WorldWideScience

Sample records for nuclear power workers

  1. Education, training and work experience among nuclear power plant workers

    International Nuclear Information System (INIS)

    Blair, L.M.; Doggette, J.

    1980-01-01

    This paper uses a unique data set to examine the prior work experience, training, and education of skilled and technical workers in United States nuclear power plants. The data were collected in the latter half of 1977 by the International Brotherhood of Electrical Workers (IBEW) in a survey of union locals in nuclear power plants. The survey results provided substantial evidence that workers in United States nuclear power plants have a relatively high level of education, training, and skill development. Analysis of average education by age did not reveal any significant differences in years of schooling between younger and older workers. Very high rates of participation in formal training programmes were reported by all types of workers. The most common type of training programme was held on-site at the power plant and was provided by utility personnel. The majority of workers reported previous work experience related to nuclear power plant activities. Almost one-third of the workers had been directly involved in nuclear energy in a previous job, the majority of these through the United States Navy nuclear programme. However, the newer plants are hiring relatively fewer persons with previous nuclear experience. (author)

  2. Safety and health education and training of contract workers in nuclear power plants

    International Nuclear Information System (INIS)

    Matsumoto, Akikuni; Hara, Hisayuki; Nawata, Kazumitsu

    2008-01-01

    Nuclear power plants have used many contract workers. Their safety and health conditions are very important in Japan. Several amendments, which deregulate temporary personnel service and employment agency markets, have been done in recent years. The number of contract and temporary help agency workers have been rapidly increasing especially since the 1990s. As a result, ensuring the level of safety and health education and training of workers becomes a serious problem. This paper examines the possibility that the level of safety training of the contract workers is less than that of the direct-hire employees in nuclear power plants. We show that (1) the use of contract workers could be less efficient for ensuring the level of safety training, and (2) nuclear power plants still use contract workers in some situations in spite of the loss of efficiency. We also study legislations and past cases relating to nuclear power generation. We find that there are some structural problems that might make the contract workers less trained. (author)

  3. Demands for improvement in working surroundings for older workers in nuclear power plants

    International Nuclear Information System (INIS)

    Shizawa, Yasuhiro; Sakuda, Hiroshi; Ohashi, Tomoki

    2003-01-01

    Workers in three nuclear power plants belonging to Kansai Electric Power Co., Inc. were asked to complete a questionnaire. According to the accident reports, workers aged 50 or older had more accidents than those in 30s or 40s. Moreover, it is predicted that the average age of workers in Japan will increase during the first half of the 21st century. Therefore, investigations into working surroundings in which older workers can better perform their work would be useful. To this end, a questionnaire addressing issues related to working surroundings was conducted among workers in nuclear power plants and the demands for improvement of working surroundings for older workers are summarized. The demands of 'better lighting', 'making things less heavy', and installation of an elevator' were correlated with age, indicating that younger people have a tendency not to notice these issues. Thus, if the authority deciding on improvements in working surroundings is not an older worker, it is especially important that lighting, the weights of objects to be moved, and methods of moving between floors is taken into account. Findings specific to nuclear power plants were also reported. For example, employees who worked in the non-radiation controlled area demanded the installation of air conditioning and those who worked in the radiation controlled area demanded the establishment of a rest area. Further, we have developed a guidebook entitled 'a guidebook supporting workers' cooperation among all generations' to promote cooperation between older and younger workers. (author)

  4. Temporary worker in the nuclear power industry: an equity analysis

    International Nuclear Information System (INIS)

    Melville, M.H.

    1981-01-01

    There are clear indications based both on the statistical data and on empirical evidence that the employment of large numbers of temporary workers has become a permanent and growing characteristic of the industry. It appears that the size of that work force has been seriously underestimated and that it receives a disproportionate share of the occupational radiation. In order to stay within the limits governing individual exposure in the workplace, the risk has been spread among a larger segment of the population. These facts raise important and ongoing issues of societal and employer responsibility. By the reckonings of this study, the total number of workers employed on a temporary basis by the nuclear power industry is eighteen times greater than those much more narrowly defined by the Nuclear Regulatory Commission (NRC) as transient workers: individuals hired and terminating employment with two or more employers in one quarter. It is estimated that the whole temporary work force numbered about 23,520 in 1976, over a third (35%) of the industry total, and absorbed 47.5% of the total occupational radiation dose. The problems, then, are not inconsiderable: they affect thousands of individuals, a significant segment of the nuclear power industry's work force, members of society who are subjected to a disproportionate burden of radiation risk. Among the conclusions is that it may be necessary to establish special standards, limitations, and records for temporary workers to ensure adequate health protection, follow-up, and care

  5. Chromosome analyses of nuclear-power plant workers

    International Nuclear Information System (INIS)

    Bauchinger, M.; Kolin-Gerresheim, J.; Schmid, E.; Dresp, J.

    1980-01-01

    A brief report is given on chromosome aberration analyses of 57 healthy male employees of six German nuclear power plants. All had received annual doses below maximum permissible occupational limit of 5 rem and had worked with radiation for periods ranging from 1 - 14 years. Exposure was mainly due to external sources of γ rays and high energy x radiation. Controls were 11 healthy males with no radiation exposure except natural background. The yields of dicentrics and acentrics were significantly higher than in the unirradiated controls, but no dose dependence was apparent. These results are compared with the dose response dependence of dicentrics + rings found in nuclear dockyard workers by Evans et al. (1979). (U.K.)

  6. Study of Real Time Location System For Worker in Containment Building at Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.; Kim, G. S. [Samchang Enterprise Company, Ulsan (Korea, Republic of); Kim, H. S. [Ulsan Univ., Ulsan (Korea, Republic of)

    2012-03-15

    Workers are required special management to minimize radiation exposure in nuclear power plant. Especially, there are many limitation in their activities at containment building in nuclear power plant. Test personnel shall administer the workers by tracing the location of them inside containment building in nuclear power plant. They may be exposed to the unnecessary radiation due to a complex and high radiation area in the building. Test personnel needs to manage efficiently for worker's safety and work hours at containment building. Therefore, it is critical for the test personnel to notice the risk to the workers by identifying the location when the workers are facing the dangerous situation on the high area. In this paper, we introduce requirements and design method to develop the one and two dimensional RTLS(Real Time Locating System) by using CSS(Chirp Spread Spectrum) which enables precise location measurement and robust data communication even indoor environment with serious electromagnetic interference caused by complicated structure such as the inside of containment building in the nuclear power plant. In the algorithm to compute the distance, it is suggested to use SDS-TWR(Symmetrical Double-Sided Two-Way Ranging) to solve the issue of indirect routes, and develop the power circuit with 10mW of designing gain for output power to meet the KCC standard in order to increase the raging distance, in addition, communication between Anchor and distance measuring computer shall be designed to increase energy using time of Tags(nodes) by using CAN(Controller Area Network) communication.

  7. Education and training for workers of nuclear power plants

    International Nuclear Information System (INIS)

    Nishikawa, Motoyuki

    1985-01-01

    On the education concerning radiation control for the workers of nuclear power plants, the notice of the Ministry of Labor is to be observed in nuclear power stations from April-June, 1985, and to make the standard for executing it in unified state, the working group was organized in the Federation of Electric Power Companies. It drew up the ''Standard for education on radiation control''. First, the notice from the director of the Labor Standards Bureau, the Ministry of Labor, issued on June 26, 1984, is explained. The objective is to reduce the radiation exposure of workers by giving them the necessary knowledge and skill regarding the works involving radiation. The kinds of the education is divided into that given at the time of beginning the works involving radiation and that given after having taken up the job. Both studies and practical techniques are given. The ''Standard for education on radiation control'' stipulates its objective, the contents of the education, the object persons of education, the requirement for lecturers, the education curriculum, and records. In this standard, the details of education contents are determined. The time limit of the effectiveness of education is determined, and after it has expired, re-education is carried out. (Kako, I.)

  8. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    Energy Technology Data Exchange (ETDEWEB)

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  9. Mortality and career radiation doses for workers at a commercial nuclear power plant: feasibility study

    International Nuclear Information System (INIS)

    Goldsmith, R.; Boice, J.D. Jr.; Hrubec, Z.; Hurwitz, P.E.; Goff, T.E.; Wilson, J.

    1989-01-01

    Career radiation doses for 8,961 male workers at the Calvert Cliffs Nuclear Power Plant (CCNPP) were determined for both utility (n = 4,960) and contractor (n = 4,001) employees. Workers were followed from the time of first employment at CCNPP (including plant construction) to the end of 1984 (mean follow-up = 5.4 y). Plant operation began in 1975. The mean duration of employment was 1.9 y at CCNPP and 3.1 y in the nuclear industry. Career radiation doses were determined from dosimetry records kept by the utility company and the U.S. Nuclear Regulatory Commission (NRC). For all exposed workers, the average career dose was 21 mSv and was higher for contractor (30 mSv) than utility (13 mSv) workers. Career doses were also higher among those employed in the nuclear industry for greater than or equal to 15 y (111 mSv) and among workers classified as health physicists (56 mSv). Cumulative doses of greater than or equal to 50 mSv were received by 12% of the workers; the maximum career dose reported was 470 mSv. The availability of social security numbers for practically all employees facilitated record-linkage methods to determine mortality; 161 deaths were identified. On average the workers experienced mortality from all causes that was 15% less than that of the general population of the U.S., probably due to healthier members of the population being selected for employment. Our investigation demonstrates that historical information is available from which career doses could be constructed and that, in principle, it is feasible to conduct epidemiologic studies of nuclear power plant workers in the U.S. Although difficult, the approach taken could prove useful until such time as a comprehensive registry of U.S. radiation workers is established

  10. Projecting labor demand and worker immigration at nuclear power plant construction sites: an evaluation of methodology

    International Nuclear Information System (INIS)

    Herzog, H.W. Jr; Schlottmann, A.M.; Schriver, W.R.

    1981-12-01

    The study evaluates methodology employed for the projection of labor demand at, and worker migration to, nuclear power plant construction sites. In addition, suggestions are offered as to how this projection methodology might be improved. The study focuses on projection methodologies which forecast either construction worker migration or labor requirements of alternative types of construction activity. Suggested methodological improvements relate both to institutional factors within the nuclear power plant construction industry, and to a better use of craft-specific data on construction worker demand/supply. In addition, the timeliness and availability of the regional occupational data required to support, or implement these suggestions are examined

  11. A worker perspective on nuclear safety

    International Nuclear Information System (INIS)

    Pigeau, T.

    2000-01-01

    The majority of the 15,000 members of the Power Workers Union (PWU) are employed in electricity production at Ontario Power Generation's nuclear generating stations and in nuclear technology research at the Chalk River Laboratories of Atomic Energy of Canada Limited. Our members therefore have an obvious vested interest in any discussion related to their jobs. Workers in nuclear power plants have a clearly defined responsibility to ensure a safe working environment for themselves and their fellow workers. They have an overwhelming vested interest in ensuring that the plants are constructed, maintained, and operated safely. As will be detailed in the presentation to the CNS, all workers are required to learn and demonstrate knowledge of the hazards as an integral part of employment initiation and subsequent training. As their union, the PWU has a responsibility to ensure conditions of employment that not only permit workers to refuse work they perceive to be unsafe but require them to bring safety concerns forward for resolution to the satisfaction of both management and workers' representatives. The PWU has accomplished this through the development of workplace structures to ensure worker input is sought and acted on. The paper will describe the next steps required to improve workplace safety at Ontario Power Generation, which could be adapted to other facilities and workgroups. (author)

  12. Temporary workers in the nuclear power industry: implications for the waste management program

    International Nuclear Information System (INIS)

    Melville, M.H.

    1984-01-01

    The employment of large number of temporary workers has become a growing and permanent characteristic of the nuclear power industry. In order to stay within the limits governing individual exposure to radiation in the workplace, the occupational risk has been spread among a larger segment of the population. Temporary workers, who make up one-third of the industry's work force, bear a disproportionate share of half the total annual occupational radiation dose. At issue is whether temporary workers should be grouped with the public at large or with the nuclear industry's work force, whose maximum limits are at least 10 times higher. This issue is relevant at a time when the search for a way to manage the mounting radioactive wastes will increase both the permanent and temporary work force. 44 references, 4 figures, 4 tables

  13. Concerning the structure of occupational accidents involving construction workers in the erection of nuclear power plants

    International Nuclear Information System (INIS)

    Nowak, B.; Roebenack, K.D.

    1991-01-01

    An investigation of 561 occupational accidents involving construction workers which took place during the construction of nuclear power plants failed to show any significant deviation in comparison with general construction as regards process classification, classification of accidents according to occupation and situation, and accidents severity. Occupational accidents which are typial for nuclear power plant construction are a rare exception. (orig.) [de

  14. Epidemiologic investigation on health hazard of potential exposure to ionizing radiation among nuclear workers and residents near nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Yoo, Keun Young

    1998-01-01

    This study was conducted to evaluate the health hazard of potential exposure to ionizing radiation among nuclear workers of the KEPCO and community residents nearby nuclear power plants since 1990 in Korea. The objectives of this study encompass 1) to delineate the relationship between cancer occurrence in the target population and radiation possibly emitted from the nuclear power plant, and 2) to provide special health service for health promotion of the community residents including periodic health examinations. The phase I study has been conducted during 1990-1995, which will be followed up by the phase II study until 2003. Hereby the interim report on the phase I study will be presented. As a baseline survey, the cross-sectional comparison shows that there were no significant difference in the health status of nuclear workers and control groups. This prospective study could eventually provide a valid conclusion on the causal relationship of radiation and cancer occurrence among residents nearby nuclear power plants through the phase II study which will be launched out during 1998-2000. (Cho, G. S.)

  15. Review of Cytogenetic analysis of restoration workers for Fukushima Daiichi nuclear power station accident

    International Nuclear Information System (INIS)

    Suto, Yumiko

    2016-01-01

    Japan faced with the nuclear accident of the Fukushima Daiichi Nuclear Power Station (NPS) caused by the combined disaster of the Great East Japan Earthquake and the subsequent tsunamis on 11 March 2011. National Institute of Radiological Sciences received all nuclear workers who were engaged in emergency response tasks at the NPS and suspected of being overexposed to acute radiation. Biological dosimetry by dicentric chromosome assay was helpful for medical triage and management of the workers. When an unplanned radiation exposure occurs, biological dosimetry based on cytogenetic assays has been used to estimate the absorbed dose in the exposed individual to get useful information for the medical management of radiological casualties with suspected acute radiation syndrome (ARS). Nowadays, more cytogenetic assays to measure chromosomal aberrations, such as micronuclei in bi-nucleated cells, prematurely condensed chromosomes (PCCs) and inter-chromosomal exchanges detected by fluorescence in situ hybridization (FISH) techniques, are available. However, the dicentric chromosome assay (DCA) using peripheral blood lymphocytes is still considered to be the 'gold standard' of biological dosimetry for the radiation emergency medicine. Experimental protocols of DCA has been standardized and shared among laboratories all over the world. In fact, DCA was useful in previous radiation accidents, e.g. the Chernobyl accident in 1986, the Goiania accident in 1987, the JCO criticality accident in 1999 and the Tokyo electric power company (TEPCO) Fukushima Daiichi Nuclear Power Station (NPS) accident in 2011. The recent development of microscopic image analysis system with automatic metaphase finding and capturing functions was helpful for rapid detection of dicentric chromosomes to perform DCA for the Fukushima NPS restoration workers. (author)

  16. An innovative program to increase safety culture for workers on a nuclear power plant

    International Nuclear Information System (INIS)

    Schryvers, Vincent

    2007-01-01

    Full text: To implement the WENRA harmonized guidelines and the IAEA reference guides, Electrabel has recently introduced a major training program for both its own staff and the contractors working on the sites of its Nuclear Power Plants. This training program stresses the importance of safety culture on both theoretical and practical level and is mostly focused on the behavioural aspects during activities performed at the site of a Nuclear Power Plant. Further emphasis is put on radiation protection, industrial safety, environmental protection and explosion prevention. The training scheme for both the staff of Electrabel and contractors typically contains a theoretical part introducing the basic concepts of nuclear safety and safety culture and a practical exercise in a simulated environment. A novel element in the training cycle is the use of a simulated environment, where the actual working conditions in the nuclear part of the installation are simulated. This mock-up installation enables the workers to train the nuclear safety constraints linked to the actual installation and to enhance safety culture by responding on simulated problems and changing conditions possibly being encountered during an intervention at the real working site. To analyze the behaviour of the future workers, the activities are videotaped and commented for further improvement. A refresh of the training courses is implemented after 3 years.Although this training program has only been in operation for just 6 months, the response of the contractors and the staff to this training has been enthusiastic. At this moment, more than 1.000 workers have successfully completed the training course. (author)

  17. The politics of nuclear power

    International Nuclear Information System (INIS)

    Elliott, D.

    1978-01-01

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  18. Mortality risk in a historical cohort of nuclear power plant workers in Germany: results from a second follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Merzenich, Hiltrud; Troeltzsch, Katrin; Ruecker, Kai; Buncke, Johanna; Blettner, Maria [University Medical Center Mainz, Institute of Medical Biostatistics, Epidemiology and Informatics, Mainz (Germany); Hammer, Gael P. [University Medical Center Mainz, Institute of Medical Biostatistics, Epidemiology and Informatics, Mainz (Germany); Laboratoire National de Sante E.P., Registre Morphologique des Tumeurs, Dudelange (Luxembourg); Fehringer, Franz [Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BGETEM), Cologne (Germany)

    2014-05-15

    Possible health effects of low and protracted doses of ionizing radiation are relevant for persons who are exposed to an occupational context like nuclear industry workers. A historical cohort study was therefore conducted to examine mortality risks following occupational radiation exposure among 4,844 German nuclear power plant workers. This cohort included workers from ten nuclear power plants with an observational period from 1991 until 1997. The results of an enlarged cohort with 8,972 workers from all 17 nuclear power plants in West Germany are now available. During the extended follow-up period from 1991 to 2008, a total of 310 deaths among men were observed. The standardized mortality ratio (SMR) from all causes of deaths was estimated at 0.50 [95 % confidence interval (CI) 0.45-0.56]. A total of 126 deaths due to cancer occurred (SMR = 0.65; 95 % CI 0.51-0.82) and seven deaths due to leukemia (SMR = 1.23; 95 % CI 0.42-2.84). Overall, a reduced mortality compared to the general population of West Germany was observed indicating a healthy worker effect. In the dose-response analysis, no statistically significant risk due to ionizing radiation was seen. The hazard ratio (HR/mSv) for leukemia excluding chronic lymphocytic leukemia was estimated at 1.004 (95 % CI 0.997-1.011). In conclusion, the cohort is small and made up of young workers, most of whom were still employed at the end of the observational period in 2008. Results of the external analysis are difficult to interpret as influenced by a healthy worker effect. In the internal analysis, no excess of risk due to radiation was detected. (orig.)

  19. Mortality risk in a historical cohort of nuclear power plant workers in Germany: results from a second follow-up

    International Nuclear Information System (INIS)

    Merzenich, Hiltrud; Troeltzsch, Katrin; Ruecker, Kai; Buncke, Johanna; Blettner, Maria; Hammer, Gael P.; Fehringer, Franz

    2014-01-01

    Possible health effects of low and protracted doses of ionizing radiation are relevant for persons who are exposed to an occupational context like nuclear industry workers. A historical cohort study was therefore conducted to examine mortality risks following occupational radiation exposure among 4,844 German nuclear power plant workers. This cohort included workers from ten nuclear power plants with an observational period from 1991 until 1997. The results of an enlarged cohort with 8,972 workers from all 17 nuclear power plants in West Germany are now available. During the extended follow-up period from 1991 to 2008, a total of 310 deaths among men were observed. The standardized mortality ratio (SMR) from all causes of deaths was estimated at 0.50 [95 % confidence interval (CI) 0.45-0.56]. A total of 126 deaths due to cancer occurred (SMR = 0.65; 95 % CI 0.51-0.82) and seven deaths due to leukemia (SMR = 1.23; 95 % CI 0.42-2.84). Overall, a reduced mortality compared to the general population of West Germany was observed indicating a healthy worker effect. In the dose-response analysis, no statistically significant risk due to ionizing radiation was seen. The hazard ratio (HR/mSv) for leukemia excluding chronic lymphocytic leukemia was estimated at 1.004 (95 % CI 0.997-1.011). In conclusion, the cohort is small and made up of young workers, most of whom were still employed at the end of the observational period in 2008. Results of the external analysis are difficult to interpret as influenced by a healthy worker effect. In the internal analysis, no excess of risk due to radiation was detected. (orig.)

  20. Training in radiation protection of workers at Electricite de France nuclear power plants

    International Nuclear Information System (INIS)

    Aye, Louis

    1980-01-01

    The safety of workers and the population is a major concern of the nuclear industry. In order to carry out its programme of PWR power plants, Electricite de France has largely developed the training in radiation protection of its personnel. Operation workers now represent some 5000 persons; they first receive a formation organized at the national level consisting in training courses, which are completed and continued on the spot. The training makes a wide use of audiovisuals; it is checked by tests and leads to better qualification. Close coordination is sought with outside competent organizations [fr

  1. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  2. Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay

    International Nuclear Information System (INIS)

    Hristova, Rositsa; Hadjidekova, Valeria; Grigorova, Mira; Nikolova, Teodora; Bulanova, Minka; Popova, Ljubomira; Staynova, Albena; Benova, Donka

    2013-01-01

    The aim of this study was to evaluate the genotoxic effects of ionizing radiation in vivo in exposed Bulgarian nuclear power plant workers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes. Chromosome analysis using fluorescence in situ hybrydization (FISH) and Giemsa techniques was undertaken on 63 workers and 45 administrative staff controls from the Bulgarian Nuclear Power Plant. Using the Giemsa method, the frequencies of cells studied with chromosome aberrations, dicentrics plus rings and chromosome fragments in the radiation workers were significantly higher compared with the control group (P=0.044, P=0.014, and P=0.033, respectively). A significant association between frequencies of dicentrics plus rings and accumulated doses was registered (P<0.01). In the present study, a FISH cocktail of whole chromosome paints for chromosomes 1, 4 and 11 was used. A significant association between frequency of translocations and accumulated doses was also observed (P<0.001). Within the control group, a correlation was found between age and the spontaneous frequency of translocations. No correlation was found between smoking status and frequency of translocations. When compared with the control group, workers with accumulated doses up to 100 mSv showed no increase in genome translocation frequency, whereas workers with accumulated doses from 101 to 200 mSv showed a statistically significant doubling of genome translocation frequency (P=0.009). Thus, in cases of chronic exposure and for purposes of retrospective dosimetry, the genome frequency of translocations is a more useful marker for evaluation of genotoxic effects than dicentric frequency. (author)

  3. Dose-reduction techniques for high-dose worker groups in nuclear power plants

    International Nuclear Information System (INIS)

    Khan, T.A.; Baum, J.W.; Dionne, B.J.

    1991-03-01

    This report summarizes the main findings of a study of the extent of radiation dose received by special work groups in the nuclear power industry. Work groups which chronically get large doses were investigated, using information provided by the industry. The tasks that give high doses to these work groups were examined and techniques described that were found to be particularly successful in reducing dose. Quantitative information on the extent of radiation doses to various work groups shows that significant numbers of workers in several critical groups receive doses greater than 1 and even 2 rem per year, particularly contract personnel and workers at BWR-type plants. The number of radiation workers whose lifetime dose is greater than their age is much less. Although the techniques presented would go some way in reducing dose, it is likely that a sizeable reduction to the high-dose work groups may require development of new dose-reduction techniques as well as major changes in procedures. 10 refs., 26 tabs

  4. Cancer mortality risk of nuclear power workers due to the exposure of ionising radiation in Germany

    International Nuclear Information System (INIS)

    Fehringer, F.; Seitz, G.; Hammer, G.P.; Blettner, M.

    2006-01-01

    A cohort study of German nuclear power workers was set up to investigate overall and cancer mortality risk related to a chronic exposure to ionising radiation of low-level dose. The German study was performed as a part of an international study carried out by the International Agency for Research on Cancer (IARC), Lyon. First results of the international study have been published recently [1]. German data are not yet included in this analysis. The German cohort consists of 4844 employees from 10 nuclear power plants. All persons who worked in these nuclear power plants in 1991 or started employment between 1991 und 1997 are included (except for employees of one plant, whose observation period started in 1992). These persons accumulated about 31,000 person years. Overall, 68 deaths were observed in the observation period between 1.1.1991-31.12.1997. Standardized mortality ratios (SMR) were computed for all causes of death, all cancers, cardiovascular diseases, external causes, and all other causes. Overall, a strong healthy worker effect was observed (SMR=0.52 [95% CI: 0.41;0.67]). No increase in total cancer mortality was seen (SMR=0.85 [95% CI: 0.53;1.30]). However, numbers are too small for stable risk estimates and further effort is under way to complete the cohort in terms of power plants and to extend the follow-up until 2005. (authors)

  5. Cancer mortality risk of nuclear power workers due to the exposure of ionising radiation in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Fehringer, F.; Seitz, G. [Berufsgenossenschaft der Feinmechanik und Elektrotechnik, Koln (Germany); Hammer, G.P.; Blettner, M. [Johannes Gutenberg-Universitat Mainz, Institut fur Medizinische Biometrie, Epidemiologie und Informatik des Klinikums (Germany)

    2006-07-01

    A cohort study of German nuclear power workers was set up to investigate overall and cancer mortality risk related to a chronic exposure to ionising radiation of low-level dose. The German study was performed as a part of an international study carried out by the International Agency for Research on Cancer (IARC), Lyon. First results of the international study have been published recently [1]. German data are not yet included in this analysis. The German cohort consists of 4844 employees from 10 nuclear power plants. All persons who worked in these nuclear power plants in 1991 or started employment between 1991 und 1997 are included (except for employees of one plant, whose observation period started in 1992). These persons accumulated about 31,000 person years. Overall, 68 deaths were observed in the observation period between 1.1.1991-31.12.1997. Standardized mortality ratios (SMR) were computed for all causes of death, all cancers, cardiovascular diseases, external causes, and all other causes. Overall, a strong healthy worker effect was observed (SMR=0.52 [95% CI: 0.41;0.67]). No increase in total cancer mortality was seen (SMR=0.85 [95% CI: 0.53;1.30]). However, numbers are too small for stable risk estimates and further effort is under way to complete the cohort in terms of power plants and to extend the follow-up until 2005. (authors)

  6. Risk perception of workers at nuclear power plants from Angra dos Reis, Rio de Janeiro State: preliminary study of a reality on health

    International Nuclear Information System (INIS)

    Scliar, Claudio; Vasconcelos, Ana S.F.; Rodrigues, Anacely S.; Santos, Gloria R.R.; Albuquerque, Patricia O.; Carvalho, Sirlene L.A.; Oliveira, Simone

    1999-01-01

    The present paper analyses some social and occupational parameters that may have an influence on the risk perception levels of the workers in Brazilian Nuclear Power pLants, emphasizing possible relationship between the specificity of job tasks/literacy and risk perception. This study was based on two findings from the scientific literature: risk perception increases proportionally with literacy; risk perception decreases proportionally with the specificity of job tasks. The results of this pilot study indicates that risk perception levels of the workers in Brazilian Nuclear Power Plants increases proportionally with the literacy and specificity of their job tasks, contrasting with the american and european profiles. These results appears as a singular reality of those workers and the possibility of a new regard over the management and decision making process in the Brazilian Nuclear Power Plants. (author)

  7. Chromosome aberrations in workers of ignalina nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Griciene, B.; Januskeviciute, I.; Mierauskiene, J.; Slapsyte, G. [Vilnius Univ. (Lithuania)

    2006-07-01

    Full text of publication follows: The Ignalina Nuclear Power Plant (I.N.P.P.) workers and outside workers including visitors constitute the largest occupational group exposed to low doses of ionizing radiation in Lithuania. In 2004, the annual collective dose to these workers (4392 persons) was 6,83 man Sv. The maximum annual individual dose of I.N.P.P. workers was 19,16 mSv, and of outside workers was 29,41 mSv. However, according to calculations performed by the Lithuanian Radiation Protection Centre, the decommissioning of I.N.P.P. (the I.N.P.P. is to be shut down by 2009) will result in collective dose of 35 man Sv. Therefore, a special attention should be given to implementation of radiation protection programme. The importance of cytogenetic studies in the medical surveillance of radiation-exposed persons is generally acknowledged. The aim of the present study was to analyse chromosome aberration frequencies in lymphocytes of I.N.P.P. workers. The blood sampling of 27 male workers was performed in October 2004, after planned outage of I.N.P.P.. It was estimated that outages of I.N.P.P. Units contributed 84% to all annual occupational collective dose. Average cumulative dose of 18 workers was 290,7 mSv (group A), and of 9 workers - 71,7 mSv (group B). The mean annual doses averaged over the three-year-period were 15,2 mSv and 0,76 mSv, respectively. None of the exposed workers had ever exceeded the permissible dose limit. The average age of group A workers was 45,2 years, and group B 48,2 years. A questionnaire form with details on age, occupational history, smoking habit and alcohol intake, medication, history of recent illness was completed for each person at the time of blood collection. 64 non-exposed male donors approximately matched by age were used as controls (group C). Heparinized venous blood samples were taken and cultures were initiated within 24 h according to the standard procedures. At least 500 first cycle metaphases were analysed from each

  8. Chromosome aberrations in workers of ignalina nuclear power plant

    International Nuclear Information System (INIS)

    Griciene, B.; Januskeviciute, I.; Mierauskiene, J.; Slapsyte, G.

    2006-01-01

    Full text of publication follows: The Ignalina Nuclear Power Plant (I.N.P.P.) workers and outside workers including visitors constitute the largest occupational group exposed to low doses of ionizing radiation in Lithuania. In 2004, the annual collective dose to these workers (4392 persons) was 6,83 man Sv. The maximum annual individual dose of I.N.P.P. workers was 19,16 mSv, and of outside workers was 29,41 mSv. However, according to calculations performed by the Lithuanian Radiation Protection Centre, the decommissioning of I.N.P.P. (the I.N.P.P. is to be shut down by 2009) will result in collective dose of 35 man Sv. Therefore, a special attention should be given to implementation of radiation protection programme. The importance of cytogenetic studies in the medical surveillance of radiation-exposed persons is generally acknowledged. The aim of the present study was to analyse chromosome aberration frequencies in lymphocytes of I.N.P.P. workers. The blood sampling of 27 male workers was performed in October 2004, after planned outage of I.N.P.P.. It was estimated that outages of I.N.P.P. Units contributed 84% to all annual occupational collective dose. Average cumulative dose of 18 workers was 290,7 mSv (group A), and of 9 workers - 71,7 mSv (group B). The mean annual doses averaged over the three-year-period were 15,2 mSv and 0,76 mSv, respectively. None of the exposed workers had ever exceeded the permissible dose limit. The average age of group A workers was 45,2 years, and group B 48,2 years. A questionnaire form with details on age, occupational history, smoking habit and alcohol intake, medication, history of recent illness was completed for each person at the time of blood collection. 64 non-exposed male donors approximately matched by age were used as controls (group C). Heparinized venous blood samples were taken and cultures were initiated within 24 h according to the standard procedures. At least 500 first cycle metaphases were analysed from each

  9. Development of Work Verification System for Cooperation between MCR Operators and Field Workers in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Seung Min; Seong, Poong Hyun; Lee, Hyun Chul

    2014-01-01

    In this work, as an application of digital devices to NPPs, a cooperation support system to aid communication between MCR operators and field workers in Nuclear Power Plants (NPPs), NUclear COoperation Support and MObile document System (Nu-COSMOS), is suggested. It is not easy for MCR operators to estimate whether field workers conduct their work correctly because MCR operators cannot monitor field workers at a real time, and records on paper procedure written by field workers do not contain the detailed information about work process and results. Thus, for safety operation without any events induced by misunderstand and miscommunication between MCR operators and field workers, the Nu-COSMOS is developed and it will be useful from the supporting cooperation point of view. To support the cooperation between MCR operators and field workers in NPPs, the cooperation support and mobile documentation system Nu-COSMOS is suggested in this work. To improve usability and applicability of the suggested system, the results of using existed digital device based support systems were analyzed. Through the analysis, the disincentive elements of using digital device-based developments and the recommendations for developing new mobile based system were derived. Based on derived recommendations, two sub systems, the mobile device based in-formation storing system and the large screen based information sharing system were suggested. The usability of the suggested system will be conducted by a survey with questionnaires. Field workers and operators, and nuclear-related person who had experiences as an operator, graduate students affiliated in nuclear engineering department will use and test the functions of the suggested system. It is expected that the mobile based information storing system can reduce the field workers' work load and enhance the understanding of MCR operators about field operators work process by monitoring all work results and work processes stored in devices

  10. Development of Work Verification System for Cooperation between MCR Operators and Field Workers in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Hyun Chul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this work, as an application of digital devices to NPPs, a cooperation support system to aid communication between MCR operators and field workers in Nuclear Power Plants (NPPs), NUclear COoperation Support and MObile document System (Nu-COSMOS), is suggested. It is not easy for MCR operators to estimate whether field workers conduct their work correctly because MCR operators cannot monitor field workers at a real time, and records on paper procedure written by field workers do not contain the detailed information about work process and results. Thus, for safety operation without any events induced by misunderstand and miscommunication between MCR operators and field workers, the Nu-COSMOS is developed and it will be useful from the supporting cooperation point of view. To support the cooperation between MCR operators and field workers in NPPs, the cooperation support and mobile documentation system Nu-COSMOS is suggested in this work. To improve usability and applicability of the suggested system, the results of using existed digital device based support systems were analyzed. Through the analysis, the disincentive elements of using digital device-based developments and the recommendations for developing new mobile based system were derived. Based on derived recommendations, two sub systems, the mobile device based in-formation storing system and the large screen based information sharing system were suggested. The usability of the suggested system will be conducted by a survey with questionnaires. Field workers and operators, and nuclear-related person who had experiences as an operator, graduate students affiliated in nuclear engineering department will use and test the functions of the suggested system. It is expected that the mobile based information storing system can reduce the field workers' work load and enhance the understanding of MCR operators about field operators work process by monitoring all work results and work processes stored in devices.

  11. Papers of Scientific Conference Summer School of Nuclear Power

    International Nuclear Information System (INIS)

    2001-01-01

    Despite of the present negative approaches of societies to nuclear power it will be in future one of mine sources of energy in world, also in Poland. Limited resources of effective organic fuels such as petroleum and gas, political and social instability in the regions of oil and gas source and requirements - especially in Europe - of environment protection will prefer nuclear sources of energy. In this situation there is a necessary to give information to society about this source of energy: about advantages and threats resulting from uses of nuclear power, about directions and perspectives of development of nuclear sources of energy. For this purpose the Summer School of Nuclear Power was organized. it should be give the knowledge in the field of present status and perspective of nuclear power, the role of nuclear power in the fuel and energy balance, the radiological impact of nuclear facilities on environment and problems of radioactive waste and spent fuel management. Presented lectures are intended for power workers, workers of scientific institutes, workers and students of colleges, ecologists, specialists of environment protection and for teachers of middle schools should bring near to environment present image and perspectives of nuclear sources of energy development and their utilizations. Presented lectures embrace following problems: resources of power raw materials; problems of economics of nuclear power; ecological aspects of energy production; present state of nuclear power facilities design; development perspective of nuclear power plants; nuclear safety and radiological protection; management of spent fuel and radioactive waste. (author)

  12. Some aspects of nuclear power development in Czechoslovakia

    International Nuclear Information System (INIS)

    Simandl, S.; Stefec, V.

    1986-01-01

    Some technical and economic aspects of the development of nuclear power in Czechoslovakia are discussed. Specific conditions include the high population density of the territory and related factors as well as the shortage of raw materials for the construction of technological equipment and for the construction of buildings. It is stated that projects of future nuclear power plants should use reserves, such as are available in the standard project of a WWER-1000 nuclear power plant now being used in Temelin, as against foreign nuclear power plants. This mainly includes a bigger built-up area per installed megawatt of power and a greater number of personnel for operation and maintenance. Also discussed is the world-wide growth of capital costs, of construction time and of the number of workers needed for the construction of nuclear power plants. With the exception of the V-2 nuclear power plant the construction time of Czechoslovak nuclear power plants does not exceed world average. The maximum number of workers required for construction, however, compares unfavourably with advanced capitalist countries. Operating costs in Czechoslovakia are more favourable for nuclear power plants than for coal burning power plants and pumped-storage hydroelectric plants. (Z.M.)

  13. The status of contractors workers operating in US nuclear power plants

    International Nuclear Information System (INIS)

    Lochard, J.

    1985-01-01

    The status of contractors operating in PWRs in the United States is described. The statistics concerning the trends of both the individual and collective exposures of these workers were analysed as well as their main demographic and sociological features. The data relative to the particular group of ''transient'' workers, i.e. those operating in several different power plants during the same year were also examined. The results presented show that the dosimetric and sociological profiles of contractors' workers, in US power plants, do not differ fundamentally from that of permanent workers [fr

  14. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  15. Dose assessment for emergency workers in early phase of Fukushima Daiichi nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Nahid; Ahangari, Rohollah; Kasesaz, Yaser; Noori-kalkhoran, O. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research School

    2017-11-15

    In the case of Fukushima Daiichi nuclear power plant (FNP) accident, the radioactive material was released from reactor units 1-3 and transported to short and long distances due to the atmospheric pathways-motions. Power sources for monitoring posts were lost due to earthquake and tsunami. Based on air dose rates and other data measured by monitoring cars, the amount of radioactive material released to the atmosphere from the power station was obtained. The atmospheric dispersion and the transport model used in the RASCAL code, estimate the radionuclide concentrations downwind, both in the air and on the ground due to deposition. The calculated concentrations are then used to estimate the projected doses for workers in vicinity of the accident area in the first minutes of accident time. For dose modeling, we assumed that each worker was 15 min in vicinity of FNP in accident situation, once without and once with protective clothes or respirator. According to Tokyo Electric Power Company (TEPCO) report six workers had received doses over 250 mSv (309 to 678 mSv) apparently due to inhaling Iodine-131 fume. In this paper the calculated dose results using RASCAL code shows that, if emergency workers who work in early phase of accident had not used protective equipment, for 15 min, inhalation doses from iodine in their thyroid gland up to 12 March afternoon would have been 520 mSv. A comparison between calculation results and TEPCO report shows that dose calculated virtually is nearly equal to TEPCO measurement results.

  16. Commonalty initiatives in US nuclear power plants to improve radiation protection culture and worker efficiency

    International Nuclear Information System (INIS)

    Wood, W.; Miller, D.

    2003-01-01

    Many US nuclear power plants have learned that common procedures, policies, instrumentation, tools and work practices achieve improvements to the radiation protection culture. Significant worker efficiency achievements are accomplished especially during refuelling outages. This paper discusses commonalty initiatives currently being implemented at many US Plants to address management challenges presented by deregulation of the US electric industry, reduction in the pool of outage contractors and aging of the experienced radiation worker population. The new INPO 2005 dose goals of 650 person-mSv/year for PWRs and 1200 person-mSv/yr for PWRs will require new approaches to radiation protection management to achieve these challenging goals by 2005. (authors)

  17. Study of Epidemiology Conducted in Indian Nuclear Power Plants-Occupational Workers and Family Members

    International Nuclear Information System (INIS)

    Ramamirtham, B.; Shringi, K.; Wagh, P. M.

    2004-01-01

    At present in India, a nuclear generation capacity of 2720 MWe is in operation with 12 units of pressurised heavy water reactors (PHWRs) and 2 units of boiling water reactors (BWRs). The nature of the effects of the low-doses from ionizing radiation has been the subject considerable interest in the scientific community. The radiation exposures due to the operation of the NPPs are small and at low dose rates. The specific objective of the study were to compute the morbidity (prevalence) of cancer among the radiation occupational workers and their families and to compare with suitable controls and to study prevalence of congenital anomalies among the offspring of the employees of the nuclear power plants in India and to determine, if any, their causal relation with radiation exposure. The data collection work was carried out for survey by the local academic medical institutions near the NPP sites under the guidance of Tata Memorial Hospital, Mumbai. The distribution of the confounding factors among the radiation and non-radiation workers did not show any significant difference and thus the possibility of biased results was minimized. The cross-sectional survey has shown that there was no difference in the prevalence of malignancies in the radiation workers as compared to non-radiation workers, nor was there any difference in the prevalence of malignancies in the radiation workers as compared to non-radiation workers, nor was there any difference in the prevalence of malignancies in spouses and offspring. The study did not show any excess cancers among the study population. The congenital abnormalities observed in the offspring of the employees were much less than the reported values among the newborn children. The study has provided useful indicators and generated reliable baseline data for carrying out further work. Scientific thematic Area: 1) Radiation Effects. (Author)

  18. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-01-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics. (author)

  19. Robotics for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-10-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics.

  20. Human factor in the process of nuclear power development

    International Nuclear Information System (INIS)

    Enenkl, V.

    The building up of nuclear power requires the training not only of personnel but of the whole population as well. Professional workers in nuclear power facilities production and personnel operating the equipment of nuclear power plants must be on a high technical and managerial level. The important quality of such personnel is their reliability and responsibility. The human factor influences the level, quality and thereby also the service-life of the machines and equipment and their operation. The improvement of the quality of work in nuclear power production depends on upgrading the scientific and technical level of workers and personnel, their training, in-service education and the raising of the social standing. (B.H.)

  1. On PA of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  2. Kyoto: nuclear power against greenhouse effect

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Among the different possibilities to slow down the increase of greenhouse gas emissions, several participants of the Kyoto conference (December 11, 1997) held the nuclear power resort in a good position. This short paper reports on some extracts of talks given during the conference by participants who take a definite position in favour of the development of nuclear power: FORATOM (European Atomic Forum), Nuclear Energy Institute (US), Japan Atomic Industrial Forum, the Uranium Institute, WONUC (World Council of Nuclear Workers) and SFEN (French Society of Nuclear Energy). (J.S.)

  3. Medical surveillance of nuclear power plant workers during reactor shutdown using whole-body counting and excretion analysis

    International Nuclear Information System (INIS)

    Le Roux-Desmis, C.

    1987-01-01

    After a review of radioactivity basis and radiation protection principles, the various aspects of medical surveillance of nuclear power plant workers during reactor shutdown, are presented. Internal contamination incidents that happened during 1986-1987 shutdown of Paluel reactor are exposed. Internal contamination levels are evaluated using whole-body counting and radionuclide determination in feces and urine and compared with dose limits [fr

  4. Chernobyl and nuclear power in the USSR

    International Nuclear Information System (INIS)

    Marples, D.R.

    1987-01-01

    Drawing extensively upon Soviet newspapers and journals, Soviet television and radio reports, records in the Krasnyi Arkhib (Red Archive) and contacts with workers involved in the building of the Chernobyl plant, the author provides the first detailed account of the Soviet nuclear power industry and of the nature, impact and consequences of the Chernobyl accident of late April 1986. The author raises the key questions: are Soviet nuclear power plants inherently unsafe, and what impact will the Chernobyl accident have on the Soviet nuclear energy program and on nuclear power development throughout the world?

  5. Risk perception among nuclear power plant employees

    International Nuclear Information System (INIS)

    Fields, C.D.

    1989-01-01

    Radiation protection training and general employee training within the nuclear industry are designed to reduce workers' concerns about radiation and to develop skills that will protect against unwarranted exposures. Inaccurate perceptions about radiation by workers can cause a lack of adequate concern or exaggerated fears, which in turn can result in unnecessary radiation exposure to the worker or co-workers. The purpose of the study is threefold: (a) to identify health and safety concerns among nuclear power plant employees, (b) to discover variables that influence the perception of risk among employees, and (c) to ascertain if attitudes of the family, community, and the media affect workers' perception of risk. Workers identified five areas of concern: shift work, radiation, industrial safety, stress, and sabotage

  6. Occupational dose control in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Viktorsson, C.; Lochard, J.; Benedittini, M.; Baum, J.; Khan, T.A.

    1990-01-01

    Reduction in occupational exposure at nuclear power plants is desirable not only in the interest of the health and safety of plant personnel, but also because it enhances the safety and reliability of the plants. This report summarises the current trends of doses to workers at nuclear power plants and the achievements and developments regarding methods for their reduction

  7. Trend of collective dose and dose reduction measures of Mitsubishi Electric Corporation workers in nuclear power plants

    International Nuclear Information System (INIS)

    Yamato, I.; Nakayama, T.; Shimokawa, F.; Yamamoto, T.

    1996-01-01

    MELCO has supplied the reactor instrumentation control system, reactor coolant pump motors, turbine generator and central control system for the pressurized water type nuclear power plant. For the legal periodical inspection and repair work, MELCO has also received orders for the periodical inspection for 23 power plants (including 4 plants under construction) of 5 electric power companies, and executed the inspection work from the view point of preventive maintenance. The annual dose for MELCO's workers is liable to be decreased in spite of increased number of plants. The dose for new plant in particular is 50, or less as compared with that for conventional plant. This is because the measures taken for the conventional plant against the dose reduction is reflected upon the new plant. The dose reduction measures are taken for each system for which order was received. Such measures are mainly intended to improve the work procedures and equipment for reduction of work time in the radioactive area and to arrange the working process, so as to perform the work in such period when the dose level at the working environment is low. To enhance the workers' consciousness for reduction of dose, MELCO provided the workers with dose predictive training, and let them aware of such items known at the tool box briefing (TBX), which could realize the dose reduction for workers. MELCO has been positively promoting the activity to arrange the desirable work environment for extermination of 3Ks (giken, gitsui, titanai) or 3Ds (dangerous, difficult, dirty) including protection against radiation in corporation with electric power companies. (author)

  8. Risks associated with low level ionizing radiation (with special reference to nuclear power workers)

    International Nuclear Information System (INIS)

    1989-01-01

    This document describes a project to use epidemiological studies of workers in the nuclear industry to estimate the cancer risk associated with low-dose chronic exposure to ionizing radiation. The project aims both to improve the basis for radiation risk assessment and to test the validity of currently used models for the extrapolation of radiation risk. This report focusses on the former aim, and summarizes discussions at two meetings held in June 1988. One of these was a small working group consisting mainly of epidemiologists who had carried out studies of nuclear workers; the other included nominees of the nuclear industries of eleven countries as well as epidemiologists and radiation physicists and biologists. As a result of the meetings, efforts are underway to pool existing data and a feasibility study is addressing the possibility of an international collaborative study of unstudied groups of nuclear workers

  9. Anatomy of event and human performance management in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Jinhua

    2014-01-01

    This article analyzes the occurrence mechanism of events in nuclear power plants, and explains the four factors of human errors and the relations among them, then probes into the occurrence mechanism and characteristics of human errors in nuclear power plants. Moreover, the article clarifies that the principle of human performance training in nuclear power plants is all-member training, and that the implementation approach is to develop different human performance tools for different staff categories as workers, knowledge workers and supervisors, which are categorized based on characteristics of work of different staff. (author)

  10. Risk perception among nuclear power plant personnel: A survey

    International Nuclear Information System (INIS)

    Kivimaeki, M.; Kalimo, R.

    1993-01-01

    This study investigated risk perception, well-being, and organizational commitment among nuclear power plant personnel. The study group, 428 employees from a nuclear power plant, completed a questionnaire which included the same questions as those in previous surveys on risk perception of lay persons and industrial workers. Hazards at work were not seen as a sizable problem by nuclear power plant personnel. The study group estimated the safety of nuclear power plants better and the possibility of a serious nuclear accident as more unlikely than the general public. Compared to employees in other industrial companies, the overall perceived risks at work among plant personnel did not exceed the respective perceptions of the reference groups. Risk-related attitudes did not explain well-being among plant personnel, but the relationship between the perceived probability of a serious nuclear accident at work and organizational commitment yielded to a significant correlation: Those plant workers who estimated the likelihood of an accident higher were less committed to the organization. 21 refs., 2 tabs

  11. The Robots for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Chang Hwan; Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil; Shin, Ho Cheol; Lee, Sung Uk; Jung, Kyung Min; Jung, Seung Ho; Choi, Young So

    2005-01-01

    Nuclear energy becomes a major energy source worldwide even though the debating environmental and safety dispute. In order to cope with the issues related to the nuclear power plant, the uncertain human factors need to be minimized by automating the inspection and maintenance work done by human workers. The demands of robotic system in nuclear industry have been growing to ensure the safety of nuclear facilities, to detect early unusual condition of it through an inspection, to protect the human workers from irradiation, and to maintain it efficiently. NRL (Nuclear Robotics Laboratory) in KAERI has been developing robotic systems to inspect and maintain nuclear power plants in stead of human workers for over thirteen years. In order to carry out useful tasks, a nuclear robot generally requires the followings. First, the robot should be protected against radiation. Second, a mobile system is required to access to the work place. Third, a kind of manipulator is required to complete the tasks such as handling radioactive wastes and other contaminated objects, etc. Fourth, a sensing system such as cameras, ultrasonic sensors, temperature sensors, dosimetry equipments etc., are required for operators to observe the work place. Lastly, a control system to help the operators control the robots. The control system generally consists of a supervisory control part and remote control part. The supervisory control part consists of a man-machine interface such as 3D graphics and a joystick. The remote control part manages the robot so that it follow the operator's command

  12. Radiation dose to construction workers at operating nuclear power plant sites. Volume 2. Appendices A--F. Final report, September 1975--September 1978

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Shipler, D.B.

    1978-12-01

    These appendices contain the dosimetry procedures and details of the personnel and environmental dosimeters used for the Radiation Dose to Construction Workers at Operating Nuclear Power Plant Sites Study. A printout of the computer codes used to analyze dosimeter data is included along with all the raw data obtained. Appendices C through F contain computer output and log-normal plots of dosimetry data for environmental location and construction worker groups

  13. Monitoring of occupational exposure at nuclear power plants

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations concerning the monitoring of radiation doses of nuclear power plant workers and the reporting of radiation doses to the Finnish Centre for Radiation and Nuclear Safety (STUK) are specified in the guide. (10 refs.)

  14. On present situation of radioactive waste management and exposure of workers in nuclear reactor facilities for commercial power generation in fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The article summarizes the contents of some reports including the Report on Radiation Management in 1988 that were submitted by the operators of nuclear reactor facilities for commercial power generation according to the requirements specified in the Law Concerning Regulation on Nuclear Material, Nuclear Fuel and Nuclear Reactor. According to these reports, the annual radiation release in all nuclear power generation plants was well below the radiation release limits set up in the report 'On Guidelines for Target Dose in Areas around Light Water Reactor Facilities for Power Generation'. Data submitted also show that there are no significant problems with the management of radioactive solid waste. In all nuclear generation plants, the personal exposure of workers is below the permissible exposure dose specified in law. The Agency of Natural Resources and Energy is planned to further promote the development of advanced techniques for automatization and remote control of light water reactors and to provide effective guidance to electrical contractors for positive radiation management. (N.K.)

  15. Perceived Workplace Interpersonal Support Among Workers of the Fukushima Daiichi Nuclear Power Plants Following the 2011 Accident: The Fukushima Nuclear Energy Workers' Support (NEWS) Project Study.

    Science.gov (United States)

    Takahashi, Sho; Shigemura, Jun; Takahashi, Yoshitomo; Nomura, Soichiro; Yoshino, Aihide; Tanigawa, Takeshi

    2017-10-10

    The 2011 Fukushima Daiichi nuclear accident was the worst nuclear disaster since Chernobyl. The Daiichi workers faced multiple stressors (workplace trauma, victim experiences, and public criticism deriving from their company's post-disaster management). Literatures suggest the importance of workplace interpersonal support (WIS) in enhancing psychological health among disaster workers. We sought to elucidate the role of their demographics, disaster-related experiences, and post-traumatic stress symptoms on perceived WIS. We analyzed self-report questionnaires of 885 workers 2-3 months post-disaster. We used sociodemographic and disaster exposure-related variables and post-traumatic stress symptoms (measured by the Impact of Event Scale-Revised) as independent variables. We asked whether WIS from colleagues, supervisors, or subordinates was perceived as helpful, and used yes or no responses as a dependent variable. Logistic regression analyses were performed to assess correlates of WIS. Of the participants, one-third (34.7%) reported WIS. WIS was associated with younger age (20-28 years [vs 49-], adjusted odds ratio [aOR]: 3.25, 95% CI: 1.99-5.32), supervisory work status (aOR: 2.30, 95% CI: 1.35-3.92), and discrimination or slur experience (aOR: 1.65, 95% CI: 1.08-2.53). Educational programs focusing on WIS might be beneficial to promote psychological well-being among nuclear disaster workers, especially younger workers, supervisors, and workers with discrimination experiences. (Disaster Med Public Health Preparedness. 2017; page 1 of 4).

  16. Worker in nuclear activity

    International Nuclear Information System (INIS)

    Goes Fischer, M.D. de; Associacao Brasileira de Direito Nuclear, Rio de Janeiro)

    1984-01-01

    Juridical aspects with respect to the workers in nuclear activity are presented. Special emphasis is given to the clauses of the statute of workers (Consolidacao das Leis do Trabalho) the rules of the Ministerio do Trabalho and the rules of the Comissao Nacional de Energia Nuclear. The performance of the international authorities is also emphasized such as the International Labour Organization, the International Atomic Energy Agency and the International Radiological Protection Commission. (Author) [pt

  17. Survey on maintenance skills required for nuclear power plant periodic inspections

    International Nuclear Information System (INIS)

    Hamasaki, Kenichi

    2008-01-01

    In this study, we conducted a trend survey regarding the problem of passing on senior workers' skills and knowledge to young employees in industries in general, and an interview survey of skilled workers engaged in maintenance work during periodic inspections at a nuclear power plant. These surveys aimed to obtain useful information for maintaining and improving the quality of future maintenance work during nuclear power plant periodic inspections. The trend survey of industries found that the 'Year 2007 Problem (difficulties associated with the start of mass retirements of baby-boomers)' was often takenup in various fields and that many companies were concerned about losing their accumulated skills and know-how. To ensure that skills are smoothly passed on to the younger generation, companies have taken various measures, such as development of plans for passing on skills and knowledge, introduction of the Meister system and implementation of workshops by skilled workers. The interview survey of skilled workers engaged in maintenance work of mechanical equipment during periodic inspections at Nuclear Power Plant A found that various skills were required in maintenance work. Regarding perceived differences between skilled and unskilled maintenance workers, many respondents believed that the largest difference was in terms of time taken to carry out specific procedures. Some maintenance companies have increasingly fewer skilled workers than before or face aging of skilled personnel. As future concerns, respondents cited the loss of skills that have been acquired through experience in construction and in handling of troubles and failures. Differences were observed among companies in the degree to which skills have been passed on to the younger generation. As a reason why skills are not successfully passed on, respondents cited communication problems due to age differences between senior and young workers and other problems that were also observed in other industries

  18. A review of cancer mortality data of radiation workers of Nuclear Power Plant, Paks, Hungary, in the light the international radiation epidemiology study

    International Nuclear Information System (INIS)

    Turai, I.; Kerekes, A.; Otos, M.; Veress, K.

    2007-01-01

    Complete text of publication follows. Objective: To give a review of cancer mortality data among Hungarian radiation workers in nuclear industry in comparison with the results of the international nuclear workers' study prevailing the size of the study group of all former studies. Methods: Retrospective cohort study including 598,068 workers of 154 nuclear establishments in 15 countries (AUS, BEL, CAN, FIN, FRA, GER, HUN, JAP, LIT, ROK, SLK, SPA, SWE, UK, USA) coordinated by the International Agency for Research on Cancer (IARC, Lyon, France). The national study was extended for an additional 4-year period. Results: In the international study 407,391 persons in 13 years of average employment received 19.4 mSv mean cumulative dose, while in the national study 3322 radiation workers of Nuclear Power Plant (NPP) Paks, Hungary, in 14 years of follow-up period accumulated in average 5.13 mSv, only. There were 5233 cancer deaths registered in the international study, associated with an estimated ERR of 0.97 per Sv. Thus, 19.4 mSv recorded cumulative dose can explain 1 to 2% of cancer death cases. In radiation workers of NPP, Paks, during the period of 1985-1998 there were 40 cancer deaths observed against the expected 58.8 cases. In a further four year period (1999-2002) 29 cancer death cases were identified vs. the expected 65.5 cases. The SMR for the cancer death cases registered in recent and former radiation workers of NPP, Paks in the 18-year follow-up period is 56%. The SMR from all causes was even lower, 40% only. Conclusions: In the international study the mean accumulated radiation dose received by nuclear workers in 13 years is below of the recent annual dose limit (20 mSv/yr of the effective dose). The average value for the whole of radiation workers in 15 countries is almost 4-times higher of that registered in Hungary. The 'healthy worker effect' in the nuclear industry, and particularly in Hungary has been proven, once again. Nevertheless, the results

  19. Cancer mortality among nuclear workers in Belgium

    International Nuclear Information System (INIS)

    Engels, H.; Holmstock, L.; Mieghem, E. Van; Swaen, G.M.; Wambersie, A.

    2000-01-01

    To investigate long term health effects of chronic exposure to low doses of ionising radiation, the Nuclear Research Center (SCK.CEN) in Mol set up a retrospective cohort study in 5 nuclear facilities in Belgium (SCK.CEN, Belgonucleaire, Belgoprocess, 2 Electrabel nuclear power plants). Cancer mortality among nuclear workers is studied in relation to occupational exposure to ionising radiation. This study is part of the 'International Collaborative Study on Cancer Risk among Radiation Workers', coordinated by the International Agency for Research on Cancer (IARC/WHO), pooling data of 14 countries. During the period 1953-1994, all workers registered in one of the participating facilities were included in the study (n=7361). Data have been collected from different information sources: personnel registries (identification, occupational history), dosimetry records (e.g. annual effective dose), National Population Registry and local authorities (vital status). National Institute of Statistics (causes of death from the death certificates), National Radiation Registry/Ministry of Labour (transfer doses), questionnaires (e.g. smoking habits). Retrospective collection of data and privacy protection regulations specific to Belgium hampered the conduct of this study, causing labour intensive and time consuming procedures. Written informed consent of next-of-kin is required to obtain information from the death certificates. Before 1969 only family reported causes of death are available. Despite the above mentioned constraints, first results of Standardised Mortality Ratio (SMR) calculations are now available for SCK.CEN workers for the period 1969-1994 (n=3270, vital status ascertainment: 95%, underlying cause of death ascertainment: 80%). Available SMR's can be summarised as follows: male workers, no measurable dose (n=785): SMR all causes=75% (95%CI: 61-91), SMR all tumours=64% (95%CI: 42-93), 2 leukemia deaths were observed, whereas 1 is expected, male workers, measurable

  20. Nuclear power manpower and training requirements

    International Nuclear Information System (INIS)

    Whan, G.A.

    1984-01-01

    A broad spectrum of technical personnel is required to conduct a national nuclear power program, predominantly electrical, mechanical, and nuclear engineers and health physicists. The need for nuclear education and training, even in the early planning states, is the topic of this paper. Experience gained in the United States can provide useful information to Asia-Pacific countries developing nuclear power programs. Including both on-site and off-site personnel, U.S. plants average about 570 workers for BWRs and 700 for PWRs. The need for an additional 57,000 technical employees over the next decade is projected. The technical backgrounds of the manpower required to operate and support a nuclear power plant are distinctly different from those used by non-nuclear utilities. Manpower cannot be transferred from fossil fuel plants without extensive training. Meeting the demand for nuclear education and training must be a friendly partnership among universities, government, and industry. The long-term supply of nuclear-educated personnel requires strong, government-supported universities. Most specific training, however, must be provided by industry. (author)

  1. Research and development of advanced robots for nuclear power plants

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Hirukawa, Hirohisa; Kitagaki, Kosei; Liu, Yunhui; Onda, Hiromu; Nakamura, Akira

    1994-01-01

    Social and economic demands have been pressing for automation of inspection tasks, maintenance and repair jobs of nuclear power plants, which are carried out by human workers under circumstances with high radiation level. Since the plants are not always designed for introduction of automatic machinery, sophisticated robots shall play a crucial role to free workers from hostile environments. We have been studying intelligent robot systems and regarded nuclear industries as one of the important application fields where we can validate the feasibility of the methods and systems we have developed. In this paper we firstly discuss on the tasks required in nuclear power plants. Secondly we introduce current status of R and D on special purpose robots, versatile robots and intelligent robots for automatizing the tasks. Then we focus our discussions on three major functions in realizing robotized assembly tasks under such unstructured environments as in nuclear power plants; planning, vision and manipulation. Finally we depict an image of a prototype robot system for nuclear power plants based on the advanced functions. (author) 64 refs

  2. How the engineers are sinking nuclear power

    International Nuclear Information System (INIS)

    Mintz, J.

    1983-01-01

    Poor concrete work, improper welds, and construction and installation errors at nuclear power plants are blamed on budget and schedule pressures and the nuclear industry's lack of quality assurance. Nuclear Regulatory Commission Chairman Nunzio Palladino, who trained under the exacting Admiral Rickover, has ordered the industry to upgrade its quality assurance and to take safety regulations and training more seriously. The industry's response is a program that will send a team of Institute of Nuclear Power Operators (INPO) investigators to each plant under construction every 18 months to make spot checks of worker training and performance. The Electric Power Research Institute is also developing equipment to test construction quality. Both industry officials and critics remain skeptical that quality assurance will improve with more regulation

  3. Nuclear power in an age of reason

    International Nuclear Information System (INIS)

    Fells, I.

    1980-01-01

    An overview is given of many questions raised by the use of nuclear power. Problems considered include; energy demands and policies, economics, political expediency, the anti-nuclear lobby, problems of communication, confrontation between workers and management, training of reactor personnel, education of the public, and methods of improving the credibility of the industry. (U.K.)

  4. A survey of doses to worker groups in the nuclear industry

    International Nuclear Information System (INIS)

    Khan, T.A.; Baum, J.W.

    1991-01-01

    The the US National Council on Radiation Protection and Measurements (NCRP) has suggested ''...as guidance for radiation programs that cumulative exposure not exceed the age of the individual in years x 10 mSv (years x 1 rem).'' The International Commission on Radiological Protection (ICRP) has recommended a dose limit of 10 rem averaged over 5 years. With these developments in mind, the US Nuclear Regulatory Commission (NRC) requested the ALARA Center of the Brookhaven National Laboratory to undertake two parallel studies. One study, which is still ongoing, is to examine the impact of the newly recommended dose limits on the nuclear industry as a whole; the other study was intended to assist in this larger project by looking more closely at the nuclear power industry. Preliminary data had indicated that the critical industry as far as the impact of new regulatory limits were concerned would be the nuclear power industry, because, it was conjectured, there existed a core of highly skilled workers in some groups which routinely get higher than average exposures. The objectives of the second study were to get a better understanding of the situation vis grave a vis the nuclear power industry, by identifying the high-dose worker groups, quantifying the annual and lifetime doses to these groups to see the extent of the problem if there was one, and finally to determine if there were any dose-reduction techniques which were particularly suited to reducing doses to these groups. In this presentation we describe some of the things learned during our work on the two projects. For more detailed information on the project on dose-reduction techniques for high-dose worker groups in the nuclear power industry, see NUREG/CR-5139. An industry/advisory committee has been set up which is in the process of evaluating the data from the larger project on the impact of new dose limits and will shortly produce its report. 7 refs., 5 figs., 6 tabs

  5. Radiation dose registration and epidemiological study for workers of nuclear institutions in Japan

    International Nuclear Information System (INIS)

    Kumatori, T.

    1992-01-01

    The first nuclear reactor was operated in 1957 at Tokai-mura in Japan. Since then radiation dose of workers has been controlled by nuclear institutions according to the Law for the Regulations of Nuclear Source Material, Nuclear Fuel Material and Reactors. However, many nuclear power plants and other nuclear facilities were built, resulting in the remarkable increase of workers in controlled areas. Further, periodical inspection and repair work at nuclear facilities were carried out by employees of subcontractors, who were engaged in such work at many different facilities, so that it was getting more and more difficult to obtain accurate information of radiation dose on these workers. In order to meet this situation, the open-quotes Radiation Dose Registration Center for Workersclose quotes (RADREC) was established in November 1977 within the open-quotes Radiation Effects Associationclose quotes (REA), which was founded in September 1960 for the purpose of supporting the research on radiation effects and radiation protection. In January 1978, RADREC was designated by the Government as an organization to preserve the records on exposure of radiation workers, which was linked up with the registration system

  6. Enhancing nuclear power plant safety via on-site mental fatigue management

    Directory of Open Access Journals (Sweden)

    Tsai Ming-Kuan

    2017-01-01

    Full Text Available Nuclear incidents and accidents have occurred at various nuclear power plants. Since some of these incidents and accidents caused by human errors might be preventable, numerous researchers argue that fatigue management for on-site workers is the key, especially for mental fatigue. Thus, this study proposes an approach consisting of two mechanisms. A fatigue monitor could identify the mentally fatigued workers by detecting their brain wave rhythms through a brain-computer interface. For such workers, a fatigue alert would awaken them. If the status of the mentally fatigued workers becomes worse, based on a positioning technique (i.e., wireless networks, this mechanism would alert the nearby workers and managers to deal with this condition. The test results indicate that the proposed approach enhanced the capacity to examine the mentally fatigued workers, ensured the accuracy in locating these workers, and avoided possible nuclear incidents. This study is a useful reference for similar applications in the nuclear industry.

  7. On exposure of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The Law for Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1988 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the exposure of workers was below the permissible exposure dose in 1988 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of Japan Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  8. Developing the next generation of nuclear workers at OPG

    International Nuclear Information System (INIS)

    Spekkens, P.

    2007-01-01

    This presentation is about developing the next generation of nuclear workers at Ontario Power Generation (OPG). Industry developments are creating urgent need to hire, train and retain new staff. OPG has an aggressive hiring campaign. Training organization is challenged to accommodate influx of new staff. Collaborating with colleges and universities is increasing the supply of qualified recruits with an interest in nuclear. Program for functional and leadership training have been developed. Knowledge retention is urgently required

  9. Concerning control of radiation exposure to workers in nuclear reactor facilities for testing and nuclear reactor facilities in research and development phase (fiscal 1987)

    International Nuclear Information System (INIS)

    1988-01-01

    A nuclear reactor operator is required by the Nuclear Reactor Control Law to ensure that the radiation dose to workers engaged in the operations of his nuclear reactor is controlled below the permissible exposure doses that are specified in notifications issued based on the Law. The present note briefly summarizes the data given in the Reports on Radiation Control, which have been submitted according to the Nuclear Reactor Control Law by the operators of nuclear reactor facilities for testing and those in the research and development phase, and the Reports on Control of Radiation Exposure to Workers submitted in accordance with the applicable administrative notices. According to these reports, the measured exposure to workers in 1987 were below the above-mentioned permissible exposure doses in all these nuclear facilities. The 1986 and 1987 measurements of radiation exposure dose to workers in nuclear reactor facilities for testing are tabulated. The measurements cover dose distribution among the facilities' personnel and workers of contractors. They also cover the total exposure dose for all workers in each of four plants operated under the Japan Atomic Energy Research Institute and the Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  10. Occupational exposures and practices in nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.

    1989-01-01

    As the first generation of commercial nuclear power comes to a close, it is timely to consider the status of occupational exposure in the power generation industry, that is, the collective occupational radiation doses received by workers in nuclear power plants. The picture is surprising. One might have thought that as newer, larger, and more modern plants came on line, there would be a significant decrease in exposure per unit of electricity generated. There is some indication that this is now happening. One might also have thought that the United States, being a leader in the development of nuclear power, and in the knowledge, experience and technology of nuclear radiation protection, would have the greatest success in controlling exposure. This expectation has not been fulfilled. 32 refs., 4 figs., 5 tabs

  11. Development of digital device based work verification system for cooperation between main control room operators and field workers in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min, E-mail: jewellee@kaeri.re.kr [Korea Atomic Energy Research Institute, 305-353, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyun Chul, E-mail: leehc@kaeri.re.kr [Korea Atomic Energy Research Institute, 305-353, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ha, Jun Su, E-mail: junsu.ha@kustar.ac.ae [Department of Nuclear Engineering, Khalifa University of Science Technology and Research, Abu Dhabi P.O. Box 127788 (United Arab Emirates); Seong, Poong Hyun, E-mail: phseong@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2016-10-15

    Highlights: • A digital device-based work verification and cooperation support system was developed. • Requirements were derived by interviewing field operators having experiences with mobile-based work support systems. • The usability of the proposed system was validated by conducting questionnaire surveys. • The proposed system will be useful if the manual or the set of guidelines is well constructed. - Abstract: Digital technologies have been applied in the nuclear field to check task results, monitor events and accidents, and transmit/receive data. The results of using digital devices have proven that these devices can provide high accuracy and convenience for workers, allowing them to obtain obvious positive effects by reducing their workloads. In this study, as one step forward, a digital device-based cooperation support system, the nuclear cooperation support and mobile documentation system (Nu-COSMOS), is proposed to support communication between main control room (MCR) operators and field workers by verifying field workers’ work results in nuclear power plants (NPPs). The proposed system consists of a mobile based information storage system to support field workers by providing various functions to make workers more trusted by MCR operators; also to improve the efficiency of meeting, and a large screen based information sharing system supports meetings by allowing both sides to share one medium. The usability of this system was estimated by interviewing field operators working in nuclear power plants and experts who have experience working as operators. A survey to estimate the usability of the suggested system and the suitability of the functions of the system for field working was conducted for 35 subjects who have experience in field works or with support system development-related research. The usability test was conducted using the system usability scale (SUS), which is widely used in industrial usability evaluation. Using questionnaires

  12. Development of digital device based work verification system for cooperation between main control room operators and field workers in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Min; Lee, Hyun Chul; Ha, Jun Su; Seong, Poong Hyun

    2016-01-01

    Highlights: • A digital device-based work verification and cooperation support system was developed. • Requirements were derived by interviewing field operators having experiences with mobile-based work support systems. • The usability of the proposed system was validated by conducting questionnaire surveys. • The proposed system will be useful if the manual or the set of guidelines is well constructed. - Abstract: Digital technologies have been applied in the nuclear field to check task results, monitor events and accidents, and transmit/receive data. The results of using digital devices have proven that these devices can provide high accuracy and convenience for workers, allowing them to obtain obvious positive effects by reducing their workloads. In this study, as one step forward, a digital device-based cooperation support system, the nuclear cooperation support and mobile documentation system (Nu-COSMOS), is proposed to support communication between main control room (MCR) operators and field workers by verifying field workers’ work results in nuclear power plants (NPPs). The proposed system consists of a mobile based information storage system to support field workers by providing various functions to make workers more trusted by MCR operators; also to improve the efficiency of meeting, and a large screen based information sharing system supports meetings by allowing both sides to share one medium. The usability of this system was estimated by interviewing field operators working in nuclear power plants and experts who have experience working as operators. A survey to estimate the usability of the suggested system and the suitability of the functions of the system for field working was conducted for 35 subjects who have experience in field works or with support system development-related research. The usability test was conducted using the system usability scale (SUS), which is widely used in industrial usability evaluation. Using questionnaires

  13. The nuclear power situation in Finland

    International Nuclear Information System (INIS)

    Miettinen, J.K.

    1976-01-01

    and's limited choice of energy sources makes nuclear power especially lly attractive and it is estimated that in 1985 14% of the energy consumed will be nuclear, which will then be the second most important source after oil (49%). Four power reactors, Loviisa 1 and 2 and TVO 1 and 2, are at present under construction. The first two are Russian PWRs, the latter two Asea-Atom BWRs. Loviisa 3 and 4 are planned but not yet ordered, and plans for a 1000 MWe plant to the West of Helsinki exist. The nuclear controversy in Finland has mainly been repetitions of the US and Swedish debates since 1970. However, local opposition to the project W. of Helsinki, based on the sociological effects of the inflow of Finnish speaking workers into a rural Swedish speaking district has become apparent. In the long term 13 major nuclear power plants are envisaged by the year 2000. Finland is party to the NPT and the IAEA safeguard system. (JIW)

  14. Thyroid disorders in employees of a nuclear power plant

    International Nuclear Information System (INIS)

    Kindler, Stefan; Volzke, Henry

    2005-01-01

    Full text: Aim of the Study: The thyroid gland is a potential target organ for radiation-related damage. The aim of this analysis was to investigate the association between occupational exposure to ionizing radiation and the risk of autoimmune thyroid disease (AITD) in workers of a former nuclear power station. Methods: Seventy-one male power station workers aged 38 to 57 years who were exposed to a life time dose in the upper allowed limit (70-400 m Sv) were compared to two random samples of male persons, who were not exposed to occupational radiation. Both samples were selected from the data set of the population-based Study of Health in Pomerania. Thyroid ultrasonography was performed by the same observers. Laboratory parameters for the study groups were analyzed in a central laboratory. Results: The power station workers with occupational exposure to radiation were more educated than the subjects of the two control groups. The exposed were less often current smokers, but more often never smokers compared to the control groups. After controlling analyses for age and further relevant confounders no significant differences between exposed and controls with respect to thyroid disorders were detected. Conclusion: We conclude that workers of a nuclear power plant with an exposure to ionizing radiation within the upper allowed limit have no increased risk of thyroid disorders. This may at least in part be explained by a healthy worker effect. (author)

  15. New research discovery may mean less radioactive contamination, safer nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-20

    Murph has now made another nanoparticle breakthrough that could benefit various work environments such as nuclear power plants. Murph and her team have created nanoparticle treated stainless steel filters that are capable to capturing radioactive vapor materials. Just like air filters capture dust and dirt, these filters are capable of capturing large amounts of radioactive vapors. The new research may one day mean that nuclear power plant workers, and other workers in related fields, will have a safer working environment.

  16. Administrative procedures for regulating construction and operation of nuclear power plants

    International Nuclear Information System (INIS)

    Cochaud, J.P.

    1981-01-01

    This article first explains that nuclear power plants in France are governed by a complex system of regulations within the framework of different laws concerning, in particular, protection of the environment, public health and workers. It then examines the administrative procedures and the licensing regime for nuclear power plants. (NEA) [fr

  17. Review of health issues of workers engaged in operations related to the accident at the Fukushima Daiichi Nuclear Power Plant.

    Science.gov (United States)

    Hiraoka, Koh; Tateishi, Seiichiro; Mori, Koji

    2015-01-01

    The aim of this review was to summarize the lessons learned from the experience in protecting the health of workers engaged in operations following the accident at the Fukushima Daiichi Nuclear Power Plant (NPP). We reviewed all types of scientific papers examining workers' health found in Medline and Web of Sciences as well as some official reports published by the Ministry of Health, Labour and Welfare of Japan and other governmental institutes. The papers and reports were classified into those investigating workers at the Fukushima Daiichi and Daini NPPs, workers engaged in decontamination operations in designated areas, and other workers. Regarding workers at the NPPs, many efforts were made to establish an emergency-care and occupational health system. Risk management efforts were undertaken for radiation exposure, heat stress, psychological stress, outbreak of infectious diseases, and fitness for work. Only a few reports dealt with decontamination workers and others; however, the health management of these workers was clearly weaker than that for workers at the NPPs. Many lessons can be learned from what occurred. That knowledge can be applied to ongoing decommissioning work and to future disasters. In addition, it is necessary to study the long-term health effects of radiation exposure and to accumulate data about the health of workers engaged in decontamination work and other areas.

  18. Issues behind Radiation management of workers at Fukushima Nuclear Power Plant of Tokyo Electric Power Company. From the viewpoint of radiation exposure of the ocular lens and the biological effects to the lens

    International Nuclear Information System (INIS)

    Hayashida, Toshiyuki; Sasaki, Hiroshi; Hatsusaka, Natsuko; Hamada, Nobuyuki; Tatsuzaki, Hideo; Akahane, Keiichi; Yokoyama, Sumi

    2017-01-01

    In March 2011, the accident occurred at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company. During recovery from critical situations, the radiation dose for some emergency workers exceeded the effective dose limit recommended for an emergency situation. A month after the accident, the International Commission on Radiological Protection issued a statement on tissue reactions recommending significant reduction of the equivalent dose limit to the lens of the eye. Many radiation workers will need to be involved in treatment of water contaminated with radionuclides, fuel debris retrieval, and decommissioning of reactors for a long period of time. Thus, the optimized radiation control in the fields, exposure reduction, prevention of tissue reactions, and reduction of stochastic risks for workers becomes necessary. This paper discusses issues in relation to radiation protection of the ocular lens in such recovery workers, from the viewpoint of radiation exposure of workers, its management, manifestations and mechanisms of the lens effects. (author)

  19. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

    2008-01-01

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  20. Nuclear power, society and environment

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This rubric reports on 12 short notes about sociological and environmental aspects of nuclear power in France and other countries: the epidemiological inquiry widened to all French nuclear sites; the sanitary and radioecological effects of nuclear activities in Northern Cotentin (France); the WONUC (World National Council of Nuclear Workers) anger with the French government about the shutdown of Superphenix reactor; the new more informative promotional campaign of Electricite de France (EdF) for nuclear power; the scientific and research prices attributed by the French Atomic Energy Commission (CEA) to its searchers; the creation of a committee of inquiry in the French senate for the careful examination of the economical, social and financial consequences of the shutdown of Superphenix; the 31.2% increase of CEA-Industrie benefits for 1997; the decrease of nuclear contestation in Germany; the French-German communication efficiency during the Fessenheim accident simulation in October 7, 1997; the 3.5% increase of CO 2 emissions in the USA; the decommissioning of 3 Russian reactors for military plutonium production; Greenpeace condemnation for abusive purposes against British Nuclear Fuel plc (BNFL) and its activities at Sellafield (UK). (J.S.)

  1. Nuclear power, society and environment

    International Nuclear Information System (INIS)

    Fouchet, N.

    1997-01-01

    This rubric reports on 12 short notes about scientific facts, and sociological, political and environmental aspects of nuclear power in France and other countries: a new micro-beam line for the nuclear micro-probe of Pierre Sue laboratory; the French government gives permission for the filling up of the Carnet swampy site for the possible sitting of a future nuclear power plant in the Loire river estuary; incident simulation exercise at Chooz B1 in January 1997: radioactive leak and population under shelter; about Superphenix, 'Le Monde' newspaper disseminates false information; the anti-Superphenix lobby; Georges Charpak's opinion about anti-nuclear propaganda; gamma radiation in the help of cultural heritage; a new ionizing particle detector developed by the CEA; dismantling of the FR-2 experimental reactor (Karlsruhe, Germany) and the safe confinement of the reactor vessel; the Russian specialists' proposal for the transformation of Tchernobyl's sarcophagus into a monolith of concrete; Cogema's support to scientific research devoted to environment and public health; three new member countries in the World Council of Nuclear Workers (WONUC). (J.S.)

  2. Radiation exposure of workers in nuclear medicine

    International Nuclear Information System (INIS)

    Bujnova, A.

    2008-01-01

    Nuclear medicine is an interdisciplinary department that deals with diagnosis and therapy using open sources. Therefore workers in nuclear medicine are in daily contact with ionizing radiation and thus it is essential to monitor a radiation load. Each work must therefore carry out monitoring of workers. It monitors compliance with the radiation limits set by law, allows an early detection of deviations from normal operation and to demonstrate whether the radiation protection at the workplace is optimized. This work describes the principles of monitoring of workers in nuclear medicine and monitoring methods for personal dosimetry. In the next section the author specifically deals with personal dosimetry at the Department of Nuclear Medicine St. Elizabeth Cancer Institute, Bratislava (KNM-Ba-OUSA). The main part of the work is to evaluate the results of a one-year monitoring of radiation workers KNM-Ba-OUSA. (author)

  3. Current status of personnel exposure at nuclear power plants and other medical, industrial and educational facilities in JAPAN

    International Nuclear Information System (INIS)

    Sasaki, Fumiaki

    1991-01-01

    The state of radiation exposure of the workers engaging in radiation works in Japanese nuclear power stations, the factors of the radiation exposure of the workers engaging in radiation works, the countermeasures for reducing exposure in nuclear power stations, the state of radiation exposure of doctors, the workers engaging in radiation works, researchers and others in medical, industrial, research and educational and other facilities in Japan, the factors of their radiation exposure and the countermeasures for reducing the exposure, and the comparison of the exposure in nuclear power stations with that in medical, industrial, research and educational facilities are reported. (K.I.)

  4. Ukraine nuclear power struggles for survival

    International Nuclear Information System (INIS)

    Kramchenkov, V.M.; Launer, M.K.

    1996-01-01

    The breakup of the former Soviet Union left Ukraine's nuclear power industry in the lurch. Rampant inflation and the consequent skyrocketing price of fossil fuels has given Ukrain's nuclear industry a greater share of the energy pie, say Vladimir M. Kramchenkov, deputy head of the technical department at the Zaporozhe nuclear station in Energodar, Ukraine, and Michael K. Launer, professor of Russian at Florida State University in Tallahassee. But with the economy in a downward spiral, conditions in the nuclear industry are getting worse rather than better. open-quotes Manufacturers don't pay transporters; and employers often don't pay workers for several months at a time,close quotes the authors note. The authors conclude that while nuclear power will be vital to Ukrain's industrial strength, open-quotes the economic woes currently plaguing Ukraine-including persistent, rampant inflation-will continue to affect every aspect of Ukrainian society, including the energy sector.close quotes

  5. Radiation occupational health interventions offered to radiation workers in response to the complex catastrophic disaster at the Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Shimura, Tsutomu; Yamaguchi, Ichiro; Terada, Hiroshi; Kunugita, Naoki; Okuda, Kengo; Svendsen, E.R.

    2015-01-01

    The Fukushima Daiichi Nuclear Power Plant (NPP) 1 was severely damaged from the chain reaction of the Great East Japan Earthquake and Tsunami on 11 March 2011, and the consequent meltdown and hydrogen gas explosions. This resulted in the worst nuclear accident since the Chernobyl accident of 1986. Just as in the case of Chernobyl, emergency workers were recruited to conduct a wide range of tasks, including disaster response, rescuing activities, NPP containment, and radiation decontamination. This paper describes the types and efficacy of the various occupational health interventions introduced to the Fukushima NPP radiation workers. Such interventions were implemented in order to prevent unnecessary radiation overexposure and associated adverse health effects and work injuries. Less than 1% of all emergency workers were exposed to external radiation of >100 mSv, and to date no death or health adversities from radiation have been reported for those workers. Several occupational health interventions were conducted, including setting of new regulatory exposure limits, improving workers' radiation dosimetry, administration of stable iodine, running an occupational health tracking system, and improving occupational medicine and preventative care. Those interventions were not only vital for preventing unnecessary radiation, but also for managing other general health issues such as mental health, heat illness and infectious disease. Long-term administration of the aforementioned occupational health interventions is essential to ensure the ongoing support and care for these workers, who were put under one of the most severe occupational health risk conditions ever encountered. (author)

  6. Occupational radiation exposures at Canadian CANDU nuclear power stations

    International Nuclear Information System (INIS)

    LeSurf, J.E.; Taylor, G.F.

    1982-09-01

    In Canada, methods to reduce the radiation exposure to workers at nuclear power reactors have been studied and implemented since the early days of the CANDU reactor program. Close collaboration between the designers, the operators, and the manufacturers has reduced the total exposure at each station, the dose requirement to operate and maintain each successive station compared with earlier stations, and the average annual exposure per worker. Specific methods developed to achieve dose reduction include water chemistry; corrosion resistant materials; low cobalt materials; decontamination; hot filtration, improved equipment reliability, maintainability, and accessibility; improved shielding design and location; planning of work for low exposure; improved operating and maintenance procedures; removal of tritium from D 2 O systems and work environments; improved protective clothing; on-power refuelling; worker awareness and training; and many other small improvements. The 1981 occupational dose productivity factors for Pickering A and Bruce A nuclear generating stations were respectively 0.43 and 0.2 rem/MW(e).a

  7. Experience with respect to dose limitation in nuclear fuel service operations in the United Kingdom supporting civil nuclear power programmes

    International Nuclear Information System (INIS)

    Kennedy, J.W.

    1983-01-01

    Within the United Kingdom, the nuclear power generation programme is supported by nuclear fuel services including uranium enrichment, fuel fabrication and reprocessing, operated by British Nuclear Fuels Limited (BNFL). These have entailed the processing of large quantities of uranium and of plutonium and fission products arising in the course of irradiation of fuel in nuclear power stations and have necessitated substantial programmes for the radiological protection of the public and of the workers employed in the industry. This paper presents and reviews the statistics of doses recorded in the various sectors of nuclear fuel services operations against the background of the standards to which the industry is required to operate. A description is given of the development of BNFL policy in keeping with the objective of being recognized as among those industries regarded as safe and the resource implications of measures to reduce doses received by workers are reviewed in the light of experience. Finally, the paper reviews the epidemiological data which have been, and continue to be, collected for workers who have been employed in these nuclear fuel services. (author)

  8. Perceived nuclear risk, organizational commitment, and appraisals of management: A study of nuclear power plant personnel

    International Nuclear Information System (INIS)

    Kivimaeki, M.; Kalimo, R.; Salminen, S.

    1995-01-01

    This study examined to what extent nuclear risk perceptions, organizational commitment (OC), and appraisals of management are associated with each other among nuclear power plant personnel. The sample consisted of 428 nuclear power plant workers who completed a questionnaire at their workplace. Perceived nuclear risk and OC were most closely related to the appraisals of the top management of the organization. As the trust in and satisfaction with the top management increased, perceived nuclear safety and acceptance of the organizational goals and values heightened. This result is discussed in the context of industrial safety management. 29 refs., 2 tabs

  9. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-08-01

    In the Quarterly Reports on the operation of the Finnish nuclear power plants such events and observations are described relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Also other events of general interest are reported. The report also includes a summary of the radiation safety of the plants' workers and the environment, as well as tabulated data on the production and load factors of the plants. The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in commercial operation during the whole first quarter of 1991. The load factor average was 99.1 %. Failures have been detected in the uppermost spacing lattices of nuclear fuel bundles removed from the Loviisa nuclear reactors. Further investigations into the significance of the failures have been initiated. In this quarter, renewed cooling systems for the instrumentation area were introduced at Loviisa 1. The modifications made in the systems serve to ensure reliable cooling of the area even during the hottest summer months when the possibility exists that the temperature of the automation equipment could rise too high causing malfunctions which could endanger plant safety. Occupational radiation doses and external releases of radioactivity were below prescribed limits in this quarter. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  10. Health effects study of the nuclear industry workers in Japan

    International Nuclear Information System (INIS)

    Tamiko Iwasaki

    1997-01-01

    To clarify the effects of low-dose and low-dose-rate exposure to the human body, study on the health effects of the nuclear industry workers in Japan was conducted since 1990 by the Institute of Radiation Epidemiology, the Radiation Effects Association, which had been entrusted by the Science and Technology Agency of the Japanese Government. In the first phase analysis between 1986 and 1992, the study population was selected from among persons who were engaged in radiation work at nuclear power plants and associated facilities, and registered in the Radiation Dose Registration Center for Workers. The cohort consisted of 114,900 persons who satisfied the criteria of nationality, age, sex, etc. The average follow-up period was 4.6 years, and the average cumulative dose per person was 13.9 mSv. The total number of deaths among the study population was 1,758, including 661 deaths due to all malignant neoplasms. The Standardized Mortality Ratio of various death causes was compared. Furthermore, the cohort was grouped by five different dose levels, and the O/E was calculated to test whether there is a trend for the death rate to increase with dose. Among nuclear workers no significant increase in deaths nor any relationship with radiation dose was found, except the pancreatic cancer with 10-years lag. Since many previous studies of nuclear industry workers have demonstrated no significant association between exposure dose and pancreatic cancer, we cannot immediately conclude a causal relationship between with radiation. (author)

  11. Basic concept of the nuclear emergency preparedness and response in Japan after the accident of the Fukushima Dai-ichi Nuclear Power Station. The plain explanation for regional officials and emergency workers

    International Nuclear Information System (INIS)

    Sato, Sohei; Yamamoto, Kazuya

    2013-07-01

    After the accident of TEPCO's Fukushima Dai-ichi Nuclear Power Station occurred on March 11, 2011, actions for controlling the accident and protective actions for the residents like evacuation were taken. In parallel with this, it has been developed to reform the nuclear regulatory systems and the emergency preparedness and response systems in Japan. Especially the Nuclear Regulation Authority's Nuclear Emergency Preparedness and Response Guidelines were adopted with the introducing the basic concepts and the criteria on the basis of the IAEA's safety standards and differed greatly from the prior guidelines. Thus the arrangement of emergency response systems, resources and the operational procedures will be developed complying with according to the guidelines in municipalities around the nuclear power station sites. This work attempts to provide a plain explanation as possible for the regional officials and emergency workers about the basic concepts of the new guidelines. (author)

  12. Annual report on nuclear power station operational management, 1984

    International Nuclear Information System (INIS)

    1985-09-01

    As of the end of fiscal year 1984, 28 nuclear power plants were in operation in Japan, the total power output of which was 20.56 million kW, equivalent to 22.9 % of the total generated electric power in Japan. Now nuclear power generation bears a very important role in the stable supply and cost stabilization of electric power. The result of the capacity factor in fiscal year 1984 was 73.9 %, which showed that the nuclear power generation and safety management technologies in Japan are at the top level in the world. However, in order that nuclear power generation accomplishes the role as main power source sufficiently hereafter by increasing the number of plants, the reliability and economical efficiency must be further improved, and especially the safety management and operational management become important. For the purpose, the operational experience accumulated so far must be effectively utilized. In this book, the outline of the administration on the safety regulation of nuclear power generation, the state of operation of nuclear power plants, the state of accidents and failures, the state of regular inspections and so on are summarized. Also the state of radioactive waste management and the radiation control for workers are reported. (Kako, I.)

  13. Skin Dose Assessment by Hot Particles in Domestic Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, Bo Yeol; Cho, Woon Kap; Lee, Jai Ki

    2009-01-01

    Since a contamination event by hot particles happened due to damaged nuclear fuel at a nuclear power plant (NPP) in the 1980's, skin exposure resulted from hot particles has gotten considerable attention from all the radiation workers in the nuclear industry. In particular, contamination incident caused by hot particles which happened at a NPP in Susquehanna proved that there existed hot particles with the radioactivity of 0.7 GBq, 0.78 GBq, and even 2.78 GBq at maximum. One of these particles was found on a worker's shoe and gave out a dose of 170 mSv. Although there has been no contamination event reported in domestic NPPs which are caused by hot particles, it is hard to conclude that there is no possibility of such contamination for radiation workers. The contaminated samples employed in this study were taken from local NPPs and supposes a case of a worker's skin contaminated by hot particles to evaluate the dose provided to the worker's skin

  14. Nuclear: a world without worker?

    International Nuclear Information System (INIS)

    Fournier, Pierre; Maziere, M.

    2014-01-01

    After having recalled some characteristics of the electro-nuclear sector in terms of employment (direct and indirect jobs, average age, number of persons controlled on the radiological level, exposure with respect to work location), the author outlines that workers of this sector are seldom evoked whereas investments, incidents and accidents are generally the main evoked and commented topics. He proposes some explanations about this image of the nuclear sector. He reports an incident which occurred in Marcoule and outlines how a set of imperfectly managed events resulted in this incident. He also outlines the importance of the role of workers and the difficulty to make the right choice in such situations. As a conclusion, the author draws some lessons, and particularly outlines that the commitment of workers should be put forward

  15. Basic plan for nuclear power development and utilization in 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents specific measures to be carried out in 1987 to promote research, development and application of nuclear power. The first part deals with the strengthening of safety measures, centering on the improvement in regulation and administration for nuclear power safety; promotion of safety studies; improvement and strengthening of disaster prevention measures; improvement and strengthening of environmental activity surveys; improvement in exposure control measures for nuclear power operation workers; and establishment of the nuclear fuel cycle and safety in such activities as development of new reactors. The second part of the report addresses the promotion of nuclear power generation. Measures for this will be focused on the promotion of location of nuclear power plants and the development of advanced technology for light water reactors. The third part describes measures for establishing the nuclear fuel cycle, which cover the procurement of uranium resources; enrichment of uranium; reprocessing of spent fuel and utilization of plutonium and recovered uranium; and disposal of radioactive waste. Other parts presents measures to be carried out for the development of new power reactors; research on nuclear fusion; development of nuclear powered vessels; application of radiations; improvement in the infrastructure for nuclear power development and utilization; etc. (Nogami, K.)

  16. Psychological attitudes of nuclear industry workers

    International Nuclear Information System (INIS)

    Faes, M.; Stoppie, J.

    1976-01-01

    An investigation was carried out within the frame of occupational medicine on the psychological attitudes of workers in the nuclear industry towards ionizing radiations. Three aspects were considered: awareness of the danger; feeling of safety in the working environment; workers' feelings following incidents or accidents; satisfaction level felt by the workers in the plant [fr

  17. Radiation Monitoring - A Key Element in a Nuclear Power Program

    International Nuclear Information System (INIS)

    Hussein, A.S.; El-dally, T.A.

    2008-01-01

    For a nuclear power plant, radiation is especially of great concern to the public and the environment. Therefore, a radiation monitoring program is becoming a critical importance. This program covers all phases of the nuclear plant including preoperational, normal operation, accident and decommissioning. The fundamental objective of radiation monitoring program is to ensure that the health and safety of public inside and around the plant and to confirm the radiation doses are below the dose limits for workers and the public. This paper summarizes the environmental radiation monitoring program for a nuclear power plant

  18. Comparison of p53 levels in lymphocytes and in blood plasma of nuclear power plant workers

    International Nuclear Information System (INIS)

    Roessner, Pavel; Chvatalova, Irena; Schmuczerova, Jana; Milcova, Alena; Roessner, Pavel; Sram, Radim J.

    2004-01-01

    p53 levels were assessed in lymphocytes and in blood plasma of workers from two Czech nuclear power plants (NPP): 114 subjects working in Temelin and 108 subjects working in Dukovany. Ionizing radiation (IR) exposure data were available for 64 and 59 subjects working in the monitored zones from the NPP in Temelin and Dukovany, respectively. The short-term doses of IR for these subjects were 0.01 and 0.12 mSv, and the long-term doses were 0.46 and 5.68 mSv, in the Temelin and Dukovany NPP, respectively. As a control group, 46 subjects living in Ceske Budejovice, a city nearby the Temelin NPP, were analyzed. The concentration of p53 in lymphocytes was significantly higher in workers from the monitored zone in the Dukovany NPP (median value 6.4 pg/μg protein, P < 0.001) than in workers from the Temelin NPP (3.2 pg/μg) as well as in the control group (3.5 pg/μg). In contrast, plasma levels of p53 were comparable in the control group (median value 116 pg/ml plasma) and workers from the monitored zone of Dukovany NPP (102 pg/ml), but lower in workers from Temelin NPP (5 pg/ml). Other factors affecting p53 levels were studied. Smoking resulted in increased p53 lymphocyte levels. The effect of polymorphisms in metabolic and DNA repair genes on p53 levels was analyzed. The correlation was found between p53 levels in lymphocytes and p53 codon 72 polymorphism in subjects working in NPPs, but not in the control group. The results of measurement p53 levels in lymphocytes suggest that this biomarker could reflect the short-term as well as long-term effects of low doses IR. Its impact on human health should be further explored

  19. Quality assurance for nuclear power stations in Japan

    International Nuclear Information System (INIS)

    Nitta, Y.

    1984-01-01

    The quality assurance programmes of the Japanese industry show some special features, both in the nuclear field and in non-nuclear technology. Among them e.g. the meticulous care given by Japanese workers to their work and duties, and the high training level and skill of employees in the development and other departments. Another important feature is the common practice of Japanese firms, to guarantee lifetime employment to workers and employees. The quality assurance programme for nuclear power plants covers such aspects as basic design features, detailed planning and construction, fuel element fabrication, basic research, licensing and operation. The responsibility for efficient execution of the programmes lies with the administration, the utilities, the suppliers, as well as all other contractors to a project. The tasks to be fulfilled by organisations, firms, etc., are briefly explained. (orig./HSCH) [de

  20. Epidemiological studies of radiation workers in nuclear facilities

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Semba, Tsuyoshi; Ishida, Kenji; Takagi, Syunji; Igari, Takafumi

    2017-01-01

    Regarding workers at nuclear facilities, this paper described INWORKS epidemiological research published in 2015, cooperative cohort epidemiological research of IARC 15 countries 10 years before that (15-country study), and the flow of radiation epidemiological research in the period from 15-country study to INWORKS. INWORKS is a retrospective cohort study to investigate the correlation between mortality due to solid cancer, blood cancer, and cardiovascular diseases in workers in three countries of France / the U.K. / the U.S. and low dose exposure through long-term photon external exposure. It obtained the data showing the statistical significance of increased cancer death rate. However, from the subjects of the analysis, no significant evaluation was made on neutron exposure and internal exposure. Statistically significant cancer mortality was confirmed in 15-country study at low dose, low dose rate, and prolonged exposure, but significant cancer mortality rate could not be confirmed excluding Canadian data, which had problems in dose evaluation. In the epidemiological studies of cancer mortality rates of radiation workers in nuclear power industries performed in France / the U.K. / the U.S. in the period ranging from 15-country study to INWORKS, significant difference was not recognized between cancer death rate and excessive relative risk (ERR) compared with LSS epidemiological research studies that handled acute exposure. Several tasks are still remaining. (A.O.)

  1. Radiation occupational health interventions offered to radiation workers in response to the complex catastrophic disaster at the Fukushima Daiichi Nuclear Power Plant.

    Science.gov (United States)

    Shimura, Tsutomu; Yamaguchi, Ichiro; Terada, Hiroshi; Okuda, Kengo; Svendsen, Erik Robert; Kunugita, Naoki

    2015-05-01

    The Fukushima Daiichi Nuclear Power Plant (NPP) 1 was severely damaged from the chain reaction of the Great East Japan Earthquake and Tsunami on 11 March 2011, and the consequent meltdown and hydrogen gas explosions. This resulted in the worst nuclear accident since the Chernobyl accident of 1986. Just as in the case of Chernobyl, emergency workers were recruited to conduct a wide range of tasks, including disaster response, rescuing activities, NPP containment, and radiation decontamination. This paper describes the types and efficacy of the various occupational health interventions introduced to the Fukushima NPP radiation workers. Such interventions were implemented in order to prevent unnecessary radiation overexposure and associated adverse health effects and work injuries. Less than 1% of all emergency workers were exposed to external radiation of >100 mSv, and to date no deaths or health adversities from radiation have been reported for those workers. Several occupational health interventions were conducted, including setting of new regulatory exposure limits, improving workers' radiation dosimetry, administration of stable iodine, running an occupational health tracking system, and improving occupational medicine and preventative care. Those interventions were not only vital for preventing unnecessary radiation, but also for managing other general health issues such as mental health, heat illness and infectious diseases. Long-term administration of the aforementioned occupational health interventions is essential to ensure the ongoing support and care for these workers, who were put under one of the most severe occupational health risk conditions ever encountered. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. Radiation management and health management at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Okazaki, Ryuji; Kubo, Tatsuhiko; Tateishi, Seiichiro

    2014-01-01

    This paper describes the measures taken by the Chernobyl nuclear power plant since the accident in April 1986 to date, compares them with the situation of the current Fukushima nuclear accident, and introduces the contents of the authors' visit and coverage in October 2013, including the report of radiation damage. At the Chernobyl site, a new sarcophagus is under construction since 2012. The health care of the workers working at the new and old sarcophaguses of the Chernobyl nuclear power plant is carried out at a national level of Ukraine, which is an important management for decommissioning work. Health diagnosis is also applied to the workers in the new sarcophagus, and radiation-related disease is not reported at present. The number of the persons who died from acute radiation exposure diseases after the accident was 28. It was reported that chronic lymphocytic leukemia (CLL) appeared significantly when the radiation exceeded 100 mSv. The workers who wish to work at the Chernobyl nuclear power plant must pass the test and obtain national qualifications, and then they are able to work for the first time. In the check-in medical control, about half of applicants were rejected. Workers who work at the new sarcophagus are subject to comprehensive health management under the Ukrainian law. There were 58 people who reached annual exposure dose limit of 20 mSv or more among 7,529 people, the cause of which may be the work at the areas of high radiation dose. Even in Fukushima, it is important to perform high quality management based on centralized medical examination, and to further analyze the effects of low-dose exposure to radiation. (A.O.)

  3. Present situation of occupational radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Imabori, Akira

    1979-01-01

    The present situation of the radiation exposure of workers, including both employes and subcontractors, in the nuclear power plants in Japan, is presented. Twenty seven nuclear power reactors in operation and under construction are tabulated with the name, the owner, the electric output and the commissioning year of each plant. The results of exposure of the workers in these plants are shown, classifying the dose rate into less than 0.5 rem, 0.5 - 1.5 rem, 1.5 - 2.5 rem, 2.5 - 5 rem and more than 5 rem, and the workers into employes and subcontractors. It is noted that the exposure dose of the subcontractors occupies about 88% of all exposure dose, and the exposure is concentrated during regular inspection period. The exposure dose of about 80% of the workers is less than 0.5 rem, and no one was irradiated more than 5 rem in a year. The total exposure dose, which has especially the tendency of increasing with extended maintenance period and decreasing during plant operation period, shows also the trend of increasing with the lapse of operation years. As for the point of view of whole exposure dose, the value is 0.06 -- 0.43 man-rem/10 6 kWh in 1976 FY. It is considered to be necessary to grasp the total exposure dose of each worker wandering from one plant to another, and the central registration center for the workers in radioactive environment was established in 1978. The whole exposure dose data of each worker are stored in the central computer in this center. This system is highly appreciated in radiation exposure management. The total exposure dose is related to the rate of utilization of nuclear plants, and it is expected to decrease with the decrease of plant outage. (Nakai, Y.)

  4. The classification of knowledge and expertise in Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Kuronen, T.; Rintala, N.

    2006-01-01

    The difficulties in sharing tacit knowledge may compromise the safe performance of high-reliability organisations. This threat has been recognised in nuclear power plants worldwide, owing to the risk of simultaneous retirements. In this study, the nature of tacit knowledge in Finnish nuclear power plants was examined and the expertise of nuclear workers modelled. The results of this interview study showed that the tacit nuclear knowledge can be classified in two dimensions: technical and contextual. According to this classification, the employees in plants can be categorised in four categories: the experts; the novices; the technical specialists; the context sensitives. (author)

  5. Factor of radioactive waste on nuclear power program

    International Nuclear Information System (INIS)

    Syed Abdul Malik Syed Zain

    2009-01-01

    Global warming phenomena and rising oil prices have brought the excitement of open space use of nuclear power. Arguments in favor of this technology range in terms of more environmentally friendly, energy diversification and cost efficiency has prompted the government to widen the choice of nuclear power be considered as a serious alternative. Despite the attractive factors to the use of these powers, there are also factors that stem from the continued development of nuclear power. These include the factor of safety, security, security of fuel supply, and public attention is often associated with radioactive waste management. This article attempts to debate specific to radioactive waste management factors that impact on public acceptance of a country's nuclear power program, especially in Malaysia. Starting from the absence of radioactive waste management policy to model uncertainty of the landfill and complications in selecting a repository site shows the basic infrastructure is still lacking. In addition, previous experience handling thorium waste has not reached a final settlement after several years of implementation. It reinforced the perception about the level of public confidence in the competence and attitude of local workers who are not very encouraging to pursue this advanced.

  6. Human survival depends on nuclear power

    International Nuclear Information System (INIS)

    Gilbertson, J.

    1977-01-01

    Both the Wall Street Journal and the New York Times published feature articles Dec. 1 advertising a report by the U.S. government's General Accounting Office as evidence that the breeder reactor component of this nation's nuclear energy program was properly on its way to the scrap heap. According to the author, these and similar press accounts are intended to further legitimize the widely believed (and totally false) notion that increased plutonium use and nuclear fission generally represent a danger to humanity. Purposefully ignored in such accounts, he says, is the evidence that the elimination of plutonium as a nuclear fuel will mean the demise of the entire U.S. nuclear power industry and ultimately the human race itself. At stake in the short term, in addition to the breeder reactor program, is the well-established use of light water reactors for generating electricity, since these must, within a matter of years, be fueled with plutonium. The attack is also directed at the more advanced, more capital-intensive nuclear fusion technology, since the elimination of fission programs will wipe out the trained cadre force of engineers, scientists, technicians, and skilled workers needed to develop fusion power. The growth of fission power over the next two decades is absolutely necessary for the transition to a full fusion-based economy, according to Mr. Gilbertson. Only nuclear fusion has the inherent capability of transforming industry to the necessary higher mode of production and output, as well as providing a limitless source of usable power in several forms, thus insuring the survival of the human race beyond this century. Fission power and conventional fossil power must be expanded and possibly even exhausted during this transition in order to guarantee the achievement of this goal, he says

  7. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  8. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  9. Annual report of operation management in nuclear power stations, fiscal year 1985

    International Nuclear Information System (INIS)

    1986-09-01

    Twenty years have elapsed since the first practical nuclear reactor in Japan started the operation. In the generated power in fiscal year 1985, that of nuclear power stations for the first time overtook that of thermal power stations, and now the age of nuclear power as the main and oil power as the subordinate has begun. As of the end of fiscal year 1985, there were 32 nuclear power plants in operation, having total output capacity of 24.521 million kW. In fiscal year 1985, nuclear power plants generated about 159 billion kWh, which is about 26 % of electric power supply. As to the capacity factor, 76 % was attained in fiscal year 1985, and this is ranked in the top group of LWR-operating countries in the world. It showed that the Japanese technology of nuclear power generation is at the top level in the world. However, in order to increase nuclear power generation and to accomplish the role of main electric power source hereafter, it is necessary to further increase the reliability and economical efficiency. The list of nuclear power stations in Japan, the state of operation of nuclear power stations, the state of accidents and troubles, the state of regular inspection, the management of radioactive wastes and the radiation exposure of workers in nuclear power stations, the operational management and others are reported. (Kako, I.)

  10. The reproductive function state of women working at the Smolensk nuclear power plant in shops with hazard working conditions

    International Nuclear Information System (INIS)

    Lyaginskaya, A.M.; Osipov, V.A.; Bugrova, T.I.; Kreusheva, I.F.; Plitkina, V.M.; Karepanova, L.A.; Afanas'eva, R.V.

    2001-01-01

    The reproductive function state of female workers at the Smolensk nuclear power plant in shops with hazardous working conditions is estimated. Female workers occupied in major shops of the Smolensk nuclear power plant are interviewed and subjected to a questionnaire. Individual medical care records of pregnant women and newborns are analyzed. Health statistics data for the town of Desnogorsk are used for comparison. Indicators of the reproductive function among female workers occupied from 1984 up to 1998 at the Smolensk nuclear power plant in workplaces with hazardous working conditions have not been shown to differ from those among the general female population in the town of Desnogorsk: neither these indicators deteriorated during the 14 year period of work as compared with the initial level [ru

  11. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  12. Optimization of radiological protection in Spanish nuclear power plants

    International Nuclear Information System (INIS)

    O'Donnell, P.; Amor, I.; Butragueno, J.L.

    1997-01-01

    Optimizing the radiological protection of occupationally exposed nuclear power plant workers has become one further item in what is called the safety culture. Spanish facilities are implementing programme with this in mind, grounded on a personal motivation policy with the backing of a suitable organizational structure. (Author)

  13. Malignant pleural mesothelioma risk among nuclear workers: a review

    International Nuclear Information System (INIS)

    Metz-Flamant, C; Guseva Canu, I; Laurier, D

    2011-01-01

    Exposure to ionising radiation has been suggested as a causal risk factor for malignant pleural mesothelioma (MPM). Studies of patients treated by radiotherapy for primary cancers have suggested that radiation contributes to the development of secondary MPM. Here we examined the risk to nuclear workers of MPM related to exposure to low doses of occupational radiation at low dose rates. All results concerning MPM risk in published studies of nuclear workers were examined for their association with radiation exposure and potential confounders. We found 19 relevant studies. Elevated risks of pleural cancer were reported in most (15/17) of these studies. Eight reported risks higher for radiation monitored workers than for other workers. However, of 12 studies that looked at associations with ionising radiation, only one reported a significant dose-risk association. Asbestos was an important confounder in most studies. We conclude that studies of nuclear workers have not detected an association between ionising radiation exposure and MPM. Further investigations should improve the consideration of asbestos exposure at the same time as they address the risk of MPM related to occupational exposure of nuclear workers to low doses of ionising radiation at low dose rates. (review)

  14. Malignant pleural mesothelioma risk among nuclear workers: a review

    Energy Technology Data Exchange (ETDEWEB)

    Metz-Flamant, C; Guseva Canu, I; Laurier, D, E-mail: camille.metz@irsn.fr [Laboratory of Epidemiology, Institute of Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (France)

    2011-03-01

    Exposure to ionising radiation has been suggested as a causal risk factor for malignant pleural mesothelioma (MPM). Studies of patients treated by radiotherapy for primary cancers have suggested that radiation contributes to the development of secondary MPM. Here we examined the risk to nuclear workers of MPM related to exposure to low doses of occupational radiation at low dose rates. All results concerning MPM risk in published studies of nuclear workers were examined for their association with radiation exposure and potential confounders. We found 19 relevant studies. Elevated risks of pleural cancer were reported in most (15/17) of these studies. Eight reported risks higher for radiation monitored workers than for other workers. However, of 12 studies that looked at associations with ionising radiation, only one reported a significant dose-risk association. Asbestos was an important confounder in most studies. We conclude that studies of nuclear workers have not detected an association between ionising radiation exposure and MPM. Further investigations should improve the consideration of asbestos exposure at the same time as they address the risk of MPM related to occupational exposure of nuclear workers to low doses of ionising radiation at low dose rates. (review)

  15. Investigation of bias in a study of nuclear shipyard workers

    International Nuclear Information System (INIS)

    Greenberg, E.R.; Rosner, B.; Hennekens, C.; Rinsky, R.; Colton, T.

    1985-01-01

    The authors examined discrepant findings between a 1978 proportional mortality study and a 1981 cohort study of workers at the Portsmouth, New Hampshire Naval Shipyard to determine whether the healthy worker effect, selection bias, or measurement bias could explain why only the proportional mortality study found excess cancer deaths among nuclear workers. Lower mortality from noncancer causes in nuclear workers (the healthy worker effect) partly accounted for the observed elevated cancer proportional mortality. More important, however, was measurement bias which occurred in the proportional mortality study when nuclear workers who had not died of cancer were misclassified as not being nuclear workers based on information from their next of kin, thereby, creating a spurious association. Although the proportional mortality study was based on a small sample of all deaths occuring in the cohort, selection bias did not contribute materially to the discrepant results for total cancer deaths. With regard to leukemia, misclassification of occupation in the proportional mortality study and disagreement about cause of death accounted for some of the reported excess deaths. 16 references, 4 tables

  16. Strengthening safety compliance in nuclear power operations: a role-based approach.

    Science.gov (United States)

    Martínez-Córcoles, Mario; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2014-07-01

    Safety compliance is of paramount importance in guaranteeing the safe running of nuclear power plants. However, it depends mostly on procedures that do not always involve the safest outcomes. This article introduces an empirical model based on the organizational role theory to analyze the influence of legitimate sources of expectations (procedures formalization and leadership) on workers' compliance behaviors. The sample was composed of 495 employees from two Spanish nuclear power plants. Structural equation analysis showed that, in spite of some problematic effects of proceduralization (such as role conflict and role ambiguity), procedure formalization along with an empowering leadership style lead to safety compliance by clarifying a worker's role in safety. Implications of these findings for safety research are outlined, as well as their practical implications. © 2014 Society for Risk Analysis.

  17. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  18. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  19. Experience with training of operating and maintenance personnel of nuclear power plants

    International Nuclear Information System (INIS)

    Pospisil, M.; Cencinger, F.

    1988-01-01

    The system is described of the specialist training of personnel for Czechoslovak nuclear power plants. Training consists of basic training, vocational training and training for the respective job. Responsible for the training is the Research Institute for Nuclear Power Plants; actual training takes place at three training centres. Personnel are divided into seven categories for training purposes: senior technical and economic staff, shift leaders, whose work has immediate effect on nuclear safety, engineering and technical personnel of technical units, shift leaders of technical units, personnel in technical units, shift service personnel and operating personnel, maintenance workers. Experience with training courses run at the training centre is summed up. Since 1980 the Centre has been training personnel mainly for the Dukovany nuclear power plant. Recommendations are presented for training personnel for the Temelin nuclear power plant. (Z.M.)

  20. Transport, acceptance, storage and handling of the itens of nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The norm aiming to establish the requirements applied to workers or organizations which participate of the activities of transport, acceptance, storage and handling of important itens for safety of nuclear power plants, is presented. The established requirements treat of protection and control necessary to assure that the quality of important itens for safety be it preserved from the end of fabrication until their incorporation to nuclear power plant. (M.C.K.) [pt

  1. Effects of radiation and apolipoprotein E on lipid profile among workers of nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Ki-Eun Moon; Mee-Seon Jung; Suk-Hee Sung; Youn-Koun Chang; Il-Keun Park; Yun-Mi Paek; Tae-In Choi; Soo-Geun Kim

    2007-01-01

    Complete text of publication follows. Several studies reported that the radiation was positively related to fatty liver, low HDL cholesterol, and hypertriglyceridemia. Genetic polymorphism affect prevalence of chronic disease by molecular epidemiology studies. Apolipoprotein E is an important genetic determinant of cardiovascular disease (CVD), namely through its influence on lipid metabolism. Thus, we investigated whether radiation and apo E polymorphism, and environmental factors contribute to the lipid profile in workers of nuclear power plants in Korea. DNA was extracted from the whole blood of 6896 study subjects (6357 males and 359 females), and apo E polymorphism was investigated using PCR. Plasma lipid profiles were measured by standardized enzymatic procedures and radiation dose was measured by the thermoluminescence dosemeter (TLD). Environmental factors such as exercise, smoking were measured from health management database of KHNP. Total of 6802 subjects (aged 20-58) were investigated and radiation exposure dose was 168.51±463.94 mSv in the recent 1-year dose and 248.24±559.21 mSv in the total accumulative dose. In addition, Apo E polymorphism was associated with significant differences in total cholesterol, HDL cholesterol, radiation dose, AI but others no significant. The multiple regression model showed that total cholesterol was positively correlated with age, SBP, BMI, AI, fasting glucose. HDL cholesterol was negatively correlated with AI. LDL cholesterol was positively correlated with age, BMI, fasting glucose. And triglyceride was significantly correlated in the BMI, AI, somking dose, vegetables but others no significant. Metabolic syndrome did not show any relation to the others; only age, SBP, DBP, BMI, fasting glucose, HOMA-IR influenced. However, there was no significant association between radiation dose and lipid profile. In conclusion, Apo E and well-known variables such as SBP, BMI were significantly associated with lipid profile level

  2. Clinical aspects of the health disturbances in Chernobyl Nuclear Power Plant accident clean-up workers (liquidators) from Latvia.

    Science.gov (United States)

    Eglite, M E; Zvagule, T J; Rainsford, K D; Reste, J D; Curbakova, E V; Kurjane, N N

    2009-06-01

    The health status of some 6,000 workers from Latvia who went to clean-up the Chernobyl Nuclear Power Plant (CNPP) site following the explosion on 26 April 1986 has been analyzed. The data on these workers have been recorded in the Latvian State Register of Occupational disease patients and people exposed to ionizing radiation due to Chernobyl NPP accident (Latvian State Register) that was established in 1994. From these data, estimates have been made of external ionizing radiation to which these workers were exposed together with observations on the impact of exposure to heavy metals (especially lead and zinc) and radioactive isotopes released during the reactor 'meltdown'. These factors along with psycho-emotional and social-economic stresses account for a marked excess of mortality and morbidity in the group of CNPP accident clean-up workers compared with that of the non-exposed normal Latvian population adjusted for age and sex. The number of diseases or conditions in the CNPP accident clean-up workers has progressively risen from an average of 1.3 in 1986 to 10.9 in 2007. This exceeds for the Latvian population when adjusted for age and sex. The most serious conditions affect the nervous, digestive, respiratory, cardiovascular, endocrine (especially thyroid) and immunological systems. While the morbidity associated with diseases of the respiratory and digestive systems has decreased in recent years that in the other systems is increasing. In recent years, there has been an increased occurrence of cancers affecting the thyroid, prostate and stomach. Clinical and laboratory investigations suggest that surviving CNPP accident clean-up workers exhibit signs of immuno-inflammatory reactions causing premature aging with evidence of autoimmune diseases and immunological deficiencies or abnormalities. It is suggested that the CNPP accident clean-up workers may have a specific syndrome, the 'Chernobyl post-radiation neurosomatic polypathy', due to sustained oxidant

  3. Fitness for duty in the nuclear power industry: Responses to public comments

    International Nuclear Information System (INIS)

    Bush, L.L.; Grimes, B.K.

    1989-05-01

    The Nuclear Regulatory Commission published for public comment a proposed rule concerning the fitness for duty of commercial nuclear power plant workers (53 FR 36795). The proposed rule focused on methods for controlling the use of substances that may affect the trustworthiness and performance of workers. It provides for chemical testing, behavioral observation, employee awareness and education, and employee assistance programs as means for assuring fitness for duty. This report summarizes the comments received on the proposed rule and provides the staff resolutions of the issues raised by the comments. 3 refs

  4. World Council of Nuclear Workers

    International Nuclear Information System (INIS)

    Maisseu, Andre

    2007-01-01

    WONUC is an association of Trade Unions, Scientific Societies and Social Organizations of the employees, workers and professionals of the nuclear energy related industries and technologies; integrated by 35 Countries and 1.8 millions members. This paper expose the products and services that WONUC provide for the promotion of peaceful uses of nuclear energy and the result of their work around all the world

  5. Regulatory practices for nuclear power plants in India

    International Nuclear Information System (INIS)

    Bajaj, S.S.

    2013-01-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB is responsible for the stipulation and enforcement of rules and regulations pertaining to nuclear and radiological safety. This paper describes the regulatory process followed by AERB for ensuring the safety of nuclear power plants (NPPs) during their construction as well as operation. This regulatory process has been continuously evolving to cater to the new developments in reactor technology. Some of the recent initiatives taken by AERB in this direction are briefly described. Today, AERB faces new challenges like simultaneous review of a large number of new projects of diverse designs, a fast growing nuclear power program and functioning of operating plants in a competitive environment. This paper delineates how AERB is gearing up to meet these challenges in an effective manner. (author)

  6. Investigations on Health Conditions of Chernobyl Nuclear Power Plant Accident Recovery Workers from Latvia in Late Period after Disaster

    Directory of Open Access Journals (Sweden)

    Reste Jeļena

    2016-10-01

    Full Text Available The paper summarises the main findings on Chernobyl Nuclear Power Plant (CNPP accident recovery workers from Latvia and their health disturbances, which have been studied by the authors during the last two decades. Approximately 6000 persons from Latvia participated in CNPP clean-up works in 1986–1991. During their work period in Chernobyl they were exposed to external as well as to internal irradiation, but since their return to Latvia they were living in a relatively uncontaminated area. Regular careful medical examinations and clinical studies of CNPP clean-up workers have been conducted during the 25 years after disaster, gathering knowledge on radiation late effects. The aim of the present review is to summarise the most important information about Latvian CNPP clean-up worker health revealed by thorough follow-up and research conducted in the period of 25 years after the accident. This paper reviews data of the Latvian State Register of Persons Exposed to Radiation due to CNPP Accident and gives insight in main health effects found by the researchers from the Centre of Occupational and Radiological Medicine (Pauls Stradiņš Clinical University Hospital and Rīga Stradiņš University in a number of epidemiological, clinical, biochemical, immunological, and physiological studies. Latvian research data on health condition of CNPP clean-up workers in the late period after disaster indicate that ionising radiation might cause premature ageing and severe polymorbidity in humans.

  7. Human Performance at the Perry Nuclear Power Plant

    International Nuclear Information System (INIS)

    Rabe, Alan W.

    1998-01-01

    Provides a description of human performance training for plant workers as implemented at the Perry Nuclear Power Plant. Practical concepts regarding the training are presented as well as a demonstration of some of the training material. Concepts are drawn from INPO, Reason and Deming. The paper encourages the use of site-wide and individual organizational unit training in human performance management techniques. (author)

  8. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  9. Health protection and industrial safety. Nuclear power plants

    International Nuclear Information System (INIS)

    1987-03-01

    The standard applies to primary circuit components including its auxiliary facilities, and of the secondary circuit of nuclear power plants with pressurized water reactors; to lifting gear and load take-ups for the transport of nuclear fuel and primary circuit components; to elevators within the containment, and to electrical installations. Part 3 specifies the behaviour of workers in conformity with safety provisions during operation, inspection, lifetime surveillance, functional testing, and maintenance. Special demands are made on the water regime and on elevators, lifting gear, and load take-ups

  10. Development of bus duct inspection robot at nuclear power plant

    International Nuclear Information System (INIS)

    Hamada, Mamoru; Hoshi, Teruaki; Komura, Yoshinari

    2017-01-01

    Under the present situation, nuclear power plant has some places which are inspected with difficulty or not inspected due to narrowness or physical restriction, when carrying out periodical inspection. The subject of our research and development is to improve the accuracy of inspection and also to save labor (liberation from distress work of the worker) by applying a robot technology to the periodical inspection of the nuclear power plant. As a specific example, we report that developed robot can inspect inside the narrow space of Isolated Phase Bus ducts, which connect between a turbine generator and the main transformer. (author)

  11. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  12. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  13. Abnormality diagnostic technology for nuclear power plants

    International Nuclear Information System (INIS)

    Ishikawa, Satoshi

    1986-01-01

    In nuclear power plants, it is feared that the failure of the installations containing radioactive substances may inflict serious damage on public and workers. Therefore in nuclear power plants, the ensuring of safety is planned by supposing hypothetical accidents which are not likely to occur from engineering viewpoint, and multiple protection measures are taken in the plant constitution. In addition to the safety measures from such hardware aspect, recently in order to prevent the occurrence of accidents by using various safety-confirming means, and to detect early when any accident occurred, the development and putting in practical use of many monitoring equipments have been promoted. In such background, the development of nuclear power generation supporting system was carried out for five years since fiscal year 1980, subsidized by the Ministry of International Trade and Industry, and in this report, the technology of equipment abnormality diagnosis developed as a part of that project and the diagnostic techniques for actual plants are described. The technology of diagnosing nuclear reactor abnormality includes the diagnosis of loose metal pieces and the abnormal vibration of in-core structures. The detection and diagnosis of valve leak and the diagnosis of the deterioration of detectors are also explained. (Kako, I.)

  14. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  15. Internet usage and knowledge of radiation health effects and preventive behaviours among workers in Fukushima after the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Kanda, Hideyuki; Takahashi, Kenzo; Sugaya, Nagisa; Mizushima, Shunsaku; Koyama, Kikuo

    2014-10-01

    The Fukushima Daiichi nuclear power plant accident (FDNPPA) was the world's second largest nuclear power plant accident. At the time that it occurred, internet usage prevalence in Japan was as high as 80%. To compare health knowledge on radiation and preventive behaviour between internet users and non-users among adults employed in industries in Fukushima after the nuclear disaster. We conducted a cross-sectional questionnaire study among adults employed in industries in Fukushima 3-5 months after the FDNPPA. Targets were 1394 regular workers who took part in health seminars provided by the Fukushima Occupational Health Promotion Center. After applying the selection criteria, there were 1119 eligible participants. The questionnaire asked for personal characteristics and main sources of information about the FDNPPA, as well as health knowledge on radiation and preventive behaviours following the nuclear accident. We assessed the contribution of each variable using logistic regression analysis. Among the eligible respondents, 637 workers (56.9%) were internet users and 482 (43.1%) were non-users. Internet users had more health knowledge than non-users (average 4.6 radiation-related health conditions in internet users vs 3.6 conditions in non-users) and more preventive behaviours (average 2.6 behaviours in internet users vs 1.9 in non-users). According to logistic regression analyses, internet usage was positively associated with greater health knowledge on radiation (OR 1.13; 95% CI 1.08 to 1.20) and more preventive behaviours (OR 1.14; 95% CI 1.07 to 1.23). Internet usage was significantly and positively associated with greater health knowledge and more preventive behaviours. The internet is a useful method of distributing information to the general public in emergency situations such as a nuclear disaster. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Radiological protection in nuclear power plants

    International Nuclear Information System (INIS)

    Zorrilla R, S.

    2008-12-01

    This presentation sharing experiences which correspond to the nuclear power plant of Laguna Verde. This nuclear power plant is located at level 2 of four possible, in the classification performance of the World Association of Nuclear Operators (WANO), which means the mexican nuclear power plant is classified in terms of its performance indicators and above the average achieved by their counterparts americans and canadians. In the national context, the nuclear power plant of Laguna Verde has also been honored with several awards such as the National Quality Award, the Clean Industry Certificate, the distinction of Environmental Excellence and others of similar importance. For the standards of WANO, the basic idea is that there are shortcomings in one of nuclear power plant concern to all partners. The indicators used for the classification will always go beyond more compliance with regulations, which are assumed, and rather assume come or a path to excellence. Among the most important indicators are: the collective dose, the percentage of areas declared as contaminated, the number, type and tendency of contamination personal cases, the number of dosimetry alarms, the number of unplanned exposures, loss control of high radiation areas and the release of contaminated material outside the restricted areas. Furthermore, as already indicated, nuclear power plants are of special care situations, such as, carrying out work in areas with radiation fields of more than 15 mSv h -1 , the movement of spent fuel in the reload floor. The consideration of the minimum total effective dose equivalent as a criterion for prescribing tools that reduce exposures, but may increase the external cases of contaminated casualties, the experience in portals such as workers subject to radiology, where exposure in industrial radiography, and so on. Special mention deserve the conditions generated during fuel reload stops, which causes a massive personnel movement, working simultaneously on

  17. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  18. Quantity and quality in nuclear engineering professional skills needed by the nuclear power industry

    International Nuclear Information System (INIS)

    Slember, R.J.

    1990-01-01

    This paper examines the challenge of work force requirements in the context of the full range of issues facing the nuclear power industry. The supply of skilled managers and workers may be a more serious problem if nuclear power fades away than if it is reborn in a new generation. An even greater concern, however, is the quality of education that the industry needs in all its future professionals. Both government and industry should be helping universities adapt their curricula to the needs of the future. This means building a closer relationship with schools that educate nuclear professionals, that is, providing adequate scholarships and funding for research and development programs, offering in-kind services, and encouraging internships and other opportunities for hands-on experience. The goal should not be just state-of-the-art engineering practices, but the broad range of knowledge, issues, and skills that will be required of the nuclear leadership of the twenty-first century

  19. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  20. Radiological safety of nuclear power plants in India

    International Nuclear Information System (INIS)

    Sathish, A.V.

    2015-01-01

    Safety in nuclear power plants (NPPs) is often less understood and more talked about, thus the author wanted to share the facts to clear the myths. Safety is accorded overriding priority in all the activities. All nuclear facilities are sited, designed, constructed, commissioned and operated in accordance with strict quality and safety standards. Principles of defence in depth, redundancy and diversity are followed in the design of all nuclear facilities and their systems/components. PPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, approved standard operating and maintenance procedures, a well-defined waste management methodology, periodically rehearsed emergency preparedness and disaster management plans. The regulatory framework in the country is robust, with the independent Atomic Energy Regulatory Board (AERB) having powers to frame the policies, laying down safety standards, monitoring and enforcing all the safety provisions. As a result, India's safety record has been excellent in over 400 reactor years of operation of power reactors

  1. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1989

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1992-04-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC 1 licensees during the years 1969 through 1989. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC 1 licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1989 annual reports submitted by about 448 licensees indicated that approximately 216,294 individuals were monitored 111,000 of whom were monitored by nuclear power facilities. They incurred an average individual does of 0.18 rem (cSv) and an average measurable dose of 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,535 individuals completed their employment with one or more of the 448 covered licensees during 1989. Some 76,561 of these individuals terminated from power reactor facilities, and about 10, 344 of them were considered to be transient workers who received an average dose of 0.64 rem (cSv)

  2. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1988

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1991-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1988. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1988 annual reports submitted by about 429 licensees indicated that approximately 220,048 individuals were monitored, 113,00 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.20 rem (cSv) and an average measurable dose of 0.41 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,072 individuals completed their employment with one or more of the 429 covered licensees during 1988. Some 80,211 of these individuals terminated from power reactor facilities, and about 8,760 of them were considered to be transient workers who received an average dose of 0.27 rem (cSv). 17 refs., 11 figs., 29 tabs

  3. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1991

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1991. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1991 annual reports submitted by about 436 licensees indicated that approximately 206,732 individuals were monitored, 182,334 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.15 rem (cSv) and an average measurable dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 96,231 individuals completed their employment with one or more of the 436 covered licensees during 1991. Some 68,115 of these individuals terminated from power reactor facilities, and about 7,763 of them were considered to be transient workers who received an average dose of 0.52 rem (cSv)

  4. Development of small size wall decontamination robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Fujita, Tsuneaki; Takahashi, Tsuyosi

    2004-01-01

    This paper describes the development of wall decontamination robot systems for nuclear power plants. In nuclear power plants, it is required to reduce maintenance costs, including annual inspection, repairs and so on. Most of such maintenance activities are actually performed after decontamination processes are completed. In particular, the decontamination process of reactor wells is very important for reducing the radiation exposure of human workers. In the past, decontamination of reactor wells used to be done by extra large machine and tools, which caused long working hours and tiresome works. It was one of the reasons maintenance costs couldn't have been easily reduced. There are narrow spaces in the reactor wells that have to be decontaminated by human workers. In order to minimize the radiation exposure to humans, wall decontamination robot systems have been developed. The decontamination robots have rolled brushes and suction mechanisms and are capable of removing contaminants attached to the wall surface of the reactor wells. By making the robots smaller, it is possible to work in narrower spaces. In this paper, the effectiveness of decontamination by the developed robots is shown through experiments in the actual nuclear power plants. (author)

  5. Analysis of changed bio-signal to radiation exposure of nuclear medicine worker

    International Nuclear Information System (INIS)

    Lee, Hwun Jae; Lee, Sang Bock

    2007-01-01

    In this paper, we are evaluated about bio-signal between general workers and nuclear medicine workers which is more radiation exposure relatively. In order to reciprocal evaluated two group, we experimented nuclear medicine workers in Chung-Buk National University Hospital at department of nuclear medicine and worker in Chon-Nam National University Hospital at CT room, general radiographic room, medical recording room, receipt room, general office room. Used of experimental equipments as follows, for a level of radiation measurement by pocket dosimeter which made by Arrow-Tech company, for heart rate and blood pressure measurement by TONOPORT V which made by GE medical systems company, for heat flux and skin temperature and energy expenditure measurement by Armband senseware 2000 which made by Bodymedia company. Result of experiment obtains as follows : 1) Individual radiation exposure is recorded 3.05 uSv at department of nuclear medicine and order as follows CT room, general radiograpic room, medical recording room, receipt room, general office room. Department of nuclear medicine more 1.5 times than other places. 2) Radiation accumulated dose is not related to Heat flux, Skin temperature, Energy expenditure. 3) Blood pressure is recorded equal to nuclear medical workers, general officer, general people about systolic blood pressure and diastolic blood pressure. Compared to blood pressure between nuclear medical works which is more radiation exposure and other workers was not changed. Consequently, more radiation exposed workers at nuclear medicine field doesn't have hazard

  6. Fukushima Nuclear Accident, the Third International Severe Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Rashad, S.M.

    2013-01-01

    Japan is the world's third largest power user. Japan's last remaining nuclear reactor shutdown on Saturday 4 Th of May 2012 leaving the country entirely nuclear free. All of 50 of the nation's operable reactors (not counting for the four crippled reactors at Fukushima) are now offline. Before last year's Fukushima nuclear disaster, the country obtained 30% of its energy from nuclear plants, and had planned to produce up to 50% of its power from nuclear sources by 2030. Japan declared states of emergency for five nuclear reactors at two power plants after the units lost cooling ability in the aftermath of Friday 11 March 2011 powerful earthquake. Thousands of (14000) residents were immediately evacuated as workers struggled to get the reactors under control to prevent meltdowns. On March 11 Th, 2011, Japan experienced a sever earthquake resulting in the shutdown of multiple reactors. At Fukushima Daiichi site, the earthquake caused the loss of normal Ac power. In addition it appeals that the ensuing tsunami caused the loss of emergency Ac power at the site. Subsequent events caused damage to fuel and radiological releases offsite. The spent fuel problem is a wild card in the potentially catastrophic failure of Fukushima power plant. Since the Friday's 9.0 earthquake, the plant has been wracked by repeated explosions in three different reactors. Nuclear experts emphasized there are significant differences between the unfolding nuclear crisis at Fukushima and the events leading up to the Chernobyl disaster in 1986. The Chernobyl reactor exploded during a power surge while it was in operation and released a major cloud of radiation because the reactor had no containment structure around to. At Fukushima, each reactor has shutdown and is inside a 20 cm-thick steel pressure vessel that is designed to contain a meltdown. The pressure vessels themselves are surrounded by steel-lined, reinforced concrete shells. Chernobyl disaster was classified 7 on the International

  7. An influence of occupational exposure on level of chromosome aberrations in nuclear power plant workers

    International Nuclear Information System (INIS)

    Birute Griciene; Grazina Slapsyte

    2007-01-01

    Complete text of publication follows. Objective. The workers of Ignalina Nuclear Power Plant (INPP) receive the highest occupational ionising radiation doses in Lithuania. Their occupational exposure results mainly from external low LET gamma radiation. Some workers receive additional internal and neutron exposure. Though exposure doses are generally low and don't exceed the annual dose limit, the higher doses are obtained during outages. The aim of the present study was to analyse chromosome aberration frequencies in lymphocytes of INPP workers exposed to the different types of ionising radiation. Methods. The blood sampling of 52 INPP male workers was performed in 2004-2006. For 29 workers radiation exposure resulted from the external gamma rays only. Their mean annual dose averaged over the 3-year period prior blood sampling was 11.7±8.7 mSv. The mean cumulative dose - 197.7±174.7 mSv. 15 workers had an intake of gamma radionuclides ( 60 Co, 137 Cs), contributing to the doses less than 0.1 mSv. Their mean cumulative dose - 278.2±191.9 mSv. The mean annual dose averaged over the 3-year period prior blood sampling was 11.8±5.3 mSv. For 8 subjects neutron doses below 0.2 mSv were recorded. Their mean annual dose averaged over the 3-year period prior blood sampling was 7.0±2.9 mSv. The mean cumulative dose was 241.8±93.0 mSv. Heparinized venous blood samples were taken and cultures were initiated according to the standard procedures. Phytohaemagglutinin (7.8 μg/ml) stimulated cultures were incubated at 37degC for 72 hours in RPMI 1640 medium supplemented with 12% heat-inactivated newborn calf serum, 40 μg/ml gentamycin. Colchicine was added to the culture during the initiation at a final concentration of 0,25 μg/ml. The harvested lymphocytes were treated with hypotonic KCl (0,075 M) and then fixed in methanol-glacial acetic acid (3:1). Flame-dried slides were stained with Giemsa, coded and scored blind. Generally 500 first-division cells per individual were

  8. Annual report on operational management of nuclear power stations, 1979-1980

    International Nuclear Information System (INIS)

    1981-04-01

    This report was compiled by the Agency of Natural Resoures and Energy. The commercial nuclear power stations in Japan started the operation in 1966 for the first time, and as of the end of March, 1981, 22 plants with more than 15.5 million kW capacity were in operation. Nuclear power generation is regarded as the top-rated substitute energy for petroleum, and the target of its development in 1990 is about 52 million kW. The government and the people are exerting utmost efforts to attain the target. The result of the rate of operation of nuclear power stations reached 60.8% in 1980, but it is important to maintain the good, stable state of operation by perfecting the operational management hereafter in order to establish the position of LWRs. At present, the operational management officers of the government stay in nationwide power stations, and supervise the state of operations, thus the system of operational management was strengthened after the Three Mile Island accident in the U.S., and the improvement in the rate of operation is expected. A table shows the nuclear power stations in operation and under construction. The state of operations of individual nuclear power plants in 1979 and 1980, the accidents and failures occurred in nuclear power plants from 1966 to 1980, the minor troubles, the conditions in the regular inspections of individual nuclear power plants, radioactive waste management and the radiation exposure of workers are reported. (Kako, I.)

  9. A quantitative and comparative evaluation of the risks from nuclear power plants

    International Nuclear Information System (INIS)

    Vignes, S.; Bertin, M.; Nenot, J.C.

    1980-01-01

    All the significant data for the assessment of risks from the operation of nuclear power plants was collected and these risks were compared with all the risks of modern life. The scientific bases for the evaluation of individual risks and detriment were defined by UNSCEAR (1977) and by ICRP 26 (1978). In different industries, the risk of death from long term occupational illness is about 130 to 14,000 per million workers. For accidental deaths, the risk is estimated at about 16 to 1,600. The risk for the nuclear industry is lower than 100 per million workers. Comparisons are made with different causes of lethality: deaths from atmospheric pollution (sulfur compounds and dusts) related to fossile fuel combustion; iatrogenic accidents attributed to some drugs used in medicine or to other kind of treatment; calculated mortality for workers exposed to asestosis. The nuclear industr of the safest. The only risk to be considered is the major accident, the probability of which is very low. (H.K.)

  10. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  11. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  12. Primary circuit contamination in nuclear power plants: contribution to occupational exposure

    International Nuclear Information System (INIS)

    Provens, H.

    2002-01-01

    In every country since the 80's, a clear downward trend is observed concerning the occupational doses at nuclear power plants, as shows the regularly decreasing annual collective dose per operating reactor. Even if technology and work management are improving, the reduction and the control of radiation sources remain one critical point. This paper summarizes the results of an extended study on the primary circuit contamination in nuclear power plants and its contribution to workers' exposure. The paper reviews the origin and mechanisms of radiation production and the different ways of radiation control or reduction based on physical and chemical parameters and not organisational or human factors. It underlines that chemistry control of the primary circuit is one essential component of radiation protection optimisation in nuclear power plants. Results reported come from scientific data in open literature and cannot be generalized to all the power plants

  13. Is nuclear energy safe for workers and the public. III

    International Nuclear Information System (INIS)

    McKenzie, J.J. Jr.

    1976-01-01

    Dr. McKenzie says a national energy policy does exist, being based on synthetic fuels from coal and nuclear energy to meet future demands, and based on a complete lack of attention to conservation. In meeting energy demands for the future, he feels the opportunity still exists to create the scenario that will require meaningful jobs in the process, jobs requiring less capital and less energy. On the risks of nuclear energy, Dr. McKenzie discusses the funding, research, and results of the Atomic Energy Commission's safety program. He airs his views on WASH-1400, the study by Professor Norman Rasmussen, dealing with the possibilities of reactor core meltdowns. He thinks a worse problem resulting from nuclear power plants is that of waste disposal and cites AEC's poor record of managing these wastes in Kansas and elsewhere. In concluding, Dr. McKenzie says: (1) nuclear power may not be the best thing in the world, maybe we should look at other alternatives; (2) conservation is most important, and creates jobs at the same time if handled correctly; (3) AFL-C10 should sponsor a study on energy systems investigating its employment potential, net energy, economic factors, and capital requirements; and (4) construction of nuclear and coal plants will create jobs, but building solar plants will create jobs with fewer restraints on the environment. A panel discussion follows this, the third paper, on nuclear safety for workers and the public

  14. Fitness for duty in the nuclear power industry: A review of technical issues

    International Nuclear Information System (INIS)

    Moore, C.; Barnes, V.; Hauth, J.

    1989-05-01

    This report presents information gathered and analyzed in support of the US Nuclear Regulatory Commission's (NRC's) efforts to develop a rule that will ensure that workers with unescorted access to protected areas of nuclear power plants are fit for duty. This report supplements information previously published in NUREG/CR-5227, Fitness for Duty in the Nuclear Power Industry: A Review of Technical Issues (Barnes et al., 1988). The primary potential fitness-for-duty concern addressed in both of these reports is impairment caused by substance abuse, although other fitness concerns are discussed. This report addresses issues pertaining to workers' use and misuse of alcohol, prescription drugs, and over-the-counter drugs as fitness-for-duty concerns; responds to several questions raised by NRC Commissioners; discusses subversion of the chemical testing process and methods of preventing such subversion; and examines concerns about the urinalysis cutoff levels used when testing for marijuana metabolites, amphetamines, and phencyclidine

  15. Certification of Canadian nuclear power plant personnel

    International Nuclear Information System (INIS)

    Newbury, F.

    2014-01-01

    The Canadian Nuclear Safety Commission (CNSC) regulates the use of nuclear energy and materials to protect health, safety, security of Canadians and the environment, and to implement Canada's international commitments on the peaceful use of nuclear energy. As part of its mandate, the CNSC requires certification of those who work in positions with direct impact on the safety of Canadian nuclear power plants (NPPs) and research reactors. Other positions, such as exposure device operators and radiation safety officers at other nuclear facilities, also require CNSC certification. In this paper, the certification process of Canadian NPP personnel will be examined. In keeping with the CNSC's regulatory philosophy and international practice, licensees bear the primary responsibility for the safe operation of their NPPs. They are therefore held entirely responsible for training and testing their workers, in accordance with applicable regulatory requirements, to ensure they are fully qualified to perform their duties. The CNSC obtains assurance that all persons it certifies are qualified to carry out their respective duties. It achieves this by overseeing a regime of licensee training programs and certification examinations, which are based on a combination of appropriate regulatory guidance and compliance activities. Reviews of the knowledge-based certification examination methodology and of lessons learned from Fukushima have generated initiatives to further strengthen the CNSC's certification programs for NPP workers. Two of those initiatives are discussed in this paper. (author)

  16. Analysis of color environment in nuclear power plants

    International Nuclear Information System (INIS)

    Natori, Kazuyuki; Akagi, Ichiro; Souma, Ichiro; Hiraki, Tadao; Sakurai, Yukihiro.

    1996-01-01

    This article reports the results of color and psychological analysis of the outlook of nuclear power plants and the visual environments inside of the plants. Study one was the color measurements of the outlook of nuclear plants and the visual environment inside of the plants. Study two was a survey of the impressions on the visual environments of nuclear plants obtained from observers and interviews of the workers. Through these analysis, we have identified the present state of, and the problems of the color environments of the nuclear plants. In the next step, we have designed the color environments of inside and outside of the nuclear plants which we would recommend (inside designs were about fuel handling room, operation floor of turbine building, observers' pathways, central control room, rest room for the operators). Study three was the survey about impressions on our design inside and outside of the nuclear plants. Nuclear plant observers, residents in Osaka city, residents near the nuclear plants, the operators, employees of subsidiary company and the PR center guides rated their impressions on the designs. Study four was the survey about the design of the rest room for the operators controlling the plants. From the results of four studies, we have proposed some guidelines and problems about the future planning about the visual environments of nuclear power plants. (author)

  17. Purchasing power of civil servant health workers in Mozambique ...

    African Journals Online (AJOL)

    Background: Health workers' purchasing power is an important consideration in the development of strategies for health workforce development. This work explores the purchasing power variation of Mozambican public sector health workers, between 1999 and 2007. In general, the calculated purchasing power increased ...

  18. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  19. Fault Tree Analysis for an Inspection Robot in a Nuclear Power Plant

    Science.gov (United States)

    Ferguson, Thomas A.; Lu, Lixuan

    2017-09-01

    The life extension of current nuclear reactors has led to an increasing demand on inspection and maintenance of critical reactor components that are too expensive to replace. To reduce the exposure dosage to workers, robotics have become an attractive alternative as a preventative safety tool in nuclear power plants. It is crucial to understand the reliability of these robots in order to increase the veracity and confidence of their results. This study presents the Fault Tree (FT) analysis to a coolant outlet piper snake-arm inspection robot in a nuclear power plant. Fault trees were constructed for a qualitative analysis to determine the reliability of the robot. Insight on the applicability of fault tree methods for inspection robotics in the nuclear industry is gained through this investigation.

  20. Nuclear weapons and nuclear power stations: what is the connection

    International Nuclear Information System (INIS)

    Spencer, K.

    1985-01-01

    From the start of the nuclear age with the dropping of two atom bombs on Japan in 1945 it has been known that this new source of primary energy could be exploited for weapons or for replacing coal or oil in electricity-generating stations. Nuclear energy is made from two elements: naturally occurring uranium and man-made plutonium. Their processing differs according to the intended end-use. Great efforts have been and still are made to disguise the close connection between nuclear energy for war and for power stations. Two reasons are suggested for this: political conveniences in avoiding additional informed protests against nuclear weapon production and industrial convenience in carrying on without public protest what has become a very profitable industry. It is argued that medical doctors, because of their professional prestige, can speak and be listened to on the risks of continuing to exploit this newly discovered form of energy. Furthermore, this industry is uniquely hazardous to the health of its workers, to the public generally and possibly to the procreation and genetic health of future generations. (author)

  1. Consideration of Evaluation of Communication using Work Domain Analysis (WDA) in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jang, In Seok; Seong, Poong Hyun; Park, Jin Kyun

    2009-01-01

    The nature of work has changed, this corresponding to a trend toward to computerization. In this phase, the role of people began to evolve from one of manual laborer, requiring primarily perception-motor skill, to intellectual worker, thereby requiring more conceptual knowledge and cognitive skills which means system such as nuclear power plant are getting more complicated and complex. Thus, the evolution of work has led to a greater demand for communication, collaboration, problem solving thereby increasing the discretion, and therefore the variability, in worker action. Because of these reasons, traditional approaches, normative method and descriptive method, have not been proper anymore. Naikar points out that by focusing on constraints, rather than on particular ways of working, it is possible to support workers in adapting their behavior online and in real time in a variety of situation, including unanticipated events. For these complex domain such as communication in nuclear power plant control room, an approach is required that models the conditions framing formative behavior, allowing the examination of emergent, unanticipated, unpredicted actions. In this study, it could be helpful to introduce the method that is proper to apply in complex and unanticipated like nuclear power plants. Thus, Abstraction Decomposition Space (ADS) which is the tool of Work Domain Analysis(WDA) is presented as an approach that is particularly amenable for this domain. The aim is to address ADS as a beginning of modeling the structure of what need to be analyzed can be used to support the analysis of communication in nuclear power plants. If the model that is made by ADS is correct, quantitative evaluation of communication could be done

  2. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  3. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  4. Study on the improvement of working environment at night in maintenance works at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hiramoto, Mitsuru; Kotani, Fumio [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    At the maintenance work site in nuclear power plants, due to the shortening (reduction of a regular inspection period) of the regular inspection period, the tendency toward working on around-the-clock basis has increased; thus, nighttime work is on the rise. Based upon research both locally and internationally, as well as examples of measures against such a tendency and the results of on-site surveys of the environment surrounding maintenance works at nuclear power plants, the author comprehensively studied the effects of nighttime work on workers, the measures to cope with the situation, and how a working environment for nighttime work should be. Based on the results, the authors made a guidebook for nighttime maintenance work at nuclear power plants. This guidebook, which deals with the subject of nighttime maintenance work at nuclear power plants, is quite unique in the world. It is expected that by using this guidebook, the quality of nighttime maintenance work and the levels of techniques/skills would be enhanced and maintained, and the safety of workers would be ensured, promoting considerably thus the establishment of a comfortable workplace. (author)

  5. Study on the improvement of working environment at night in maintenance works at nuclear power plants

    International Nuclear Information System (INIS)

    Hiramoto, Mitsuru; Kotani, Fumio

    2000-01-01

    At the maintenance work site in nuclear power plants, due to the shortening (reduction of a regular inspection period) of the regular inspection period, the tendency toward working on around-the-clock basis has increased; thus, nighttime work is on the rise. Based upon research both locally and internationally, as well as examples of measures against such a tendency and the results of on-site surveys of the environment surrounding maintenance works at nuclear power plants, the author comprehensively studied the effects of nighttime work on workers, the measures to cope with the situation, and how a working environment for nighttime work should be. Based on the results, the authors made a guidebook for nighttime maintenance work at nuclear power plants. This guidebook, which deals with the subject of nighttime maintenance work at nuclear power plants, is quite unique in the world. It is expected that by using this guidebook, the quality of nighttime maintenance work and the levels of techniques/skills would be enhanced and maintained, and the safety of workers would be ensured, promoting considerably thus the establishment of a comfortable workplace. (author)

  6. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  7. Staffing, recruitment, training, qualification and certification of operating personnel of nuclear power plants

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and the use of radioactive sources. This safety guide provides guidance on the aspects of staffing, recruitment, training, qualification and certification of operating personnel of nuclear power plants

  8. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  9. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  10. Trend analysis of cables failure events at nuclear power plants

    International Nuclear Information System (INIS)

    Fushimi, Yasuyuki

    2007-01-01

    In this study, 152 failure events related with cables at overseas nuclear power plants are selected from Nuclear Information Database, which is owned by The Institute of Nuclear Safety System, and these events are analyzed in view of occurrence, causal factor, and so on. And 15 failure events related with cables at domestic nuclear power plants are selected from Nuclear Information Archives, which is owned by JANTI, and these events are analyzed by the same manner. As a result of comparing both trends, it is revealed following; 1) A cable insulator failure rate is lower at domestic nuclear power plants than at foreign ones. It is thought that a deterioration diagnosis is performed broadly in Japan. 2) Many buried cables failure events have been occupied a significant portion of cables failure events during work activity at overseas plants, however none has been occurred at domestic plants. It is thought that sufficient survey is conducted before excavating activity in Japan. 3) A domestic age related cables failure rate in service is lower than the overseas one and domestic improper maintenance rate is higher than the overseas one. Maintenance worker' a skill improvement is expected in order to reduce improper maintenance. (author)

  11. The Union view of back end fuel cycle provisions for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    After a long political and technical discussion, the German trade unions united in the German Federation of Labor (DGB) arrived at the finding that back end fuel cycle provisions for nuclear power plants in the Federal Republic of Germany, in addition to the present concept of the Government providing for a reprocessing plant, should also include studies of the alternative possibility to store spent fuel elements over long periods of time, perhaps with a possibility to recover them later. That decision is also based on a report by the Nuclear Technology Working Group of the Metal Workers Union (IG Metall) and the Public Workers Union (OeTV). (orig.) [de

  12. A survey on the public opinion regarding nuclear power and energy issues in Fukui prefecture

    International Nuclear Information System (INIS)

    Kosugi, Motoko; Tsuchiya, Tomoko

    2007-01-01

    To 2000 people who were randomly sampled from the basic register of residents in Fukui prefecture, we conducted a questionnaire survey asking their interest in, knowledge of and attitude toward nuclear power, to analyze which perceptions and opinions they had and factors influencing them. The ratios of respondents in Fukui prefecture who think nuclear power is safe, necessary, and should be developed more, are higher than those of surveyed residents who live in other regions where nuclear power plants had been in operation. Differences in gender and age are nearly the same as those found in the nation-wide surveys has shown. The respondents in 'Tsuruga' region, one of the centers of nuclear power research and development, are more acceptive and affirmative to the nuclear power than those in other regions, although they have less knowledge and credibility for nuclear power safety measures, such as regulation and monitoring by government, countermeasure of earthquake, training of workers and so on. We analyzed the perception of risk and the sense of security for nuclear power, and the opinions for necessity and development of nuclear power, using a regression model. According to the estimated 'Tsuruga' model, risk perception of Tsuruga respondents does not affect their opinion if nuclear power should be developed. No influence of the risk perception on their opinion for nuclear power suggest a possibility that residents have strong trust in nuclear power technology and electric power companies based on their long term experience. (author)

  13. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  14. Manpower requirements of quality assurance personnel for the nuclear power plants

    International Nuclear Information System (INIS)

    Aly, A.E.; El-sayed, A.A.; Shabaan, I.H.

    1987-01-01

    Basic principles for structuring and staffing of the quality assurance (Q.A.)organisation in the nuclear power plant (NPP) are presented. the manpower requirements of the Q.A.organisation in the NPP during both construction and operational stages are determined. the manpower requirements for Q.A./Q.C. functions in a NPP are found to be proportional to the number of craft workers needed to perform the required level of the construction. The Q.A./Q.C. personnel are about 15% of the total number of the craft workers required during construction

  15. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  16. Second analysis of mortality of nuclear industry workers in Japan, 1986-1997

    International Nuclear Information System (INIS)

    Ohshima, Sumio; Murata, Motoi

    2001-01-01

    This article is a commentary concerning the second report of the study in the title committed by the Science and Technology Agency (the present Ministry of Education, Culture, Sports, Science and Technology) to Radiation Effects Association. The study is an epidemiological one as for the relationships between long-term low dose radiation and its health effects in workers of nuclear industry like nuclear power plant and uses the cohort methodology for the factor (exposure dose) and diseases (mortality). In about 244,000 personnel, mortality was calculated from obtainable 179,000 resident cards of object males. For those died during the study period, cause of death was checked with the card for the movement of population (Ministry of Health, Labor and Welfare). The exposure dose was checked with the dose records of radiation workers stored in the registration center. Analysis results of standardized mortality ratio (comparison of mortality of the objects and non-object Japanese males) and of correlation of integrated dose and mortality gave no clear evidence that the low dose radiation exposure affects the mortality due to cancer. (K.H.)

  17. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  18. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  19. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  20. Licensing Process for Nuclear Power Plants in Pakistan and its comparison with other Countries

    International Nuclear Information System (INIS)

    Iqbal, Javed; Choi, Kwang Sik

    2012-01-01

    Pakistan Nuclear Regulatory Authority (PNRA) was established in January 2001 with the promulgation of the Ordinance, No-III of 2001. Pakistan is one of the countries in the world who intend to expand its nuclear power program for energy generation upto 8800 MWe by 2030. Presently, there are two research reactors and three nuclear power plants in operation and two power plants are under various stages of construction which are expected to be in commercial operation in 2016. It is obvious that the primary responsibility of ensuring safety of nuclear power plants (NPPs) operation rests with the Pakistan Atomic Energy Commission (PAEC). However, PNRA's prime mission is to ensure the safe operation of nuclear and radiation facilities, safe use of radioactive sources and protection of the radiation workers, general public and the environment from the harmful hazards of radiation by formulating and implementing effective regulations. Pakistan Nuclear Regulatory Authority issues authorizations for nuclear power plants in three stages i.e. site permit, construction license and operation license after detailed safety review. This paper presents the licensing process for NPPs in Pakistan and its comparison with SSG-12, USA and Finland

  1. Exploratory study of the radiation-protection training programs in nuclear power plants

    International Nuclear Information System (INIS)

    Fields, C.D.

    1982-06-01

    The objective of the study was to examine current radiation training programs at a sample of utilities operating nuclear reactors and to evaluate employee information on radiation health. The study addressed three elements: (1) employee perceptions and understanding of ionizing radiation; (2) utility trainers-their background, training, and problems; (3) the content, materials, and conduct of training programs; (4) program uniformity and completeness. These areas were examined through visits to utilities, surveys, and employee interviews. The programs reviewed were developed by utility personnel who have backgrounds, for the most part, in health physics but who may have little formal training in adult education. This orientation, coupled with the inherent nature of the subject, has produced training programs that appear to be too technical to achieve the educational job intended. The average nuclear power plant worker does not have the level of sophistication needed to understand some of the information. It became apparent that nuclear power plant workers have concerns that do not necessarily reflect those of the scientific community. Many of these result from misunderstandings about radiation. Unfortunately, the training programs do not always address these unfounded but very real fears

  2. Ionizing radiation and risk of chronic lymphocytic leukemia in the 15-country study of nuclear industry workers

    DEFF Research Database (Denmark)

    Vrijheid, Martine; Cardis, Elisabeth; Ashmore, Patrick

    2008-01-01

    In contrast to other types of leukemia, chronic lymphocytic leukemia (CLL) has long been regarded as non-radiogenic, i.e. not caused by ionizing radiation. However, the justification for this view has been challenged. We therefore report on the relationship between CLL mortality and external...... ionizing radiation dose within the 15-country nuclear workers cohort study. The analyses included, in seven countries with CLL deaths, a total of 295,963 workers with more than 4.5 million person-years of follow-up and an average cumulative bone marrow dose of 15 mSv; there were 65 CLL deaths....... In conclusion, the largest nuclear workers cohort study to date finds little evidence for an association between low doses of external ionizing radiation and CLL mortality. This study had little power due to low doses, short follow-up periods, and uncertainties in CLL ascertainment from death certificates...

  3. Economic risks of nuclear power reactor accidents

    International Nuclear Information System (INIS)

    Burke, R.P.; Aldrich, D.C.

    1984-04-01

    Models to be used for analyses of economic risks from events which occur during US LWR plant operation are developed in this study. The models include capabilities to estimate both onsite and offsite costs of LWR events ranging from routine plant forced outages to severe core-melt accidents resulting in large releases of radioactive material to the environment. The models have been developed for potential use by both the nuclear power industry and regulatory agencies in cost/benefit analyses for decision-making purposes. The new onsite cost models estimate societal losses from power production cost increases, plant capital losses, plant decontamination costs, and plant repair costs which may be incurred after LWR operational events. Early decommissioning costs, plant worker health impact costs, electric utility business costs, nuclear power industry costs, and litigation costs are also addressed. The newly developed offsite economic consequence models estimate The costs of post-accident population protective measures and public health impacts. The costs of population evacuation and temporary relocation, agricultural product disposal, land and property decontamination, and land interdiction are included in the economic models for population protective measures. Costs of health impacts and medical care costs are also included in the models

  4. Outline of construction and facility features of Onagawa nuclear power station Unit No. 2

    International Nuclear Information System (INIS)

    Umimura, Yoshiharu; Tsunoda, Ryohei; Watanabe, Kazunori

    1996-01-01

    Tohoku Electric Power Company promotes development of various power sources to provide a stable supply of electricity in the future, and nuclear power takes a leading part. In August 1989, construction of Onagawa nuclear power plant Unit No. 2 (825MW) was started, following Unit No. 1 (524MW) which went on line in 1984 as Tohoku Electric's first nuclear power plant unit. Unit No. 2 began commercial operation in July 1995 through satisfactory construction work such as RPV hydraulic test in March 1994, fuel loading in October 1994, and various startup tests in each power stage. The design and construction of Unit No. 2 reflect construction and operation experience gained from Unit No. 1, and the latest technology, including that of the LWR Improvement and Standardization Program, was adopted to enhance facility reliability, improve operation and maintenance performance, and reduce worker dosage. Features of the facility, construction techniques, and a description of preoperation of Onagawa nuclear power plant Unit No. 2 are described in this paper. (author)

  5. Developments in health physics at Electricite de France, implementation at Guangdong Nuclear Power Station

    International Nuclear Information System (INIS)

    Yang Maochun

    1993-01-01

    The Guangdong Nuclear Power Station intend to apply the same organization and the same principle in health physics as EDF (ELECTRICITE DE FRANCE). The permanent 'clean plant' objective has ensured that the internal exposure of nuclear plant workers has remained virtually zero. This, then, is the basis on which EDF is now continuing to develop health physics in its plants

  6. Proposal and field practice of a 'hiyarihatto' activity method for promotion of statements of participants for nuclear power plant organization

    International Nuclear Information System (INIS)

    Aoyagi, Saizo; Fujino, Hidenori; Ishii, Hirotake; Shimoda, Hiroshi; Sakuda, Hiroshi; Yoshikawa, Hidekazu; Sugiman, Toshio

    2011-01-01

    In a 'hiyarihatto' activity, workers report and discuss incident cases related to their work. Such an activity is particularly effective for cultivating participants' attitudes about safety. Nevertheless, a conventional face-to-face hiyarihatto activity includes features that are inappropriate for conduct in a nuclear power plant organization. For example, workers at nuclear power plants are geographically distributed and busy. Therefore, they have great difficulty in participating in a face-to-face hiyarihatto activity. Furthermore, workers' hesitation in discussing problems inhibits the continuation of their active participation. This study is conducted to propose a hiyarihatto activity with an asynchronous and distributed computer-mediated communication (CMC) for a nuclear power plant organization, with the demonstration of its effectiveness through field practice. The proposed method also involves the introduction of special participants who follow action guidelines for the promotion of the continuation of the activity. The method was used in an actual nuclear power plant organization. Results showed that the method is effective under some conditions, such as during periods without facility inspection. Special participants promoted the activity in some cases. Moreover, other factors affecting the activity and some improvements were identified. (author)

  7. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  8. Evaluation of robotic inspection systems at nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Eversole, R.E.; Farnstrom, K.A.; Harvey, H.W.; Martin, H.L.

    1984-03-01

    This report presents and demonstrates a cost-effective approach for robotics application (CARA) to surveillance and inspection work in existing nuclear power plants. The CARA was developed by the Remote Technology Corporation to systematically determine the specific surveillance/inspection tasks, worker hazards, and access or equipment placement restraints in each of the many individual rooms or areas at a power plant. Guidelines for designing inspection robotics are included and are based upon the modular arrangement of commercially-available sensors and other components. Techniques for maximizing the cost effectiveness of robotics are emphasized in the report including: selection of low-cost robotic components, minimal installation work in plant areas, portable systems for common use in different areas, and standardized robotic modules. Factors considered as benefits are reduced radiation exposure, lower man-hours, shorter power outage, less waste material, and improved worker safety concerns. A partial demonstration of the CARA methodology to the Sequoyah (PWR) and Browns Ferry (BWR) Plants is provided in the report along with specific examples of robotic installations in high potential areas

  9. Effects of the accident at Three Mile Island on the mental health and behavioral responses of the general population and nuclear workers

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1983-02-01

    On March 28, 1979, an accident occurred at the Three Mile Island nuclear power plant Unit No. 2 near Middletown, PA. A Presidential Commission was established to investigate the incident and was given the responsibility to evaluate the actual and potential impact of the events on the health and safety of the workers and the public. A main conclusion of the investigation was that the most serious health effect was severe, short-lived mental stress. This paper describes the study and the findings for four different study groups: (1) the general population of heads of households located within 20 miles of the plant; (2) mothers of preschool children from the same area; (3) teenagers in the 7th, 9th, and 11th grades from the area; and (4) nuclear workers employed at the Three Mile Island nuclear power plant

  10. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  11. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  12. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  13. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  14. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  15. Hidden costs of nuclear power

    International Nuclear Information System (INIS)

    England, R.W.

    1979-01-01

    Mr. England contends that these hidden costs add up to a figure much higher than those that appear in the electric utilities' profit and loss account - costs that are borne by Federal taxpayers, by nuclear industry workers, and by all those people who must share their environment with nuclear facilities. Costs he details are additional deaths and illnesses resulting from exposure to radiation, and the use of tax dollars to clean up the lethal garbage produced by those activities. He asserts that careless handling of uranium ore and mill tailings in past years has apparently resulted in serious public health problems in those mining communities. In another example, Mr. England states that the failure to isolate uranium tailings physically from their environment has probably contributed to an acute leukemia rate in Mesa County, Colorado. He mentions much of the technology development for power reactors being done by the Federal government, not by private reactor manufacturers - thus, again, hidden costs that do not show up in electric bills of customers. The back end of the nuclear fuel cycle as a place for Federally subsidized research and development is discussed briefly. 1 figure, 2 tables

  16. Occupational exposures at nuclear power plants. Fourteenth annual report of the ISOE programme, 2004

    International Nuclear Information System (INIS)

    2006-01-01

    The ISOE Programme was created by the OECD Nuclear Energy Agency in 1992 to promote and co-ordinate international co-operative undertakings in the area of worker protection at nuclear power plants. The programme provides experts in occupational radiation protection with a forum for communication and exchange of experience. The ISOE databases enable the analysis of occupational exposure data from 478 operating and shutdown commercial nuclear power plants participating in the programme (representing some 90% of the world's total operating commercial reactors). The Fourteenth Annual Report of the ISOE Programme summarises achievements made during 2004 and compares annual occupational exposure data. Principal developments in ISOE participating countries are also described. (author)

  17. Occupational exposures at nuclear power plants. Eleventh annual report of the Isoe programme, 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The ISOE Programme was created by the OECD Nuclear Energy Agency in 1992 to promote and co-ordinate international co-operative undertakings in the area of worker protection at nuclear power plants. The programme provides experts in occupational radiation protection with a forum for communication and exchange of experience. The ISOE databases enable the analysis of occupational exposure data from the 452 commercial nuclear power plants participating in the programme (representing some 90 per cent of the world's total operating commercial reactors). The Eleventh Annual Report of the ISOE Programme summarises achievements made during 2001 and compares annual occupational exposure data. Principal developments in ISOE participating countries are also described. (author)

  18. The reality of nuclear power

    International Nuclear Information System (INIS)

    Murphy, D.

    1979-01-01

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  19. Radiological protection in nuclear power plants; La proteccion radiologica en las centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zorrilla R, S. [CFE. Central Laguna Verde, Km. 42.5 Carretera Cardel-Nautla, Veracruz (Mexico)

    2008-12-15

    This presentation sharing experiences which correspond to the nuclear power plant of Laguna Verde. This nuclear power plant is located at level 2 of four possible, in the classification performance of the World Association of Nuclear Operators (WANO), which means the mexican nuclear power plant is classified in terms of its performance indicators and above the average achieved by their counterparts americans and canadians. In the national context, the nuclear power plant of Laguna Verde has also been honored with several awards such as the National Quality Award, the Clean Industry Certificate, the distinction of Environmental Excellence and others of similar importance. For the standards of WANO, the basic idea is that there are shortcomings in one of nuclear power plant concern to all partners. The indicators used for the classification will always go beyond more compliance with regulations, which are assumed, and rather assume come or a path to excellence. Among the most important indicators are: the collective dose, the percentage of areas declared as contaminated, the number, type and tendency of contamination personal cases, the number of dosimetry alarms, the number of unplanned exposures, loss control of high radiation areas and the release of contaminated material outside the restricted areas. Furthermore, as already indicated, nuclear power plants are of special care situations, such as, carrying out work in areas with radiation fields of more than 15 mSv h{sup -1}, the movement of spent fuel in the reload floor. The consideration of the minimum total effective dose equivalent as a criterion for prescribing tools that reduce exposures, but may increase the external cases of contaminated casualties, the experience in portals such as workers subject to radiology, where exposure in industrial radiography, and so on. Special mention deserve the conditions generated during fuel reload stops, which causes a massive personnel movement, working simultaneously on

  20. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    Wang Yingrong

    2011-01-01

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  1. Data base on nuclear power plant dose reduction research projects

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Baum, J.W.

    1986-10-01

    Staff at the ALARA Center of Brookhaven National Laboratory have established a data base of information about current research that is likely to result in lower radiation doses to workers. The data base, concerned primarily with nuclear power generation, is part of a project that the ALARA Center is carrying out for the Nuclear Regulatory Commission. This report describes its current status. A substantial amount of research on reducing occupational exposure is being done in the US and abroad. This research is beginning to have an impact on the collective dose expenditures at nuclear power plants. The collective radiation doses in Europe, Japan, and North America all show downward trends. A large part of the research in the US is either sponsored by the nuclear industry through joint industry organizations such as EPRI and ESEERCO or is done by individual corporations. There is also significant participation by smaller companies. The main emphasis of the research on dose reduction is on engineering approaches aimed at reducing radiation fields or keeping people out of high-exposure areas by using robotics. Effective ALARA programs are also underway at a large number of nuclear plants. Additional attention should be given to non-engineering approaches to dose reduction, which are potentially very useful and cost effective but require quantitative study and analysis based on data from nuclear power plants. 9 refs., 1 fig.

  2. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  3. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  4. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  5. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  6. Mortality among plutonium and other workers at a nuclear facility

    International Nuclear Information System (INIS)

    Wilkinson, G.S.; Voelz, G.L.; Acquavella, J.F.; Tietjen, G.L.; Reyes, M.; Brackbill, R.; Wiggs, L.

    1983-01-01

    Mortality among plutonium and other nuclear workers has been investigated to assess the effects of exposures to low levels of internal and external radiation. Standarized mortality ratios (SMRs) for white male workers employed at least two years from 1951 through 1977 were significantly lower than expected for all causes, all cancers, cancers of the respiratory system, and lung cancer. Benign neoplasms, all of which were intracranial tumors, were significantly elevated. No bone cancers were discovered and other radiogenic cancers did not differ significantly from expectation. Duration of employment and latency did not affect these results. SMRs for a subcohort of plutonium exposed workers were significantly low for all causes of deaths and all cancers. Estimates of relative risk for workers exposed to 2 or more nCi compared to unexposed workers were not significantly higher or lower than unity. These findings do not support the hypothesis of increased mortality among plutonium and other nuclear workers. The excess for benign and unspecified intracranial tumors is not consistent with previous studies on radiation induced brain tumors in terms of latency and exposure levels

  7. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  8. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  9. Occupational dose reduction developments and data collected at nuclear power plants

    International Nuclear Information System (INIS)

    Dionne, B.J.; Baum, J.W.

    1984-01-01

    Occupational dose reduction developments and data collected at nuclear power plants have been described. Written descriptions of repetitive high dose jobs, their collective dose equivalent ranges and list of dose reduction techniques will aid in reducing collective dose equivalents from these dose-reduction targets. Knowing which components contribute to high maintenance or repair dose will aid in reducing routine maintenance collective dose equivalents. The radwaste dose reduction improvements will aid in reducing radwaste operations collective dose equivalent and reduce the number of radwaste workers who exceed their administrative dose limits. The identification and rating of managers' and workers' ALARA incentives will provide the basis for recommendations to improve dose reduction incentives. Lastly, the identification and rating of the key components of an ALARA program will aid in the development and coordination of the nuclear station ALARA programs

  10. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  11. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  12. Doses to worker groups in the nuclear industry

    International Nuclear Information System (INIS)

    Khan, T.; Baum, J.W.

    1992-01-01

    This article presents some of the results of a study carried out at the Brookhaven National Laboratory's ALARA Center on doses to various worker groups in the U.S. nuclear industry. In this study, data from workers in the industry were divided into male and female groups; the average radiation dose of these tow groups and the correlation of dose with age are presented. The male and female workers were further considered in the various sectors of the industry, and correlations of dose with age for each sector were investigated. For male workers, a downward correlation with age was observed, while for women there appeared to be a slight upward correlation. Data form 13 PWR and 9 BWR plants shows that a small, but important, group of workers would be affected by the NCRP proposed constraint of workers' lifetime dose in rem being maintained less than their ages. Various techniques proposed by the plants to reduce dose to this critical group of workers are also presented

  13. Developing positive worker attitudes toward radiation protection

    International Nuclear Information System (INIS)

    Millis, N.L.

    1987-01-01

    Teamwork, productivity, and reducing exposure are admirable goals presented to the workers in a nuclear power plant. A common thread to achievement in these areas resides in worker attitudes toward the tasks presented. A positive, alert, and cooperative attitude is an element in a worker's mind that must be created and maintained by good leadership and management practices. At the Calvert Cliffs Nuclear Power Plant, management has used certain strategies to foster good positive worker attitudes toward radiation protection and quality workmanship in all tasks. Strategies differ from management by objectives in that they have no deadlines or timetables in and of themselves. Rather, strategies are preplanned methods that can be called upon when the opportunity arises to improve worker attitudes. A series of five strategies for positive attitude development are described in the full paper. The strategies are identified with buzz words to allow the user a recall mechanism (as with the acronyms abounding in the nuclear industry). They cover the range of management techniques from example setting to reward/recognition. Although not unique to radiation exposure management, nor all inclusive, the strategies provide some though stimulation in creating productive worker attitudes

  14. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  15. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    International Nuclear Information System (INIS)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C.

    2011-01-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  16. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C. [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  17. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  18. Linking empowering leadership to safety participation in nuclear power plants: a structural equation model.

    Science.gov (United States)

    Martínez-Córcoles, Mario; Schöbel, Markus; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2012-07-01

    Safety participation is of paramount importance in guaranteeing the safe running of nuclear power plants. The present study examined the effects of empowering leadership on safety participation. Based on a sample of 495 employees from two Spanish nuclear power plants, structural equation modeling showed that empowering leadership has a significant relationship with safety participation, which is mediated by collaborative team learning. In addition, the results revealed that the relationship between empowering leadership and collaborative learning is partially mediated by the promotion of dialogue and open communication. The implications of these findings for safety research and their practical applications are outlined. An empowering leadership style enhances workers' safety performance, particularly safety participation behaviors. Safety participation is recommended to detect possible rule inconsistencies or misunderstood procedures and make workers aware of critical safety information and issues. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  19. Accelerating nuclear power standards development and promoting sound nuclear power development in China

    International Nuclear Information System (INIS)

    Yang Changli

    2008-01-01

    The paper expounds the importance of quickening establishment and perfection of nuclear power standard system in China, analyzes achievements made and problems existed during the development of nuclear power standards, put forward proposals to actively promote the work in this regard, and indicates that CNNC will further strengthen the standardization work, enhance coordination with those trades related to nuclear power standards, and jointly promote the development of nuclear power standards. (authors)

  20. Questions to the reactors power upgrade of the Nuclear Power Plant of Laguna Verde

    International Nuclear Information System (INIS)

    Salas M, B.

    2014-08-01

    The two reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) were subjected to power upgrade labors with the purpose of achieving 20% upgrade on the original power; these labors concluded in August 24, 2010 for the Reactor 1 and in January 16, 2011 for the Reactor 2, however in January of 2014, the NNP-L V has not received by part of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) the new Operation License to be able to work with the new power, because it does not fulfill all the necessary requirements of safety. In this work is presented and analyzed the information obtained in this respect, with data provided by the Instituto Federal de Acceso a la Informacion Publica y Proteccion de Datos (IFAI) and the Comision Federal de Electricidad (CFE) in Mexico, as well as the opinion of some workers of the NPP-L V. The Governing Board of the CFE announcement that will give special continuation to the behavior on the operation and reliability of the NPP-L V, because the frequency of not announced interruptions was increased 7 times more in the last three years. (Author)

  1. Assessment of the benefits and impacts in the U.S. Nuclear Power Industry of hypothesized lower occupational dose limits

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, R.L.; Schmitt, J.F. [Nuclear Energy Institute, Washington, DC (United States)

    1995-03-01

    The International Commission on Radiological Protection and the National Council on Radiation Protection and Measurements have issued recommendations that would limit occupational exposure of individuals to doses lower than regulatory limits contained in the Nuclear Regulatory Commission`s 10 CFR Part 20, {open_quotes}Standards for Protection Against Radiation{close_quotes}. Because of this situation, there is interest in the potential benefits and impacts that would be associated with movement of the NRC regulatory limits toward the advisory bodies recommendations. The records of occupational worker doses in the U.S. commercial nuclear power industry show that the vast majority of these workers have doses that are significantly below the regulatory limit of 50 mSv (5 rem) per year. Some workers doses do approach the limits, however. This is most common in the case of specially skilled workers, especially those with skills utilized in support of plant outage work. Any consideration of the potential benefits and impacts of hypothesized lower dose limits must address these workers as an important input to the overall assessment. There are also, of course, many other areas in which the benefits and impacts must be evaluated. To prepare to provide valid, constructive input on this matter, the U.S. nuclear power industry is undertaking an assessment, facilitated by the Nuclear Energy Institute (NEI), of the potential benefits and impacts at its facilities associated with hypothesized lower occupational dose limits. Some preliminary results available to date from this assessment are provided.

  2. Assessment of the benefits and impacts in the U.S. Nuclear Power Industry of hypothesized lower occupational dose limits

    International Nuclear Information System (INIS)

    Andersen, R.L.; Schmitt, J.F.

    1995-01-01

    The International Commission on Radiological Protection and the National Council on Radiation Protection and Measurements have issued recommendations that would limit occupational exposure of individuals to doses lower than regulatory limits contained in the Nuclear Regulatory Commission's 10 CFR Part 20, open-quotes Standards for Protection Against Radiationclose quotes. Because of this situation, there is interest in the potential benefits and impacts that would be associated with movement of the NRC regulatory limits toward the advisory bodies recommendations. The records of occupational worker doses in the U.S. commercial nuclear power industry show that the vast majority of these workers have doses that are significantly below the regulatory limit of 50 mSv (5 rem) per year. Some workers doses do approach the limits, however. This is most common in the case of specially skilled workers, especially those with skills utilized in support of plant outage work. Any consideration of the potential benefits and impacts of hypothesized lower dose limits must address these workers as an important input to the overall assessment. There are also, of course, many other areas in which the benefits and impacts must be evaluated. To prepare to provide valid, constructive input on this matter, the U.S. nuclear power industry is undertaking an assessment, facilitated by the Nuclear Energy Institute (NEI), of the potential benefits and impacts at its facilities associated with hypothesized lower occupational dose limits. Some preliminary results available to date from this assessment are provided

  3. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  4. Neutron dosimetry inside the containment building of Spanish nuclear power plants with PADC based dosemeters

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fuste, M.J. [Grup de Fisica de les Radiacions. Departament de Fisica. Edifici C. Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Domingo, C., E-mail: carles.domingo@uab.ca [Grup de Fisica de les Radiacions. Departament de Fisica. Edifici C. Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Amgarou, K.; Bouassoule, T.; Castelo, J. [Grup de Fisica de les Radiacions. Departament de Fisica. Edifici C. Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)

    2009-10-15

    The Spanish Nuclear Safety Council (Consejo de Seguridad Nuclear, CSN) recommends performing neutron individual dose assignments at workplaces based on ambient dose equivalent measurements using area monitors and by estimating the amount of time that workers spend in the different monitored environments. In addition, some Spanish nuclear power plants estimate the neutron dose equivalent using albedo thermoluminescence dosemeters (TLD). In the period 2004-2006, our group, together with other research centers, participated in a project, funded by the CSN, with the support of the Spanish Nuclear Power Plants Association (UNESA), to investigate in situ which could be the best practical procedure for individual neutron dose monitoring in nuclear power plants. As part of this survey, several units of the UAB PADC based neutron dosemeter were exposed, on a methacrylate phantom simulating a human body, at four different places inside the containment building of the Asco I nuclear power plant. The influence of different types of calibration neutron fields is analysed and the dose equivalent for each point is estimated.

  5. Purchasing power of civil servant health workers in Mozambique.

    Science.gov (United States)

    Ferrinho, Fátima; Amaral, Marta; Russo, Giuliano; Ferrinho, Paulo

    2012-01-01

    Health workers' purchasing power is an important consideration in the development of strategies for health workforce development. This work explores the purchasing power variation of Mozambican public sector health workers, between 1999 and 2007. In general, the calculated purchasing power increased for most careers under study, and the highest percentage increase was observed for the lowest remuneration careers, contributing in this way for a relative reduction in the difference between the higher and the lower salaries. This was done through a simple and easy-to-apply methodology to estimate salaries' capitalization rate, by means of the accumulated inflation rate, after taking wage revisions into account. All the career categories in the Ministry of Health and affiliated public sector institutions were considered. Health workers' purchasing power is an important consideration in the development of strategies for health workforce development. This work explores the purchasing power variation of Mozambican public sector health workers, between 1999 and 2007. In general, the calculated purchasing power increased for most careers under study, and the highest percentage increase was observed for the lowest remuneration careers, contributing in this way for a relative reduction in the difference between the higher and the lower salaries. These results seem to contradict a commonly held assumption that health sector pay has deteriorated over the years, and with substantial damage for the poorest. Further studies appear to be needed to design a more accurate methodology to better understand the evolution and impact of public sector health workers' remunerations across the years.

  6. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  7. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  8. Health check on radiation workers in the nuclear energy industry using Todai Health Index

    International Nuclear Information System (INIS)

    Tsuchiya, Takehiko; Norimura, Toshiyuki; Kumashiro, Masaharu; Sudo, Seiji; Hashimoto, Tetsuaki.

    1986-01-01

    In the nuclear energy industry, the plants are located far from urban areas and the working environments are generally separate from each other for radiation protection purposes. The health investigation on radiation workers in the nuclear energy industry was carried out using the Todai Health Index questionnaire in 1982, 1983 and 1984. As a control study non-radiation workers on the other several working fields were investigated in the same manner. The results showed that the status of radiation workers in the nuclear energy industry is similar to that of the workers in the other working fields and the THI questionnaire is useful to know health and working status of a group of workers. (author)

  9. Occupational exposures at nuclear power plants. Twelfth annual report of the Isoe programme, 2002

    International Nuclear Information System (INIS)

    2004-01-01

    The Information System on Occupational Exposure (ISOE) was created by the OECD Nuclear Energy Agency in 1992 to promote and co-ordinate international co-operative undertakings in the area of worker protection at nuclear power plants. The ISOE Programme provides experts in occupational radiation protection with a forum for communication and exchange of experience. The ISOE databases enable the analysis of occupational exposure data from the 465 commercial nuclear power plants participating in the Programme (representing some 90 per cent of the world's total operating commercial reactors). The Twelfth Annual Report of the ISOE Programme summarises achievements made during 2002 and compares annual occupational exposure data. Principal developments in ISOE participating countries are also described. (author)

  10. Deterministic Effects of Occupational Exposures in the Mayak Nuclear Workers Cohort

    International Nuclear Information System (INIS)

    Azinova, T. V.; Okladnikova, N. D.; Sumina, M. V.; Pesternikova, V. S.; Osovets, V. S.; Druzhimina, M. B.; Seminikhina, N. g.

    2004-01-01

    A wide spread and utilization of nuclear energy in the recent decade leads to a stable increasing of contingents exposed to ionizing radiation sources. in order to predict radiation risks it's important to have and apply all the experience in assessment of health effects due to radiation exposures generated by now in different countries. the proposed report will present results of the long-term follow-up for a cohort of nuclear workers at the Mayak Production Association, with was the first nuclear facility in Russia. The established system of individual dosimetry of external exposure, monitoring of internal radiation and special system of medical follow-up of healthy nuclear workers during the last 50 years allowed collecting of the unique primary data to study radiation effects, their patterns and mechanisms specific of exposure dose. The study cohort includes 61 percent of males and 39 percent of females. The vital status is known for 90 percent of cases, 44 percent of workers are still alive and undergo regular medical examination in our Clinic. Unfortunately, by now 50 percent of workers have died. 6 percent of workers were lost for the follow-up. total doses from chronic external gamma rays in the cohort ranged from 0.6 to 10.8 Gy (annual exposure doses were from 0.001 to 7.4 Gy), Pu body burden was from 0.3 to 72.3 kBq. Most intensive chronic exposure of workers was registered during 1948 to 1958. At this time, 19 radiation accidents occurred at the Mayak PA. Thus, the highest incidence of deterministic effects was observed right at this period. In the cohort of Mayak nuclear workers there were diagnosed 60 cases of acute radiation syndrome (I to IV degrees of severity); 2079 cases of chronic radiation sickness; 120 cases of plutonium pneumoscelarosis; 5 cases of radiation cataracts; and over 400 cases of local radiation injuries. The report will present dependences of the observed effects on absorbed radiation dose and dose rate in terms of acute radiation

  11. Decontamination work in the area surrounding Fukushima Dai-ichi Nuclear Power Plant: another occupational health challenge of the nuclear disaster.

    Science.gov (United States)

    Wada, Koji; Yoshikawa, Toru; Murata, Masaru

    2012-01-01

    This article describes occupational health measures for workers involved in decontamination of radioactive material discharged around Fukushima Dai-ichi Nuclear Power Plant after the explosions in 2011. Decontamination is performed by removing radioactive particles (mainly cesium) from surfaces of soil, grass and trees, and buildings. Measurement of radiation doses is necessary to reduce exposure, and to determine whether workers can work below dose limits. Protective equipment for decontamination is determined based on the concentration of radiation in contaminated soil and the exposure to dust. Health examinations by physicians are mandated for decontamination workers upon hiring and every 6 months. While there is no possibility of acute radiation injury from decontamination, workers may be anxious about the unclear effects of chronic low level radiation exposure on health. Measures to protect the decontamination workers are the top priority.

  12. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  13. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  14. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  15. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  16. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  17. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  18. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  19. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  20. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  1. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  2. A study on exposure dose from injection work and elution work for radiation workers and frequent workers in nuclear medicine

    International Nuclear Information System (INIS)

    Ju, Yong Jin; Chung, Woon Kwan; Dong, Kyung Rae; Choi, Eun Jin; Kwak, Jong Gil; Ryu, Jae Kwang

    2017-01-01

    Compared to other occupations, there is a greater risk of exposure to radiation due to the use of radioisotopes in nuclear medicine for diagnostic evaluations and therapy. To consider ways to reduce exposure dose for those in nuclear medicine involved in injection work and elution work among radiation workers as well as for sanitation workers and trainees among frequent workers an investigation into exposure dose and situational analysis from changes in yearly exposure dose evaluations, changes in work environment and changes in forms of inspection were conducted. Exposure dose measurements were taken by using EPD MK2 worn during working hours for one injection worker, one elution worker, two sanitation workers, and one trainee at a general hospital in the Seoul area for three days from July 18th to 20th 2016. Radiation from radioisotopes which are a part of nuclear medicine can significantly affect not only radiation workers who deal with radioisotopes directly but also frequency works as well. According to this study the annual dose limit for elution workers and injection workers were considered safe as the amount of exposure was not large enough to have a signifcant effect. The limits of this study consist in the duration of this study and the quantity of participants. Also there was a limitation of the measurement device involving accumulated exposure, where the EPD MK2 cannot check the changes in exposure according to a particular activity

  3. A study on exposure dose from injection work and elution work for radiation workers and frequent workers in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yong Jin; Chung, Woon Kwan [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of); Dong, Kyung Rae [Dept. of Radiological Technology, Gwangju Health University, Gwangju (Korea, Republic of); Choi, Eun Jin; Kwak, Jong Gil [Dept. of Public Health and Medicine, Dongshin University Graduate School, Naju (Korea, Republic of); Ryu, Jae Kwang [Dept. of Nuclear Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-03-15

    Compared to other occupations, there is a greater risk of exposure to radiation due to the use of radioisotopes in nuclear medicine for diagnostic evaluations and therapy. To consider ways to reduce exposure dose for those in nuclear medicine involved in injection work and elution work among radiation workers as well as for sanitation workers and trainees among frequent workers an investigation into exposure dose and situational analysis from changes in yearly exposure dose evaluations, changes in work environment and changes in forms of inspection were conducted. Exposure dose measurements were taken by using EPD MK2 worn during working hours for one injection worker, one elution worker, two sanitation workers, and one trainee at a general hospital in the Seoul area for three days from July 18th to 20th 2016. Radiation from radioisotopes which are a part of nuclear medicine can significantly affect not only radiation workers who deal with radioisotopes directly but also frequency works as well. According to this study the annual dose limit for elution workers and injection workers were considered safe as the amount of exposure was not large enough to have a signifcant effect. The limits of this study consist in the duration of this study and the quantity of participants. Also there was a limitation of the measurement device involving accumulated exposure, where the EPD MK2 cannot check the changes in exposure according to a particular activity.

  4. Fitness for duty in the nuclear power industry: Responses to implementation questions

    International Nuclear Information System (INIS)

    Bush, L.L.; Grimes, B.K.

    1989-10-01

    The Nuclear Regulatory Commission published a rule concerning fitness for duty of commercial nuclear power plant workers. This report responds to questions raised concerning the implementation of the rule during the Edison Electric Institute's ''Fitness-for-Duty Rule Implementation Workshop.'' It also responds to questions raised by licensees with the staff outside the workshop. Publication of this report does not constitute a written interpretation of the meaning of the rule. Only written interpretations by the General Counsel will be recognized to be binding upon the Commission

  5. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1990: Twenty-third annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-01-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1990. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1990 annual reports submitted by about 443 licensees indicated that approximately 214,568 individuals were monitored, 110,204 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.19 rem (cSv) and an average measurable dose of about 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,361 individuals completed their employment with one or more of the 443 covered licensees during 1990. Some 77,633 of these individuals terminated from power reactor facilities, and about 11,083 of them were considered to be transient workers who received an average dose of 0.67 rem (cSv)

  6. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    International Nuclear Information System (INIS)

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo

    2016-01-01

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted

  7. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted.

  8. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  9. Reviewing nuclear power

    International Nuclear Information System (INIS)

    Robinson, Colin

    1990-01-01

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  10. Nuclear Power and Radiation in Public Acceptance

    International Nuclear Information System (INIS)

    Vastchenko, S. V.

    2002-01-01

    The special knowledge deficiency does not give the possibility to the majority of people to pattern their behaviour in a correct way on radiation problems and to estimate faithfully the possible damage rate to the health of a human being from the different radiation sources effects. Studying of the public opinion in Belarus has shown that one of the results of the Chernobyl NPP accident consequences is inseparability of nuclear and radiation danger in public consciousness. The anonymous questionnaire of the inhabitants living in various Belarus regions has been carried out aiming at definition of a general radiation erudition, as well as revealing the knowledge of the population about the effect of power stations (nuclear and thermal) on the environment and the human being health. Answers on questions connected with power have shown a very poor erudition of population about ecological advantages and drawbacks inherent in thermal and nuclear power plants. The majority of the respondents (about 80%) does not know about the absence of CO 2 discharge and oxygen preservation in the air. The questionnaire analysis shows that people are exclusively frightened with radiation from NPPs, but the rest sources of radiation effect do not cause so anxiety and apprehension. People in Belarus have learnt well that the reason of the majority of the diseases is radiation, so it can be frequently heard not only from mass media, but also at scientific conferences and seminars. Most of medical workers are sure that all diseases are caused by radiation. The deficiency of special knowledge on nuclear technologies in the people majority and availability of a great amount of contradictory and untrue information supplied by mass media result in overestimation of danger from energy objects and underestimation of the increased radiation dose from other sources consequences, for example, under roentgen medical examination and treatment. The investigations carried out will help to arrange

  11. Nuclear power and modern society

    International Nuclear Information System (INIS)

    Komarek, A.

    1999-01-01

    A treatise consisting of the following sections: Development of modern society (Origin of modern society; Industrial society; The year 1968; Post-industrial society; Worldwide civic society); Historic breaks in the development of the stationary power sector (Stationary thermal power; Historic breaks in the development of nuclear power); Czech nuclear power engineering in the globalization era (Major causes of success of Czech nuclear power engineering; Future of Czech nuclear power engineering). (P.A.)

  12. Radiation exposure and cause specific mortality among nuclear workers in Belgium (1969-1994)

    International Nuclear Information System (INIS)

    Engels, H.; Swaen, G. M. H.; Slangen, J.; Van Amersvoort, L.; Holmstock, L.; Van Mieghem, E.; Van Regenmortel, I.; Wambersie, A.

    2005-01-01

    Cause specific mortality was studied in nuclear workers from five nuclear facilities in Belgium and compared to the general population. For the 1969-1994 period, mortality in male nuclear workers is significantly lower for all causes of death and for all cancer deaths. The same conclusions are reached if one assumes a latency period of 20 y between the first irradiation and cancer induction. In female workers, mortality due to all causes and all cancer deaths is not different from that of the general population. Analysis of cause specific mortality was performed for male and female workers for three endpoints: specific cancer sites, cardiovascular and respiratory diseases. No significant increase in mortality was observed. In male workers, the influence of cumulative dose was also investigated using four dose levels: No significant correlation was found. Smoking habits may be a confounding factor in smoking related health conditions. (authors)

  13. A reanalysis of cancer mortality in Canadian nuclear workers (1956–1994) based on revised exposure and cohort data

    Science.gov (United States)

    Zablotska, L B; Lane, R S D; Thompson, P A

    2014-01-01

    Background: A 15-country study of nuclear workers reported significantly increased radiation-related risks of all cancers excluding leukaemia, with Canadian data a major factor behind the pooled results. We analysed mortality (1956–1994) in the updated Canadian cohort and provided revised risk estimates. Methods: Employment records were searched to verify and revise exposure data and to restore missing socioeconomic status. Excess relative risks per sievert (ERR/Sv) of recorded radiation dose and 95% confidence intervals (CIs) were estimated using Poisson regression. Results: A significant heterogeneity of the dose–response for solid cancer was identified (P=0.02), with 3088 early (1956–1964) Atomic Energy of Canada Limited (AECL) workers having a significant increase (ERR/Sv=7.87, 95% CI: 1.88, 19.5), and no evidence of radiation risk for 42 228 workers employed by three nuclear power plant companies and post-1964 AECL (ERR/Sv=−1.20, 95% CI: workers and non-significantly increased in other workers. In analyses with separate terms for tritium and gamma doses, there was no evidence of increased risk from tritium exposure. All workers had mortality lower than the general population. Conclusion: Significantly increased risks for early AECL workers are most likely due to incomplete transfer of AECL dose records to the National Dose Registry. Analyses of the remainder of the Canadian nuclear workers (93.2%) provided no evidence of increased risk, but the risk estimate was compatible with estimates that form the basis of radiation protection standards. Study findings suggest that the revised Canadian cohort, with the exclusion of early AECL workers, would likely have an important effect on the 15-country pooled risk estimate of radiation-related risks of all cancer excluding leukaemia by substantially reducing the size of the point estimate and its significance. PMID:24231946

  14. Adequacy of current systems for monitoring extremity exposures at nuclear power plants

    International Nuclear Information System (INIS)

    Reece, W.D.; Harty, R.

    1985-01-01

    In general, only a small portion of workers at commercial nuclear power plants are limited by extremity exposures, and these workers can be readily identified. There seems to be no need for increased badging among the radiation workers. However, those workers who are extremity limited may not be receiving adequate dosimetry. For workers handling compact sources, unless contrary information is available, the tip of the thumb of the dominant hand can be assumed to be the limiting site, and dose to the thumb tip averaged over one square centimeter at the basal layer of the skin should be measured or estimated. As discussed briefly in this paper, the assessment of dose in high gradient fields can be a difficult task. The particular dosimeter studied is a band-aid type composed of a thermoluminescent material embedded in a carbon matrix under 4 mils of plastic. Advantages and disadvantages of the technique are discussed

  15. Emotional consequences of nuclear power plant disasters.

    Science.gov (United States)

    Bromet, Evelyn J

    2014-02-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and overuse of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that non-mental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics.Introduction of Emotional Consequences of Nuclear Power Plant Disasters (Video 2:15, http://links.lww.com/HP/A34).

  16. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  17. Role of nuclear power

    International Nuclear Information System (INIS)

    Eklund, S.

    1982-01-01

    A survey of world nuclear installations, the operating experiences of power reactors, and estimates of future nuclear growth leads to the conclusion that nuclear power's share of world electric power supply will grow slowly, but steadily during this decade. This growth will lead advanced countries to use the commercial breeder by the end of the century. Nuclear power is economically viable for most industrialized and many developing countries if public acceptance problems can be resolved. A restructuring of operational safety and regulations must occur first, as well as a resolution of the safeguards and technology transfer issue. 7 figures, 7 tables

  18. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  19. On exposure management of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Law of Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1993 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the the exposure of workers was below the permissible exposure dose in 1993 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of JAERI and PNC. (J.P.N.)

  20. Development of experimental method to simulate the corrosion products in the primary system of nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Sang Hyun; Kim, In Sup; Jang, Chang Heui

    2005-01-01

    Corrosion products are recognized as one of the major sources of occupational radiation exposure for nuclear power plant workers. Numerous studies have been conducted on the primary water chemistry to reduce the amount of crud in the primary circuit to avoid the radioactivity build-up in the plant. However, experiments with crud are restricted in laboratory because the crud is highly radioactive material. The objective of this study is to develop the simulating method of corrosion product in nuclear power plant

  1. Big five general contractors dominate civil construction market of nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Japanese construction industry is a key industry accounting for about 20 % of the GNP, and the investment in construction amounted to 51,200 billion yen in fiscal 1984. 515,000 firms employing about 5.5 million workers belong to the industry. 99.4 % of these firms is the enterprises capitalized at less than 100 million yen, and most of them are small self-employment enterprises. The Construction Business Law provides that those who wish to engage in construction are required to obtain a permit from the Construction Ministry or from a local prefectural governor. There are big five and seven sub-major construction companies in Japan. The big five formed the tie-up relations with three nuclear reactor manufacturers. 76 civil engineering and construction companies recorded the sales related to nuclear power in 1983 amounting to 330.9 billion yen, equivalent to 21 % of the total nuclear-related sales. The construction of nuclear power plants and the characteristics of the construction, and the activities of the big five in the field of nuclear industry are reported. (Kako, I.)

  2. Banning nuclear power at sea

    International Nuclear Information System (INIS)

    Handler, J.

    1993-01-01

    This article argues that now that the East-West conflict is over, nuclear-powered vessels should be retired. Nuclear-powered ships and submarines lack military missions, are expensive to build and operate, generate large amounts of long-lived deadly nuclear waste from their normal operations and when they are decommissioned, and are subject to accidents or deliberate attack which can result in the sinking of nuclear reactors and the release of radiation. With the costs of nuclear-powered vessels mounting, the time has come to ban nuclear power at sea. (author)

  3. The need for nuclear power

    International Nuclear Information System (INIS)

    1977-12-01

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  4. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  5. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  6. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  7. The ethical justification of nuclear power

    International Nuclear Information System (INIS)

    Van Wyk, J.H.

    1985-01-01

    This study pamphlet deals with the questions of ethics, nuclear power and the ethical justification of nuclear power. Nuclear power is not only used for warfare but also in a peaceful way. Ethical questions deal with the use of nuclear weapons. Firstly, a broad discussion of the different types of ethics is given. Secondly, the peaceful uses of nuclear power, such as nuclear power plants, are discussed. In the last place the application of nuclear power in warfare and its disadvantages are discussed. The author came to the conclusion that the use of nuclear power in warfare is in contrary with all Christian ethics

  8. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  9. Italian nuclear power industry after nuclear power moratorium: Current state and future prospects

    International Nuclear Information System (INIS)

    Adinolfi, R.; Previti, G.

    1992-01-01

    Following Italy's nuclear power referendum results and their interpretation, all construction and operation activities in the field of nuclear power were suspended by a political decision with consequent heavy impacts on Italian industry. Nevertheless, a 'nuclear presidium' has been maintained, thanks to the fundamental contribution of activities abroad, succeeding in retaining national know-how and developing the new technologies called for the new generation of nuclear power plants equipped with intrinsic and/or passive reactor safety systems

  10. Comparative study T-type and I-type layout of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Eko Rudi Iswanto and Siti Alimah

    2010-01-01

    Determining plant layout is one of the five major stages during the life time of a nuclear power plant. Some important factors that affect in the selecting of plant layout are availability of infrastructure, economic aspects, social aspects, public and environment safety, and also easy to do. Another factor to be considered is requirements as seismic design, which refers to the principles of good security workers, communities and the environment of radiological risks. There are many layout types of nuclear power plant, two of them are T-type layout and I-type layout. Each type of the plant layout has advantage and disadvantage, therefore this study is to understand them. Good layout is able to provide a high level of security against earthquakes. In term of earthquake design, I-type layout has a higher security level than T-type layout. Therefore, I-type layout can be a good choice for PWR nuclear power plants 1000 MWe that will be built in Indonesia. (author)

  11. Nuclear power in Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, Z.H.; Qureshi, I.H.

    2005-01-01

    Pakistan started its nuclear power program by installing a 137 M We Canadian Deuterium Reactor (Candu) at Karachi in 1971 which became operational in 1972. The post-contract technical support for the Karachi Nuclear Power Plant (KANUPP) was withdrawn by Canada in 196 as a consequence of Indian nuclear device test in 1974. In spite of various difficulties PAEC resolved to continue to operate KANUPP and started a process for the indigenous fabrication of spare parts and nuclear fuel. The first fuel bundle fabricated in Pakistan was loaded in the core in 1980. Since then KANUPP has been operating on the indigenously fabricated fuel. The plant computer systems and the most critical instrumentation and Control system were also replaced with up-to date technology. In 2002 KANUPP completed its original design life of 30 year. A program for the life extension of the plant had already been started. The second nuclear power plant of 300 M We pressurized water reactor purchased from China was installed in Chashma in 1997, which started commercial operations in 2001. Another unit of 300 M We will be installed at Chashma in near future. These nuclear power plants have been operating under IAEA safeguards agreements. PAEC through the long-term performance of the two power plants has demonstrated its competence to safely and successfully operate and maintain nuclear power plants. Pakistan foresees an increasingly important and significant share of nuclear power in the energy sector. The Government has recently allocated a share of 8000 MWe for nuclear energy in the total energy scenario of Pakistan by the year 2025. (author)

  12. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  13. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  14. Care of personnel on the building site of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Kurial, P.

    1984-01-01

    The accommodation is described of workers on the building site of the Dukovany nuclear power plant. The quality is appraised of accommodation, catering and refreshments. There is a health care unit on site and 15 beds are reserved at the Trebic hospital for emergency cases. Trade union and youth organizations look after sports and cultural activities. (E.S.)

  15. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  16. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  17. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  18. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  19. Radiation workers of nuclear power stations and a method of regional economic development

    International Nuclear Information System (INIS)

    Nakagawa, Haruo

    2003-01-01

    In Japan, most of the electric power companies depend on radiation works to the external labor, but the employment of radiation works lacks its' stability. From the analysis on the mobility of radiation workers, we can see the stability of employment increases in proportion to the number of reactors. The radiation work is legally classified to harmful in Japan. And many health control systems for radiation workers are applied strictly. If we apply the health records registration system to the health control systems and involve them to the regional health care system, we can get more effective plan for regional economic development. It is therefore, very important to strive for employee controls, radiation controls, health examinations and data control. Furthermore, it is necessary to establish a total data management system that processes numerous amounts of data concerning radiation employees. This paper proposes the need for such a registration system to set up the system within regional medical information systems, and proposes the establishment of a radiation work market on the web using a total data management system. The system will include radiation employee control information service for members who are planning new employment contracts. (author)

  20. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  1. Nuclear power 2005: European report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In 2005, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 204 power reactors with a gross power of 181,030 MWe and a net power of 171,8479 MWe were in operation at the end of the year. In 2005, no nuclear power plant was commissioned. Two nuclear power plants were decommissioned in Europe in the course of 2005. In Germany the Obrigheim NPP and in Sweden the Barsebaeck 2 NPP have been permanently shut down due to political decisions. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.6 GW. In late 2005, five nuclear generating units were under construction in Finland (1), Romania (1), and Russia (3). 148 nuclear power plants were operated in thirteen states of the European Union (EU-25). They had an aggregate gross power of 137,023 MWe and a net power of 130,415 MWe, generating approx. 970 billion gross kWh of electricity in 2005, thus again contributing some 31% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in France (80%), followed by 72% in Lithuania, 55% in the Slovak Republic, 55% in Belgium, and 51% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as a result of electricity imports. (All statistical data in the country report apply to 2004 unless indicated otherwise. This is the year for which sound preliminary data are currently available for the states listed.) (orig.)

  2. Development of safety culture by improving risk communication in a nuclear power plant

    International Nuclear Information System (INIS)

    Sugiman, Toshio; Yoshikawa, Hidekazu

    2004-01-01

    Safety culture is conceptually examined from the viewpoint of activity theory proposed by Engestroem. The theory is instrumental in broadening our scope of views to the extent that a particular (group of person(s) and his/her (their) environment are regarded as a part of activity of a larger collectivity consisting of people and their physical and institutional environments. Overwhelming orientation toward an unmanned plant is reflected in object → outcome and mediating artifacts in the structure of activity in a nuclear power plant while it is contradicted with another orientation toward the improvement of employee's ability in community, rules, and division of labor. Three possible ways to transform a currently dominant activity into a new form were suggested depending on a preliminary study of our research project headed by the seconds author. First, community of a nuclear power plant may as well be expanded to the extent that nuclear experts outside the plant, especially those working for a plant/equipment manufacturing company, can share information with workers inside the plant through internet system that has been developed in our project. Second, community of workplace may as well be reexamined concerning division of labor between a supervisor and subordinates. Among all, leader behaviors of a supervisor that were effective to reduce psychological stress of subordinates, which, in turn, make positive contribution to safety culture, were identified by a questionnaire survey. Last, a minority of workers who tend to take risks for radiation exposure more seriously than the majority and share similar risk cognition with ordinary citizens may as well be utilized as linking pin that brings a warning signal from both a minority of nuclear experts outside the plant and ordinary citizens to the majority of workers in the plant who tend to be devoted to implementing everyday job. (author)

  3. Application of the Safety Classification of Structures, Systems and Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-04-01

    This publication describes how to complete tasks associated with every step of the classification methodology set out in IAEA Safety Standards Series No. SSG-30, Safety Classification of Structures, Systems and Components in Nuclear Power Plants. In particular, how to capture all the structures, systems and components (SSCs) of a nuclear power plant to be safety classified. Emphasis is placed on the SSCs that are necessary to limit radiological releases to the public and occupational doses to workers in operational conditions This publication provides information for organizations establishing a comprehensive safety classification of SSCs compliant with IAEA recommendations, and to support regulators in reviewing safety classification submitted by licensees

  4. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  5. Nuclear power experience

    International Nuclear Information System (INIS)

    Daglish, J.

    1982-01-01

    A report is given of a recent international conference convened by the IAEA to consider the technical and economic experience acquired by the nuclear industry during the past 30 years. Quotations are given from a number of contributors. Most authors shared the opinion that nuclear power should play a major role in meeting future energy needs and it was considered that the conference had contributed to make nuclear power more viable. (U.K.)

  6. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  7. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  8. The problem of nuclear power

    International Nuclear Information System (INIS)

    Heimbrecht, J.; Kade, G.; Krusewitz, K.; Moldenhauer, B.; Steinhaus, K.; Weish, P.

    1977-01-01

    The battle over the problems of nuclear power has gone on in the Federal Republic for several years. The Buergerinitiativen, which used to be small and largely unpolitical, have become a major social force during this time. Subjects: 1) Dangers of nuclear power - can the risk be justified; 2)The necessity of nuclear power; 3) The enforcement of nuclear power - political and economic background; 4) Limits of power generation - limits of growth or limits of the system. (orig./HP) [de

  9. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  10. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  11. Nuclear power. Volume 2: nuclear power project management

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The following topics are discussed: review of nuclear power plants; licensing procedures; safety analysis; project professional services; quality assurance and project organization; construction, scheduling and operation; construction, scheduling and operation; nuclear fuel handling and fuel management; and plant cost management. 116 references, 115 figures, 33 tables

  12. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    Rajci, T.

    1986-01-01

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  13. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  14. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    Different aspects of possible abuse of nuclear power by countries or individuals are discussed. Special attention is paid to the advantage of nuclear power, despite the risk of weapon proliferation or terrorism. The concepts of some nuclear power critics, concerning health risks in the nuclear sector are rejected as untrue and abusive

  15. The nuclear power decisions

    International Nuclear Information System (INIS)

    Williams, R.

    1980-01-01

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  16. Governance of nuclear power

    International Nuclear Information System (INIS)

    Allison, G.; Carnesale, A.; Zigman, P.; DeRosa, F.

    1981-01-01

    Utility decisions on whether to invest in nuclear power plants are complicated by uncertainties over future power demand, regulatory changes, public perceptions of nuclear power, and capital costs. A review of the issues and obstacles confronting nuclear power also covers the factors affecting national policies, focusing on three institutional questions: regulating the industry, regulating the regulators, and regulatory procedures. The specific recommendations made to improve safety, cost, and public acceptance will still not eliminate uncertainties unless the suggested fundamental changes are made. 29 references

  17. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  18. Annual report of operation management in nuclear power stations, fiscal year 1985. Showa 60 nendo genshiryoku hatsudensho unten kanri nenpo

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Twenty years have elapsed since the first practical nuclear reactor in Japan started the operation. In the generated power in fiscal year 1985, that of nuclear power stations for the first time overtook that of thermal power stations, and now the age of nuclear power as the main and oil power as the subordinate has begun. As of the end of fiscal year 1985, there were 32 nuclear power plants in operation, having total output capacity of 24.521 million kW. In fiscal year 1985, nuclear power plants generated about 159 billion kWh, which is about 2 % of electric power supply. As to the capacity factor, 76% was attained in fiscal year 1985, and this is ranked in the top group of LWR-operating countries in the world. It showed that the Japanese technology of nuclear power generation is at the top level in the world. However, in order to increase nuclear power generation and to accomplish the role of main electric power source hereafter, it is necessary to further increase the reliability and economical efficiency. The list of nuclear power stations in Japan, the state of operation of nuclear power stations, the state of accidents and troubles, the state of regular inspection, the management of radioactive wastes and the radiation exposure of workers in nuclear power stations, the operational management and others are reported.

  19. China and nuclear power

    International Nuclear Information System (INIS)

    Fouquoire-Brillet, E.

    1999-01-01

    This book presents the history of nuclear power development in China from the first research works started in the 1950's for the manufacturing of nuclear weapons to the recent development of nuclear power plants. This study tries to answer the main questions raised by the attitude of China with respect to the civil and military nuclear programs. (J.S.)

  20. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  1. Nuclear power falling to pieces

    International Nuclear Information System (INIS)

    Moberg, Aa.

    1985-01-01

    The international development during the 80s is reviewed. It is stated that the construction of plants has come to a standstill. The forecasting of nuclear power as a simple and cheap source of energy has been erroneous because of cracks and leakage, unsolved waste problems and incidents. Nuclear power companies go into liquidation and reactors are for sale. Sweden has become the country with most nuclear power per capita mainly due to its controlled decommissioning. The civilian nuclear power makes the proliferation of nuclear weapons possible. With 324 reactors all over the world, a conventional war may cause disasters like Hiroshima. It is stated that the nuclear power is a dangerous and expensive source of energy and impossible to manage. (G.B.)

  2. Associations between disaster exposures, peritraumatic distress, and posttraumatic stress responses in Fukushima nuclear plant workers following the 2011 nuclear accident: the Fukushima NEWS Project study.

    Science.gov (United States)

    Shigemura, Jun; Tanigawa, Takeshi; Nishi, Daisuke; Matsuoka, Yutaka; Nomura, Soichiro; Yoshino, Aihide

    2014-01-01

    The 2011 Fukushima Daiichi Nuclear Power Plant accident was the worst nuclear disaster since Chernobyl. The nearby Daini plant also experienced substantial damage but remained intact. Workers for the both plants experienced multiple stressors as disaster victims and workers, as well as the criticism from the public due to their company's post-disaster management. Little is known about the psychological pathway mechanism from nuclear disaster exposures, distress during and immediately after the event (peritraumatic distress; PD), to posttraumatic stress responses (PTSR). A self-report questionnaire was administered to 1,411 plant employees (Daiichi, n = 831; Daini, n = 580) 2-3 months post-disaster (total response rate: 80.2%). The socio-demographic characteristics and disaster-related experiences were assessed as independent variables. PD and PTSR were measured by the Japanese versions of Peritraumatic Distress Inventory and the Impact of Event Scale-Revised, respectively. The analysis was conducted separately for the two groups. Bivariate regression analyses were performed to assess the relationships between independent variables, PD, and PTSR. Significant variables were subsequently entered in the multiple regression analyses to explore the pathway mechanism for development of PTSR. For both groups, PTSR highly associated with PD (Daiichi: adjusted β, 0.66; pdisaster-related variables were likely to be associated with PD than PTSR. Among the Fukushima nuclear plant workers, disaster exposures associated with PD. PTSR was highly affected by PD along with discrimination/slurs experience.

  3. Torness: proposed nuclear power station

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for and desirability of nuclear power, and in particular the proposed nuclear power station at Torness in Scotland, are questioned. Questions are asked, and answered, on the following topics: position, appearance and cost of the proposed Torness plant, and whether necessary; present availability of electricity, and forecast of future needs, in Scotland; energy conservation and alternative energy sources; radiation hazards from nuclear power stations (outside, inside, and in case of an accident); transport of spent fuel from Torness to Windscale; radioactive waste management; possibility of terrorists making a bomb with radioactive fuel from a nuclear power station; cost of electricity from nuclear power; how to stop Torness. (U.K.)

  4. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  5. Ecological problems of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Babaev, N S; Demin, V F; Kuz' min, I I; Stepanchikov, V I [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1978-10-01

    Modern power sources including nuclear one are characterized. Basic information on radiation protection of man and biosphere is presented. Problems of radiation effect of nuclear fuel cycle enterprises on population and environment are discussed. Comparative evaluation of nuclear and thermal power effect on biosphere is made. It is shown that nuclear power is the safest power source at the present development state. The conclusion is drawn that the use of nuclear energy controlled and limited by scientifically founded norms does not present radiation hazard for population and environment.

  6. Nuclear power and the UK

    International Nuclear Information System (INIS)

    Murphy, St.

    2009-01-01

    This series of slides describes the policy of the UK government concerning nuclear power. In January 2008 the UK Government published the White Paper on the Future of Nuclear Power. The White Paper concluded that new nuclear power stations should have a role to play in this country's future energy mix. The role of the Government is neither to build nuclear power plants nor to finance them. The White Paper set out the facilitative actions the Government planned to take to reduce regulatory and planning risks associated with investing in new nuclear power stations. The White Paper followed a lengthy period of consultation where the UK Government sought a wide variety of views from stakeholders and the public across the country on the future of nuclear power. In total energy companies will need to invest in around 30-35 GW of new electricity generating capacity over the next two decades. This is equivalent to about one-third of our existing capacity. The first plants are expected to enter into service by 2018 or sooner. The Office for Nuclear Development (OND) has been created to facilitate new nuclear investment in the UK while the Nuclear Development Forum (NDF) has been established to lock in momentum to secure the long-term future of nuclear power generation in the UK. (A.C.)

  7. Nuclear power development: History and outlook

    International Nuclear Information System (INIS)

    Char, N.L.; Csik, B.J.

    1987-01-01

    The history of nuclear power development is briefly described (including the boosts from oil price shocks to the promotion of nuclear energy). The role of public opinion in relation to nuclear power is mentioned too, in particular in connection with accidents in nuclear plants. The recent trends in nuclear power development are described and the role of nuclear power is foreseen. Estimates of total and nuclear electrical generating capacity are made

  8. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    Lauritzen, B.; Nonboel, E.; Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2013-11-01

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  9. Development of automatic pipe welder for nuclear power plant

    International Nuclear Information System (INIS)

    Iwamoto, Taro; Ando, Shimon; Omae, Tsutomu; Ito, Yoshitoshi; Araya, Takeshi.

    1978-01-01

    Numerous pipings are installed in nuclear power plants, and of course, the reliability of these pipings are very important to preserve the safety of the plants. These pipings undergo periodic inspection yearly, and when some defects are found or some reconstructions to superior systems are made, field welding in the plants is required. When the places to be welded are in containment vessels, the works must be carried out in radiation environment. In order to maintain the highest quality of welding and to reduce the radiation exposure of workers, many skilled workers are required. This automatic pipe welder was developed to solve these problems, aiming at carrying out welding works by remote control at the safe places outside containment vessels. Especially in order to obtain the highest quality of welding, it was not perfectly automated, but the man-machine system so as to enable to utilize the delicate sense of workers was adopted. The visual and contact detecting systems to monitor welding works, remote control system, computer control, light, small and easily installed welding head, grinding and supersonic flow detecting equipments, the power source of transistor switching type, air cooling equipment, and the function for setting welding conditions according to algorithm were added to the welding machine. The outline and main components of this automatic pipe welder are explained. (Kako, I.)

  10. Radioactive waste management at nuclear power plant Cernavoda

    International Nuclear Information System (INIS)

    Raducea, D.

    2002-01-01

    Many human activities generate waste, but people are worried about wastes produced in nuclear power plants (NPPs). Their concern is an unjustified fear toward the hazards from radioactive waste, probably because in any country generating electric power by NPPs a lot of attention is paid to relevant parties involved in radioactive waste management. Significant attention is also given to the management of radioactive waste at the Cemavoda NPP. The general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment, is conceptually established. The overall programme provides the necessary facilities to adequately manage solid radioactive waste from Cemavoda NPP Unit 1 and will be capable of expansion when other units are brought into service. (author)

  11. Nuclear power perspective in China

    International Nuclear Information System (INIS)

    Liu Xinrong; Xu Changhua

    2003-01-01

    China started developing nuclear technology for power generation in the 1970s. A substantial step toward building nuclear power plants was taken as the beginning of 1980 s. The successful constructions and operations of Qinshan - 1 NPP, which was an indigenous PWR design with the capacity of 300 MWe, and Daya Bay NPP, which was an imported twin-unit PWR plant from France with the capacity of 900 MWe each, give impetus to further Chinese nuclear power development. Now there are 8 units with the total capacity of 6100 MWe in operation and 3 units with the total capacity of 2600 MWe under construction. For the sake of meeting the increasing demand for electricity for the sustainable economic development, changing the energy mix and mitigating the environment pollution impact caused by fossil fuel power plant, a near and middle term electrical power development program will be established soon. It is preliminarily predicted that the total power installation capacity will be 750-800GWe by the year 2020. The nuclear share will account for at least 4.0-4.5 percent of the total. This situation leaves the Chinese nuclear power industry with a good opportunity but also a great challenge. A practical nuclear power program and a consistent policy and strategy for future nuclear power development will be carefully prepared and implemented so as to maintain the nuclear power industry to be healthfully developed. (author)

  12. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  13. Nuclear power plant safety - the risk of accidents

    International Nuclear Information System (INIS)

    Higson, D.; Crancher, D.W.

    1975-08-01

    Although it is physically impossible for any nuclear plant to explode like an atom bomb, an accidental release of radioactive material into the environment is conceivable. Three factors reduce the probability of such releases, in dangerous quantities, to an extremely low level. Firstly, there are many safety features built into the plant including a leaktight containment building to prevent the escape of such material. Secondly, the quality of engineering and standards used are far more demanding than in conventional power engineering. Thirdly, strict government licensing and regulatory control is enforced at all phases from design through construction to operation. No member of the general public is known to have been injured or died as a result of any accident to a commercial nuclear power plant. Ten workers have died as a result of over-exposure to radiation from experimental reactors and laboratory work connected with the development of nuclear plant since 1945. Because of this excellent safety record the risk of serious accidents can only be estimated. On the basis of such estimates, the chance of an accident in a nuclear power reactor which could cause a detectable increase in the incidence of radiation-induced illnesses would be less than one chance in a million per year. In a typical highly industrialised society, such as the USA, the estimated risk of an individual being killed by such accidents, from one hundred operating reactors, is no greater than one chance in sixteen million per year. There are undoubtedly risks from reactor accidents but estimates of these risks show that they are considerably less than from other activities which are accepted by society. (author)

  14. Reduction of noise influence during the periodical inspection of the nuclear power plant

    International Nuclear Information System (INIS)

    Hikono, Masaru

    2002-01-01

    At the nuclear power plant under the regular inspection, the sound level and the worker's impression of the environmental noises were measured. The environmental noise was the level with a possibility to cause the noise-induced deafness and have the psychological influence on the workers such as ''Get irritated''. These results imply the necessity of the noise countermeasure. For the noise influence relaxation, we examined the effectiveness of ear protections (e.g., ear plugs) and the intelligibility improvement of the paging system, prepared the noise management manual and the educational leaflet for the support of worker's self-defense. The results of the examinations showed that ear plug was effective especially in the high-noise environment and that the improvement of paging system increased the intelligibility. (author)

  15. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  16. Conflict nuclear power. Theses for current supply with and without nuclear power

    International Nuclear Information System (INIS)

    Schwarz, E.

    2007-01-01

    In the context of a lecture at the 2nd Internationally Renewable Energy Storage Conference at 19th to 21st November, 2007, in Bonn (Federal Republic of Germany), the author of the contribution under consideration reports on theses for current supply with and without nuclear power. (1) Theses for current supply with nuclear energy: Due to a relative amount of 17 % of nuclear energy in the world-wide energy production and due to the present reactor technology, the supplies of uranium amount nearly 50 to 70 years. The security of the nuclear power stations is controversially judged in the public and policy. In a catastrophic accident in a nuclear power station, an amount of nearly 2.5 billion Euro is available for adjustment of damages (cover note). The disposal of radioactive wastes is not solved anywhere in the world. The politically demanded separation between military and civilian use of the nuclear energy technology is not possible. The exit from the nuclear energy is fixed in the atomic law. By any means, the Federal Republic of Germany is not insulated in the European Union according to its politics of nuclear exit. After legal adjustment of the exit from the nuclear energy the Federal Republic of Germany should unfold appropriate activities for the re-orientation of Euratom, Nuclear Energy Agency and the International Atomic Energy Agency. The consideration of the use of nuclear energy in relation to the risks has to result that its current kind of use is not acceptable and to be terminated as fast as possible. (2) Theses for current supply without nuclear energy: The scenario technology enables a transparency of energy future being deliverable for political decisions. In accordance with this scenario, the initial extra costs of the development of the renewable energies and the combined heat and power generation amount approximately 4 billion Euro per year. The conversion of the power generation to renewable energies and combined heat and power generation

  17. Economic benefits of the nuclear power

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1985-01-01

    The historical and projected benefits of nuclear power are estimated as the cost differential between nuclear power and an alternative baseload generating source times the quantity of electricity generated. From 1976 through 1981 coal and nuclear power were close competitors in most regions, with nuclear power holding a small cost advantage overall in 1976 and 1977 that subsequently eroded. When nuclear power costs are contrasted to coal power costs, national benefits from nuclear power are estimated to be $336 million from 1976 to 1981, with an additional $1.8 billion for the present value of existing plants. Fuel oil has been the dominant source of baseload generation in California, Florida, and New England. When nuclear power costs are contrasted to those of fuel oil, the benefits of nuclear power in these three regions are estimated to be $8.3 billion and $28.1 billion in terms of present value. The present value of benefits of future nuclear plants is estimated to be $8.2 billion under a midcase scenario and $43 billion under an optimistic scenario. 18 references, 10 tables

  18. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  19. Reasons for the nuclear power option

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Mauna, T.

    1994-01-01

    Technical, economical and social reasons, strongly supporting the nuclear power option are reviewed. The history of Romanian nuclear power program is outlined with a particular focus on the Cernavoda Nuclear Power Plant project. Finally the prospective of nuclear power in Romania are assessed

  20. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  1. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  2. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  3. Nuclear power in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. (Sussex Univ., Brighton (UK). Science Policy Research Unit)

    1991-01-01

    The main aim of this article is that of illustrating the experience of the use of nuclear power in Eastern Europe in order to estimate the degree of adequacy or inadequacy of COMECON's nuclear technology. The author examines four areas of interest concerning: the feasibility of new orders for nuclear plants in Eastern Europe; the pros and cons of completing half-built nuclear power plants; current policy towards existing nuclear power plants; and a review of the available evidence on the operating performance of plants in Eastern Europe. The common belief that the nuclear power experience had by old COMECON countries is uniformly bad does not seem to be fully supported by the limited evidence available. In the author's opinion, the prospects for a successful nuclear power industry in these countries depends on a series on interdependent factors among which, human skills hold a prominent position.

  4. Local society and nuclear power stations

    International Nuclear Information System (INIS)

    1984-02-01

    This report was made by the expert committee on region investigation, Japan Atomic Industrial Forum Inc., in fiscal years 1981 and 1982 in order to grasp the social economic influence exerted on regions by the location of nuclear power stations and the actual state of the change due to it, and to search for the way the promotion of local community should be. The influence and the effect were measured in the regions around the Fukushima No. 1 Nuclear Power Station of Tokyo Electric Power Co., Inc., the Mihama Power Station of Kansai Electric Power Co., Inc., and the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc. The fundamental recognition in this discussion, the policy of locating nuclear power stations and the management of regions, the viewpoint and way of thinking in the investigation of the regions where nuclear power stations are located, the actual state of social economic impact due to the location of nuclear power stations, the connected mechanism accompanying the location of nuclear power stations, and the location of nuclear power stations and the acceleration of planning for regional promotion are reported. In order to economically generate electric power, the rationalization in the location of nuclear power stations is necessary, and the concrete concept of building up local community must be decided. (Kako, I.)

  5. Consideration of nuclear power

    International Nuclear Information System (INIS)

    Smart, I.

    1982-01-01

    Mr. Smart notes that the optimistic promise of nuclear energy for developing countries has not been met, but feels that nuclear power can still provide a growing share of energy during the transition from oil dependence. He observes that cost-benefit analyses vary for each country, but good planning and management can give nuclear power a positive future for those developing countries which can establish a need for it; have access to the economic, technological, and human resources necessary to develop and operate it; and can make nuclear power compatible with the social, economic, and cultural structure. 11 references

  6. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  7. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S.

    2014-01-01

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  8. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  9. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  10. Nuclear power: Europa report

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union (EU-15) nuclear power plants have been operation. In 7 of the 13 EU Candidate Countries (incl. Turkey) nuclear energy was used for power production. A total of 208 plants with an aggregate net capacity of 171 031 MWe and an aggregate gross capacity of 180 263 MWe were in operation at the end of 2003. No unit reached first criticality in 2003 or was connected to the grid. The unit Calder Hall 1 to Calder Hall 4 have been permanently shut down in Great Britain due to economical reasons and an earlier decision. In Germany the NPP Stade was closed. The utility E.ON has decided to shut down the plant due to the efforts of the liberalisation of the electricity markets. Last year, 8 plants were under construction in Romania (1), Russia (3), Slovakia (2 - suspended), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. The consortium led by Framatome ANP was awarded the contract to build the new nuclear power plant (EPR, 1 600 MW) in Olkiluoto. In eight countries of the European Union 136 nuclear power plants have been operated with an aggregate gross capacity of 127 708 MWe and an aggregate net capacity of 121 709 MWe. Net electricity production in 2003 in the EU amounts to approx. 905 TWh gross, which means a share of about 33 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 80% in Lithuania, 78% in France, 57% in the Slovak Republic, 57% in Belgium, and 46% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. (orig.)

  11. Canadian attitudes to nuclear power

    International Nuclear Information System (INIS)

    Davies, J.E.O.

    1977-01-01

    In the past ten years, public interest in nuclear power and its relationship to the environment has grown. Although most Canadians have accepted nuclear power as a means of generating electricity, there is significant opposition to its use. This opposition has effectively forced the Canadian nuclear industry to modify its behaviour to the public in the face of growing concern over the safety of nuclear power and related matters. The paper reviews Canadian experience concerning public acceptance of nuclear power, with special reference to the public information activities of the Canadian nuclear industry. Experience has shown the need for scientific social data that will permit the nuclear industry to involve the public in a rational examination of its concern about nuclear power. The Canadian Nuclear Association sponsored such studies in 1976 and the findings are discussed. They consisted of a national assessment of public attitudes, two regional studies and a study of Canadian policy-makers' views on nuclear energy. The social data obtained were of a base-line nature describing Canadian perceptions of and attitudes to nuclear power at that time. This research established that Canadian levels of knowledge about nuclear power are very low and that there are marked regional differences. Only 56% of the population have the minimum knowledge required to indicate that they know that nuclear power can be used to generate electricity. Nevertheless, 21% of informed Canadians oppose nuclear power primarily on the grounds that it is not safe. Radiation and waste management are seen to be major disadvantages. In perspective, Canadians are more concerned with inflation than with the energy supply. About half of all Canadians see the question of energy supplies as a future problem (within five years), not a present one. A more important aspect of energy is seen by the majority of Canadians to be some form of energy independence. The use of data from these studies is no easy

  12. Progress of China's nuclear power programme

    International Nuclear Information System (INIS)

    Cai Jianping

    1997-01-01

    From a long-term point of view, nuclear power is the only solution for the shortage of energy resource. Nuclear power development strategy has been specified in China according to national condition: The electricity development of nuclear power optimizes the national energy structure and ensure the power supply, particularly in east China. China's first self-designed and self-constructed nuclear power plant--Qinshan Nuclear Power Plant (300MWe PWR) is now well under commercial operation. China is willing to cooperate with IAEA, other countries and regions in the field of nuclear energy for peaceful use on basis of mutual benefit. (author)

  13. Development of remote control decontamination machines for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Miyakawa, Minoru; Nozawa, Katsuro; Yamada, Masuji; Mizutani, Takeshi; Onozuka, Kazuaki

    1981-01-01

    The dose rate of radiation on the surfaces of equipments and in rooms tends to increase as radioactive substances accumulate with the continuous operation of nuclear power stations. The decontamination works to remove radioactive substances are carried out to prevent the exposure of workers in the case of inspection and repair. In order to reduce the exposure of decontamination workers, to save labor and to shorten decontamination time, Chubu Electric Power Co., Inc., has developed the decontamination machines for the walls of reactor wells, the walls and bottoms of equipment pits, the internal surfaces of suppression chambers, and the internal surfaces of tanks. The decontamination machines have several remote-handling functions: (a) brushing up with sprinkling against complicate surface such as a wall with step, (b) vertical transfer of brushing position with sucking force, (c) sucking out slurries under the water of storage pool or inside the pressure-supression pool, (d) horizontal transfer of suction position with electric motors. (J.P.N.)

  14. Country nuclear power profiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA`s programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA`s programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ``profiles``, to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future. Refs, figs, tabs.

  15. Country nuclear power profiles

    International Nuclear Information System (INIS)

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  16. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Perera, J.

    2000-01-01

    Currently nuclear power accounts for more than 25% of total electricity production in Europe (including Eastern Europe and the former Soviet Union) However, significant new construction is planned in Central and Eastern Europe only, apart from some in France and, possibly in Finland. Many countries in Western Europe have put nuclear construction plans on hold and several have cancelled their nuclear programs. This report looks at the history of nuclear power and its current status in both Eastern and Western Europe. It provides an outline of nuclear fuel cycle facilities, from uranium procurement to final waste disposal. Economic and environmental issues are discussed, as well as the prospect of increased East-West trade and cooperation in the new poso-cold war world. Detailed profiles are provided of all the countries in Western Europe with significant nuclear power programs, as well as profiles of major energy and nuclear companies

  17. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mishiro, M.

    2000-01-01

    This article describes the advantages of nuclear energy for Japan. In 1997 the composition of the total primary energy supply (TPES) was oil 52.7%, coal 16.5%, nuclear 16.1% and natural gas 10.7%. Nuclear power has a significant role to play in contributing to 3 national interests: i) energy security, ii) economic growth and iii) environmental protection. Energy security is assured because a stable supply of uranium fuel can be reasonably expected in spite of dependence on import from abroad. Economic growth implies the reduction of energy costs. As nuclear power is capital intensive, the power generation cost is less affected by the fuel cost, therefore nuclear power can realize low cost by favoring high capacity utilization factor. Fossil fuels have substantial impacts on environment such as global warming and acid rain by releasing massive quantities of CO 2 , so nuclear power is a major option for meeting the Kyoto limitations. In Japan, in 2010 nuclear power is expected to reach 17% of TPES and 45% of electricity generated. (A.C.)

  18. Ethical aspects of nuclear power

    International Nuclear Information System (INIS)

    Streithofen, H.B.

    1989-01-01

    The nuclear controversy comprises many ethical aspects, e.g. the waste disposal problem. Nuclear opponents should not neglect the environmental protection aspect; for example, the use of nuclear power alone brought about an 8% reduction of the CO 2 burden in 1987. Our responsibility towards nature and humans in the Third World leaves us no alternative to nuclear power. On the other hand, the nuclear power debate should not become a matter of religious beliefs. (DG) [de

  19. Incidence and mortality by cancer among French nuclear workers of contracting companies

    International Nuclear Information System (INIS)

    Guerin, S.; Haddy, N.; Giardini, M.; Paoletti, C.; De Vathaire, F.

    2006-01-01

    Full text of publication follows: Current radiation protection standards of occupationally exposed workers are based on an extrapolation of cancer risks estimates derived from studies of the survivors of atomic bombings in Hiroshima and Nagasaki. In order to confirm these standards, International Agency for Research Cancer coordinated a retrospective cohort study to estimate the risk of cancer death after low-level exposure to gamma-ray, in a worldwide population of 400 000 nuclear industry workers in 15 countries. Methods: The present study is part of the international study and includes about 13,000 French nuclear industry workers of 10 contracting companies and subsidiary companies. This study was restricted to workers who wore a radiation dosimeter or badge. Contracting companies were selected on the basis of at least 100 workers in activity in 1996. A retrospective cohort was constituted. For each worker, we collected data concerning personal identifiers, occupational history, exposure history, vital status and cause of death. In order to guarantee the reliability of dosimetry data, we confronted monthly doses of X and gamma rays obtained from each company with monthly doses obtained from the National Institute of Radio Protection (I.R.S.N.). The cut off date was the 31 December of 2000. An incidence study is running within this cohort. Data relatives to poly-exposures, incident cancers and other pathologies, have being collected through a questionnaire form. Results: A total of 12,690 workers were included in the cohort, 1,457 could not be identified. Among the 11,233 identified workers, 280 deaths were recorded and 36% of them were cancer. Most of the workers were men (96%) and the median age at cut off date was equal to 41 years old. Only 25% of workers were exposed seven years or more. The median cumulative dose was equal to 3.1 mSv and 25% of workers had a cumulative dose superior to 22 mSv. Conclusion: Median cumulative dose was lower than expected as

  20. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  1. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  2. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  3. International nuclear power status 2001

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  4. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1992. Twenty-fifth annual report, Volume 14

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-12-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1992. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10CFR20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10CFR20.408. The 1992 annual reports submitted by about 364 licensees indicated that approximately 204,365 individuals were monitored, 183,927 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measurable dose of about 0.30 (cSv). Termination radiation exposure reports were analyzed to reveal that about 74,566 individuals completed their employment with one or more of the 364 covered licensees during 1992. Some 71,846 of these individuals terminated from power reactor facilities, and about 9,724 of them were considered to be transient workers who received an average dose of 0.50 rem (cSv)

  5. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1993. Volume 15, Twenty-six annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1995-01-01

    This report the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1993. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1993 annual reports submitted by about 360 licensees indicated that approximately 189,711 individuals were monitored, 169,872 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measured dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 99,749 individuals completed their employment with one or more of the 360 covered licensees during 1993. Some 91,000 of these individuals terminated from power reactor facilities, and about 12,685 of them were considered to be transient workers who received an average dose of 0.49 rem (cSv)

  6. Fitness for duty in the nuclear power industry: A review of technical issues

    International Nuclear Information System (INIS)

    Barnes, V.; Fleming, I.; Grant, T.

    1988-09-01

    This report presents information gathered and analyzed in support of the United States Nuclear Regulatory Commission's (NRC's) efforts to develop a rule that will ensure that workers with unescorted access to protected areas in nuclear power plants are fit for duty. The primary potential fitness-for-duty concern addressed in the report is impairment caused by substance abuse, although other sources of impairment on the job are discussed. The report examines the prevalence of fitness-for-duty problems and discusses the use and effects of illicit drugs, prescription drugs, over-the-counter preparations and alcohol. The ways in which fitness-for-duty concerns are being addressed in both public- and private-sector industries are reviewed, and a description is provided of fitness-for-duty practices in six organizations that, like the nuclear industry, are regulated and whose operations can affect public health and safety. Methods of ensuring fitness for duty in the nuclear industry are examined in detail. The report also addresses methods of evaluating the effectiveness of fitness-for-duty programs in the nuclear power industry

  7. Health management of radiation workers

    International Nuclear Information System (INIS)

    Kunugita, Naoki; Igari, Kazuyuki

    2013-01-01

    People in Japan have expressed great anxiety about possible radiation and radioactivity after the accident at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company's (TEPCO), due to the great earthquake and tsunami in eastern Japan on 11 March 2011. A large number of workers were engaged in response and recovery operations, and they were possibly exposed to high doses of radiation as compared to the general population. In the accident at the Chernobyl Nuclear Power Plant in 1986, high doses of radiation to 134 plant staff and emergency personnel resulted in acute radiation syndrome (ARS), which proved fatal for 28 of them. In the Fukushima accident, six workers were exposed to more than 250 mSv of radiation during the initial response phase, but no one showed ARS. It is necessary to continue registration of radiation doses for all workers who were exposed to radiation to facilitate suitable healthcare management in the future. In addition to radiation exposure, a group of workers were also exposed to other health hazards. Frequent occurrence of heat disorders has been a concern for the workers wearing protective clothing with poor ventilation. A comprehensive program to prevent heat illness was implemented by TEPCO under the guidance of the Ministry of Health, Labour, and Welfare. It is important to provide effective systems not only for prevention of radiation exposure but also for general management of other health risks including heat disorders and infection. (author)

  8. Radiation protection for repairs of reactor's internals at the 2nd Unit of the Nuclear Power Plant Temelin

    International Nuclear Information System (INIS)

    Zapletal, P.; Konop, R.; Koc, J.; Kvasnicka, O.; Hort, M.

    2011-01-01

    This presentation describes the process and extent of repairs of the 2 nd unit of the Nuclear power plant Temelin during the shutdown of the reactor. All works were optimized in terms of radiation protection of workers.

  9. Nuclear power - the Hydra's head

    Energy Technology Data Exchange (ETDEWEB)

    Bunyard, P

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead.

  10. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Csik, B.J.; Konstantinov, L.V.; Dastidar, P.

    1989-09-01

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  11. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  12. Nuclear power status 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives statistical information on nuclear power plants status in the world in 1999, including the number of reactors in operation or under construction, the electricity supplied by nuclear power reactors and the respective percentage of electricity produced by nuclear energy in 1999, and the total operating experience to 31 December 1999, by country

  13. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  14. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  15. Robots in Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    Koizumi, Masumichi

    1984-01-01

    The Power Reactor and Nuclear Fuel Development Corp. has carried out the technical development concerning ATRs and FBRs, nuclear fuel cycle, the uranium enrichment by centrifugal separation, the reprocessing of spent fuel, and the treatment and disposal of wastes. For the purpose, the Corp. has operated diversified nuclear facilities, and for the operational management of these nuclear facilities, aiming at the reduction of radiation exposure of workers, the shortening of working time, or the rise of the capacity ratio of the facilities, the technical development related to robots has been advanced. Namely, the equipment for the remote maintenace and repair of facilities, the equipment for checkup and monitoring and the equipment for test and inspection are the main subjects of robot development. Hereafter, it is necessary to develop the equipment to which the function of high grade is given and to automate main processes and checkup and monitoring system as well as to improve the reliability and endurance of facilities. The development of the manipulator system for remote maintenance, the facility of handling high radioactive substances and a master-slave manipulator, a power manipulator and a remote transfer equipment, the development of a remote repair and checkup equipment in the reprocessing plant, a remote maintenance and checkup equipment for FBRs and a remote automatic inspection equipment for ATRs are reported. (Kako, I.)

  16. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  17. Canada's nuclear power programme

    International Nuclear Information System (INIS)

    Peden, W.

    1976-01-01

    Although Canada has developed the CANDU type reactor, and has an ambitious programme of nuclear power plant construction, there has been virtually no nuclear controversy. This progress was seen as a means to bring Canada out of the 'resource cow' era, and onto a more equal footing with technologically elite nations. However the Indian nuclear explosion test, waste storage problems, contamination problems arising from use of uranium ore processing waste as land fill and subsidised sale of nuclear power plants to Argentina and South Korea have initiated public and parliamentary interest. Some economists have also maintained that Canada is approaching over-supply of nuclear power and over-investment in plant. Canada has no official overall energy production plan and alternative sources have not been evaluated. (JIW)

  18. Nuclear power for environmental protection

    International Nuclear Information System (INIS)

    Souza Marques de, J.A.; Bennett, L.L.

    1989-09-01

    Nuclear power does not produce CO 2 or other greenhouse gases, and also does not produce any SO 2 , NO x or other gases which contribute to acid rain. These characteristics of nuclear power are especially important in comparison to coal-fired generation of electricity. As an example, in comparison with a coal-fired power plant of the same size, with abatement systems, a 1300 MW(e) nuclear power plant eliminates annually emissions to the air of about: 2000 t of particulates; 8.5 million t of CO 2 : 12,000 t of SO 2 ; and 6,000 t of NO x , the precise quantities being dependent on coal quality, power plant design and thermal efficiency, and on the effectiveness of the abatement systems. Opponents of nuclear power concede these facts, but argue that nuclear power is such a small part of the world energy balance that it is insignificant to the big issue of CO 2 . This is hardly correct. Today, 16% of the world's electricity (and 5% of the world's total primary energy) is generated using nuclear power. If this electricity were to have been generated using coal, it would have resulted in about 1600 million tons of CO 2 annually. This is 8% of the 20,000 million tons of CO 2 now emitted annually from the burning of fossil fuels, an amount which the Toronto Conference proposed should be cut by 20% up to the year 2005. A further major difference in the two energy systems is that the relatively smaller amount of nuclear wastes is fully isolated from the environment. In addition to discussing the global contributions of nuclear power to environmental improvement, the paper presents actual results achieved in a number of countries, demonstrating the positive contribution which nuclear power has made to reducing the environmental impacts of electricity production. 7 figs, 12 tabs

  19. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  20. Non-power application as an entry point to nuclear power program

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2009-01-01

    Nuclear power is usually viewed as the flagship of nuclear technology. A nuclear power plant complex, visible and prominence, is iconic of the technology. That image makes its presence common knowledge to the extent that nuclear technology is equated almost totally with nuclear power by the general public. The downside of this visibility is that it becomes easy target in public misinformation programs. The non-power applications however are not visible, and devoid of icon. The non-power applications, therefore, can grow quite smoothly, attracting only little attention in the negative and in the positive senses. According to a study conducted in the USA in 2000 and in Japan in 2002, the socio-economic impact of non-power and power applications of nuclear technology are comparable. Involvement in non-power applications can be a good grounding for moving into power applications. This paper discusses the non-power nuclear technology applications and in what manner it can serve to prepare the introduction of nuclear power program. (Author)

  1. Current status of nuclear power development

    International Nuclear Information System (INIS)

    Dias, P.M.

    1994-01-01

    Nuclear power is not a viable energy source for Sri Lanka at present because of a number of reasons, the main reason being the non-availability of small and economically viable nuclear power plants. However several suppliers of nuclear power plants are in the process of developing small and medium power plants (SMPRs) which could be economically competitive with coal. The paper deals with past and future trends of nuclear power plants, their economics and safety. It also deals with environmental effects and public acceptance of nuclear power plants

  2. Effort to grapple with improvement of security and reliability of nuclear power plant. Actions of the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    Ishiguma, Kazuo

    2012-01-01

    Following the Great Tohoku Earthquake in 2011, Tokai No.2 reactor was shut down automatically. Three of emergency diesel generators worked automatically at loss-of-offsite-power and began to work the cooling system of reactor. The reactor could be kept stable and safe in cold state by management of power from the gas turbine electric generator and power source car. Actions of Japan Atomic Power Company (JAPC) for cold shutdown and Tsunami were stated. Inspection results after the earthquake and testimony of staff was described. Countermeasure of improvement of safety of nuclear power station is explained by ensuring of power source and water supply, crisis management system, countermeasure of accident, ensuring, and training of workers, and action for better understanding of reliance. (S.Y.)

  3. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  4. Nuclear power in British politics

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1987-01-01

    The paper concerns the subject of nuclear power in British politics in 1986. The policies of the major political parties towards nuclear power are briefly outlined, along with public attitudes to nuclear energy, Chernobyl, and the rise of the anti-nuclear campaigners. (UK)

  5. Investigation of internal contamination by tritium in A-1 nuclear power plant personnel in 1974

    International Nuclear Information System (INIS)

    Ondris, D.; Herchl, M.; Homolova, E.

    1977-01-01

    The results are presented of the 1974 personnel monitoring of the Bohunice A-1 nuclear power plant staff for internal contamination with tritium. Totally, 650 urine samples taken from 103 workers were analyzed using the recommended ICRP procedure. In routine examinations, the highest dose equivalent value of tritium incorporated within two weeks did not exceed 10 mrem, i.e., the maximum annual dose equivalent did not exceed 260 mrem. 8.5 μCi tritium per 1 litre urine was considered to be an alarm value. In a selected group of 21 high-risk persons analyses were conducted before and after each operation associated with tritium hazards. The limit dose was set to 5.8 μCi.l -1 , i.e., the tritium concentration equivalent to 10% of the maximum permissible annual intake. In 18 workers where tritium risk was of a more serious nature the biological half-life was followed up, with the average biological half-life being 8.5 days, with 5 days for the minimum and 12 days for the maximum values. The results show that in 1974 the tritium burden did not exceed 1/10 of the maximum permissible dose for any of the A-1 nuclear power plant workers. (L.O.)

  6. Nuclear power in western society

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1977-01-01

    The degree to which problems of public acceptance have contributed to the slowdown in progress of nuclear power in Western European countries and the USA is discussed. Some of the effects on the nuclear power industry, i.e. the electrical utilities, the power station suppliers, and the fuel cycle contractors are described. The problem of the lack of public acceptance is examined by consideration of four areas: the position of the employee working in nuclear installations, opposition from the local community, the question of terrorism and its impact on nuclear policy, and finally, what is felt to constitute the greatest anxiety concerning nuclear power, that of proliferation. (U.K.)

  7. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  8. The future of nuclear power

    International Nuclear Information System (INIS)

    Burtak, F.

    1993-01-01

    Nuclear power in Germany at present is confronting two challenges: On the one hand, technical innovations are required in order to meet the expectations of nuclear proponents while, on the other hand, a public stand must be taken vis-a-vis the demand to opt out of nuclear power. This means that nuclear engineers not only must perform their technical functions, but increasingly also engage themselves socially. Neglecting just one of these two challenges is likely to impair severely the future of nuclear power in Germany. In the absence of a swing in public opinion it will not be possible to build a new nuclear plant, and nuclear power will be doomed to extinction, at least in a number of countries, within a matter of decades. In the absence of technical innovation, today's LWR technology will cause the fissile uranium available naturally to be consumed, thus killing nuclear power for lack of future fissile material. In responding to the two challenges, nuclear technology must safeguard its future by not retreating into an ivory tower of pure technology; on the other hand, technical innovation is a prerequisite for its continued existence. (orig.) [de

  9. Crunch time for nuclear power

    International Nuclear Information System (INIS)

    Edwards, Rob.

    1994-01-01

    The Federal Republic of Germany, one of the most advanced nations, technically has a thriving nuclear power industry. However there is stiff opposition to nuclear power from political parties and environmental groups. General elections due to be held in mid October hold the future of the nuclear industry in the balance. If the present opposition party comes to power, it is committed to a policy of phasing out nuclear power completely. At the centre of the political uproar is the Gorleben ''interim store'' which is intended to house Germany's spent fuel for at least the next forty years. The nuclear industry must resolve the issue of nuclear waste disposal to the voters' satisfaction if it is to have a viable future. (UK)

  10. Experimental ratio between the 'real' dose per organ and the calculated dose determined by means of the Embalse nuclear power plant's personal dosimeter

    International Nuclear Information System (INIS)

    Thomasz, E.; Salas, C.A.

    1987-01-01

    The specific purpose of the study was to determine the experimental ratio between the reading of dosimeters used by the personnel of the Embalse nuclear power plant and the 'real' dose absorbed by the worker in different organs. An anthropomorphic phantom ALDERSON internal and externally loaded with approximately 150 TLD crystals was used. This phantom was placed in five enclosures that were usually occupied by workers of the Embalse nuclear power plant. In this way, the average dose per organ and the effective equivalent dosis in each enclosure could be calculated and compared with the personal dosimeters placed over the thorax and the conversion factor rem/rem for each enclosure was determined. The average factor resulting from the five considered enclosures was 0.73 rem/rem. This means that the personal dosimeters over value the real dosis absorbed by the personnel of the Embalse nuclear power plant in approximately 37%. (Author)

  11. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  12. Long-term prospects of capital demands of nuclear power sources construction in Czechoslovakia

    International Nuclear Information System (INIS)

    Sladek, V.; Kysel, J.

    1988-01-01

    The capital demands are compared for four variants of nuclear power plant construction projects to be implemented in Czechoslovakia by the year 2030. By the year 2000, all variants are expected to achieve the total installed capacity of 11,280 MW. Construction in the following period then differs: by the year 2030 total installed nuclear capacity is to reach the following values: 1st variant - 30,000 MW; 2nd variant - 35,000 MW, 3rd variant - 36,500 MW and 4th variant - 27,760 MW. WWER-1000, WWER-1500 and WWER-500 reactors are expected to be installed in the variant projects which differ in speed of construction and life of the units. They are designed such as to provide for the smooth transfer of building workers from one site to the next. The comparison of capital demands shows that a suitable siting strategy and site preparation can save costs and preclude serious sociological problems. The possible extension of the life of nuclear power plants will provide for a better use of primary investments and improve the economic efficiency of nuclear power plants. (Z.M.). 2 figs., 4 tabs., 6 refs

  13. Nuclear power ecology: comparative analysis

    International Nuclear Information System (INIS)

    Trofimenko, A.P.; Lips'ka, A.Yi.; Pisanko, Zh.Yi.

    2005-01-01

    Ecological effects of different energy sources are compared. Main actions for further nuclear power development - safety increase and waste management, are noted. Reasons of restrained public position to nuclear power and role of social and political factors in it are analyzed. An attempt is undertaken to separate real difficulties of nuclear power from imaginary ones that appear in some mass media. International actions of environment protection are noted. Risk factors at different energy source using are compared. The results of analysis indicate that ecological influence and risk for nuclear power are of minimum

  14. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  15. International nuclear power status 2002

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  16. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  17. 2006 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    At the turn of 2006/2007, 437 nuclear power plants were available for energy supply, or were being commissioned, in 31 countries of the world. This is seven plants less than at the turn of 2005/2006. The aggregate gross power of the plants amounted to approx. 389.5 GWe, the aggregate net power, to 370.5 GWe. This indicates a slight decrease of gross power by some 0.15 GWe compared to the level the year before, while the available net power increased, also slightly, by approx. 0.2 GWe. The Tarapur 3 nuclear generating unit in India, a D 2 O PWR of 540 MWe gross power, was newly commissioned. In 2006, 8 nuclear power plants in Europe (4 in the United Kingdom, 2 in Bulgaria, 1 each in the Slovak Republic and in Spain) discontinued power operation for good. 29 nuclear generating units, i.e. 6 plants more than at the end of 2005, were under construction in late 2006 in 9 countries with an aggregate gross power of approx. 25.5 GWe. Worldwide, some 40 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases, contracts have already been signed. Net electricity generation in nuclear power plants worldwide in 2006 achieved another top ranking level of approx. 2,660 billion kWh (2005: approx. 2,750 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-1 fast breeder (USA) on December 20, 1951, cumulated gross production has reached approx. 56,875 billion kWh, and operating experience has grown to some 12,399 reactor years. (orig.)

  18. Nuclear power in the EC

    International Nuclear Information System (INIS)

    Charrault, J.C.

    1991-01-01

    Nuclear power accounts for some 35% of electricity production in the European Community (EC). Using a mathematical analysis, based on different scenarios, i.e. low/high electricity demand and nuclear moratorium/revival, various demand forecasts are made. A pragmatic approach, considering conventional power generation pollution problems, forecasts a revival of nuclear power

  19. The influence nuclear power has on corporate image and the effect of offering merit information of nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2006-01-01

    Many electric power companies in Japan, irrespective of their nuclear power generation ratio's difference, have nuclear power plants. These days, corporate brand image is becoming more and more important. Therefore, a survey was carried out to study the effect that nuclear power (including comparison with the other type of industry besides electric power) has on the corporate image of an electric power company. Further more, the survey includes a research about the effect on people's attitude change towards nuclear power before and after discovering the merits or benefits of nuclear power. The possibility of enhancing the corporate brand image of electric power companies by providing merit information of nuclear power was studied. (author)

  20. History on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  1. Some power uprate issues in nuclear power plants

    International Nuclear Information System (INIS)

    Tipping, Philip

    2008-01-01

    Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented

  2. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  3. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  4. French lessons in nuclear power

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    In stark contrast to the American atomic power experience is that of the French. Even the disaster at Chernobyl in 1986, which chilled nuclear programs throughout Western Europe, did not slow the pace of the nuclear program of the state-owned Electricite de France (EDF), based in Paris. Another five units are under construction and are scheduled to be connected to the French national power grid before the end of 1993. In 1989, the EDF's 58 nuclear reactors supplied 73 percent of French electrical needs, a higher percentage than any other country. In the United States, for example, only about 18 percent of electrical power is derived from the atom. Underpinning the success of nuclear energy in France is its use of standardized plant design and technology. This has been an imperative for the French nuclear power industry since 1974, when an intensive program of nuclear power plant construction began. It was then, in the aftermath of the first oil embargo, that the French government decided to reduce its dependence on imported oil by substituting atomic power sources for hydrocarbons. Other pillars supporting French nuclear success include retrofitting older plants with technological or design advances, intensive training of personnel, using robotic and computer aids to reduce downtime, controlling the entire nuclear fuel cycle, and maintaining a comprehensive public information effort about the nuclear program

  5. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  6. Steps to nuclear power

    International Nuclear Information System (INIS)

    1975-01-01

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  7. Action research for the development of the organizational climate in nuclear power plants. Review of the 6-year research and development program

    International Nuclear Information System (INIS)

    Yoshida, Michio; Misumi, Jyuji; Misumi, Emiko; Kotani, Fumio; Fukui, Hirokazu; Sakurai, Yukihiro

    1998-01-01

    The Institute of Nuclear Safety System, Incorporated and the Japan Institute for Group Dynamics have conducted action research for the development of the organizational climate in nuclear power plants. First, two types of scales were completed. One is for measuring the leadership behavior of leaders working at nuclear power plants and the other is for measuring the safety consciousness of workers. After having diagnosed the reality of actual nuclear power plants using those scales developed, leadership training courses were developed and implemented successfully. Analyses of the commitment to organization and self-efficacy and the relationship between leadership and personality were conducted as well. (author)

  8. Action research for the development of the organizational climate in nuclear power plants. Review of the 6-year research and development program

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Michio [Kumamoto Univ. (Japan). Faculty of Education; Misumi, Jyuji; Misumi, Emiko; Kotani, Fumio; Fukui, Hirokazu; Sakurai, Yukihiro

    1998-09-01

    The Institute of Nuclear Safety System, Incorporated and the Japan Institute for Group Dynamics have conducted action research for the development of the organizational climate in nuclear power plants. First, two types of scales were completed. One is for measuring the leadership behavior of leaders working at nuclear power plants and the other is for measuring the safety consciousness of workers. After having diagnosed the reality of actual nuclear power plants using those scales developed, leadership training courses were developed and implemented successfully. Analyses of the commitment to organization and self-efficacy and the relationship between leadership and personality were conducted as well. (author)

  9. The separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1979-01-01

    There exists world wide a strong common desire to limit nuclear weapons proliferation so as to inhibit or remove the threat of nuclear warfare. While this is a primary international political objective, there has also developed a secondary objective to limit any potential contribution to such nuclear weapons proliferation which might arise by the diversion of weapons material from the civilian nuclear power fuel cycle. This secondary objective is the basis of the present US government policy to defer the reprocessing of nuclear fuels anywhere. This policy has been generally recognized as a temporary expedient to provide time for international reexamination of the problems of weapons proliferation associated with nuclear power. A successful development of the proposed combination of the Fast Breeder Reactor and the Civex fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/Civex system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/Civex for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. (Auth.)

  10. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1980-01-01

    A few of the essential issues which arise when we consider nuclear power and development together in the context of energy policy are discussed. Ethical concerns must ultimately be expressed through policies and their impact on people. There are ethical issues associated with nuclear power in the developing countries which deserve our attention. Four aspects of the question of nuclear power in developing countries are considered: their energy situation; the characteristics of nuclear power which are relevant to them; whether developing countries will undertake nuclear power programmes; and finally the ethical implications of such programmes. It is concluded that what happens in developing countries will depend more on the ethical nature of major political decisions and actions than on the particular technology they use to generate their electricity. (LL)

  11. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  12. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  13. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  14. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Lane, J.A.; Covarrubias, A.J.; Csik, B.J.; Fattah, A.; Woite, G.

    1977-01-01

    This paper is intended to be a companion to similar papers by OECD/NEA and CMEA and will summarize the nuclear power system plans of developing Member States most likely to have nuclear programmes before the year 2000. The information that is presented is derived from various sources such as the Agency 1974 study of the market for nuclear power in developing countries, the annual publication, ''Power Reactors in Member States - 1976 Edition'', various nuclear power planning studies carried out by the Agency during the period 1975 and 1976, direct correspondence with selected Member States and published information in the open literature. A preliminary survey of the prospects for nuclear power in Member States not belonging to the OECD or having centrally planned economies indicates that about 27 of these countries may have operating nuclear power plants by the end of the century. In the 1974 Edition of the ''Market Survey'' it was estimated that the installed nuclear capacity in these countries might reach 24 GW by 1980, 157 GW by 1190 and 490 GW by the year 2000. It now appears that these figures are too high for a number of reasons. These include 1) the diminished growth in electrical demand which has occurred in many Member States during the last several years, 2) the extremely high cost of nuclear plant construction which has placed financial burdens on countries with existing nuclear programmes, 3) the present lack of commercially available small and medium power reactors which many of the smaller Member States would need in order to expand their electric power systems and 4) the growing awareness of Member States that more attention should be paid to exploitation of indigenous energy sources such as hydroelectric power, coal and lignite

  15. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  16. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1985-01-01

    On the occasion of the retirement of the Editor-in-chief of 'atomwirtschaft', the author gave a keynote speech on the development of nuclear power in the Federal Republic of Germany at the headquarters of the Handelsblatt Verlag in Duesseldorf on October 30, 1984. He subdivided the period under discussion into five phases, the first of which comprises the 'founding years' of 1955 to 1960. This was the time when activities in nuclear research and nuclear technology in Germany, which were permitted again in mid-1955, began with the establishment of the national research centers, the first Atomic Power Program, the promulgation of the Atomic Energy Act, the foundation of government organizations, including the Federal Ministry for Atomic Energy, etc. In the second phase, between 1960 and 1970, a solid foundation was laid for the industrial peaceful uses of nuclear power in the construction of the first LWR experimental nuclear power stations, the first successful export contracts, the beginnings of the first nuclear fuel cycle plants, such as the WAK reprocessing plant, the Asse experimental repository, the Almelo agreement on centrifuge enrichment. The third phase, between 1970 and 1975, was a period of euphoria, full of programs and forecasts of a tremendous boom in nuclear generating capacities, which were further enhanced by the 1973 oil squeeze. In 1973 and 1974, construction permits for ten nuclear power plants were applied for. The fourth phase, between 1975 and 1980, became a period of crisis. The fifth phase, the eighties, give rise to hope for a return to reason. (orig./UA) [de

  17. The ''healthy worker effect'' and other determinants of mortality in workers in the nuclear industry

    International Nuclear Information System (INIS)

    Beral, V.; Carpenter, L.; Booth, M.; Inskip, H.; Brown, A.

    1987-01-01

    Workers in the nuclear industry has been found to have lower mortality rates than the national average. This is in part due to the ''healthy worker effect'' - the recruitment of healthy individuals into the workforce. Employees of the United Kingdom Atomic Energy Authority had especially low mortality rates in the 15 years following first employment. Thereafter mortality rates remained about 20% below the national average. Social class was a clear predictor of mortality, the professional and executive classes (Social Classes I and II) having mortality rates about 40% below the national average. Mortality was not related to duration of employment. Radiation and non-radiation workers generally showed similar patterns of mortality. (author)

  18. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  19. Nuclear power: achievement and prospects

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1993-01-01

    History of nuclear power generation from the time it was a technological curiosity to the time when it developed into a mature, sizeable international industry is outlined. Nuclear power now accounts for 17% of the world's total electricity generated. However, it is noted that the presently installed capacity of nuclear power generation falls short of early expectations and nuclear power is not as cheap as it was hoped earlier. There is opposition to nuclear power from environmentalists and the public due to fear of radiation and the spread of radioactivity during accidents, even though nuclear reactors by and large have a good safety record. Taking into account the fact that electricity consumption is growing at the rate of 2-3% in the industrialized world and at over 5% in the rest of world and pollution levels are increasing due to burning of fossil fuels and subsequent greenhouse effect, the demand for power will have to be be met by increasing use of non-fossil fuels. One of the most promising non-fossil fuels is the nuclear fuel. In the next 30 years, the nuclear power generation capacity can be increased two to three times the present capacity by: (1) managing economics, (2) extending uranium resources by reprocessing spent fuel and recycling the recovered uranium and plutonium and by using fast reactor technology (3) getting public acceptance of and support for nuclear power by allaying the fear of radiation and the fear of large scale accidents through quantitative risk analysis and (4) establishing public confidence in waste disposal methods. (M.G.B.). 18 refs., 2 tabs

  20. Occupational radiation exposure at commercial nuclear power reactors, 1978

    International Nuclear Information System (INIS)

    Brooks, B.G.

    1979-11-01

    An updated compilation is presented of occupational radiation exposures at commercial nuclear power reactors for the years 1969 through 1978. Data received from the 64 light water cooled reactors (LWRs) that had completed at least one year of commercial operation as of December 31, 1978 are included. This represents an increase of seven reactors over the number contained in last year's report. The total number of personnel monitored at LWRs during 1978 increased by approximately 12% to 76,121. The number of workers that received measurable doses, however, increased only 8% to 45,978. The total collective dose for 1978 is estimated to be 31,806 man-rems, a small decrease from last year's value of 32,511, which results in the average dose per worker decreasing slightly to 0.69 rems. The average collective dose per reactor also decreased, by approximately 15%, to a value of 497 man-rems

  1. The development of Chinese power industry and its nuclear power

    International Nuclear Information System (INIS)

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  2. Reduction of noise influence during the periodical inspection of the nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hikono, Masaru [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    At the nuclear power plant under the regular inspection, the sound level and the worker's impression of the environmental noises were measured. The environmental noise was the level with a possibility to cause the noise-induced deafness and have the psychological influence on the workers such as ''Get irritated''. These results imply the necessity of the noise countermeasure. For the noise influence relaxation, we examined the effectiveness of ear protections (e.g., ear plugs) and the intelligibility improvement of the paging system, prepared the noise management manual and the educational leaflet for the support of worker's self-defense. The results of the examinations showed that ear plug was effective especially in the high-noise environment and that the improvement of paging system increased the intelligibility. (author)

  3. Nuclear power infrastructure and planning

    International Nuclear Information System (INIS)

    2005-01-01

    There are several stages in the process of introducing nuclear power in a country. These include feasibility studies; technology evaluation; request for proposals and proposal evaluation; project and contracts development and financing; supply, construction, and commissioning; and finally operation. The IAEA is developing guidance directed to provide criteria for assessing the minimum infrastructure necessary for: a) a host country to consider when engaging in the implementation of nuclear power, or b) a supplier country to consider when assessing that the recipient country would be in an acceptable condition to begin the implementation of nuclear power. There are Member States that may be denied the benefits of nuclear energy if the infrastructure requirements are too large or onerous for the national economy. However if co-operation could be achieved, the infrastructure burden could be shared and economic benefits gained by several countries acting jointly. The IAEA is developing guidance on the potential for sharing of nuclear power infrastructure among countries adopting or extending nuclear power programme

  4. Nuclear power: the turning tide

    International Nuclear Information System (INIS)

    Riley, P.J.; Warren, D.S.

    1981-01-01

    During 1980 and 1981, opposition to the expansion of the nuclear power generation programme grew from about 45% of the population to approximately 53%. Women, young people and labour voters are the most strongly opposed to nuclear power but among no section of the population is there a clear majority in favour of building more nuclear power stations. (author)

  5. Overview paper on nuclear power

    International Nuclear Information System (INIS)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power

  6. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  7. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  8. Work and Risk: Perceptions of Nuclear-Power Personnel. a Study in Grounded Theory.

    Science.gov (United States)

    Fields, Claire Dewitt

    1992-01-01

    The utility industry has devoted time and money to assure personnel within nuclear power plants are informed about occupational risks. Radiation-protection training programs are designed to present information to employees about occupational radiation and protective procedures. Work -related concerns are known to create stress, affect the morale of the workforce, influence collective bargaining, and increase compensation claims. This study was designed to determine perceptions of risk among employees of nuclear power plants and identify variables that influence these perceptions. Four power plants were included in the study, one in Canada and three in the United States. Data were generated through participant observations and interviews of 350 participants during a period of 3 weeks at each plant. Data were gathered and analyzed following procedures advanced by Grounded Theory, a naturalistic methodology used in this study. Training content, information, and communication materials were additional sources of data. Findings indicated employees believed health and safety risks existed within the work environment. Perceptions of risk were influenced by training quality, the work environment, nuclear myths and images of the general public, and fears of family members. Among the three groups of workers, administration personnel, security personnel, and radiation workers, the latter identified a larger number of risks. Workers perceived radiation risks, shift work, and steam pipe ruptures as high-level concerns. Experiencing stress, making mistakes, and fear of sabotage were concerns shared among all employee groups at various levels of concern. Strategies developed by employees were used to control risk. Strategies included teamwork, humor, monitoring, avoidance, reframing, and activism. When risks were perceived as uncontrollable, the employee left the plant. A coping strategy of transferring concerns about radiological risks to nonradiological risks were uncovered in

  9. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  10. Public perception process of nuclear power risk and some enlightenment to public education for nuclear power acceptance

    International Nuclear Information System (INIS)

    Yang Bo

    2013-01-01

    This paper, based on the international research literatures on perception of risks, designs a conceptual model of public perception of nuclear power risk. In this model, it is considered that the public perception of nuclear power risk is a dynamic, complicate and closed system and is a process from subjective perception to objective risk. Based on the features of the public perception of nuclear power risk and multi-faceted dimension influences as discussed, suggestions for the public education for nuclear power acceptance are given in five aspects with indication that the public education for nuclear power acceptance plays an important role in maintaining the public perception of nuclear power risk system. (author)

  11. The Assessment of I-131 Internal Doses of Nuclear Medicine Workers in Korea Using Thyroid uptake system

    International Nuclear Information System (INIS)

    Bahn, Young Kag; Oh, Gi Back; Lee, Chang Ho; Lee, Jong Doo; Yeom, Yu Sun; Hwang, Young Muk

    2012-01-01

    There are possibilities the radiation workers could intake the radiation when workers deal with radiation-materials. Therefore, internal radiation doses of radiation workers need to be assessed. Although an application of the nuclear medicine is continuously increased in Korea, there is not a proper tool and form to monitor the internal doses of nuclear medicine workers. However, it is possible to attain the internal doses of I-131 to evaluate using thyroid uptake and well count system. In this study, we measured and evaluated the I-131 internal doses of nuclear medicine workers in Korea using thyroid uptake and well count system and performed an air sampling

  12. Nuclear power in competitive electricity markets

    International Nuclear Information System (INIS)

    2000-01-01

    Economic deregulation in the power sector raises new challenges for the prospects of nuclear power. A key issue is to assess whether nuclear power can be competitive in a de-regulated electricity market. Other important considerations include safety, nuclear liability and insurance, the nuclear power infrastructure, and health and environmental protection. This study, conducted by a group of experts from twelve OECD Member countries and three international organisations, provides a review and analysis of these issues, as related to both existing and future nuclear power plants. It will be of particular interest to energy analysts, as well as to policy makers in the nuclear and government sectors. (author)

  13. Abuse of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J [UKAEA

    1976-09-01

    This paper reproduces an address by Sir John Hill, Chairman of the United Kingdom Atomic Energy Authority, at a conference in London organised by the Financial Times in July 1976. Actions that, in the author's view, could be regarded as constituting abuse of nuclear power are first summarised, and the various aspects of the use and abuse of nuclear power are discussed. The author considers that achieving the maximum degree of acceptance of the Non-Proliferation Treaty is the most important political objective in nuclear power, but considers that nuclear terrorism would be abortive and that, so far as the UK is concerned, the present precautions are adequate and will remain so. It is considered that much abuse of nuclear power arises from the prevalence of its critics, particularly with reference to Pu hazards, the health of nuclear employees, and possible damage to the health of the public. The Pu problem is considered to be far more emotive than rational. The possibility of lung cancer and leukaemia is discussed. It is concluded that atomic energy is one of the best of industries in which to work, both from the health and interest points of view.

  14. Nuclear power strategy: requirements for technology

    International Nuclear Information System (INIS)

    Orlov, V.V.; Rachkov, V.I.

    2001-01-01

    The possible role of nuclear power in sustainable development demands answers to at least three questions: Is large-scale nuclear power essential to future development? - Is it feasible to have modern nuclear power transformed for large-scale deployment? - When will large-scale nuclear power be practically needed? The questions are analysed with the requirements to be fulfilled concerning present-day technologies

  15. The economics of nuclear power

    International Nuclear Information System (INIS)

    Monto, Geethanjali

    2011-01-01

    Nuclear power is seen by some as a partial solution to climate change. The obvious supporters include nuclear establishments, but the 'surprising' supporters comprise some environmentalists like James Lovelock. One of the 15 strategies proposed by Stephen Pacala and Robert Socolow as part of their wedge model is to substitute nuclear power for coal power. The addition of 700 GW of nuclear power, i.e. roughly twice the current global capacity, would constitute one wedge and could reduce one billion tonnes of carbon by mid-century. (The other 14 strategies include: efficient vehicles; reduced use of vehicles; efficient buildings; efficient baseload coal plants; gas baseload power for coal baseload power capture CO 2 at baseload power plant capture CO 2 at H 2 plant; capture CO 2 at coal-to-synfuels plant and geological storage; wind power for coal power; PV power for coal power; wind H 2 in fuel-cell car for gasoline in hybrid car; biomass fuel for fossil fuel; reduced deforestation, plus reforestation, afforestation, and new plantations, and conservation tillage

  16. Development of Czechoslovak nuclear power engineering

    International Nuclear Information System (INIS)

    Keher, J.

    1985-01-01

    The output of Czechoslovak nuclear power plants is envisaged at 2200 MW by 1985, 4400 MW by 1990 and 10,280 MW by the year 2000. The operation so far is assessed of Bohunice V-1 and Bohunice V-2 power plants as is the construction of the Dukovany nuclear power plant. International cooperation in the fulfilment of the nuclear power programme is based on the General Agreement on Cooperation in the Prospective Development and Interlinkage of CMEA Power Systems to the year 1990, the Agreement on Multilateral International Specialization and Cooperation of Production and on Mutual Deliveries of Nuclear Power Plant Equipment. The most important factor in international cooperation is the Programme of Cooperation between the CSSR and the USSR. The primary target in the coming period is the Temelin nuclear power plant project and the establishment of unified control of the nuclear power complex. (M.D.)

  17. Nuclear power complexes and economic-ecological problems of nuclear power development

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Bobolovich, V.N.; Emel'yanov, I.Ya.

    1977-01-01

    The effect of constructing NPP's at separate sites in densely populated areas on economic efficiency of nuclear power and its ecological implications has been investigated. Locating NPP's and nuclear fuel cycle plants at different sites results in large scale shipments of fresh and spent nuclear fuels and radioactive wastes. The fact increases the risk of a detrimental environmental impact, duration of the external fuel cycle, and worsens, in the end, nuclear power economics. The prudence of creating nuclear parks is discussed. The parks may be especially efficient if the program of developing NPP's with fast breeder reactors is a success. Comparative evaluations show that from economic standpoint deployment of nuclear parks in the European part of the USSR has no disadvantage before construction of separate NPP's and supporting fuel cycle facilities of equivalent capacity, even if the construction of nuclear parks runs dearer by 30% than assumed. The possibility for nuclear parks to meet a part of demand for ''off-peak'' energy production, district heating and process heat production is also shortly discussed

  18. Nuclear security - New challenge to the safety of nuclear power plants

    International Nuclear Information System (INIS)

    Li Ganjie

    2008-01-01

    The safety of nuclear power plants involves two aspects: one is to prevent nuclear accidents resulted from systems and equipments failure or human errors; the other is to refrain nuclear accidents from external intended attack. From this point of view, nuclear security is an organic part of the nuclear safety of power plants since they have basically the same goals and concrete measures with each other. In order to prevent malicious attacks; the concept of physical protection of nuclear facilities has been put forward. In many years, a series of codes and regulations as well as technical standard systems on physical protection had been developed at international level. The United Nations passed No. 1540 resolution as well as 'Convention on the Suppression of Acts of Nuclear terrorism', and revised 'Convention on Physical Protection of Nuclear Materials', which has enhanced a higher level capacity of preparedness by international community to deal with security issues of nuclear facilities. In China, in order to improve the capability of nuclear power plants on preventing and suppressing the external attacks, the Chinese government consecutively developed the related codes and standards as well as technical documents based on the existing laws and regulations, including 'Guide for the Nuclear Security of Nuclear Power Plants' and 'Guide for the Physical Protection of Nuclear Materials', so as to upgrade the legislative requirements for nuclear security in power plants. The government also made greater efforts to support the scientific research and staff training on physical protection, and satisfying the physical protection standards for newly-built nuclear facilities such as large scale nuclear power plants to meet requirement at international level. At the same time old facilities were renovated and the Chinese government established a nuclear emergency preparedness coordination mechanism, developed corresponding emergency preparedness plans, intensified the

  19. Study on the distribution coefficient during environmental impact evaluation in Chinese inland nuclear power plants

    International Nuclear Information System (INIS)

    Xu Haifeng; Shang Zhaorong; Chen Fangqiang

    2012-01-01

    Description the radionuclide distribution coefficient of the important factors in the river sediment systems, at home and abroad the main method of measuring the K d value and progress in China's inland nuclear power plant environmental impact assessment of workers to carry out the distribution coefficient K d value measurement ideas put forward recommendations. (authors)

  20. Actual tasks and directions of protection of mental health of the Ukrainian nuclear power plants employers

    International Nuclear Information System (INIS)

    Godlevskij, A.G.

    1999-01-01

    The problems of mental health of employers of the Ukrainian Nuclear Power Stations (UNPS) are considered on a background increasing the economic and the social crisis in our society. Is marked, that the psychological instability and mental disorders of the engineers, operators and administrative personnel can adverse influence economic parameters of the UNPS and, especially, on maintenance of nuclear and radiating safety of the Nuclear Power Station. We have information about small numbers of research works in this area and necessity of creation the modern government Social-Medical-Psychological Service of the UNPS. We submitted the basic goals, tasks and complex actual parts of the program 'Logos'. These Service and program directed on preservation and strengthening of the mental health of UNPS workers

  1. Nuclear power in crisis

    International Nuclear Information System (INIS)

    Blowers, Andrew.; Pepper, David.

    1987-01-01

    Six themes run through this book: nuclear decision making and democratic accountability, nuclear bias and a narrow-based energy policy, scientific discredit and popular expertise, fusing science with social values, managerial competence and the geography of nuclear power. These are covered in thirteen chapters (all indexed separately) grouped into four parts -the political and planning context, nuclear waste, risk and impact - the social dimension and the future of nuclear power. It considers aspects in France, the United States and the United Kingdom with particular references to the Sizewell-B inquiry and the Sellafield reprocessing plant. (UK)

  2. Recommendations of the ICRP and the workers

    International Nuclear Information System (INIS)

    1979-01-01

    Examination of the different links in the nuclear power generation chain indicated that the mean annual dose exceeded 500 mrem (5mSva -1 ) for workers in uranium mines, nuclear power stations of the light water variety and reprocessing plants. This dose has been consistently exceeded over the past few years. More research is urged into the effects of small radiation doses and the variation of the relative biological effectiveness as a function of dose. The subject of social security for occupational diseases is also discussed with particular respect to the itinerant worker. It is suggested that a mean annual dose of 500 mrem should be incorporated in legislative texts. (U.K.)

  3. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1979-01-01

    Witty, critically, and with expert knowledge, 'Atomic power for beginners' describes the development of nuclear power for military purposes and its 'peaceful uses' against the will of the population. Atomic power, the civil baby of the bomb is not only a danger to our lives - it is enemy to all life as all hard technologies are on which economic systems preoccupied with growth put their hopes. Therefore, 'Atomic power for beginners' does not stop at nuclear engineering but proceeds to investigate its consequences, nationally and with a view to the Third World. And since the consequences are so fatal and it is not enough to say no to nuclear power, it gives some thoughts to a better future - with soft technology and alternative production. (orig.) 891 HP/orig. 892 MKO [de

  4. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Blix, H.

    1989-11-01

    The IAEA Director General pointed out that continued and expanded use of nuclear power must be one among several measures to restrain the use of fossil fuels and thereby limit the emissions of greenhouse gases. With regards to future trends in world electricity demands, the Director General emphasized the existing gap between the frequent claims as to what conservation can achieve and actual energy plans. The objections to nuclear power which are related to safety, waste disposal and the risk of proliferation of nuclear weapons are also discussed. His conclusion is that nuclear power can help significantly to meet growing needs of electricity without contributing to global warming, acid rains or dying forests, responsible management and disposal of nuclear wastes is entirely feasible, and the safety of nuclear power must be continuously strengthened through technological improvement and methods of operation

  5. Nuclear power in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V A

    1981-04-01

    This article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950s, their contribution had grown to 6% of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast-breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow. The status of nuclear power stations at 20 locations is summarized in a table.

  6. How nuclear power began

    International Nuclear Information System (INIS)

    Gowing, M.

    1987-01-01

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  7. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  8. Nuclear power in Japan

    International Nuclear Information System (INIS)

    Kishida, J.

    1990-01-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  9. Nuclear power in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, J [Japan Research Institute, Ltd., Tokyo (Japan)

    1990-07-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations.

  10. Nuclear power: 2004 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    Last year, 2004, 441 nuclear power plants were available for power supply in 31 countries of the world. Nuclear generating capacity attained its highest level so far at an aggregate gross power of 385,854 MWe and an aggregate net power of 366,682 MWe, respectively. Nine different reactor lines are operated in commercial nuclear power plants. Light water reactors (PWR and BWR) again are in the lead with 362 plants. At year's end, 22 nuclear power plants with an aggregate gross power of 18,553 MWe and an aggregate net power, respectively, of 17,591 MWe were under construction in nine countries. Of these, twelve are light water reactors, nine are CANDU-type reactors, and one is a fast breeder reactor. So far, 104 commercial reactors with powers in excess of 5 MWe have been decommissioned in eighteen countries, most of them low-power prototype plants. 228 nuclear power plants of those in operation, i.e. slightly more than half, were commissioned in the 1980es. Nuclear power plant availabilities in terms of capacity and time again reached record levels. Capacity availability was 84.30%, availability in terms of time, 85.60%. The four nuclear power plants in Finland continue to be world champions in this respect with a cumulated average capacity availability of 90.30%. (orig.)

  11. Country Nuclear Power Profiles - 2009 Edition

    International Nuclear Information System (INIS)

    2009-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2009 edition issued on CD-ROM and Web pages. It updates the country information for 44 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 30 countries that have operating nuclear power plants, as well as 14 countries having past or planned nuclear power programmes (Bangladesh, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Kazakhstan, Nigeria, Philippines, Poland, Thailand, Tunisia, Turkey and Vietnam). For the 2009 edition, 26 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases

  12. Country Nuclear Power Profiles - 2011 Edition

    International Nuclear Information System (INIS)

    2011-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2011 edition issued on CD-ROM and Web pages. It updates the country information for 50 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 21 countries having past or planned nuclear power programmes (Bangladesh, Belarus, Chile, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Jordan, Kazakhstan, Kuwait, Lithuania, Morocco, Nigeria, Philippines, Poland, Syrian Arab Republic, Thailand, Tunisia, Turkey and Vietnam). For the 2011 edition, 23 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases.

  13. Nuclear power: Pt. 3

    International Nuclear Information System (INIS)

    Van Wyk, A.

    1985-01-01

    The use of nuclear power in warfare is viewed from the point of use usefullness, essentiality and demolition. The effects of a H-bomb explosion are discussed as well as the use of nuclear power in warfare, with a Christian ethical background

  14. Some problems concerning the radiation protection in nuclear power stations

    International Nuclear Information System (INIS)

    Bozoky, L.

    1977-01-01

    The appearance and fast spreading of the nuclear power stations raised new and difficult questions in connection with the theoretical bases of radiation protection. The new standpoint of the International Commission on Radiological Protection is that both the workers at a pile and the inhabitants take less risk because of ionizing radiation than they usually take in everyday life. The maximum dose which can be permitted remained 5 rem/year for those who professionally deal with ionizing radiation and 0.5 rem/year for the groups in special situation. (V.N.)

  15. Nuclear power and public opinion

    International Nuclear Information System (INIS)

    Kazanikov, I.A.; Klykov, S.A.

    2000-01-01

    The public opinion on Nuclear Power is not favorable. A purposeful work with public perception is necessary. One way to create a positive image of the nuclear industry is to improve public radiological education. This challenge can be resolved in the close cooperation with state school and preschool education. The formation about nuclear power should be simple and symbolical. Our society can be divided into 4 parts which can be called as target groups: First group - People from the nuclear industry with special education working at nuclear facilities or related to the industry. Second group - People working in the fields connected with nuclear power. Third group - People not related to nuclear power or even with negative impression to the industry. This group is the largest and the work required is the most difficult. Fourth group - The number of this group's members is the least, but it has strong influence on public opinion. 'Greens' and a broad spectrum of ecological organizations can be included in this group. (Authors)

  16. Summer 1942 in Chicago: Nuclear power

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1982-01-01

    On 2 December 1942 the first man-made nuclear reactor went critical. The nuclear age was born. In his recently completed 'political history of nuclear energy' M. Goldschmidt traces the whole story of the nuclear age from the discovery of fission to the present day. In the extract from his book printed below, M. Goldschmidt tells of his personal involvement in the US nuclear research programme and of his contact with the workers at the University of Chicago; he reminds us that Fermi's achievement, historic as it was, was not the first chain reaction to take place on earth

  17. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  18. Nuclear power and weapons proliferation

    International Nuclear Information System (INIS)

    Greenwood, T.; Rathjens, C.W.; Ruina, J.

    1977-01-01

    The relationship between nuclear weapons development and nuclear electric power is examined. A brief description of nuclear weapons design is first given. This is then followed by a discussion of various aspects of nuclear power technology and of how they affect a nuclear weapon programme. These include fuel cycles, chemical reprocessing of spent fuel, uranium enrichment, and the control of dissemination of nuclear technology. In conclusion there is a discussion of possible political and institutional controls for limiting nuclear proliferation. (U.K.)

  19. Country Nuclear Power Profiles - 2012 Edition

    International Nuclear Information System (INIS)

    2012-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP's main objectives are to consolidate information about the nuclear power infrastructures in participating countries, and to present factors related to the effective planning, decision making and implementation of nuclear power programmes that together lead to safe and economical operations of nuclear power plants. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. Topics such as reactor safety, nuclear fuel cycle, radioactive waste management and research programmes are for the most part not discussed in detail. Statistical data about nuclear plant operations, population, energy and electricity use are drawn from the PRIS, EEDB, World Development Indicators (WDI) of the World Bank and the national contributions. This publication is updated and the scope of coverage expanded annually. This is the 2012 edition, issued on CD-ROM and Web pages. It contains updated country information for 51 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 22 countries with past or planned nuclear power. Each of the 51 profiles in this publication is self-standing, and contains information officially provided by the respective national authorities. For the 2012 edition, 20 countries provided updated or new profiles. These are Argentina, Armenia, Bangladesh, Chile, Germany, Ghana

  20. How nuclear liability practices have been implemented in US. US nuclear claims experience

    International Nuclear Information System (INIS)

    Bardes, C.R.

    2000-01-01

    Three Mile Island has been only major nuclear incident in US involving a power plant that resulted in payments to public. In addition to Three Mile Island, there have been only 3 lawsuits by members of the public against nuclear power plant operators; these alleged bodily injury and property damage resulting from normal operations. Of 202 claims handled by ANI, 161 involved individual nuclear facilities workers. Costs of the worker claims (through 1998) was US $1.5 million for indemnity (losses) and US$35.9 million for legal defense costs. By far, 1979 TMI accident produced largest number of third-party claims. ANI's emergency claims handling procedure for large nuclear accident tested and proved itself at Three Mile Island

  1. Country Nuclear Power Profiles. 2016 Edition

    International Nuclear Information System (INIS)

    2016-12-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2016 edition, issued on CD-ROM, contains updated country information for 51 States.

  2. Country Nuclear Power Profiles - 2015 Edition

    International Nuclear Information System (INIS)

    2015-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2015 edition, issued on CD-ROM, contains updated country information for 51 States

  3. Country Nuclear Power Profiles - 2013 Edition

    International Nuclear Information System (INIS)

    2013-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. This 2013 edition, issued on CD-ROM and Web pages, contains updated country information for 51 countries

  4. Micronuclei Frequencies in Lymphocytes of Nuclear Malaysia Radiation Workers

    International Nuclear Information System (INIS)

    Mohd Rodzi Ali; Aisyah Mohd Yusof; Rahimah Abdul Rahim; Juliana Mahamat Napiah; Yahaya Talib; Shafii Khamis

    2016-01-01

    The objective of the study is to investigate the frequency of cell aberration in lymphocytes of the Nuklear Malaysia radiation workers. A total of 58 blood samples were collected from the radiation workers during their routine medical examination. The donor age range is between 23 to 58 years, 31 male and 27 female. Blood samples were cultured according to the standard protocol recommended by the International Atomic Energy Agency. The mean micronuclei (MN) is 23.5 ± 0.9 MN/ 1000 binucleate, with the median value of 24 MN/ 1000 binucleate. The lowest number of MN was 9, and the highest was 43. There is no correlation between the number of MN in blood and yearly cumulative dose for radiation workers. The results indicate the MN expression due to small radiation exposure is almost negligible in Nuclear Malaysia radiation workers. (author)

  5. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 181,120 MWe and an aggregate gross capacity of 171,802 MWe were in operation. Two units, i.e. Civaux 2 in France and Mochovce-2 in Slovakia went critical for the first time and started commercial operation after having been connected to the grid. Three further units in France, Chooz 1 and 2 and Civaux 1, started commercial operation in 1999 after the completion of technical measures in the primary circuit. Last year, 13 plants were under construction in Romania, Russia, Slovakia and the Czech Republic, that is only in East European countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129.772 MWe and an aggregate net capacity of 123.668 MWe. Net electricity production in 1999 in the EU amounts to approx. 840.2 TWh, which means a share of 35 per cent of the total production. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, 58 per cent in Belgium and 47 per cent in Bulgaria, Sweden and Slovakia. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal and Austria. (orig.) [de

  6. Real-time assessment of exposure dose to workers in radiological environments during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, JeiKwon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Seo, JaeSeok; Jeong, SeongYoung; Lee, JungJun; Song, HaeSang; Lee, SangWha; Son, BongKi

    2014-01-01

    Highlights: • The method of exposure dose assessment to workers during decommissioning of nuclear facilities. • The environments of simulation were designed under a virtual reality. • To assess exposure dose to workers, human model was developed within a virtual reality. - Abstract: This objective of this paper is to develop a method to simulate and assess the exposure dose to workers during decommissioning of nuclear facilities. To simulate several scenarios, decommissioning environments were designed using virtual reality. To assess exposure dose to workers, a human model was also developed using virtual reality. The exposure dose was measured and assessed under the principle of ALARA in accordance with radiological environmental change. This method will make it possible to plan for the exposure dose to workers during decommissioning of nuclear facilities

  7. Nuclear power in the United States

    International Nuclear Information System (INIS)

    Johnston, J.B.

    1985-01-01

    All over the world except in the United States, nuclear energy is a low cost, secure, environmentally acceptable form of energy. In the United States, civilian nuclear power is dead. 112 nuclear power plants have been abandoned or cancelled in the last decade, and there has been no new order for nuclear plants since 1978. It will be fortunate to have 125 operating nuclear plants in the United States in the year 2000. There are almost 90 completed nuclear power plants and about 45 under construction in the United States, but several of those under construction will eventually be abandoned. About 20 % of the electricity in the United States will be generated by nuclear plants in 2000 as compared with 13 % supplied in the last year. Under the present regulatory and institutional arrangement, American electric utilities would not consider to order a new nuclear power plant. Post-TMI nuclear plants became very expensive, and there is also ideological opposition to nuclear power. Coal-firing plants are also in the similar situation. The uncertainty about electric power demand, the cost of money, the inflation of construction cost and regulation caused the situation. (Kako, I.)

  8. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  9. Workers moving the industry forward

    International Nuclear Information System (INIS)

    Murphy, J.D.

    1997-01-01

    The Power Workers' Union represents workers at Ontario Hydro's nuclear stations and AECL operators at Chalk River. Although labour relations are far from perfect, the union does its best to protect the industry. Avoiding confrontation as much as possible, this union is happy to be regarded as a partner in the business. The union is impressed by the consultants' report on Ontario Hydro's nuclear operations. Whatever the future may bring, the present is not really pleasant for nuclear workers generally, in that the work itself is very demanding technically, and must be performed with great diligence because the responsibility for safety is enormous. Considering the actual safety record, some caricatures or ''cheap shots'' from antinuclear politicians and special interest groups seem quite offensive. As a partner in public relations, the union has produced draft fact sheets on topics such as: transporting radioactive material; the burning of plutonium from dismantled weaponry; deep geological storage of nuclear waste; the sale of Candu reactors to China. The author closes with some advice on how to improve industrial relations, based on the union's experience

  10. Nuclear power in rock. Principal report

    International Nuclear Information System (INIS)

    1977-06-01

    In September 1975 the Swedish Government directed the Swedish State Power Board to study the question of rock-siting nuclear power plants. The study accounted for in this report aims at clarifying the advantages and disadvantages of siting a nuclear power plant in rock, compared to siting on ground level, considering reactor safety, war protection and sabotage. The need for nuclear power production during war situations and the closing down of nuclear power plants after terminated operation are also dealt with. (author)

  11. Nuclear power in space

    International Nuclear Information System (INIS)

    Aftergood, S.; Hafemeister, D.W.; Prilutsky, O.F.; Rodionov, S.N.; Primack, J.R.

    1991-01-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space

  12. Indicators for Nuclear Power Development

    International Nuclear Information System (INIS)

    2015-01-01

    Considering the scale of nuclear power aspirations, the number of planned nuclear new builds and the prospects of a number of countries constructing their first nuclear power plants, there is a need to assess the broader context of nuclear energy programmes in areas of macro-and socioeconomic conditions, energy systems and nuclear power, and the environment. It is important to assess the degree to which introduction or expansion of nuclear power is beneficial under these specific circumstances. This publication provides a set of indicators for nuclear power development that can serve as a tool to help explore these issues. The indicators are meant to provide a first order assessment of the situation and identify the issues that present the benefits and challenges in a balanced and objective manner and thereby help guide more detailed evaluations in the next stage of planning and preparations. Methodology sheets are provided to help users in data collection, quantification and interpretation of the indicators. The application of the indicators set is flexible. Users can select a subset of indicators that are most relevant for the questions they wish to explore in a given study or decision making process

  13. Public attitudes to nuclear power

    International Nuclear Information System (INIS)

    Margerison, T.A.

    1988-01-01

    The British public is very poorly informed about nuclear power. 55 % express concern about it, but few can explain why. Some of the reasons given are extraordinary: 37 % of the public think nuclear power causes acid rain which pollutes lakes and kills trees; 47 % think coal is a safer fuel for making electricity than nuclear; a quarter think natural radiation is less harmful than that from nuclear stations. And a very large number of people have greatly exaggerated views of the amount of radiation released from power stations and the harm that it is doing people. Also, a quarter of everyone asked thought that nuclear power stations make bombs as well as electricity. Most of these concerns come from the media, and in particular from television which has broadcast many programmes which are strongly anti-nuclear, often inaccurate, and usually sensational. Fortunately, the effect of these stories is less damaging than one might think. At present about 42 % of the adult British population are not in favour of nuclear power, so there is still a majority who are not against. About 44 % are positively in favour, and the remainder are not sure or have no view

  14. Projected role of nuclear power in Egypt and problems encountered in implementing the first nuclear power plant

    International Nuclear Information System (INIS)

    Effat, K.E.A.; Sirry, H.; El-Sharkawy, E.

    1977-01-01

    The increasing rise in fossil-fuel prices has favourably affected the economics of nuclear power generation bringing down the economically competitive size of nuclear units closer to small sizes compatible with grid capacities in developing countries. This encouraged Egypt to turn to nuclear power to fulfil its future power needs. In implementing its first nuclear power plant, Egypt is facing various problems. The capacity of the national electric power system and its inherent characteristics pose certain restrictions on the size and design of the nuclear plant required. The availability of sufficient local qualified management, engineering and technical personnel to participate in both precontractual and construction phases of the plant is quite a major problem. Lack of local developed industry to back up the construction phase implies the dependence to a large extent on imported equipment, materials and technology. The paper reviews the present and projected power demands in Egypt and the factors behind the decision to introduce a nuclear power generation programme. Various problems encountered and anticipated in introducing the first nuclear power plant are also discussed. (author)

  15. World status - nuclear power

    International Nuclear Information System (INIS)

    Holmes, A.

    1984-01-01

    The problems of nuclear power are not so much anti-nuclear public opinion, but more the decrease of electricity consumption growth rate and the high cost of building reactors. Because of these factors, forecasts of world nuclear capacity have had to be reduced considerably over the last three years. The performance of reactors is considered. The CANDU reactor remains the world's best performer and overall tends to out-perform larger reactors. The nuclear plant due to come on line in 1984 are listed by country; this shows that nuclear capacity will increase substantially over a short period. At a time of stagnant demand this will make nuclear energy an important factor in the world energy balance. Nuclear power stations in operation and under construction in 1983 are listed and major developments in commercial nuclear power in 1983 are taken country by country. In most, the report is the same; national reactor ordering cut back because the expected increase in energy demand has not happened. Also the cost-benefit of nuclear over other forms of energy is no longer as favourable. The export opportunities have also declined as many of the less developed countries are unable to afford reactors. (U.K.)

  16. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  17. Nuclear power news no 38

    International Nuclear Information System (INIS)

    1986-01-01

    The following matters are treated: What happened at the Chernobyl accident? - The Russian graphite reactor - a comparison with light water reactors. - The Soviet program for nuclear power. - Serious organizational unsatisfactory state of things at the nuclear power plants of Soviet. - Graphite reactors of the nuclear power program of the world. - The radioactive fallout in Sweden after Chernobyl. - The risks involved in radioactive radiation - an experts conception

  18. The Prospective of Nuclear Power in China

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2018-06-01

    Full Text Available From scratch to current stage, China’s nuclear power technology has experienced rapid development, and now China has begun to export nuclear power technology. As a kind of highly efficient and clean energy source, nuclear energy is also a priority option to solve energy crisis, replace traditional fossil fuels and reduce air pollution. By analyzing the short-term and long-term development trend of nuclear power in China, the paper has reached the following conclusions: (1 Under the current situation of excess supply, due to high investment cost of first-kind reactors, the decline of utilization hours and the additional cost of ancillary service obligations, the levelized cost of energy (LCOE of the third generation nuclear power will significantly increase, and the internal rate of return (IRR will significantly fall. In the short term, market competitiveness of nuclear power will be a major problem, which affects investment enthusiasm. (2 With technology learning of third generation technology, the LCOE of nuclear power will be competitive with that of coal power in 2030. (3 The CO2 emissions reduction potential of nuclear power is greater than coal power with CCS and the avoided CO2 costs of nuclear power is much lower. Therefore, nuclear power is an important option for China’s long-term low-carbon energy system transition. The paper proposes to subsidize the technical learning costs of new technology through clean technology fund at the early commercialization stage. When designing power market rules, the technical characteristics of nuclear power should be fully considered to ensure efficient operation of nuclear power.

  19. Nuclear power development in the Far East

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, W C [Pacific Enegineers and Constructors Ltd., Taipei, Taiwan (China)

    1990-06-01

    The nuclear power development of selected Far Eastern countries is presented in this paper. This paper consists of three sections. Section 1 describes the current power/nuclear power status of Japan, South Korea, Taiwan and China. The first three countries already have operating nuclear power units, while mainland China will have a nuclear power commissioned this year according to their schedule. The power development plan for these countries is also presented. All of them have included nuclear power as part of their energy sources for the future. Section 2 briefly describes the nuclear power industry in these countries which basically covers design, manufacturing and R and D activities. Public Acceptance programs (PAPs) will play a significant role in the future of nuclear power. Section 3 discusses the PAPs of these countries. (author)

  20. Nuclear power development in the Far East

    International Nuclear Information System (INIS)

    Hsu, W.C.

    1990-01-01

    The nuclear power development of selected Far Eastern countries is presented in this paper. This paper consists of three sections. Section 1 describes the current power/nuclear power status of Japan, South Korea, Taiwan and China. The first three countries already have operating nuclear power units, while mainland China will have a nuclear power commissioned this year according to their schedule. The power development plan for these countries is also presented. All of them have included nuclear power as part of their energy sources for the future. Section 2 briefly describes the nuclear power industry in these countries which basically covers design, manufacturing and R and D activities. Public Acceptance programs (PAPs) will play a significant role in the future of nuclear power. Section 3 discusses the PAPs of these countries. (author)

  1. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    Bigot, B.

    2011-01-01

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  2. Nuclear power: the fifth horseman

    International Nuclear Information System (INIS)

    Hayes, D.

    1976-01-01

    ''Nuclear Power: The Fifth Horseman,'' is published in an attempt to identify and analyze emerging global trends and problems. This paper evaluates the future of nuclear power, subjecting it to several tests--those of economics, safety, adequacy of fuel supplies, environmental impact, and both national and international security. If the world is to ''go nuclear,'' adopting nuclear power as the principal source of energy, each of these criteria should be satisfied. In fact, none may be satisfied. Nuclear power is being re-examined in many quarters. Local communities throughout the world are concerned over reactor safety. Environmentalists and others are deeply concerned about the lack, or even the prospect, of satisfactory techniques for disposing of radioactive waste. Foreign policy analysts express grave concern over the weapons-proliferation implications of the spread of nuclear power, recognizing that sooner or later an unstable political leader or terrorist group will acquire this awesome weaponry. And, in 1975, the corporate executives who head electrical utilities in the United States cancelled or deferred 25 times as many new reactors as they ordered

  3. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  4. Nuclear power supply (Japan Nuclear Safety Institute)

    International Nuclear Information System (INIS)

    Kameyama, Masashi

    2013-01-01

    After experienced nuclear disaster occurred on March 11, 2011, role of nuclear power in future energy share in Japan became uncertain because most public seemed to prefer nuclear power phase out to energy security or costs. Whether nuclear power plants were safe shutdown or operational, technologies were requisite for maintaining their equipment by refurbishment, partly replacement or pressure proof function recovery works, all of which were basically performed by welding. Nuclear power plants consisted of tanks, piping and pumps, and considered as giant welded structures welding was mostly used. Reactor pressure vessel subject to high temperature and high pressure was around 200mm thick and made of low-alloy steels (A533B), stainless steels (308, 316) and nickel base alloys (Alloy 600, 690). Kinds of welding at site were mostly shielded-metal arc welding and TIG welding, and sometimes laser welding. Radiation effects on welding of materials were limited although radiation protection was needed for welding works under radiation environment. New welding technologies had been applied after their technical validation by experiments applicable to required regulation standards. Latest developed welding technologies were seal welding to prevent SCC propagation and temper-bead welding for cladding after removal of cracks. Detailed procedures of repair welding of Alloy 600 at the reactor outlet pipe at Oi Nuclear Power Plants unit 3 due to PWSCC were described as an example of crack removal and water jet peening, and then overlay by temper-bead welding using Alloy 600 and clad welding using Alloy 690. (T. Tanaka)

  5. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    Nuclear power utilization within 2020 horizon is expanding in Asia, particularly in Japan, China, India, Republic of Korea, Vietnam and Indonesia. The nuclear energy policy iof Japan sees the increase of nuclear power contribution for energy security and to control CO 2 emission with the contribution ratio through the 21 st century kept at the current level of 30-40% or even higher. Japan expects its first reprocessing plant to be operational in 2007 and its first commercial fast breeder reactor operational in 2050. Starting with her experience with the operation of its first research reactor in 1957, a power demonstration reactor from USA in 1963; the first commercial 166 MW power plant from UK in 1966 and then its first commercial 375 MW light water reactor from USA in 1970, Japan developed her own nuclear reactor technology. Today, Japan has 55 operating nuclear power plants (NPPs) totaling 49 GW which supply 30% of its electricity needs. There are two NPPs under construction and 11 additional NPPs to be completed by 2017. Japan's experience showed that engineers in the nuclear, mechanical, electrical, material and chemical fields are needed to man their nuclear power plant. For the period 1958 to about 1970, there was a rapid increase in the number of students enrolled for their bachelor of science majoring in nuclear science and technology but this number of enrollees leveled off beyond 1970 up to 2002. For those pursuing their masters of science degree in this field, there was a steady but moderate rise in the number of students from 1958 to 2002. The population of students in the Ph.D program in nuclear science and technology had the lowest number of enrollees and lowest level of increase from 1958 to 2002. The courses offered at the university for nuclear power are nuclear reactor physics and engineering, nuclear reactor safety engineering and radiation safety. Prior to graduation, the students undergo training at a nuclear research institute, nuclear power

  6. LDC nuclear power: Brazil

    International Nuclear Information System (INIS)

    Johnson, V.

    1982-01-01

    Brazil has been expanding its nuclear power since 1975, following the Bonn-Brasilia sales agreement and the 1974 denial of US enriched uranium, in an effort to develop an energy mix that will reduce dependence and vulnerability to a single energy source or supplier. An overview of the nuclear program goes on to describe domestic non-nuclear alternatives, none of which has an adequate base. The country's need for transfers of capital, technology, and raw materials raises questions about the advisability of an aggressive nuclear program in pursuit of great power status. 33 references

  7. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Hirschmann, H.; Vennemann, J.

    1980-01-01

    The paper describes the energy policy quandary of developing countries and explains why nuclear power plants of a suitable size - the KKW 200 MW BWR nuclear power plant for electric power and/or process steam generation is briefly presented here - have an economic advantage over fossil-fuelled power plants. (HP) [de

  8. Climate change and nuclear power

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  9. Nuclear power newsletter. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    2004-09-01

    This first issue of newsletter describes the Nuclear Power Division of the Department of Nuclear Energy responsible for implementation of the IAEA programme on Nuclear Power. The mission of the Division is to increase the capability of interested Member States to implement and maintain competitive and sustainable nuclear power programmes and to develop and apply advanced nuclear technologies. The topics covered in this publication are: Engineering and Management Support for Competitive Nuclear Power; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; The International Conference on 'Fifty Years of Nuclear Power - the Next Fifty Years'. A list of documents published recently by the Nuclear Power Division in enclosed

  10. China's nuclear energy demand and CGNPC's nuclear power development

    International Nuclear Information System (INIS)

    Rugang, Sh.

    2007-01-01

    By importation, assimilation and innovation from French nuclear power technology and experience, the China Guangdong Nuclear Power Plant Holding Company (CGNPC) has developed the capabilities of indigenous construction and operation of 1000 MW-class nuclear power plants. Through the industrial development over the past 20 years, four 1000 MW-class reactors have been built and put into commercial operation in China. CGNPC is negotiating with AREVA on the transfer of the EPR technology and the application of this technology for the Yangjang nuclear power plant depends on the negotiation results. Since China became a member of the 4. Generation International Forum, CGNPC as a large state-owned enterprise, will take an active part in the 4. generation nuclear power technology developments under the leadership of China Atomic Energy Authority, particularly it will contribute to the research work on the high-temperature gas-cooled reactor and on the super-critical water reactor

  11. Nuclear power in a changing world

    International Nuclear Information System (INIS)

    Taylor, J.

    1996-01-01

    Nuclear power has a future that will only be fully realised if it is shown to be a solution to some of the world's most pressing energy, and associated environmental, problems. This can only be done if nuclear power itself ceases to be perceived as a problem by the public, interest groups, governments and financial institutions. In public relations terms, this means removing the persistent distortions and misconceptions about the nuclear industry. Environmentally, it involves showing that nuclear power is the only alternative energy source which does not contribute to climate change, preserves rare minerals and recycles its raw materials. Governments must be persuaded to see that nuclear power is the only economic answer to the growing energy demand arising from increased industrialisation and population growth. Financiers need convincing that nuclear power is the investment of the future and generators that it is the lowest cost economic and environmental option. The future of nuclear power depends on meeting these challenges. (UK)

  12. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  13. Aspect of nuclear power

    International Nuclear Information System (INIS)

    Haghighi Oskoei, R.; Raeis Hosseiny, N.

    2004-01-01

    Over the next 50 years, unless patterns change dramatically, energy production and use will contribute to global warming through large-scale greenhouse gas emissions-hundreds of billions of tonnes of carbon in the form of carbon dioxide. Nuclear power would be one option for reducing carbon emissions. At present, however, this is unlikely: nuclear power faces stagnation and decline. We decided to study the future of nuclear power because we believe this technology , despite the changes it faces, is an important option for the world to meet future energy needs without emitting carbon dioxide and other atmospheric pollutants. Other options include increased efficiency, renewable and sequestration. We believe that all options should be preserved as nations develop strategies at provide energy while meeting important environmental challenges. The nuclear power option will only be exercised, however if the technology demonstrates better economics, improved safety, successful waste management, and low proliferation risk, and if public policies place a significant value on electricity production that does not produce carbon dioxide

  14. Nuclear power training courses

    International Nuclear Information System (INIS)

    1977-01-01

    The training of technical manpower for nuclear power projects in developing countries is now a significant part of the IAEA Technical Assistance Programme. Two basic courses are the cornerstones of the Agency's training programme for nuclear power: a course in planning and implementation, and a course in construction and operation management. These two courses are independent of each other. They are designed to train personnel for two distinct phases of project implementation. The nuclear power project training programme has proven to be successful. A considerable number of highly qualified professionals from developing countries have been given the opportunity to learn through direct contact with experts who have had first-hand experience. It is recognized that the courses are not a substitute for on-the-job training, but their purpose is achieved if they have resulted in the transfer of practical, reliable information and have helped developing countries to prepare themselves for the planning, construction and operation management of nuclear power stations

  15. The value of cytogenetic monitoring versus film dosimetry in the hot zone of a nuclear power plant

    International Nuclear Information System (INIS)

    Kubelka, D.; Fucic, A.; Milkovic-Kraus, S.

    1992-01-01

    Cytogenetic analysis was carried out in 41 workers prior to and following regular maintenance work in a nuclear power plant. Although film dosimetry did not show the maximal annual permitted dose in any of the examined subjects, cytogenetic analysis carried out following the work detected dicentric chromosomes in peripheral blood lymphocytes of 20 workers. According to our findings smoking habits and previous exposure to ionizing radiation had no effect on the increased number of chromosomal aberrations. (author). 23 refs.; 1 tab

  16. Nuclear power - facts, trends, problems

    International Nuclear Information System (INIS)

    Spickermann, W.

    1981-01-01

    An attempt has been made to describe the state-of-the-art of nuclear power utilization, particularly for energy production. On the basis of information obtained from study tours through the USSR a rather comprehensive review of nuclear power plants and research establishments in the Soviet Union, of desalination reactors, ship propulsion reactors and fast breeder reactors is given, including nuclear facilities of other countries, e.g. France, USA, GDR. Heat generation, radiation-induced chemical processes and aspects associated with nuclear energy uses, such as risks, environmental protection or radioactive wastes, are also considered. Moreover, the author attempts to outline the social relevance of nuclear power

  17. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  18. Current status of nuclear power

    International Nuclear Information System (INIS)

    Behnke, W.B.

    1984-01-01

    The decision to devote the 1984 conference to nuclear power is timely and appropriate. Illinois has a long, and distinguished history in the development of civilian nuclear power. The concept was born at the University of Chicago, developed at Argonne National Laboratory and demonstrated on the Commonwealth Edison system at our pioneer Dresden Nuclear Station. Today, Illinois ranks number one in the nation in nuclear generation. With over a quarter century of commercial operating experience, nuclear power has proven its worth and become a significant and growing component of electric power supply domestically and throughout the world. Despite its initial acceptance, however, the nuclear power industry in the U.S. is now in the midst of a difficult period of readjustment stemming largely from the economic and regulatory problems of the past decade. As a result, the costs of plants under construction have increased dramatically, causing serious financial difficulties for several projects and their owners. At the same time, the U.S. is facing hard choices concerning its future energy supplies. Conferences such as this have an important role in clarifying the issues and helping to find solutions to today's pressing energy problems. This paper summarizes the status of nuclear power both here and abroad, discussing the implications of current events in the context of national energy policy and economic development here in Illinois

  19. Construction work management for nuclear power stations

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1982-01-01

    Nuclear power generation is positioned as the nucleus of petroleum substitution. In the Kansai Electric Power Co., efforts have been made constantly to operate its nuclear power plants in high stability and safety. At present, Kansai Electric Power Co. is constructing Units 3 and 4 in the Takahama Nuclear Power Station in Fukui Prefecture. Under the application of the management of construction works described here, both the nuclear power plants will start operation in 1985. The activities of Kansai Electric Power Co. in the area of this management are described: an outline of the construction works for nuclear power stations, the management of the construction works in nuclear power stations (the stages of design, manufacturing, installation and test operation, respectively), quality assurance activities for the construction works of nuclear power plants, important points in the construction work management (including the aspects of quality control). (J.P.N.)

  20. Estimates of the financial consequences of nuclear-power-reactor accidents

    International Nuclear Information System (INIS)

    Strip, D.R.

    1982-09-01

    This report develops preliminary techniques for estimating the financial consequences of potential nuclear power reactor accidents. Offsite cost estimates are based on CRAC2 calculations. Costs are assigned to health effects as well as property damage. Onsite costs are estimated for worker health effects, replacement power, and cleanup costs. Several classes of costs are not included, such as indirect costs, socio-economic costs, and health care costs. Present value discounting is explained and then used to calculate the life cycle cost of the risks of potential reactor accidents. Results of the financial consequence estimates for 156 reactor-site combinations are summarized, and detailed estimates are provided in an appendix. The results indicate that, in general, onsite costs dominate the consequences of potential accidents

  1. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  2. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  3. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  4. Nuclear power in the Soviet Union

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.

    1989-01-01

    The pros and cons of nuclear power are similar in many countries, but the following pro factors are specific to the Soviet Union: the major sources of conventional fuel are in one area of the country, but energy consumption is concentrated in another; and a large portion of energy is generated using oil and gas. The arguments against nuclear power are as follows: safety requirements and expectations have been increased; and public opinion is negative. A program of nuclear power generation has been developed. New techniques are being implemented to increase safety and enhance operations of different types of nuclear power plants. Its should be obvious in the future that a nuclear power plant has better economic and environmental parameters than existing methods of power generation

  5. Economic competitiveness of nuclear power in China

    International Nuclear Information System (INIS)

    Hu Chuanwen

    2005-01-01

    Development of nuclear power in China has made a good progress. Currently, economic competitiveness of nuclear power compared to fossil-fuelled power plants is one of the major problems which hamper its development. This article presents the economic competitiveness of nuclear power in China with two-level analyses. First, levelized lifetime cost method is adopted for electricity generation cost comparisons. Important factors influencing economic competitiveness of nuclear power are described. Furthermore, a broad economic evaluation of the full fuel chain of nuclear power and fossil-fuelled plants is discussed concerning macro social-economic issues, environmental and health impacts. The comprehensive comparative assessment would be carried out for decision making to implement nuclear power programme. In consideration of external costs and carbon value, the economic competitiveness of nuclear power would be further improved. Facing swift economic growth, huge energy demand and heavy environmental burden, nuclear power could play a significant role in sustainable development in China. (authors)

  6. 1999 Nuclear power world report

    International Nuclear Information System (INIS)

    Wesselmann, C.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply and under construction, respectively, in 33 countries. A total of 436 nuclear power plants with an aggregate net power of 350.228 MWe and an aggregate gross power of 366.988 MWe were in operation in 31 countries. Four units with an aggregate of 2.900 MWe, i.e. Civaux 2 in France, Kaiga 2 and Rajasthan 3 in India, and Wolsung-4 in the Republic of Korea, went critical for the first time or started commercial operation after having been synchronized with the power grid. After 26 years of operation, the BN 350 sodium cooled fast breeder was permanently decommissioned in Kazakhstan. The plant not only generated electricity (its capacity was 135 MWe) but also supplied process heat to a seawater desalination plant. In 1999, however, it did not contribute to the supply of electricity. In Sweden, unit 1 of the Barsebaeck nuclear power station (600 Mwe net) was decommissioned because of political decisions. This step entails financial compensation payments and substitute electricity generating capacity made available to the power plant operators. Net electricity generation in 1999 amounts to approx. 2.395 Twh, which marks a 100 TWh increase over the preceding year. Since the first generation of electricity from nuclear power in 1951, the cumulated world generation amounts to nearly 37.200 TWh of electricity, and experience in the operation of nuclear power plants has increased to 9414 years. Last year, 38 plants were under construction. This slight increase is due to the start of construction of a total of seven projects: Two each in Japan, the Republic of Korea and Taiwan, and one in China. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, and 58 per cent in Belgium. With a share of approx. 20 per cent and more than 720 TWh, the US is the largest producer worldwide of electricity from nuclear power. As far as the aggregate

  7. Nuclear benefits and risks

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, P

    1987-03-01

    The paper reviews the broader issues that affect nuclear power in a world energy context. The importance of nuclear power as an energy source is described, as well as the environmental effects of different energy sources. The risks associated with the nuclear industry are discussed with respect to: risks due to radiation exposure, risks to workers in the nuclear industry, and risks to the public due to discharges from nuclear installations. (U.K.).

  8. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  9. Virginia power nuclear power station engineer training program

    International Nuclear Information System (INIS)

    Williams, T.M.; Haberstroh-Timpano, S.

    1987-01-01

    In response to the Institute of Nuclear Power Operations (INPO) accreditation requirements for technical staff and manager, Virginia Power developed the Nuclear Power Station Engineer Training Programs (NPSETP). The NPSETP is directed toward enhancing the specific knowledge and skills of company engineers, especially newly hired engineers. The specific goals of the program are to promote safe and reliable plant operation by providing engineers and appropriate engineering technicians with (1) station-specific basic skills; (2) station-specific specialized skills in the areas of surveillance and test, plant engineering, nuclear safety, and in-service inspection. The training is designed to develop, maintain, and document through demonstration the required knowledge and skills of the engineers in the identified groups at North Anna and Surry Power Stations. The program responds to American National Standards Institute, INPO, and US Nuclear Regulatory Commission standards

  10. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    ElBaradei, Mohamed

    2004-01-01

    The past two years have found the IAEA often in the spotlight - primarily because of our role as the world's 'nuclear watchdog', as we are sometimes referred to on the evening news. The most visible, and often controversial, peaceful nuclear application is the generation of electricity, the focus of this article largely from a European perspective. At the end of last year there were 440 nuclear power units operating worldwide. Together, they supply about 16% of the world's electricity. That percentage has remained relatively steady for almost 20 years. Expansion and growth prospects for nuclear power are centred in Asia. Of the 31 units under construction worldwide, 18 are located in India, Japan, South Korea and China, including Taiwan. Twenty of the last 29 reactors to be connected to the grid are also in the Far East and South Asia. That is probably more active construction than most Europeans would guess, given how little recent growth has occurred in the West. For Western Europe and North America, nuclear construction has been a frozen playing field - the last plant to be completed being Civaux-2 in France in 1999. That should raise a question: with little to no new construction, how has nuclear power been able to keep up with other energy sources, to maintain its share of electricity generation? Interestingly enough, the answer is tied directly to efforts to improve safety performance. The accident at Chernobyl in 1986 prompted the creation of the World Association of Nuclear Operators (WANO), and revolutionized the IAEA approach to nuclear power plant safety. Some analysts believe the case for new nuclear construction in Europe is gaining new ground, for a number of reasons: efforts to limit greenhouse gas emissions and reduce the risk of climate change; security of energy supply; Comparative Public Health Risk; different set of variables when choosing Each country's and region energy strategy. Looking to the future, certain key challenges are, of direct

  11. Nuclear power in the competitive environment

    International Nuclear Information System (INIS)

    Schlissel, D.A.

    1995-01-01

    Nuclear power was originally promoted as being able to produce electricity that would be open-quotes too cheap to meter.close quotes However, large construction cost overruns and rapidly rising operating costs caused many nuclear power plants instead to be very expensive sources of electricity. As a result, many nuclear utilities will face increasing cost pressures in the future competitive environment from lower-cost producers. In fact, the threat to nuclear utilities is so severe that many industry analysts are projecting that more that $70 billion of the utilities' remaining investments in nuclear plants will be open-quotes stranded,close quotes i.e., unrecoverable in the competitive environment. Others in the industry have speculated that many of the 150 major U.S. electric utilities, a large number of which are nuclear, could be swept away by competition, leaving fewer than fifty utilities. This paper will examine how utilities are attempting to improve the cost competitiveness of operating today's nuclear power plants. It will also identify some of the potential consequences of competition for nuclear power and the regulatory role of the U.S. Nuclear Regulatory Commission (NRC). Finally, this paper will address how the changing power markets will affect the prospects for the next generation of nuclear power plants

  12. Nuclear power in Japan and the USA

    International Nuclear Information System (INIS)

    Titterton, E.

    1979-06-01

    The development of the nuclear power industry in Japan and the USA is discussed. The author lists the number of nuclear power plants operating, under construction and planned and considers the contribution made by nuclear power stations to the total electricity generated. The advantages of nuclear power to both countries are outlined and forecasts are made of the role to be played by nuclear power in future years

  13. Bibliography: books and articles on nuclear waste, nuclear power and power supply during the years 1971-1987

    International Nuclear Information System (INIS)

    Djerf, M.; Hedberg, P.

    1988-06-01

    The bibliography provides a list of the supply published Swedish books and articles in periodicals on nuclear waste and nuclear power. Regarding book publication the bibliography comprises publications on questions of nuclear power and nuclear waste on the whole, whereas the bibliography on the periodical articles solely comprises nuclear waste questions. The book bibliography consists of a selective choice of publications, identified by a mapping of the total supply of information on energy- and nuclear power issues in articles and other publications in Sweden. The literature inventory as a whole is part of a grater research project aiming at a study of the role of mass media in forming public opinion about the nuclear power waste question. (O.S.)

  14. World warms to nuclear power

    International Nuclear Information System (INIS)

    Mortimer, N.

    1989-01-01

    The greenhouse effect and global warming is a major environmental issue. The nuclear industry has taken this opportunity to promote itself as providing clean energy without implication in either the greenhouse effect or acid rain. However, it is acknowledged that nuclear power does have its own environment concerns. Two questions are posed -does nuclear power contribute to carbon dioxide emissions and can nuclear power provide a realistic long-term solution to global warming? Although nuclear power stations do not emit carbon dioxide, emissions occur during the manufacture of reactor components, the operation of the nuclear fuel cycle and especially, during the mining and processing of the uranium ore. It is estimated that the supply of high grade ores will last only 23 years, beyond that the carbon dioxide emitted during the processing is estimated to be as great as the carbon dioxide emitted from an coal-fired reactor. Fast breeder reactors are dismissed as unable to provide an answer, so it is concluded that nuclear technology has only a very limited role to play in countering global warming.(UK)

  15. Results of comparative assessment of US and foreign nuclear power plant dose experience and dose reduction programs

    International Nuclear Information System (INIS)

    Baum, J.W.; Horan, J.R.; Dionne, B.J.

    1985-01-01

    The objectives of this study were to determine how collective dose equivalents at US nuclear power plants compare to those of other technically advanced countries, and to evaluate factors that contribute to the differences. Fifty Health Physicists and nuclear engineers from 10 countries met at BNL May 29 - June 1, 1984 to exchange information and hold discussions on ''Historical Dose Experience and Dose Reduction (ALARA) at Nuclear Power Plants''. Results of evaluation of data from this meeting and other data from recent publications are summarized. Based on data evaluated to date it is clear that US plants have higher collective dose equivalents per reactor and per MW-yr generated than most other countries. Factors which contribute to low doses include: 1) minimization of cobalt in primary system components exposed to water, 2) careful control of primary system oxygen and pH, 3) good primary system water purity to minimize corrosion product formation, 4) careful plant design, layout and component segregation and shielding, 5) management interest and commitment, 6) minimum number of workers and in-depth worker training, 7) use of special tools, and 8) plant standardization

  16. One recommendation of nuclear power export. GDP model application to the countries which expressed nuclear power introduction and consideration

    International Nuclear Information System (INIS)

    Iida, Tekehiko

    2010-01-01

    South Korea has been excited in nuclear business after the success in the contract to build nuclear power plants in UAE. Since more than 60 countries expressed nuclear power introduction and new countries were on the rise with exporting reactor technology accumulated, new era over nuclear renaissance seems to begin. This article at first classified countries, which expressed nuclear power introduction, with an economic level of GDP per capita. Then each classified country's requirements of nuclear power introduction were taken into consideration such as economic development, consumption pattern and technology attitude. As a result recommendation of nuclear power export was proposed. Different approach to each country targeted was suggested as shown in 'nuclear power GDP model'. (T. Tanaka)

  17. Real issue with nuclear power

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1976-01-01

    The voter referendums on nuclear power planned in some states can affect the energy supply and economic health of the public at large more than it affects the industry that provides nuclear power, the author states. He makes the point that those responsible for energy supplies in the U. S.--the President and all relevant Federal agencies, the majority of Congress, the national utility industry, major laboratories, universities and consulting firms, and other energy industries--all favor nuclear power. The complex U.S. energy situation is reviewed, and the hope of alternative energy sources, practice of energy conservation, and benefits of nuclear power are summarized. Specifically, the California Initiative and its three conditions which it says should dictate the future of nuclear power are reviewed. The author does not believe that the reasons that are usually given in opposing nuclear power are the real reasons. He states that ''it seems clear that the principal philosophy behind the initiatives is one of halting economic growth by striking at the energy source that would make that growth possible.'' Attention is called to the morality of nuclear power by asking where is the morality: in leaving future generations an insufficient amount of energy, limiting their abilities to solve the economic and employment problems; in squandering our finite supply of fossil fuels while ignoring nuclear fuels; in forcing the nation into further dependence on unpredictable foreign nations for its energy supply; in expecting other states to provide California with the energy that it does not want to generate itself; and in allowing an arbitrary limit on growth to be set by groups of political activists

  18. Dictionary of nuclear power. upd. ed.

    International Nuclear Information System (INIS)

    Koelzer, W.

    2011-10-01

    The updated dictionary on nuclear power contains definitions and explanations on nuclear physics, nuclear engineering, nuclear power, radiation effects and radiation protection in alphabetic order. Attachments on units, their conversion and physical constants are included.

  19. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  20. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Schaefer, A.

    1990-01-01

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy