WorldWideScience

Sample records for nuclear reactor installation

  1. Nuclear reactor installation

    International Nuclear Information System (INIS)

    Keller, W.

    1976-01-01

    A nuclear reactor installation includes a pressurized-water coolant reactor vessel and a concrete biological shield surrounding this vessel. The shield forms a space between it and the vessel large enough to permit rapid escape of the pressurized-water coolant therefrom in the event the vessel ruptures. Struts extend radially between the vessel and shield for a distance permitting normal radial thermal movement of the vessel, while containing the vessel in the event it ruptures, the struts being interspaced from each other to permit rapid escape of the pressurized-water coolant from the space between the shield and the vessel

  2. Nuclear reactor installation

    International Nuclear Information System (INIS)

    Jungmann, A.

    1976-01-01

    A nuclear reactor metal pressure vessel is surrounded by a concrete wall forming an annular space around the vessel. Thermal insulation is in this space and surrounds the vessel, and a coolant-conductive layer is also in this space surrounding the thermal insulation, coolant forced through this layer reducing the thermal stress on the concrete wall. The coolant-conductive layer is formed by concrete blocks laid together and having coolant passages, these blocks being small enough individually to permit them to be cast from concrete at the reactor installation, the thermal insulation being formed by much larger sheet-metal clad concrete segments. Mortar is injected between the interfaces of the coolant-conductive layer and concrete wall and the interfaces between the fluid-conductive layer and the insulation, a layer of slippery sheet material being interposed between the insulation and the mortar. When the pressure vessel is thermally expanded by reactor operation, the annular space between it and the concrete wall is completely filled by these components so that zero-excursion rupture safeguard is provided for the vessel. 4 claims, 1 figure

  3. Change of nuclear reactor installation in the first nuclear ship of Japan Nuclear Ship Development Agency

    International Nuclear Information System (INIS)

    1979-01-01

    The written application concerning the change of nuclear reactor installation in the first nuclear ship was presented from the JNSDA to the prime minister on January 10, 1979. The contents of the change are the repair of the primary and secondary shields of the reactor, the additional installation of a storage tank for liquid wastes, and the extension of the period to stop the reactor in cold state. The inquiry from the prime minister to the Nuclear Safety Commission was made on June 9, 1979, through the examination of safety in the Nuclear Safety Bureau, Science and Technology Agency. The Nuclear Safety Commission instructed to the Committee for the Examination of Nuclear Reactor Safety on June 11, 1979, about the application of criteria stipulated in the law. The relevant letters and the drafts of examination papers concerning the technical capability and the safety in case of the change of nuclear reactor installation in the first nuclear ship are cited. The JNSDA and Sasebo Heavy Industries, Ltd. seem to have the sufficient technical capability to carry out this change. As the result of examination, it is recognized that the application presented by the JNSDA is in compliance with the criteria stipulated in the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors. (Kako, I.)

  4. Installation of a new type of nuclear reactor in Mexico: advantages and disadvantages

    International Nuclear Information System (INIS)

    Jurado P, M.; Martin del Campo M, C.

    2005-01-01

    In this work the main advantages and disadvantages of the installation of a new type of nuclear reactor different to the BWR type reactor in Mexico are presented. A revision of the advanced reactors is made that are at the moment in operation and of the advanced reactors that are in construction or one has already planned its construction in the short term. Specifically the A BWR and EPR reactors are analyzed. (Author)

  5. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  6. Nuclear installations

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents the fulfilling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 2 of the document contains some details about the existing Brazilian nuclear installations. Also, safety improvements at Angra 1 and aspects of Angra 2 and 3 are reported

  7. Nuclear installations

    International Nuclear Information System (INIS)

    1998-01-01

    This document presents the fulfilling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 2 of the document contains some details about the existing Brazilian nuclear installations. Also, safety improvements at Angra 1 and aspects of Angra 2 and 3 are reported

  8. Regulations concerning licensing of nuclear reactor facilities and other nuclear installations, Decree No 7/9141, 6 January 1975

    International Nuclear Information System (INIS)

    1975-01-01

    This Decree lays down the licensing system for nuclear installations in Turkey and also sets up a Nuclear Safety Committee whose duty is to ensure that the requirements of this Decree are met. The Committee is made up of members of the Atomic Energy Commission specialized in reactors, nuclear safety, health physics, reactor physics as well as two experts respectively appointed by the Ministry of Health and Social Welfare and the Ministry of Energy and National Resources. (NEA) [fr

  9. Installation of a new type of nuclear reactor in Mexico: advantages and disadvantages; Instalacion de un nuevo tipo de reactor nuclear en Mexico: ventajas y desventajas

    Energy Technology Data Exchange (ETDEWEB)

    Jurado P, M.; Martin del Campo M, C. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: mjp_green@hotmail.com

    2005-07-01

    In this work the main advantages and disadvantages of the installation of a new type of nuclear reactor different to the BWR type reactor in Mexico are presented. A revision of the advanced reactors is made that are at the moment in operation and of the advanced reactors that are in construction or one has already planned its construction in the short term. Specifically the A BWR and EPR reactors are analyzed. (Author)

  10. Wiring installation for electric devices above the roof slab of a nuclear reactor

    International Nuclear Information System (INIS)

    Jahnke, S.

    1986-01-01

    The wiring installation is situated inside the nuclear reactor building. It includes, associated to electric devices, a first cable which extends from the device to a fixed connector arranged above the cover. A second cable is connected to the said fixed connector and to a connector fixed on a plate situated out of the reactor. According to the present invention each second cable has several sections. A first section can be connected to the said fixed connector situated above the cover and to a fixed lead-in connector of a fluid-tight conduit above the reactor core. A second section is inside the conduit. A third section can be connected to a lead-out connector fixed on the plate which is out of the reactor. The invention applies more particularly to pressurized water nuclear reactors [fr

  11. Safety management at nuclear installations with research reactors. A comparison of five European installations

    International Nuclear Information System (INIS)

    Troen, H.; Lauridsen, B.

    1997-11-01

    Five European institutions with nuclear research reactors were visited to compare safety management among institutions similar to Risoe. Risoe is a National Laboratory and the main activities are research and development. In 1996 it was decided to look into safety management at Risoe again; the last revision was in 1972. The purpose was to make it more efficient and to emphasise, that the responsibility lies in the operating organisation. Information such as nuclear facilities at the institutions, the safety management organisation, emergency preparedness, and lists of radiation doses to the employees from the years 1995 and 1996 is given in the report. Also international requirements and recommendations are given in short. Furthermore the report contains some reflections on the development in safety management organisations in resent years and the conclusions drawn from the information gathered

  12. The insurance of nuclear installations

    International Nuclear Information System (INIS)

    Francis, H.W.

    1977-01-01

    A brief account is given of the development of nuclear insurance. The subject is dealt with under the following headings: the need for nuclear insurance, nuclear insurance pools, international co-operation, nuclear installations which may be insured, international conventions relating to the liability of operators of nuclear installations, classes of nuclear insurance, nuclear reactor hazards and their assessment, future developments. (U.K.)

  13. Installation method for the steel container and vessel of the nuclear heating reactor

    International Nuclear Information System (INIS)

    Chen Liying; Guo Jilin; Liu Wei

    2000-01-01

    The Nuclear Heating Reactor (NHR) has the advantages of inherent safety and better economics, integrated arrangement, full power natural circulation and dual vessel structure. However, the large thin container presents a new and difficult problem. The characteristics of the dual vessel installation method are analyzed with system engineering theory. Since there is no foreign or domestic experience, a new method was developed for the dual vessel installation for the 5 MW NHR. The result shows that the installation method is safe and reliable. The research on the dual vessel installation method has important significance for the design, manufacture and installation of the NHR dual vessel, as well as the industrialization and standardization of the NHR

  14. Installation and evaluation of a nitrogen-16 detector in the Ford nuclear reactor

    International Nuclear Information System (INIS)

    Burn, R.R.

    1995-01-01

    Core differential temperature is the final measure of steady-state power at the Ford nuclear reactor. During some evolutions, such as changing the number of cooling-tower fans in operation, differential temperature undergoes a transient and does not provide an accurate measure of true power. A 16 N detector was installed to provide a more stable measure of power, even under transient conditions

  15. User requirements in the area of safety of innovative nuclear reactors and fuel cycle installations

    International Nuclear Information System (INIS)

    Kuczera, B.; Juhn, P.E.; Fukuda, K.; )

    2002-01-01

    Full text: Against the background of already existing IAEA and INSAC publications in the area of safety, in the framework of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a set of user requirements for the safety of future nuclear installations has been established. Five top-level requirements are expected to apply to any type of innovative design. They should foster an increased level of safety that is transparent to and fully accepted by the general public. The approach to future reactor safety includes two complementary strategies: increased emphasis on inherent safety characteristics and enhancement of defense in depth. As compared to existing plants, the effectiveness of preventing measures should be highly enhanced, resulting in fewer mitigation measures. The targets and possible approaches of each of the five levels of defense developed for innovative reactor designs are outlined in the paper

  16. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel and outer shell around the primary pressure vessel and acting as a protection for it against outside projectiles. A floor is provided internally dividing the outside shell into two upper and lower sections and an inside wall dividing the lower section into one part containing the primary pressure vessel and a second part, both made pressure tight with respect to each other and with the outside shell and forming with the latter a secondary means of containment [fr

  17. The economic potential of a cassette-type-reactor-installed nuclear ice-breaking container ship

    International Nuclear Information System (INIS)

    Kondo, Koichi; Takamasa, Tomoji

    1999-01-01

    An improved cassette-type marine reactor MRX (Marine Reactor X) which is currently researched and developed by the Japan Atomic Energy Research Institute is designed to be easily removed and transferred to another ship. If the reactor in a nuclear-powered ship, which is the reason for its higher cost, were replaced by the cassette-type-MRX, the reusability of the MRX would reduce the cost difference between nuclear-powered and diesel ships. As an investigation of one aspect of a cassette-type MRX, we attempted in this study to do an economic review of an MRX-installed nuclear-powered ice-breaking container ship sailing via the Arctic Ocean. The transportation cost between the Far East and Europe to carry one TEU (twenty-foot-equivalent container unit) over the entire life of the ship for an MRX (which is used for a 20-year period)-installed container ship sailing via the Arctic Ocean is about 70% higher than the Suez Canal diesel ship, carrying 8,000 TEU and sailing at 25 knots, and about 10% higher than the Suez Canal diesel ship carrying 4,000 TEU and sailing at 34 knots. The cost for a cassette-type-MRX (which is used for a 40-year period, removed and transferred to a second ship after being used for 20 years in the first ship)-installed nuclear-powered container ship is about 7% lower than that for the one operated for 20 years. Considering any loss or reduction in sales opportunities through the extension of the transportation period, the nuclear-powered container ship via the Arctic Sea is a more suitable means of transportation than a diesel ship sailing at 25 knots via the Suez Canal when the value of the commodities carried exceeds 2,800 dollars per freight ton. (author)

  18. Installation and commissioning of operation nuclear power plant reactor protection system modernization project

    International Nuclear Information System (INIS)

    Lu Weiwei

    2010-01-01

    Qinshan Nuclear Power Plant is the first nuclear power plant in mainland China; it is also the first one which realizes the modernization of analog technology based Reactor Protection System in the operation nuclear power plant of China. The implementation schedule is the shortest one which use same digital technology platform (TELEPERM XS of AREVA NP) to modifying the safety class I and C system in the world, the whole project spent 28 months from equipment contract signed to putting system into operation. It open up a era for operation nuclear power plant using mature digital technology to make safety class I and C system modernization in China. The important practical significance of this successful project is very obvious. This article focus on two important project stage--equipment installation and system commissioning, it is based on a large number of engineering implementation fact, it covers the problems and solutions happened during the installation and commission. The purpose of the article is to share the experience and lessons of safety I and C system modernization for other operation nuclear power plant. (authors)

  19. On alteration of reactor installation (additional installation of No.3 and No.4 plants in the Genkai Nuclear Power Station, Kyushu Electric Power Co., Inc.)

    International Nuclear Information System (INIS)

    1985-01-01

    The Nuclear Safty Commission sent the reply to the Minister of International Trade and Industry on October 4, 1984, on this matter after having received the report from the Committee on Examination of Nuclear Reactor Safety and carried out the deliberation. It was judged that the applicant has the technical capability required for installing and operating these reactor facilities. Also it was judged that on the safety after these reactor plants are installed, there is no obstacle in the prevention of disaster due to contaminated substances and reactors. The policy of the investigation and deliberation is reported. The contents of the investigation and deliberation are the condition of location such as site, geological features and ground, earthquake, weather, hydraulic problem and social environments, the safety design of reactor facilities, the evaluation of radiation exposure dose in normal operation, the analysis of abnormal transient change in operation, accident analysis and the evaluation of location. (Kako, I.)

  20. Civilian protection and Britain's commercial nuclear installations

    International Nuclear Information System (INIS)

    1981-01-01

    The subject is treated as follows: initial conclusions (major nuclear attack on military installations; nuclear attack including civil nuclear targets; conventional attack on civil nuclear installations); nature of nuclear weapons explosions and power reactor releases (general; dose effects and biologically significant isotopes; nuclear weapon effects; effect of reactors and other fuel-cycle installations in a thermonuclear area; implications of reactor releases due to conventional attack, sabotage, civil disorder or major accident). (U.K.)

  1. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel containing the heat source, an outer shell enclosing the primary pressure vessel and acting as a secondary means of containment for this vessel against outside projectiles. Multiple auxiliary equipment points are arranged outside the outer shell which comprises a part of a lower wall around the primary pressure vessel, an annular part integrated in the lower wall and extending outwards as from this wall and an upper part integrated in the annular part and extending above this annular part and above the primary pressure vessel. The annular part and the primary pressure vessel are formed with vertical penetrations which can be closed communicating respectively with the auxiliary equipment points and with inside the pressure vessel whilst handling gear is provided in the upper part for vertically raising reactor components through these penetrations and for transporting them over the annular part and over the primary pressure vessel [fr

  2. Decommissioning nuclear installations

    International Nuclear Information System (INIS)

    Dadoumont, J.

    2010-01-01

    When a nuclear installation is permanently shut down, it is crucial to completely dismantle and decontaminate it on account of radiological safety. The expertise that SCK-CEN has built up in the decommissioning operation of its own BR3 reactor is now available nationally and internationally. Last year SCK-CEN played an important role in the newly started dismantling and decontamination of the MOX plant (Mixed Oxide) of Belgonucleaire in Dessel, and the decommissioning of the university research reactor Thetis in Ghent.

  3. Nuclear Installations Act 1965

    International Nuclear Information System (INIS)

    1965-01-01

    This Act governs all activities related to nuclear installations in the United Kingdom. It provides for the licensing procedure for nuclear installations, the duties of licensees, the competent authorities and carriers of nuclear material in respect of nuclear occurrences, as well as for the system of third party liability and compensation for nuclear damage. The Act repeals the Nuclear Installations (Licensing and Insurance) Act 1959 and the Nuclear Installations (Amendment Act) 1965 except for its Section 17(2). (NEA) [fr

  4. Concerning installation of reactor at Noto nuclear power plant of Hokuriku Electric Power Co., Inc. (reply to inquiry)

    International Nuclear Information System (INIS)

    1988-01-01

    In response to an inquiry on the conformity of the title issue to the applicable law concerning nuclear material, nuclear fuel and nuclear reactor, the Nuclear Safety Commission ordered the Nuclear Reactor Safety Expert Group to make a study, made an examination after receiving a report from the Group, and submit the findings to the Minister of International Trade and Industry. The study on the site conditions covered the site location, geology, effects or earthquakes, meteorology, hydrology and social environment. The study on the safety design of the reactor covered the design of the facilities as a whole, anti-earthquake design, reactor, instrumentation, reactor shutdown system, reactivity control, protection, cooling system, reactor vessel, fuel handling, fuel storage, and radiation control. The study also included exposure evaluation, abnormal transient state analysis and accident analysis. It is concluded that the relevant company has a technical capability required for the installation and proper operation of the reactor in question, and that the reactor will have adequate safety with no possibility of causing a disaster. (Nogami, K.)

  5. The economic potential of a cassette-type-reactor-installed nuclear ice-breaking container ship

    International Nuclear Information System (INIS)

    Kondo, K.; Takamasa, T.

    2000-01-01

    The design concept of the cassette-type-reactor MRX (Marine Reactor X), being under development in Japan for the nuclear ice-breaker container ship is described. The MRX reactor is the monoblock water-cooled and moderated reactor with passive cooling system of natural circulation. It is shown that application of the reactor being under consideration gives an opportunity to decrease greatly the difference in prices for similar nuclear and diesel ships. Economic estimations for applicability of the nuclear ice-breaker container ship with the MRX reactor in Arctics for transportation of standard containers TEU from Europe to Far East as compared with transportation of the same containers by diesel ships via Suets Canal are made [ru

  6. Change in plan for installation of nuclear reactor in No.1 atomic powered vessel of Japan Atomic Energy Research Institute (change in purpose of use and in method for nuclear reactor installation and spent fuel disposal) (report)

    International Nuclear Information System (INIS)

    1987-01-01

    This report, compiled by the Nuclear Safety Commission to be submitted to the Prime Minister, deals with studies concerning some changes in the plan for the installation of a nuclear reactor in the No.1 atomic powered vessel to be constructed under the Japan Atomic Energy Research Institute (changes in the purpose of its use and in the methods for the nuclear reactor installation and spent fuel disposal). The conclusions of and procedures for the examination and evaluation are presented and then detailes of the studies are described. The study on the location requirements for the incidental land facilities at Sekinehama covers various conditions concerning the location, geology, earthquakes, meteorology, hydrology and social environment. The study on the safety design of the nuclear reactor facilities deals with the reactor, fuel handling facilities and other auxiliary facilities, as well as various land facilities to be constructed at Sekinehama including the reactor facilities and other facilities for fuel handling, waste disposal and protection and management of radioactive rays. Evaluation of possible radiation emission is shown and the accident analysis is also addressed. (Nogami, K.)

  7. Concerning partial revision of regulations on installation, operation, etc., of nuclear reactor, etc., for test and research

    International Nuclear Information System (INIS)

    1989-01-01

    To enforce the rules relating to nuclear material protection at nuclear power facilities as covered by the Nuclear Reactor Control Law, which was revised in May last year, orders should be issued by the Prime Minister's Office (or Ministry of International Trade and Industry) to specify the following matters: (1) measures to be carried out by the operators of nuclear facilities to ensure the protection of specially designated nuclear fuel materials, (2) procedures for the application for permission as covered by nuclear material protection rules, and (3) requirements for managers in charge of nuclear material protection. The new regulations should cover the following: (1) rules relating to the business of refining of nuclear fuels, and raw materials for nuclear substances, (2) rules relating to the business of processing of nuclear fuels, (3) rules relating to the installation, operation, etc., of nuclear reactor, etc., for test and research, (4) rules relating to the business of reprocessing of spent fules, (5) rules relating to the business of management of nuclear fuels or waste contaminated with nuclear fuels, and (6) rules relating to the application of nuclear fuels. (N.K)

  8. Apparatus for installing and removing a control rod drive in a nuclear reactor

    International Nuclear Information System (INIS)

    Turner, A.P.L.; Ward, R.

    1989-01-01

    This patent describes an apparatus for installing and removing a control rod drive from beneath the pressure vessel of a nuclear reactor. It consists of elevator carriage for carrying the control rod drive into and out of the region beneath the pressure vessel in a generally horizontal position, an elevator cradle mounted on the carriage for pivotal movement about an axis between horizontal and vertical positions and for vertical movement, when in the vertical position, means for securing the control rod drive to the elevator cradle, and a winch cart movable horizontally between a first position spaced from the pivot axis and a second position near the pivot axis. The cart has a winch cable supporting the lower end of the elevator carriage for moving the elevator carriage and the control rod drive between horizontal and vertical positions on the elevator carriage when the cart is spaced from the pivot axis and for raising and lowering the elevator cradle and the control rod drive when the cart is positioned near the pivot axis. The control rod drive is mounted on the elevator cradle by a bearing permitting rotational and horizontal movement of the control rod drive when the drive is in a vertical position, a swing arm, a pneumatically actuated cylinder in axial alignment with the control rod drive for raising and lowering the control rod drive, and means pivotally mounting the cylinder on the swing arm for movement about an axis spaced from and generally parallel to the vertically extending axis so that the position of the cylinder and the control rod drive can be shifted horizontally about the vertically extending axes

  9. New fast reactor installation concept

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The large size and complexity of fast reactor installations are emphasised and these difficulties will be increased with the advent of fast reactors of higher power. In this connection a new concept of fast reactor installation is described with a view to reducing the size of the installation and enabling most components, including even the primary vessel, to be constructed within the confines of a workshop. Full constructional details are given. (U.K.)

  10. Seismic evaluation of nuclear installations

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    1997-01-01

    Some considerations regarding extreme external events, natural or man-induce, such as earthquakes, floods, air crashes, etc, shall be done for nuclear facilities to minimizing the potential impact of the installation on the public and the environment. In this paper the main aspects of the seismic evaluation of nuclear facilities (except the nuclear power reactors) will be presented based on different codes and standards. (author). 7 refs., 2 tabs

  11. Installation modification of the reactor No.2 of Ikata nuclear power plant of Shikoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1980-01-01

    The application was made on August 25, 1979, from the president of the Shikoku Electric Power Company, Inc., to the Minister of International Trade and Industry, relating to the installation modification of the reactor No. 2 in the Ikata nuclear power plant. The inquiry was submitted on September 28, 1979, from the Minister of International Trade and Industry to the Nuclear Safety Commission, after the safety evaluation in the Ministry of International Trade and Industry, and the investigation and deliberation were started on October 1, 1979, in the Nuclear Safety Commission. The content of the modification is to add the circuit actuated by the abnormal low pressure signal of the reactor to the actuating circuit of the emergency core cooling system (ECCS) and to increase the new fuel storage capacity from about 1/3 core to about 2/3 core. The additional signal circuit is composed of the logic circuit of ''2 out of 4'' and is multichannel design. The circuit is independent from the reactor control system and the conventional signal circuit of the concurrence of low pressure in the reactor and low level in the pressurizer. With the addition of the circuit of abnormal low pressure signal of the reactor, the countermeasures for preventing ECCS start by mistake are also added. These modifications give no influence to the functions of the reactor control system and reactor protection system. The function and the performance of ECCS were analyzed and evaluated accompanying these modifications assuming the loss of coolant accident. Concerning the new fuel storage capacity, the type of racks is modified from angle type to can type, and the subcriticality is kept even at the time of water flood. (Nakai, Y.)

  12. Alteration of installation of nuclear reactors (alteration of No. 1 and No. 2 reactor facilities) in Shimane Nuclear Power Station, Chugoku Electric Power Co. , Inc. (report)

    Energy Technology Data Exchange (ETDEWEB)

    1987-07-01

    The Nuclear Safety Commission reported to the Minister of International Trade and Industry after prudent deliberation on this alteration problem which had been inquired on August 28, 1986. It was recognized that the technical capability of the applicant is appropriate, as the result of deliberation. It was judged that the safety after this alteration of the installation of the reactor facilities can be ensured. As the result of examining new type 8 x 8 zirconium liner fuel, there was no problem in its mechanical design, the analysis of dynamical characteristics, and the analysis of abnormal transient change and accident in operation. As to the change of the average degree of enrichment of replacement fuel, the thermonuclear design of the reactor core was adequate. In the incineration of spent resin and filter sludge, the effect of radioactive substances to the environment was negligible. The safety after abolishing the auxiliary protection function against exhaust radioactivity is ensured with a rare gas holdup equipment. The soundness of fuel and the soundness of reactor coolant pressure boundary are maintained in abnormal transient change and accident. (Kako, I.).

  13. Alteration of installation of nuclear reactors (alteration of No.1 and No.2 reactor facilities) in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1987-01-01

    The Nuclear Safety Commission reported to the Minister of International Trade and Industry after prudent deliberation on this alteration problem which had been inquired on August 28, 1986. It was recognized that the technical capability of the applicant is appropriate, as the result of deliberation. It was judged that the safety after this alteration of the installation of the reactor facilities can be ensured. As the result of examining new type 8 x 8 zirconium liner fuel, there was no problem in its mechanical design, the analysis of dynamical characteristics, and the analysis of abnormal transient change and accident in operation. As to the change of the average degree of enrichment of replacement fuel, the thermonuclear design of the reactor core was adequate. In the incineration of spent resin and filter sludge, the effect of radioactive substances to the environment was negligible. The safety after abolishing the auxiliary protection function against exhaust radioactivity is ensured with a rare gas holdup equipment. The soundness of fuel and the soundness of reactor coolant pressure boundary are maintained in abnormal transient change and accident. (Kako, I.)

  14. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  15. The safety of nuclear installations

    International Nuclear Information System (INIS)

    1993-01-01

    This Safety Fundamental publication sets out basic objectives, concepts and principles for ensuring safety that can be used both by the IAEA in its international assistance operations and by Member States in their national nuclear programmes. These Safety Fundamentals apply primarily to those nuclear installations in which the stored energy developed in certain situations could potentially results in the release of radioactive material from its designated location with the consequent risk of radiation exposure of people. These principles are applicable to a broad range of nuclear installations, but their detailed application will depend on the particular technology and the risks posed by it. In addition to nuclear power plants, such installations may include: research reactors and facilities, fuel enrichment, manufacturing and reprocessing plants; and certain facilities for radioactive waste treatment and storage

  16. Questions for the nuclear installations inspectorate

    International Nuclear Information System (INIS)

    Conroy, C.; Flood, M.; MacRory, R.; Patterson, W.C.

    1976-01-01

    The responsibilities of the Nuclear Installations Inspectorate are considered, and the responsibilities of other bodies for (a) reprocessing and enrichment, and (b) security. Questions for the Nuclear Installations Inspectorate are then set out under the following heads: general (on such topics as vandalism, sabotage, threats, security, reactor incidents); magnox reactors; corrosion; advanced gas-cooled reactor; steam generating heavy water reactor; fast breeder reactor; reproces-sing and waste. Most of the questions are concerned with technical problems that have been reported or might possibly arise during construction or operation, affecting the safety of the reactor or process. (U.K.)

  17. Modification of reactor installation in the Genkai nuclear power plant No. 1 of Kyushu Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    The Nuclear Safety Commission recognized the adequacy concerning the inquiry which was offered from the Minister of International Trade and Industry on July 25, 1979, following the safety evaluation in the Ministry of International Trade and Industry, and decided to submit a report to the Minister of International Trade and Industry on July 26, 1979, about the modification of reactor installation in the Genkai nuclear power plant No. 1 of the Kyushu Electric Power Company, Inc. This is concerned to the application which was made from the president of the Kyushu Electric Power Company, Inc., to the Minister of International Trade and Industry on July 24, 1979. The content of the modification is to add a control circuit which is actuated by the signal of abnormal low pressure in a reactor to the circuit of actuating the emergency core cooling system of the plant. The influences on the safety protection system by the addition of the circuit transmitting safety injection signal and by the additions of an interlock circuit preventing the misoperation of pressurizer spray and of a block circuit of safety injection signal in case of the abnormal low pressure in a reactor were evaluated. The effects on the function and characteristics of the emergency core cooling system due to the addition of the control circuit were investigated, and it was recognized by the analysis that there is no effect in the pipe ruptures of both small and large scales. (Nakai, Y.)

  18. Nuclear Installations Act 1969

    International Nuclear Information System (INIS)

    1969-01-01

    The purpose of this Act is to amend the Nuclear Installations Act 1965 to bring it into full compliance with the international conventions on nuclear third party liability to which the United Kingdom is a Signatory, namely, the Paris Convention, the Brussels Supplementary Convention and the Vienna Convention. (NEA) [fr

  19. Regulation for installation and operation of reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Concerning the description of an application for the approval of installation of a reactor, stipulated in Article 23 paragraph 2 of the Law for Regulation of Nuclear Source Materials, Nuclear Fuel Materials and Reactors (hereinafter referred to as the Law), the following items must be written. Namely, the heat output of the reactor in Article 23 paragraph 2 item 3 of the Law, the position, structure and facilities of the reactor facilities, described according to the stipulated classifications, the work plan, nuclear fuel materials employed, and the disposal of spent fuel. Concerning an application for the approval of a reactor installed aboard a foreign ship, stipulations are made separately. Description of an application for the approval of change of the heat output of a reactor and others should include the stipulated items. When it is wished to undergo inspection of the construction and performance of reactor facilities, an application for that end including the required items should be filed. Various safety measures preventing personnel from being exposed to radiation should be taken. When a foreign atomic-powered ship tries to enter a Japanese port, the stipulated necessary informations should be reported 60 days before such ship actually enters the Japanese port. A chief technician of reactors should take and pass the official examination. (Rikitake, Y.)

  20. Probe-holding apparatus for holding a probe for checking steam generator tubes particularly in a nuclear reactor installation

    International Nuclear Information System (INIS)

    Adamowski, A.; Gagny; Gallet, G.; Lhermitte, J.; Monne, M.; Vautherot, G.

    1984-01-01

    Probe-holding apparatus for holding a probe for checking steam generator tubes particularly in a nuclear reactor installation. The apparatus comprises a telescopic arm supported via a ball and socket joint from a support mounted in or near an access aperture in a chamber at one end of the steam generator. A probe guide is carried by a carriage pivotally mounted at the other end of the telescopic arm. The carriage includes an endless belt having a series of spaced projections which engage into the ends of the tubes, the projections being spaced by a distance equal to the tube pitch or a multiple thereof. The belt is driven by a stepping motor in order to move the carriage and place the probe guide opposite different ones of the tubes

  1. Nuclear installations: decommissioning and dismantling

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This document is a compilation of seven talks given during the 1995 EUROFORUM conference about decommissioning and dismantling of Nuclear installations in the European Community. The first two papers give a detailed description of the legal, financial and regulatory framework of decommissioning and dismantling of nuclear facilities in the European Union and a review of the currently available decommissioning techniques for inventory, disassembly, decontamination, remote operations and management of wastes. Other papers describe some legal and technical aspects of reactor and plants dismantling in UK, Germany, Spain and France. (J.S.)

  2. Safety of nuclear installations

    International Nuclear Information System (INIS)

    1991-01-01

    In accordance with the Nuclear Energy Act, a Licence may only be issued if the precautions required by the state of the art have been taken to prevent damage resulting from the construction and operation of the installation. The maximum admissible body doses in the area around the installation which must be observed in planning constructional and other technical protective measures to counter accidents in or at a nuclear power station (accident planning values, are established). According to the Radiological Protection Ordinance the Licensing Authority can consider these precautions to have been taken if, in designing the installation against accidents, the applicant has assumed the accidents which, according to the Safety Criteria and Guidelines for Nuclear Power Stations published in the Federal Register by the Federal Minister of the Interior after hearing the competent senior state authorities, must determine the design of a nuclear power station. On the basis of previous experience from safety analysis, assessment and operation of nuclear power stations, the accident guidelines published here define which accidents are determinative for the safety-related design of PWR power stations and what verification -particularly with regard to compliance with the accident planning values of the Radiological Protection Ordinance -must be provided by the applicant. (author)

  3. Inquiry relating to modification of reactor installation of Hamaoka No. 2 nuclear power plant of Chubu Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the Minister of International Trade and Industry for the license relating to the modification of reactor installation of the Hamaoka No. 2 nuclear power plant, Chubu Electric Power Company, Inc., on February 8, 1979, from the president of the company. After the safety evaluation in the Ministry of International Trade and Industry was finished, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on May 25, 1979, from the Minister of International Trade and Industry. The investigation and discussion were commenced by the AESC on May 28, 1979. The modification of the reactor installation is the increase of spent fuel storage capacity from about 220% of in-core fuel at present to about 325%. The fundamental philosophy of the safety evaluation includes the following items; 1) the storage capacity of spent fuel is adequate, 2) the design is such that the criticality is prevented under any assumed condition, 3) the sufficient cooling capacity is kept for decay heat removal, 4) and others required for the safety. The contents of the safety examination for each philosophical item written above are presented. The increased spent fuel storage capacity is equivalent to the quantity produced in about eight years. The prevention of criticality in the spent fuel storage is carefully practiced by putting fuel assemblies in the stainless steel racks with large neutron absorption cross section and locating spent fuel assemblies at the proper distances. The effective multiplication factor is less than 0.95 at the most severe arrangement in the fuel pool. The water temperature in the pool is less than 65 deg C at about 325% core storage by operating the spent fuel pool water cooling system. The spent fuel storage racks are designed as the A class aseismatic structure. (Nakai, Y.)

  4. Nuclear reactor

    International Nuclear Information System (INIS)

    Batheja, P.; Huber, R.; Rau, P.

    1985-01-01

    Particularly for nuclear reactors of small output, the reactor pressure vessel contains at least two heat exchangers, which have coolant flowing through them in a circuit through the reactor core. The circuit of at least one heat exchanger is controlled by a slide valve, so that even for low drive forces, particularly in natural circulation, the required even loading of the heat exchanger is possible. (orig./HP) [de

  5. Nuclear reactor

    International Nuclear Information System (INIS)

    Mysels, K.J.; Shenoy, A.S.

    1976-01-01

    A nuclear reactor is described in which the core consists of a number of fuel regions through each of which regulated coolant flows. The coolant from neighbouring fuel regions is combined in a manner which results in an averaging of the coolant temperature at the outlet of the core. By this method the presence of hot streaks in the reactor is reduced. (UK)

  6. SNRIU nuclear installation modifications

    International Nuclear Information System (INIS)

    Goroshanskyi, Andrii

    2013-01-01

    Design stages of Nuclear Instalations (NI): NI design is performed in three stages: • Feasibility study: - Feasibility study is developed on the basis of the customer task for production facilities and linear facilities engineering and transport infrastructure that require detailed study of relevant decisions and identify options for and feasibility of construction. • Design: - The design is developed on the basis of design task, initial data and approved the previous stage under three-stage design. • Detailed documentation

  7. Sealing, especially of dropped ceiling of cubide where main circulating pump of nuclear reactor is installed

    International Nuclear Information System (INIS)

    Paucek, V.

    1980-01-01

    The sealing of the dropped ceiling of the cubicle for main circulating pump installation consists of a reinforcing ring in the space of the pump installation and the top annulus of biological shielding whose inner diameter is smaller than the outer diameter of the bottom biological shielding annulus mounted onto the pump body. The sealing comprises a vertically slidable support ring provided on its underside with an outer ring insert and an outer splice bar for functional gap formation. Slidably mounted in the gap is a guide annular plate tightly attached by means of an inner splice bar and bolts to the bottom biological shielding annulus. Spacers are provided between the reinforcing ring underside and the support ring top surface. (B.S.)

  8. Change in plan for installation of nuclear reactor in Genkai Nuclear Power Plant of Kyushu Electric Power Co., Inc. (change in plan for No.3 and No.4 nuclear reactor facilities) (report)

    International Nuclear Information System (INIS)

    1987-01-01

    This report, compiled by the Nuclear Safety Commission to be submitted to the Minister of International Trade and Industry, deals with studies on a proposed change in the plan for the installation of nuclear reactors in the Genkai Nuclear Power Plant of Kyushu Electric Power Co., Inc. (change in the plan for the No.3 and No.4 nuclear reactor facilities). The conclusions of and principles for the examination and evaluation are described first. The studies carried out are focused on the safety of the facilities, and it is concluded that part of the proposed change is appropriate with respect to the required technical capability and that part of the change will not have adverse effects on the safety design of the facilities. The examination of the safety design of the reactor facilities cover the reactivity control, new material for the steam generator, design of chemical and volume control systems, design of liquid waste treatment facilities, integration of all confinement vessel spray rings, and design of the diesel power generator. It is confirmed that all of them can meet the safety requirements. Studies and analyses are also made of the emission of radiations to the surrounding environment, abnormal transient changes during operations, and possible accidents. (Nogami, K.)

  9. Installation and method for handling fuel assemblies of fast nuclear reactors

    International Nuclear Information System (INIS)

    Aubert, Michel; Renaux, Charley.

    1982-01-01

    This invention concerns an installation and a method for handling the assemblies which makes it possible to have a large revolving plug smaller in diameter than that of the presently known solutions. This large, coaxial to the core, revolving plug has a handling arm enabling a fraction of the assemblies to be reached and deposited in a handling well. Through a small offset revolving plug the remainder of the assemblies can be reached and deposited in a pick-up well accessible to the arm of the large revolving plug [fr

  10. Modular nuclear reactor for a land-based power plant and method for the fabrication installation and operation thereof

    International Nuclear Information System (INIS)

    Craig, E. R.; Blumberg, B. Jr.

    1985-01-01

    A self-contained modular nuclear reactor which can be prefabricated at a factory location, nuclear-certified at the factory, transported to a field location for final assembly and connection to a large-scale electric-power generating facility. The modular reactor includes a prefabricated nuclear heat supply module and a plurality of shell segments which can be assembled about the heat supply module and which provide a form for the pouring and curing of a cementatious biological shield about the heat supply module. The modular reactor includes passive shutdown heat removal systems sufficient to render the reactor safe in an emergency. A large-scale power plant arrangement is disclosed which incorporates a plurality of the modular reactors

  11. Nuclear installations sites safety

    International Nuclear Information System (INIS)

    Barber, P.; Candes, P.; Duclos, P.; Doumenc, A.; Faure, J.; Hugon, J.; Mohammadioun, B.

    1988-11-01

    This report is divided into ten parts bearing: 1 Safety analysis procedures for Basis Nuclear Installations sites (BNI) in France 2 Site safety for BNI in France 3 Industrial and transport activities risks for BNI in France 4 Demographic characteristics near BNI sites in France 5 Meteorologic characteristics of BNI sites in France 6 Geological aspects near the BNI sites in France 7 Seismic studies for BNI sites in France 8 Hydrogeological aspects near BNI sites in France 9 Hydrological aspects near BNI sites in France 10 Ecological and radioecological studies of BNI sites in France [fr

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  13. Nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1980-01-01

    The reactor core of nuclear reactors usually is composed of individual elongated fuel elements that may be vertically arranged and through which coolant flows in axial direction, preferably from bottom to top. With their lower end the fuel elements gear in an opening of a lower support grid forming part of the core structure. According to the invention a locking is provided there, part of which is a control element that is movable along the fuel element axis. The corresponding locking element is engaged behind a lateral projection in the opening of the support grid. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  14. Regulation for installation and operation of marine reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The regulation is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the provisions of the order for execution of the law. The regulation is applied to marine reactors and reactors installed in foreign nuclear ships. Basic concepts and terms are explained, such as: radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area and employee. The application for permission of installation of reactors shall list maximum continuous thermal power, location and general structure of reactor facilities, structure and equipment of reactors and treatment and storage facilities of nuclear fuel materials, etc. The application for permission of reactors installed in foreign ships shall describe specified matters according to the provisions for domestic reactors. The operation program of reactors for three years shall be filed to the Minister of Transportation for each reactor every fiscal year from that year when the operation is expected to start. Records shall be made for each reactor and kept for particular periods on inspection of reactor facilities, operation, fuel assembly, control of radiation, maintenance and others. Exposure doses, inspection and check up of reactor facilities, operation of reactors, transport and storage of nuclear fuel materials, etc. are designated in detail. (Okada, K.)

  15. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  16. CSNI collective statement on support facilities for existing and advanced reactors. The function of OECD/Nea joint projects Nea committee on the safety of nuclear installations (CSNI)

    International Nuclear Information System (INIS)

    2008-01-01

    The NEA Committee on the Safety of Nuclear Installations (CSNI) has recently completed a study on the availability and utilisation of facilities supporting safety studies for current and advanced nuclear power reactors. The study showed that significant steps had been undertaken in the past several years in support of safety test facilities, mainly by conducting multinational joint projects centered on the capability of unique test facilities worldwide. Given the positive experience of the safety research projects, it has been recommended that efforts be made to prioritize technical issues associated with advanced (Generation IV) reactor designs and to develop options on how to efficiently obtain the necessary data through internationally co-ordinated research, preparing a gradual extension of safety research beyond the needs set by currently operating reactors. This statement constitutes a reference for future CSNI activities and for safety authorities, R and D centres and industry for internationally co-ordinated research initiatives in the nuclear safety research area. (author)

  17. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.

    1976-01-01

    A nuclear reactor containment vessel faced internally with a metal liner is provided with thermal insulation for the liner, comprising one or more layers of compressible material such as ceramic fiber, such as would be conventional in an advanced gas-cooled reactor and also a superposed layer of ceramic bricks or tiles in combination with retention means therefor, the retention means (comprising studs projecting from the liner, and bolts or nuts in threaded engagement with the studs) being themselves insulated from the vessel interior so that the coolant temperatures achieved in a High-Temperature Reactor or a Fast Reactor can be tolerated with the vessel. The layer(s) of compressible material is held under a degree of compression either by the ceramic bricks or tiles themselves or by cover plates held on the studs, in which case the bricks or tiles are preferably bedded on a yielding layer (for example of carbon fibers) rather than directly on the cover plates

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    Miyashita, Akio.

    1981-01-01

    Purpose: To facilitate and accelerate a leakage test of valves of a main steam pipe by adding a leakage test partition valve thereto. Constitution: A leakage testing partition valve is provided between a pressure vessel for a nuclear reactor and the most upstream side valve of a plurality of valves to be tested for leakage, a testing branch pipe is communicated with the downstream side of the partition valve, and the testing water for preventing leakage is introduced thereto through the branch pipe. Since main steam pipe can be simply isolated by closing the partition valve in the leakage test, the leakage test can be conducted without raising or lowering the water level in the pressure vessel, and since interference with other work in the reactor can be eliminated, the leakage test can be readily conducted parallel with other work in the reactor in a short time. Clean water can be used without using reactor water as the test water. (Yoshihara, H.)

  19. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  20. Examination policy concerning the additional installation of No. 3 and No. 4 reactors in Takahama Nuclear Power Station and No. 3 and No. 4 reactors in Fukushima No. 2 Nuclear Power Station

    International Nuclear Information System (INIS)

    1980-01-01

    The Nuclear Safety Commission decided the annual examination policy on the modification of reactor installation in Takahama Nuclear Power Station to construct No. 3 and No. 4 reactors inquired under date of November 26, 1979, by the Minister of International Trade and Industry, so that the examination results of the accident in Three Mile Island nuclear power station are reflected to the examination for the purpose of improving reactor safety. The examination results of the accident in Three Mile Island power station are being investigated by the Committee on Examination of Reactor Safety, based on the policy shown in ''On the second report of the special committee examining the accident in a nuclear power station in the U.S.'' determined by the Nuclear Safety Commission under date of September 13, 1979. Though the Committee will further clarify the past guideline about the items concerning the criteria, design and operation management, the Committee decided the tentative policy to reflect it to safety examination. Further, a table is attached, in which 52 items to be reflected to the security measures are classified from the viewpoint of necessity to reflect them to the final examination. This table includes 13 items of criteria and examination, 7 items related to design, 10 items related to operation management, 10 antidisaster items, and 12 items related to safety research. (Wakatsuki, Y.)

  1. Regulations of local choices for installation of power reactors

    International Nuclear Information System (INIS)

    1969-09-01

    The present regulations specify the criteria under which the Comissao Nacional de Energia Nuclear will approve the local proposed for the installation of power reactors, according to his attributions established in the Law 4118, dated of August 27, 1962

  2. Alteration in reactor installation (addition of Unit 2) in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. (inquiry)

    International Nuclear Information System (INIS)

    1983-01-01

    An inquiry was made by the Ministry of International Trade and Industry to Nuclear Safety Commission on the addition of Unit 2 in Shimane Nuclear Power Station of The Chugoku Electric Power Co., Inc., concerning the technical capability of Chugoku Electric Power Co., Inc., and the plant safety. The NSC requested the Committee on Examination of Reactor Safety to make a deliberation on this subject. Both the technical capability and the safety of Unit 1 were already confirmed by MITI. Unit 2 to be newly added in the Shimane Nuclear Power Station is a BWR power plant with electric output of 820 MW. The examination made by MITI is described: the technical capability of Chugoku Electric Power Co., Inc., the safety of Unit 2 about its siting, reactor proper, reactor cooling system, radioactive waste management, etc. (J.P.N.)

  3. Nuclear reactor

    International Nuclear Information System (INIS)

    Scholz, M.

    1976-01-01

    An improvement of the accessibility of that part of a nuclear reactor serving for biological shield is proposed. It is intended to provide within the biological shield, distributed around the circumference of the reactor pressure vessel, several shielding chambers filled with shielding material, which are isolated gastight from the outside by means of glass panes with a given bursting strength. It is advantageous that, on the one hand, inspection and maintenance will be possible without great effort and, on the other, a large relief cross section will be at desposal if required. (UWI) [de

  4. Nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, R F; George, B V; Baglin, C J

    1978-05-10

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given.

  5. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.; George, B.V.; Baglin, C.J.

    1978-01-01

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given. (UK)

  6. Nuclear reactor

    International Nuclear Information System (INIS)

    Sasaki, Tomozo.

    1987-01-01

    Purpose: To improve the nuclear reactor availability by enabling to continuously exchange fuels in the natural-slightly enriched uranium region during operation. Constitution: A control rod is withdrawn to the midway of a highly enriched uranium region by means of control rod drives and the highly enriched uranium region is burnt to maintain the nuclear reactor always at a critical state. At the same time, fresh uranium-slightly enriched uranium is continuously supplied gravitationally from a fresh fuel reservoir through fuel reservoir to each of fuel pipes in the natural-slightly enriched uranium region. Then, spent fuels reduced with the reactivity by the burn up are successively taken out from the bottom of each of the fuel pipes through an exit duct and a solenoid valve to the inside of a spent fuel reservoir and the burn up in the natural-slightly enriched uranium region is conducted continuously. (Kawakami, Y.)

  7. Nuclear reactors

    International Nuclear Information System (INIS)

    Humphreys, P.; Davidson, D.F.; Thatcher, G.

    1980-01-01

    The cooling system of a liquid metal cooled fast breeder nuclear reactor of the pool kind is described. It has an intermediate heat exchange module comprising a tube-in-shell heat exchanger and an electromagnetic flow coupler in the base region of the module. Primary coolant is flowed through the heat exchanger being driven by electromagnetic interaction with secondary liquid metal coolant flow effected by a mechanical pump. (author)

  8. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  9. Improvements in or relating to nuclear reactors

    International Nuclear Information System (INIS)

    Timofeev, A.V.; Batjukov, V.I.; Fadeev, A.I.; Shapkin, A.F.; Shikhiyan, T.G.; Ordynsky, G.V.; Drachev, V.P.; Pogodin, E.N.

    1980-01-01

    A refuelling installation for nuclear reactor complexes is described for recharging the reactor vessels of such complexes with new fuel assemblies and for removing spent fuel assemblies from the reactor vessel. (U.K.)

  10. The Swiss nuclear installations annual report 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report concerns the safety of the Swiss nuclear installations in the period of 1992. Surveillance of these installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). In Switzerland five nuclear power plants are operational: Beznau I and II, Muehleberg, Goesgen and Leibstadt. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basle. Further subject to HSK's supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut down experimental reactor of Lucens, the exploration in Switzerland of final disposal facilities for radwaste and the interim radwaste storage facilities. The present report first deals with the nuclear power plants and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK (chapters 1-4). In chapter 5, the corresponding information is given for the research installations. Chapter 6 on radwaste disposal is dedicated to the waste treatment, waste from reprocessing, interim storage and exploration by the NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants' vicinity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into some general questions relating to the safety of nuclear installations, and in particular covers important events in nuclear installations abroad. In all, the operation of the Swiss nuclear installations in the period of 1992 is rated safe by HSK. (author) 7 figs., 13 tabs

  11. Nuclear reactor

    International Nuclear Information System (INIS)

    Gibbons, J.F.; McLaughlin, D.J.

    1978-01-01

    In the pressure vessel of the water-cooled nuclear reactor there is provided an internal flange on which the one- or two-part core barrel is hanging by means of an external flange. A cylinder is extending from the reactor vessel closure downwards to a seat on the core cupport structure and serves as compression element for the transmission of the clamping load from the closure head to the core barrel (upper guide structure). With the core barrel, subject to tensile stress, between the vessel internal flange and its seat on one hand and the compression of the cylinder resp. hold-down element between the closure head and the seat on the other a very strong, elastic sprung structure is obtained. (DG) [de

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.; Struensee, S.

    1976-01-01

    The invention concerns the use of burnable poisons in a nuclear reactor, especially in PWRs, in order to improve the controllability of the reactor. An unsymmetrical arrangement in the lattice is provided, if necessary also by insertion of special rods for these additions. It is proposed to arrange the burnable poisons in fuel elements taken over from a previous burn-up cycle and to distribute them, going out from the side facing the control rods, over not more than 20% of the lenth of the fuel elements. It seems sufficient, for the burnable poisons to bind an initial reactivity of only 0.1% and to become ineffective after normal operation of 3 to 4 months. (ORU) [de

  13. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  14. The Swiss nuclear installations. Annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Surveillance of the Swiss nuclear installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). Five nuclear power plants are operational in Switzerland: the three units Beznau I and II and Muehleberg with electrical capacities in the range of 300 to 400 MWe, and the two units Goesgen and Leibstadt with capacities between 900 and 1200 MWe. These are light water reactors; at Beznau and Goesgen of the PWR type, and at Muehleberg and Leibstadt of the BWR type. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basel. Further subject to HSK`s supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut-down experimental reactor of Lucens, the exploration, in Switzerland, of final disposal facilities for radwaste and the interim radwaste storage facilities. The report first deals with the nuclear power and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK. In chapter 5, the corresponding information is given for research installations. Chapter 6, on radwaste disposal, is dedicated to the treatment of waste, waste from reprocessing, interim storage and exploration by NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants` proximity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into general questions relating to the safety of nuclear installations. All in all, the safety of operation of the Swiss nuclear installations, in the period of 1994, is judged as good by HSK. (author) 11 figs., 13 tabs.

  15. The Swiss nuclear installations. Annual report 1993

    International Nuclear Information System (INIS)

    1994-08-01

    Surveillance of the Swiss nuclear installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). Five nuclear power plants are operational in Switzerland: the three units Beznau I and II and Muehleberg with electrical capacities in the range of 300 to 400 MWe, and the two units Goesgen and Leibstadt with capacities between 900 and 1200 MWe. These are light water reactors; at Beznau and Goesgen of the PWR type, and at Muehleberg and Leibstadt of the BWR type. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basel. Further subject to HSK's supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut-down experimental reactor of Lucens, the exploration of final disposal facilities for radwaste and the interim radwaste storage facilities in Switzerland. The report first deals with the nuclear power and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK. In chapter 5, the corresponding information is given for research installations. Chapter 6, on radwaste disposal, is dedicated to the treatment of waste, waste from reprocessing, interim storage and exploration by NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants' proximity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into general questions relating to the safety of nuclear installations. All in all, the safety of operation of the Swiss nuclear installations, in the period of 1993, is judged as good by HSK. (author) 10 figs., 11 tabs

  16. Nuclear reactor

    International Nuclear Information System (INIS)

    Anthony, A.J.; Gruber, E.A.

    1979-01-01

    A nuclear reactor with control rods in channels between fuel assemblies wherein the fuel assemblies incorporate guide rods which protrude outwardly into the control rod channels to prevent the control rods from engaging the fuel elements. The guide rods also extend back into the fuel assembly such that they are relatively rigid members. The guide rods are tied to the fuel assembly end or support plates and serve as structural members which are supported independently of the fuel element. Fuel element spacing and support means may be attached to the guide rods. 9 claims

  17. Patterns identification in supervisory systems of nuclear reactors installations and gas pipelines systems using self-organizing maps

    International Nuclear Information System (INIS)

    Doraskevicius Junior, Waldemar

    2005-01-01

    Self-Organizing Maps, SOM, of Kohonen were studied, implemented and tested with the aim of developing, for the energy branch, an effective tool especially for transient identification in nuclear reactors and for gas pipelines networks logistic supervision, by classifying operations and identifying transients or abnormalities. The digital system for the test was developed in Java platform, for the portability and scalability, and for belonging to free development platforms. The system, executed in personal computers, showed satisfactory results to aid in decision taking, by classifying IRIS (International Reactor Innovative and Secure) reactor operation conditions (data from simulator) and by classifying Southeast (owner: TRANSPETRO - Brazil) gas pipeline network. Various adaptations were needed for such business, as new topologies for the output layer of artificial neural network and particular preparation for the input data. (author)

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    Irion, L.; Tautz, J.; Ulrych, G.

    1976-01-01

    This additional patent complements the arrangement of non-return valves to prevent loss of cooling water on fracture of external tubes in the main coolant circuit (according to PS 24 24 427.7) by ensuring that the easily movable valves only operate in case of a fault, but do not flutter in operation, because the direction of flow is not the same at each location where they are installed. The remedy for this undesirable effect consists of allocating 1 non-return valve unit with 5 to 10 valves to each (of several) ducts for the cooling water intake. These units are installed in the annular space between the reactor vessel and the pressure vessel below the inlet of the ducts. Due to flow guidance surfaces in the same space, the incoming cooling water is deflected downwards and as the guiding surfaces are closed at the sides, must pass parallel to the valves of the non-return valve unit. On fracture of the external cooling water inlet pipe concerned, all valves of this unit close due to reversal of flow on the outlet side. (TK) [de

  19. Nuclear installations and their environment

    International Nuclear Information System (INIS)

    Rieu, Ch.; Berge-Thierry, C.; Duval, C.; Bonnet, Ch.; Gaubert, B.; Riffard, Th.; Greffier, G.; Cervantes, J.C.; Le Breton, F.; Clement, C.; Charbonnier, R.; Andreani, A.M.; Maubert, H.; Maisonneuve, A.

    2002-01-01

    This dossier deals with protection of nuclear installations against external risks. The articles come from the presentations of the Conference on 'Nuclear installations and their environment', held by the 'Safety and Environment Protection' Section of the French Nuclear Energy Society on October 15, 2002. Floods, earthquakes, winter cold, snow-falls, wind, fires are the main natural risks taken into account. Risks from industrial environment and communication lines are also considered. (authors)

  20. Nuclear steam supply system and method of installation

    International Nuclear Information System (INIS)

    Tower, S.N.; Christenson, J.A.; Braun, H.E.

    1989-01-01

    This patent describes a method of providing a nuclear reactor power plant at a predetermined use site accessible by predetermined navigable waterways. The method is practiced with apparatus including a nuclear reactor system. The system has a nuclear steam-supply section. The method consists of: constructing a nuclear reactor system at a manufacturing site remote from the predetermined use site but accessible to the predetermined waterways for transportation from the manufacturing site to the predetermined use site, the nuclear reactor system including a barge with the nuclear steam supply section constructed integrally with the barge. Simultaneously with the construction of the nuclear reactor system, constructing facilities at the use site to be integrated with the nuclear reactor system to form the nuclear-reactor power plant; transporting the nuclear reactor system along the waterways to the predetermined use site; at the use site joining the removal parts of the altered nuclear reactor system to the remainder of the altered nuclear reactor system to complete the nuclear reactor system; and installing the nuclear reactor system at the predetermined use site and integrating the nuclear reactor system to interact with the facilities constructed at the predetermined use site to form the nuclear-reactor power plant

  1. Nuclear reactors

    International Nuclear Information System (INIS)

    Yoshioka, Michiko.

    1985-01-01

    Purpose: To obtain an optimum structural arrangement of IRM having a satisfactory responsibility to the inoperable state of a nuclear reactor and capable of detecting the reactor power in an averaged manner. Constitution: As the structural arrangement of IRM, from 6 to 16 even number of IRM are bisected into equial number so as to belong two trip systems respectively, in which all of the detectors are arranged at an equal pitch along a circumference of a circle with a radius rl having the center at the position of the central control rod in one trip system, while one detector is disposed near the central control rod and other detectors are arranged substantially at an equal pitch along the circumference of a circle with a radius r2 having the center at the position for the central control rod in another trip system. Furthermore, the radius r1 and r2 are set such that r1 = 0.3 R, r2 = 0.5 R in the case where there are 6 IRM and r1 = 0.4 R and R2 = 0.8 R where there are eight IRM where R represents the radius of the reactor core. (Kawakami, Y.)

  2. Technology of nuclear reactors

    International Nuclear Information System (INIS)

    Ravelet, F.

    2016-01-01

    This academic report for graduation in engineering first presents operation principles of a nuclear reactor core. It presents core components, atomic nuclei, the notions of transmutation and radioactivity, quantities used to characterize ionizing radiations, the nuclear fission, statistical aspects of fission and differences between fast and slow neutrons, a comparison between various heat transfer fluids, the uranium enrichment process, and different types of reactor (boiling water, natural uranium and heavy water, pressurized water, and fourth generation). Then, after having recalled the French installed power, the author proposes an analysis of a typical 900 MWe nuclear power plant: primary circuit, reactor, fuel, spent fuel, pressurizer and primary pump, secondary circuit, aspects related to control-command, regulation, safety and exploitation. The last part proposes a modelling of the thermodynamic cycle of a pressurized water plant by using an equivalent Carnot cycle, a Rankine cycle, and a two-phase expansion cycle with drying-overheating

  3. Nuclear reactors

    International Nuclear Information System (INIS)

    Matheson, J.E.

    1983-01-01

    A nuclear reactor has an upper and a lower grid plate. Protrusions project from the upper grid plate. Fuel assemblies having end fittings fit between the grid plates. An arrangement is provided for accepting axial forces generated during the operation of the nuclear reactor by the flow of the cooling medium and thermal expansion and irradiation-induced growth of the fuel assembly, which comprises rods. Each fuel assembly rests on the lower grid plate and its upper end is elastically supported against the upper grid plate by the above-mentioned arrangement. The arrangement comprises four (for example) torsion springs each having a torsion tube and a torsion bar nested within the torsion tube and connected at one end thereto. The other end of the torsion bar is connected to an associated one of four lever arms. The torsion tube is rigidly connected to the other end fitting and the springs are disposed such that the lever arms are biassed against the protrusions. (author)

  4. Safety of nuclear installations

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1987-01-01

    The safety philosophy of a PWR type reactor distinguishing three levels of safety, is presented. At the first level, the concept of reactivity defining coefficients which measure the reactivity variation is introduced. At the second level, the reactor protection system establishing the design criteria to assure the high reliability, is defined. At the third level, the protection barriers to contain the consequences of accident evolution, are defined. (M.C.K.) [pt

  5. Nuclear reactor

    International Nuclear Information System (INIS)

    Schweiger, F.; Glahe, E.

    1976-01-01

    In a nuclear reactor of the kind which is charged with spherical reaction elements and in which control rods are arranged to be thrust directly into the charge, each control rod has at least one screw thread on its external surface so that as the rod is thrust into the charge it is caused to rotate and thus make penetration easier. The length of each control rod may have two distinct portions, a latter portion which carries a screw thread and a lead-in portion which is shorter than the latter portion and which may carry a thread of greater pitch than that on the latter portion or may have a number of axially extending ribs instead of a thread

  6. Regulation for installation and operation of experimental-research reactor

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is stipulated under the Law for regulation of nuclear raw materials, nuclear fuel materials and reactors and the provisions for installation and operation of reactor in the order for execution of the law. Basic concepts and terms are defined, such as, radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; preserved area; inspected surrounding area and employee. An application for permission of installation of reactor shall list such matters as: the maximum continuous thermal output of reactor; location and general construction of reactor facilities; construction and equipment of the main reactor and other facilities for nuclear fuel materials; cooling and controlling system and radioactive waste, etc. An operation plan of reactor for three years shall be filed till January 31 of the fiscal year preceding that one the operation begins. Records shall be made and kept for specified periods respectively on inspection of reactor facilities, operation, fuel assembly, radiation control, maintenance, accidents of reactor equipment and weather. Detailed rules are settled for entrance limitation to controlled area, exposure dose, inspection, check up and regular independent examination of reactor facilities, operation of reactor, transportation of substances contaminated by nuclear fuel materials within the works and storage, etc. (Okada, K.)

  7. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.; George, B.V.; Baglin, C.J.

    1979-01-01

    In a nuclear reactor (e.g. one having coolant down-flow through a core to a hearth below) thermal insulation (e.g. of a floor of the hearth) comprises a layer of bricks and a layer of tiles thereon, with smaller clearances between the tiles than between the bricks but with the bricks being of reduced cross-section immediately adjacent the tiles so as to be surrounded by interconnected passages, of relatively large dimensions, constituting a continuous chamber extending behind the layer of tiles. By this arrangement, lateral coolant flow in the inter-brick clearances is much reduced. The reactor core is preferably formed of hexagonal columns, supported on diamond-shaped plates each supported on a pillar resting on one of the hearth-floor tiles. Each plate has an internal duct, four upper channels connecting the duct with coolant ducts in four core columns supported by the plate, and lower channels connecting the duct to a downwardly-open recess common to three plates, grouped to form a hexagon, at their mutually-adjacent corners. This provides mixing, and temperature-averaging, of coolant from twelve columns

  8. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  9. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  10. Nuclear reactors

    International Nuclear Information System (INIS)

    Pearson, K.G.

    1977-01-01

    Reference is made to auxiliary means of cooling the nuclear fuel clusters used in light or heavy water cooled nuclear reactors. One method is to provide one or more spray cooling tubes. From holes in the side walls of those tubes coolant water may be sprayed laterally into the cluster against the rods. The flow of main coolant may thus be supplemented or even replaced by the auxiliary coolant. A difficulty, however, is that only those fuel rods close to a spray cooling tube can readily be reached by the auxiliary coolant. In the arrangement described, where the fuel rods are spaced apart by transverse grids, at least one of the interspaces between the grids is provided with an axially extending auxiliary coolant conduit having lateral holes through which an auxiliary coolant is sprayed into the cluster. A deflector is provided that extends from a transverse grid into a position in front of the holes and deflects auxiliary coolant on to parts of the fuel rods otherwise inaccessible to the auxiliary coolant. The construction of the deflector is described. (U.K.)

  11. Seismic evaluation of nuclear installations; Avaliacao sismica de instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Mattar Neto, Miguel [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-10-01

    Some considerations regarding extreme external events, natural or man-induce, such as earthquakes, floods, air crashes, etc, shall be done for nuclear facilities to minimizing the potential impact of the installation on the public and the environment. In this paper the main aspects of the seismic evaluation of nuclear facilities (except the nuclear power reactors) will be presented based on different codes and standards. (author). 7 refs., 2 tabs.

  12. UK nuclear installations

    International Nuclear Information System (INIS)

    Gronow, W.S.

    Regulations and conditions for the commissioning of nuclear power plants in the UK, their siting, licence conditions, design safety assessment, inspection during construction and conditions for safety in operation are listed. (J.P.)

  13. Contributions to the research programs in nuclear and industrial electronics, domestic production of instrumentation, safety and control systems and equipment for nuclear reactors and auxiliary installations

    International Nuclear Information System (INIS)

    Talpariu, C; Talpariu, J.; Matei, C.

    2001-01-01

    Domestic production of component system and equipment for the control and safety of nuclear facilities was one of the priority objective of the Nuclear Research Institute Pitesti. The problems addressed were particularly related to design and production of analog and digital equipment for measurements, triggering and display of the values of process parameters as well as to regulating complex functions of this equipment. Associated to this effort were the research works concerning: - reliability and in-service life-time of the electronic components and equipment in the safety and control systems for nuclear processes; - radiation endurance of industrial electronic components; utilization of whirling currents in calandria tube testing; - expert systems and applications in nuclear reactor control and safety; design and testing methods of process real time software packages for safety in control critical systems for nuclear domain. There are presented characteristics of the following equipment: 1. amplifier for ionization chambers with triggering comparator circuits for the CANDU 600 reactor shut down system; 2. amplifier for ionization chambers without triggering comparator circuits for power regulating system; 3. safety and regulating computerized system for C9 and C5 cans; 4. acquisition system for dosimetric data in nuclear facilities; 5. program able digital comparator for the reactor shut down system; 6. stationary gamma areal monitors for CANDU 600 reactors and other nuclear facilities

  14. Nuclear reactors

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1977-01-01

    Reference is made to water cooled reactors and in particular to the cooling system of steam generating heavy water reactors (SGHWR). A two-coolant circuit is described for the latter. Full constructural details are given. (U.K.)

  15. Offshore nuclear installations

    International Nuclear Information System (INIS)

    Albano, R.

    1976-01-01

    It is possible now to foresee the creation of nuclear power plants on floating or fixed islands although from the safety viewpoint, floating islands are preferable. The definition of the legal nature of artificial islands raises a first problem insofar as artificial islands are neither islands nor ships. Furthermore, their statute would differ according to whether they were sited in territorial seas or in the new 'economic zones'. This leads to consideration of the applicability of Italian maritime legislation to nuclear power plants on floating islands without setting aside that of international regulations on radioactive maritime pollution. (N.E.A.) [fr

  16. Nuclear reactor

    International Nuclear Information System (INIS)

    Hattori, Sadao; Sato, Morihiko.

    1994-01-01

    Liquid metals such as liquid metal sodium are filled in a reactor container as primary coolants. A plurality of reactor core containers are disposed in a row in the circumferential direction along with the inner circumferential wall of the reactor container. One or a plurality of intermediate coolers are disposed at the inside of an annular row of the reactor core containers. A reactor core constituted with fuel rods and control rods (module reactor core) is contained at the inside of each of the reactor core containers. Each of the intermediate coolers comprises a cylindrical intermediate cooling vessels. The intermediate cooling vessel comprises an intermediate heat exchanger for heat exchange of primary coolants and secondary coolants and recycling pumps for compulsorily recycling primary coolants at the inside thereof. Since a plurality of reactor core containers are thus assembled, a great reactor power can be attained. Further, the module reactor core contained in one reactor core vessel may be small sized, to facilitate the control for the reactor core operation. (I.N.)

  17. Leasing of nuclear installations

    International Nuclear Information System (INIS)

    Capaccioli, Enzo.

    1977-01-01

    The high costs to be borne in industrialised countries for expanding nuclear programmes make leasing, in terms of funding, an attractive proposition even in times of recession. This system is advantageous to both parties: the bodies providing funds make substantial profits without untoward risk, given the internationally-recognised regime of channelling liability onto the nuclear operator and because such contracts usually provide that ownership of the property involved will eventually be transferred to the operator. The latter obtains the sums needed by a simple, speedy procedure enabling him to start operations more quickly than if he had to seek funds by a more conventional method. The problem in Italy is that nuclear electricity generating plants are a State monopoly while leasing is a private enterprise. The Italian 1975 Siting Act provides a consultation procedure of regional and State authorities, with the ultimate decision taken by the latter. To maintain the momentum, arrangements could be made for leasing, before starting the licensing procedure proper according to the Act. (NEA) [fr

  18. Modification of reactor installation in the Takahama nuclear power plants No.1 and No.2 of Kansai Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    The Nuclear Safety Commission recognized the adequacy concerning the inquiry which was offered from the Minister of International Trade and Industry on July 24, 1979, following the safety evaluation in the Ministry of International Trade and Industry, and decided to submit a report to the Minister of International Trade and Industry on July 26, 1979, about the modification of reactor installation in the Takahama nuclear power plants No. 1 and No. 2 of the Kansai Electric Power Company, Inc. This is concerned to the application which was made from the president of the Kansai Electric Power Company, Inc., to the Minister of International Trade and Industry on July 23, 1979. The content of the modification is to add a control circuit which is actuated by the signal of abnormal low pressure in a reactor to the circuit of actuating the emergency core cooling system of the plant. The influences on the safety protection system by the addition of the circuit for transmitting safety injection signal and by the additions of an interlock circuit preventing the misoperation of pressurizer spray and of a block circuit of safety injection signal in case of the abnormal low pressure in a reactor were evaluated. The effects on the function and characteristics of the emergency core cooling system due to the addition of the control circuit were investigated, and it was recognized by the analysis that there is no effect in the pipe ruptures of both small and large scales. (Nakai, Y.)

  19. A method of installing a reactor container

    International Nuclear Information System (INIS)

    Hayashi, Kenji; Murakawa, Hisao.

    1975-01-01

    Object: To achieve exact installation of a reactor container at a site. Structure: A pole is set upright at the center of a cylindrical base portion, a plurality of beams are disposed around the pole in a radial fashion to form a cone, a plurality of steel plates are mounted successively around the cone through a ring, and the steel plates are welded to each other to assemble and install a reactor container at the same time. (Kamimura, M.)

  20. Nuclear reactor

    International Nuclear Information System (INIS)

    Garabedian, G.

    1988-01-01

    A liquid reactor is described comprising: (a) a reactor vessel having a core; (b) one or more satellite tanks; (c) pump means in the satellite tank; (d) heat exchanger means in the satellite tank; (e) an upper liquid metal conduit extending between the reactor vessel and the satellite tank; (f) a lower liquid metal duct extending between the reactor vessel and satellite tanks the upper liquid metal conduit and the lower liquid metal duct being arranged to permit free circulation of liquid metal between the reactor vessel core and the satellite tank by convective flow of liquid metal; (g) a separate sealed common containment vessel around the reactor vessel, conduits and satellite tanks; (h) the satellite tank having space for a volume of liquid metal that is sufficient to dampen temperature transients resulting from abnormal operating conditions

  1. Nuclear reactor containment device

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu.

    1980-01-01

    Purpose: To reduce the volume of a containment shell and decrease the size of a containment equipment for BWR type reactors by connecting the containment shell and a suppression pool with slanted vent tubes to thereby shorten the vent tubes. Constitution: A pressure vessel containing a reactor core is installed at the center of a building and a containment vessel for the nuclear reactor that contains the pressure vessel forms a cabin. To a building situated below the containment shell, is provided a suppression chamber in which cooling water is charged to form a suppression pool. The suppression pool is communicated with vent tubes that pass through the partition wall of the containment vessel. The vent tubes are slanted and their lower openings are immersed in coolants. Therefore, if accident is resulted and fluid at high temperature and high pressure is jetted from the pressure vessel, the jetting fluid is injected and condensated in the cooling water. (Moriyama, K.)

  2. Development regulation regarding with licensing of nuclear installation

    International Nuclear Information System (INIS)

    Bambang Riyono; Yudi Pramono; Dahlia Cakrawati Sinaga

    2011-01-01

    Provisions of Article 17 paragraph (3) of Law Number 10 Year 1997 on Nuclear cleary mandates for the establishment of government regulations (GR) on Nuclear licensing containing the requirements and procedure, both from the standpoint of their utilization and installation. To use has been rising GR No.29 Year 2008 on the Use of Ionizing Radiation Sources and Nuclear Materials, while for the installation has been published PP No.43 Year 2006 on Nuclear Reactor Licensing, and BAPETEN Chairman Decree No.3 Year 2006 on Non-reactor Nuclear Installation Licensing. Based on the background of the preparation of both the aforementioned are just regulate the reactor and utilization, not yet fully meet the mandate of Article 17 paragraph (3) of Law No.10 of 1997 on Nuclear, including other nuclear installations. For these reasons, it initiated the need for a separate regulation containing provisions concerning licensing of non-reactor nuclear installations. On the other side from the understanding the legal aspects and interpretations of the Law No.10 of 2004 on the Establishment Regulation Legislation, should be in single mandate of Article 17 paragraph (3) of Law No.10 of 1997 on Nuclear would only produce one of the requirements and procedure for the use or installation, or a maximum of two (2) GR related licensing the use and installation. This is encourages conducted the assessing or studies related to how possible it is according to the legal aspect is justified to combine in one Nuclear licensing regulations regarding both the use and installation, by looking at the complexity of installation and wide scope of utilization of nuclear energy in Indonesia. The results of this paper is expected to provide input in the preparation of GR on licensing of nuclear installations. (author)

  3. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  4. Nuclear reactor

    International Nuclear Information System (INIS)

    Schulze, I.; Gutscher, E.

    1980-01-01

    The core contains a critical mass of UN or U 2 N 3 in the form of a noncritical solution with melted Sn being kept below a N atmosphere. The lining of the reactor core consists of graphite. If fission progresses part of the melted metal solution is removed and cleaned from fission products. The reactor temperatures lie in the range of 300 to 2000 0 C. (Examples and tables). (RW) [de

  5. Leukaemia near british nuclear installations

    International Nuclear Information System (INIS)

    Hubert, D.

    1991-01-01

    An excess of childhood leukaemia has been seen near some British nuclear installations, especially near the Sellafield reprocessing plant. The same result was found in a more general study including a large number of nuclear sites. Similar studies made in USA, Canada and France have been negative. Moreover, epidemiological studies made in England have discovered other childhood leukaemia clusters in areas far from nuclear facilities, and especially near potential sites of nuclear installations. Several explanations are suggested but no definite conclusion is yet possible. Doses from radioactive releases seem to be too low to account for the additional deaths from leukaemia by environmental contamination. A virus activation, which might be associated with population influx into rural isolated areas, has been considered. The hypothesis of genetic mutation induced by ionising radiation in the fathers of children with leukaemia has been made because a higher risk of leukaemia was observed for children of fathers employed at Sellafield. No firm conclusion is possible considering the small number of observed cases and the lack of excess leukaemias in the offspring of Hiroshima and Nagasaki survivors. The possibility of internal contamination, chemicals or even radon is discussed as other causes. Studies in progress might allow to find an answer to the problem of leukaemia in the vicinity of British nuclear installations [fr

  6. Inquiry relating to modifications of reactor installation in Ikata No. 1 and 2 nuclear power plants of Shikoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the Minister of International Trade and Industry for the license relating to the modifications of reactor installation in the Ikata No. 1 and 2 nuclear power plants of the Shikoku Electric Power Company, Inc., on February 13, 1979, from the president of the company. After the safety evaluation was finished by the Ministry of International Trade and Industry, inquiry was conducted to the Atomic Energy Safety Commission (AESC) on June 15, 1979, from the Minister of International Trade and Industry. The investigation and discussion were commenced by the AESC on June 19, 1979. The modifications of the reactor installation are the increase of new fuel storage capacity from about 1/3 to about 2/3 of in-core fuel for No. 1 plant and the modification of driving mechanism from the roller nut type to the magnetic jack type for the control rod cluster for adjusting power distribution in the No. 2 plant. The contents of the safety examination for each item written above are presented. The prevention of criticality is carefully practiced for the new fuel storage by putting fuel assemblies in stainless steel can type racks and locating the fuel assemblies at the proper distance. Relating to the driving mechanism for the control rod cluster adjusting power distribution, the driving speed is not modified and the reliability is kept by carrying out the continuous operation test and the electric power black out test as the demonstration test. The magnetic jack type mechanism has the locking device to prevent reactor tripping at the time of electric power black out, and the cluster is held at the location where the cluster existed at the time of black out. (Nakai, Y.)

  7. Nuclear reactor

    International Nuclear Information System (INIS)

    Gilroy, J.E.

    1980-01-01

    An improved cover structure for liquid metal cooled fast breeder type reactors is described which it is claimed reduces the temperature differential across the intermediate grid plate of the core cover structure and thereby reduces its subjection to thermal stresses. (UK)

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    Hattori, Sadao; Sekine, Katsuhisa.

    1987-01-01

    Purpose: To decrease the thickness of a reactor container and reduce the height and the height and plate thickness of a roof slab without using mechanical vibration stoppers. Constitution: Earthquake proofness is improved by filling fluids such as liquid metal between a reactor container and a secondary container and connecting the outer surface of the reactor container with the inner surface of the secondary container by means of bellows. That is, for the horizontal seismic vibrations, horizontal loads can be supported by the secondary container without providing mechanical vibration stoppers to the reactor container and the wall thickness can be reduced thereby enabling to simplify thermal insulation structure for the reduction of thermal stresses. Further, for the vertical seismic vibrations, verical loads can be transmitted to the secondary container thereby enabling to reduce the wall thickness in the same manner as for the horizontal load. By the effect of transferring the point of action of the container load applied to the roof slab to the outer circumferential portion, the intended purpose can be attained and, in addition, the radiation dose rate at the upper surface of the roof slab can be decreased. (Kamimura, M.)

  9. Promoting safety in nuclear installations. The IAEA has established safety standards for nuclear reactors and provides expert review and safety services to assist Member States in their application

    International Nuclear Information System (INIS)

    2002-01-01

    More than 430 nuclear power plants (NPPs) are currently operating in 30 countries around the world. The nuclear share of total electricity production ranges from about 20 percent in the Czech Republic and United States to nearly 78 percent in France and Lithuania. Worldwide, nuclear power generates about 16% of the total electricity. The safety of such nuclear installations is fundamental. Every aspect of a power plant must be closely supervised and scrutinized by national regulatory bodies to ensure safety at every phase. These aspects include design, construction, commissioning, trial operation, commercial operation, repair and maintenance, plant upgrades, radiation doses to workers, radioactive waste management and, ultimately, plant decommissioning. Safety fundamentals comprise defence-in-depth, which means having in place multiple levels of protection. nuclear facilities; regulatory responsibility; communicating with the public; adoption of the international convention on nuclear safety including implementation of IAEA nuclear safety standards. This publication covers topics of designing for safety (including safety concepts, design principles, and human factors); operating safety (including safety culture and advance in operational safety); risk assessment and management

  10. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  11. Guidebook to nuclear reactors

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-05-01

    A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen

  12. Statement of nuclear incidents at nuclear installations

    International Nuclear Information System (INIS)

    2002-07-01

    A statement of nuclear incidents at nuclear installations in Britain during the first quarter of 2002 is published today by the Health and Safety Executive. It covers the period 1 January to 31 March 2002. There are two installations mentioned in the statement: Dungeness B and Heysham 1. The statement is published under arrangements that came into effect from the first quarter of 1993, derived from the Health and Safety Commission's powers under section 11 of the Health and Safety at Work, etc. Act 1974

  13. Nuclear reactor

    International Nuclear Information System (INIS)

    Sakurai, Mikio; Yamauchi, Koki.

    1983-01-01

    Purpose: To improve the channel stability and the reactor core stability in a spontaneous circulation state of coolants. Constitution: A reactor core stabilizing device comprising a differential pressure automatic ON-OFF valve is disposed between each of a plurality of jet pumps arranged on a pump deck. The stabilizing device comprises a piston exerted with a pressure on the lower side of the pump deck by way of a pipeway and a valve for flowing coolants through the bypass opening disposed to the pump deck by the opening and closure of the valve ON-OFF. In a case where the jet pumps are stopped, since the differential pressure between the upper and the lower sides of the pump deck is removed, the valve lowers gravitationally into an opened state, whereby the coolants flow through the bypass opening to increase the spontaneous circulation amount thereby improve the stability. (Yoshino, Y.)

  14. Nuclear reactor

    International Nuclear Information System (INIS)

    Jungmann, A.

    1975-01-01

    Between a PWR's reactor pressure vessel made of steel and the biological shield made of concrete there is a gap. This gap is filled up with a heat insulation facting the reactor pressure vessel, for example with insulating concrete segments jacketed with sheet steel and with an additional layer. This layer serves for smooth absorption of compressive forces originating in radial direction from the reactor pressure vessel. It consists of cylinder-segment shaped bricks made of on situ concrete, for instance. The bricks have cooling agent ports in one or several rows which run parallel to the wall of the pressure vessel and in alignment with superposed bricks. Between the layer of bricks and the biological shield or rather the heat insulation, there are joints which are filled, however, with injected mortar. That guarantees a smooth series of connected components resistant tom compression. Besides, a slip foil can be set between the heat insulation and the joining joint filled with mortar for the reduction of the friction at thermal expansions. (TK) [de

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1979-01-01

    Purpose: To prevent cladding tube injuries due to thermal expansion of each of the pellets by successively extracting each of the control rods loaded in the reactor core from those having less number of notches, as well as facilitate the handling work for the control rods. Constitution: A recycle flow control device is provided to a circulation pump for forcibly circulating coolants in the reactor container and an operational device is provided for receiving each of the signals concerning number of notches for each of the control rods and flow control depending on the xenon poisoning effect obtained from the signals derived from the in-core instrument system connected to the reactor core. The operational device is connected with a control rod drive for moving each of the control rods up and down and a recycle flow control device. The operational device is set with a pattern for the aimed control rod power and the sequence of extraction. Upon extraction of the control rods, they are extracted successively from those having less notch numbers. (Moriyama, K.)

  16. Code on the safety of civilian nuclear fuel cycle installations

    International Nuclear Information System (INIS)

    1996-01-01

    The 'Code' was promulgated by the National Nuclear Safety Administration (NSSA) on June 17, 1993, which is applicable to civilian nuclear fuel fabrication, processing, storage and reprocessing installations, not including the safety requirements for the use of nuclear fuel in reactors. The contents of the 'Code' involve siting, design, construction, commissioning, operation and decommissioning of fuel cycle installation. The NNSA shall be responsible for the interpretation of this 'Code'

  17. Quality assurance in nuclear installations

    International Nuclear Information System (INIS)

    Torres M, Nelson.

    1985-08-01

    It has been proven that the bad quality of products, equipment, installations, and services is not due to the lack of tests, experiments and verifications. The main causes are associated with insufficient organization of the activities that have influence on the quality. The garantee of quality is conceptualized as an appropriate instrument composed of normalized criteria initially in advanced technologies. Such as nuclear science and aerospace technology. However, with the appropriate modifications it can be applied to conventional technologies

  18. Licensing of away-from-reactor (AFR) installations

    International Nuclear Information System (INIS)

    Gray, P.L.

    1980-01-01

    Storage of spent fuel at Away-From-Reactor (AFR) installations will allow reactors to continue to operate until reprocessing or other fuel disposal means are available. AFR installations must be licensed by the Nuclear Regulatory Commission (NRC). Although wide experience in licensing reactors exists, the licensing of an AFR installation is a relatively new activity. Only one has been licensed to date. This paper delineates the requirements for licensing an AFR installation and projects a licensing schedule. Because the NRC is developing specific AFR requirements, this schedule is based primarily on draft NRC documents. The major documents needed for an AFR license application are similar to those for a reactor. They include: a Safety Analysis Report (SAR), and Environmental Report (ER), safeguards and security plans, decommissioning plans, proposed technical specifications, and others. However, the licensing effort has one major difference in that for AFR installations it will be a one-step effort, with follow-up, rather than the two-step process used for reactors. The projected licensing schedule shows that the elapsed time between filing an application and issuance of a license will be about 32 months, assuming intervention. The legal procedural steps will determine the time schedule and will override considerations of technical complexity. A license could be issued in about 14 months in the absence of intervention

  19. Nuclear reactor

    International Nuclear Information System (INIS)

    Jolly, R.

    1979-01-01

    The support grid for the fuel rods of a liquid metal cooled fast breeder reactor has a regular hexagonal contour and contains a large number of unit cells arranged honeycomb fashion. The totality of these cells make up a hexagonal shape. The grid contains a number of strips of material, and there is a window in each of three sidewalls staggered by one sidewall. The other sidewalls have embossed protrusions, thus generating a guide lining or guide bead. The windows reduce the rigidity of the areas in the middle between the ends of the cells. (DG) [de

  20. Statement of nuclear incidents at nuclear installations

    International Nuclear Information System (INIS)

    2001-07-01

    A statement of nuclear incidents at nuclear installations in Britain during the first quarter of 2001 is published today by the Health and Safety Executive. It covers the period 1 January to 31 March 2001. The statement is published under arrangements that came into effect from the first quarter of 1993, derived from the Health and Safety Commission's powers under section 11 of the Health and Safety at Work, etc. Act 1974

  1. Mobile nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Thompson, R.E.; Spurrier, F.R.; Jones, A.R.

    1978-01-01

    A containment vessel for use in mobile nuclear reactor installations is described. The containment vessel completely surrounds the entire primary system, and is located as close to the reactor primary system components as is possible in order to minimize weight. In addition to being designed to withstand a specified internal pressure, the containment vessel is also designed to maintain integrity as a containment vessel in case of a possible collision accident

  2. Inquiry relating to modifications of reactor installation in Genkai No. 1 and 2 nuclear power plants of Kyushu Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the Minister of International Trade and Industry for the license relating to the modifications of reactor installation in the Genkai No. 1 and 2 nuclear power plants, Kyushu Electric Power Company, Inc., on February 27, 1979, from the president of the company. After the safety evaluation was finished by the Ministry of International Trade and Industry, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on June 15, 1979 from the Minister of International Trade and Industry. The investigation and discussion were commenced by the AESC on June 19, 1979. The modifications of the reactor installation are the increase of new fuel storage capacity from about 1/3 to about 2/3 of in-core fuel for each plant, the new establishment of a miscellaneous solid waste incinerator which is common to both plants, and the enlargement of a solid waste storage which is also common to both plants. The contents of the safety examination for each item written above are presented. The prevention of criticality is carefully practiced for the new fuel storage by putting fuel assemblies in stainless steel can type racks and locating the fuel assemblies at the proper distance. The miscellaneous solid waste incinerator building is designed as the B class aseismatic structure and also as the controlled area with adequate shielding and ventilating facilities. The decontamination factor of the incinerator facility is more than 10 5 , and the necessary monitoring system is provided in the building. Concerning the solid waste storage, the additional storage area is about 1600 m 2 , and the storage capacity is about ten years quantity. This building is designed as the B class aseismatic structure. (Nakai, Y.)

  3. Nuclear reactor

    International Nuclear Information System (INIS)

    Schabert, H.P.; Weber, R.; Bauer, A.

    1975-01-01

    The refuelling of a PWR power reactor of about 1,200 MWe is performed by a transport pipe in the containment leading from an external to an internal fuel pit. A wagon to transport the fuel elements can go from a vertical loading position to an also vertical deloading position in the inner fuel pit via guide rollers. The necessary horizontal movement is effected by means of a cable line through the transport pipe which is inclined at least 10 0 . Gravity thus helps in the movement to the deloading position. The cable line with winch is fastened outside the containment. Swivelling devices tip the wagon from the horizontal to the vertical position or vice versa. Loading and deloading are done laterally. (TK/LH) [de

  4. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.

    1976-01-01

    In the system described the fuel elements are arranged vertically in groups and are supported in such a manner as to tend to tilt them towards the center of the respective group, the fuel elements being urged laterally into abutment with one another. The elements have interlocking bearing pads, whereby lateral movement of adjacent elements is resisted; this improves the stability of the reactor core during refuelling operations. Fuel elements may comprise clusters of parallel fuel pins enclosed in a wrapper of hexagonal cross section, with bearing pads in the form of spline-like ribs located on each side of the wrapper and extending parallel to the longitudinal axis of the fuel element, being interlockable with ribs on pads of adjacent fuel elements. The arrangement is applicable to a reactor core in which fuel elements and control rod guide tubes are arranged in modules each of which comprises a cluster of at least three fuel elements, one of which is rigidly supported whilst the others are resiliently tilted towards the center of the cluster so as to lean on the rigidly supported element. It is also applicable to modules comprising a cluster of six fuel elements, each resiliently tilted towards a central void to form a circular arch. The modules may include additional fuel elements located outside the clusters and also resiliently tilted towards the central voids, the latter being used to accommodate control rod guide tubes. The need for separate structural members to act as leaning posts is thus avoided. Such structural members are liable to irradiation embrittlement, that could lead to core failure. (U.K.)

  5. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  6. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  7. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  8. The dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Duthe, M.; Mignon, H.; Lambert, F.; Pradel, Ph.; Hillewaere, J.P.; Dupre la Tour, St.; Mandil, C.; Weil, L.; Eickelpasch, N.; Finsterwalder, L.

    1997-01-01

    for nuclear installations, the dismantling is an important part of their exploitation. The technology of dismantling is existing and to get a benefit from the radioactive decay, it seems more easy for operating company such E.D.F. to wait for fifty years before dismantling. But in order to get the knowledge of this operation, the Safety Authority wanted to devote this issue of 'Controle'to the dismantling method. This issue includes: the legal aspects, the risks assessment, the dismantling policy at E.D.F., the site of Brennilis (first French experience of dismantling), the dismantling techniques, the first dismantling of a fuel reprocessing plant, comparison with classical installations, economic aspect, some German experiences, the cleansing of the american site of Handford. (N.C.)

  9. Environmental assessment [of nuclear installations

    International Nuclear Information System (INIS)

    Townsley, M.

    1989-01-01

    The European Community has introduced a directive which instructs that for all projects likely to have a significant effect on the environment consent should only be given after a rigorous assessment of such effects has been carried out and presented as an environmental statement. Projects requiring environmental assessment include nuclear power stations, any thermal power station over 300MW, any radioactive waste storage or disposal facility, any installation which produces electricity, power lines, installations for fuel production, fuel reprocessing, radioactive waste processing and fuel enrichment. The statement must include a description of the likely effects, direct and indirect, on the environment of the development, with reference to human beings, flora, fauna, soil, water, air, climate, landscape, interactions of two or more of these, material assets and cultural heritage. Measures to avoid or remedy the impact must be included. (U.K.)

  10. Installation and development of neutron radiography in the nuclear reactor (IEAR-1) of the Instituto de Energia Atomica, Brazil

    International Nuclear Information System (INIS)

    Fuga, R.

    1979-01-01

    Investigations on the field of Neutron Radiography have been performed at the IEAR-1, swimming pool reactor utilizing a collimated neutron beam and the so-called photographic transfer method as a mean of detection. The test object (sample) is placed between the neutron source (reactor core) and the gold foil. The acitivity of its different points is the inverse measure of the neutrons absorbed in the test sample at the corresponding points. The activity distribution on the gold foil is determined again by exposing it to an X-ray film. A multichannel type collimator consisting of an assemblage of stainless steel tubes inside an aluminium mantle (tube) was used as a direction beam selector. Improvements have been introduced in respect to the reduction of angular divergence and neutron scattering. To improve further the quality of the radiographs another collimator type has been developed using boric acid as a neutron absorber and moderator. Flux measurements by means of gold foil activation at reactor positions of interest were necessary to eliminate errors originating of different neutron flux values. The dependence of film darkening upon the neutron flux and other factors have been discussed. Finally neutron-and gama-radiographs of the same objects were evaluated in comparison. (author) [pt

  11. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  12. Concerning modification of plan for installation of reactors (addition of No.4 reactor and modification of No.1, No.2 and No.3 reactor facilities) at Hamaoka nuclear power plant of Chubu Electric Power Co., Ltd. (reply to inquiry)

    International Nuclear Information System (INIS)

    1988-01-01

    The Nuclear Safety Commission on Oct. 22, 1987 directed the Nuclear Reactor Safety Expert Group to carry out a study on it, made deliberations after receiving a report from the Group on Jun. 28, and submitted the findings to the Minister of International Trade and Industry on Jul. 14. The study and deliberations were intended to determine the conformity of the modifications to the applicable laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The investigation on the location covered the site conditions, geology, seismic environment, meteorology, hydrology, and social environment. The investigations on the safety design of the reactor facilities addressed the design of the overall reactor facilities, anti-earthquake design, and design of other equipment including reactor core, fuel equipment, monitors, reactivity controllers, safety protection equipment, and emergency core cooler. Other investigations included exposure evaluation and accident analysis. It was concluded that the modifications would not have adverse effects on the safety of the reactor facilities. (Nogami, K.)

  13. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  14. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  15. Control for nuclear reactor

    International Nuclear Information System (INIS)

    Ash, E.B.; Bernath, L.; Facha, J.V.

    1980-01-01

    A nuclear reactor is provided with several hydraulically-supported spherical bodies having a high neutron absorption cross section, which fall by gravity into the core region of the reactor when the flow of supporting fluid is shut off. (auth)

  16. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  17. The program of reactors and nuclear power plants; Programa de reactores y centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Carlos R [Comision Nacional de Energia Atomica, General San Martin (Argentina). Centro Atomico Constituyentes

    2001-07-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined.

  18. Handling of views and opinions by staters and others in a public hearing on alteration in reactor installation (addition of Unit 2) in the Sendai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1981-01-01

    A public hearing on the addition of Unit 2 in the Sendai Nuclear Power Station, Kyushu Electric Power Co., Inc., was held on July 17, 1980, in Sendai City, Kagoshima Prefecture. The views and opinions by the local staters and those by the notification of statement were expressed concerning its nuclear safety. The handling of these views and opinions by the Nuclear Safety Commission is explained. The most important in this action is the instruction by the NSC to the Committee on Examination of Reactor Safety to reflect the results of the public hearing to the reactor safety examination of the Unit 2 installation by the CERS. The views and opinions expressed in this connection are summarized as follows: the sitting conditions, the safety design of the reactor plant, and the release of radioactive materials, involving such aspects as earthquakes, accidents and radioactive waste management. (J.P.N.)

  19. Nuclear reactor theory

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2007-09-01

    This textbook is composed of two parts. Part 1 'Elements of Nuclear Reactor Theory' is composed of only elements but the main resource for the lecture of nuclear reactor theory, and should be studied as common knowledge. Much space is therefore devoted to the history of nuclear energy production and to nuclear physics, and the material focuses on the principles of energy production in nuclear reactors. However, considering the heavy workload of students, these subjects are presented concisely, allowing students to read quickly through this textbook. (J.P.N.)

  20. Public perception of nuclear installations

    International Nuclear Information System (INIS)

    Kiipper, Felipe de Moura

    2011-01-01

    The key for nuclear renaissance is public acceptance. Facing energetic needs that occur around the world and lack of resources, the work of characterizing and proposing new models to represent public opinion is extremely important to all stakeholders. Even though public opinion's study on risks is relatively recent, may approaches of this subject have been suggested and presented, especially for the topic of perceptions on nuclear installations. Actual definitions on risk exist between objective and subjective models, that reflect opinions of lay public and experts. Strategies on communications with the public may be evaluated from many developed models, and its results may be registered. The use of structural models may present an exploratory character as well as confirmatory theories, as an adequate tool for the development of studies on public perception. In this work, a structural model is presented from data obtained in a previous report, and added to data collected before and after the Fukushima nuclear accident, in Japan. The effects developed from this accident offered a unique opportunity to study public opinion through the effects of a serious nuclear accident and its effects on risk communications. Aside, this work attempted to check the structural model according with obtained results, in order to sustain a constant improvement of the working tools. Yet, a comparison between data according to experts' respondents and lay public ones as well as a comparison among different students before and after a visit to nuclear station is considered. Obtained data for the structural models has been applied for on a structural model and analyzed by structural correlation matrix, latent variable structural coefficients and R 2 values. Results indicate that public opinion maintains its rejection on nuclear energy and the perception of benefits, facing perceived risks before the accident, has diminished. A new model that included a latent variable for corresponding

  1. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  2. Refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Stacey, J.; Webb, J.; White, W.P.; McLaren, N.H.

    1981-01-01

    An improved nuclear reactor refuelling machine is described which can be left in the reactor vault to reduce the off-load refuelling time for the reactor. The system comprises a gripper device rangeable within a tubular chute, the gripper device being movable by a pantograph. (U.K.)

  3. Safety of nuclear installations in Slovakia

    International Nuclear Information System (INIS)

    1998-01-01

    In this part next aspects are described: (1) Site selection (Legislation related to site selection; Meeting criteria at Bohunice and Mochovce sites; International agreements); (2) Design preparation and construction (Designing and construction-relevant legislation; Nuclear installation project preparation of nuclear installation at Mochovce site); (3) Operation (Operator licensing procedure; Operation limits and conditions; Maintenance testing and control documentation for management and operation; Technical support of operation; Analysis of events at nuclear installations and Radioactive waste production); (4) Planned safety upgrading activities at nuclear installations

  4. Considerations of the opinions and others in the public hearing on the alteration in reactor installation (addition of Unit 3) in the Hamaoka Nuclear Power Station of the Chubu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1982-01-01

    A public hearing was held in Hamaoka Town, Shizuoka Prefecture, on the alteration in reactor installation, i.e., the addition of Unit 3 in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., on March 19, 1981, by the Nuclear Safety Commission. The opinions and others stated by the local people were taken into consideration in the governmental examinations on the installation, etc. The considerations of such opinions principally in the examinations by NSC are explained in the form of questions (i.e. opinion, etc.) and answers (i.e. considerations) as follows: site conditions (earthquakes, ground, hydraulic features, etc.), the safety design of the reactor facilities (overall plant, aseismic design, the control of inflammable gas concentration, radioactive waste treatment, the reflection of accident experiences, etc.), radioactive waste management, radiation exposure relation, the technical capabilities of personnel (operation, etc.). (J.P.N.)

  5. Nuclear installations abroad the accident risks and their potential consequences

    International Nuclear Information System (INIS)

    Turvey, F.J.

    1996-01-01

    This paper endeavors to assess the threat to Ireland from severe accidents at civil nuclear installations. Among the various types of nuclear installations worldwide, reactors and reprocessing plants are considered to be the most threatening and so the paper focuses on these. The threat is assumed to be a function of the risk of severe accidents at the above types of installations and the probability of unfavourable weather conditions carrying the radioactive releases to Ireland. Although nuclear installations designed in eastern Europe and Asia are less safe than others, the greatest threat to Ireland arises from nearby installations in the UK. The difficulty of measuring the probabilities and consequences of severe nuclear accidents at nuclear installations in general is explained. In the case of the UK installations, this difficulty is overcome to some degree by using values of 'tolerable' risk adopted by the national nuclear regulator to define the radiotoxic releases from nuclear accidents. These are used as input to atmospheric dispersion models in which unfavourable weather conditions for Ireland are assumed and radiation doses are calculated to members of the Irish public. No countermeasures, such as sheltering, are assumed. In the worst cast scenario no deaths would be expected in Ireland in the immediate aftermath of the accident however, an increase in cancers over a period of 25 years or so would be expected assuming present-day models for the effect of low level radiation are valid

  6. Nuclear installations abroad the accident risks and their potential consequences

    Energy Technology Data Exchange (ETDEWEB)

    Turvey, F J [Radiological Protection Inst. of Ireland (Ireland)

    1996-10-01

    This paper endeavors to assess the threat to Ireland from severe accidents at civil nuclear installations. Among the various types of nuclear installations worldwide, reactors and reprocessing plants are considered to be the most threatening and so the paper focuses on these. The threat is assumed to be a function of the risk of severe accidents at the above types of installations and the probability of unfavourable weather conditions carrying the radioactive releases to Ireland. Although nuclear installations designed in eastern Europe and Asia are less safe than others, the greatest threat to Ireland arises from nearby installations in the UK. The difficulty of measuring the probabilities and consequences of severe nuclear accidents at nuclear installations in general is explained. In the case of the UK installations, this difficulty is overcome to some degree by using values of `tolerable` risk adopted by the national nuclear regulator to define the radiotoxic releases from nuclear accidents. These are used as input to atmospheric dispersion models in which unfavourable weather conditions for Ireland are assumed and radiation doses are calculated to members of the Irish public. No countermeasures, such as sheltering, are assumed. In the worst cast scenario no deaths would be expected in Ireland in the immediate aftermath of the accident however, an increase in cancers over a period of 25 years or so would be expected assuming present-day models for the effect of low level radiation are valid.

  7. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  8. Innovative designs of nuclear reactors

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Cherepnin, Y.S.

    2010-01-01

    The world development scenarios predict at least a 2.5 time increase in the global consumption of primary energy in the first half of the twenty-first century. Much of this growth can be provided by the nuclear power which possesses important advantages over other energy technologies. However, the large deployment of nuclear sources may take place only when the new generation of reactors appears on the market and will be free of the shortcomings found in the existing nuclear power installations. The public will be more inclined to accept nuclear plants that have better economics; higher safety; more efficient management of the radioactive waste; lower risk of nuclear weapons proliferation, and provided that the focus is made on the energy option free of ∇ e 2 generation. Currently, the future of nuclear power is trusted to the technology based on fast reactors and closed fuel cycle. The latter implies reprocessing of the spent nuclear fuel of the nuclear plants and re-use of plutonium produced in power reactors

  9. Reactors 2000: consultation on the technical and economical requirements connected with the possible realization of nuclear installations in Switzerland after the year 2000

    International Nuclear Information System (INIS)

    Haldi, P.A.

    1992-07-01

    In 1989 the OECD started a consultation on the development of nuclear reactors of small and medium size (SMR). The present study is part of the Swiss contribution to this international work. Beyond this primary goal, without being limited solely to SMRs, but exclusively in the Swiss framework, the study attempts to determine a profile for reactors which could be built in Switzerland after the year 2000. The study ''Reactors 2000'' is based on two polls which were conducted among about 70 persons from concerned professional circles (industry, utilities, scientific groups, energy policy makers, safety authorities, public organizations) in June 1990 and February 1991. A large majority of the persons interviewed think that - Switzerland should not jeopardize its energetic future by phasing out all activity in the nuclear field, based on circumstances which could be only temporary, - Switzerland should continue its activities in the nuclear field in order to maintain the necessary know-how and a sufficient number of highly qualified specialists both for the safe operation of the existing plants and for the continuation of the development of nuclear technology, - for future plants the goal of an even higher safety level should be aimed for, although, according to the explicit comments of many interviews, today's reactors are considered to be sufficiently safe, - future nuclear power plants should be designed in such a way that the possibility of a severe accident necessitating an evacuation of the Swiss population could be excluded, - Switzerland should participate in international projects, in order to maintain contact to the international development of nuclear technology; on the other hand, it should avoid any single-handed effort (including in the domain of small heating reactors). (author)

  10. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  11. Indian advanced nuclear reactors

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2005-01-01

    For sustainable development of nuclear energy, a number of important issues like safety, waste management, economics etc. are to be addressed. To do this, a number of advanced reactor designs as well as fuel cycle technologies are being pursued worldwide. The advanced reactors being developed in India are the AHWR and the CHTR. Both the reactors use thorium based fuel and have many passive features. This paper describes the Indian advanced reactors and gives a brief account of the international initiatives for the sustainable development of nuclear energy. (author)

  12. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2001-01-01

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  13. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  14. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  15. Selection of persons expressing opinions etc. and attendants in the public hearing concerning the alteration in reactor installations (addition of Unit 3 and 4) in the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Safety Commission has selected 18 persons expressing opinions etc. and 255 (other) attendants for the public hearing on the alteration of reactor installations (addition of Unit 3 and 4) in Kyushu Electric's Genkai Nuclear Power Station to be held on June 18th, 1984. The order of expressing opinions etc., number of reception, names, addresses, ages and occupations are given of the persons expressing opinions etc. For both the groups, against the selected numbers there are given applicants etc. in number by towns and city. (Mori, K.)

  16. The programme of OECD-Nuclear Energy Agency Committee on the safety of nuclear installations principal working group no. 3 on reactor component integrity

    International Nuclear Information System (INIS)

    Schulz, H.; Miller, A.

    1995-01-01

    The programme of the OECD-NEA Principal Working Group No.3 on reactor component integrity is described including the following issues: regular Committee meetings; non-destructive testing; fracture analysis; aging; related activities

  17. The nuclear installations face to their environment

    International Nuclear Information System (INIS)

    Rieu, Ch.; Berge-Thierry, C.; Duval, C.; Bonnet, Ch.; Gaubert, B.; Riffard, Th.; Greffier, G.; Cervantes, J.C.; Le Breton, F.; Clement, C.; Charbonnier, R.; Andreani, A.M.; Maubert, H.; Maisonneuve, A.

    2002-01-01

    This dossier deals with protection of nuclear installations against external risks. The articles come from the presentations of the Conference on 'Nuclear installations and their environment', held by the 'Safety and Environment Protection' Section of the French Nuclear Energy Society on October fifteenth 2002. Floods, earthquakes, winter cold, snow-falls, wind, fires are the main natural risks taken into account. Risks from industrial environment and communication lines are also considered. (author)

  18. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  19. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  20. Nuclear reactor core catcher

    International Nuclear Information System (INIS)

    1977-01-01

    A nuclear reactor core catcher is described for containing debris resulting from an accident causing core meltdown and which incorporates a method of cooling the debris by the circulation of a liquid coolant. (U.K.)

  1. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The aim of this invention is the provision of improved seals for reactor vessels in which fuel assemblies are located together with inlets and outlets for the circulation of a coolant. The object is to provide a seal arrangement for the rotatable plugs of nuclear reactor closure heads which has good sealing capacities over a wide gap during operation of the reactor but which also permits uninhibited rotation of the plugs for maintenance. (U.K.)

  2. Nuclear reactor simulator

    International Nuclear Information System (INIS)

    Baptista, Vinicius Damas

    1996-01-01

    The Nuclear Reactor Simulator was projected to help the basic training in the formation of the Nuclear Power Plants operators. It gives the trainee the opportunity to see the nuclear reactor dynamics. It's specially indicated to be used as the support tool to NPPT (Nuclear Power Preparatory Training) from NUS Corporation. The software was developed to Intel platform (80 x 86, Pentium and compatible ones) working under the Windows operational system from Microsoft. The program language used in development was Object Pascal and the compiler used was Delphi from Borland. During the development, computer algorithms were used, based in numeric methods, to the resolution of the differential equations involved in the process. (author)

  3. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  4. Small nuclear reactors for desalination

    International Nuclear Information System (INIS)

    Goldsmith, K.

    1978-01-01

    Small nuclear reactors are considered to have an output of not more than 400MW thermal. Since they can produce steam at much higher conditions than needed by the brine heater of a multi-flash desalination unit, it may be economically advantageous to use small reactors for a dual-purpose installation of appropriate size, producing both electricity and desalted water, rather than for a single-purpose desalination plant only. Different combinations of dual-purpose arrangements are possible depending principally on the ratio of electricity to water output required. The costs of the installation as well as of the products are critically dependent on this ratio. For minimum investment costs, the components of the dual-purpose installation should be of a standardised design based on normal commercial power plant practice. This then imposes some restrictions on the plant arrangement but, on the other hand, it facilitates selection of the components. Depending on the electricity to water ratio to be achieved, the conventional part of the installation - essentially the turbines - will form a combination of back-pressure and condensing machines. Each ratio will probably lead to an optimum combination. In the economic evaluation of this arrangement, a distinction must be made between single-purpose and dual-purpose installations. The relationship between output and unit costs of electricity and water will be different for the two cases, but the relation can be expressed in general terms to provide guidelines for selecting the best dimensions for the plant. (author)

  5. Nuclear reactor PBMR and cogeneration

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  6. Decommissioning and dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Pelzer, N.

    1993-01-01

    The German law governing decommissioning and dismantling of nuclear installations can be called to be embryonic as compared to other areas of the nuclear regulatory system, and this is why the AIDN/INLA regional meeting organised by the German national committee in July 1992 in Schwerin has been intended to elaborate an assessment of the current legal situation and on this basis establish proposals for enhancement and development, taking into account the experience reported by experts from abroad. The proceedings comprise the paper of the opening session, 'Engineering and safety aspects of the decommissioning of nuclear installations', and the papers and discussions of the technical sessions entitled: - Comparative assessment of the regulatory regimes. - Legislation governing the decommissioning of nuclear installations in Germany. - Analysis of the purpose and law making substance of existing regulatory provisions for the decommissioning of nuclear installations. All seventeen papers of the meeting have been prepared for separate retrieval from the database. (orig./HSCH) [de

  7. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  8. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  9. Energy from nuclear reactors

    International Nuclear Information System (INIS)

    Hospe, J.

    1977-01-01

    This VDI-Nachrichten series has the target to provide a technical-objective basis for the discussion of the pros and cons of nuclear power. The first part deals with LWR-type reactors which so far have prevailed in nuclear power generation. (orig.) [de

  10. Treatment of opinions, etc. in the public hearing on the alteration of reactor installation (addition of Unit 2) in the Shimane Nuclear Power Station of The Chugoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1983-01-01

    The Nuclear Safety Commission has acknowledged the governmental policy, and further decided on the treatment of the opinions expressed by the local people in the public hearing held in May, 1983, in Shimane Prefecture on the addition of Unit 2 to the Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. The NSC has directed the Committee on Examination of Reactor Safety to take into consideration the opinions in its later examination. The opinions expressed by the local people in the form of question are given as follows: siting conditions (earthquake, ground, weather, etc.), the safety design for reactor installation (general aspect, aseismatic design, core design, ECCS, the teaching of TMI accident, etc.), radioactive wastes, radiation exposure, site evaluation. (Mori, K.)

  11. Treatment and management of opinions stated in and notified to the public hearing on the alteration in reactor installation (addition of Unit 3) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Ltd

    International Nuclear Information System (INIS)

    1981-01-01

    A public hearing was made in Hamaoka Town, Shizuoka Prefecture, on March 19, 1981, on the addition of Unit 3 in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc. Treatment and management of the opinions and others stated and notified by the local people, which are understood and to be carried out by the Nuclear Safety Commission, are: to publish them as the report of the public hearing, to include them in the safety examination report of NSC and to refer to them in the examination by the Committee on Examination of Reactor Safety, etc. The opinions and others stated and notified in the public hearing, to which CERS should refer in its examination, are summarized in the form of the questions on siting conditions, safety design of reactor installation, release of radioactivities, etc. (J.P.N.)

  12. Demographic characteristics of nuclear installations sites

    International Nuclear Information System (INIS)

    Doumenc, A.; Faure, J.

    1988-01-01

    The selection of a nuclear installations sites can not be conceived without a deep analysis of demographic context. This analysis permits to define the critical populations around the installation and is an essential element of emergency plans. 1 tab., 2 refs. (F.M.)

  13. The control of base nuclear installations; Le controle des installations nucleaires de base (INB)

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-04-15

    The Authority of Nuclear Safety ( A.S.N). presents in this column the current events of the control of the nuclear base installations during november, december 2008 and january 2009, classified by nuclear site. This information is also available in real-time on the A.S.N. web site, www.asn.fr, in the column 'news'. We can consult all the notices of significant incident published as well as the following letters of inspection, the notices of information about the reactors shutdown, press releases and the A.S.N. information notes. (N.C.)

  14. Establishment of the nuclear regulatory framework for the process of decommissioning of nuclear installations in Mexico

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.

    2015-09-01

    Today has not managed any process of decommissioning of nuclear installations in the country; however because of the importance of the subject and the actions to be taken to long term, the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in Mexico, accordance with its objectives is developing a National Nuclear Regulatory Framework and defined requirements to ensure the implementation of appropriate safety standards when such activities are performed. In this regard, the national nuclear regulatory framework for nuclear installations and the particular case of nuclear power reactors is presented, as well as a proposed licensing process for the nuclear power plant of Laguna Verde based on international regulations and origin country regulations of the existing reactors in nuclear facilities in accordance with the license conditions of operation to allow to define and incorporate such regulation. (Author)

  15. Managing for safety at nuclear installations

    International Nuclear Information System (INIS)

    1996-01-01

    This publication, by the Health and Safety Executive's (HSE's) Nuclear Safety Division (NSD), provides a statement of the criteria the Nuclear Installations Inspectorate (NII) uses to judge the adequacy of any proposed or existing system for managing a nuclear installation in so far as it affects safety. These criteria have been developed from the basic HSE model, described in the publication Successful health and safety management that applies to industry generally, in order to meet the additional needs for managing nuclear safety. In addition, the publication identifies earlier studies upon which this work was based together with the key management activities and outputs. (Author)

  16. Nuclear reactors to come

    International Nuclear Information System (INIS)

    Lung, M.

    2002-01-01

    The demand for nuclear energy will continue to grow at least till 2050 because of mainly 6 reasons: 1) the steady increase of the world population, 2) China, India and Indonesia will reach higher social standard and their energy consumption will consequently grow, 3) fossil energy resources are dwindling, 4) coal will be little by little banned because of its major contribution to the emission of green house effect gas, 5) renewable energies need important technological jumps to be really efficient and to take the lead, and 6) fusion energy is not yet ready to take over. All these reasons draw a promising future for nuclear energy. Today 450 nuclear reactors are operating throughout the world producing 17% of the total electrical power demand. In order to benefit fully of this future, nuclear industry has to improve some characteristics of reactors: 1) a more efficient use of uranium (it means higher burnups), 2) a simplification and automation of reprocessing-recycling chain of processes, 3) efficient measures against proliferation and against any misuse for terrorist purposes, and 4) an enhancement of safety for the next generation of reactors. The characteristics of fast reactors and of high-temperature reactors will likely make these kinds of reactors the best tools for energy production in the second half of this century. (A.C.)

  17. Safety concerning the alteration in fuel material usage (new installation of the uranium enrichment pilot plant) at Ningyo Pass Mine of Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    A report of the Committee on Examination of Nuclear Fuel Safety was presented to the Atomic Energy Commission of Japan, which is concerned with the safety in the alteration of fuel material usage (new installation of the uranium enrichment pilot plant) at the Ningyo Pass Mine. Its safety was confirmed. The alteration, i.e. installation of the uranium enrichment pilot plant, is as follows. Intended for the overall test of centrifugal uranium enrichment technology, the pilot plant includes a two-storied main building of about 9,000 m 2 floor space, containing centrifuges, UF 6 equipment, etc., a uranium storage of about 1,000 m 2 floor space, and a waste water treatment facility, two-storied with about 300 m 2 floor space. The contents of the examination are safety of the facilities, criticality control, radiation control, waste treatment, and effects of accidents on the surrounding environment. (Mori, K

  18. Statement of nuclear incidents at nuclear installations

    International Nuclear Information System (INIS)

    2002-01-01

    The Health and Safety Executive (HSE) presents the statement of nuclear incidents at nuclear installations published under the Health and Safety Commission's powers derived from section 11 of the Health and Safety at Work, etc. Act 1974. INCIDENT 02/4/1. Harwell (United Kingdom Atomic Energy Authority) On 6 November 2002 during operations in a glove box in B220, the over pressure alarm sounded. The operators evacuated and shortly afterwards the airborne activity monitors also sounded. The building emergency arrangements for airborne activity alarms was initiated to ascertain the source and to manage the operations. An investigation by UKAEA confirmed that a release of Americium 241 into the working area had occurred at a quantity in excess of Schedule 8 column 4 of the Ionising Radiations Regulations 1999 (IRRs). A number of personnel have received intakes including the two operators and the health physics personnel who attended the event. The highest dose (up to 6 mSv.) was received by the Health Physics charge hand. UKAEA placed an embargo on the use of similar systems and have completed their own management investigation and produced an internal report. It concludes that the likely cause of the event was over-pressurisation of the vacuum equipment used in the process. The report also highlights improvements required to the ventilation system in the laboratory and adjoining areas. An action plan has been developed for this work and progress is being made. NIl has followed the UKAEA investigation and carried out its own study including a visit by a ventilation specialist. This has confirmed the problems with the ventilation system. It is a complex issue that may have a wider impact across the building. A letter has been sent to UKAEA detailing a series of short-term requirements and the need to review implications and produce a longer-term action plan. UKAEA is cooperating fully with these requirements. INCIDENT 02/4/2. Dounreay (United Kingdom Atomic Energy

  19. Fast Reactors and Nuclear Nonproliferation

    International Nuclear Information System (INIS)

    Avrorina, E.N.; Chebeskovb, A.N.

    2013-01-01

    Conclusion remarks: 1. Fast reactor start-up with U-Pu fuel: – dependent on thermal reactors, – no needs in U enrichment, – needs in SNF reprocessing, – Pu is a little suitable for NED, – practically impossible gun-type NED, – difficulties for implosion-type NED: necessary tests, advanced technologies, etc. – Pu in blankets is similar to WPu by isotopic composition, – Use of blanket for production isotopes (e.g. 233 U), – Combined reprocessing of SNF: altogether blanket and core, – Blanket elimination: decrease in Pu production – No pure Pu separation. 2. Fast reactor start-up with U fuel: - Needs in both U enrichment and SNF reprocessing, - Independent of thermal reactors, - Good Pu bred in the core let alone blankets, - NED of simple gun-type design, - Increase of needs in SWU, - Increased demands in U supply. 3. Fast reactors for export: - Uranium shortage, - To replace thermal reactors in future, - No blankets (depends on the country, though), - Fuel supply and SNF take back, - International centers for rendering services of NFC. Time has come to remove from FRs and their NFC the label unfairly identifying them as the most dangerous installations of nuclear power from the standpoint of being a proliferation problem

  20. Physical protection of nuclear installations

    International Nuclear Information System (INIS)

    Toepfer, K.

    1989-01-01

    This contribution investigates the possible danger and the legal basis of physical protection and explains the current, integrated system provided for, as well as the underlying possible scenarios of an assault: (1) by a violent crowd of aggressors outside the installation, (2) by a small group of aggressors outside the installation, (3) by a person allowed to enter (internal assault). The physical protection system supplements the internal safety measures to enhance protection against hypothetical and possible acts of terrorism or other criminal assault. The system covers external and internal controlled areas, access monitoring, physical protection control room and service, security checks of the personnel, and activities to disclose sabotage. Some reflections on the problem field between security controls and the constitutional state conclude this contribution. (orig./HSCH) [de

  1. Culture safety in the nuclear installation

    International Nuclear Information System (INIS)

    Benar Bukit

    2008-01-01

    Culture safety is aimed to empower all the personnel to contribute and responsible to the installation safety where they work in. Culture safety is important as there were so many accidents happened due to the little attention given to the safety, take as examples of what happened in Three Mille Island installation (1979) and Chernobyl (1986). These remind us that human factor gives a significant contribution to the failure of operational system which influences the safety. Therefore, as one of institutions which has nuclear installation. National Nuclear Energy Agency must apply the culture safety to guarantee the safety operation of nuclear installation to protect the personnel, community and environment from the hazard of radioactive radiation. Culture safety has two main components. The first component under the management responsibility is a framework needed in an organisation. The second component is the personnel attitude in al/ levels to respond and optimize those framework. (author)

  2. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  3. Nuclear reactor monitoring system

    International Nuclear Information System (INIS)

    Drummond, C.N.; Bybee, R.T.; Mason, F.L.; Worsham, H.J.

    1976-01-01

    The invention pertains to an improved monitoring system for the neutron flux in a nuclear reactor. It is proposed to combine neutron flux detectors, a thermoelement, and a background radiation detector in one measuring unit. The spatial arrangement of these elements is fixed with great exactness; they are enclosed by an elastic cover and are brought into position in the reactor with the aid of a bent tube. The arrangement has a low failure rate and is easy to maintain. (HP) [de

  4. Nuclear reactor container

    International Nuclear Information System (INIS)

    Hosaka, Seiichi.

    1988-01-01

    Cables coverd with non-halogen covering material are used as electric wire cables wired for supplying electric power to a reactor recycling pump. Silicone rubber having specified molecular formula is used for the non-halogen covering material. As a result, formation of chlorine in a nuclear reactor container can be eliminated and increase in the deposited salts to SUS pipeways, etc. can be prevented, to avoid the occurrence of stress corrosion cracks. (H.T.)

  5. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  6. Nuclear reactor buildings

    International Nuclear Information System (INIS)

    Nagashima, Shoji; Kato, Ryoichi.

    1985-01-01

    Purpose: To reduce the cost of reactor buildings and satisfy the severe seismic demands in tank type FBR type reactors. Constitution: In usual nuclear reactor buildings of a flat bottom embedding structure, the flat bottom is entirely embedded into the rock below the soils down to the deck level of the nuclear reactor. As a result, although the weight of the seismic structure can be decreased, the amount of excavating the cavity is significantly increased to inevitably increase the plant construction cost. Cross-like intersecting foundation mats are embedded to the building rock into a thickness capable withstanding to earthquakes while maintaining the arrangement of equipments around the reactor core in the nuclear buildings required by the system design, such as vertical relationship between the equipments, fuel exchange systems and sponteneous drainings. Since the rock is hard and less deformable, the rigidity of the walls and the support structures of the reactor buildings can be increased by the embedding into the rock substrate and floor responsivity can be reduced. This enables to reduce the cost and increasing the seismic proofness. (Kamimura, M.)

  7. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  8. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    Jaouen, C.; Beroux, P.

    2012-01-01

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  9. Computer systems for nuclear installation data control

    International Nuclear Information System (INIS)

    1987-09-01

    The computer programs developed by Divisao de Instalacoes Nucleares (DIN) from Brazilian CNEN for data control on nuclear installations in Brazil are presented. The following computer programs are described: control of registered companies, control of industrial sources, irradiators and monitors; control of liable person; control of industry irregularities; for elaborating credence tests; for shielding analysis; control of waste refuge [pt

  10. Safety in connection with the request for approval of the installation alteration in the fuel reprocessing facilities of Power Reactor and Nuclear Fuel Development Corporation (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report to the Prime Minister by the Nuclear Safety Commission was presented concerning the safety in the installation alteration of the fuel reprocessing facilities, as PNC had requested its approval to the Prime Minister. The safety was confirmed. The items of examination on the safety made by the committee on Examination of Nuclear Fuel Safety of NSC were the aseismic design of liquid waste storage, uranium denitration facility, intermediate gate and radioactive solid waste storage; the criticality safety design of the denitration facility; the radiation shielding design of the liquid waste storage, denitration facility and solid waste storage; the function of radioactive material containment of the liquid waste storage and denitration facility; the radiation control in the liquid waste storage, denitration facility and solid waste storage; the waste management in the liquid waste storage and denitration facility; fire and explosion prevention in the liquid waste storage; exposure dose from the liquid waste storage and denitration facility. (Mori, K.)

  11. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  12. Quality and safety of nuclear installations: the role of administration, and, nuclear safety and regulatory procedures

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-12-01

    In the first paper the author defines the concepts of safety and quality and describes the means of intervention by the Public Authorities in safety matters of nuclear installations. These include individual authorisations, definition and application of technical rules and surveillance of installations. In the second paper he defines the distinction between radiation protection and safety and presents the legislative and regulatory plan for nuclear safety in France. A central safety service for nuclear installations was created in March 1973 within the Ministry of Industrial and Scientific Development, where, amongst other tasks, it draws up regulatory procedures and organizes inspections of the installations. The main American regulations for light water reactors are outlined and the French regulatory system for different types of reactors discussed

  13. Track 2: business outlook and the significance of safety - safety of nuclear power reactor installations in a deregulated environment. Panel Discussion

    International Nuclear Information System (INIS)

    Schultz, Stephen P.; Floyd, Stephen; Berkow, Herbert N.; Quinn, Edward L.; Hagen, Ronald E.; Esselman, Thomas C.

    2001-01-01

    Full text of publication follows: Deregulation in the nuclear industry sets the stage for a new production environment with cost and profit-based competition. This not only affects the commercial reactor sector but also is a key element of the U.S. Department of Energy's (DoE's) strategy for facility deployment and commercialization. This panel is designed to explore how these transitions are being made with the assurance of the principle of safety in operations. Panelists have been assembled from industry, the U.S. Nuclear Regulatory Commission (NRC), and DOE to explore these challenges and opportunities in the deregulated operational environment from a variety of perspectives. Presentations by each panelist will be followed by a panel session that will explore both technical and process elements of these major transitions. Success in a deregulated environment requires both safety and economic operation of facilities. With respect to each of these attributes, competition may be expected to result in substantially higher levels of performance. This panel will examine how these expectations are likely to be set, how they will be measured, and what will constitute success. The baseline for evaluation begins with assessment of past performance. The panelists have examined this for both the commercial nuclear reactor sector, as well as for the DOE complex. The Nuclear Energy Institute and the NRC have been working over the past few years on a program to establish new performance indicators for monitoring safety of reactor operation. The session participants will first examine the effectiveness of this system as it is designed to measure performance in today's environment. Second, the panelists will project the capabilities and attributes of this system in monitoring safety in transition to a deregulated, consolidated market. Will these systems have the capability to identify trends that will be significant in this new environment? Will today's system and metrics be

  14. Construction for Nuclear Installations. Specific Safety Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This Safety Guide provides recommendations and guidance based on international good practices in the construction of nuclear installations, which will enable construction to proceed with high quality. It can be applied to support the development, implementation and assessment of construction methods and procedures and the identification of good practices for ensuring the quality of the construction to meet the design intent and ensure safety. It will be a useful tool for regulatory bodies, licensees and new entrant countries for nuclear power plants and other nuclear installations

  15. On the safety of nuclear installations in the Soviet Union

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The cooperation agreements between authorities and industries of the Soviet Union and West Germany now are gaining shape in practice. In this context, the framework conditions are of great interest that govern the realisation of the extensive nuclear energy programme of the Soviet Union. The chairman of the State Commission established in 1984 for supervision of nuclear installations and guidance on safety-engineering enhancement of nuclear power plant in the USSR has been interviewed by atw on topics of organisations, measures and regulatory activities in the field of reactor safety and radiation protection. The interview is given in full. (orig.) [de

  16. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  17. Site evaluation for nuclear installations. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Siting, which was issued in 1988 as Safety Series No. 50-C-S (Rev. 1). It takes account of developments relating to site evaluations for nuclear installations since the Code on Siting was last revised. These developments include the issuing of the Safety Fundamentals publication on The Safety of Nuclear Installations, and the revision of various safety standards and other publications relating to safety. Requirements for site evaluation are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear installations. It is recognized that there are steady advances in technology and scientific knowledge, in nuclear safety and in what is considered adequate protection. Safety requirements change with these advances and this publication reflects the present consensus among States. This Safety Requirements publication was prepared under the IAEA programme on safety standards for nuclear installations. It establishes requirements and provides criteria for ensuring safety in site evaluation for nuclear installations. The Safety Guides on site evaluation listed in the references provide recommendations on how to meet the requirements established in this Safety Requirements publication. The objective of this publication is to establish the requirements for the elements of a site evaluation for a nuclear installation so as to characterize fully the site specific conditions pertinent to the safety of a nuclear installation. The purpose is to establish requirements for criteria, to be applied as appropriate to site and site-installation interaction in operational states and accident conditions, including those that could lead to emergency measures for: (a) Defining the extent of information on a proposed site to be presented by the applicant; (b) Evaluating a proposed site to ensure that the site

  18. Regulatory requirements and administrative practice in safety of nuclear installations

    International Nuclear Information System (INIS)

    Servant, J.

    1977-01-01

    This paper reviews the current situation of the France regulatory rules and procedures dealing with the safety of the main nuclear facilities and, more broadly, the nuclear security. First, the author outlines the policy of the French administration which requires that the licensee responsible for an installation has to demonstrate that all possible measures are taken to ensure a sufficient level of safety, from the early stage of the project to the end of the operation of the plant. Thus, the administration performs the assessment on a case-by-case basis, of the safety of each installation before granting a nuclear license. On the other hand, the administration settles overall safety requirements for specific categories of installations or components, which determine the ultimate safety performances, but avoid, as far as possible, to detail the technical specifications to be applied in order to comply with these goals. This approach, which allows the designers and the licensees to rely upon sound codes and standards, gains the advantage of a great flexibility without imparing the nuclear safety. The author outlines the licensing progress for the main categories of installations: nuclear power plants of the PWR type, fast breeders, uranium isotope separation plants, and irradiated fuel processing plants. Emphasis is placed on the most noteworthy points: standardization of projects, specific risks of each site, problems of advanced type reactors, etc... The development of the technical regulations is presented with emphasis on the importance of an internationally concerned action within the nuclear international community. The second part of this paper describes the France operating experience of nuclear installations from the safety point of view. Especially, the author examines the technical and administrative utilization of data from safety significant incidents in reactors and plants, and the results of the control performed by the nuclear installations

  19. Cancer risks near nuclear installations?

    International Nuclear Information System (INIS)

    Hubert, D.

    1999-01-01

    The descriptive studies actually at disposal bring to the fore some children leukemia aggregates around some nuclear sites. (Sellafield, and Dounreay in the United kingdom, Kruemmel in Germany). Nevertheless, the studies grouping several sites do not find any global excess. The analytical studies have not brought any answer until now, but have allowed to eliminate some hypothesis such the Gardner genetic hypothesis. (N.C.)

  20. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  1. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  2. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  3. The program of reactors and nuclear power plants

    International Nuclear Information System (INIS)

    Calabrese, Carlos R.

    2001-01-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined

  4. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  5. Nuclear reactor assembly

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    A nuclear reactor assembly includes a reactor pressure tank having a substantially cylindrical side wall surrounded by the wall of a cylindrical cavity formed by a biological shield. A rotative cylindrical wall is interposed between the walls and has means for rotating it from outside of the shield, and a probe is carried by the rotative wall for monitoring the pressure tank's wall. The probe is vertically movable relative to the rotative cylindrical wall, so that by the probe's vertical movement and rotation of the rotative cylinder, the reactor's wall can be very extensively monitored. If the reactor pressure tank's wall fails, it is contained by the rotative wall which is backed-up by the shield cavity wall. (Official Gazette)

  6. Safety studies concerning nuclear power reactors

    International Nuclear Information System (INIS)

    Bailly, Jean; Pelce, Jacques

    1980-01-01

    The safety of nuclear installations poses different technical problems, whether concerning pressurized water reactors or fast reactors. But investigating methods are closely related and concern, on the one hand, the behavior of shields placed between fuel and outside and, on the other, analysis of accidents. The article is therefore in two parts based on the same plan. Concerning light water reactors, the programme of studies undertaken in France accounts for the research carried out in countries where collaboration agreements exist. Concerning fast reactors, France has the initiative of their studies owing to her technical advance, which explains the great importance of the programmes under way [fr

  7. Childhood cancer and nuclear installations: a review

    International Nuclear Information System (INIS)

    Muirhead, C.R.

    1998-01-01

    Many epidemiological studies of childhood cancer around nuclear installations have been conducted in recent years. This article reviews results from Great Britain and elsewhere. Geographical studies have indicated raised risks of childhood leukaemia around some British nuclear installations. However, environmental assessments suggest that the findings are unlikely to be due to radioactive releases from the sites. Case-control studies have allowed more detailed investigation of putative risk factors than is possible from geographical studies. In particular, a recent national study in Britain does not support the hypothesis raised by an earlier study in West Cumbria that paternal radiation exposure prior to conception may increase the risk of leukaemia and non-Hodgkin's lymphoma in offspring. Other studies suggest that childhood leukaemia may have an infective basis, although there is still uncertainty about whether this would explain the findings around nuclear installations. The UK Childhood Cancer Study may provide more information on the causes of these diseases. (author)

  8. ALARA in European nuclear installations

    International Nuclear Information System (INIS)

    Lefaure, C.; Croft, J.; Pfeffer, W.; Zeevaert, T.

    1995-01-01

    For over a decade the Commission of the European Community has sponsored research projects on the development and practical implementation of the Optimization principle, or as it is often referred to, ALARA. These projects have given rise to a series of successful international Optimization training courses and have provided a significant input to the periodic European Seminars on Optimization, the last one of which took place in April 1993. This paper reviews the approaches to Optimization that have development within Europe and describes the areas of work in the current project. The on-going CEC research project addresses the problem of ALARA and internal exposures, and tries to define procedures for ALARA implementation, taking account of the perception of the hazard as well as the levels of probability of exposure. The relationships between ALARA and work management, and ALARA and decommissioning of installations appear to be other fruitful research areas. Finally, this paper introduces some software for using ALARA decision aiding techniques and databases containing feed back experience developed in Europe

  9. ALARA in European nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Lefaure, C. [CEPN, Fontenay-Aux-Roses (France); Croft, J. [NRPB, Chilton, Didcot (United Kingdom); Pfeffer, W. [GRS, Koeln (Germany); Zeevaert, T. [SCK/CEN, Mol (Belgium)

    1995-03-01

    For over a decade the Commission of the European Community has sponsored research projects on the development and practical implementation of the Optimization principle, or as it is often referred to, ALARA. These projects have given rise to a series of successful international Optimization training courses and have provided a significant input to the periodic European Seminars on Optimization, the last one of which took place in April 1993. This paper reviews the approaches to Optimization that have development within Europe and describes the areas of work in the current project. The on-going CEC research project addresses the problem of ALARA and internal exposures, and tries to define procedures for ALARA implementation, taking account of the perception of the hazard as well as the levels of probability of exposure. The relationships between ALARA and work management, and ALARA and decommissioning of installations appear to be other fruitful research areas. Finally, this paper introduces some software for using ALARA decision aiding techniques and databases containing feed back experience developed in Europe.

  10. Seismic studies for nuclear installations sites

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Faure, J.

    1988-01-01

    The french experience in seismic risks assessment for french nuclear installations permits to set out the objectives, the phases the geographic extensions of workings to be realized for the installation safety. The data to be collected for the safety analysis are specified, they concern the regional seismotectonics, the essential seismic data for determining the seism level to be taken into account and defining the soil movement spectra adapted to the site. It is necessary to follow up the seismic surveillance during the installation construction and life. 7 refs. (F.M.)

  11. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  12. Moderator for nuclear reactor

    International Nuclear Information System (INIS)

    Milgram, M.S.; Dunn, J.T.; Hart, R.S.

    1995-01-01

    This invention relates to a moderator for a nuclear reactor and more specifically, to a composite moderator. A moderator is designed to slow down, or thermalize, neutrons which are released during nuclear reactions in the reactor fuel. Pure or almost pure materials like light water, heavy water, beryllium or graphite are used singly as moderators at present. All these materials, are used widely. Graphite has a good mechanical strength at high temperatures encountered in the nuclear core and therefore is used as both the moderator and core structural material. It also exhibits a low neutron-capture cross section and high neutron scattering cross section. However, graphite is susceptible to attach by carbon dioxide and/or oxygen where applicable, and releases stress energy under certain circumstances, although under normal operating conditions these reactions can be controlled. (author). 1 tab

  13. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  14. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1980-01-01

    A nuclear reactor construction comprising a reactor core submerged in a pool of liquid metal coolant in a primary vessel which is suspended from the roof structure of a containment vault. Control rods supported from the roof structure are insertable in the core which is carried on a support structure from the wall of the primary vessel. To prevent excessive relaxation of the support structure whereby the control rods would be displaced relative to the core, the support structure incorporates a normally inactive secondary structure designed to become effective in bracing the primary structure against further relaxation beyond a predetermined limit. (author)

  15. Australia's new nuclear reactor

    International Nuclear Information System (INIS)

    Kemeny, L.

    2007-01-01

    On 19 and 20 April 2007, the Australian Nuclear Science and Technology Organisation (ANSTO) celebrated the recent commissioning of its new, world-class, OPAL (Open Pool Australian Lightwater) research reactor at the Lucas Heights. On the 19th, scientists, business leaders and academics were introduced to the reactor and its technical capacity for the manufacture of radiopharmaceuticals, its material science applications, its environmental services and its neutron scattering facilities for business applications. The formal OPAL opening function took place that evening and, on the 20th, Prime Minister John Howard visited ANSTO to be briefed about OPAL and to be shown the work being carried out at Lucas Heights

  16. Refueling of nuclear reactor

    International Nuclear Information System (INIS)

    Kaufmann, J.W.; Swidwa, K.J.; Hornak, L.P.

    1989-01-01

    This patent describes an apparatus for refueling a nuclear reactor, the reactor being disposed for refueling under water in a pit in a containment, the apparatus including a bridge to be mounted moveably over the pit on the containment, first means connected to the bridge, for moving the bridge forward and backward on the containment over the pit along a first path, a first pulse generator, connected to the moving means, responsive to the movement of the bridge, for producing pulses, means, connected to the generator,for counting the pulses, the count of the pulses being dependent on the distance of the movement of the bridge

  17. Feasibility study for the installation of a nuclear reactor in thermal stimulation processes in heavy oil extraction from Orinoco oil belt

    International Nuclear Information System (INIS)

    Munoz, A.; Sanchez, R.

    1982-01-01

    Due to strategic need in the exploitation of heavy and extraheavy oil wells of Orinoco oil belt, technical and economical studies have been carried out to determine an optimal method for oil production and exploitation. So far, studies indicate thermal stimulation is the most adequate technique. Experience shows that stimulation cost is high when traditional methods (boilers) are used. The profit is due to the high price of oil in international market. Due to actual oil price trends, evaluation of nontraditional methods to generate steam in thermal stimulation processes (steam injection) is in order. A nuclear reactor as steam generator was evaluated. It was found economical feasibility and saving in fuel cost between 31.08% and 72.63% depending on oil prices

  18. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  19. Iodine filters in nuclear installations

    International Nuclear Information System (INIS)

    Wilhelm, J.G.

    1982-01-01

    The present report discusses the significance for environmental exposure of the iodine released with the gaseous effluents of nuclear power stations and reprocessing plants in relation to releases of other airborne radionuclides. Iodine filtration processes are described. The release pathways and the composition of airborne fission product iodine mixtures and their bearing on environmental exposure are discussed on the basis of measured fission product iodine emissions. The sorbents which can be used for iodine filtration, their removal efficiencies and range of applications are dealt with in detail. The particular conditions governing iodine removal, which are determined by the various gaseous iodine species, are illustrated on the basis of experimentally determined retention profiles. Particular attention is given to the limitations imposed by temperature, humidity, radiation and filter poisoning. The types of filter normally used are described, their advantages and drawbacks discussed, the principles underlying their design are outlined and the sources of error indicated. The methods normally applied to test the efficiency of various iodine sorbents are described and assessed. Operating experience with iodine filters, gathered from surveillance periods of many years, is supplemented by a large number of test results and the findings of extensive experiments. Possible ways of prolonging the permissible service lives of iodine filters are discussed and information is given on protective measures. The various iodine removal processes applied in reprocessing plants are described and compared with reference to efficiency and cost. The latest developments in filter technology in reprocessing plants are briefly outlined

  20. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  1. Gas turbine installations in nuclear power plants in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sevestedt, Lars [Electrical Equipment and Gas Turbines, Swedish State Power Board, Ringhals Nuclear Power Plant, S-430 22 Vaeroebacka (Sweden)

    1986-02-15

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  2. Gas turbine installations in nuclear power plants in Sweden

    International Nuclear Information System (INIS)

    Sevestedt, Lars

    1986-01-01

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  3. Nuclear reactor container

    International Nuclear Information System (INIS)

    Ishiyama, Takenori.

    1989-01-01

    This invention concerns a nuclear reactor container in which heat is removed from a container by external water injection. Heat is removed from the container by immersing the lower portion of the container into water and scattering spary water from above. Thus, the container can be cooled by the spray water falling down along the outer wall of the container to condensate and cool vapors filled in the container upon occurrence of accidents. Further, since the inside of the container can be cooled also during usual operation, it can also serve as a dry well cooler. Accordingly, heat is removed from the reactor container upon occurrence of accidents by the automatic operation of a spray device corresponding to the change of the internal temperature and the pressure in the reactor container. Further, since all of these devices are disposed out of container, maintenance is also facilitated. (I.S.)

  4. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  5. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  6. Nuclear reactor refueling system

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    A system for transferring fuel assemblies between a nuclear reactor core and a fuel storage area while the fuel assembies remain completely submerged in a continuous body of coolant is described. The system comprises an in-vessel fuel transfer machine located inside the reactor vessel and an ex-vessel fuel transfer machine located in a fuel storage tank. The in-vessel fuel transfer machine comprises two independently rotatable frames with a pivotable fuel transfer apparatus disposed on the lower rotatable frame. The ex-vessel fuel transfer machine comprises one frame with a pivotable fuel transfer apparatus disposed thereon. The pivotable apparatuses are capable of being aligned with each other to transfer a fuel assembly between the reactor vessel and fuel storage tank while the fuel assembly remains completely submerged in a continuous body of coolant. 9 claims, 7 figures

  7. Heat dissipating nuclear reactor

    Science.gov (United States)

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  8. Decommissioning a nuclear reactor

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs

  9. Licensing of nuclear and radioactive installations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    1987-01-01

    In Peru, the Regulation for Ionizing Radiation Sources is applied, which establishes the norms and procedures to follow in the nuclear and radioactive installations of the country in order to assure their correct operation as concerns to the nuclear safety and radiological protection, allowing the emission of the respective licenses. As for the nuclear facilities, this authorization includes the Previous License, the Construction License and the Operation License (provisional and definitive) and for radioactive facilities and equipment generating ionizing radiations: the Construction License and the Operation License. The personnel also require a license that can be an operator license (as for nuclear reactors) or a supervisor license (for nuclear and radioactive facilities). In spite of the above mentioned regulation and its long enforcement period, less than 10% of radioactive facilities in this country are licensed, due to different problems which will be solved in the medium term. (Author)

  10. Nuclear reactor operator licensing

    International Nuclear Information System (INIS)

    Bursey, R.J.

    1978-01-01

    The Atomic Energy Act of 1954, which was amended in 1974 by the Energy Reorganization Act, established the requirement that individuals who had the responsibility of operating the reactors in nuclear power plants must be licensed. Section 107 of the act states ''the Commission shall (1) prescribe uniform conditions for licensing individuals; (2) determine the qualifications of such individuals; and (3) issue licenses to such individuals in such form as the Commission may prescribe.'' The article discusses the types of licenses, the selection and training of individuals, and the administration of the Nuclear Regulatory Commission licensing examinations

  11. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  12. Shields for nuclear reactors

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1984-01-01

    The patent concerns shields for nuclear reactors. The roof shield comprises a normally fixed radial outer portion, a radial inner portion rotatable about a vertical axis, and a connection between the inner and outer portions. In the event of hypothecal core disruption conditions, a cantilever system on the inner wall allows the upward movement of the inner wall, in order to prevent loss of containment. (UK)

  13. Compact nuclear reactor

    International Nuclear Information System (INIS)

    Juric, S.I.

    1975-01-01

    A compact nuclear reactor of the pressurized-water variety is described which has two separate parts separably engageable for ease of inspection, maintenance and repair. One of the parts is a pressure vessel having an active core and the other of the parts is a closure adapted on its lower surface with an integral steam generator. An integral pump, external pressurizer and control rods are provided which communicate with the active core when engaged to form a total unit. (U.S.)

  14. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  15. Nuclear power reactor technology

    International Nuclear Information System (INIS)

    1978-09-01

    Risoe National Laboratory was established more than twenty years ago with research and development of nuclear reactor technology as its main objective. The Laboratory has by now accumulated many years of experience in a number of areas vital to nuclear reactor technology. The work and experience of, and services offered by the Laboratory within the following fields are described: Health physics site supervision; Treatment of low and medium level radioactive waste; Core performance evaluation; Transient analysis; Accident analysis; Fuel management; Fuel element design, fabrication and performance evaluation; Non-destructive testing of nuclear fuel; Theoretical and experimental structural analysis; Reliability analysis; Site evaluation. Environmental risk and hazard calculation; Review and analysis of safety documentation. Risoe has already given much assistance to the authorities, utilities and industries in such fields, carrying out work on both light and heavy water reactors. The Laboratory now offers its services to others as a consultant, in education and training of staff, in planning, in qualitative and quantitative analysis, and for the development and specification of fabrication techniques. (author)

  16. Procedures for permission of installation of nuclear power stations

    International Nuclear Information System (INIS)

    Narita, Yoriaki

    1980-01-01

    The locations of atomic power stations are first selected by electric power enterprises in consultation with the Ministry of International Trade and Industry or under the guidance of authorities concerned. The surveys of the climate, topography, water and plants in the planned sites and the influences of nuclear power generation to the surrounding areas are made by the enterprisers under the administrative guidance of the MITI. Secondly, the basic project shall be submitted to and decided by the Power Resource Development Council headed by the Prime Minister (Article 10, the Power Resource Development Law). The Council shall, if necessary, call for the attendance of the governors of prefectures concerned and hear their opinions (Article 11, the Law). As the third and most complicated phase, various procedures include; (a) permission of the changes of electrical facilities under the Electricity Enterprises Act; (b) authorization of the installation of reactors under the Nuclear Reactor Regulation Law; (c) permission or authorization under other regulations including the Agricultural Land Act, etc.; (d) additional procedures related to the indemnification to fishery and so forth. Finally the reactors are to be operated after receiving the certificates of the Minister of ITI on the inspections of construction works, nuclear fuel materials used for the reactors and welding processes of reactor containment vessels, boilers, turbines, etc. (Okada, K.)

  17. Decree no. 96-978 from October 31, 1996 giving permission to the French atomic energy Commission (CEA) to create a basic nuclear installation intended to maintain under supervision and in an intermediate dismantling state the old basic nuclear installation no. 28, named Monts d'Arree-EL 4 nuclear power plant (a decommissioned reactor), in the Monts d'Arree site of the Loqueffret town (Finistere, Brittany)

    International Nuclear Information System (INIS)

    Borotra, F.; Lepage, C.

    1996-01-01

    This decree from the French ministry of industry and postal services gives permission to the CEA to create a new basic nuclear installation, named EL 4D, which is devoted to the storage of materials from the partially dismantled Monts d'Arree EL 4 reactor. Thus, the CEA is allowed to carry out confining works on the reactor building with the closure of all apertures with the exception of the personnel entry sieve, on the circuits and equipments of the reactor vessel with the plugging of fuel channels, heavy water, helium and demineralized water pipes and of the heads of control rod drive mechanisms and other channels, and on the primary coolant circuit outside the reactor vessel and the steam generators with the installation of welded hatches. The irradiated fuels building, the solid wastes repository, the ventilation building, the heavy water and helium circuits, the fuel handling systems and the effluents treatment plant will be completely dismantled. The other buildings will be pulled down. The rest of the decree enumerates the general technical and safety prescriptions which have to be followed in order to ensure the protection of the personnel against ionizing radiations and of the environment against radioactive pollution. (J.S.)

  18. Nuclear reactor cavity streaming shield

    International Nuclear Information System (INIS)

    Klotz, R.J.; Stephen, D.W.

    1978-01-01

    The upper portion of a nuclear reactor vessel supported in a concrete reactor cavity has a structure mounted below the top of the vessel between the outer vessel wall and the reactor cavity wall which contains hydrogenous material which will attenuate radiation streaming upward between vessel and the reactor cavity wall while preventing pressure buildup during a loss of coolant accident

  19. Nuclear reactor sealing system

    International Nuclear Information System (INIS)

    McEdwards, J.A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system is disclosed. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel

  20. Statement on incidents at nuclear installations - second quarter 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The first incident reported occurred at the Sellafield reprocessing plant when a process worker was contaminated on the right knee of his overalls and received a skin dose in excess of the annual dose limit. Following an inquiry, he was allowed to return to normal working within 3 months. The second incident occurred at the Oldbury nuclear power station when reaction-1 tripped following the failure of one of the three phases of the electricity supply to part of the instrumentation. This caused a loss of forced coolant circulating for a short time following the reactor shutdown. However, following safety checks it was allowed to return to power. Improvements in the instrument supply system protection were subsequently installed on reactor-2 and will be, when possible, on reactor-1. (UK)

  1. Nuclear reactor trip system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated with it is monitored by a set of four like sensors. A trip system normally operates on a ''two out four'' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the ''two out of four''configuration would be reduced to a ''one out of three'' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a ''two out of three'' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor. The by-pass circuit also disables the circuit coupling the by-passed sensor to the trip circuit. (author)

  2. Nuclear Reactor Sharing Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Ohio State University Research Reactor (OSURR) is licensed to operate at a maximum power level of 500 kW. A pool-type reactor using flat-plate, low enriched fuel elements, the OSURR provides several experimental facilities including two 6-inch i.d. beam ports, a graphite thermal column, several graphite-isotope-irradiation elements, a pneumatic transfer system (Rabbit), various dry tubes, and a Central Irradiation Facility (CIF). The core arrangement and accessibility facilitates research programs involving material activation or core parameter studies. The OSURR control room is large enough to accommodate laboratory groups which can use control instrumentation for monitoring of experiments. The control instrumentation is relatively simple, without a large amount of duplication. This facilitates opportunities for hands-on experience in reactor operation by nuclear engineering students making reactor parameter measurements. For neutron activation analysis and analyses of natural environmental radioactivity, the NRL maintains the gamma ray spectroscopy system (GRSS). It is comprised of two PC-based 8192-channel multichannel analyzers (MCAs) with all the required software for quantitative analysis. A 3 double-prime x 3 double-prime NaI(Tl), a 14 percent Ge(Li), and a High Purity Germanium detector are currently available for use with the spectroscopy system

  3. Safeguards by Design - Experiences from New Nuclear Installation

    International Nuclear Information System (INIS)

    Okko, O.; Honkamaa, T.; Kuusi, A.; Rautjaervi, J.

    2010-01-01

    The experiences obtained from the current construction projects at Olkiluoto clearly point out the need to introduce the safeguards requirements into facility design process at an early stage. The early Design Information is completed, in principle, before the construction. However, during the design of containment, surveillance systems, and non-destructive assay equipment and their cabling, the design requirements for safeguards systems were not available either for the new reactor unit or for the disposal plant with a geological repository. Typically, the official Design Information documents are not available early enough for efficient integration of safeguards systems into new facilities. In case of the Olkiluoto projects, this was due to understandable reasons: at the new reactor unit the design acceptance by the ordering company and by the nuclear safety authorities was a long process, ongoing simultaneously with parts of the construction; and at the geological repository the national legislation assigns the repository the status of a nuclear facility only after the initial construction and research phase of the repository when the long-term safety of the disposal concept is demonstrated. As similar factors are likely to delay the completion of the official Design Information documents with any new reactor projects until the construction is well underway and efficient integration of safeguards systems is impossible. Therefore, the proliferation resistance of new nuclear installations should be addressed in the design phase before the official Design Information documents are finished. This approach was demonstrated with the enlargement of the Olkiluoto spent fuel storage building. For this approach to work, strong national contribution is needed to facilitate the early communication and exchange of information between the IAEA and the other stakeholders to enable the design of facilities that can be efficiently safeguarded. With the renaissance of nuclear

  4. Statement of nuclear incidents at nuclear installations

    International Nuclear Information System (INIS)

    1993-10-01

    Three incidents were reported in April-June 1993. The first was on the British Nuclear Fuel plc (BNFL) site at Sellafield and concerned leakage of 0.5 TBq of alpha activity from plutonium contaminated waste stored in a steel drum. This was subsequently double contained and moved so it could be inspected regularly. No contamination of personnel occurred. The second concerned the leakage of thorium liquor from a pipe at the UKAEA's Thorium reprocessing plant at Dounreay. Two temporary repairs were made and no personnel were contaminated. The third was at the Sellafield site where a small quantity (5 mls) of plutonium containing liquor had leaked from a package and released alpha activity. The bags were temporary containment of engineering debris which may have had sharp edges. The bags had been piled up and one of the bags had torn. Recommendations were made following inquiries into each of the incidents to improve procedures and prevent similar incidents occurring. (UK)

  5. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  6. Pressure vessel for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The invention applies to a pressure vessel for nuclear reactors whose shell, made of cast metal segments, has a steel liner. This liner must be constructed to withstand all operational stresses and to be easily repairable. The invention solves this problem by installing the liner at a certain distance from the inner wall of the pressure vessel shell and by filling this clearance with supporting concrete. Both the concrete and the steel liner must have a lower prestress than the pressure vessel shell. In order to avoid damage to the liner when prestressing the pressure vessel shell, special connecting elements are provided which consist of welded-on fastening elements projecting into recesses in the cast metal segments of the pressure vessel. Their design is described in detail. (TK) [de

  7. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  8. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The seals described are for use in a nuclear reactor where there are fuel assemblies in a vessel, an inlet and an outlet for circulating a coolant in heat transfer relationship with the fuel assemblies and a closure head on the vessel in a tight fluid relationship. The closure head comprises rotatable plugs which have mechanical seals disposed in the annulus around each plug while allowing free rotation of the plug when the seal is not actuated. The seal is usually an elastomer or copper. A means of actuating the seal is attached for drawing it vertically into the annulus for sealing. When the reactor coolant is liquid sodium, contact with oxygen must be avoided and argon cover gas fills the space between the bottom of the closure head and the coolant liquid level and the annuli in the closure head. (U.K.)

  9. Nuclear reactor container

    International Nuclear Information System (INIS)

    Yamaki, Rika; Kawabe, Ryuhei.

    1989-01-01

    A venturi scrubber is connected to a nuclear reactor container. Gases containing radioactive aerosols in the container are introduced into the venturi scrubber in the form of a high speed stream under the pressure of the container. The radioactive aerosols are captured by inertia collision due to the velocity difference between the high speed gas stream and water droplets. In the case of the present invention, since the high pressure of the reactor container generated upon accident is utilized, compressor, etc. is no more required, thereby enabling to reduce the size of the aerosol removing device. Further, since no external power is used, the radioactive aerosols can be removed with no starting failure upon accidents. (T.M.)

  10. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a nuclear reactor fuel assembly comprising a cluster of fuel elements supported by transversal grids so that their axes are parallel to and at a distance from each other, in order to establish interstices for the axial flow of a coolant. At least one of the interstices is occupied by an axial duct reserved for an auxiliary cooling fluid and is fitted with side holes through which the auxiliary cooling fluid is sprayed into the cluster. Deflectors extend as from a transversal grid in a position opposite the holes to deflect the cooling fluid jet towards those parts of the fuel elements that are not accessible to the auxiliary coolant. This assembly is intended for reactors cooled by light or heavy water [fr

  11. Drones and safety of nuclear installations

    International Nuclear Information System (INIS)

    Tourneur, Jean-Claude

    2015-01-01

    Recent flyovers of French nuclear power plants by drones or UAVs (the owners of these drones could not be identified) has made the safety of these nuclear installations a matter of concern. These events also raised the question of balance between secret and information about these installations. The French Parliamentary Office for the Assessment of Scientific and Technological Choices (OPECST) organised two sets of hearings, a confidential one with people in charge of information related to national defence and security, and a public one opened to all stakeholders. This article briefly reports and discusses the results of these hearings. It appeared that these flyovers are not really a threat, are more a communication action than anything else. Suggestions have been made for the development of researches in the field of drone detection, and also for evolutions of French legislation on drones

  12. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  13. The dismantling of CEA nuclear installations

    International Nuclear Information System (INIS)

    Piketty, Laurence

    2016-03-01

    After having indicated locations of French nuclear installations which are currently being dismantled (about 30 installations), and recalled the different categories of radioactive wastes with respect to their activity level and the associated storage options, this article gives an overview of various aspects of dismantling, more precisely in the case of installations owned and managed by the CEA. These operations comprise the dismantling itself, the recovery and packaging of wastes, old effluents and spent fuels. The organisation and responsible departments within the CEA are presented, and the author outlines some operational problematic issues met due to the age of installations (traceability of activities, regulation evolutions). The issue of financing is then discussed, and its uncertainties are outlined. The dismantling strategy within the CEA-DEN is described, with reference to legal and regulatory frameworks. The next parts of the article address the organisation and the economic impact of these decontamination and dismantling activities within the CEA-DEN, highlight how R and D and advanced technology are a support to this activities as R and D actions address all scientific and technical fields of nuclear decontamination and dismantling. An overview of three important dismantling works is proposed: Fontenay-aux-Roses, the Marcoule CEA centre (a reference centre in the field of nuclear dismantling and decontamination) and the Grenoble CEA centre (reconversion in R and D activities in the fields of technologies of information, of communication, technologies, for health, and in renewable energies). The last part addresses the participation to the Strategic Committee of the Nuclear Sector (CSFN)

  14. Safety culture in nuclear installations. Proceedings

    International Nuclear Information System (INIS)

    Carnino, A.; Weimann, G.

    1995-04-01

    These proceedings of the International Topical Meeting on Safety Culture in Nuclear Installations held in Vienna, Austria from 24 to 28 April 1995 provide a wide forum of information exchange and discussions on the topic safety culture in nuclear power plants. Safety culture deals with human factors since it deals with attitudes, organization and management. It then means that it has a natural component in it which is linked to the national culture and education. There are about 95 contributions, some of them presented by title and abstract only. All of them are in the subject scope of INIS. (Botek)

  15. Safety culture in nuclear installations. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Carnino, A [ed.; International Atomic Energy Agency, Vienna (Austria); Weimann, G [ed.; Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria)

    1995-04-01

    These proceedings of the International Topical Meeting on Safety Culture in Nuclear Installations held in Vienna, Austria from 24 to 28 April 1995 provide a wide forum of information exchange and discussions on the topic safety culture in nuclear power plants. Safety culture deals with human factors since it deals with attitudes, organization and management. It then means that it has a natural component in it which is linked to the national culture and education. There are about 95 contributions, some of them presented by title and abstract only. All of them are in the subject scope of INIS. (Botek).

  16. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  17. Proposal of space reactor for nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Nishiyama, Takaaki; Nagata, Hidetaka; Nakashima, Hideki

    2009-01-01

    A nuclear reactor installed in spacecrafts is considered here. The nuclear reactor could stably provide an enough amount of electric power in deep space missions. Most of the nuclear reactors that have been developed up to now in the United States and the former Soviet Union have used uranium with 90% enrichment of 235 U as a fuel. On the other hand, in Japan, because the uranium that can be used is enriched to below 20%, the miniaturization of the reactor core is difficult. A Light-water nuclear reactor is an exception that could make the reactor core small. Then, the reactor core composition and characteristic are evaluated for the cases with the enrichment of the uranium fuel as 20%. We take up here Graphite reactor, Light-water reactor, and Sodium-cooled one. (author)

  18. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  19. Nuclear installations inspectorate a public opinion survey

    International Nuclear Information System (INIS)

    Lennie, S.E.; Davies, A.G.

    2001-01-01

    HM Nuclear Installations Inspectorate (HMNII) is the regulator responsible for the safety of licensed nuclear sites in the UK. Recognizing the need for public approval on future policy with respect to nuclear waste management, the NII commissioned a public opinion research programme amongst the UK general public. Opinion was sought on a number of issues including attitudes towards the industry in general, perception of nuclear waste and its management, tolerability of risk and attitudes towards current decommissioning plans. In response to the primary objectives of the survey the main findings are: current spontaneous level of concern over the industry in general is low (7%), and lower still for nuclear waste (3%). However, on prompting, 47% of respondents were very concerned about nuclear waste. Top of mind issues of concern about the industry are: nuclear waste; risk of accidents; health risks. Personal risk from nuclear waste is not of overt concern and is significantly less worrisome to respondents than risk from diseases like meningitis or cancer, smoking or road accidents. On being presented with a statement describing current UK decommissioning plans, the sample was generally in favour. However, this issue will require further research. (authors)

  20. Nuclear reactor plant

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1977-01-01

    The invention is concerned with a quick-closing valve on the main-steam pipe of a nuclear reactor plant. The quick-closing valve serves as isolating valve and as safety valve permitting depressurization in case of an accident. For normal operation a tube-shaped gate valve is provided as valve disc, enclosing an auxiliary valve disc to be used in case of accidents and which is opened at increased pressure to provide a smaller flow cross-section. The design features are described in detail. (RW) [de

  1. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  2. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  3. Nuclear reactor control assembly

    International Nuclear Information System (INIS)

    Negron, S.B.

    1991-01-01

    This patent describes an assembly for providing global power control in a nuclear reactor having the core split into two halves. It comprises a disk assembly formed from at least two disks each machined with an identical surface hole pattern such that rotation of one disk relative to the other causes the hole pattern to open or close, the disk assembly being positioned substantially at the longitudinal center of and coaxial with the core halves; and means for rotating at least one of the disks relative to the other

  4. Nuclear reactor facility

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    In order to improve the performance of manitenance and inspections it is proposed for a nuclear reactor facility with a primary circuit containing liquid metal to provide a thermally insulated chamber, within which are placed a number of components of the primary circuit, as e.g. valves, recirculation pump, heat exchangers. The isolated placement permit controlled preheating on one hand, but prevents undesirable heating of adjacent load-bearing elements on the other. The chamber is provided with heating devices and, on the outside, with cooling devices; it is of advantage to fill it with an inert gas. (UWI) 891 HP [de

  5. Nuclear reactor container

    International Nuclear Information System (INIS)

    Kawabe, Ryuhei; Yamaki, Rika.

    1989-01-01

    Aerosol filters considered so far for nuclear reactor containers in conventional BWR type nuclear power plants make the facility larger and involve a risk of clogging. In view of the above, in the present invention, the diameter of a flow channel of gases entering from a bent pipe to a suppression pool is made smaller thereby decreasing the diameter of gas bubbles in the supperssional pool. Since this reduces the force of surface tension, the diameter of resulted gas bubbles is made remarkably smaller as compared with the case where the gases are released from the lower end of the bent pipe. Since the absorption velocity of bubble-entrained aerosols into water is in proportion to the square of the bubble diameter, the absorption efficiency can be increased remarkably by reducing the diameter of the gas bubbles. Accordingly, it is possible to improve the efficiency of eliminating radioactivity of released gases. (K.M.)

  6. Concerning modification of installation plan for reactor (modification of No.3 and No.4 reactor facilities) at Genkai nuclear power plant of Kyushu Electric Power Co., Ltd. (reply to inquiry)

    International Nuclear Information System (INIS)

    1988-01-01

    In response to an inquiry on the title issue, the Nuclear Safety Commission made an examination and submitted the findings to the Minister of International Trade and Industry. The modifications include the construction of combustion facilities for volume reduction of miscellaneous solid wastes. In the facilities, miscellaneous solid wastes will be combusted for volume reduction, and the combustion residue will be cooled with water and processed into glass-like granules, which will be stored in drums in the solid waste storage facilities. It is confirmed that the release of radioactive substances into the environment will be negligible, that the facilities have been designed to the Class B anti-earthquake standards, and that radiation monitors will be installed. The modifications also include the installation of an improved cement solidification system to replace a conventional-type system and a change in the capacity of the solid waste storage facilities. It is concluded that all proposed modifications should be approved. (Nogami, K.)

  7. Assessment of safety culture in the Iranian nuclear installations

    International Nuclear Information System (INIS)

    Farahani, H.F.; Davilu, H.; Sepanloo, K.

    2005-01-01

    The deficient safety culture (S.C) is the center of safety issues of nuclear industry. To benefit from the advantages of nuclear technology and considering the fact of potential hazards of accidents in nuclear installations it is essential to view safety as the highest priority. S.C is an amalgamation of values, standards, morals and norms of acceptable behavior. Organizations having effective S.C show constant commitment to safety as a top level priority. Furthermore, the personnel of a nuclear facility shall recognize the safety significance of their tasks. Many people even those who work in the field of safety do not have a correct understanding of what S.C looks like in practical sense. In this study, by conducting a survey according to IAEA-TECDOC-1329 in some nuclear facilities, the S.C within the Iranian nuclear facilities is assessed. The human and organizational factors in Tehran Research Reactor are evaluated using a questionnaire method with active participation of the reactor operators. The results sho w that the operators are pretty aware of the subject. Also it has been identified some areas of improvement. (authors)

  8. Statement of nuclear incidents at nuclear installations: first quarter 1994

    International Nuclear Information System (INIS)

    1994-06-01

    As a requirement of the 1974 Health and Safety at Work Act, the United Kingdom Health and Safety Inspectorate is required to publish reports of nuclear incidents at nuclear installations. This report covers the period 1st January to 31st March 1994. Two incidents are reported for Dungeness A Power Station, one at the Amersham International building on site at Harwell Laboratory, one at AEA Technology's Windscale Plant and one at British Nuclear Fuels Limited's Sellafield site. (UK)

  9. Professional operation and management of nuclear island installation

    International Nuclear Information System (INIS)

    Ma Limin

    2011-01-01

    As an important part of nuclear power plant construction, nuclear island installation mainly involves main equipment installation, pipeline installation, associated procedure examination and other important tasks. However, due to the nuclear island installation management changing from single project to multi-projects, the problems such as professional management of nuclear island installation and the lack of technical staff become more and more prominent and become one of the key restricts to the work of nuclear island installation. Based on analysis of the single project, single-base nuclear island installation management and practice, combined with the current situation that multi-project and multi-base construction of nuclear power are carrying out at the same time, this paper proposes a new management model of nuclear island installation. (author)

  10. ORPHEE reactor. Upgrade of the installation

    International Nuclear Information System (INIS)

    Farnoux, B.; Maziere, M.

    1995-01-01

    Designed by the end of the seventies, the ORPHEE Reactor is equipped with two hydrogen cold sources, one hot source and six cold neutron guides. The neutron beams are extracted by nine beam ports and used in two experimental halls, the reactor hall and the neutron guide hall. After fourteen years of use, a modernisation programme is in progress. One step concerns the neutron guides, another one the cold sources with the modification of the cell geometry in order to increase the cold neutron flux. This operation requires the use a new cryogenerator to ensure liquefaction capabilities for the new cells. It is also scheduled to replace the Zircaloy core housing in order to avoid difficulties linked to the expansion under irradiation. (author)

  11. Complete automation of nuclear reactors control

    International Nuclear Information System (INIS)

    Weill, J.

    1955-01-01

    The use of nuclear reactor for energy production induces the installation of automatic control systems which need to be safe enough and can adapt to the industrial scale of energy production. These automatic control systems have to insure the constancy of power level and adjust the power produced to the energy demand. Two functioning modes are considered: nuclear plant connected up to other electric production systems as hydraulic or thermic plants or nuclear plants functioning on an independent network. For nuclear plants connected up with other production plants, xenon poisoning and operating cost lead to keep working at maximum power the nuclear reactors. Thus, the power modulation control system will not be considered and only start-up control, safety control, and control systems will be automated. For nuclear power plants working on an independent network, the power modulation control system is needed to economize fuel. It described the automated control system for reactors functioning with constant power: a power measurement system constituted of an ionization chamber and a direct-current amplifier will control the steadfastness of the power produced. For reactors functioning with variable power, the automated power control system will allow to change the power and maintain it steady with all the necessary safety and will control that working conditions under P max and R max (maximum power and maximum reactivity). The effects of temperature and xenon poisoning will also be discussed. Safety systems will be added to stop completely the functioning of the reactor if P max is reached. (M.P.)

  12. Thermionic nuclear reactor systems

    International Nuclear Information System (INIS)

    Kennel, E.B.

    1986-01-01

    Thermionic nuclear reactors can be expected to be candidate space power supplies for power demands ranging from about ten kilowatts to several megawatts. The conventional ''ignited mode'' thermionic fuel element (TFE) is the basis for most reactor designs to date. Laboratory converters have been built and tested with efficiencies in the range of 7-12% for over 10,000 hours. Even longer lifetimes are projected. More advanced capabilities are potentially achievable in other modes of operation, such as the self-pulsed or unignited diode. Coupled with modest improvements in fuel and emitter material performance, the efficiency of an advanced thermionic conversion system can be extended to the 15-20% range. Advanced thermionic power systems are expected to be compatible with other advanced features such as: (1) Intrinsic subcritically under accident conditions, ensuring 100% safety upon launch abort; (2) Intrinsic low radiation levels during reactor shutdown, allowing manned servicing and/or rendezvous; (3) DC to DC power conditioning using lightweight power MOSFETS; and (4) AC output using pulsed converters

  13. Nuclear reactor building

    International Nuclear Information System (INIS)

    Oshima, Nobuaki.

    1991-01-01

    The secondary container in a nuclear reactor building is made of a transparent structure having a shielding performance such as lead glass, by which the inside of the secondary container can be seen without undergoing radiation exposure. In addition, an operator transportation facility capable of carrying about 5 to 10 operators at one time is disposed, and the side of the facility on the secondary container is constituted with a transparent material such as glass, to provide a structure capable of observing the inside of the secondary container. The ventilation and air conditioning in the operator's transportation facility is in communication with the atmosphere of a not-controlled area. Accordingly, operators at the outside of the reactor building can reach the operator's transportation facility without taking and procedures for entering the controlled area and without undergoing radiation exposure. The inside of the secondary container in the reactor building can be seen from various directions through the transparent structure having the shielding performance. (N.H.)

  14. Practical decommissioning experience with nuclear installations in the European Community

    International Nuclear Information System (INIS)

    Skupinski, E.

    1992-01-01

    Initiated by the Commission of the European Communities (CEC), this seminar was jointly organized by the AEA, BNFL and the CEC at Windermere and the sites of Windscale/Sellafield, where the former Windscale advanced gas-cooled reactor and the Windscale piles are currently being dismantled. The meeting aimed at gathering a limited number of European experts for the presentation and discussion of operations, results and conclusions on techniques and procedures currently applied in the dismantling of large scale nuclear installations in the European Community

  15. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  16. Safety aspects of spent nuclear fuel interim storage installations

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade. Div. de Sistemas da Qualidade]. E-mail: romanato@ctmsp.mar.mil.br; Rzyski, Barbara Maria [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Div. de Ensino]. E-mail: bmrzyski@ipen.br

    2007-07-01

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  17. Safety aspects of spent nuclear fuel interim storage installations

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2007-01-01

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  18. Nuclear reactor power supply

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector is interposed between the protection system and the control system. This selector prevents a parameter signal of a set of signals, which differs from the other parameters signals of the set by more than twice the allowable variation of the sensors which produce the set, from passing to the control system. The selectors include a pair of signal selection units, one unit sending selected process signals to primary control channels and the other sending selected process signals to back-up control channels. Test signals are periodically impressed by a test unit on a selected pair of a selected unit and control channels. When test signals are so impressed the selected control channel is disabled from transmitting control signals to the reactor and/or its associated components. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test

  19. Safety of nuclear installations. An international comparison

    International Nuclear Information System (INIS)

    Renner, Andrea; Diwes, Andreas; Reingardt, Martin

    2010-01-01

    Safeguarding of nuclear power plants against disruptive actions or other external hazards is part of the plant design and presumption of an operation license. The general principle is defense in depth involving different security zones with separate barriers. The safeguards for nuclear installations are organized in three areas of responsibility: governmental measures (police, military), technical (detectors, scanners, illuminations, camera tracking, concrete barriers) and personnel measures (access control, security personnel, alarm) of the operating company. International responsibilities results from the treaty on the non-proliferation of nuclear weapons and several IAEA documents. The authors discuss the national regulations in Germany, Switzerland, United Kingdom and USA. Older NPPs that are not in compliance with actual safety standards will be a topic of increasing importance.

  20. Safety challenges after the Fukushima accident for operated installations others than EDF reactors

    International Nuclear Information System (INIS)

    Sene, Monique; Rollinger, Francois; Lheureux, Yves; Lizot, Marie-Therese; Kerdelhue, M.; Py, M.E.; Leroyer, Veronique; Pultier, Marc; Kassiotis, Christophe; Chambrette, Pierre; Devaux, Pascal; Baron, Yves; Collinet, Jacques

    2013-12-01

    This document contains Power Point presentations which, within the perspective created by the Fukushima accident, address various aspects of safety issues for installations other than currently operated EDF reactors. These contributions propose: an agenda of additional safety assessments (ECS) performed on these installations and an examination of responses made to prescriptions made on the 16 June 2012; a presentation by the IRSN of ECS performed in Areva plants; a presentation by Areva of arrangements related to these ECS; a presentation of the Manche local information commissions (CLI) and a presentation of their approach according to a white paper for the safety of civil nuclear installations located in the Manche department; a presentation by the IRSN on ECS concerning various basic nuclear installations such as laboratories, experimental reactors and stopped reactors; a presentation by the CEA of ECS of its installations (context, approach, execution and conclusions); a presentation by the ANCCLI about ASN decision and decision projects about the hard core according to ECS (example of the High flux reactor in the ILL in Grenoble)

  1. Nuclear reaction data and nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Paver, N [University of Trieste (Italy); Herman, M [International Atomic Energy Agency, Vienna (Austria); Gandini, A [ENEA, Rome (Italy)

    2001-12-15

    These two volumes contain the lecture notes of the workshop 'Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety', which was held at the Abdus Salam ICTP in the Spring of 2000. The workshop consisted of five weeks of lecture courses followed by practical computer exercises on nuclear data treatment and design of nuclear power systems. The spectrum of topics is wide enough to timely cover the state-of-the-art and the perspectives of this broad field. The first two weeks were devoted to nuclear reaction models and nuclear data evaluation. Nuclear data processing for applications to reactor calculations was the subject of the third week. On the last two weeks reactor physics and on-going projects in nuclear power generation, waste disposal and safety were presented.

  2. The Dismantling of Nuclear Installations in France

    International Nuclear Information System (INIS)

    Bonnaure, P.

    2011-01-01

    As we saw in the previous article by Pierre Bonnaure, though it has long been decried for the dangers inherent in its production structures and the very long-lived waste that it generates, nuclear power may yet recover its credibility, particularly in France. However, on close examination, we see that the nuclear industry is beset by a number of unresolved questions, beginning with the dismantling of installations that have become obsolete or are set to become so. Nuclear power took off after the Second World War, but several generations of technology have been developed since then, and most currently functioning power-stations - mainly second-generation installations - are theoretically nearing the end of their useful lives, at least in terms of what was said when they were being built. The problem therefore arises of their dismantling and the clean-up of the sites on which they were built, a thorny question on which Pierre Bonnaure casts light in this article (prospects, strategies, financing, management of waste etc.). Unfortunately, it emerges that in France nothing has really been resolved, that public debate on the matter is decidedly limited and that investment (both financial investment and research) is not commensurate with the needs of a sector which is, after all, the source of three quarters of national electricity production. (author)

  3. Patterns identification in supervisory systems of nuclear reactors installations and gas pipelines systems using self-organizing maps; Identificacao de padroes em sistemas supervisorios de instalacoes de reatores nucleares e em sistemas de gasodutos utilizando mapas auto-organizaveis

    Energy Technology Data Exchange (ETDEWEB)

    Doraskevicius Junior, Waldemar

    2005-07-01

    Self-Organizing Maps, SOM, of Kohonen were studied, implemented and tested with the aim of developing, for the energy branch, an effective tool especially for transient identification in nuclear reactors and for gas pipelines networks logistic supervision, by classifying operations and identifying transients or abnormalities. The digital system for the test was developed in Java platform, for the portability and scalability, and for belonging to free development platforms. The system, executed in personal computers, showed satisfactory results to aid in decision taking, by classifying IRIS (International Reactor Innovative and Secure) reactor operation conditions (data from simulator) and by classifying Southeast (owner: TRANSPETRO - Brazil) gas pipeline network. Various adaptations were needed for such business, as new topologies for the output layer of artificial neural network and particular preparation for the input data. (author)

  4. Nuclear reactors safety issues

    International Nuclear Information System (INIS)

    Barre, Francois; Seiler, Nathalie

    2008-01-01

    Full text of publication follows: Since the seventies, economic incentives have led the utilities to drive a permanent evolution of the light water reactor (LWR). The evolution deals with the reactor designs as well as the way to operate them in a more flexible manner. It is for instance related to the fuel technologies and management. On the one hand, the technologies are in continuous evolution, such as the fuel pellets (MOX, Gd fuel, or Cr doped fuels..) as well as advanced cladding materials (M5 TM , MDA or ZIRLO). On the other hand, the fuel management is also subject to continuous evolution in particular in terms of increasing the level of burn-up, the reactor (core) power, the enrichment, as well as the duration of reactor cycles. For instance, in a few years in France, the burn-up has raised beyond the value of 39 GWj/t, initially authorized up to 52 GWj/t for the UO 2 fuel. In the near future, utilities foreseen to reach fuel burn-up of 60 GWj/t for MOX fuel and 70 GWj/t for UO 2 fuel. Furthermore, the future reactor of fourth generation will use new fuels of advanced conception. Furthermore with the objective of improving the safety margins, methods and calculation tools used by the utilities in the elaboration of their safety demonstrations submitted to the Safety Authority, are in movement. The margin evaluation methodologies often consist of a calculation chain of best-estimate multi-field simulations (e.g. various codes being coupled to simulate in a realistic way the evolution of the thermohydraulic, neutronic and mechanic state of the reactor). The statistical methods are more and more sophisticated and the computer codes are integrating ever-complex physical models (e.g. three-dimensional at fine scale). Following this evolution, the Institute of Radioprotection and Nuclear Safety (IRSN), whose one of the roles is to examine the safety records and to rend a technical expertise, considers the necessity of reevaluating the safety issues for advanced

  5. Nuclear reactors for the future

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Kamble, M.T.; Dulera, I.V.

    2013-01-01

    For the sustainable development of nuclear power plants with enhanced safety features, economic competitiveness, proliferation resistance and physical protection, several advanced reactor developments have been initiated world-wide. The major advanced reactor initiatives and the proposed advanced reactor concepts have been briefly reviewed along with their advantages and challenges. Various advanced reactor designs being pursued in India have also been briefly described in the paper. (author)

  6. Licensing systems and inspection of nuclear installations

    International Nuclear Information System (INIS)

    1991-01-01

    The first study analysing the regulations governing the licensing and inspection of nuclear installations in OECD countries was published by OECD/NEA in 1980, and revised in 1986. Since then there have been amendments to national regulations on the subject, which have warranted updating of this publication. This new study provides a description of the licensing regulations and practices applied in the twenty OECD countries with provisions in that field. The national systems have been described according to a standard format to make comparisons and research easier. In most cases, the descriptions are supplemented by flow charts illustrating the procedures and specifying the different authorities involved in the licensing procedures [fr

  7. Nuclear reactor cooling device

    International Nuclear Information System (INIS)

    Hoshi, Masaya; Makihara, Yoshiaki.

    1985-01-01

    Purpose: To improve the heat transfer performance, as well as reducing and simplifying the structure while preventing the intrusion of primary coolants to utilization systems. Constitution: Heat transfer from the primary coolant circuit to the utilization circuits is conducted by means of heat pipe type heat exchangers. The heat exchanger comprises a tightly closed vessel divided by a partition wall, through which a plurality of heat pipes are passed. The primary coolants receiving the heat from the nuclear reactor enter the first chamber of the heat exchanger to heat the evaporating portion of the heat pipes. The heated flow of steams in the heat pipes transfer to the condensating portion in the second chamber to conduct heat exchange with the utilization system. In this way, since secondary coolant circuits are saved, the heat transfer performance can be improved significantly and the risk of failure can be reduced. (Kamimura, M,)

  8. Nuclear reactor control apparatus

    International Nuclear Information System (INIS)

    Sridhar, B.N.

    1983-01-01

    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod

  9. Nuclear reactor spacer assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.; Groves, M.D.

    1979-01-01

    A fuel assembly for a nuclear reactor is disclosed wherein the fuel element receiving and supporting grid is comprised of a first metal, the guide tubes which pass through the grid assembly are comprised of a second metal and the grid is supported on the guide tubes by means of expanded sleeves located intermediate the grid and guide tubes. The fuel assembly is fabricated by inserting the sleeves, of initial outer diameter commensurate with the guide tube outer diameters, through the holes in the grid assembly provided for the guide tubes and thereafter expanding the sleeves radially outwardly along their entire length such that the guide tubes can subsequently be passed through the sleeves. The step of radial expansion, as a result of windows provided in the sleeves having dimensions commensurate with the geometry of the grid, mechanically captures the grid and simultaneously preloads the sleeve against the grid whereby relative motion between the grid and guide tube will be precluded

  10. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  11. Nuclear reactor container

    International Nuclear Information System (INIS)

    Shioiri, Akio.

    1992-01-01

    In a nuclear reactor container, a vent tube communication port is disposed to a pressure suppression pool at a position higher than the pool water therein for communication with an upper dry well, and the upper end opening of a dry well communication pipe is disposed at a position higher than the communication port. When condensate return pipeline is ruptured in the upper dry well, water in a water source pool is injected to the pressure vessel and partially discharged out of the ruptured port and a depressurization valve connected to the pressure vessel to the inside of the upper dry well. The discharged water stays in the upper dry well and, when the water level reaches the height of the vent tube communication port, it flows into the pressure suppression pool. Even in a state that the entire amount of water in the water source pool is supplied, since water does not reach the upper opening port of the dry well communication pipe, water does not flow into a lower dry well. Accordingly, the motor of a control rod drives disposed in the lower dry well can be prevented from submerging. The reactor core can be cooled more reliably, to improve the reliability of the pressure suppression function. (N.H.)

  12. Statement of nuclear incidents at nuclear installations. Third quarter 2001

    International Nuclear Information System (INIS)

    2002-01-01

    A statement of nuclear incidents at nuclear installations in Britain during the third quarter of 2001 is published today by the Health and Safety Executive (copy attached). It covers the period 1 July to 30 September 2001. The statement is published under arrangements that came into effect from the first quarter of 1993, derived from the Health and Safety Commission's powers under section 11 of the Health and Safety at Work, etc. Act 1974. Normally each incident mentioned in HSE's Quarterly Incident Statements will already have been made public by the licensee or site operator either through a press statement or by inclusion in the newsletter for the site concerned. The locations of the installations mentioned in the statement are as follows: Heysham 1 (British Energy Generation plc), Sellafield (British Nuclear Fuels plc), Chapelcross (British Nuclear Fuels plc)

  13. Nuclear reactor types

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The characteristics of different reactor types designed to exploit controlled fission reactions are explained. Reactors vary from low power research devices to high power devices especially designed to produce heat, either for direct use or to produce steam to drive turbines to generate electricity or propel ships. A general outline of basic reactors (thermal and fast) is given and then the different designs considered. The first are gas cooled, including the Magnox reactors (a list of UK Magnox stations and reactor performance is given), advanced gas cooled reactors (a list of UK AGRs is given) and the high temperature reactor. Light water cooled reactors (pressurized water [PWR] and boiling water [BWR] reactors) are considered next. Heavy water reactors are explained and listed. The pressurized heavy water reactors (including CANDU type reactors), boiling light water, steam generating heavy water reactors and gas cooled heavy water reactors all come into this category. Fast reactors (liquid metal fast breeder reactors and gas cooled fast reactors) and then water-cooled graphite-moderated reactors (RBMK) (the type at Chernobyl-4) are discussed. (U.K.)

  14. Statement of nuclear incidents at nuclear installations. Third quarter 2001

    International Nuclear Information System (INIS)

    2002-01-01

    A statement of nuclear incidents at nuclear installations in Britain during the third quarter of 2001 is published today by the Health and Safety Executive. It covers the period 1 July to 30 September 2001. The statement is published under arrangements that came into effect from the first quarter of 1993, derived from the Health and Safety Commission's powers under section 11 of the Health and Safety at Work, etc. Act 1974

  15. Nuclear Plant Analyzer: Installation manual. Volume 1

    International Nuclear Information System (INIS)

    Snider, D.M.; Wagner, K.L.; Grush, W.H.; Jones, K.R.

    1995-01-01

    This report contains the installation instructions for the Nuclear Plant Analyzer (NPA) System. The NPA System consists of the Computer Visual System (CVS) program, the NPA libraries, the associated utility programs. The NPA was developed at the Idaho National Engineering Laboratory under the sponsorship of the US Nuclear Regulatory Commission to provide a highly flexible graphical user interface for displaying the results of these analysis codes. The NPA also provides the user with a convenient means of interactively controlling the host program through user-defined pop-up menus. The NPA was designed to serve primarily as an analysis tool. After a brief introduction to the Computer Visual System and the NPA, an analyst can quickly create a simple picture or set of pictures to aide in the study of a particular phenomenon. These pictures can range from simple collections of square boxes and straight lines to complex representations of emergency response information displays

  16. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  17. Nuclear reactor container

    International Nuclear Information System (INIS)

    Moriyama, Takeo; Ochiai, Kanehiro; Niino, Tsuyoshi; Kodama, Toyokazu; Hirako, Shizuka.

    1988-01-01

    Purpose: To obtain structures suitable to a container structures for nuclear power plants used in those districts where earthquakes occur frequently, in which no local stresses are caused to the fundamental base portions and the workability for the fundamental structures is improved. Constitution: Basic stabilizers are attached to a nuclear reactor container (PCV) and a basic concrete recess for receiving a basic stabilizer is disposed in basic concretes. A top stabilizer is joined and fixed to a top stabilizer receiving plate at the inside of an outer shielding wall. On the other hand, a PCV top recess for conducting the load of PCV to the top stabilizer is attached to the top of the PCV. By disposing stabilizer structures allowing miner displacements at the two points, that is, the top and the lowermost portion of the PCV, no local stress concentrations can be generated to the extension on the axial direction of components due to the inner pressure of the PCV and to the horizontal load applied to the upper portion of the PCV upon earthquakes. (Yoshino, Y.)

  18. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  19. Handling and carrying head for nuclear fuel assemblies and installation including this head

    International Nuclear Information System (INIS)

    Artaud, R.; Cransac, J.P.; Jogand, P.

    1986-01-01

    The present invention proposes a handling and carrying head ensuring efficiently the cooling of the nuclear fuel asemblies it transports so that any storage in liquid metal in a drum within or adjacent the reactor vessel is suppressed. The invention claims also a nuclear fuel handling installation including the head; it allows a longer time between loading and unloading campaigns and the space surrounding the reactor vessel keeps free without occupying a storage zone within the vessel [fr

  20. Nuclear power station with nuclear reactor accommodated largely secure against catastrophes

    International Nuclear Information System (INIS)

    Rosen, O.

    1987-01-01

    If the nuclear reactor is installed underground near the power station unit, then danger to the environment due to radiation contamination can be largely or nearly completely prevented by a covering of constant thickness or by a covering which can be installed by a catastrophic accident. The extinguishing of a burning reactor is also relatively simple for a reactor accommodated in a pit. The above-mentioned measures can be used individually or combined. (orig./HP) [de

  1. Nuclear reactor kinetics and control

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)

  2. Research nuclear reactor RA, Annual Report 2001

    International Nuclear Information System (INIS)

    Sotic, O.

    2002-01-01

    During 2001, activities at the RA research nuclear reactor in were performed according to the Contract about financing of the RA reactor for the period January-December 2001, signed by the Ministry of Science, technology and development of the Republic of Serbia. RA reactor was not operated since shutdown in August 1984. Although, the most of the planned reconstruction activities were finished until 1991, the most important, which was concerned with exchange of the reactor instrumentation, financed by the IAEA, was interrupted due to international sanctions imposed on the country. Since 1992, all the renewal and reconstruction activities were ceased. Continuous aging and degradation of the equipment and facilities demand decision making about the future status of the Ra reactor. Until this decision is made it is an obligation to maintain control and maintenance of ventilation system, power supply, internal transportation system, spent fuel storage, hot cells, electronic fuel surveillance system, and part of the stationary dosimetry system. In 2001, apart from the mentioned activities, actions were undertaken related to maintenance of the reactor building and installations. The most important tasks fulfilled were: protection of the roof of the ventilation system building, purchase and installing the fire protection system and twelve new battery cells in the reactor building. There were no actions concerned with improvement of the conditions for intermediate spent fuel storage. With the support of IAEA, actions were initiated for possible transport of the spent fuel tu Russia. At the end of 2001, preparations were started for possible future decommissioning of the RA reactor. After, renewal of the membership of our country in the IAEA, the Government of Yugoslavia has declared its attitude about the intention of RA reactor decommissioning at the General Conference in September 2001 [sr

  3. Nuclear reactor control rod

    International Nuclear Information System (INIS)

    Cearley, J.E.; Izzo, K.R.

    1987-01-01

    This patent describes a vertically oriented bottom entry control rod from a nuclear reactor: a frame including an elongated central spine of cruciform cross section connected between an upper support member and a lower support member both of cruciform shape having four laterally extending arms. The arms are in alignment with the arms of the lower support member and each aligned upper and lower support members has a sheath extending between; absorber plates of neutron absorber material, different from the material of the frame, one of the absorber plates is positioned within a sheath beneath each of the arms; attachment means suspends the absorber plates from the arms of the upper support member within a sheath; elongated absorber members positioned within a sheath between each of the suspended absorber plates and an arm of the lower support member; and joint means between the upper ends of the absorber members and the lower ends of the suspended absorber plates for minimizing gaps; the sheath means encloses the suspended absorber plates and the absorber members extending between aligned arms of the upper and lower support members and secured

  4. Nuclear reactor container

    International Nuclear Information System (INIS)

    Fukui, Tooru; Murase, Michio; Kataoka, Yoshiyuki; Hidaka, Masataka; Sumita, Isao; Tominaga, Kenji.

    1992-01-01

    In a nuclear reactor container, a chamber in communication with a wet well of a pressure suppression chamber is disposed and situated to such a position that the temperature is lower than a chamber containing pool water upon occurrence of loss of coolant accident. In addition, the inner surface of the pressure suppression chamber is constituted with steel walls in contact with pool water, and an outer circumferential pool is disposed at the outer circumferential surface thereof. Further, a circulation channel is disposed, and a water intake port is disposed at a position higher than an exit to the pool water, and a water discharge port is opened in the pool water at a position lower than the exit to the pool water. With such a constitution, the allowable temperature of the pressure suppression pool water can be elevated to a saturated steam temperature corresponding to the resistant pressure of the container, so that the temperature difference between the pressure suppression pool and the outer side thereof is increased by so much, to improve thermal radiation performance. Accordingly, it can be utilized as a pressure suppression means for a plant of greater power. Further, thermal conduction efficiency from the pool water region of the pressure suppression chamber to the outer circumferential pool water is improved, or thermal radiation area is enlarged due to the circulation channel, to improve the heat radiation performance. (N.H.)

  5. Safety device for nuclear reactor

    International Nuclear Information System (INIS)

    Jacquelin, Roland.

    1977-01-01

    This invention relates to a safety device for a nuclear reactor, particularly a liquid metal (generally sodium) cooled fast reactor. This safety device includes an absorbing element with a support head connected by a disconnectable connector formed by the armature of an electromagnet at the end of an axially mobile vertical control rod. This connection is so designed that in the event of it becoming disconnected, the absorbing element gravity slides in a passage through the reactor core into an open container [fr

  6. Nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Blackstone, E.G.; Lofy, R.A.; Williams, L.P.

    1979-01-01

    Apparatus for the in situ inspection of a nuclear reactor vessel to detect the location and character of flaws in the walls of the vessel, in the welds joining the various sections of the vessel, in the welds joining attachments such as nozzles, elbows and the like to the reactor vessel and in such attachments wherein an inspection head carrying one or more ultrasonic transducers follows predetermined paths in scanning the various reactor sections, welds and attachments

  7. Control rod drive of nuclear reactor

    International Nuclear Information System (INIS)

    Zhuchkov, I.I.; Gorjunov, V.S.; Zaitsev, B.I.

    1980-01-01

    This invention relates to nuclear reactors and, more particularly, to a drive of a control rod of a nuclear reactor and allows power control, excess reactivity compensation, and emergency shut-down of a reactor. (author)

  8. Nuclear reactor in deep water

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Events during October 1980, when the Indian Point 2 nuclear reactor was flooded by almost 500 000 litres of water from the Hudson river, are traced and the jumble of human errors and equipment failures chronicled. Possible damage which could result from the reactor getting wet and from thermal shock are considered. (U.K.)

  9. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  10. Transmutation of nuclear waste in nuclear reactors

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Pilate, S.; Wehmann, U.K.

    1996-03-01

    The objective of this joint study of ECN, Belgonucleaire, and Siemens is to investigate possibilities for transmutation of nuclear waste in regular nuclear reactors or in special transmutation devices. Studies of possibilities included the limits and technological development steps which would be needed. Burning plutonium in fast reactors, gas-cooled high-temperature reactors and light water reactors (LWR) have been considered. For minor actinides the transmutation rate mainly depends on the content of the minor actinides in the reactor and to a much less degree on the fact whether one uses a homogeneous system (with the actinides mixed into the fuel) or a heterogeneous system. If one wishes to stabilise the amount of actinides from the present LWRs, about 20% of all nuclear power would have to be generated in special burner reactors. It turned out that reactor transmutation of fission products would require considerable recycling efforts and that the time needed for a substantial transmutation would be rather long for the presently available levels of the neutron flux. If one would like to design burner systems which can serve more light water reactors, a large effort would be needed and other burners (possibly driven by accelerators) should be considered. (orig.)

  11. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  12. Importance of human factors on nuclear installations safety

    International Nuclear Information System (INIS)

    Caruso, G.J.

    1990-01-01

    Actually, installations safety and, in particular the nuclear installations infer a strong incidence in human factors related to the design and operation of such installations. In general, the experience aims to that the most important accidents have happened as result of the components' failures combination and human failures in the operation of safety systems. Human factors in the nuclear installations may be divided into two areas: economy and human reliability. Human factors treatments for the safety evaluation of the nuclear installations allow to diagnose the weak points of man-machine interaction. (Author) [es

  13. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  14. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  15. Software for simulation of nuclear simulation of nuclear installations

    International Nuclear Information System (INIS)

    Castaneda, J.O.; Ramos, L.M.; Arjona, O.; Rodriguez, L.

    1993-01-01

    The software is an instrument to build conceptual-type simulators of low, medium and full scale for used in nuclear installations. The system is composed by composed by two basic modules: one for the edition and the other for the simulation. The first one allows to prepare the information to simulate: mathematical model, technological design (fundamentally, operation board or mnemotechnical design), parameters to be shown, failures to be simulated

  16. Renewable energy sources and nuclear installations

    International Nuclear Information System (INIS)

    Hirschberg, S.; Bauer, Ch.; Burgherr, P.; Stucki, S.; Vogel, F.; Biollaz, S.; Schulz, T.; Durisch, W.; Hardegger, P.; Foskolos, K.; Meier, A.; Schenler, W.

    2005-02-01

    This comprehensive work report for the Swiss Federal Office of Energy (SFOE) made by the Paul Scherrer Institute PSI takes a look at work done in connection with the updating of the office's Energy Perspectives. In particular, the topic of electricity is reviewed in the light of pending important decisions in the area of nuclear energy and the newer renewable sources of energy. The report makes an attempt to estimate the effect on Swiss power production that the new renewables and new nuclear installations could have in the next 30-40 years and to what costs this could be done and which obstacles would have to overcome. The renewable energy sources include small hydro, wind, photovoltaics, solar thermal power plants, biogas, geothermal energy, wave-power and solar chemistry. The methods used include literature study and contacts with internal PSI experts on the various areas involved. The most important system characteristics were noted and learning curves for the various technologies were taken into account. Ecological and social factors were also considered

  17. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    International Nuclear Information System (INIS)

    Pesic, Milan; Neskovic, Nebojsa

    2006-01-01

    Study of a small accelerator-driven subcritical research reactor in the Vinca Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology

  18. Regulation concerning installation and operation of reactors for power generation

    International Nuclear Information System (INIS)

    1987-01-01

    This report shows the Ordinance of the Ministry of International Trade and Industry No.77 of December 28, 1978. The ordinance consists of provisions covering application for permission for construction of nuclear reactor (concerning continuous maximum thermal output, location, structure, reactor core, fuel material, moderator, reflector, cooling system, measurement control system, safety circuit, control system, emergency system, radioactive waste proposal facilities, construction plan, meteorology and other environmental conditions, etc.), operation plan (to be submitted every year), application for approval of joint management (name, address, facilities location, conditions for joint management, etc.), cancellation of permission (in five years from the date of permission), record keeping (density and temperature of neutron, temperature and pressure of coolant, purity of mederator, etc.), restriction on access to areas under management (measures to be taken in such areas), measures concerning exposure to radioactive rays (allowable dosage, etc.), patrol and checking in nuclear reactor facilities, self-imposed regular inspection of nuclear reactor facilities, operation of nuclear reactor, transport within plant or business establishment, storage (storing facilities, etc.), waste disposal, etc. (Nogami, K.)

  19. Radioactive nuclides in nuclear reactors

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1982-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around nuclear reactors. The curricula of the courses contain also chemical subject materials. With reference to the foreign curricula, a plan of educational subject material of chemistry was considered for students of the school in the previous report (JAERI-M 9827), where the first part of the plan, ''Fundamentals of Reactor Chemistry'', was reviewed. This report is a review of the second part of the plan containing fission products chemistry, actinoids elements chemistry and activated reactor materials chemistry. (author)

  20. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  1. Nuclear data for nuclear reactor analyses

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1984-01-01

    A discussion of nuclear data is presented emphasizing to what extent data are known and to what accuracy. The principal data of interest is that for neutron cross-sections. The changing status of data, evaluated nuclear data files and data validation and improvement are described. Although the discussion relates to nuclear data for reactor analysis may of the results also apply to fusion, accelerator, shielding, biomedical, space and defense studies. (U.K.)

  2. Practical decommissioning experience with nuclear installations in the European Community

    International Nuclear Information System (INIS)

    Skupinski, E.

    1993-01-01

    Initiated by the Commission of the European Communities (CEC), this seminar was jointly organized by Kernkraftwerke RWE Bayernwerk GmbH (KRB) and the CEC at Gundremmingen-Guenzburg (D), where the former KRB-A BWR is presently being dismantled. The meeting aimed at gathering a limited number of European experts for the presentation and discussion of operations, the results and conclusions on techniques and procedures presently applied in the dismantling of large-scale nuclear installations in the European Community. Besides the four pilot dismantling projects of the presently running third R and D programme (1989-93) of the European Community on decommissioning of nuclear installations (WAGR, BR-3 PWR, KRB-A BWR and AT-1 FBR fuel reprocessing), the organizers selected the presentation of topics on the following facilities which have a significant scale and/or representative features and are presently being dismantled: the Magnox reprocessing pilot plant at Sellafield, the HWGCR EL4 at Monts d'Arree, the operation of an on-site melting furnace for G2/G3 GCR dismantling waste at Marcoule, an EdF confinement conception of shut-down LWRs for deferred dismantling, and the technical aspects of the Greifswald WWER type NPPs decommissioning. This was completed by a presentation on the decommissioning of material testing reactors in the United Kingdom and by an overview on the conception and implementation of two EC databases on tools, costs and job doses. The seminar concluded with a guided visit of the KRB-A dismantling site. This meeting was attended by managers concerned by the decommissioning of nuclear installations within the European Community, either by practical dismantling work or by decision-making functions. Thereby, the organizers expect to have contributed to the achievement of decommissioning tasks under optimal conditions - with respect to safety and economics - by making available a complete and updated insight into on-going dismantling projects and by

  3. Planned reliability in the transport and installation of large nuclear components

    International Nuclear Information System (INIS)

    Bieler, L.

    1988-01-01

    The transport and installation of heavy and bulky large components require detailed planning of all jobs and activities, trained and experienced personnel and corresponding technical equipment for reliable and quality-assured implementation. The correct approach to the planning and implementation of such transports and installations has been confirmed by years of successful performance of these jobs e.g. in reactor pressure vessels and steam generators for nuclear power plants. Large components for nuclear power plants are truly extreme examples but will be all the better suited for demonstrating the problems inherent in transport and installation. (orig.) [de

  4. The future of nuclear reactors

    International Nuclear Information System (INIS)

    Teller, E.

    1989-01-01

    The Atomic Energy Commission Advisory Committee on Reactor Safeguards began work in early 1948 with the firm and unanimous conviction that nuclear power could not survive a significant damaging accident. They as a committee felt that their job was to make reactors so safe that no such event would ever occur. However, ambitious reactor planners did not like all the buts and cautions that the committee was raising. They seemed to delay unduly their setting sail into the brave new world of clean, cheap, safe nuclear energy. The committee was soon nicknamed the Committee on Reactor Prevention. Reactors, of course, represented a tremendous step into the future. To an unprecedented extent, they were based on theory. But the committee did not have the luxury of putting a preliminary model into operation and waiting for difficulties to show up. In assessing new designs and developments, they had to anticipate future difficulties. Their proposals in good part were accepted, but their deep emphasis on safety did not become a part of the program. Today, forty years later, the author still believes both in the need for nuclear reactors and in the need of a thorough-going, pervasive emphasis on their safety. Real, understandable safety can be achieved, and that achievement is the key to our nuclear future. The details he gives are only examples. The need for reactors that are not only safe but obviously safe can be ignored only at our peril

  5. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  6. Computerized nuclear material database management system for power reactors

    International Nuclear Information System (INIS)

    Cheng Binghao; Zhu Rongbao; Liu Daming; Cao Bin; Liu Ling; Tan Yajun; Jiang Jincai

    1994-01-01

    The software packages for nuclear material database management for power reactors are described. The database structure, data flow and model for management of the database are analysed. Also mentioned are the main functions and characterizations of the software packages, which are successfully installed and used at both the Daya Bay Nuclear Power Plant and the Qinshan Nuclear Power Plant for the purposed of handling nuclear material database automatically

  7. Technique of nuclear reactors controls

    International Nuclear Information System (INIS)

    Weill, J.

    1953-12-01

    This report deal about 'Techniques of control of the nuclear reactors' in the goal to achieve the control of natural uranium reactors and especially the one of Saclay. This work is mainly about the measurement into nuclear parameters and go further in the measurement of thermodynamic variables,etc... putting in relief the new features required on behalf of the detectors because of their use in the thermal neutrons flux. In the domain of nuclear measurement, we indicate the realizations and the results obtained with thermal neutron detectors and for the measurement of ionizations currents. We also treat the technical problem of the start-up of a reactor and of the reactivity measurement. We give the necessary details for the comprehension of all essential diagrams and plans put on, in particular, for the reactor of Saclay. (author) [fr

  8. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  9. Liquid-poison type power controlling device for nuclear reactor

    International Nuclear Information System (INIS)

    Horiuchi, Tetsuo; Yamanari, Shozo; Sugisaki, Toshihiko; Goto, Hiroshi.

    1981-01-01

    Purpose: To improve the safety and the operability of a nuclear reactor by adjusting the density of liquid poison. Constitution: The thermal expansion follow-up failure between cladding and a pellet upon abrupt and local variations of the power is avoided by adjusting the density of liquid poison during ordinary operation in combination with a high density liquid poison tank and a filter and smoothly controlling the reactor power through a pipe installed in the reactor core. The high density liquid poison is abruptly charged in to the reactor core under relatively low pressure through the tube installed in the reactor core at the time of control rod insertion failure in an accident, thereby effectively shutting down the reactor and improving the safety and the operability of the reactor. (Yoshihara, H.)

  10. A nuclear power reactor

    International Nuclear Information System (INIS)

    Borrman, B.E.; Broden, P.; Lundin, N.

    1979-12-01

    The invention consists of shock absorbing support beams fastened to the underside of the reactor tank lid of a BWR type reactor, whose purpose is to provide support to the steam separator and dryer unit against accelerations due to earthquakes, without causing undue thermal stresses in the unit due to differential expansion. (J.I.W.)

  11. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  12. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  13. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  14. Legal bases for the installation of nuclear power plants

    International Nuclear Information System (INIS)

    Faria, N.M. de; Barros, E.A.

    1980-01-01

    The role of the National Nuclear Energy Comission, the National Department of Water and Electrical Energy and the 'Centrais Eletricas Brasileiras S.A.' for the installation of Nuclear Power Plants is presented. (A.L.) [pt

  15. Managing and regulating organisational change in nuclear installations

    International Nuclear Information System (INIS)

    Pyy, P.; Reiersen, C.

    2004-01-01

    To the extent that organisational change in nuclear installations can potentially impact nuclear safety, it is imperative to ensure that such change is property managed and regulated. A number of key elements can help achieve successful management of change. (author)

  16. Cable handling system for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Crosgrove, R.O.; Larson, E.M.; Moody, E.

    1982-01-01

    A cable handling system for use in an installation such as a nuclear reactor is disclosed herein along with relevant portions of the reactor which, in a preferred embodiment, is a liquid metal fast breeder reactor. The cable handling system provides a specific way of interconnecting certain internal reactor components with certain external components, through an assembly of rotatable plugs. Moreover, this is done without having to disconnect these components from one another during rotation of the plugs and yet without interfering with other reactor components in the vicinity of the rotating plugs and cable handling system

  17. Multimedia on nuclear reactors physics

    International Nuclear Information System (INIS)

    Dies, Javier; Puig, Francesc

    2010-01-01

    The paper present an example of measures that have been found to be effective in the development of innovative educational and training technology. A multimedia course on nuclear reactor physics is presented. This material has been used for courses at master level at the universities; training for engineers at nuclear power plant as modular 2 weeks course; and training operators of nuclear power plant. The multimedia has about 785 slides and the text is in English, Spanish and French. (authors)

  18. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  19. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Berglund, R.C.

    1993-01-01

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  20. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    Concerning refining, fabrication and reprocessing operations of such materials as well as the installation and operation of reactors, necessary regulations are carried out. Namely, in case of establishing the business of refining, fabricating and reprocessing nuclear materials as well as installing nuclear reactors, applications for the permission of the Prime Minister and the Minister of International Trade and Industry should be filed. Change of such operations should be permitted after filing applications. These permissions are retractable. As regards the reactors installed aboard foreign ships, it must be reported to enter Japanese waters and the permission by the Prime Minister must be obtained. In case of nuclear fuel fabricators, a chief technician of nuclear fuel materials (qualified) must be appointed per each fabricator. In case of installing nuclear reactors, the design and methods of construction should be permitted by the Prime Minister. The standard for such permission is specified, and a chief engineer for operating reactors (qualified) must be appointed. Successors inherit the positions of ones who have operated nuclear material refining, fabrication and reprocessing businesses or operated nuclear reactors. (Rikitake, Y.)

  1. Method for operating nuclear reactor

    International Nuclear Information System (INIS)

    Utamura, Motoaki; Urata, Megumu; Uchida, Shunsuke

    1978-01-01

    Purpose: In order to judge the fuel failures, if any, without opening a reactor container for BWR type reactors, a method has been described for measuring the difference between the temperature dependent iodine spike value and the pressure dependent iodine spike value in the pressure vessel. Method: After the scram of a nuclear reactor, steam generated by decay heat is condensed in a remaining heat exchanger and cooling water is returned through a recycling pipe line to a reactor core. At the same time, a control rod drive system pump is operated, the reactor core is filled with the cooling water. Then, the coolant is taken from the recycling pipe line to cool the reactor core. After applying the temperature fluctuation, the cooling water is sampled at a predetermined time interval at a sampling point to determine the changes with time in the radioactive concentration of iodine. When the radioactivity of iodine in the cooling water is lowered sufficiently by a reactor purifying system, the nuclear reactor vessel is depressurized. After applying pressure fluctuation, iodine spike value is determined. (Kawakami, Y.)

  2. Nuclear reactor (1960)

    International Nuclear Information System (INIS)

    Maillard, M.L.

    1960-01-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [fr

  3. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sakurai, Shungo; Ogiya, Shunsuke.

    1990-01-01

    In a fuel assembly, if the entire fuels comprise mixed oxide fuels, reactivity change in cold temperature-power operation is increased to worsen the reactor shutdown margin. The reactor shutdown margin has been improved by increasing the burnable poison concentration thereby reducing the reactivity of the fuel assembly. However, since unburnt poisons are present at the completion of the reactor operation, the reactivity can not be utilized effectively to bring about economical disadvantage. In view of the above, the reactivity change between lower temperature-power operations is reduced by providing a non-boiling range with more than 9.1% of cross sectional area at the inside of a channel at the central portion of the fuel assembly. As a result, the amount of the unburnt burnable poisons is decreased, the economy of fuel assembly is improved and the reactor shutdown margin can be increase. (N.H.)

  4. Chapter No.3. Assessment and inspection of nuclear installations

    International Nuclear Information System (INIS)

    2002-01-01

    The assessment activity of UJD in relation to nuclear installation lies in assessment of safety documentation for constructions realised as nuclear installations, or construction through which changes on nuclear installations are realised. The assessment activity of UJD in 2001 was focused on National Repository of Radwaste in Mochovce, on Radwaste conditioning and treatment technology in Jaslovske Bohunice and on the assessment of documentation for the project of modernisation of Bohunice V-2 NPPs which is under preparation. The assessment of the technical condition of equipment, important in terms of nuclear safety, primarily based on results of in-service inspections and surveillance testing of safety related components and systems, is also a part of the safety assessment of nuclear installation operation. The inspectors take part in training courses and participate in other technical meetings and workshops organised by the IAEA and also take part in special training courses organised by the Nuclear Authorities of European countries, USA and Japan. Bohunice V-1 NPP is equipped with two reactors of WWER 440 type V-230 and was put into operation in 1978-1980 as one of the last nuclear power plants with this type of reactor. Both units of NPP V-1 Bohunice operated in 2001 according to the requirements of energy dispatching at nominal power, or in a regime of tertiary regulation. November 2000, a mission of experts invited by UJD and delegated by IAEA took place at the Bohunice NPPs. The mission members together with experts of the plant operator assessed the safety of the units of WWER-440/V-230 of Bohunice V-1 NPP after the reconstruction. The members of the mission prepared the report on the current status of safety of these units for the IAEA. In 2001, UJD by its decision, issued the approval for further operation of both reactor units of Bohunice V-1 NPP. In sense of the relevant decree on operational events, 20 events have been recorded, at Bohunice V-1 NPP in

  5. The siting of UK nuclear reactors.

    Science.gov (United States)

    Grimston, Malcolm; Nuttall, William J; Vaughan, Geoff

    2014-06-01

    Choosing a suitable site for a nuclear power station requires the consideration and balancing of several factors. Some 'physical' site characteristics, such as the local climate and the potential for seismic activity, will be generic to all reactors designs, while others, such as the availability of cooling water, the area of land required and geological conditions capable of sustaining the weight of the reactor and other buildings will to an extent be dependent on the particular design of reactor chosen (or alternatively the reactor design chosen may to an extent be dependent on the characteristics of an available site). However, one particularly interesting tension is a human and demographic one. On the one hand it is beneficial to place nuclear stations close to centres of population, to reduce transmission losses and other costs (including to the local environment) of transporting electricity over large distances from generator to consumer. On the other it is advantageous to place nuclear stations some distance away from such population centres in order to minimise the potential human consequences of a major release of radioactive materials in the (extremely unlikely) event of a major nuclear accident, not only in terms of direct exposure but also concerning the management of emergency planning, notably evacuation.This paper considers the emergence of policies aimed at managing this tension in the UK. In the first phase of nuclear development (roughly speaking 1945-1965) there was a highly cautious attitude, with installations being placed in remote rural locations with very low population density. The second phase (1965-1985) saw a more relaxed approach, allowing the development of AGR nuclear power stations (which with concrete pressure vessels were regarded as significantly safer) closer to population centres (in 'semi-urban' locations, notably at Hartlepool and Heysham). In the third phase (1985-2005) there was very little new nuclear development, Sizewell

  6. Nuclear reactor monitoring device

    International Nuclear Information System (INIS)

    Mihashi, Ishi; Honma, Hitoshi.

    1993-01-01

    The monitoring device of the present invention comprises a reactor core/reactor system data measuring and controlling device, a radioactivity concentration calculation device for activated coolants for calculating a radioactivity concentration of activated coolants in a main steam and reactor water by using an appropriate physical model, a radioactivity concentration correlation and comparison device for activated coolants for comparing correlationship with a radiation dose and an abnormality alarm device. Since radioactivity of activated primary coolants is monitored at each of positions in the reactor system and occurrence of leakage and the amount thereof from a primary circuit to a secondary circuit is monitored if the reactor has secondary circuit, integrity of the reactor system can be ensured and an abnormality can be detected rapidly. Further, radioactivity concentration of activated primary circuit coolants, represented by 16 N or 15 C, is always monitored at each of positions of PWR primary circuits. When a heat transfer pipe is ruptured in a steam generator, leakage of primary circuit coolants is detected rapidly, as well as the amount of the leakage can be informed. (N.H.)

  7. Statement on nuclear incidents at nuclear installations -third quarter 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Four incidents are reported. Carbon dioxide containing a small amount of radioactive material was released at the Chapelcross works of British Nuclear Fuels. However, air monitoring showed the contamination to be small. Surfaces contaminated were cleaned and the reactor was allowed to restart as scheduled. Refurbishment work at the Berkeley Nuclear Power Station sewage plant revealed five radioactive particles. The sludge has been isolated until a disposal method is found. Contamination on a coverall was found at the Sellafield reprocessing plant. Both the operators who may have worn the coverall may have received excess doses. Improvements in the possible source of contamination have been made. A leak of gas from the Hunterston B nuclear power station was found to be from a failed joint on a bolted flange on the bypass circuit heat exchanger. The joint has been repaired. (U.K.)

  8. The plutonium recycle for PWR reactors from brazilian nuclear program

    International Nuclear Information System (INIS)

    Rubini, L.A.

    1978-01-01

    The purpose of this thesis is to evaluate the material requirements of the nuclear fuel cycle with plutonium recycle. The study starts with the calculation of a reference reactor and has flexibility to evaluate the demand under two alternatives of nuclear fuel cycle for Pressurized Water Reactors (PWR): Without plutonium recycle; and with plutonium recycle. Calculations of the reference reactor have been carried out with the CELL-CORE codes. Variations in the material requirements were studied considering changes in the installed nuclear capacity of PWR reactors, the capacity factor of these reactors, and the introduction of fast breeders. Recycling plutonium produced inside the system can reach economies of about 5% U 3 O 8 and 6% separative work units if recycle is assumed only after the fifth operation cycle of the thermal reactors. (author)

  9. Philosophy and safety requirements for land-based nuclear installations

    International Nuclear Information System (INIS)

    Kellermann, Otto

    1978-01-01

    The main ideas of safety philosophy for land-based nuclear installations are presented together with their background of protection goals. Today's requirements for design and quality assurance are deductively shown. Finally a proposition is made for a new balancing of safety philosophy according to the high safety level that nuclear installations have reached

  10. Nuclear safety. Concerns about the nuclear power reactors in Cuba

    International Nuclear Information System (INIS)

    Wells, Jim; Aloise, Gene; Flaherty, Thomas J.; Fitzgerald, Duane; Zavala, Mario; Hayward, Mary Alice

    1992-09-01

    In 1976, the Soviet Union and Cuba concluded an agreement to construct two 440-megawatt nuclear power reactors near Cienfuegos on the south central coast of Cuba, about 180 miles south of Key West, Florida. The construction of these reactors, which began around 1983, was a high priority for Cuba because of its heavy dependence on imported oil. Cuba is estimated to need an electrical generation capacity of 3,000 megawatts by the end of the decade. When completed, the first reactor unit would provide a significant percentage (estimated at over 15 percent) of Cuba's need for electricity. It is uncertain when Cuba's nuclear power reactors will become operational. On September 5, 1992, Fidel Castro announced the suspension of construction at both of Cuba's reactors because Cuba could not meet the financial terms set by the Russian government to complete the reactors. Cuban officials had initially planned to start up the first of the two nuclear reactors by the end of 1993. However, before the September 5 announcement, it was estimated that this reactor would not be operational until late 1995 or early 1996. The civil construction (such as floors and walls) of the first reactor is currently estimated to be about 90 percent to 97 percent complete, but only about 37 percent of the reactor equipment (such as pipes, pumps, and motors) has been installed. The civil construction of the second reactor is about 20 percent to 30 percent complete. No information was available about the status of equipment for the second reactor. According to former Cuban nuclear power and electrical engineers and a technician, all of whom worked at the reactor site and have recently emigrated from Cuba, Cuba's nuclear power program suffers from poor construction practices and inadequate training for future reactor operators. One former official has alleged, for example, that the first reactor containment structure, which is designed to prevent the accidental release of radioactive material into

  11. Separated type nuclear superheating reactor

    International Nuclear Information System (INIS)

    Hida, Kazuki.

    1993-01-01

    In a separated type nuclear superheating reactor, fuel assemblies used in a reactor core comprise fuel rods made of nuclear fuel materials and moderator rods made of solid moderating materials such as hydrogenated zirconium. Since the moderating rods are fixed or made detachable, high energy neutrons generated from the fuel rods are moderated by the moderating rods to promote fission reaction of the fuel rods. Saturated steams supplied from the BWR type reactor by the fission energy are converted to high temperature superheated steams while passing through a steam channel disposed between the fuel rods and the moderating rods and supplied to a turbine. Since water is not used but solid moderating materials sealed in a cladding tube are used as moderation materials, isolation between superheated steams and water as moderators is not necessary. Further, since leakage of heat is reduced to improve a heat efficiency, the structure of the reactor core is simplified and fuel exchange is facilitated. (N.H.)

  12. New generation of nuclear reactors

    International Nuclear Information System (INIS)

    Chwaszczewski, S.

    2000-01-01

    The development trends of the construction of nuclear reactors has been performed on the background of worldwide electricity demand for now and predicted for future. The social acceptance, political and economical circumstances has been also taken into account. Seems to Electric Power Research Institute (US) and other national authorities the advanced light water reactors have the best features and chances for further development and commercial applications in future

  13. Nuclear reactor core safety device

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1977-01-01

    The danger of a steam explosion from a nuclear reactor core melt-down can be greatly reduced by adding a gasifying agent to the fuel that releases a large amount of gas at a predetermined pre-melt-down temperature that ruptures the bottom end of the fuel rod and blows the finely divided fuel into a residual coolant bath at the bottom of the reactor. This residual bath should be equipped with a secondary cooling loop

  14. Computation system for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals

  15. Nuclear reactor apparatus

    International Nuclear Information System (INIS)

    Braun, H.E.; Bonnet, H.P.

    1978-01-01

    The reactor and its containment, instead of being supported on a solid concrete pad, are supported on a truss formed of upper and lower reinforced horizontal plates and vertical walls integrated into a rigid structure. The plates and walls from chambers within which the auxiliary components of the reactor, such as valves, pumping equipment and various tanks, are disposed. Certain of the chambers are also access passages for personnel, pipe chases, valve chambers and the like. In particular the truss includes an annular chamber. This chamber is lined and sealed by a corrosion-resistant liner and contains coolant and serves as a refueling cooling storage tank. This tank is directly below the primary-coolant conductor loops which extend from the reactor above the upper plate. The upper plate includes a sump connected to the tank through which coolant flows into the tank in the event of the occurrence of a loss-of-coolant accident. The truss extends beyond the containment and has chambers in the extending annulus. Pumps for circulating the coolant between the refueling coolant storage tank and the reactor are provided in certain of these chambers. The pumps are connected to the reactor by relatively short coolant conductors. Access to these pumps is readily afforded through hatches in the extending annulus

  16. BWR type nuclear reactors

    International Nuclear Information System (INIS)

    Yamamoto, Toru.

    1987-01-01

    Purpose: To obtain reactor core characteristics with less changes in the excess reactivity due to fuel burnup even when the operation period varies. Constitution: In a BWR type reactor where fuel assemblies containing fuel rods incorporated with burnable poisons are arranged, the fuel assemblies are grouped into first fuel assemblies and second fuel assemblies. Then, the number of fuel rods incorporated with burnable poisons within the first fuel assemblies is made greater than that of the second fuel rods, while the concentration of the burnable poisons in the fuel rods incorporated with the burnable poisons in the first fuel assemblies is made lower than that of the fuel rods incorporated with the burnable poisons in the second fuel assemblies. In the BWR type reactor constituted in this way, the reactor core characteristics can be improved by changing the ratio between the first fuel assemblies and the second fuel assemblies charged to the reactor core, thereby decreasing the changes in the burnup of the excess reactivity. (Kamimura, M.)

  17. External radiation levels in installations of nuclear technology center

    International Nuclear Information System (INIS)

    Maletta, Paulo Guilherme M.; Filipetto, Joao; Wakabayashi, Tetsuaki; Silva, Teogenes A. da

    2005-01-01

    The radiological protection is a basic activity of nuclear technology center so that can carry through its activities with security, having to be planned and executed with total effectiveness. One of the basic tools of the radiological protection is the adoption of monitoring programs, that have as objective generality to evaluate the radiological conditions of the workstation and to assure that these conditions are acceptable safe for the displayed individuals, either workers or members of the public, as established in the basic norms of radiological protection. The Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, first institution in Brazil, created in 1952 to entirely dedicate the related works to the nuclear area, to own 39 building, of which they are kept the Triga Reactor, Irradiation Gamma Laboratory, Reject Laboratory, Calibration Dosemeters Laboratory and others. In such installations, radioactive materials are produced, handled, processed and stored, being necessary the levels of external radiation ambient monitoring. As part of the radioprotection plan, monitoring 63 points on strategically located in the external areas to the building of CDTN, using characterized and calibrated thermoluminescence dosemeters. This work describes the dose distribution of the points, the doses evaluation procedure and the 4 results carried through between 2001 and 2004. The data demonstrate the attendance to the level of security established in the basic norm, what it contributed for the operation licensing of to the IBAMA. (author)

  18. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1983-01-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase

  19. Socio-economic impact of nuclear reactor decommissioning at Vandellos I NPP

    International Nuclear Information System (INIS)

    Liliana Yetta Pandi

    2013-01-01

    Currently nuclear reactors in Indonesia has been outstanding for more than 30 years, the possibility of nuclear reactors will be decommissioned. Closure of the operation or decommissioning of nuclear reactors will have socio-economic impacts. The socioeconomic impacts occur to workers, local communities and wider society. In this paper we report on socio-economic impacts of nuclear reactors decommissioning and lesson learned that can be drawn from the socio-economic impacts decommissioning Vandellos I nuclear power plant in Spain. Socio-economic impact due to decommissioning of nuclear reactor occurs at installation worker, local community and wider community. (author)

  20. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  1. Dismantling the nuclear research reactor Thetis

    Energy Technology Data Exchange (ETDEWEB)

    Michiels, P. [Belgoprocess, 2480 Dessel (Belgium)

    2013-07-01

    The research reactor Thetis, in service since 1967 and stopped in 2003, is part of the laboratories of the institution of nuclear science of the University of Ghent. The reactor, of the pool-type, was used as a neutron-source for the production of radio-isotopes and for activation analyses. The reactor is situated in a water pool with inner diameter of 3 m. and a depth of 7.5 m. The reactor core is situated 5.3 m under water level. Besides the reactor, the pool contains pneumatic loops, handling tools, graphite blocks for neutron moderation and other experimental equipment. The building houses storage rooms for fissile material and sources, a pneumatic circuit for transportation of samples, primary and secondary cooling circuits, water cleaning resin circuits, a ventilation system and other necessary devices. Because of the experimental character of the reactor, laboratories with glove boxes and other tools were needed and are included in the dismantling program. The building is in 3 levels with a crawl-space. The ground-floor contains the ventilation installation, the purification circuits with tanks, cooling circuits and pneumatic transport system. On the first floor, around the reactor hall, the control-room, visiting area, end-station for pneumatic transport, waste-storage room, fuel storage room and the labs are located. The second floor contains a few laboratories and end stations of the two high speed transfer tubes. The lowest level of the pool is situated under ground level. The reactor has been operated at a power of 150 kW and had a max operating power of 250 kW. Belgoprocess has been selected to decommission the reactor, the labs, storage halls and associated circuits to free release the building for conventional reuse and for the removal of all its internals as legal defined. Besides the dose-rate risk and contamination risk, there is also an asbestos risk of contamination. During construction of the installation, asbestos-containing materials were

  2. Considerations about decommissioning of the IEA-R1 research reactor and the future of its installations after shutdown

    International Nuclear Information System (INIS)

    Frajndlich, Roberto

    2014-01-01

    The IEA-R1 Nuclear Research Reactor, in operation since 1957, in the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), is one of the oldest research reactors in the world. However at some point in time in the future, as example of the other reactors, it will be shutdown definitively. Before that time actually arrives, the operational organization needs to plan the future of its installations and define the final destination of equipment and radioactive as well as non-radioactive material contained inside the installations. These and other questions should be addressed in the so called Preliminary decommissioning plan of the installation, which is the subject of this work. The work initially presents an over view about the theme and defines the general and specific objectives describing, in succession, the directions that the operating organization should consider for the formulation of a decommissioning plan. The present structure of the Brazilian nuclear sector emphasizing principally the norms utilized in the management of radioactive waste is also presented. A description of principle equipment of the IEA-R1 reactor which constitutes its inventory of radioactive and non-radioactive material is given. The work emphasizes the experience of the reactor technicians, acquired during several reforms and modifications of the reactor installations realized during its useful life time. This experience may be of great help for the decommissioning in the future. An experiment using the high resolution gamma spectrometric method and computer calculation using Monte Carlo theory were performed with the objective of obtaining an estimate of the radioactive waste produced from dismantling of the reactor pool walls. The cost of reactor decommissioning for different choices of strategies was determined using the CERREX code. Finally, a discussion about different strategies is presented. On the basis of these discussions it is concluded that the most advantageous

  3. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    Marincic, A.

    2009-01-01

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  4. Nuclear reactor core assembly

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1978-01-01

    The object of the present invention is to provide a fast reactor core assembly design for use with a fluid coolant such as liquid sodium or carbon monoxide incorporating a method of increasing the percentage of coolant flow though the blanket elements relative to the total coolant flow through the blanket and fuel elements during shutdown conditions without using moving parts. It is claimed that deterioration due to reactor radiation or temperature conditions is avoided and ready modification or replacement is possible. (U.K.)

  5. Space nuclear reactor safety

    International Nuclear Information System (INIS)

    Damon, D.; Temme, M.; Brown, N.

    1990-01-01

    Definition of safety requirements and design features of the SP-100 space reactor power system has been guided by a mission risk analysis. The analysis quantifies risk from accidental radiological consequences for a reference mission. Results show that the radiological risk from a space reactor can be made very low. The total mission risk from radiological consequences for a shuttle-launched, earth orbit SP-100 mission is estimated to be 0.05 Person-REM (expected values) based on a 1 mREM/yr de Minimus dose. Results are given for each mission phase. The safety benefits of specific design features are evaluated through risk sensitivity analyses

  6. Nuclear reactors theory

    International Nuclear Information System (INIS)

    Naudan, G.; Nigon, J.L.

    1993-01-01

    After principles of chain reaction and criticality notion, a descriptive model of neutrons behaviour is exposed from a local point of view (this model is called four factors model). One justifies the use of middle values for the calculation of the distribution in space of reactor, quantities representing heterogeneous middle from a local point of view (fuel, moderator, can or clad, and so on ...) by substitution of an equivalent homogeneous middle. Time dependence, dynamical behaviour of reactor are studied. Long term effects of evolution of constituents elements of heart under irradiation, and ways to balance this evolution are in the last paragraph. 18 refs., 26 figs

  7. Installation technology of reactor internals on shroud replacement work

    International Nuclear Information System (INIS)

    Miyano, Hiroshi

    1999-01-01

    Since the replacement of large welded reactor internals much as a core shroud did not have a precedent in the world, quite a few technologies had to be developed. Especially for the installation of new core shroud, jet pumps, core plate and top guide, the accurate weld and fit-up techniques for large structures was required to secure their integrity. The vessel shielding system was utilized to reduce general area dose rate such that all replacement work. For jet pump installation, automatic remote welding machines were used for high radiation area. As for the core shroud, shroud support weld prep machining tool with high accuracy, jacking system to support fit-up, new weld machine for small work space and low heat input weld joint were developed. Shroud replacement work in Fukushima Dai-ichi NPS Unit 3 (1F-3) with application of these development techniques, was successfully accomplished. The technology is applied for 1F-2 replacement work also. (author)

  8. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    Baddley, A.H.

    1981-01-01

    A method of constructing a radiation shielding plug for use in the roof of the coolant containment vault of liquid metal cooled fast breeder reactors is described. The construction allows relative movement of that part of service cables and pipes which are carried by the fixed roof and that part which is carried by the rotatable plug. (U.K.)

  9. Nuclear power reactor safety

    International Nuclear Information System (INIS)

    Pon, G.A.

    1976-10-01

    This report is based on the Atomic Energy of Canada Limited submission to the Royal Commission on Electric Power Planning on the safety of CANDU reactors. It discusses normal operating conditions, postulated accident conditions, and safety systems. The release of radioactivity under normal and accident conditions is compared to the limits set by the Atomic Energy Control Regulations. (author)

  10. Decommissioning of nuclear installations - regulations - financing - responsibility - insurance

    International Nuclear Information System (INIS)

    Hubert, E.H.; Andersson, C.; Deprimoz, J.; Mayoux, J.C.; Richard, M.; Sartorelli, C.; Nocera, F.

    1983-01-01

    This paper highlights three aspects of decommissioning of nuclear installations which relate, more or less directly, to legal options already applied or advocated. It reviews the regulatory conditions for decommissioning a nuclear installation and indicates legal provisions for financing decommissioning expenditures. It also describes the legal provisions to determine liabilities in case of nuclear damage and the assistance which insurers may provide to cover the consequences of such liabilities. (NEA) [fr

  11. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  12. Cryogenics in nuclear reactor technology

    International Nuclear Information System (INIS)

    Dharmadurai, G.

    1982-01-01

    The cryogenic technology has significantly contributed to the development of several proven techniques for use in the nuclear power industry. A noteworthy feature is the unique role of cryogenics in minimising the release of radioactive and some chemical pollutants to the environment during the operation of various plants associated with this industry. The salient technological features of several cryogenic processes relevant to the nuclear reactor technology are discussed. (author)

  13. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  14. Nuclear power plant with several reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grishanin, E I; Ilyunin, V G; Kuznetsov, I A; Murogov, V M; Shmelev, A N

    1972-05-10

    A design of a nuclear power plant suggested involves several reactors consequently transmitting heat to a gaseous coolant in the joint thermodynamical circuit. In order to increase the power and the rate of fuel reproduction the low temperature section of the thermodynamical circuit involves a fast nuclear reactor, whereas a thermal nuclear reactor is employed in the high temperature section of the circuit for intermediate heating and for over-heating of the working body. Between the fast nuclear and the thermal nuclear reactors there is a turbine providing for the necessary ratio between pressures in the reactors. Each reactor may employ its own coolant.

  15. Health requirements for nuclear reactor operators

    International Nuclear Information System (INIS)

    1980-05-01

    The health prerequisites established for the qualification of nuclear reactor operators according to CNEN-NE-1.01 Guidelines Licensing of nuclear reactor operators, CNEN-12/79 Resolution, are described. (M.A.) [pt

  16. Neutron noise in nuclear reactors

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pachowska, R.

    1961-06-01

    The power of a nuclear reactor, in the operating conditions, presents fluctuations due to various causes. This random behaviour can be included in the study of 'noises'. Among other sources of noise, we analyse hereafter the fluctuations due: a) to the discontinuous emissions of neutrons from an independent source; b) to the multiplication of neutrons inside the reactor. The method which we present makes use of the analogies between the rules governing a nuclear reactor in operation and a number of radio-electrical systems, in particular the feed-back loops. The reactor can be characterized by its 'passing band' and is described as a system submitted to a sequence of random pulses. In non linear operating condition, the effect of neutron noise is defined by means of a non-linear functional, this theory is thus related to previous works the references of which are given at the end of the present report. This leads us in particular in the case of nuclear reactors to some results given by A. Blaquiere in the case of radio-electrical loops. (author) [fr

  17. Order of 10 october 1977 on the special safety measures applicable to certain large nuclear installations

    International Nuclear Information System (INIS)

    1978-01-01

    This Order by the Minister of Industry, Commerce and Crafts and the Minister of Labour was made in implementation of Section 40 of Decree No. 75-306 of 28 April 1975 on the protection of workers against the hazards of ionizing radiation in large nuclear installations. It lays down the safety measures applicable to nuclear reactors and ancillary facilities, particle accelerators, irradiated fuel reprocessing plants and facilities for the storage of radioactive waste. (NEA) [fr

  18. Nuclear reactors and disarmament

    International Nuclear Information System (INIS)

    Almagro, J.C.; Estrada Oyuela, M.E.; Garcia Moritan, R.

    1987-01-01

    From a brief analysis of the perspectives of nuclear weapons arsenals reduction, a rational use of the energetic potential of the ogives and the authentic destruction of its warlike power is proposed. The fissionable material conversion contained in the nuclear fuel ogives for peaceful uses should be part of the disarmament agreements. This paper pretends to give an approximate idea on the resources re assignation implicancies. (Author)

  19. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  20. Light-water nuclear reactors

    International Nuclear Information System (INIS)

    Drevon, G.

    1983-01-01

    This work gives basic information on light-water reactors which is advanced enough for the reader to become familiar with the essential objectives and aspects of their design, their operation and their insertion in the industrial, economic and human environment. In view of the capital role of electric energy in the modern economy a significant place is given to electron-nuclear power stations, particularly those of the type adopted for the French programme. The work includes sixteen chapters. The first chapter relates the history and presents the various applications of light water reactors. The second refers to the general elementary knowledge of reactor physics. The third chapter deals with the high power light-water nuclear power station and thereby introduces the ensuing chapters which, up to and including chapter 13, are devoted to the components and the various aspects of the operation of power stations, in particular safety and the relationship with the environment. Chapter 14 provides information on the reactors adapted to applications other than the generation of electricity on an industrial scale. Chapter 15 shows the extent of the industrial effort devoted to light-water reactors and chapter 16 indicates the paths along which the present work is preparing the future of these reactors. The various chapters have been written to allow for separate consultation. An index of the main technical terms and a bibliography complete the work [fr

  1. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  2. Nuclear reactor core

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo; Ishibashi, Yoko; Mochida, Takaaki; Haikawa, Katsumasa; Yamanaka, Akihiro.

    1995-01-01

    A reactor core is radially divided into an inner region, an outer region and an outermost region. As a fuel, three kinds of fuels, namely, a high enrichment degree fuel at 3.4%, a middle enrichment degree fuel at 2.3% and a low enrichment degree at 1.1% of a fuel average enrichment degree of fission product are used. Each of the fuels is bisected to upper and lower portions at an axial center thereof. The difference of average enrichment degrees between upper and lower portions is 0.1% for the high enrichment degree fuel, 0.3% for the middle enrichment degree fuel and 0.2% for the low enrichment degree fuel. In addition, the composition of fuels in each of radial regions comprises 100% of the low enrichment degree fuels in the outermost region, 91% of the higher enrichment degree fuels and 9% of the middle enrichment degree fuels in the outer region, and 34% of the high enrichment degree fuels and 30% of the middle enrichment degree fuels in the inner region. With such a constitution, fuel economy can be improved while maintaining the thermal margin in an initially loaded reactor core of a BWR type reactor. (I.N.)

  3. Nuclear reactor recyclation device

    International Nuclear Information System (INIS)

    Takigawa, Yukio; Chuma, Kazuto

    1987-01-01

    Purpose: To prevent the unevenness for the coolant flow rate even when abnormality occurs to one of recycling pumps. Constitution: A plurality of jet pumps disposed at an interval around the reactor core are divided circumferentially into two sets, and a pipeway is disposed to the outside of each pair including recycling pumps corresponding to each of the sets. The pipeway is connected to the recycling inlet of the jet pump by way of a manifold. The discharge portion of the recycling pumps of the loop pipeway are connected with each other by way of communication pipes, and a normally closed valve is disposed to the communication pipe and the normally closed valve of the communication pipe is opened upon detecting abnormality for one of the recycling pumps. Thus, if either one of the pair of recycling pumps shows abnormal state, coolants flows from the other of pipeway to the outside of the loop pipeway and coolants are supplied from all the jet pumps to the reactor core portion and, accordingly, the not-uniform flow rate can be prevented to eliminate undesired effect on the reactor core. (Kamimura, M.)

  4. Nuclear reactor core stabilizing arrangement

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1976-01-01

    A nuclear reactor core stabilizing arrangement is described wherein a plurality of actuators, disposed in a pattern laterally surrounding a group of elongated fuel assemblies, press against respective contiguous fuel assemblies on the periphery of the group to reduce the clearance between adjacent fuel assemblies thereby forming a more compacted, vibration resistant core structure. 7 claims, 4 drawing figures

  5. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Leigh, K.M.

    1980-01-01

    A liquid metal cooled nuclear reactor is described, wherein coolant is arranged to be flowed upwardly through a fuel assembly and having one or more baffles located above the coolant exit of the fuel assembly, the baffles being arranged so as to convert the upwardly directed motion of liquid metal coolant leaving the fuel assembly into a substantially horizontal motion. (author)

  6. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  7. Nuclear reactor safety protection device

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Noguchi, Atomi; Matsumiya, Shoichi; Furusato, Ken-ichiro; Arita, Setsuo.

    1994-01-01

    The device of the present invention extremely reduces a probability of causing unnecessary scram of a nuclear reactor. That is, four control devices receive signals from each of four sensors and output four trip signals respectively in a quardruplicated control device. Each of the trip signals and each of trip signals via a delay circuit are inputted to a logical sum element. The output of the logical sum circuit is inputted to a decision of majority circuit. The decision of majority circuit controls a scram pilot valve which conducts scram of the reactor by way of a solenoid coils. With such procedures, even if surge noises of a short pulse width are mixed to the sensor signals and short trip signals are outputted, there is no worry that the scram pilot valve is actuated. Accordingly, factors of lowering nuclear plant operation efficiency due to erroneous reactor scram can be reduced. (I.S.)

  8. Surveillance of nuclear power reactors

    International Nuclear Information System (INIS)

    Marini, J.

    1983-01-01

    Surveillance of nuclear power reactors is now a necessity imposed by such regulatory documents as USNRC Regulatory Guide 1.133. In addition to regulatory requirements, however, nuclear reactor surveillance offers plant operators significant economic advantages insofar as a single day's outage is very costly. The economic worth of a reactor surveillance system can be stated in terms of the improved plant availability provided through its capability to detect incidents before they occur and cause serious damage. Furthermore, the TMI accident has demonstrated the need for monitoring certain components to provide operators with clear information on their functional status. In response to the above considerations, Framatome has developed a line of products which includes: pressure vessel leakage detection systems, loose part detection systems, component vibration monitoring systems, and, crack detection and monitoring systems. Some of the surveillance systems developed by Framatome are described in this paper

  9. The failure diagnoses of nuclear reactor systems

    International Nuclear Information System (INIS)

    Sheng Huanxing.

    1986-01-01

    The earlier period failure diagnoses can raise the safety and efficiency of nuclear reactors. This paper first describes the process abnormality monitoring of core barrel vibration in PWR, inherent noise sources in BWR, sodium boiling in LMFBR and nuclear reactor stability. And then, describes the plant failure diagnoses of primary coolant pumps, loose parts in nuclear reactors, coolant leakage and relief valve location

  10. Decommissioning of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnachs, J.; Popelis, A.

    2002-01-01

    In May 1995, the Latvian Government decided to shut down the Research Reactor Salaspils (SRR) and to dispense with nuclear energy in future. The reactor has been out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH from 1998-1999. he Latvian Government decided on 26 October 1999 to start the direct dismantling to 'green field' in 2001. The results of decommissioning and dismantling performed in 1999-2001 are presented and discussed. The main efforts were devoted to collecting and conditioning 'historical' radioactive waste from different storages outside and inside the reactor hall. All radioactive material more than 20 tons were conditioned in concrete containers for disposal in the radioactive waste depository 'Radons' in the Baldone site. Personal protective and radiation measurement equipment was upgraded significantly. All non-radioactive equipment and material outside the reactor buildings were free-released and dismantled for reuse or conventional disposal. Weakly contaminated material from the reactor hall was collected and removed for free-release measurements. The technology of dismantling of the reactor's systems, i.e. second cooling circuit, zero power reactors and equipment, is discussed in the paper. (author)

  11. Technical and legal aspects of the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Rowden, M.A.; Fowler, S.E.

    1983-01-01

    Many of the plants licensed at the start of nuclear power programmes will require decommissioning in the 1990's and this issue should now be confronted by the nuclear industry, its regulators and governments. This paper deals with the United States programme and experience in the decommissioning of nuclear installations and describes alternative decommissioning methods including safety and financial aspects. (NEA) [fr

  12. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  13. Nuclear reactor effluent monitoring

    International Nuclear Information System (INIS)

    Minns, J.L.; Essig, T.H.

    1993-01-01

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC's program results

  14. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Marmonier, Pierre; Mesnage, Bernard; Nervi, J.C.

    1975-01-01

    This invention refers to fuel assemblies for a liquid metal cooled fast neutron reactor. Each assembly is composed of a hollow vertical casing, of regular polygonal section, containing a bundle of clad pins filled with a fissile or fertile substance. The casing is open at its upper end and has a cylindrical foot at its lower end for positioning the assembly in a housing provided in the horizontal diagrid, on which the core assembly rests. A set of flat bars located on the external surface of the casing enables it to be correctly orientated in its housing among the other core assemblies [fr

  15. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials

  16. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1976-01-01

    Reference is made to the instrumentation of liquid metal cooled fast reactors. In order to ensure the safe operation of such reactors it is necessary to constantly monitor the coolant flowing through the fuel assemblies for temperature and rate of flow, requiring a large number of sensors. An improved and simplified arrangement is claimed in which the fuel assemblies feed a fraction of coolant to three instrument units arranged to sense the temperature and rate of flow of samples of coolant. Each instrument unit comprises a sleeve housing a sensing unit and has a number of inlet ducts arranged for receiving coolant from a fuel assembly together with a single outlet. The sensing unit has three thermocouple hot junctions connected in series, the hot junctions and inlet ducts being arranged in pairs. Electromagnetic windings around an inductive core are arranged to sense variation in flow of liquid metal by flux distortion. Fission product sensing means may also be provided. Full constructional details are given. (U.K.)

  17. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Sato, Takashi.

    1979-01-01

    Purpose: To allow sufficient removal of radioactive substance released in the reactor containment shell upon loss of coolants accidents thus to sufficiently decrease the exposure dose to human body. Constitution: A clean-up system is provided downstream of a heat exchanger and it is branched into a pipeway to be connected to a spray nozzle and further connected by way of a valve to a reactor container. After the end of sudden transient changes upon loss of coolants accidents, the pool water stored in the pressure suppression chamber is purified in the clean-up system and then sprayed in the dry-well by way of a spray nozzle. The sprayed water dissolves to remove water soluble radioactive substances floating in the dry-well and then returns to the pressure suppression chamber. Since radioactive substances in the dry-well can thus removed rapidly and effectively and the pool water can be reused, public hazard can also be decreased. (Horiuchi, T.)

  18. Tank type nuclear reactors

    International Nuclear Information System (INIS)

    Naito, Kesahiro; Shimoyashiki, Shigehiro; Yokota, Norikatsu; Takahashi, Kazuo.

    1985-01-01

    Purpose: To improve the seismic proofness and the radiation shielding of LMFBR type reactors by providing the reactor with a structure reduced in the size and the weight, excellent in satisfactory heat insulating property and having radioactive material capturing performance. Constitution: Two sheets of ceramic plate members (for instance, mullite, steatite, beryllium ceramics or the like) which can be fabricated into plate-like shape and have high heat insulating property are overlapped with each other, between which magnetic heat-insulating material with magnetizing magnetic ceramics (for example, Lisub(0.5)Fesub(2.5)O 4 , Ni-Fe 2 O 4 , Fe-Fe 2 O 4 ) are sandwiched and the whole assembly is covered with metal coating material (for example, stainless steels). The inside of the coating material is evacuated or filled with an inert gas with low heat-conductivity (argon) at a pressure less than 1 kg/cm 2 abs, considering that the temperature goes higher and the inner pressure increases upon operation. In this way, the size of the laminated structure can be reduced to about 1/7 of the conventional case. The magnetic heat insulating materials can capture the magnetic impurities in sodium. (Kawakami, Y.)

  19. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  20. RA reactor building and installations; Zgrada 'RA' i instalacije

    Energy Technology Data Exchange (ETDEWEB)

    Badrljica, R; Sanovic, V; Skoric, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1985-08-15

    RA reactor building is made of reinforced concrete and bricks. It is closed facility with a limited number of controlled openings, doors and windows. The site of the building is 100 m above the sea level, 20 m above the mean Danube level and 8 m above the level of the neighbouring stream Mlaka. The building consists of three parts: central prismatic part, annex - surrounding the central part and the sanitary corridor. The biggest space is the reactor hall. In addition to the detailed description and drawings of the reactor building this documents includes design specifications of: electrical installation, water supply system, sewage system, ventilation and heating, gas and compressed air systems. A separate chapter is devoted to fire protection. Zgrada reaktora RA izgradjena je od armiranog betona i opeke, kao zatvoreni objekat ogranicenog broja kontolisanih otvora, sa ogranicenim brojem vrata i prozora. Plato na kojem je zgrada izgradjena nalazi se na 100 m nadmorske visine, na 20 m iznad srednjeg vodostaja Dunava i 8 m iznad nivoa obliznjeg potoka Mlaka. Zgrada se sastoji iz tri dela: sredisnjeg prizmaticnog dela, aneksa - prstenastog okvira sredisnog dela i sanitarnog propusnika. Pojedinacno najveci prostor zauzima reaktorska hala. Pored detaljnog opisa i plana zgrade, ovaj dokument sadrzi projekat elektricne instalacije, projekat vodovoda i kanalizacije, ventilacije i grejanja, instalacije gasa i komprimovanog vazduha. Posebno poglavlje posveceno je protivpozarnoj zastiti.

  1. Economic analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Owen, P.S.; Parker, M.B.; Omberg, R.P.

    1979-05-01

    The report presents several methods for estimating the power costs of nuclear reactors. When based on a consistent set of economic assumptions, total power costs may be useful in comparing reactor alternatives. The principal items contributing to the total power costs of a nuclear power plant are: (1) capital costs, (2) fuel cycle costs, (3) operation and maintenance costs, and (4) income taxes and fixed charges. There is a large variation in capital costs and fuel expenses among different reactor types. For example, the standard once-through LWR has relatively low capital costs; however, the fuel costs may be very high if U 3 O 8 is expensive. In contrast, the FBR has relatively high capital costs but low fuel expenses. Thus, the distribution of expenses varies significantly between these two reactors. In order to compare power costs, expenses and revenues associated with each reactor may be spread over the lifetime of the plant. A single annual cost, often called a levelized cost, may be obtained by the methods described. Levelized power costs may then be used as a basis for economic comparisons. The paper discusses each of the power cost components. An exact expression for total levelized power costs is derived. Approximate techniques of estimating power costs will be presented

  2. Fuel transfer manipulator for liquid metal nuclear reactors

    International Nuclear Information System (INIS)

    Sturges, R.H.

    1983-01-01

    A manipulator for transferring fuel assemblies between inclined fuel chutes of a liquid metal nuclear reactor installation. Hoisting means are mounted on a mount supported by beams pivotably attached by pins to the mount and to the floor in such a manner that pivoting of the beams causes movement and tilting of a hoist tube between positions of alignment with the inclined chutes. (author)

  3. A nuclear reactor

    International Nuclear Information System (INIS)

    Keller, W.

    1974-01-01

    Between the steel pressure vessel of the pressurized water power reactor and the biological shield a gap is found which enables inspections as well as cooling by air or gas. Within the gap, fins are equally distributed around the circumference of the pressure vessel summing parallel to each other and to the longitudinal axis of the vessel or being inclined. The fins cross the gap for about 9/10. Each fin consists of a sectional bar supported with its foot on a girder. The girder has got a rectangular steel section of two sectional iron parts. Between one of the parts and a plate anchored in the biological shield a ceramic body is inserted as a heat insulation. A further heat insulation of aluminium foils connects the fins with each other and divides the gap into two concentric subspaces which can be streamed through by a gas having different temperatures. (DG) [de

  4. Nuclear reactor container

    International Nuclear Information System (INIS)

    Fujimoto, Kiyoshi; Kataoka, Yoshiyuki; Murase, Michio; Fujii, Tadashi; Susuki, Akira.

    1994-01-01

    A wet well space above a pressure suppression pool is divided into a first wet well on the side in contact with the pressure suppression pool and a second wet well on the side not in contact with the pool. Cooling water is contained in the second wet well and it is in communication with the first wet well by pipelines. Since steams flown into the second well are condensed in the cooling water, they continuously transfer from the first wet well to the second wet well, thereby capable of eliminating the effects of incondensible gases in the first wet well. With such procedures, the effect of the incondensible gases can be eliminated even without cooling from the outside of the reactor. Heat accumulation can be increased in a container of any material, so that thermal load on cooling circuits for removing after-heat can be mitigated. (T.M.)

  5. Nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, R F

    1974-07-11

    The core of the fast neutron reactor consisting, among other components, of fuel elements enriched in plutonium is divided into modules. Each module contains a bundle of four or six elongated components (fuel elements and control rods). In the arrangement with four components, one is kept rigid while the other three are elastically yielding inclined towards the center and lean against the rigid component. In the modules with six pieces, each component is elastically yielding inclined towards a central cavity. In this way, they form a circular arc. A control rod may be placed in the cavity. In order to counteract a relative lateral movement, the outer surfaces of the components which have hexagonal cross-sections have interlocking bearing cushions. The bearing cushions consist of keyway-type ribs or grooves with the wedges or ribs gripping in the grooves of the neighbouring components. In addition, the ribs have oblique entering surfaces.

  6. Nuclear reactor fuelling machine

    International Nuclear Information System (INIS)

    Peberdy, J.M.

    1976-01-01

    The refuelling machine described comprises a rotatable support structure having a guide tube attached to it by a parellel linkage mechanism, whereby the guide tube can be displaced sideways from the support structure. A gripper unit is housed within the guide tube for gripping the end of a fuel assembly or other reactor component and has means for maintenance in the engaging condition during travel of the unit along the guide tube, except for a small portion of the travel at one end of the guide tube, where the inner surface of the guide tube is shaped so as to maintain the gripper unit in a disengaging condition. The gripper unit has a rotatable head, means for moving it linearly within the guide tube so that a component carried by the unit can be housed in the guide tube, and means for rotating the head of the unit through 180 0 relative to its body, to effect rotation of a component carried by the unit. The means for rotating the head of the gripper unit comprises ring and pinion gearing, operable through a series of rotatable shafts interconnected by universal couplings. The reason for provision for 180 0 rotation is that due to the variation in the neutron flux across the reactor core the side of a fuel assembly towards the outside of the core will be subjected to a lower neutron flux and therefore will grow less than the side of the fuel assembly towards the inside of the core. This can lead to bowing and possible jamming of the fuel assemblies. Full constructional details are given. See also BP 1112384. (U.K.)

  7. Legal bases for the installation of nuclear power plants

    International Nuclear Information System (INIS)

    Faria, N.M. de

    1980-06-01

    The process of installation of nuclear power plants in the context of the Brazilian legal system is analysed. The structure of the political and administrative system related to the matter and the correspondent legislation are discussed. (A.L.) [pt

  8. Order of 6 October 1977 defining the characteristics of each type of large nuclear installation

    International Nuclear Information System (INIS)

    1978-01-01

    This Order, made by the French Minister of Industry, Commerce and Crafts and the Minister of Labour, lays down the characteristics of large nuclear installations which should be included in the document provided for under Section 10 of decree No. 75-306 of 28 April 1975 on the protection of workers against the hazards of ionizing radiation in large nuclear installations. These include inter alia the reactor type, its nominal power, the nature and cladding of the fuel, the rate of loading/unloading of the fuel, provisions to prevent criticality risks outside normal operation of the reactor, controlled areas and the measures for protection against ionizing radiation. The Order also lays down the characteristics for plants for the preparation and treatment of irradiated nuclear fuels as well as the characteristics of facilities for the storage, use, manufacture and transformation of radioactive substances, and the maximum permissible annual quantities of radioactive releases. (NEA) [fr

  9. Subcriticality determination of nuclear reactor

    International Nuclear Information System (INIS)

    Borisenko, V.I.; Goranchuk, V.V.; Sidoruk, N.M.; Volokh, A.F.

    2014-01-01

    In this article the subcriticality determination of nuclear reactor is considered. Emphasized that, despite the requirements of regulatory documents on the subcriticality determination of WWER from the beginning of their operation, so far, this problem has not been solved. The results of subcriticality determination of Rossi-α method of the WWER-M is presented. The possibility of subcriticality determination of WWER is considered. The possibility of subcriticality determination of Rossi-α method with time resolution is of about 100 microseconds is also considered. The possible reasons for the error in subcriticality determination of the reactor are indicated

  10. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1978-01-01

    A shield for use with nuclear reactor systems to attenuate radiation resulting from reactor operation is described. The shield comprises a container preferably of a thin, flexible or elastic material, which may be in the form of a bag, a mattress, a toroidal segment or toroid or the like filled with radiation attenuating liuid. Means are provided in the container for filling and draining the container in place. Due to its flexibility, the shield readily conforms to irregularities in surfaces with which it may be in contact in a shielding position

  11. Manufacture and installation of reactor auxiliary facilities for advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Matsushita, Tadashi

    1977-01-01

    The facilities of reactor auxiliary systems for the advanced thermal prtotype reactor ''Fugen'' were manufactured in factories since 1972, and the installation at the site began in November, 1974. It was almost completed in March, 1977, except a part of the tests and inspections, therefore the outline of the works is reported. The ATR ''Fugen'' is a heavy water-moderated, boiling light water reactor, and its reactor auxiliary systems comprise mainly the facilities for handling heavy water, such as heavy water cooling system, heavy water cleaning system, poison supplying system, helium circulating system, helium cleaning system, and carbon dioxide system. The poison supplying system supplies liquid poison to the heavy water cooling system to absorb excess reactivity in the initial reactor core. The helium circulating system covers heavy water surface with helium to prevent the deterioration of heavy water and maintains heavy water level by pressure difference. The carbon dioxide system flows highly pure CO 2 gas in the space of pressure tubes and carandria tubes, and provides thermal shielding. The design, manufacture and installation of the facilities of reactor auxiliary systems, and the helium leak test, synthetic pressure test and total cleaning are explained. (Kako, I.)

  12. Advanced Nuclear Reactor Concepts for China

    International Nuclear Information System (INIS)

    Knoche, D.; Sassen, F.; Tietsch, W.; Yujie, Dong; Li, Cao

    2008-01-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  13. Advanced Nuclear Reactor Concepts for China

    Energy Technology Data Exchange (ETDEWEB)

    Knoche, D.; Sassen, F.; Tietsch, W. [Westinghouse Electric Germany, Postfach 10 05 63, 68140 Mannheim (Germany); Yujie, Dong; Li, Cao [INET, Tsinghua University, 100084 Beijing (China)

    2008-07-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  14. Nuclear installations in Belarus: Implications of political and technical issues

    International Nuclear Information System (INIS)

    Zaitsev, S.I.

    2001-01-01

    The report deals with some aspects of past and present supervisory activities at nuclear installations in Belarus. It briefly describes an existing supervisory system for nuclear installations in the Republic of Belarus, its legislative basis and functions of the supervisory body. Consideration is given to further development and improvement of the supervision in such fields as revision and elaboration of normative documents on nuclear safety, training of inspectors, co-operation with other governmental bodies while examining the nuclear option in the Republic of Belarus. (author)

  15. Guideline for examination concerning the evaluation of safety in light water power reactor installations

    International Nuclear Information System (INIS)

    1978-01-01

    This guideline was drawn up as the guide for examination when the safety evaluation of nuclear reactors is carried out at the time of approving the installation of light water power reactors. Accordingly in case of the examination of safety, it must be confirmed that the contents of application are in conformity with this guideline. If they are in conformity, it is judged that the safety evaluation of the policy in the basic design of a reactor facility is adequate, and also that the evaluation concerning the separation from the public in surroundings is adequate as the condition of location of the reactor facility. This guideline is concerned with light water power reactors now in use, but the basic concept may be the reference for the examination of the other types of reactors. If such a case occurs that the safety evaluation does not conform to this guideline, it is not excluded when the appropriate reason is clarified. The purpose of safety evaluation, the scope to be evaluated, the selection of the events to be evaluated, the criteria for judgement, the matters taken into consideration at the time of analysis, the concrete events of abnormal transient change and accident in operation, and the concrete events of serious accident and hypothetic accident are stipulated. The explanation and two appendices are attached. (Kako, I.)

  16. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1980-01-01

    A reusable radiation shield for use in a reactor installation comprises a thin-walled, flexible and resilient container, made of plastic or elastomeric material, containing a hydrogenous fluid with boron compounds in solution. The container can be filled and drained in position and the fluid can be recirculated if required. When not in use the container can be folded and stored in a small space. The invention relates to a shield to span the top of the annular space between a reactor vessel and the primary shield. For this purpose a continuous toroidal container or a series of discrete segments is used. Other forms can be employed for different purposes, e.g. mattress- or blanket-like forms can be draped over potential sources of radiation or suspended from a mobile carrier and placed between a worker and a radiation source. (author)

  17. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  18. Applications in nuclear data and reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.; Muranaka, R.; Schmidt, J.

    1986-01-01

    This book presents the papers given at a conference on reactor kinetics and nuclear data collections. Topics considered at the conference included nuclear data processing, PWR core design calculations, reactor neutron dosimetry, in-core fuel management, reactor safety analysis, transients, two-phase flow, fuel cycles of research reactors, slightly enriched uranium, highly enriched uranium, reactor start-up, computer codes, and the transport of spent fuel elements

  19. Nuclear reactor safety

    International Nuclear Information System (INIS)

    Buhl, A.R.

    1979-01-01

    Dr. Buhl feels that nuclear-energy issues are too complex to be understood as single topics, and can only be understood in relationship to broader issues. In fact, goals and risks associated with all energy options must be seen as interrelated with other broad issues, and it should be understood that there are presently no clearcut criteria to ensure that the best decisions are made. The technical community is responsible for helping the public to understand the basic incompatibility of hard and soft technologies and that there is no risk-free energy source. Four principles are outlined for assessing the risks of various energy technologies: (1) take a holistic view; (2) compare the risk with the unit energy output; (3) compare the risk with those of everyday activities; and (4) identify unusual risks associated with a particular option. Dr. Buhl refers to the study conducted by Dr. Inhaber of Canada who used this approach and concluded that nuclear power and natural gas have the lowest overall risk

  20. Quantities of actinides in nuclear reactor fuel cycles

    International Nuclear Information System (INIS)

    Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000 MW reactors of the following types: water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breeder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium, and recycled uranium. The radioactivity levels of plutonium, americium, and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the United States nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium processed in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing and fuel fabrication to eliminate the off-site transport of separated plutonium. (U.S.)

  1. Nuclear reactor refuelable in space

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Buden, D.; Mims, J.E.

    1992-01-01

    This patent describes a gas cooled nuclear reactor suitable for use in space. It comprises a lightweight structure comprising a plurality of at least three sections, each sector comprising a container for a reactor core separate and distinct from the reactor cores of the other sectors, each sector being capable of operating on its own and in cooperation with one or more of the other sectors and each sector having a common juncture with every other structure; and means associated with each sector independently introducing gas coolant into and extracting coolant from each sector to cool the core therein, wherein in event of failure of the cooling system of a core in a sector, one or more of the other sectors comprise means for conducting heat away from the failed sector core and means for convecting the heat away, and wherein operation of the one or more other sectors is maintained

  2. Present status of space nuclear reactor

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    USA and former USSR led space development, and had the experience of launching nuclear reactor satellites. In USA, the research and development of space nuclear reactor were advanced mainly by NASA, and in 1965, the nuclear reactor for power source ''SNAP-10A'' was launched and put on the orbit around the earth. Thereafter, the reactor was started up, and the verifying test at 500 We was successfully carried out. Also for developing the reactor for thermal propulsion, NERVA/ROVER project was done till 1973, and the technological basis was established. The space Exploration Initiative for sending mankind to other solar system planets than the earth is the essential point of the future projects. In former USSR, the ground experiment of the reactor for 800 We power source ''Romashka'', the development of the reactor for 10 kWe power source ''Topaz-1 and 2'', the flight of the artificial satellites, Cosmos 954 and Cosmos 1900, on which nuclear reactors were mounted, and the operation of 33 ocean-monitoring satellites ''RORSAT'' using small fast reactors were carried out. The mission of space development and the nuclear reactors as power source, the engineering of space nuclear reactors, the present status and the trend of space nuclear reactor development, and the investigation by the UN working group on the safety problem of space nuclear reactors are described. (K.I.)

  3. Safety of nuclear installations: Future direction

    International Nuclear Information System (INIS)

    1990-04-01

    The Workshop presentations were divided into sessions devoted to the following topics: Environmental impact of fossil fuel energy technologies (5 papers), Future needs for nuclear power (7 papers), Safety objectives (10 papers), Safety aspects of the next generation of current-type nuclear power plants (8 papers), Safety aspects of new designs and concepts for nuclear power plants (6 papers), Special safety issues: Safety aspects of new designs and concepts for nuclear power plants (5 papers), Safety aspects of new designs and processes for the nuclear fuel cycle (5 papers), Closing panel (3 papers), 12 poster presentations and a Summary of the Workshop. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  4. Joint statement by the chairmen of the Standing Committee on Reactors and the Reactor Safety Commission on safety-related documents drawn up under the Franco-German Commission on Safety Questions for Nuclear Installations (DFK). August 29, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains: 1. The present situation regarding hints and recommendations in the safety declaration by the TUEV Baden on the subject of Cattenom nuclear power station in June 1982. 2. The present situation regarding hints and recommendations in the declaration by the TUEV Rhineland in February 1982 on the subject of radiological aspects and features of the Cattenom site for the nuclear power plant. 3. Answers to press allegations about the safety of Cattenom NPP: scram system, safety cooling system, heat sink for after-heat removal, emergency power supplies, load-follow operation, air crashes, susceptibility to failures. (orig./HP) [de

  5. Gasification with nuclear reactor heat

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1977-01-01

    The energy-political ultimate aims for the introduction of nuclear coal gasification and the present state of technology concerning the HTR reactor, concerning gasification and heat exchanging components are outlined. Presented on the plans a) for hydro-gasification of lignite and for steam gasification of pit coal for the production of synthetic natural gas, and b) for the introduction of a nuclear heat system. The safety and environmental problems to be expected are portrayed. The main points of development, the planned prototype plant and the schedule of the project Pototype plant Nuclear Process heat (PNP) are specified. In a market and economic viability study of nuclear coal gasification, the application potential of SNG, the possible construction programme for the FRG, as well as costs and rentability of SNG production are estimated. (GG) [de

  6. Nuclear reactor strategies

    International Nuclear Information System (INIS)

    Konno, H.; Srinivasan, T.N.

    1975-01-01

    Reference is made to a linear programming model considered by Hafele and Manne ('Strategies for a Transition from Fossil to Nuclear Fuels'. 11ASA Research Report RR-74-7) in which the sum of discounted costs of meeting demand for electrical and non-electrical energy over a horizon of 75 years divided into 25 periods of 3 years is minimised subject to constraints, inter alia, on the total availability of fossil fuel and low cost ($15/lb) natural uranium. The sensitivity of the Hafele-Manne results are explored with respect to changes in some crucial parameters and assumptions namely; variation in discount rate, variation in current costs of operation of HTRB, variation in costs and availability of natural uranium, market penetration constraints, changing capital costs, price responsive demands, petroleum prices, and minimisation of PETG consumption with constraints on the sum of discounted costs. (U.K.)

  7. Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    Schabert, H.P.; Ropers, J.

    1976-01-01

    A pressurized-water reactor pressure vessel connects via a main coolant pipe loop including a main coolant pump, with the lower portion of at least one vertical steam generator horizontally offset from the pressure vessel. This equipment is contained by a concrete structure entirely enclosing the pressure vessel and forming a generator room horizontally enclosing the generator and the loop and extending upwardly to an open top closed by a horizontal ceiling. The concrete structure is completely surrounded by a spherical steel containment shell designed to withstand any internal fluid pressure which might result from an accidental release of the coolant inside of this shell, and the shell forms a large space above the entire concrete structure. The ceiling above the generator room is a horizontal steel gridlike construction defining a plurality of vertical openings which are normally closed by horizontal sheet metal plates which are hinged to the gridlike construction and are light enough in weight to be forced upwardly, to open the openings, when the plates receive upward force from fluid pressure below them resulting from the loop, or other equipment in the generator room, accidentally permitting a sudden release of the pressurized-water coolant. The high fluid pressure that would otherwise develop within the concrete generator room, is in this way almost immediately relieved via the openings of the grid-like construction, by the plates being forced upwardly, the pressure being then dissipated upwardly in the large space above the top of the concrete structure, provided by the steel containment shell. This prevents the upstanding wall portions of the generator room from being stressed, and possibly damaged, by any sudden release of coolant in the generator room. Other features are disclosed

  8. Five MW Nuclear Heating Reactor

    International Nuclear Information System (INIS)

    Zhang Dafang; Dong Duo; Su Qingshan

    1997-01-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy Technology (INET) has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation, and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection and environmental impacts and so on were also obtained at the same time. All of these results demonstrate the design of the NHR-5 is successful. (author). 9 refs, 11 figs, 5 tabs

  9. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  10. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  11. Five MW Nuclear Heating Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dafang, Zhang; Duo, Dong; Qingshan, Su [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy Technology (INET) has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation, and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection and environmental impacts and so on were also obtained at the same time. All of these results demonstrate the design of the NHR-5 is successful. (author). 9 refs, 11 figs, 5 tabs.

  12. Conditioning of nuclear reactor fuel

    International Nuclear Information System (INIS)

    1975-01-01

    A method of conditioning the fuel of a nuclear reactor core to minimize failure of the fuel cladding comprising increasing the fuel rod power to a desired maximum power level at a rate below a critical rate which would cause cladding damage is given. Such conditioning allows subsequent freedom of power changes below and up to said maximum power level with minimized danger of cladding damage. (Auth.)

  13. Nuclear reactor core flow baffling

    International Nuclear Information System (INIS)

    Berringer, R.T.

    1979-01-01

    A flow baffling arrangement is disclosed for the core of a nuclear reactor. A plurality of core formers are aligned with the grids of the core fuel assemblies such that the high pressure drop areas in the core are at the same elevations as the high pressure drop areas about the core periphery. The arrangement minimizes core bypass flow, maintains cooling of the structure surrounding the core, and allows the utilization of alternative beneficial components such as neutron reflectors positioned near the core

  14. Nuclear reactors in remote earth

    International Nuclear Information System (INIS)

    Garzon, L.; Cavero, A.

    1999-01-01

    Same basic geological principles along with other facts, have allowed us to establish the existence in the remote past (Between 2.5 and 4 x 10''9 years ago) of the uranium deposits and/or uranium mineralized volumes, which be-have as nuclear reactors. A simplified neutronic diffusion model have allowed us to describe the main characteristics of such systems. The obtained results indicate that this phenomenon was a rather frequent fact. (Author) 7 refs

  15. Annual report 1996 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland. figs., tabs., refs.

  16. Annual Report 1998 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland.

  17. Annual Report 1998 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    1999-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland

  18. Annual Report 1999 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    2000-08-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland

  19. Annual Report 1999 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-15

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland.

  20. Annual report 1996 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    1997-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland. figs., tabs., refs

  1. Meteorological characteristics of nuclear installations sites

    International Nuclear Information System (INIS)

    Doumenc, A.

    1988-01-01

    The atmosphere is the most propitious medium to a rapid transport and diffusion of a pollutant. So, it is important to know its local characteristics which is decisive for every evaluation of radioactive release consequences using transfer models. It is also the siege of intense sudden hazardous phenomena, as tornados and typhoons, that should be taken into account in the installation conception. 1 tab., 6 refs. (F.M.)

  2. Third party liability of nuclear installation decommissioning with Russian nuclear submarines as an example: insurance versus technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.D. [PREKSAT Ltd., Moscow (Russian Federation); Derevyankin, A.A. [Reseaarch and Development Institute of Nuclear Power Engineering, Moscow (Russian Federation); Khamyanov, L.P. [All-Russian Research Institute on NPP Operation, Moscow (Russian Federation); Kovalenko, V.N. [Ministry for Nuclear Energy Of Russian, Moscow (Russian Federation); Kovalivich, O.M. [Research and Technological Center for Nuclear and Radiation Safety of Supervisory, Nuclear Energy State Commitee of Russia, Moscow (Russian Federation); Smirnov, P.L. [Nuclear Safety Institute of Russian Academy of Sciences, Moscow (Russian Federation)

    2001-07-01

    Third party and environment of civil liability damage caused by incidents at military nuclear installations, for instance at decommissioned NPS (nuclear powered submarines), may be divided into three main trends: -) Liability of NPS without high-enriched irradiated nuclear fuel (SNF) for its self-submersion (radiation incident); -) Liability of NPS with SNF aboard for its self-submersion (radiation incident); and -) Liability of floating NPS for its SNF discharge (nuclear accident). Without step-by-step transition from the Russian Federation guaranties to insurance and making allowance for liability limits according to the Vienna Convention approach, the sizes of the financial guarantee for the civil liability of the NPS owner (Russian state), in US dollars of 2000, are approximately assessed as the following: -) storing decommissioned NPS or a floating module without SNF - from 12 to 25 thousand dollars per year (per one submarine or module); -) storing decommissioned NPS with SNF inside reactors cores - from 25 to 40 thousand dollars per year; -) assembly-by-assembly removing SNF from reactors' core of decommissioned NPS - up to 1.5 million dollars for undamaged reactor per the discharging period; -) SNF removing within reactor using the filled in-space reactor's core by liquid-phased hardened or dispersed solid-phase materials from decommissioned NPS - from 30 to 50 thousand dollars for undamaged reactor per the discharging period. Both rates and sums for NPS with damaged reactors are to be estimated for the each damaged reactor and NPS at all. It is necessary to perform the measures reducing the risk of nuclear accidents of NPS with undamaged SNF and NPS with damaged reactors in possibly short time. It will allow not only to cut risks by ten times and more, but also to accumulate necessary insurance reserves faster. These measures can be partially or completely executed using the preventing measures reserves assigned to all decommissioned Russian NPS

  3. Third party liability of nuclear installation decommissioning with Russian nuclear submarines as an example: insurance versus technologies

    International Nuclear Information System (INIS)

    Gavrilov, S.D.; Derevyankin, A.A.; Khamyanov, L.P.; Kovalenko, V.N.; Kovalivich, O.M.; Smirnov, P.L.

    2001-01-01

    Third party and environment of civil liability damage caused by incidents at military nuclear installations, for instance at decommissioned NPS (nuclear powered submarines), may be divided into three main trends: -) Liability of NPS without high-enriched irradiated nuclear fuel (SNF) for its self-submersion (radiation incident); -) Liability of NPS with SNF aboard for its self-submersion (radiation incident); and -) Liability of floating NPS for its SNF discharge (nuclear accident). Without step-by-step transition from the Russian Federation guaranties to insurance and making allowance for liability limits according to the Vienna Convention approach, the sizes of the financial guarantee for the civil liability of the NPS owner (Russian state), in US dollars of 2000, are approximately assessed as the following: -) storing decommissioned NPS or a floating module without SNF - from 12 to 25 thousand dollars per year (per one submarine or module); -) storing decommissioned NPS with SNF inside reactors cores - from 25 to 40 thousand dollars per year; -) assembly-by-assembly removing SNF from reactors' core of decommissioned NPS - up to 1.5 million dollars for undamaged reactor per the discharging period; -) SNF removing within reactor using the filled in-space reactor's core by liquid-phased hardened or dispersed solid-phase materials from decommissioned NPS - from 30 to 50 thousand dollars for undamaged reactor per the discharging period. Both rates and sums for NPS with damaged reactors are to be estimated for the each damaged reactor and NPS at all. It is necessary to perform the measures reducing the risk of nuclear accidents of NPS with undamaged SNF and NPS with damaged reactors in possibly short time. It will allow not only to cut risks by ten times and more, but also to accumulate necessary insurance reserves faster. These measures can be partially or completely executed using the preventing measures reserves assigned to all decommissioned Russian NPS and

  4. Reactor installation and maintenance for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Smith, B.R.

    1993-01-01

    Advanced Neutron Source (ANS) reactor assembly components have been modeled in great detail in IGRIP in order to realistically simulate preliminary installation and maintenance processes. Animation of these processes has been captured in a 15-minute video with narration. Approximately 90% of the parts were initially translated from CADAM (a two-dimensional drawing package) to IGRIP and then revolved or extruded. IGRIP's IGES translator greatly reduced the time required to perform this operation. The interfacing of devices in the work cell has identified numerous design inconsistencies. Most of the modeled reactor components are devices with a single degree of freedom (DOF) however, some of the slanted experiments required 6 DOF so that they could be removed at an angle in order to clear the reflector vessel flanges. IGRIP's collision detection feature proved to be extremely helpful in determining interferences when removing the experiments. The combination of three-dimensional visualization and collision detection allows engineers to clearly and easily visualize potential design problems before the construction phase of the project

  5. Development of a quality management system for Brazilian nuclear installations

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Zouain, Desiree Moraes

    2005-01-01

    The present work is a proposal for developing a quality management system for Brazilian nuclear installations, based on applicable standards. The standard ISO 9001:2000 [4] establishes general requirements for the implementation of a quality management system in all kinds of organizations. The standard IAEA 50-C/SG-Q [1] establishes general requirements for the implementation of a quality assurance system in nuclear installations. The standard CNEN-NN- 1.16 [5] establishes the regulating requirements for the quality assurance systems and programs of nuclear installations, for licensing and authorization for operation of these installations in Brazil. The revision of standard IAEA 50-C/SG-Q [1], to be replaced by IAEA DS 338 [2] and IAEA DPP 349 [3], introduces the concept of 'Integrated Management System' for the nuclear area, in preference to the concept of 'Quality Assurance'. This approach is incorporated with the current tendency, because it guides the system to manage, in an integrated way, the requirements of quality, safety, health, environment, security and economics of the installation. The results of the characterization of the quality management systems established in the applicable standards are presented, with the determination of the common and conflicting points among them. Referring data to quality assurance program/quality management system in some nuclear installations of IAEA Member States are also presented. (author)

  6. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  7. Nuclear reactor with a suspended vessel

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1977-01-01

    This invention relates to a nuclear reactor with a suspended vessel and applies in particular when this is a fast reactor, the core or active part of the reactor being inside the vessel and immersed under a suitable volume of flowing liquid metal to cool it by extracting the calories released by the nuclear fission in the fuel assemblies forming this core [fr

  8. Outline of additional installation works in Oi Nuclear Power Station

    International Nuclear Information System (INIS)

    Shibata, Atsuo; Matsuoka, Motokazu

    1987-01-01

    At present in Oi Nuclear Power Station, Kansai Electric Power Co., Inc., No.1 and No.2 plants of 1175 MWe each are in operation. In order to stabilize power supply for a long term, the additional installation of No.3 and No.4 plants of 1180 MWe each is in progress. The No.3 and No.4 plants are PWRs, for which prestressed concrete reactor containment vessels were adopted, and the start of operation is scheduled in October, 1991 in No.3 plant and in August, 1992 in No.4 plant. In the execution of main construction works, the preservation of the existing plants is the most important. For excavating the tunnels for seawater channels, tunnel boring machines were used, to avoid blasting. Pneumatic caisson method was adopted for a part of the circulating pump building. No vibration, no noise piling method was adopted for respective sheathing construction. The blasting vibration control in the excavation for foundations and the analysis of the behavior of retaining walls are to be carried out by information-oriented work execution. The outline of the main construction works and the preservation of the existing facilities are reported. (Kako, I.)

  9. Small size modular fast reactors in large scale nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, U.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  10. Improvements in liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1980-01-01

    A concrete containment vault for a liquid metal cooled nuclear reactor is described which is lined with thermal insulation to protect the vault against heat radiated from the reactor during normal operation of the reactor but whose efficiency of heat insulation is reduced in an emergency to enable excessive heat from the reactor to be dissipated through the vault. (UK)

  11. Nuclear characteristic simulation device for reactor core

    International Nuclear Information System (INIS)

    Arakawa, Akio; Kobayashi, Yuji.

    1994-01-01

    In a simulation device for nuclear characteristic of a PWR type reactor, there are provided a one-dimensional reactor core dynamic characteristic model for simulating one-dimensional neutron flux distribution in the axial direction of the reactor core and average reactor power based on each of inputted signals of control rod pattern, a reactor core flow rate, reactor core pressure and reactor core inlet enthalphy, and a three-dimensional reactor core dynamic characteristic mode for simulating three-dimensional power distribution of the reactor core, and a nuclear instrumentation model for calculating read value of the nuclear instrumentation disposed in the reactor based on the average reactor core power and the reactor core three-dimensional power distribution. A one-dimensional neutron flux distribution in the axial direction of the reactor core, a reactor core average power, a reactor core three-dimensional power distribution and a nuclear instrumentation read value are calculated. As a result, the three-dimensional power distribution and the power level are continuously calculated. Further, since the transient change of the three-dimensional neutron flux distribution is calculated accurately on real time, more actual response relative to a power monitoring device of the reactor core and operation performance can be simulated. (N.H.)

  12. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  13. Nuclear reactor vessel decontamination systems

    International Nuclear Information System (INIS)

    McGuire, P. J.

    1985-01-01

    There is disclosed in the present application, a decontamination system for reactor vessels. The system is operatable without entry by personnel into the contaminated vessel before the decontamination operation is carried out and comprises an assembly which is introduced into the vertical cylindrical vessel of the typical boiling water reactor through the open top. The assembly includes a circular track which is centered by guideways permanently installed in the reactor vessel and the track guides opposed pairs of nozzles through which water under very high pressure is directed at the wall for progressively cutting and sweeping a tenacious radioactive coating as the nozzles are driven around the track in close proximity to the vessel wall. The whole assembly is hoisted to a level above the top of the vessel by a crane, outboard slides on the assembly brought into engagement with the permanent guideways and the assembly progressively lowered in the vessel as the decontamination operation progresses. The assembly also includes a low pressure nozzle which forms a spray umbrella above the high pressure nozzles to contain radioactive particles dislodged during the decontamination

  14. Performances of nuclear installations in the world

    International Nuclear Information System (INIS)

    Pate, Z.T.

    1999-01-01

    During the last years the operators of nuclear power plants in the world, have realized numerous improvements. This success is imputable to several factors, especially an important data exchange. The Chernobyl accident, in 1986, provoked the creation of the World Association of Nuclear Operators (W.A.N.O.). It allowed to exchange information and to develop cooperation in order to go beyond cultural barriers, linguistics and policies. Then, operators in the world have brought important improvements in matter of safety, reliability. (N.C.)

  15. Practical design considerations for nuclear cogeneration installations

    International Nuclear Information System (INIS)

    Koupal, J.R.

    1987-01-01

    Dual-purpose nuclear plants, cogeneration electricity and steam, offer significant economic benefits over comparable electricity generating stations. The design of such a nuclear facility requires the resolution of unique technical challenges. This paper reports on experience gained in the detailed design of such a dual-purpose facility with the steam supplied to a chemical plant for process heating. The following topics are discussed: Siting, Radioactivity of Export Steam, Optimization for Load Combinations, Steam Supply Reliability, Steam Transportation, Water Chemistry, Cost Allocation. (author)

  16. Methodology for risk analysis of nuclear installations

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Senne Junior, Murillo; Jordao, Elizabete

    2002-01-01

    Both the licensing standards for general uses in nuclear facilities and the specific ones require a risk assessment during their licensing processes. The risk assessment is carried out through the estimation of both probability of the occurrence of the accident, and their magnitudes. This is a complex task because the great deal of potential hazardous events that can occur in nuclear facilities difficult the statement of the accident scenarios. There are also many available techniques to identify the potential accidents, estimate their probabilities, and evaluate their magnitudes. In this paper is presented a new methodology that systematizes the risk assessment process, and orders the accomplishment of their several steps. (author)

  17. Reactor accidents and nuclear catastrophes

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Linde, H.J.

    1979-01-01

    Assuming some preliminary knowledge of the fundamentals of atomic physics, the book describes the effects of ionizing radiation on the human organism. In order to assess the potential hazards of reactor accidents and the extent of a nuclear catastrophe, the technology of power generation in nuclear power stations is presented together with its potential dangers as well as the physical and medical processes occurring during a nuclear weapons explosion. The special medical aspects are presented which range from first aid in the case of a catastrophe to the accute radiation syndrome, the treatment of burns to the therapy of late radiolesions. Finally, it is confirmed that the treatment of radiation injured persons does not give rise to basically new medical problems. (orig./HP) [de

  18. Proposal of a dry storage installation in Angra NPP for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz S.; Rzyski, Barbara M.

    2009-01-01

    When nuclear fuel is removed from a power reactor core after the depletion of efficiency in generating energy is called Spent Nuclear Fuel (SNF). After its withdrawal from the reactor core, SNF is temporarily stored in pools usually at the same site of the reactor. During this time, short-living radioactive elements and generated heat undergo decay until levels that allow removing the SNF from the pool and sending it for reprocessing or a temporary storage whether any of its final destinations has not yet been defined. It can be loaded in casks and disposed during years in a dry storage installations until be sent to a reprocessing plant or deep repositories. Before any decision, reprocessing or disposal, the SNF needs to be safely and efficiently isolated in one of many types of storages that exist around the world. Worldwide, the amount of SNF increases annually and in the next years this amount will be higher as a consequence of new Nuclear Power Plants (NPP) construction. In Brazil, that is about to construct the Angra 3 nuclear power reactor, a project about the final destination of the SNF is not yet ready. This paper presents a proposal for a dry storage installation in the Angra NPP site since it can be an initial solution for the Brazilian's SNF, until a final decision is taken. (author)

  19. Studies of works management and automation of nuclear power installations

    International Nuclear Information System (INIS)

    Besch, P.; Grossmann, J.; Hollasky, R.

    1989-01-01

    Erection and operation of nuclear power installations require investigations on their safety and availability. The works performed on the management of nuclear power plants and nuclear heating stations in the Working Group on Automation Engineering of the Dresden University of Technology are presented. Emphasis of the works is on simulation of dynamical performance of the plants and studies on the utilization of novel techniques concerning plant automation and process management. (author)

  20. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  1. WWER type reactors used as multipurpose nuclear power sources

    International Nuclear Information System (INIS)

    Fiala, J.; Mulak, J.

    1976-01-01

    Safety aspects are assessed of the siting of nuclear power installations in the vicinity of large housing estates and in areas with a high population density, mainly the aspect of the liquidation of the consequences of the maximum credible accident, i.e., the transversal rupture of the primary coolant circuit. The application of WWER type reactors as multipurpose nuclear power sources in Czechoslovakia is justified. It is shown that such a multipurpose nuclear power source differs from a purely condensation nuclear power plant mainly in the design of the secondary stage. The possibilities of such projects are indicated with a view to power and heat operation. (F.M.)

  2. Condensation During Nuclear Reactor Loca

    International Nuclear Information System (INIS)

    Rihan, Y.; Teamah, M.; Sorour, M.; Soliman, S.

    2008-01-01

    Two-phase channel flow with condensation is a common phenomenon occurs in a number of nuclear reactor accident scenarios. It also plays an important role during the operation of the safety coolant injection systems in advanced nuclear reactors. Semiempirical correlations and simple models based on the analogy between heat and mass transfer processes have been previously applied. Rigorous models, compatible with the state-of-the-art numerical algorithms used in thermal-hydraulic computer codes, are scare, and are of great interest. The objective of this research is to develop a method for modeling condensation, with noncondensable gases, compatible with the state-of-the-art numerical methods for the solution of multi-phase field equations. A methodology for modeling condensation, based on the stagnant film theory, and compatible with the reviewed numerical algorithms, is developed. The model treats the coupling between the heat and mass transfer processes, and allows for an implicit treatment of the mass and momentum exchange terms as the gas-liquid interphase, without iterations. The developed model was used in the application of loss of coolant in pressurized water reactor accidents

  3. Exporting apocalypse: CANDU reactors and nuclear proliferation

    International Nuclear Information System (INIS)

    McKay, Paul.

    The author believes that the peaceful use of nuclear technology leads inevitably to the production of nuclear weapons, and that CANDU reactors are being bought by countries that are likely to build bombs. He states that exports of reactors and nuclear materials cannot be defended and must be stopped

  4. Licensing and decommissioning of nuclear installations in Japan

    International Nuclear Information System (INIS)

    Shimoyama, Shunji.

    1986-01-01

    The present report discusses the current status of Japan's licensing system and legislation concerning reactor decommissioning operations. Besides Japan is working to promote worldwide nuclear safety research. However, developing nuclear safety regulations that are uniformely applicable is a difficult job due to big differences in geographical, political, economical, and technological conditions. (CW) [de

  5. Nuclear reactor power control device

    International Nuclear Information System (INIS)

    Koshi, Yuji; Sakata, Akira; Karatsu, Hiroyuki.

    1987-01-01

    Purpose: To control abrupt changes in neutron fluxes by feeding back a correction signal obtained from a deviation between neutron fluxes and heat fluxes for changing the reactor core flow rate to a recycling flow rate control system upon abrupt power change of a nuclear reactor. Constitution: In addition to important systems, that is, a reactor pressure control system and a recycling control system in the power control device of a BWR type power plant, a control circuit for feeding back a deviation between neutron fluxes and heat fluxes to a recycling flow rate control system is disposed. In the suppression circuit, a deviation signal is prepared in an adder from neutron flux and heat flux signals obtained through a primary delay filter. The deviation signal is passed through a dead band and an advance/delay filter into a correction signal, which is adapted to be fed back to the recycling flow rate control system. As a result, the reactor power control can be conducted smoothly and it is possible to effectively suppress the abrupt change or over shoot of the neutron fluxes and abrupt power change. (Kamimura, M.)

  6. Improvements in streaking nuclear reactors

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    In this type of reactor atomic nuclei are stripped of their electron shells by heating to form a very high temperature plasma which is passed at high speed through a chamber in which they are forced into contact with a 'wall' formed by a unidirectional stream of photons from continuous laser beams. In this way it should be possible to brush off from the surface of the nuclei protons and neutrons, with release of their binding energy. The energy thus produced can be subjected to much more gentle control than with a fission or fusion reactor. Furthermore, if this concept can be successfully applied to elements of high atomic number which are normally regarded as stable and unfissionable, a vast new source of nuclear energy release will have been made available. It also seems possible that an atomic nucleus might be spun sufficiently in such a reactor to disintegrate it completely into nucleons by simple centrifugal action, with great release of binding energy. The reactor described has a central body with radial ducts through which the nuclei are passed, and a number of lasers are provided whose beams are arranged so that the nuclei are discharged at the cross-over point of two or more laser beams which form a corner at the junction of two or more photon walls. (U.K.)

  7. Power supply with nuclear reactor

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated therewith is monitored by a set of four like sensors. A trip system normally operates on a 'two out of four' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the 'two out of four' configuration would be reduced to a 'one out of three' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a 'two out of three' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor

  8. Activity transport in nuclear reactors

    International Nuclear Information System (INIS)

    Narasimhan, S.V.

    2000-01-01

    The chemistry of the primary coolant is such that the general material loss is immeasurably low. However, the generation of radioactive corrosion products in the coolant, their transportation and distribution to different out of core surfaces occur irrevocably through the life cycle of the reactor. This phenomena leading to the build up of radiation field, which is unique to the nuclear reactor systems, is the only major problem of any significance. Minimization of this phenomenon can be done by many ways. The processes involved in the mechanism of activity transport are quite complex and are not at all thoroughly understood. The codes that have been developed so far use many empirical coefficients for some of the rate processes, which are either partially justified by simulated experimental studies or supported theoretically. In a multi-metal system like that of the reactor, the corrosion rates or release rates need not be similar especially in reactors like PHWRs. The mechanisms involved in the formation of protective oxide coating are quite complex to model in a simplified manner. The paper brings out some these features involved in the activity transport modeling and analyses the need for extensive field related experimental work to substantiate the model. (author)

  9. A problem of optimization for the specific cost of installed electric power in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Sultan, M A; Khattab, M S [Reactors Dept. nuclear research centre, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    The optimization problem analyzed in this paper is related to the thermal cycle parameters in nuclear power stations having steam generators. The optimization the specific cost of installed power with respect to the average operating saturation temperature in the station thermal cycle. The analysis considers the maximum fuel cladding temperature as a limiting factor in the optimization process as it is related to the safe operation of the reactor. 4 figs.

  10. Application and development of dismantling technologies for decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Bach, W.; Kremer, G.; Ruemenapp, T.

    2006-01-01

    The decommissioning of nuclear installations poses a challenge to high performance underwater cutting technologies because of complex limiting conditions, like radioactive contamination, accessibility, geometry of work piece, material thickness and composition. For the safe dismantling of the moderator tank and the thermal shield of the Multi-purpose Research Reactor (MZFR) Karlsruhe the development and the use of thermal cutting tools will be demonstrated, in this case the underwater plasma arc cutting and the contact arc metal cutting (CAMC). (orig.)

  11. Comments on nuclear reactor safety in Ontario

    International Nuclear Information System (INIS)

    1987-08-01

    The Chalk River Technicians and Technologists Union representing 500 technical employees at the Chalk River Nuclear Laboratories of AECL submit comments on nuclear reactor safety to the Ontario Nuclear Safety Review. Issues identified by the Review Commissioner are addressed from the perspective of both a labour organization and experience in the nuclear R and D field. In general, Local 1568 believes Ontario's CANDU nuclear reactors are not only safe but also essential to the continued economic prosperity of the province

  12. The Management System for Nuclear Installations Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  13. The Management System for Nuclear Installations (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  14. The Management System for Nuclear Installations. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a) To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b) As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c) To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a) Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b) Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c) Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d) Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e) Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear

  15. Subchannel analysis in nuclear reactors

    International Nuclear Information System (INIS)

    Ninokata, H.; Aritomi, M.

    1992-01-01

    This book contains 10 informative papers, presented at the International Seminar on Subchannel Analysis 1992 (ISSCA '92), organized by the Institute of Applied Energy, in collaboration with Atomic Energy Society of Japan, Tokyo Electric Power Company, Kansai Electric Power Company, Nuclear Power Engineering Corporation and the Japan Atomic Energy Research Institute, and held at the TIS-Green Forum, Tokyo, Japan, 30 October 1992. The seminar ISSCA '92 was intended to review the current state-of-the-arts of the method being applied to advanced nuclear reactors including Advanced BWRs, Advanced PWRs and LMRs, and to identify the problems to be solved, improvements to be made, and the needs of R and Ds that were required from the new fuel bundles design. The critical review was to focus on the performances of currently available subchannel analysis codes with regard to heat transfer and fluid flows in various types of nuclear reactor bundles under both steady-state and transient operating conditions, CHF, boiling transition (BT) or dryout behaviors and post BT. The behaviors of physical modeling and numerical methods in these extreme conditions were discussed and the methods critically evaluated in comparison with experiments. (author) (J.P.N.)

  16. Method of safely operating nuclear reactor

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro.

    1976-01-01

    Purpose: To provide a method of safely operating an nuclear reactor, comprising supporting a load applied to a reactor container partly with secondary container facilities thereby reducing the load borne by the reactor container when water is injected into the core to submerge the core in an emergency. Method: In a reactor emergency, water is injected into the reactor core thereby to submerge the core. Further, water is injected into a gap between the reactor container and the secondary container facilities. By the injection of water into the gap between the reactor container and the secondary container facilities a large apparent mass is applied to the reactor container, as a result of which the reactor container undergoes the same vibration as that of the secondary container facilities. Therefore, the load borne by the reactor container itself is reduced and stress at the bottom part of the reactor container is released. This permits the reactor to be operated more safely. (Moriyama, K.)

  17. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  18. Artificial intelligence in nuclear reactor operation

    International Nuclear Information System (INIS)

    Da Ruan; Benitez-Read, J.S.

    2005-01-01

    Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined through a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK·CEN) and the Mexican Nuclear Centre (ININ) on AI-based intelligent control for nuclear reactor operation under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (authors)

  19. Practical methods for radiation survey in nuclear installations

    International Nuclear Information System (INIS)

    Shweikani, R.

    2001-12-01

    This study is placed to those who are responsible to perform radiation survey in the nuclear installations, especially the beginners. Therefore, it gives a comprehensive view to all-important aspects related to their work starting from the structure of atoms to the practical steps for radiation survey works. So, it clarify how to perform personal monitoring, methods for monitoring surface contamination, methods for measuring radioactivity of gases and radioactive aerosols in air, monitoring radiation doses, measuring radiation influences in workplaces and finally measuring internal exposure of radiation workers in nuclear installations. Finally, The study shows some cases of breaches of radiation protection rules in some American nuclear installations and describes the final results of these breaches. The aim of this is to assure that any breach or ignore to radiation protection principles may produce bad results, and there is no leniency in implementing environmental radiation protection principles. (author)

  20. Assessment of safety of the nuclear installations of the world

    International Nuclear Information System (INIS)

    Thomas, B.A.; Pozniakov, N.; Banga, U.

    1992-01-01

    Incidents and accidents periodically remind us that preventive measures at nuclear installations are not fully reliable. Although sound design is widely recognized to be prerequisite for safe operation, it is not sufficient. An active management that compensates for the weak aspects of the installations design by redundant operational provisions, is the key factor to ensure safe operation. Safety of nuclear installations cannot be assessed on an emotional basis. Since 1986, accurate safety assessment techniques based on an integrated approach to operational safety have been made available by the ASSET services and are applicable to any industrial process dealing with nuclear materials. The ASSET methodology enables to eliminate in advance the Root Causes of the future accidents by introducing practical safety culture principles in the current managerial practices

  1. Fuel element for nuclear reactors

    International Nuclear Information System (INIS)

    Cadwell, D.J.

    1982-01-01

    The invention concerns a fuel element for nuclear reactors with fuel rods and control rod guide tubes, where the control rod guide tubes are provided with flat projections projecting inwards, in the form of local deformations of the guide tube wall, in order to reduce the radial play between the control rod concerned and the guide tube, and to improve control rod movement. This should ensure that wear on the guide tubes is largely prevented which would be caused by lateral vibration of the control rods in the guide tubes, induced by the flow of coolant. (orig.) [de

  2. Molten salts in nuclear reactors

    International Nuclear Information System (INIS)

    Dirian, J.; Saint-James

    1959-01-01

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author) [fr

  3. Fuel bundle for nuclear reactor

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1977-01-01

    The invention concerns a new, simple and inexpensive system for assembling and dismantling a nuclear reactor fuel bundle. Several fuel rods are fitted in parallel rows between two retaining plates which secure the fuel rods in position and which are maintained in an assembled position by means of several stays fixed to the two end plates. The invention particularly refers to an improved apparatus for fixing the stays to the upper plate by using locking fittings secured to rotating sleeves which are applied against this plate [fr

  4. Reactor calculations and nuclear information

    International Nuclear Information System (INIS)

    Lang, D.W.

    1977-12-01

    The relationship of sets of nuclear parameters and the macroscopic reactor quantities that can be calculated from them is examined. The framework of the study is similar to that of Usachev and Bobkov. The analysis is generalised and some properties required by common sense are demonstrated. The form of calculation permits revision of the parameter set. It is argued that any discrepancy between a calculation and measurement of a macroscopic quantity is more useful when applied directly to prediction of other macroscopic quantities than to revision of the parameter set. The mathematical technique outlined is seen to describe common engineering practice. (Author)

  5. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Guidez, Joel; Jarriand, Paul.

    1975-01-01

    The invention concerns a fast neutron nuclear reactor cooled by a liquid metal driven through by a primary pump of the vertical drive shaft type fitted at its lower end with a blade wheel. To each pump is associated an exchanger, annular in shape, fitted with a central bore through which passes the vertical drive shaft of the pump, its wheel being mounted under the exchanger. A collector placed under the wheel comprises an open upward suction bell for the liquid metal. A hydrostatic bearing is located above the wheel to guide the drive shaft and a non detachable diffuser into which at least one delivery pipe gives, envelopes the wheel [fr

  6. Conceptual Design of On-line Based Licensing Review and Assesment System of Nuclear Installations and Nuclear Materials ('PRIBEN')

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2008-01-01

    At the present Indonesia has no nuclear power plant in operation yet, although it is expected that the first nuclear power plant will be operated and commercially available in around the year of 2016 to 2017 in Muria Peninsula. There are only three research reactors, one nuclear fuel fabrication plant for research reactors, and one experimental fuel fabrication plant for nuclear power, one isotope production facility and some other research facilities. All the facility is under Nuclear Energy Regulatory Agency (BAPETEN) controlling through regulation, licensing and inspection. The organizations operation submits licensing application to BAPETEN before utilizing the facility. According to the regulation before BAPETEN give license they perform review and assessment for the utility application. Based on the review and assessment result, BAPETEN may stipulate, reject, delay or terminate the license. In anticipation of expansion of the nuclear program in Indonesia, BAPETEN should have an integrated and updated system for review and asses the licensing application. For this reason, an expert system for the review and asses the licensing application, so-called PRIBEN (Perizinan Reaktor, Instalasi dan Bahan Nuklir/Licensing of Reactor, Nuclear Installations and Nuclear Materials), is developed which runs on the online-based reality environment

  7. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1980-01-01

    The law intends under the principles of the atomic energy act to regulate the refining, processing and reprocessing businesses of nuclear raw and fuel metarials and the installation and operation of reactors for the peaceful and systematic utilization of such materials and reactors and for securing public safety by preventing disasters, as well as to control internationally regulated things for effecting the international agreements on the research, development and utilization of atomic energy. Basic terms are defined, such as atomic energy; nuclear fuel material; nuclear raw material; nuclear reactor; refining; processing; reprocessing; internationally regulated thing. Any person who is going to engage in refining businesses other than the Power Reactor and Nuclear Fuel Development Corporation shall get the special designation by the Prime Minister and the Minister of International Trade Industry. Any person who is going to engage in processing businesses shall get the particular admission of the Prime Minister. Any person who is going to establish reactors shall get the particular admission of the Prime Minister, The Minister of International Trade and Industry or the Minister of Transportation according to the kinds of specified reactors, respectively. Any person who is going to engage in reprocessing businesses other than the Power Reactor and Nuclear Fuel Development Corporation and the Japan Atomic Energy Research Institute shall get the special designation by the Prime Minister. The employment of nuclear fuel materials and internationally regulated things is defined in detail. (Okada, K.)

  8. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    International Nuclear Information System (INIS)

    Roudier, S.; Badel, D.; Beraha, R.; Champ, M.; Tricot, N.; Tran Dai, P.

    1994-01-01

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: 1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; 2) guidelines for nuclear design and manufacturing requirements related to safety and 3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs

  9. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    Energy Technology Data Exchange (ETDEWEB)

    Roudier, S [Direction de la Surete des Installations Nucleaires, Fontenay-aux-Roses (France); Badel, D; Beraha, R [Direction Regionale de l` Industrie, de la Recherche et de l` Environnement Rhone-Alpes, Lyon (France); Champ, M; Tricot, N; Tran Dai, P [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1994-12-31

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: (1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; (2) guidelines for nuclear design and manufacturing requirements related to safety and (3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs.

  10. Nuclear Reactor RA Safety Report, Format and Contents

    International Nuclear Information System (INIS)

    1986-11-01

    This is a new complete version of the safety report of nuclear reactor RA is made according to the recommendations of the IAEA. Report includes all the relevant data needed for evaluation of safe operation of this nuclear facility. Each of seven volumes of this report cover separate topics as follows: (1) introduction; (2) Site characteristics; (3) description of the reactor building and installations; (4) description of the reactor; (5) description of the coolant system; (6) description of the regulation and safety instrumentation; (7) description of the power supply system; (8) description of the auxiliary systems; (9) radiation protection issues; (10) radioactive waste management (11) reactor operation; (12) accident analysis during previous operation; (13) analysis of possible accident causes; (14) safety analysis and preventive actions: (15) analysis of significant accidents; (16) analysis of maximum possible accident; (17) environmental impact analysis in case of accident [sr

  11. Nuclear reactor built, being built, or planned

    International Nuclear Information System (INIS)

    1991-06-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1990. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly

  12. Responsible management: the Dutch licensing policy for nuclear installations

    International Nuclear Information System (INIS)

    Slange, R.

    1994-01-01

    The governmental policy, to tolerate operation of existing nuclear installations not backed by the required operating permits, certainly is applied only in exceptional cases, and this all the more when the plant is a nuclear installation. Any decision to tolerate further operation must be justified by compliance with a number of rigid criteria, there may be a debate in Parliament about the case, third parties have the right participate in the decision-finding procedure, and there is the right of appeal. (orig.) [de

  13. Safety culture in nuclear installations - The role of the regulator

    International Nuclear Information System (INIS)

    Karigi, Alice W.

    2002-01-01

    Safety culture is an amalgamation of values, standards, morals and norms of acceptable behavior by the licensees, Radiation workers and the Regulator. The role played by a Regulator in establishing safety culture in a nuclear installation is that related to Authorization, review, assessment, inspection and enforcement. The regulator is to follow the development of a facility or activity from initial selection of the site through design, construction, commissioning, radioactive waste management through to decommissioning and closure. He is to ensure safety measures are followed through out the operation of the facility by laying down in the license conditions of controlling construction of nuclear installations and ensuring competence of the operators. (author)

  14. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  15. Internal corium catcher of a nuclear reactor

    International Nuclear Information System (INIS)

    Anatolii S Vlasov; Vladimir N Mineev; Aleksandr S Sidorov; Yuri A Zeigarnik

    2005-01-01

    Full text of publication follows: A corium catcher is one of the main devices of a nuclear reactor that provides corium melt and fission products retention within a containment during severe accidents. Several studies and design developments have shown that corium retention within a reactor vessel can be attained with a moderate capacity of the latter (up to 600 - 650 MW el.). With a higher reactor capacity external corium catchers are applied both at Russian (VVER-1000) and European (EPR) reactors. In the external catcher of a VVER-1000 reactor, most technological problems are solved due to using sacrificial material. They are as follows: (a) endo-thermal interaction of corium and sacrificial material reduces a level of the temperatures in the final melt pool; (b) solution in the melt of a great amount of the sacrificial material reduces the specific heat release density and the heat flux density at the boundaries of a melt; (c) due to changing of the oxide-component density an inverse stratification of the metallic and oxide components of the corium takes place, thus excluding heat-flux focusing in the zone of the metallic layer and making it possible to supply water on the free surface of the corium without a danger of incipience of the vapor explosion; (d) final oxidation of zirconium occurs without hydrogen generation. The above principles have been realized in the external catcher of the VVER- 1000 reactor at Tyanvan NPS that is presently under construction in China. Successfully solving of the problems concerning to the external catcher makes it possible to return on the new conceptual and technological basis to the idea of retention of the corium melt inside the vessel of a nuclear reactor of large capacity, that is, to provide the reactor vessel to play a role of an internal catcher. For this purpose, a reactor vessel is elongated by approximately two meters. In the lower part of the vessel, on elliptical bottom, pieces of sacrificial material are arranged

  16. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    International Nuclear Information System (INIS)

    Allen, Francis; Bonin, Hugues

    2008-01-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU TM nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  17. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Francis [Director General Nuclear Safety, 280 Slater St, Ottawa, K1A OK2 (Canada); Bonin, Hugues [Royal Military College of Canada, 11 General Crerar Cres, Kingston, K7K 7B4 (Canada)

    2008-07-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU{sup TM} nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  18. Nuclear installations and childhood cancer in the U.K

    International Nuclear Information System (INIS)

    Goldsmith, J.R.

    1990-01-01

    The report in November 1983 of a cluster of childhood leukemia cases in the vicinity of the Sellafield (Windscale) nuclear facility on the west coast of England has led to a substantial effort to study possible excess cancer in the vicinity of British nuclear installations. Although some additional excesses were found, the causal relationship with radionuclides was thought unlikely because the estimated doses were below those established as causal of increase in human leukemia. Since 1956, we have known that diagnostic x-rays during pregnancy are associated with increased risks from childhood cancer, especially leukemia. Gardner et al. showed that excess cases near Sellafield were in children born there, and no excess occurred among in-migrants. Roman et al. showed that significant elevations in leukemia among children living near three nuclear installations in the Midlands were only at 0-5 y, suggesting that the relevant exposure was prenatal. We identify and discuss a set of epidemiological, dosage estimation, and modeling problems relevant to interpretation of such data. We conclude that: (1) a red bone marrow-based model for brief, high-level exposures of adults associated with myelogenous leukemia is inappropriate for evaluating the impact of internal emitters, relatively continuous exposures in perinatal periods in association with acute lymphatic leukemia; (2) incidence of mortality rates of childhood leukemia should be evaluated in the vicinity of nuclear installations in many countries; and (3) in contrast to nuclear reprocessing and nuclear weapons installations, there is little evidence of excess childhood leukemia among residents in areas adjacent to nuclear power installations in the U.K

  19. Nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    This patent describes an improved liquid metal nuclear reactor construction comprising: (a) a nuclear reactor core having a bottom platform support structure; (b) a reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core; (c) a containment structure surrounding the reactor vessel and having a sidewall spaced outwardly from the reactor vessel side wall and having a base mat spaced below the reactor vessel bottom end wall; (d) a central small diameter post anchored to the containment structure base mat and extending upwardly to the reactor vessel to axially fix the bottom end wall of the reactor vessel and provide a center column support for the lower end of the reactor core; (e) annular support structure disposed in the reactor vessel on the bottom end wall and extending about the lower end of the core; (f) structural support means disposed between the containment structure base mat and bottom end of the reactor vessel wall and cooperating for supporting the reactor vessel at its bottom end wall on the containment structure base mat to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event; (g) a bed of insulating material disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall; freely expand radially from the central post as it heats up while providing continuous support thereof; (h) a deck supported upon the wall of the containment vessel above the top open end of the reactor vessel; and (i) extendible and retractable coupling means extending between the deck and the top open end of the reactor vessel and flexibly and sealably interconnecting the reactor vessel at its top end to the deck

  20. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor