative PCR. Luciferase reporter assays, chromatin immunoprecipitation (ChIP assays, and electrophoretic mobility shift assays (EMSA were performed to demonstrate TR4 can directly regulate bone differentiation marker osteocalcin. Results We first found mice lacking TR4 might develop osteoporosis. We then found that osteoblast progenitor cells isolated from bone marrow of TR4 knockout mice displayed reduced osteoblast differentiation capacity and calcification. Osteoblast primary cultures from TR4 knockout mice calvaria also showed higher proliferation rates indicating lower osteoblast differentiation ability in mice after loss of TR4. Mechanism dissection found the expression of osteoblast markers genes, such as ALP, type I collagen alpha 1, osteocalcin, PTH, and PTHR was dramatically reduced in osteoblasts from TR4 knockout mice as compared to those from TR4 wild type mice. In vitro cell line studies with luciferase reporter assay, ChIP assay, and EMSA further demonstrated TR4 could bind directly to the promoter region of osteocalcin gene and induce its gene expression at the transcriptional level in a dose dependent manner. Conclusions Together, these results demonstrate TR4 may function as a novel transcriptional factor to play pathophysiological roles in maintaining normal osteoblast activity during the bone development and remodeling, and disruption of TR4 function may result in multiple skeletal abnormalities.

  2. Nuclear localization of the type 1 PTH/PTHrP receptor in rat tissues.

    Science.gov (United States)

    Watson, P H; Fraher, L J; Hendy, G N; Chung, U I; Kisiel, M; Natale, B V; Hodsman, A B

    2000-06-01

    The localization of PTH/PTH-related peptide (PTHrP) receptor (PTHR) has traditionally been performed by autoradiography. Specific polyclonal antibodies to peptides unique to the PTHR are now available, which allow a more precise localization of the receptor in cells and tissues. We optimized the IHC procedure for the rat PTHR using 5-microm sections of paraffin-embedded rat kidney, liver, small intestine, uterus, and ovary. Adjacent sections were analyzed for the presence of PTHR mRNA (by in situ hybridization) and PTHrP peptide. A typical pattern of staining for both receptor protein and mRNA was observed in kidney in cells lining the proximal tubules and collecting ducts. In uterus and gut, the receptor and its mRNA are present in smooth muscle layers (PTHrP target) and in glandular cuboidal cells and surface columnar epithelium. This suggests that PTH, or more likely PTHrP, plays a role in surface/secretory epithelia that is as yet undefined. In the ovary, PTHR was readily detectable in the thecal layer of large antral follicles and oocytes, and was present in the cytoplasm and/or nucleus of granulosa cells, regions that also contained receptor transcripts. PTHR protein and mRNA were found in the liver in large hepatocytes radiating outward from central veins. Immunoreactive cells were also present around the periphery of the liver but not within two or three cell layers of the surface. Clear nuclear localization of the receptor protein was present in liver cells in addition to the expected cytoplasmic/peripheral staining. PTHR immunoreactivity was present in the nucleus of some cells in every tissue examined. RT-PCR confirmed the presence of PTHR transcripts in these same tissues. Examination of the hindlimbs of PTHR gene-ablated mice showed no reaction to this antibody, whereas hindlimbs from their wild-type littermates stained positively. The results emphasize that the PTHR is highly expressed in diverse tissues and, in addition, show that the receptor

  3. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation.

    Science.gov (United States)

    Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong

    2015-07-21

    The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming.

  4. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  5. Inflammatory Mediators and Insulin Resistance in Obesity: Role of Nuclear Receptor Signaling in Macrophages

    Directory of Open Access Journals (Sweden)

    Lucía Fuentes

    2010-01-01

    Full Text Available Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR. The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs, which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.

  6. Regulation of Vascular and Renal Function by Metabolite Receptors*

    Science.gov (United States)

    Peti-Peterdi, János; Kishore, Bellamkonda K.; Pluznick, Jennifer L.

    2016-01-01

    To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis—from salt and water balance to metabolism—by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families—(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and (c) short-chain fatty acid receptors—we emphasize the unique and important roles that these receptors play in renal and vascular physiology and pathophysiology. PMID:26667077

  7. A structural biology perspective on NMDA receptor pharmacology and function.

    Science.gov (United States)

    Regan, Michael C; Romero-Hernandez, Annabel; Furukawa, Hiro

    2015-08-01

    N-methyld-aspartate receptors (NMDARs) belong to the large family of ionotropic glutamate receptors (iGluRs), which are critically involved in basic brain functions as well as multiple neurological diseases and disorders. The NMDARs are large heterotetrameric membrane protein complexes. The extensive extracellular domains recognize neurotransmitter ligands and allosteric compounds and translate the binding information to regulate activity of the transmembrane ion channel. Here, we review recent advances in the structural biology of NMDARs with a focus on pharmacology and function. Structural analysis of the isolated extracellular domains in combination with the intact heterotetrameric NMDAR structure provides important insights into how this sophisticated ligand-gated ion channel may function.

  8. Scalable Nuclear Density Functional Theory with Sky3D

    CERN Document Server

    Afibuzzaman, Md; Aktulga, Hasan Metin

    2016-01-01

    In nuclear astro-physics, the quantum simulation of large inhomogenous dense systems as present in the crusts of neutron stars presents big challenges. The feasible number of particles in a simulation box with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe the techniques used to parallelize Sky3D, a nuclear density functional theory code that operates on an equidistant grid, and optimize its performance on distributed memory architectures. We also describe cache blocking techniques to accelerate the compute-intensive matrix calculation part in Sky3D. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on Edison, a Cray XC30 supercomputer.

  9. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...

  10. The Grape Component Resveratrol Interferes with the Function of Chemoattractant Receptors on Phagocytic Leukocytes

    Institute of Scientific and Technical Information of China (English)

    Hengyi Tao; Chunfu Wu; Ye Zhou; Wanghua Gong; Xia Zhang; Pablo Iribarren; Yuqing Zhao; Yingying Le; Jiming Wang

    2004-01-01

    Resveratrol (3, 5, 4'-trihydroxystilbene) (RV) is a constituent of grape seeds with anti-inflammatory and anti-oxidant activities. In this study, we examined the capacity of RV to modulate the function of G protein-coupled chemoattractant receptors, which play important roles in inflammation and immune responses.RV, over a non-cytotoxic concentration range, inhibited chemotactic and calcium mobilization responses of phagocytic cells to selected chemoattractants. At low micromolar concentrations, RV potently reduced superoxide anion production by phagocytic leukocytes in response to the bacterial chemotactic peptide fMLF, a high affinity ligand for formylpeptide receptor FPR, and Aβ42, an Alzheimer's disease-associated peptide and a ligand for the FPR variant FPRL1. In addition, RV reduced phosphorylation of extracellular signal-regulated kinase (ERK1/2) and the activation of nuclear factor NF-κB induced by formylpeptide receptor agonists. These results suggest that the inhibition of the function of chemoattractant receptors may contribute to the anti-inflammatory properties of RV. Thus, RV may be therapeutically promising for diseases in which activation of formylpeptide receptors contributes to the pathogenic processes. Cellular & Molecular Immunology. 2004;1(1):50-56.

  11. Karyopherins regulate nuclear pore complex barrier and transport function.

    Science.gov (United States)

    Kapinos, Larisa E; Huang, Binlu; Rencurel, Chantal; Lim, Roderick Y H

    2017-09-01

    Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)-specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine-glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control. © 2017 Kapinos et al.

  12. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    Science.gov (United States)

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism.

  13. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS.

    Science.gov (United States)

    Leonhardt, Julia; Villela, Daniel C; Teichmann, Anke; Münter, Lisa-Marie; Mayer, Magnus C; Mardahl, Maibritt; Kirsch, Sebastian; Namsolleck, Pawel; Lucht, Kristin; Benz, Verena; Alenina, Natalia; Daniell, Nicholas; Horiuchi, Masatsugu; Iwai, Masaru; Multhaup, Gerhard; Schülein, Ralf; Bader, Michael; Santos, Robson A; Unger, Thomas; Steckelings, Ulrike Muscha

    2017-06-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other. © 2017 American Heart Association, Inc.

  14. Orphan nuclear receptor Nurr1 as a potential novel marker for progression in human pancreatic ductal adenocarcinoma

    Science.gov (United States)

    Ji, Li; Gong, Chen; Ge, Liangyu; Song, Linping; Chen, Fenfen; Jin, Chunjing; Zhu, Hongyan; Zhou, Guoxiong

    2017-01-01

    Nuclear receptor related-1 protein (Nurr1) is a novel orphan member of the nuclear receptor superfamily (the NR4A family) involved in tumorigenesis. The aim of the present study was to investigate the expression and possible function of Nurr1 in pancreatic ductal adenocarcinoma (PDAC). The expression pattern of Nurr1 protein was determined using immunohistochemical staining in 138 patients with PDAC. Elevated Nurr1 expression was more commonly observed in PDAC tissues and cell lines compared with healthy controls. Elevated expression was significantly associated with histological differentiation (P=0.041), lymph node metastasis (P=0.021), TNM classification of malignant tumors stage (P=0.031) and poor survival (P=0.001). Further experiments demonstrated that suppression of endogenous Nurr1 expression attenuated cell proliferation, migration and invasion, and induced apoptosis of PDAC cells. In conclusion, these results suggest that Nurr1 has an important role in the progression of PDAC and may be used as a novel marker for therapeutic targets.

  15. The Orphan Nuclear Receptor Nur77 Is a Determinant of Myofiber Size and Muscle Mass in Mice

    Science.gov (United States)

    Tontonoz, Peter; Cortez-Toledo, Omar; Wroblewski, Kevin; Hong, Cynthia; Lim, Laura; Carranza, Rogelio; Conneely, Orla; Metzger, Daniel

    2015-01-01

    We previously showed that the orphan nuclear receptor Nur77 (Nr4a1) plays an important role in the regulation of glucose homeostasis and oxidative metabolism in skeletal muscle. Here, we show using both gain- and loss-of-function models that Nur77 is also a regulator of muscle growth in mice. Transgenic expression of Nur77 in skeletal muscle in mice led to increases in myofiber size. Conversely, mice with global or muscle-specific deficiency in Nur77 exhibited reduced muscle mass and myofiber size. In contrast to Nur77 deficiency, deletion of the highly related nuclear receptor NOR1 (Nr4a3) had minimal effect on muscle mass and myofiber size. We further show that Nur77 mediates its effects on muscle size by orchestrating transcriptional programs that favor muscle growth, including the induction of insulin-like growth factor 1 (IGF1), as well as concomitant downregulation of growth-inhibitory genes, including myostatin, Fbxo32 (MAFbx), and Trim63 (MuRF1). Nur77-mediated increase in IGF1 led to activation of the Akt-mTOR-S6K cascade and the inhibition of FoxO3a activity. The dependence of Nur77 on IGF1 was recapitulated in primary myoblasts, establishing this as a cell-autonomous effect. Collectively, our findings identify Nur77 as a novel regulator of myofiber size and a potential transcriptional link between cellular metabolism and muscle growth. PMID:25605333

  16. Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    KLEM, M.J.

    2000-10-18

    In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8

  17. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A;

    2010-01-01

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3...... mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine...... program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans....

  18. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA.

    Science.gov (United States)

    Booth, David S; Cheng, Yifan; Frankel, Alan D

    2014-12-08

    The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.

  19. Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients.

    Science.gov (United States)

    Adachi, Hiroaki; Katsuno, Masahisa; Minamiyama, Makoto; Waza, Masahiro; Sang, Chen; Nakagomi, Yuji; Kobayashi, Yasushi; Tanaka, Fumiaki; Doyu, Manabu; Inukai, Akira; Yoshida, Mari; Hashizume, Yoshio; Sobue, Gen

    2005-03-01

    Spinal and bulbar muscular atrophy (SBMA) is an inherited adult onset motor neuron disease caused by the expansion of a polyglutamine (polyQ) tract within the androgen receptor (AR), affecting only males. The characteristic pathological finding is nuclear inclusions (NIs) consisting of mutant AR with an expanded polyQ in residual motor neurons, and in certain visceral organs. We immunohistochemically examined 11 SBMA patients at autopsy with 1C2, an antibody that specifically recognizes expanded polyQ. Our study demonstrated that diffuse nuclear accumulation of mutant AR was far more frequent and extensive than NIs being distributed in a wide array of CNS nuclei, and in more visceral organs than thus far believed. Mutant AR accumulation was also present in the cytoplasm, particularly in the Golgi apparatus; nuclear or cytoplasmic predominance of accumulation was tissue specific. Furthermore, the extent of diffuse nuclear accumulation of mutant AR in motor and sensory neurons of the spinal cord was closely related to CAG repeat length. Thus, diffuse nuclear accumulation of mutant AR apparently is a cardinal pathogenetic process underlying neurological manifestations, as in SBMA transgenic mice, while cytoplasmic accumulation may also contribute to SBMA pathophysiology.

  20. Molecular determinants of odorant receptor function in insects

    Indian Academy of Sciences (India)

    Anandasankar Ray; Wynand Van Der Goes Van Naters; John R Carlson

    2014-09-01

    The olfactory system of Drosophila melanogaster provides a powerful model to study molecular and cellular mechanisms underlying function of a sensory system. In the 1970s Siddiqi and colleagues pioneered the application of genetics to olfactory research and isolated several mutant Drosophila with odorant-specific defects in olfactory behaviour, suggesting that odorants are detected differentially by the olfactory system. Since then basic principles of olfactory system function and development have emerged using Drosophila as a model. Nearly four decades later we can add computational methods to further our understanding of how specific odorants are detected by receptors. Using a comparative approach we identify two categories of short amino acid sequence motifs: ones that are conserved family-wide predominantly in the C-terminal half of most receptors, and ones that are present in receptors that detect a specific odorant, 4-methylphenol, found predominantly in the N-terminal half. The odorant-specific sequence motifs are predictors of phenol detection in Anopheles gambiae and other insects, suggesting they are likely to participate in odorant binding. Conversely, the family-wide motifs are expected to participate in shared functions across all receptors and a mutation in the most conserved motif leads to a reduction in odor response. These findings lay a foundation for investigating functional domains within odorant receptors that can lead to a molecular understanding of odor detection.

  1. Elevated copper impairs hepatic nuclear receptor function in Wilson's disease

    Science.gov (United States)

    Wilson's disease (WD) is an autosomal recessive disorder that results in accumulation of copper in the liver as a consequence of mutations in the gene encoding the copper-transporting P-type ATPase (ATP7B). WD is a chronic liver disorder, and individuals with the disease present with a variety of co...

  2. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    Science.gov (United States)

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  3. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    Science.gov (United States)

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  4. Nuclear clustering in the energy density functional approach

    Energy Technology Data Exchange (ETDEWEB)

    Ebran, J.-P., E-mail: jean-paul.ebran@cea.fr [CEA,DAM,DIF, F-91297 Arpajon (France); Khan, E. [Institut de Physique Nucléaire, Université Paris-Sud CEA, IN2P3 CNRS, F-91406 Orsay Cedex (France); Nikšić, T.; Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia)

    2015-10-15

    Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.

  5. A global reanalysis of nuclear parton distribution functions

    Science.gov (United States)

    Eskola, Kari J.; Kolhinen, Vesa J.; Paukkunen, Hannu; Salgado, Carlos A.

    2007-05-01

    We determine the nuclear modifications of parton distribution functions of bound protons at scales Q2 >= 1.69 GeV2 and momentum fractions 10-5 BRAHMS data for inclusive hadron production in d+Au collisions lend support for a stronger gluon shadowing at x < 0.01 and also that fairly large changes in the gluon modifications do not rapidly deteriorate the goodness of the overall fits, as long as the initial gluon modifications in the region x ~ 0.02-0.04 remain small.

  6. Augmented Lagrangian Method for Constrained Nuclear Density Functional Theory

    CERN Document Server

    Staszczak, A; Baran, A; Nazarewicz, W

    2010-01-01

    The augmented Lagrangiam method (ALM), widely used in quantum chemistry constrained optimization problems, is applied in the context of the nuclear Density Functional Theory (DFT) in the self-consistent constrained Skyrme Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of multidimensional energy surfaces in the space of collective coordinates that are needed to, e.g., determine fission pathways and saddle points; it improves accuracy of computed derivatives with respect to collective variables that are used to determine collective inertia; and is well adapted to supercomputer applications.

  7. Regulation of Vascular and Renal Function by Metabolite Receptors.

    Science.gov (United States)

    Peti-Peterdi, János; Kishore, Bellamkonda K; Pluznick, Jennifer L

    2016-01-01

    To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and

  8. Novel Functional Properties of Drosophila CNS Glutamate Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Dharkar, Poorva; Han, Tae-Hee; Serpe, Mihaela; Lee, Chi-Hon; Mayer, Mark L.

    2016-12-01

    Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation by its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation.

  9. The Function of Steroid Receptor Coactivator-1 in Normal Tissues and Cancer

    Directory of Open Access Journals (Sweden)

    Claire A. Walsh, Li Qin, Jean Ching-Yi Tien, Leonie S. Young, Jianming Xu

    2012-01-01

    Full Text Available In 1995, the steroid receptor coactivator-1 (SRC-1 was identified as the first authentic steroid receptor coactivator. Since then, the SRC proteins have remained at the epicenter of coregulator biology, molecular endocrinology and endocrine-related cancer. Cumulative works on SRC-1 have shown that it is primarily a nuclear receptor coregulator and functions to construct highly specific enzymatic protein complexes which can execute efficient and successful transcriptional activation of designated target genes. The versatile nature of SRC-1 enables it to respond to steroid dependent and steroid independent stimulation, allowing it to bind across many families of transcription factors to orchestrate and regulate complex physiological reactions. This review highlights the multiple functions of SRC-1 in the development and maintenance of normal tissue functions as well as its major role in mediating hormone receptor responsiveness. Insights from genetically manipulated mouse models and clinical data suggest SRC-1 is significantly overexpressed in many cancers, in particular, cancers of the reproductive tissues. SRC-1 has been associated with cellular proliferation and tumor growth but its major tumorigenic contributions are promotion and execution of breast cancer metastasis and mediation of resistance to endocrine therapies. The ability of SRC-1 to coordinate multiple signaling pathways makes it an important player in tumor cells' escape of targeted therapy.

  10. DC-SCRIPT regulates glucocorticoid receptor function and expression of its target GILZ in dendritic cells.

    Science.gov (United States)

    Hontelez, Saartje; Karthaus, Nina; Looman, Maaike W; Ansems, Marleen; Adema, Gosse J

    2013-04-01

    Dendritic cells (DCs) play a central role in the immune system; they can induce immunity or tolerance depending on diverse factors in the DC environment. Pathogens, but also tissue damage, hormones, and vitamins, affect DC activation and maturation. In particular, glucocorticoids (GCs) are known for their immunosuppressive effect on DCs, creating tolerogenic DCs. GCs activate the type I nuclear receptor (NR) glucocorticoid receptor (GR), followed by induced expression of the transcription factor glucocorticoid-inducible leucine zipper (GILZ). GILZ has been shown to be necessary and sufficient for GC-induced tolerogenic DC generation. Recently, we have identified the DC-specific transcript (DC-SCRIPT) as an NR coregulator, suppressing type I steroid NRs estrogen receptor and progesterone receptor. In this study, we analyzed the effect of DC-SCRIPT on GR activity. We demonstrate that DC-SCRIPT coexists with GR in protein complexes and functions as a corepressor of GR-mediated transcription. Coexpression of DC-SCRIPT and GR is shown in human monocyte-derived DCs, and DC-SCRIPT knockdown enhances GR-dependent upregulation of GILZ mRNA expression in DCs. This demonstrates that DC-SCRIPT serves an important role in regulating GR function in DCs, corepressing GR-dependent upregulation of the tolerance-inducing transcription factor GILZ. These data imply that by controlling GR function and GILZ expression DC-SCRIPT is potentially involved in the balance between tolerance and immunity.

  11. Effect of local anesthetics on serotonin1A receptor function.

    Science.gov (United States)

    Rao, Bhagyashree D; Shrivastava, Sandeep; Chattopadhyay, Amitabha

    2016-12-01

    The fundamental mechanism behind the action of local anesthetics is still not clearly understood. Phenylethanol (PEtOH) is a constituent of essential oils with a pleasant odor and can act as a local anesthetic. In this work, we have explored the effect of PEtOH on the function of the hippocampal serotonin1A receptor, a representative neurotransmitter receptor belonging to the G protein-coupled receptor (GPCR) family. Our results show that PEtOH induces reduction in ligand binding to the serotonin1A receptor due to lowering of binding affinity, along with a concomitant decrease in the degree of G-protein coupling. Analysis of membrane order using the environment-sensitive fluorescent probe DPH revealed decrease in membrane order with increasing PEtOH concentration, as evident from reduction in rotational correlation time of the probe. Analysis of results obtained shows that the action of local anesthetics could be attributed to the combined effects of specific interaction of the receptor with anesthetics and alteration of membrane properties (such as membrane order). These results assume relevance in the perspective of anesthetic action and could be helpful to achieve a better understanding of the possible role of anesthetics in the function of membrane receptors.

  12. The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism.

    Directory of Open Access Journals (Sweden)

    Maria Takacs

    Full Text Available BACKGROUND: PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs compared to its mode of binding to ERRα and other nuclear receptors (NRs, where it interacts directly with the two ERRγ homodimer subunits. METHODS/PRINCIPAL FINDINGS: Here, we show that PGC-1α receptor interacting domain (RID binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR. CONCLUSIONS/SIGNIFICANCE: These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.

  13. Molecular mechanisms of androgen receptor functions

    NARCIS (Netherlands)

    K. Steketee (Karine)

    2007-01-01

    textabstractThe androgens testosterone (T) and dihydrotestosterone (DHT) are steroid hormones, which are necessary for development and maintenance of the functions of the male sex organs, including the prostate. Androgens also play an important role in benign abnormalities of the prostate and in the

  14. Molecular mechanisms of androgen receptor functions

    NARCIS (Netherlands)

    K. Steketee (Karine)

    2007-01-01

    textabstractThe androgens testosterone (T) and dihydrotestosterone (DHT) are steroid hormones, which are necessary for development and maintenance of the functions of the male sex organs, including the prostate. Androgens also play an important role in benign abnormalities of the prostate and in the

  15. The nuclear receptor Tlx regulates motor, cognitive and anxiety-related behaviours during adolescence and adulthood.

    Science.gov (United States)

    O'Leary, James D; Kozareva, Danka A; Hueston, Cara M; O'Leary, Olivia F; Cryan, John F; Nolan, Yvonne M

    2016-06-01

    The nuclear receptor Tlx is a key regulator of embryonic and adult hippocampal neurogenesis and has been genetically linked to bipolar disorder. Mice lacking Tlx (Nr2e1(-/-)) display deficits in adult hippocampal neurogenesis and behavioural abnormalities. However, whether Tlx regulates behaviour during adolescence or in a sex-dependent manner remains unexplored. Therefore, we investigated the role of Tlx in a series of behavioural tasks in adolescent male and female mice with a spontaneous deletion of Tlx (Nr2e1(-/-) mice). Testing commenced at adolescence (postnatal day 28) and continued until adulthood (postnatal day 67). Adolescent male and female Nr2e1(-/-) mice were hyperactive in an open field, an effect that persisted in adulthood. Male but not female Nr2e1(-/-) mice exhibited reduced thigmotaxis during adolescence and adulthood. Impairments in rotarod motor performance developed in male and female Nr2e1(-/-) mice at the onset of adulthood. Spontaneous alternation in the Y-maze, a hippocampus-dependent task, was impaired in adolescent but not adult male and female Nr2e1(-/-) mice. Contextual fear conditioning was impaired in adolescent male Nr2e1(-/-) mice only, but both male and female adolescent Nr2e1(-/-) mice showed impaired cued fear conditioning, a hippocampal-amygdala dependent cognitive process. These deficits persisted into adulthood in males but not females. In conclusion, deletion of Tlx impairs motor, cognitive and anxiety-related behaviours during adolescence and adulthood in male and female mice with most effects occurring during adolescence rather than adulthood, independent of housing conditions. This suggests that Tlx has functions beyond regulation of adult hippocampal neurogenesis, and may be an important target in understanding neurobiological disorders.

  16. Nuclear Receptor Profile in Calvarial Bone Cells Undergoing Osteogenic Versus Adipogenic Differentiation

    Science.gov (United States)

    Pirih, Flavia Q.; Abayahoudian, Rosette; Elashoff, David; Parhami, Farhad; Nervina, Jeanne M.; Tetradis, Sotirios

    2017-01-01

    Nuclear receptors (NRs) are key regulators of cell function and differentiation. We examined NR expression during osteogenic versus adipogenic differentiation of primary mouse calvarial osteoblasts (MOBs). MOBs were cultured for 21 days in osteogenic or adipogenic differentiation media. von Kossa and Oil Red O staining, and qRT-PCR of marker genes and 49 NRs were performed. PCR amplicons were subcloned to establish correct sequences and absolute standard curves. Forty-three NRs were detected at days 0–21. Uncentered average linkage hierarchical clustering identified four expression clusters: NRs (1) upregulated during osteogenic, but not adipogenic, differentiation, (2) upregulated in both conditions, with greater upregulation during adipogenic differentiation, (3) upregulated equally in both conditions, (4) downregulated during adipogenic, but not osteogenic, differentiation. One-way ANOVA with contrast revealed 20 NRs upregulated during osteogenic differentiation and 12 NRs upregulated during adipogenic differentiation. Two-way ANOVA demonstrated that 18 NRs were higher in osteogenic media, while 9 NRs were higher in adipogenic media. The time effect revealed 16 upregulated NRs. The interaction of condition with time revealed 6 NRs with higher expression rate during adipogenic differentiation and 3 NRs with higher expression rate during osteogenic differentiation. Relative NR abundance at days 0 and 21 were ranked. Basal ranking changed at least 5 positions for 13 NRs in osteogenic media and 9 NRs in adipogenic media. Osteogenic and adipogenic differentiation significantly altered NR expression in MOBs. These differences offer a fingerprint of cellular commitment and may provide clues to the underlying mechanisms of osteogenic versus adipogenic differentiation. PMID:18810760

  17. Functional partial agonism at cloned human muscarinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Ebert, B; Brann, M R

    1996-01-01

    , and a competitive antagonist, atropine or pirenzepine, at fixed ratios display functional partial agonism. The levels of apparent intrinsic activity of the functional partial agonist responses were shown to be dependent of the receptor density and G-protein concentration in the same manner as that determined...... agonist response, which is dependent on the agonist/antagonist ratio, is predictable from the Waud equation, describing competitive receptor/ligand interactions. In agreement with the relative antagonist potencies of pirenzepine at m1 and m5, a 10:1 ratio of carbachol and pirenzepine produced very low...

  18. Illuminating the structure and function of Cys-loop receptors

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2008-01-01

    transitional and steady state conformations and serves as a real time correlate of the channel structure and its function. Voltage-clamp fluorometry experiments on Cys-loop receptors have yielded a large body of data concerning the mechanisms by which agonists, antagonists and modulators act on these receptors......Cys-loop receptors are an important class of ligand-gated ion channels. They mediate fast synaptic neurotransmission, are implicated in various 'channelopathies' and are important pharmacological targets. Recent progress in X-ray crystallography and electron microscopy has provided a considerable...... insight into the structure of Cys-loop receptors. However, data from these experiments only provide 'snapshots' of the proteins under investigation. They cannot provide information about the various conformations the protein adopts during transition from the closed to the open and desensitized states...

  19. 视黄醇结合蛋白RBP4可与多种核受体相互作用%Retinol Binding Protein Could Interacts with Many Nuclear Receptors

    Institute of Scientific and Technical Information of China (English)

    陈健; 陈敏; 陈彬; 李渝萍; 李强; 周度金

    2004-01-01

    In order to explore the tunctions ot retinol bining protein (RBP4)in regulation of gene expression, yeast two hybrid assay and transient co-transforming were used to detect the interactions between RBP4 and nuclear receptors and the effects of over-expressed RBP4 on trans-activation functions of human estrogen receptor related receptor 1 (hERR1) and human estrogen (hER). The requirement of activation function domain-2 (AF-2) for hER to interact with RBP4 was also detected by the yeast two hybrid assay. The results show that RBP4 could interact with many nuclear receptors including mouse estrogen receptor related receptor 3 (mERR3), retinoid X receptor (RXR), glucocorticoid receptor (GR), progestin receptor (PR),and androgen receptor (AR) in yeast cells. Over-expressed RBP4 could strongly enhance the trans-activation functions of hERR1 and hER in a dose-dependent manner, respectively. RBP4 could also interact with hER in an AF-2-dependent manner.

  20. Regulation of miR-200c by Nuclear Receptors PPARα, LRH-1 and SHP

    Science.gov (United States)

    Zhang, Yuxia; Yang, Zhihong; Whitby, Richard; Wang, Li

    2011-01-01

    We investigated regulation of miR-200c expression by nuclear receptors. Ectopic expression of miR-200c inhibited MHCC97H cell migration, which was abrogated by the synergistic effects of PPARα and LRH-1 siRNAs. The expression of miR-200c was decreased by PPARα/LRH-1 siRNAs and increased by SHP siRNAs, and overexpression of the receptors reversed the effects of their respective siRNAs. SHP siRNAs also drastically enhanced the ability of the LRH-1 agonist RJW100 to induce miR-200c and downregulate ZEB1 and ZEB2 proteins. Co-expression of PPARα and LRH-1 moderately transactivated the miR-200c promoter, which was repressed by SHP co-expression. RJW100 caused strong activation of the miR-200c promoter. This is the first report to demonstrate that miR-200c expression is controlled by nuclear receptors. PMID:22100809

  1. Repression of a potassium channel by nuclear hormone receptor and TGF-β signaling modulates insulin signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Donha Park

    Full Text Available Transforming growth factor β (TGF-β signaling acts through Smad proteins to play fundamental roles in cell proliferation, differentiation, apoptosis, and metabolism. The Receptor associated Smads (R-Smads interact with DNA and other nuclear proteins to regulate target gene transcription. Here, we demonstrate that the Caenorhabditis elegans R-Smad DAF-8 partners with the nuclear hormone receptor NHR-69, a C. elegans ortholog of mammalian hepatocyte nuclear factor 4α HNF4α, to repress the exp-2 potassium channel gene and increase insulin secretion. We find that NHR-69 associates with DAF-8 both in vivo and in vitro. Functionally, daf-8 nhr-69 double mutants show defects in neuropeptide secretion and phenotypes consistent with reduced insulin signaling such as increased expression of the sod-3 and gst-10 genes and a longer life span. Expression of the exp-2 gene, encoding a voltage-gated potassium channel, is synergistically increased in daf-8 nhr-69 mutants compared to single mutants and wild-type worms. In turn, exp-2 acts selectively in the ASI neurons to repress the secretion of the insulin-like peptide DAF-28. Importantly, exp-2 mutation shortens the long life span of daf-8 nhr-69 double mutants, demonstrating that exp-2 is required downstream of DAF-8 and NHR-69. Finally, animals over-expressing NHR-69 specifically in DAF-28-secreting ASI neurons exhibit a lethargic, hypoglycemic phenotype that is rescued by exogenous glucose. We propose a model whereby DAF-8/R-Smad and NHR-69 negatively regulate the transcription of exp-2 to promote neuronal DAF-28 secretion, thus demonstrating a physiological crosstalk between TGF-β and HNF4α-like signaling in C. elegans. NHR-69 and DAF-8 dependent regulation of exp-2 and DAF-28 also provides a novel molecular mechanism that contributes to the previously recognized link between insulin and TGF-β signaling in C. elegans.

  2. Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells

    OpenAIRE

    Baek, Sung Hee; Ohgi, Kenneth A.; Nelson, Charles A.; Welsbie, Derek; Chen, Charlie; Charles L Sawyers; Rose, David W.; Rosenfeld, Michael G.

    2006-01-01

    The androgen receptor not only mediates prostate development but also serves as a key regulator of primary prostatic cancer growth. Although initially responsive to selective androgen receptor modulators (SARMs), which cause recruitment of the nuclear receptor–corepressor (N-CoR) complex, resistance invariably occurs, perhaps in response to inflammatory signals. Here we report that dismissal of nuclear receptor–corepressor complexes by specific signals or androgen receptor overexpression resu...

  3. NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features.

    Directory of Open Access Journals (Sweden)

    Pu Wang

    Full Text Available Nuclear receptors (NRs are one of the most abundant classes of transcriptional regulators in animals. They regulate diverse functions, such as homeostasis, reproduction, development and metabolism. Therefore, NRs are a very important target for drug development. Nuclear receptors form a superfamily of phylogenetically related proteins and have been subdivided into different subfamilies due to their domain diversity. In this study, a two-level predictor, called NR-2L, was developed that can be used to identify a query protein as a nuclear receptor or not based on its sequence information alone; if it is, the prediction will be automatically continued to further identify it among the following seven subfamilies: (1 thyroid hormone like (NR1, (2 HNF4-like (NR2, (3 estrogen like, (4 nerve growth factor IB-like (NR4, (5 fushi tarazu-F1 like (NR5, (6 germ cell nuclear factor like (NR6, and (7 knirps like (NR0. The identification was made by the Fuzzy K nearest neighbor (FK-NN classifier based on the pseudo amino acid composition formed by incorporating various physicochemical and statistical features derived from the protein sequences, such as amino acid composition, dipeptide composition, complexity factor, and low-frequency Fourier spectrum components. As a demonstration, it was shown through some benchmark datasets derived from the NucleaRDB and UniProt with low redundancy that the overall success rates achieved by the jackknife test were about 93% and 89% in the first and second level, respectively. The high success rates indicate that the novel two-level predictor can be a useful vehicle for identifying NRs and their subfamilies. As a user-friendly web server, NR-2L is freely accessible at either http://icpr.jci.edu.cn/bioinfo/NR2L or http://www.jci-bioinfo.cn/NR2L. Each job submitted to NR-2L can contain up to 500 query protein sequences and be finished in less than 2 minutes. The less the number of query proteins is, the shorter the time will

  4. NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features.

    Science.gov (United States)

    Wang, Pu; Xiao, Xuan; Chou, Kuo-Chen

    2011-01-01

    Nuclear receptors (NRs) are one of the most abundant classes of transcriptional regulators in animals. They regulate diverse functions, such as homeostasis, reproduction, development and metabolism. Therefore, NRs are a very important target for drug development. Nuclear receptors form a superfamily of phylogenetically related proteins and have been subdivided into different subfamilies due to their domain diversity. In this study, a two-level predictor, called NR-2L, was developed that can be used to identify a query protein as a nuclear receptor or not based on its sequence information alone; if it is, the prediction will be automatically continued to further identify it among the following seven subfamilies: (1) thyroid hormone like (NR1), (2) HNF4-like (NR2), (3) estrogen like, (4) nerve growth factor IB-like (NR4), (5) fushi tarazu-F1 like (NR5), (6) germ cell nuclear factor like (NR6), and (7) knirps like (NR0). The identification was made by the Fuzzy K nearest neighbor (FK-NN) classifier based on the pseudo amino acid composition formed by incorporating various physicochemical and statistical features derived from the protein sequences, such as amino acid composition, dipeptide composition, complexity factor, and low-frequency Fourier spectrum components. As a demonstration, it was shown through some benchmark datasets derived from the NucleaRDB and UniProt with low redundancy that the overall success rates achieved by the jackknife test were about 93% and 89% in the first and second level, respectively. The high success rates indicate that the novel two-level predictor can be a useful vehicle for identifying NRs and their subfamilies. As a user-friendly web server, NR-2L is freely accessible at either http://icpr.jci.edu.cn/bioinfo/NR2L or http://www.jci-bioinfo.cn/NR2L. Each job submitted to NR-2L can contain up to 500 query protein sequences and be finished in less than 2 minutes. The less the number of query proteins is, the shorter the time will

  5. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  6. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    Science.gov (United States)

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-09-18

    We have previously shown that the insulin like growth factor 1 receptor (IGF1R) translocates to the cell nucleus, where it binds to enhancer like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF1R (nIGF1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer binding factor 1 (Lef1), histone H3, and Brahma related gene 1 proteins. In the present study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF1R binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA coincubated with the IGF1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF1R targets, and PCNA phosphorylation was followed by mono and poly ubiquitination. Coimmunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT dependent E2/E3 ligases (e.g. RAD18 and SHPRH/HLTF). Absence of IGF1R or mutation of Tyr60, Tyr133, or Tyr250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF1R, externally induced DNA damage in IGF1R negative cells caused G1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF1R in DDT. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  7. Network of nuclear receptor ligands in multiple sclerosis: Common pathways and interactions of sex-steroids, corticosteroids and vitamin D3-derived molecules.

    Science.gov (United States)

    Rolf, Linda; Damoiseaux, Jan; Hupperts, Raymond; Huitinga, Inge; Smolders, Joost

    2016-09-01

    Sex-steroids, corticosteroids and vitamin D3-derived molecules have all been subject to experimental studies and clinical trials in a plethora of autoimmune diseases. These molecules are all derived from cholesterol metabolites and are ligands for nuclear receptors. Ligation of these receptors results in direct regulation of multiple gene transcription involved in general homeostatic and adaptation networks, including the immune system. Indeed, the distinct ligands affect the function of both myeloid and lymphoid cells, eventually resulting in a less pro-inflammatory immune response which is considered beneficial in autoimmune diseases. Next to the immune system, also the central nervous system is prone to regulation by these nuclear receptor ligands. Understanding of the intricate interactions between sex-steroids, corticosteroids and vitamin D3 metabolites, on the one hand, and the immune and central nervous system, on the other hand, may reveal novel approaches to utilize these nuclear receptor ligands to full extent as putative treatments in multiple sclerosis, the prototypic immune-driven disease of the central nervous system.

  8. Cannabinoid receptor-2 selective antagonist negatively regulates receptor activator of nuclear factor kappa B ligand mediated osteoclastogenesis

    Institute of Scientific and Technical Information of China (English)

    GENG De-chun; XU Yao-zeng; YANG Hui-lin; ZHU Guang-ming; WANG Xian-bin; ZHU Xue-song

    2011-01-01

    Background The cannabinoid receptor-2 (CB2) is important for bone remodeling. In this study, we investigated the effects of CB2 selective antagonist (AM630) on receptor activator of nuclear factor kappa B (RANK) ligand (RANKL)induced osteoclast differentiation and the underlying signaling pathway using a monocyte-macrophage cell line-RAW264.7.Methods RAW264.7 was cultured with RANKL for 6 days and then treated with AM630 for 24 hours. Mature osteoclasts were measured by tartrate-resistant acid phosphatase (TRAP) staining using a commercial kit. Total ribonucleic acid (RNA)was isolated and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was done to examine the expression of RANK, cathepsin K (CPK) and nuclear factor kappa B (NF-κB). The extracellular signal-regulated kinase (ERK),phosphorylation of ERK (P-ERK) and NF-κB production were tested by Western blotting. The effect of AM630 on RAW264.7 viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay.Results AM630 did not affect the viability of RAW264.7. However, this CB2 selective antagonist markedly inhibited osteoclast formation and the inhibition rate was dose-dependent. The dose of >100 nmol/L could reduce TRAP positive cells to the levels that were significantly lower than the control. AM630 suppressed the expression of genes associated with osteoclast differentiation and activation, such as RANK and CPK. An analysis of a signaling pathway showed that AM630 inhibited the RANKL-induced activation of ERK, but not NF-κB.Conclusion AM630 could inhibit the osteoclastogenesis from RAW264.7 induced with RANKL.

  9. Glucocorticoid-Induced Fetal Programming Alters the Functional Complement of Angiotensin Receptors Subtypes within the Kidney

    Science.gov (United States)

    Gwathmey, TanYa M.; Shaltout, Hossam A.; Rose, James C.; Diz, Debra I.; Chappell, Mark C.

    2011-01-01

    We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80–81 days gestation with full term delivery. Renal nuclear and plasma membrane fractions were isolated from 1.0–1.5 year old sheep for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were significantly higher in the BMX-exposed adult offspring versus control (CON) sheep. The proportion of nuclear AT1 receptors sensitive to losartan (LOS) was 2-fold higher [67 ± 6% vs. 27 ± 9%, p < 0.01] in BMX compared to control. In contrast, the proportion of AT2 sites was only one-third that of controls (BMX: 25 ± 11% vs. CON: 78 ± 4%, p < 0.01) with a similar reduction in sites sensitive to the Ang-(1-7) antagonist D-Ala7-Ang-(1-7) with BMX exposure. Functional studies revealed that Ang II stimulated ROS to a greater extent in BMX than control sheep (16 ± 3% vs. 6 ± 4%; P<0.05); however NO production to Ang II was attenuated in BMX (26 ± 7% vs. 82 ± 14%; P<0.05). BMX-exposure was also associated with a reduction in the Ang-(1-7) NO response [75 ± 8% vs. 131 ± 26%; P<0.05]. We conclude that altered expression of angiotensin receptor subtypes may be one mechanism whereby functional changes in NO- and ROS-dependent signaling pathways may favor the sustained increase in blood pressure evident in fetal programming. PMID:21220702

  10. Structure and function of the human megalin receptor

    DEFF Research Database (Denmark)

    Dagil, Robert

    of aminoglycosides during antibacterial treatment, which can lead to nephro- and ototoxic side-effects. This thesis presents new insights into the structure-function relation of the megalin receptor. The interaction between megalin and several natural protein ligands as well as the aminoglycoside gentamicin...

  11. Transcriptional activation of NAD{sup +}-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    Energy Technology Data Exchange (ETDEWEB)

    Iwahara, Naotoshi [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Hisahara, Shin; Hayashi, Takashi [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Department of Neurology, Sapporo Medical University, Sapporo 060-8556 (Japan); Horio, Yoshiyuki, E-mail: horio@sapmed.ac.jp [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan)

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD{sup +}-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  12. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors.

    Science.gov (United States)

    Grimaldi, Marina; Boulahtouf, Abdelhay; Delfosse, Vanessa; Thouennon, Erwan; Bourguet, William; Balaguer, Patrick

    2015-01-01

    Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics.

  13. Reporter cell lines for the characterization of the interactions between nuclear receptors and endocrine disruptors

    Directory of Open Access Journals (Sweden)

    marina egrimaldi

    2015-05-01

    Full Text Available Endocrine-disrupting chemicals (EDCs are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs which are primary targets of numerous environmental contaminants.The main NRs targeted by environmental contaminants are the estrogen (ER α, β and the androgen (AR receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ, the thyroid hormone (TRα, β, the retinoid X receptors (RXRα, β, γ and peroxisome proliferator-activated (PPAR α, γ receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife.In this review we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants and cosmetics.

  14. Genome inventory and analysis of nuclear hormone receptors in Tetraodon nigroviridis

    Indian Academy of Sciences (India)

    Raghu Prasad Rao Metpally; Ramakrishnan Vigneshwar; Ramanathan Sowdhamini

    2007-01-01

    Nuclear hormone receptors (NRs) form a large superfamily of ligand-activated transcription factors, which regulate genes underlying a wide range of (patho) physiological phenomena. Availability of the full genome sequence of Tetraodon nigroviridis facilitated a genome wide analysis of the NRs in fish genome. Seventy one NRs were found in Tetraodon and were compared with mammalian and fish NR family members. In general, there is a higher representation of NRs in fish genomes compared to mammalian ones. They showed high diversity across classes as observed by phylogenetic analysis. Nucleotide substitution rates show strong negative selection among fish NRs except for pregnane X receptor (PXR), estrogen receptor (ER) and liver X receptor (LXR). This may be attributed to crucial role played by them in metabolism and detoxification of xenobiotic and endobiotic compounds and might have resulted in slight positive selection. Chromosomal mapping and pairwise comparisons of NR distribution in Tetraodon and humans led to the identification of nine syntenic NR regions, of which three are common among fully sequenced vertebrate genomes. Gene structure analysis shows strong conservation of exon structures among orthologoues. Whereas paralogous members show different splicing patterns with intron gain or loss and addition or substitution of exons played a major role in evolution of NR superfamily.

  15. The Nuclear Receptor LXR Limits Bacterial Infection of Host Macrophages through a Mechanism that Impacts Cellular NAD Metabolism

    Directory of Open Access Journals (Sweden)

    Jonathan Matalonga

    2017-01-01

    Full Text Available Macrophages exert potent effector functions against invading microorganisms but constitute, paradoxically, a preferential niche for many bacterial strains to replicate. Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38. LXR agonists reduced the intracellular levels of NAD+ in a CD38-dependent manner, counteracting pathogen-induced changes in macrophage morphology and the distribution of the F-actin cytoskeleton and reducing the capability of non-opsonized Salmonella to infect macrophages. Remarkably, pharmacological treatment with an LXR agonist ameliorated clinical signs associated with Salmonella infection in vivo, and these effects were dependent on CD38 expression in bone-marrow-derived cells. Altogether, this work reveals an unappreciated role for CD38 in bacterial-host cell interaction that can be pharmacologically exploited by activation of the LXR pathway.

  16. Loss of Olfactory Receptor Function in Hominin Evolution

    OpenAIRE

    Hughes, Graham M.; Teeling, Emma C.; Higgins, Desmond G.

    2014-01-01

    The mammalian sense of smell is governed by the largest gene family, which encodes the olfactory receptors (ORs). The gain and loss of OR genes is typically correlated with adaptations to various ecological niches. Modern humans have 853 OR genes but 55% of these have lost their function. Here we show evidence of additional OR loss of function in the Neanderthal and Denisovan hominin genomes using comparative genomic methodologies. Ten Neanderthal and 8 Denisovan ORs show evidence of loss of ...

  17. Elevated LIM kinase 1 in nonmetastatic prostate cancer reflects its role in facilitating androgen receptor nuclear translocation.

    Science.gov (United States)

    Mardilovich, Katerina; Gabrielsen, Mads; McGarry, Lynn; Orange, Clare; Patel, Rachana; Shanks, Emma; Edwards, Joanne; Olson, Michael F

    2015-01-01

    Prostate cancer affects a large proportion of the male population, and is primarily driven by androgen receptor (AR) activity. First-line treatment typically consists of reducing AR signaling by hormone depletion, but resistance inevitably develops over time. One way to overcome this issue is to block AR function via alternative means, preferably by inhibiting protein targets that are more active in tumors than in normal tissue. By staining prostate cancer tumor sections, elevated LIM kinase 1 (LIMK1) expression and increased phosphorylation of its substrate Cofilin were found to be associated with poor outcome and reduced survival in patients with nonmetastatic prostate cancer. A LIMK-selective small molecule inhibitor (LIMKi) was used to determine whether targeted LIMK inhibition was a potential prostate cancer therapy. LIMKi reduced prostate cancer cell motility, as well as inhibiting proliferation and increasing apoptosis in androgen-dependent prostate cancer cells more effectively than in androgen-independent prostate cancer cells. LIMK inhibition blocked ligand-induced AR nuclear translocation, reduced AR protein stability and transcriptional activity, consistent with its effects on proliferation and survival acting via inhibition of AR activity. Furthermore, inhibition of LIMK activity increased αTubulin acetylation and decreased AR interactions with αTubulin, indicating that the role of LIMK in regulating microtubule dynamics contributes to AR function. These results indicate that LIMK inhibitors could be beneficial for the treatment of prostate cancer both by reducing nuclear AR translocation, leading to reduced proliferation and survival, and by inhibiting prostate cancer cell dissemination.

  18. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2009-12-01

    Full Text Available Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses. The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5alpha-androstan-3beta-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.

  19. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich

    2012-06-01

    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  20. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor.

    Science.gov (United States)

    Iida, M; Brand, T M; Campbell, D A; Li, C; Wheeler, D L

    2013-02-07

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (Ctx(R)) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all Ctx(R) clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in Ctx(R) clones, but not in cetuximab-sensitive (Ctx(S)) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing Ctx(S) parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all Ctx(R) clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR

  1. Drosophila caliban, a nuclear export mediator, can function as a tumor suppressor in human lung cancer cells.

    Science.gov (United States)

    Bi, Xiaolin; Jones, Tamara; Abbasi, Fatima; Lee, Heuijung; Stultz, Brian; Hursh, Deborah A; Mortin, Mark A

    2005-12-15

    We previously showed that the Drosophila DNA binding homeodomain of Prospero included a 28 amino-acid sequence (HDA) that functions as a nuclear export signal. We describe here the identification of a protein we named Caliban, which can directly interact with the HDA. Caliban is homologous to human Sdccag1, which has been implicated in colon and lung cancer. Here we show that Caliban and Sdccag1 are mediators of nuclear export in fly and human cells, as interference RNA abrogates export of EYFP-HDA in normal fly and human lung cells. Caliban functions as a bipartite mediator nuclear export as the carboxy terminus binds HDA and the amino terminus itself functions as an NES, which directly binds the NES receptor Exportin. Finally, while non-cancerous lung cells have functional Sdccag1, five human lung carcinoma cell lines do not, even though Exportin still functions in these cells. Expression of fly Caliban in these human lung cancer cells restores EYFP-HDA nuclear export, reduces a cell's ability to form colonies on soft agar and reduces cell invasiveness. We suggest that Sdccag1 inactivation contributes to the transformed state of human lung cancer cells and that Caliban should be considered a candidate for use in lung cancer gene therapy.

  2. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    Science.gov (United States)

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  3. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Morten; Zhang Xinxin [Harbin Engineering University, Harbin (China)

    2014-08-15

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented.

  4. Nkx6.1 regulates islet β-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors.

    Science.gov (United States)

    Tessem, Jeffery S; Moss, Larry G; Chao, Lily C; Arlotto, Michelle; Lu, Danhong; Jensen, Mette V; Stephens, Samuel B; Tontonoz, Peter; Hohmeier, Hans E; Newgard, Christopher B

    2014-04-01

    Loss of functional β-cell mass is a hallmark of type 1 and type 2 diabetes, and methods for restoring these cells are needed. We have previously reported that overexpression of the homeodomain transcription factor NK6 homeobox 1 (Nkx6.1) in rat pancreatic islets induces β-cell proliferation and enhances glucose-stimulated insulin secretion, but the pathway by which Nkx6.1 activates β-cell expansion has not been defined. Here, we demonstrate that Nkx6.1 induces expression of the nuclear receptor subfamily 4, group A, members 1 and 3 (Nr4a1 and Nr4a3) orphan nuclear receptors, and that these factors are both necessary and sufficient for Nkx6.1-mediated β-cell proliferation. Consistent with this finding, global knockout of Nr4a1 results in a decrease in β-cell area in neonatal and young mice. Overexpression of Nkx6.1 and the Nr4a receptors results in increased expression of key cell cycle inducers E2F transcription factor 1 and cyclin E1. Furthermore, Nkx6.1 and Nr4a receptors induce components of the anaphase-promoting complex, including ubiquitin-conjugating enzyme E2C, resulting in degradation of the cell cycle inhibitor p21. These studies identify a unique bipartite pathway for activation of β-cell proliferation, suggesting several unique targets for expansion of functional β-cell mass.

  5. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  6. Thyroid Hormone Receptor α1 Follows a Cooperative CRM1/Calreticulin-mediated Nuclear Export Pathway*

    Science.gov (United States)

    Grespin, Matthew E.; Bonamy, Ghislain M. C.; Roggero, Vincent R.; Cameron, Nicole G.; Adam, Lindsay E.; Atchison, Andrew P.; Fratto, Victoria M.; Allison, Lizabeth A.

    2008-01-01

    The thyroid hormone receptor α1 (TRα) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T3). Previously, we have shown that TRα, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRα is its ability to exit the nucleus through the nuclear pore complex. TRα export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRα. We show that, in addition to shuttling in heterokaryons, TRα shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRα directly interacts with calreticulin, and point to the intriguing possibility that TRα follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRα from the nucleus to cytoplasm. PMID:18641393

  7. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    Science.gov (United States)

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm.

  8. The Nuclear Orphan Receptor NR2F6 Is a Central Checkpoint for Cancer Immune Surveillance

    Directory of Open Access Journals (Sweden)

    Natascha Hermann-Kleiter

    2015-09-01

    Full Text Available Nuclear receptor subfamily 2, group F, member 6 (NR2F6 is an orphan member of the nuclear receptor superfamily. Here, we show that genetic ablation of Nr2f6 significantly improves survival in the murine transgenic TRAMP prostate cancer model. Furthermore, Nr2f6−/− mice spontaneously reject implanted tumors and develop host-protective immunological memory against tumor rechallenge. This is paralleled by increased frequencies of both CD4+ and CD8+ T cells and higher expression levels of interleukin 2 and interferon γ at the tumor site. Mechanistically, CD4+ and CD8+ T cell-intrinsic NR2F6 acts as a direct repressor of the NFAT/AP-1 complex on both the interleukin 2 and the interferon γ cytokine promoters, attenuating their transcriptional thresholds. Adoptive transfer of Nr2f6-deficient T cells into tumor-bearing immunocompetent mice is sufficient to delay tumor outgrowth. Altogether, this defines NR2F6 as an intracellular immune checkpoint in effector T cells, governing the amplitude of anti-cancer immunity.

  9. Discriminating agonist and antagonist ligands of the nuclear receptors using 3D-pharmacophores.

    Science.gov (United States)

    Lagarde, Nathalie; Delahaye, Solenne; Zagury, Jean-François; Montes, Matthieu

    2016-01-01

    Nuclear receptors (NRs) constitute an important class of therapeutic targets. We evaluated the performance of 3D structure-based and ligand-based pharmacophore models in predicting the pharmacological profile of NRs ligands using the NRLiSt BDB database. We could generate selective pharmacophores for agonist and antagonist ligands and we found that the best performances were obtained by combining the structure-based and the ligand-based approaches. The combination of pharmacophores that were generated allowed to cover most of the chemical space of the NRLiSt BDB datasets. By screening the whole NRLiSt BDB on our 3D pharmacophores, we demonstrated their selectivity towards their dedicated NRs ligands. The 3D pharmacophores herein presented can thus be used as a predictor of the pharmacological activity of NRs ligands.Graphical AbstractUsing a combination of structure-based and ligand-based pharmacophores, agonist and antagonist ligands of the Nuclear Receptors included in the NRLiSt BDB database could be separated.

  10. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma.

    Science.gov (United States)

    Herzig, Stephan; Hedrick, Susan; Morantte, Ianessa; Koo, Seung-Hoi; Galimi, Francesco; Montminy, Marc

    2003-11-13

    Fasting triggers a series of hormonal cues that promote energy balance by inducing glucose output and lipid breakdown in the liver. In response to pancreatic glucagon and adrenal cortisol, the cAMP-responsive transcription factor CREB activates gluconeogenic and fatty acid oxidation programmes by stimulating expression of the nuclear hormone receptor coactivator PGC-1 (refs 2-5). In parallel, fasting also suppresses lipid storage and synthesis (lipogenic) pathways, but the underlying mechanism is unknown. Here we show that mice deficient in CREB activity have a fatty liver phenotype and display elevated expression of the nuclear hormone receptor PPAR-gamma, a key regulator of lipogenic genes. CREB inhibits hepatic PPAR-gamma expression in the fasted state by stimulating the expression of the Hairy Enhancer of Split (HES-1) gene, a transcriptional repressor that is shown here to be a mediator of fasting lipid metabolism in vivo. The coordinate induction of PGC-1 and repression of PPAR-gamma by CREB during fasting provides a molecular rationale for the antagonism between insulin and counter-regulatory hormones, and indicates a potential role for CREB antagonists as therapeutic agents in enhancing insulin sensitivity in the liver.

  11. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor.

    Science.gov (United States)

    de Aguiar Vallim, Thomas Q; Tarling, Elizabeth J; Kim, Tammy; Civelek, Mete; Baldán, Ángel; Esau, Christine; Edwards, Peter A

    2013-06-07

    The bile acid receptor farnesoid X receptor (FXR) regulates many aspects of lipid metabolism by variouscomplex and incompletely understood molecular mechanisms. We set out to investigate the molecular mechanisms for FXR-dependent regulation of lipid and lipoprotein metabolism. To identify FXR-regulated microRNAs that were subsequently involved in regulating lipid metabolism. ATP binding cassette transporter A1 (ABCA1) is a major determinant of plasma high-density lipoprotein (HDL)-cholesterol levels. Here, we show that activation of the nuclear receptor FXR in vivo increases hepatic levels of miR-144, which in turn lowers hepatic ABCA1 and plasma HDL levels. We identified 2 complementary sequences to miR-144 in the 3' untranslated region of ABCA1 mRNA that are necessary for miR-144-dependent regulation. Overexpression of miR-144 in vitro decreased both cellular ABCA1 protein and cholesterol efflux to lipid-poor apolipoprotein A-I protein, whereas overexpression in vivo reduced hepatic ABCA1 protein and plasma HDL-cholesterol. Conversely, silencing miR-144 in mice increased hepatic ABCA1 protein and HDL-cholesterol. In addition, we used tissue-specific FXR-deficient mice to show that induction of miR-144 and FXR-dependent hypolipidemia requires hepatic, but not intestinal, FXR. Finally, we identified functional FXR response elements upstream of the miR-144 locus, consistent with direct FXR regulation. We have identified a novel pathway involving FXR, miR-144, and ABCA1 that together regulate plasma HDL-cholesterol.

  12. mGlu5 Receptor Functional Interactions and Addiction

    Directory of Open Access Journals (Sweden)

    Robyn eBrown

    2012-05-01

    Full Text Available The idea of ‘receptor mosaics’ suggests that proteins can form complex and dynamic networks, with respect to time and protein make up, which has the potential to make significant contributions to the diversity and specificity of GPCR signalling, particularly in neuropharmacology, where a few key receptors have been implicated in multiple neurological and psychiatric disorders such as addiction. Metabotropic glutamate type 5 receptors (mGlu5 have been shown to heterodimerise and form complexes with other GPCRs including adenosine A2A and dopamine D2 receptors. mGlu5-containing complexes are found in the striatum, a region of the brain known to be critical for mediating the rewarding and incentive motivational properties of drugs of abuse. Indeed, initial studies indicate a role for mGlu5-containing complexes in rewarding and conditioned effects of drugs, as well as drug-seeking behaviour. This is consistent with the substantial influence that mGlu5 complexes appear to have on striatal function, regulating both GABAergic output of striatopallidal neurons and glutamatergic input from corticostriatal afferents. Given their discrete localization, mGlu5-containing complexes represent a novel way in which to minimize the off-target effects and therefore provide us with an exciting therapeutic avenue for drug discovery efforts. Indeed, the therapeutic targeting of receptor mosaics in a tissue specific or temporal manner (for example, a sub-population of receptors in a ‘pathological state’ has the potential to dramatically reduce detrimental side effects that may otherwise impair vital brain function.

  13. Targeting cytokine/chemokine receptors : a challenge for molecular nuclear medicine

    NARCIS (Netherlands)

    Signore, A; Chianelli, M; Bei, R; Oyen, W; Modesti, A

    2003-01-01

    Radiolabelled cytokines and chemokines are a group of radiopharmaceuticals that, by highlighting in vivo the binding to specific high-affinity receptors expressed on selected cell populations, allow the molecular and functional characterisation of immune-mediated processes Recently, several authors

  14. Functional diversity and developmental changes in rat neuronal kainate receptors.

    Science.gov (United States)

    Wilding, T J; Huettner, J E

    2001-04-15

    1. Whole-cell currents evoked by kainate and the GluR5-selective agonist (RS)-2-amino-3-(3-hydroxy-5-tertbutylisoxazol-4-yl)propanoic acid (ATPA) were used to compare the physiological properties of kainate receptors expressed by neurons from rat hippocampus, spinal cord and dorsal root ganglia. 2. In contrast to kainate, which evoked desensitizing currents with similar decay rates and steady-state components in all three cell types, responses to ATPA were distinctly different in the three cell populations. Currents evoked by ATPA displayed a significant steady-state component in hippocampal neurons, but decayed rapidly to baseline in dorsal root ganglion (DRG) cells. ATPA failed to evoke current in many of the spinal neurons. 3. ATPA caused steady-state desensitization in DRG cells with an IC50 of 41 nM. Recovery from desensitization of DRG cell receptors by ATPA was significantly slower than for any previously described agonist. In contrast, hippocampal kainate receptors recovered from desensitization by ATPA within a few seconds. 4. Half-maximal activation of kainate receptors in hippocampal neurons required 938 nM ATPA. In DRG cells treated with concanavalin A the EC50 for ATPA was 341 nM. ATPA evoked current in embryonic hippocampal neurons but with lower amplitude relative to kainate than in cultured postnatal neurons. 5. Collectively, these results highlight functional differences between neuronal kainate receptors that may reflect their distinct subunit composition and their diverse roles in synaptic transmission.

  15. Functional role of cannabinoid receptors in urinary bladder

    Directory of Open Access Journals (Sweden)

    Pradeep Tyagi

    2010-01-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa (marijuana, and their derivatives produce a wide spectrum of central and peripheral effects, some of which may have clinical applications. The discovery of specific cannabinoid receptors and a family of endogenous ligands of those receptors has attracted much attention to the general cannabinoid pharmacology. In recent years, studies on the functional role of cannabinoid receptors in bladder have been motivated by the therapeutic effects of cannabinoids on voiding dysfunction in multiple sclerosis patients. In this review, we shall summarize the literature on the expression of cannabinoid receptors in urinary bladder and the peripheral influence of locally and systemically administered cannabinoids in the bladder. The ongoing search for cannabinoid-based therapeutic strategies devoid of psychotropic effects can be complemented with local delivery into bladder by the intravesical route. A greater understanding of the role of the peripheral CB 1 and CB 2 receptor system in lower urinary tract is necessary to allow the development of new treatment for pelvic disorders.

  16. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Arunima; Pasquel, Danielle [Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Tyagi, Rakesh Kumar [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Mani, Sridhar, E-mail: sridhar.mani@einstein.yu.edu [Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2011-03-18

    Research highlights: {yields} Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. {yields} PXR undergoes dynamic deacetylation upon ligand-mediated activation. {yields} SIRT1 partially mediates PXR deacetylation. {yields} PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  17. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  18. Role of nuclear Lamin A/C in cardiomyocyte functions.

    Science.gov (United States)

    Carmosino, Monica; Torretta, Silvia; Procino, Giuseppe; Gerbino, Andrea; Forleo, Cinzia; Favale, Stefano; Svelto, Maria

    2014-10-01

    Lamin A/C is a structural protein of the nuclear envelope (NE) and cardiac involvement in Lamin A/C mutations was one of the first phenotypes to be reported in humans, suggesting a crucial role of this protein in the cardiomyocytes function. Mutations in LMNA gene cause a class of pathologies generically named 'Lamanopathies' mainly involving heart and skeletal muscles. Moreover, the well-known disease called Hutchinson-Gilford Progeria Syndrome due to extensive mutations in LMNA gene, in addition to the systemic phenotype of premature aging, is characterised by the death of patients at around 13 typically for a heart attack or stroke, suggesting again the heart as the main site sensitive to Lamin A/C disfunction. Indeed, the identification of the roles of the Lamin A/C in cardiomyocytes function is a key area of exploration. One of the primary biological roles recently conferred to Lamin A/C is to affect contractile cells lineage determination and senescence. Then, in differentiated adult cardiomyocytes both the 'structural' and 'gene expression hypothesis' could explain the role of Lamin A in the function of cardiomyocytes. In fact, recent advances in the field propose that the structural weakness/stiffness of the NE, regulated by Lamin A/C amount in NE, can 'consequently' alter gene expression. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  19. Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors.

    Science.gov (United States)

    Chan, J S K; Sng, M K; Teo, Z Q; Chong, H C; Twang, J S; Tan, N S

    2017-09-11

    Most anticancer therapies to date focus on druggable features of tumor epithelia. Despite the increasing repertoire of treatment options, patient responses remain varied. Moreover, tumor resistance and relapse remain persistent clinical challenges. These observations imply an incomplete understanding of tumor heterogeneity. The tumor microenvironment is a major determinant of disease progression and therapy outcome. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive stroma of tumors. They orchestrate paracrine pro-tumorigenic signaling with adjacent tumor cells, thus exacerbating the hallmarks of cancer and accelerating tumor malignancy. Although CAF-derived soluble factors have been investigated for tumor stroma-directed therapy, the underlying transcriptional programs that enable the oncogenic functions of CAFs remain poorly understood. Nuclear receptors (NRs), a large family of ligand-responsive transcription factors, are pharmacologically viable targets for the suppression of CAF-facilitated oncogenesis. In this study, we defined the expression profiles of NRs in CAFs from clinical cutaneous squamous cell carcinoma (SCC) biopsies. We further identified a cluster of driver NRs in CAFs as important modifiers of CAF function with profound influence on cancer cell invasiveness, proliferation, drug resistance, energy metabolism and oxidative stress status. Importantly, guided by the NR profile of CAFs, retinoic acid receptor β and androgen receptor antagonists were identified for concurrent therapy with cisplatin, resulting in the inhibition of chemoresistance in recurred SCC:CAF xenografts. Our work demonstrates that treatments targeting both the tumor epithelia and the surrounding CAFs can extend the efficacy of conventional chemotherapy.Oncogene advance online publication, 11 September 2017; doi:10.1038/onc.2017.319.

  20. Study of structure function correlation of chemokine receptor CXCR4

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong; Stephen C PEIPER; ZHU Xi-hua

    2002-01-01

    Objective: To explore the correlation between structure domains and functions of chemokine receptor CXCR4. Methods: After the establishment of wild type chemokine receptor CXCR4 and CXCR2 expressing cell lines, 5 CXCR4/CXCR2 chimeras, 2 CXCR4 mutants were stably expressed on CHO cell line.Binding activities of all variants with the ligand, recombinant human SDF-1β, signal transduction ability after stimulation and their function as coreceptor for HIV-1 were studied with ligand-binding assay, Cytosensor/microphysiometry and cell-cell reporter gene fusion assay. Results: Among all 7 changed CXCR4 receptors, 3 chimeras (2444a, 4442, 4122), and 1 mutant (CXCR4-Tr) bond with SDF-1β in varying degrees, of which only 2444a totally and CXCR4-Tr partially maintain signaling. All changed receptors except for 4222 could act as coreceptors for HIV-1(LAI) in varying degrees. Conclusion: Several structure domains of CXCR4 are involved in the binding with SDF-1β, among which, N-terminal extracellular domain has high affinity of binding with SDF-1β, and the 3rd extracellular loop contributes to the binding, too. Although the C-terminal intracellular domain has no association with the maintenance of the overall structure of the receptor and ligand binding capability, the signaling is decreased when this domain is truncated. For CXCR4 signaling, not only is the conserved motif DRY box needed, but also the characterized conformation of the whole molecule must be formed when activation is required. There are some overlaps between SDF-1β binding domains and coreceptor function domains in molecular structure of CXCR4.

  1. Functional bitter taste receptors are expressed in brain cells.

    Science.gov (United States)

    Singh, Nisha; Vrontakis, Maria; Parkinson, Fiona; Chelikani, Prashen

    2011-03-04

    Humans are capable of sensing five basic tastes which are sweet, sour, salt, umami and bitter. Of these, bitter taste perception provides protection against ingestion of potentially toxic substances. Bitter taste is sensed by bitter taste receptors (T2Rs) that belong to the G-protein coupled receptors (GPCRs) superfamily. Humans have 25 T2Rs that are expressed in the oral cavity, gastrointestinal (GI) neuroendocrine cells and airway cells. Electrophysiological studies of the brain neurons show that the neurons are able to respond to different tastants. However, the presence of bitter taste receptors in brain cells has not been elucidated. In this report using RT-PCR, and immunohistochemistry analysis we show that T2Rs are expressed in multiple regions of the rat brain. RT-PCR analysis revealed the presence of T2R4, T2R107 and T2R38 transcripts in the brain stem, cerebellum, cortex and nucleus accumbens. The bitter receptor T2R4 was selected for further analysis at the transcript level by quantitative real time PCR and at the protein level by immunohistochemistry. To elucidate if the T2R4 expressed in these cells is functional, assays involving G-protein mediated calcium signaling were carried out. The functional assays showed an increase in intracellular calcium levels after the application of exogenous ligands for T2R4, denatonium benzoate and quinine to these cultured cells, suggesting that endogenous T2R4 expressed in these cells is functional. We discuss our results in terms of the physiological relevance of bitter receptor expression in the brain.

  2. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-containing NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Li-Jun Li

    2016-10-01

    Full Text Available NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs, but not GluN2B-containing NMDA receptors (GluN2BRs, to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation.

  3. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    Science.gov (United States)

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation.

  4. Conservation of estrogen receptor function in invertebrate reproduction.

    Science.gov (United States)

    Jones, Brande L; Walker, Chris; Azizi, Bahareh; Tolbert, Laren; Williams, Loren Dean; Snell, Terry W

    2017-03-04

    Rotifers are microscopic aquatic invertebrates that reproduce both sexually and asexually. Though rotifers are phylogenetically distant from humans, and have specialized reproductive physiology, this work identifies a surprising conservation in the control of reproduction between humans and rotifers through the estrogen receptor. Until recently, steroid signaling has been observed in only a few invertebrate taxa and its role in regulating invertebrate reproduction has not been clearly demonstrated. Insights into the evolution of sex signaling pathways can be gained by clarifying how receptors function in invertebrate reproduction. In this paper, we show that a ligand-activated estrogen-like receptor in rotifers binds human estradiol and regulates reproductive output in females. In other invertebrates characterized thus far, ER ligand binding domains have occluded ligand-binding sites and the ERs are not ligand activated. We have used a suite of computational, biochemical and biological techniques to determine that the rotifer ER binding site is not occluded and can bind human estradiol. Our results demonstrate that this mammalian hormone receptor plays a key role in reproduction of the ancient microinvertebrate Brachinous manjavacas. The presence and activity of the ER within the phylum Rotifera indicates that the ER structure and function is highly conserved throughout animal evolution.

  5. Localización extra nuclear de receptores esteroides y activación de mecanismos no genómicos Extra nuclear localization of steroid receptors and non genomic activation mechanisms

    Directory of Open Access Journals (Sweden)

    María Cecilia Bottino

    2010-04-01

    Full Text Available Los receptores de hormonas esteroides han sido considerados históricamente como factores de transcripción nucleares. Sin embargo, en los últimos años surgieron evidencias que indican que su activación desencadena eventos rápidos, independientes de la transcripción y que involucran a diferentes segundos mensajeros; muchos de estos receptores han sido localizados en la membrana celular. Por otra parte, se han caracterizado varios receptores de hormonas esteroides noveles, de estructura molecular diferente al receptor clásico, localizados principalmente en la membrana celular. Esta revisión enfoca los diferentes efectos iniciados por los glucocorticoides, mineralocorticoides, andrógenos, estrógenos y progesterona, y los posibles receptores involucrados en los mismos.Steroid hormone receptors have been historically considered as nuclear transcription factors. Nevertheless, in the last years, many of them have been detected in the cellular membrane. It has been postulated that their activation can induce transcription independent rapid events involving different second messengers. In addition, several novel steroid hormone receptors, showing a different molecular structure than the classical ones, have also been characterized and most of them are also located in the plasmatic membrane. This review focuses on the variety of effects initiated by glucocorticoids, mineralocorticoids, androgens, estrogens and progesterone, and the possible receptors involved mediating these effects.

  6. Histamine homologues discriminating between two functional H3 receptor assays. Evidence for H3 receptor heterogeneity?.

    Science.gov (United States)

    Leurs, R; Kathmann, M; Vollinga, R C; Menge, W M; Schlicker, E; Timmerman, H

    1996-03-01

    We studied several histamine homologues as potential ligands for the histamine H3 receptor in two binding assays ([125l]iodophenpropit and N alpha-[3H]methylhistamine binding to rat brain cortex membranes) and two functional H3 receptor models (inhibition of the neurogenic contraction in the guinea pig jejunum and of [3H]noradrenaline release in mouse brain cortex slices). The histamine homologues acted all as competitive H3 antagonists at the guinea pig jejunum. The potency in this model and/or the affinity for N alpha-[3H]methylhistamine binding was higher for the butylene (pA2 = 7.7; pKi = 9.4) and pentylene homologue (impentamine, pA2 = 8.4; pKi = 9.1) than for the propylene, hexylene and octylene homologues (pA2 = 5.9-7.8; pKi = 6.1-7.6). In the mouse brain cortex the propylene, butylene and pentylene homologues acted as partial agonists (alpha = 0.3-0.6) and the hexylene and octylene homologues acted as antagonists. [125I]Iodophenpropit binding was displaced monophasically by the propylene, hexylene and octylene homologues and biphasically by the butylene and pentylene homologues. Biphasic displacement curves were converted to monophasic ones by 10 microM guanosine-5'-O-(3-thiotriphosphate. In conclusion, the homologue of histamine with five methylene groups is a more potent H3 receptor antagonist in the guinea pig jejunum than the other homologues tested. Furthermore, the propylene, butylene and pentylene homologues can discriminate between the two functional H3 receptor models in the guinea pig jejunum and mouse brain. These data are discussed in relation to the efficiency of receptor coupling and receptor heterogeneity.

  7. Venus Kinase Receptors: prospects in signalling and biological functions of these invertebrate receptors

    Directory of Open Access Journals (Sweden)

    Colette eDissous

    2014-05-01

    Full Text Available Venus Kinase Receptors (VKRs form a family of invertebrate receptor tyrosine kinases (RTKs initially discovered in the parasitic platyhelminth Schistosoma mansoni. VKRs are single transmembrane receptors which contain an extracellular Venus Flytrap (VFT structure similar to the ligand binding domain of G Protein Coupled Receptors of class C, and an intracellular Tyrosine Kinase domain close to that of Insulin Receptors. VKRs are found in a large variety of invertebrates from cnidarians to echinoderms, and are highly expressed in larval stages and in gonads, suggesting a role of these proteins in embryonic and larval development as well as in reproduction. Vkr gene silencing could demonstrate the function of these receptors in oogenesis as well as in spermatogenesis in Schistosoma .mansoni. VKRs are activated by amino-acids, and highly responsive to arginine. As many other RTKs, they form dimers when activated by ligands and induce intracellular pathways involved in protein synthesis and cellular growth, such as MAPK and PI3K/Akt/S6K pathways. VKRs are not present in vertebrates, nor in some invertebrate species. Questions remain open about the origin of this little-known RTK family in evolution and its role in emergence and specialization of Metazoa. What is the meaning of maintenance or loss of VKR in some phyla or species in terms of development and physiological functions? The presence of VKRs in invertebrates of economical and medical importance, such as pests, vectors of pathogens and platyhelminth parasites, and the implication of these RTKs in gametogenesis and reproduction processes are valuable reasons to consider VKRs as interesting targets in new programs for eradication/ control of pests and infectious diseases, with the main advantage in the case of parasite targeting that VKR counterparts are absent from the vertebrate host kinase panel.

  8. The C. elegans nuclear receptor gene fax-1 and homeobox gene unc-42 coordinate interneuron identity by regulating the expression of glutamate receptor subunits and other neuron-specific genes.

    Science.gov (United States)

    Wightman, Bruce; Ebert, Bryan; Carmean, Nicole; Weber, Katherine; Clever, Sheila

    2005-11-01

    The fax-1 gene of the nematode C. elegans encodes a conserved nuclear receptor that is the ortholog of the human PNR gene and functions in the specification of neuron identities. Mutations in fax-1 result in locomotion defects. FAX-1 protein accumulates in the nuclei of 18 neurons, among them the AVA, AVB, and AVE interneuron pairs that coordinate body movements. The identities of AVA and AVE interneurons are defective in fax-1 mutants; neither neuron expresses the NMDA receptor subunits nmr-1 and nmr-2. Other ionotropic glutamate receptor subunits are expressed normally in the AVA and AVE neurons. The unc-42 homeobox gene also regulates AVA and AVE identity; however, unc-42 mutants display the complementary phenotype: NMDA receptor subunit expression is normal, but some non-NMDA glutamate receptor subunits are not expressed. These observations support a combinatorial role for fax-1 and unc-42 in specifying AVA and AVE identity. However, in four other neuron types, fax-1 is regulated by unc-42, and both transcriptional regulators function in the regulation of the opt-3 gene in the AVE neurons and the flp-1 and ncs-1 genes in the AVK neurons. Therefore, while fax-1 and unc-42 act in complementary parallel pathways in some cells, they function in overlapping or linear pathways in other cellular contexts, suggesting that combinatorial relationships among transcriptional regulators are complex and cannot be generalized from one neuron type to another.

  9. Nuclear receptor engineering based on novel structure activity relationships revealed by farnesyl pyrophosphate.

    Science.gov (United States)

    Goyanka, Ritu; Das, Sharmistha; Samuels, Herbert H; Cardozo, Timothy

    2010-11-01

    Nuclear receptors (NRs) comprise the second largest protein family targeted by currently available drugs, acting via specific ligand interactions within the ligand binding domain (LBD). Recently, farnesyl pyrophosphate (FPP) was shown to be a unique promiscuous NR ligand, activating a subset of NR family members and inhibiting wound healing in skin. The current study aimed at visualizing the unique basis of FPP interaction with multiple receptors in order to identify general structure-activity relationships that operate across the NR family. Docking of FPP to the 3D structures of the LBDs of a diverse set of NRs consistently revealed an electrostatic FPP pyrophosphate contact with an NR arginine conserved in the NR family, a hydrophobic farnesyl contact with NR helix-12 and a ligand binding pocket volume between 300 and 430 Å(3) as the minimal requirements for FPP activation of any NR. Lack of any of these structural features appears to render a given NR resistant to FPP activation. We used these structure-activity relationships to rationally design and successfully engineer several mutant human estrogen receptors that retain responsiveness to estradiol but no longer respond to FPP.

  10. Peroxisome Proliferator-Activated Receptor-alpha Is a Functional Target of p63 in Adult Human Keratinocytes

    DEFF Research Database (Denmark)

    Pozzi, Silvia; Boergesen, Michael; Sinha, Satrajit;

    2009-01-01

    healing process, is a target of p63 in human keratinocytes. Silencing of p63 by RNA interference and transient transfections showed that p63 represses PPARalpha through a functional region of promoter B. Chromatin immunoprecipitation analyses indicate that p63 is bound to this region, in the absence......p63 is a master switch in the complex network of signaling pathways controlling the establishment and maintenance of stratified epithelia. We provide evidence that peroxisome proliferator-activated receptor-alpha (PPARalpha), a ligand-activated nuclear receptor that participates in the skin wound...

  11. Nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) family in gestational diabetes: from animal models to clinical trials.

    Science.gov (United States)

    Arck, Petra; Toth, Bettina; Pestka, Aurelia; Jeschke, Udo

    2010-08-01

    Gestational diabetes mellitus (GDM) is defined as impaired glucose tolerance and affects 2%-8% of all pregnancies. Among other complications, GDM can lead to the development of type 2 diabetes mellitus (DM 2) in both mother and child. Peroxisome proliferator-activated receptors (PPARs) are major regulators of glucose and lipid metabolism. Furthermore, PPARs are mediators of inflammation and angiogenesis and are involved in the maternal adaptational dynamics during pregnancy to serve the requirements of the growing fetus. PPARs were originally named for their ability to induce hepatic peroxisome proliferation in mice in response to xenobiotic stimuli. The expression of three PPAR isoforms, alpha, beta/delta, and gamma, have been described. Each of them is encoded by different genes; however, they share 60%-80% homology in their ligand-binding and DNA-binding domains. PPARs are involved in trophoblast differentiation, invasion, metabolism, and parturition and are expressed in invasive extravillous trophoblast and villous trophoblast cells. Nuclear receptors, to which PPARs belong, are promising targets for disease-specific treatment strategies because they act as transcription factors controlling cellular processes at the level of gene expression and may produce selective alterations in downstream gene expression. To date, PPAR agonists are therapeutically used in patients with DM 2 and in patients with reproductive disorders such as polycystic ovary syndrome. Because of safety concerns and limited data, PPAR agonists are not yet included in GDM-related treatment strategies. Our objective herein is to review newly emerging generations of selective PPAR modulators and panagonists, which may have potent therapeutic implications in the context of GDM.

  12. Aryl hydrocarbon receptor nuclear translocator (ARNT) isoforms control lymphoid cancer cell proliferation through differentially regulating tumor suppressor p53 activity.

    Science.gov (United States)

    Gardella, Kacie A; Muro, Israel; Fang, Gloria; Sarkar, Krishnakali; Mendez, Omayra; Wright, Casey W

    2016-03-01

    The aryl hydrocarbon receptor nuclear translocator (ARNT) is involved in xenobiotic and hypoxic responses, and we previously showed that ARNT also regulates nuclear factor-κB (NF-κB) signaling by altering the DNA binding activity of the RelB subunit. However, our initial study of ARNT-mediated RelB modulation was based on simultaneous suppression of the two ARNT isoforms, isoform 1 and 3, and precluded the examination of their individual functions. We find here that while normal lymphocytes harbor equal levels of isoform 1 and 3, lymphoid malignancies exhibit a shift to higher levels of ARNT isoform 1. These elevated levels of ARNT isoform 1 are critical to the proliferation of these cancerous cells, as suppression of isoform 1 in a human multiple myeloma (MM) cell line, and an anaplastic large cell lymphoma (ALCL) cell line, triggered S-phase cell cycle arrest, spontaneous apoptosis, and sensitized cells to doxorubicin treatment. Furthermore, co-suppression of RelB or p53 with ARNT isoform 1 prevented cell cycle arrest and blocked doxorubicin induced apoptosis. Together our findings reveal that certain blood cancers rely on ARNT isoform 1 to potentiate proliferation by antagonizing RelB and p53-dependent cell cycle arrest and apoptosis. Significantly, our results identify ARNT isoform 1 as a potential target for anticancer therapies.

  13. Relevance of the NR4A sub-family of nuclear orphan receptors in trophoblastic BeWo cell differentiation.

    Science.gov (United States)

    Malhotra, Sudha Saryu; Gupta, Satish Kumar

    2017-01-01

    Nur-77, a member of the NR4A sub-family of nuclear orphan receptors, is downregulated in the placentae of pre-eclamptic women. Here, we investigate the relevance of Nor-1, Nurr-1 and Nur-77 in trophoblastic cell differentiation. Their transcript levels were found to be significantly upregulated in BeWo cells treated with forskolin. The maximum increase was observed after 2 h, with a second peak in the expression levels after 48 h. The expression of NR4A sub-family members was also found to be upregulated in BeWo cells after treatment with hCG and GnRH. A similar significant increase was observed at the respective protein levels after 2 and 48 h of treatment with forskolin, hCG or GnRH. Silencing Nor-1, Nurr-1 or Nur-77 individually did not show any effect on forskolin-, hCG- and/or GnRH-mediated BeWo cell fusion and/or hCG secretion. After silencing any one member of the NR4A sub-family, an increase in the transcript levels of the other sub-family members was observed, indicating a compensatory effect due to their functional redundancy. Simultaneously silencing all three NR4A sub-family members significantly downregulated forskolin- and hCG-mediated BeWo cell fusion and/or hCG secretion. However, a considerable amount of cell death occurred after forskolin or hCG treatment as compared to the control siRNA-transfected cells. These results suggest that the NR4A sub-family of nuclear orphan receptors has a role in trophoblastic cell differentiation.

  14. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Science.gov (United States)

    2017-01-01

    The N-methyl-D-aspartate receptors (NMDARs) are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plastic