WorldWideScience

Sample records for nuclear power unit

  1. Architecture of nuclear power units

    International Nuclear Information System (INIS)

    Malaniuk, B.

    1981-01-01

    Nuclear units with circulation cooling using cooling towers are dominating points of the landscape. The individual cooling towers or pairs of cooling towers should be situated in the axes of double units and should also linearly be arranged, rhythmically in the respective zone. Examples are shown of the architectural designs of several nuclear power plants in the USA, the UK, the USSR, France, the FRG and Italy. (H.S.)

  2. Nuclear power in the United States

    International Nuclear Information System (INIS)

    Johnston, J.B.

    1985-01-01

    All over the world except in the United States, nuclear energy is a low cost, secure, environmentally acceptable form of energy. In the United States, civilian nuclear power is dead. 112 nuclear power plants have been abandoned or cancelled in the last decade, and there has been no new order for nuclear plants since 1978. It will be fortunate to have 125 operating nuclear plants in the United States in the year 2000. There are almost 90 completed nuclear power plants and about 45 under construction in the United States, but several of those under construction will eventually be abandoned. About 20 % of the electricity in the United States will be generated by nuclear plants in 2000 as compared with 13 % supplied in the last year. Under the present regulatory and institutional arrangement, American electric utilities would not consider to order a new nuclear power plant. Post-TMI nuclear plants became very expensive, and there is also ideological opposition to nuclear power. Coal-firing plants are also in the similar situation. The uncertainty about electric power demand, the cost of money, the inflation of construction cost and regulation caused the situation. (Kako, I.)

  3. A new Finnish nuclear power unit

    International Nuclear Information System (INIS)

    2004-01-01

    In Finland, nuclear power is considered a natural part of a sustainable energy system. The Finnish Parliament has decided that development of nuclear power is consistent with the overall interests of society when climate issues, environmental targets, supply security and stable and competitive prices of electric power are considered as a whole. In 2002, the Finnish Parliament approved the Government's decision in principle to build a fifth nuclear power plant. The new project is the most advanced energy project in the Nordic countries with respect to the availability of energy free of carbon dioxide. The decision is also welcomed by the EU. The new reactor will be of the EPR (European Pressurized Water Reactor) type. In addition to supplying power to the Finnish industries, the plant is considered necessary if Finland is to comply with international conventions on CO 2 emissions

  4. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  5. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  6. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Science.gov (United States)

    2010-12-22

    ..., Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0 Background Carolina Power & Light Company... operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things... request to generically extend the rule's compliance date for all operating nuclear power plants, but noted...

  7. Knowledge acquisition for nuclear power plant unit diagnostic system

    International Nuclear Information System (INIS)

    Li Xiaodong; Xi Shuren

    2003-01-01

    The process of acquiring knowledge and building a knowledge base is critical to realize fault diagnostic system at unit level in a nuclear power plant. It directly determines whether the diagnostic system can be applied eventually in a commercial plant. A means to acquire knowledge and its procedures was presented in this paper for fault diagnostic system in a nuclear power plant. The work can be carried out step by step and it is feasible in a commercial nuclear power plant. The knowledge base of the fault diagnostic system for a nuclear power plant can be built after the staff finish the tasks according to the framework presented in this paper

  8. The future of nuclear power in the United Kingdom

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1990-01-01

    The arguments that have been put forward in the United Kingdom to justify the contention by its opponents that nuclear power should not be seen as a safe, economic, strategically desirable and environmentally attractive energy source are examined. Counter arguments are presented to support the belief that these are wholly wrong. In the short to medium term, however, economic and political considerations suggest that the prospects for nuclear power in the United Kingdom are not optimistic. The long term evolution of nuclear power is uncertain but it is possible that the security of energy supply, comparative economics and environmental attractions associated with nuclear power will become more apparent and work in its favour eventually. The conviction is expressed that, by the middle of the next century, the United Kingdom will be reaping the benefits of the fast reactor on a significant scale. (UK)

  9. Site selection and evaluation of nuclear power units in Egypt

    International Nuclear Information System (INIS)

    Bonnefille, R.

    1980-01-01

    The selection of sites for nuclear power units in Egypt by SOFRATOME for Nuclear Plants Authority is carried on using a method based on interaction between different criteria. The method and the main results on criterion 'radio-ecological impact' are sketched briefly [fr

  10. New generation nuclear power units of PWR type integral reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Kurachen Kov, A.V.; Malamud, V.A.; Panov, Yu.K.; Runov, B.I.; Flerov, L.N.

    1997-01-01

    Design bases of new generation nuclear power units (nuclear power plants - NPP, nuclear co-generation plants - NCP, nuclear distract heating plants - NDHP), using integral type PWPS, developed in OKBM, Nizhny Novgorod and trends of design decisions optimization are considered in this report. The problems of diagnostics, servicing and repair of the integral reactor components in course of operation are discussed. The results of safety analysis, including the problems of several accident localization with postulated core melting and keeping corium in the reactor vessel and guard vessel are presented. Information on experimental substantiation of the suggested plant design decisions is presented. (author)

  11. Changing Perceptions of Nuclear Power in The United States

    International Nuclear Information System (INIS)

    Taylor, John

    1989-01-01

    Although many new nuclear power plants have been brought on line in that time, resulting in a capacity of 110 plants with operating permits and another twelve in the last stages of completion, all of these plants were authorized before 1978. The fundamental reason for this moratorium in new orders was the precipitous reduction in electricity demand, arising from the OPEC embargo and Iran revolution, which created excess electric capacity throughout the United States. In fact, many nuclear and coal plants were cancelled to minimize the over capacity problem and no large base load generating units have been ordered of any kind in the past decade. So the 'moratorium' is not really unique to nuclear power. Progress, coupled with increased awareness that nuclear power is one of the keys to solving atmospheric environmental problems, will swing political and public acceptance back to being favorable. Successful progress in these matters will be of benefit to public acceptance around the world and, conversely, serious technical difficulties, particularly entailing any major incident with a nuclear power plants anywhere in the world, will adversely affect the improvement in political and public acceptance in the United States. It is vitally important, therefore, that we continue to further enhance international cooperation in nuclear power. We are pleased the Korea Electric power Corporation and the Korea Advanced Energy Research Institute are participating in EPRI development programs, and hope that cooperation will increase in the future. We're most encouraged by the formation of the World Association of Nuclear Operators, which will be initiated in Moscow next month. The nuclear electric utilities and their governments around the world, the International Atomic Energy Agency, and the Nuclear Energy Agency of OECD should be commended for their initiative in international cooperation

  12. Inspection of licensed nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Thornburg, H. D.

    1977-01-01

    Inspection of licensed nuclear power plants in the United States is performed by the Office of Inspection and Enforcement (IE), United States Nuclear Regulatory Commission. IE has several key functions : a) Inspection of licensees and investigation of incidents, occurrences and allegations. b) Detection and correction of safety and security problems. c) Enforcement of rules, regulations, and Commission orders. d) Feedback to the industry and others regarding safety experience. e) Informing the public and others. Major enforcement actions and events involving operating power reactors for the past several years will be summarized. (author)

  13. Nuclear power reactor licensing and regulation in the United States

    International Nuclear Information System (INIS)

    Shapar, H.K.

    1979-01-01

    The report is devoted to four subjects: an explanation of the origins, statutory basis and development of the present regulatory system in the United States; a description of the various actions which must be taken by a license applicant and by the Nuclear Regulatory Commission before a nuclear power plant can be constructed and placed on-line, an account of the current regulatory practices followed by the US NRC in licensing nuclear power reactors; an identification of some of the 'lessons learned' from the Three Mile Island accident and some proposed regulatory and legislative solutions. (NEA) [fr

  14. Preparing nuclear power plant units for operation

    International Nuclear Information System (INIS)

    Hudcovic, R.; Telgarsky, K.; Kmosena, J.

    1984-01-01

    The factors are listed which have to be taken into consideration for planning the unit operation, i.e., the implementation of planned repairs, checks of equipment and refuellings. All basic input data were evaluated as the basic for drawing up the schedule of routine repairs and overhauls for the coming period. (E.S.)

  15. Nuclear power generation costs in the United States of America

    International Nuclear Information System (INIS)

    Willis, W.F.

    1983-01-01

    Increasing world energy prices and shortages of fuel resources make the utilization of nuclear power extremely important. The United States nuclear power industry represents the largest body of nuclear power experience in the world. Analysis of the recent United States experience of substantial increases in the cost of nuclear power generation provides good insight into the interdependence of technological, financial, and institutional influences and their combined impact on the economic viability of nuclear power generation. The various factors influencing ultimate generation costs, including construction cost, fuel cost, regulatory reviews, and siting considerations are discussed, and their relative impacts are explored, including discussion of design complexity and related regulatory response. A closer look into the recent relatively high escalation of nuclear plant construction costs shows how differing economic conditions can affect the relative cost effectiveness of various methods of power generation. The vulnerability of capital-intensive, long-lead-time projects to changes in economic conditions and uncertainty in future power demands is discussed. Likewise, the pitfalls of new designs and increased sophistication are contrasted to the advantages which result from proven designs, reliable engineering, and shorter lead times. The value of reliable architect-engineers experienced in the design and construction of the plant is discussed. A discussion is presented of additional regulatory requirements stemming from public safety aspects of nuclear power. These include recognition of requirements for the very large effort for quality assurance of materials and workmanship during plant construction and operation. Likewise, a discussion is included of the demanding nature of operations, maintenance, and modification of plants during the operational phase because of the need for highly qualified operations and maintenance personnel and strict quality assurance

  16. Preoperation of Hamaoka Nuclear Power Station Unit No. 4

    International Nuclear Information System (INIS)

    Fukuyo, Tadashi; Kurata, Satoshi

    1994-01-01

    Chubu Electric Power Co. finished preoperation of Hamaoka Nuclear Power Station Unit No. 4 in September, 1993. Although unit 4 has the same reactor design as unit 3, its rated electrical output (1,137MW) is 37MW more than that of unit 3. This increase was achieved mainly by adopting a Moisture Separater Heater in the turbine system. We started preoperation of unit 4 in November 1992 and performed various tests at electrical outputs of 20%, 50%, 75%, and 100%. We finished preoperation without any scram or other major problems and obtained satisfactory results for the functions and performance of the plant. This paper describes the major results of unit 4 preoperation. (author)

  17. Simulator of nuclear power plant with WWER-440 units

    International Nuclear Information System (INIS)

    Krcek, V.

    1985-01-01

    The use is discussed of simulators in the training of qualified personnel for the construction and operation of nuclear power plants. Simulators are used for training all activities and thinking processes related to the control of a nuclear reactor in the course of quasi-steady and non-steady states. The development and implementation is summed up of the construction of such a simulator for WWER-440 nuclear power plants. The main parts of the simulator include the unit control room, the computer system, the teacher's workplace and the interface system. The possibility of simulating the functions of the unit for personnel training is based on the description of the behaviour of the simulated object in form of mathematical models of its basic technological subsystems and their interrelations within the range of operating patterns. (J.C.)

  18. Evaluation of Perry Nuclear Power Plant Unit 1 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-11-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Perry Nuclear Power Plant Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Perry T/S. Several discrepancies were identified and subsequently resolved through telephone conversations with the staff reviewer and the utility representative. Pending completion of the resolutions noted in Parts 3 and 4 of this report, the Perry Nuclear Power Plant Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  19. Evaluation of Shoreham Nuclear Power Station, Unit 1 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-08-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Shoreham Nuclear Power Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Shoreham T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Shoreham Nuclear Power Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  20. Public acceptance of nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Liverman, J.L.; Thorne, R.D.

    1977-01-01

    Within the United States environmental awareness has spread and matured since the early 1960's. Evidence of this is found in cautious attitudes toward the installation of nuclear power reactors and other components of the nuclear fuel cycle. Hazards associated with nuclear energy technologies appear to attract a greater share of public attention than the hazards of nonnuclear counterparts. The association of nuclear power with nuclear weapons may be at the root of this concern. The explicit identification of increased incidences of cancer and genetic effects in humans as potential consequences of exposure to ionizing radiation and knowledge that radiation exposures and health consequences arising from nuclear power operations might occur many generations after operations cease also underlie this concern. Based in large part on these concerns, a number of actions have been taken in the United States to prevent and to delay installation and development of nuclear technology. These actions are reviewed and analyzed with emphasis on the 1976 California nuclear moratorium referendum and other more recent actions at state and national levels. They are compared with the status and outcome of similar actions in other nations as is possible. Additionally, ERDA's current approaches to public involvement in the decision making process is discussed, including the value of comprehensive analyses of health, environmental, and socioeconomic aspects of alternative energy sources in responding to public needs. U.S. plans for providing such analyses for all installed and developing energy technologies are presented with special reference to areas which require international cooperation for implementation. The value of international analysis and internationally accepted environmental control strategies for all energy technologies is also addressed

  1. Nuclear power. Its development in the United Kingdom

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1977-01-01

    The subject is covered chronologically in chapters, entitled: from war to peace; the Atomic Energy Authority and the first nuclear power station; a civil power programme; Windscale - the need for caution; research for the future; the new (Magnox) power stations; revision of the nuclear power programme; supply of nuclear fuels; nuclear power for ship propulsion; completion of first programme; Dungeness B and second programme, political assessment of (nuclear) industry's structure; reorganization of the industry; nuclear power in the environment; completion of second programme; the energy crisis; decision on third programme. (U.K.)

  2. Control system for a nuclear power producing unit

    International Nuclear Information System (INIS)

    Durrant, O.W.

    1978-01-01

    The invention provides in a control system for a nuclear power producing unit comprising a pressurized water reactor, a once-through steam generator provided with feedwater supply means, a turbine-generator supplied with steam from the steam generator and means maintaining a flow of pressurized water through the reactor and steam generator. The combination comprising; means generating a feed forward control signal proportional to the desired power output of the power producing unit, a second means for adjusting the reactor heat release, a third means for adjusting the rate of flow of feedwater to the steam generator, the second and third means solely responsive to and operated in parallel from the feed forward control signal whereby the reactor heat release and the rate of flow of feedwater to the steam generator are each maintained in a discrete functional relationship to the feed forward control signal

  3. Fuqing nuclear power of nuclear steam turbine generating unit No.1 at the implementation and feedback

    International Nuclear Information System (INIS)

    Cao Yuhua; Xiao Bo; He Liu; Huang Min

    2014-01-01

    The article introduces the Fuqing nuclear power of nuclear steam turbine generating unit no.l purpose, range of experience, experiment preparation, implementation, feedback and response. Turn of nuclear steam turbo-generator set flush, using the main reactor coolant pump and regulator of the heat generated by the electric heating element and the total heat capacity in secondary circuit of reactor coolant system (steam generator secondary side) of saturated steam turbine rushed to 1500 RPM, Fuqing nuclear power of nuclear steam turbine generating unit no.1 implementation of the performance of the inspection of steam turbine and its auxiliary system, through the test problems found in the clean up in time, the nuclear steam sweep turn smooth realization has accumulated experience. At the same time, Fuqing nuclear power of nuclear steam turbine generating unit no.1 at turn is half speed steam turbine generator non-nuclear turn at the first, with its smooth realization of other nuclear power steam turbine generator set in the field of non-nuclear turn play a reference role. (authors)

  4. Diffusion of nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Sommers, P.E.

    1978-01-01

    This dissertation is a study of nuclear power as an innovation diffusing through the utility industry in the United States. Chapter 1 notes that the industry studied, the innovation and the diffusion process have several characteristics not typical of the classical diffusion of innovations literature in economics. Uncertainty about the true characteristics of the innovation persists well into the diffusion process. The characteristics of the innovation appear to change over time. Thus the classic S-shaped transition path from the old, pre-innovation equilibrium to a new post-diffusion equilibrium is not found for this innovation and this industry. A generalized diffusion model is developed in Chapter 1 which allows these peculiarities of the utility industry and of nuclear power to be taken into account. Chapter 2 traces the development of the innovation, the consequences of the demonstration plant program, and the history of the diffusion process from 1963 to the present. Chapter 3 analyses the structure and sources and consequences of regulation of the industry. Chapter 4 develops a logit discrete choice model of the adoption decision. Chapter 5 investigates the determinants of the proportion of industry output provided by nuclear plants using a modified version of the Baughman--Joskow Regional Electricity Model. Salient aspects of uncertainty shift the expected average cost of nuclear plant output in the modified model

  5. Concrete works in Igata Nuclear Power Station Unit-2

    International Nuclear Information System (INIS)

    Yanase, Hidemasa

    1981-01-01

    The construction of Igata Nuclear Power Station Unit-2 was started in February, 1978, and is scheduled to start the commercial operation in March, 1982. Construction works are to be finished by August, 1981. The buildings of Igata Nuclear Power Station are composed of large cross section concrete for the purpose of shielding and the resistance to earth quakes. In response to this, moderate heat Portland cement has been employed, and in particular, the heat of hydration has been controlled. In this report, also fine and coarse aggregates, admixtures and chemical admixtures, and further, the techniques to improve the quality are described. Concrete preparation plant was installed in the power station site. Fresh concrete was carried with agitator body trucks from the preparation plant to the unloading point, and from there with pump trucks. Placing of concrete was carried out, striving to obtain homogeneous and dense concrete by using rod type vibrators. Further, concrete was placed in low slump (8 - 15 cm) to reduce water per unit volume, and its temperature was also carefully controlled, e.g., cold water (temperature of mixing water was about 10 deg C) was used in summer season (end of June to end of September). As a result, the control target was almost satisfied. As for testing and inspection, visual appearance test was done as well as material testing in compliance with JIS and other standards. (Wakatsuki, Y.)

  6. Nuclear power plant life extension in the United Kingdom

    International Nuclear Information System (INIS)

    Goodison, D.; Seddon, J.W.; Pape, E.M.

    1991-01-01

    The safety cases for the United Kingdom's older nuclear power plant have been reviewed by their utilities in order to justify continued operation of the reactors up to an age of at least 30 year. These 'long term safety reviews' have identified worthwhile plant modifications and aspects where further studies or plant inspections are required. As the plants approach the age of 30 years, 'life extension reviews' are now being undertaken, concentrating on management of ageing, to support operation to at least 40 years. (author)

  7. Cleaning device for steam units in a nuclear power plant

    International Nuclear Information System (INIS)

    Sasamuro, Takemi.

    1978-01-01

    Purpose: To prevent radioactive contamination upon dismantling and inspection of steam units such as a turbine to a building containing such units and the peripheral area. Constitution: A steam generator indirectly heated by steam supplied from steam generating source in a separate system containing no radioactivity is provided to produce cleaning steam. A cleaning steam pipe is connected by way of a stop valve between separation valve of a nuclear power plant steam pipe and a high pressure turbine. Upon cleaning, the separation valve is closed, and steam supplied from the cleaning steam pipe is flown into a condenser. The water thus condensated is returned by way of a feed water heater and a condenser to a water storage tank. (Nakamura, S.)

  8. Nuclear power and deregulation in the United Kingdom. Chapter 3

    International Nuclear Information System (INIS)

    Thomas, S.

    2001-01-01

    This article (Chapter Three) reviews the development of the British nuclear industry and the country's experience with privatised and liberalized electricity markets - an experience that is much earlier than Canada's. The U.K. industry is of special interest because a British firm, British Energy, has leased the Bruce A and B nuclear stations until 2018. This article tries to explain how the economic transformation of nuclear power has been achieved, and why nuclear power and a competitive electricity market are so hard to reconcile. The article gives a brief history of nuclear power in Britain up to 1987; a summary of the main events relating to nuclear power; a discussion of why nuclear power could not be privatised in 1990, but could be in 1996; examines the improvements in cost and competitiveness since 1990; a discussion of the issues surrounding the discharge of nuclear liabilities; the future for British Energy, Britain's leading nuclear company, and nuclear power in Britain; and finally, changes to other nuclear companies in Britain

  9. 77 FR 29701 - Impact of Construction (Under a Combined License) of New Nuclear Power Plant Units on Operating...

    Science.gov (United States)

    2012-05-18

    ... New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY: Nuclear Regulatory... construct and operate new nuclear power plants (NPPs) on multi-unit sites to provide an evaluation of the... License) of New Nuclear Power Plants on Operating Units at Multi-Unit Sites (Package). ML112630039 Federal...

  10. Constraints on nuclear power development in the United States

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1984-01-01

    The U.S. nuclear option appears, at this time, to be disappearing. Determinants of energy supply seem to be changing from engineering and economic factors to other considerations. Regulatory and financial constraints now appear to be dominating the guidelines for electrical energy expansion. American electric utilities, for the most part, have not been able to obtain sufficient revenues to cover their costs of production. What price increases that they are being allowed to charge their customers come too late to keep up with inflation. They require increasing quantities of outside funding in the form of debt and equity capital. This they can only obtain at record high rates, if at all. Most utilities are not even earning what their regulators have determined are fair returns. Financial problems and regulatory tangles severely affect nuclear power, despite its proven technology and environmental and economic benefits. If the United States loses the nuclear alternative, the economic consequences of limiting fuels for electric base load generation to coal only will be severe; analogous to a monopoly situation in fuel supply. It is doubtful, despite the huge resources of coal, that the coal industry can satisfy even a reduced future demand. The question then becomes whether the technological leader of the world may in the future be faced with blackouts and rationing of electricity

  11. Operational behaviour of WWER nuclear power units after Chernobyl accident

    International Nuclear Information System (INIS)

    Milivojevic, S.; Spasojevic, D.

    2000-01-01

    The indicators of effectiveness of WWER operation, in 1987-1998 were analyzed. For three groups of nuclear units (WWER, NPP Kozloduy, NPP Paks), the trends of Indicators flow were established. The comparative analysis of forced outage rate, and load factor of WWERs and nuclear units all in the world was carried out; it gives the general picture of accident influence on the states and the relations of these indicators in considered period (author)

  12. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  13. Subsidence analysis Forsmark nuclear power plant - unit 1

    International Nuclear Information System (INIS)

    Bono, Nancy; Fredriksson, Anders; Maersk Hansen, Lars

    2010-12-01

    On behalf of SKB, Golder Associates Ltd carried out a risk analysis of subsidence during Forsmark nuclear power plant in the construction of the final repository for spent nuclear fuel near and below existing reactors. Specifically, the effect of horizontal cracks have been studied

  14. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  15. Economic impacts of electricity liberalization on the status of nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Hattori, Toru

    2015-01-01

    This paper discusses the economic impact of electricity liberalization on the status of nuclear power generation in the United States. Nuclear power plants have been treated equally with other types of power plants in the liberalized electricity market. The existing nuclear power plants were thought to be competitive in liberalized wholesale electricity market. Competitive pressure from the market also facilitated efficiency improvement among the existing nuclear power plants. Although it was difficult to build new reactor, the U.S. nuclear power generators expanded capacity through up rates. In recent years, however, nuclear power plants suffer from the decline in wholesale power prices and some of them are forced to retire early. Although there are some market design issues that could be improved to maintain the efficient nuclear power plants in competitive environment, it is now argued that some additional arrangements to mitigate the investment risks of the nuclear power plants are necessary. (author)

  16. Construction of Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Yamanari, Shozo; Miyahara, Ryohei; Umezawa, Takeshi; Teshiba, Ichiro

    2006-01-01

    Construction of the Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc. (advanced boiling-water reactor; output: 1.358 mega watts) was begun in August 1999 and it will resume commercial operation in March 2006 as scheduled. Hitachi contributed effectually toward realizing the project with supply of a complete set of the advanced nuclear reactor and turbine-generator system with the latest design and construction technology in harmony. Large-scale modular structures for installation and a computer-aided engineering system for work procedure and schedule management were applied with the utmost priority placed on work efficiency, safety and quality assurance. (T.Tanaka)

  17. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory Commission (NRC or the Commission ) a...

  18. 78 FR 22347 - GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain...

    Science.gov (United States)

    2013-04-15

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-320; NRC-2013-0065] GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain Security Requirements AGENCY: Nuclear... and State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission...

  19. Reactor control and protection of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhu Jinping; Sun Jiliang

    1996-01-01

    The control and protection simulation of Qinshan 300 MW Nuclear Power Unit, including the nuclear control, the pressurizer pressure control, the pressurizer level control, the rod control, the reactor shutdown protection and engineered safety feature etc are briefly introduced

  20. Control and automation technology in United States nuclear power plants

    International Nuclear Information System (INIS)

    Sun, B.K.H.

    1997-01-01

    The need to use computers for nuclear power plant design, engineering, operation and maintenance has been growing since the inception of commercial nuclear power electricity generation in the 1960s. The needs have intensified in recent years as the demands of safety and reliability, as well as economic competition, have become stronger. The rapid advance of computer hardware and software technology in the last two decades has greatly enlarged the potential of computer applications to plant instrumentation and control of future plants, as well as those needed for operation of existing plants. The traditional role of computers for mathematical calculations and data manipulation has been expanded to automate plant control functions and to enhance human performance and productivity. The major goals of using computers for instrumentation and control of nuclear power plants are (1) to improve safety; (2) to reduce challenges to the power plant; (3) to reduce the cost of operations and maintenance; (4) to enhance power production, and (5) to increase productivity of people. Many functions in nuclear power plants are achieved by a combination of human action and automation. Increasingly, computer-based systems are used to support operations and maintenance personnel in the performance of their tasks. There are many benefits which can accrue from the use of computers but it is important to ensure that the design and implementation of the support system and the human task places the human in the correct role in relation to the machine; that is, in a management position, with the computer serving the human. In addition, consideration must be given to computer system integrity, software validation and verification, consequences of error, etc., to ensure its reliability for nuclear power plant applications. (author). 31 refs

  1. Control and automation technology in United States nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sun, B K.H. [Sunutech, Inc., Los Altos, CA (United States)

    1997-07-01

    The need to use computers for nuclear power plant design, engineering, operation and maintenance has been growing since the inception of commercial nuclear power electricity generation in the 1960s. The needs have intensified in recent years as the demands of safety and reliability, as well as economic competition, have become stronger. The rapid advance of computer hardware and software technology in the last two decades has greatly enlarged the potential of computer applications to plant instrumentation and control of future plants, as well as those needed for operation of existing plants. The traditional role of computers for mathematical calculations and data manipulation has been expanded to automate plant control functions and to enhance human performance and productivity. The major goals of using computers for instrumentation and control of nuclear power plants are (1) to improve safety; (2) to reduce challenges to the power plant; (3) to reduce the cost of operations and maintenance; (4) to enhance power production, and (5) to increase productivity of people. Many functions in nuclear power plants are achieved by a combination of human action and automation. Increasingly, computer-based systems are used to support operations and maintenance personnel in the performance of their tasks. There are many benefits which can accrue from the use of computers but it is important to ensure that the design and implementation of the support system and the human task places the human in the correct role in relation to the machine; that is, in a management position, with the computer serving the human. In addition, consideration must be given to computer system integrity, software validation and verification, consequences of error, etc., to ensure its reliability for nuclear power plant applications. (author). 31 refs.

  2. Effects of the accident at Mihama Nuclear Power Plant Unit 3 on the public's attitude to nuclear power generation

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2005-01-01

    As part of an ongoing public opinion survey regarding nuclear power generation, which started in 1993, a survey was carried out in the Kansai and Kanto regions two months after the accident at Unit 3 of the Mihama Nuclear Power Plant. In addition to analyzing the statistically significant changes that have taken place since the previous survey (taken in 2003), increase and decrease of the ratio of answers to all the questions related to nuclear power before and after the two accidents were compared in the case of the accidents which occurred in the Mihama Unit 3 and the JCO company's nuclear-fuel plant. In the Kansai region, a feeling of uneasiness about the risky character of nuclear power generation increased to some extent, while the public's trust in the safety of nuclear power plants decreased somewhat. After a safety-related explanation on ''Early detection of troubles'' and Accident prevention'' was given from a managerial standpoint, people felt a little less at ease than they had before. Uneasiness, however, did not increase in relation to the overall safety explanation given about the engineering and technical functioning of the plant. There was no significant negative effect on the respondents' evaluation of or attitude toward nuclear power generation. It was found that the people's awareness about the Mihama Unit 3 accident was lower and the effect of the accident on their awareness of nuclear power generation was more limited and smaller when compared with the case of the JCO accident. In the Kanto region, people knew less about the Mihama Unit 3 accident than those living in the Kansai region, and they remembered the JCO accident, the subsequent cover-up by Tokyo Electric Power Company, and the resulting power shortage better than those living in Kansai. This suggested that there was a little difference in terms of psychological distance in relation to the accidents an incidents depending on the place where the events occurred and the company which

  3. Control and automation technology in United States nuclear power plants

    International Nuclear Information System (INIS)

    Sun, B.K.H.

    1995-01-01

    The need to use computers for nuclear power plant design, engineering, operation and maintenance has been growing since the inception of commercial nuclear power electricity generation in the 1960s. The needs have intensified in recent years as the demands of safety and reliability, as well as economic competition, have become stronger. The rapid advanced of computer hardware and software technology in the last two decades has greatly enlarged the potential of computer applications to plant instrumentation and control of future plants, as well as those needed for operation of existing plants. The traditional role of computers for mathematical calculations and data manipulation has been expanded to automate plant control functions and to enhance human performance and productivity. The major goals of using computers for instrumentation and control of nuclear power plants are: (1) to improve safety; (2) to reduce challenges to capital investments; (3) to reduce the cost of operations and maintenance; (4) to enhance power production; and (5) to increase productivity of people. Many functions in nuclear power plants are achieved by a combination of human action and automation. Increasingly, computer-based systems are used to support operations and maintenance personnel in the performance of their tasks. There are many benefits which can accrue from the use of computers but it is important to ensure that the design and implementation of the support system, and the human task places the human in the correct role in the relation to the machine; that is, in a management position, with the computer serving the human. In addition, consideration must be given to computer system integrity, software validation and verification, consequences of error, etc., to ensure its reliability for nuclear power plant applications. (author). 31 refs

  4. A study of the public opinion concerning nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2008-01-01

    In this study, I surveyed the outcome of opinion poll about people's attitude toward nuclear power and analysed their awareness of nuclear power generation in the United States. As a result, it was found that percentage of the people who have positive attitude toward nuclear power has been over 60% since 1998. This result corresponds to the fact that people's preference is tending more toward nuclear power generation which is called the nuclear power Renaissance in the United States. Furthermore, analysis of the outcome of the opinion poll in power stations site region was also conducted and it was found that attitude of the people in the site region was more positive than that of average level in the United States. (author)

  5. Renovation of the 'old' NPP units as an economically effective way of nuclear power development

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, Yu.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    In the process of nuclear power development there comes a phase when the old' power-units, which reactor installations have expired the designed and extended service lifetime are withdrawn from operating. At this phase in the case of the same annual investments into nuclear power, the increase of the total set up capacity of the nuclear power will be terminated because introduction of capacities due to construction of 'new' power-units only compensates for the reduction of capacities caused by withdrawing from operating the 'old' power-units. Along with this, taking into account a sizeable difference in the service lifetime of the nuclear steam supplying systems and the rest infrastructure of the nuclear power plants, it is an opportunity to find the solution to the problem of compensating for the withdrawn capacities without considerable increasing the annual investments. This opportunity is connected with use of the innovative nuclear power technology based on multipurpose small power modular fast reactors with lead-bismuth coolant for replacement of the withdrawn capacities (renovation of power-units). The features of the innovative nuclear power technology based on the SVBR-76/100 reactor installations, the results of the technical and economical investigations that demonstrate the high economical efficiency of use of the renovation technology using the SVBR-75/100 reactor modules are presented in the Paper. (author)

  6. Accident analysis of Fukushima Daiichi Nuclear Power Station unit 1

    International Nuclear Information System (INIS)

    Kobayashi, Masahide; Narabayashi, Tadashi; Tsuji, Masashi; Chiba, Go; Nagata, Yasunori; Shimoe, Tomohiro

    2015-01-01

    As a result of the Great East Japan Earthquake that occurred on 11 March 2011, all AC and DC power at the Fukushima Daiichi NPP units 1 to 3 were lost soon after the tsunami. The core cooling function was lost, and the cores of units 1 to 3 were damaged. The purpose of this work is to clarify the progress of the accident in unit 1, which was damaged the earliest among the 3 units. Therefore, an original severe accident analysis code was developed, and the progress of the accident was evaluated from the analysis results and the actual data. As a result, the leakage path from a pressure vessel was clarified, and some lessons and knowledge were gained. (author)

  7. Primary shutdown system monitoring unit for nuclear power plants

    International Nuclear Information System (INIS)

    Khan, Tahir Kamal; Balasubramanian, R.; Agilandaeswari, K.

    2013-01-01

    Shut off rods made up of neutron absorbing material are used as Primary Shutdown System. To reduce the power of the reactor under certain abnormal operating conditions, these rods must go down into the core within a specified time. Any malfunctioning in the movement of rods cannot be tolerated and Secondary Shutdown System (SSS) must be actuated within stipulated time to reduce the reactor power. A special safety critical, hardwired electronics unit has been designed to detect failure of PSS Shut off rods movements and generate trip signals for initiating SSS. (author)

  8. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  9. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    International Nuclear Information System (INIS)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni

    2008-01-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  10. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni [Teollisuuden Voima Oyj, Olkiluoto, FI-27160 Eurajoki (Finland)

    2008-07-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  11. A survey of nuclear power in the United Kingdom

    International Nuclear Information System (INIS)

    Hill, J.

    1972-01-01

    The possibility of using the heat from a nuclear reactor to replace the boiler in a conventional electricity generating station was realised at an equally early date and, at a conference held at Harwell in September 1950, it was decided that the idea was a feasible one, and a design team was established. It is almost 20 years ago that the British Government authorised the construction of a duel-purpose power and plutonium producing reactor at Calder Hall. The reactor, the first of eight of the same design, all of which are still operating, was the world's first regular power producing nuclear reactor and first fed power (about 35 MW) to the national grid on 17th October 1956. The British reactor construction industry has undoubtedly suffered from its fragmentation and the resulting uneven load placed on individual companies by the variations in the reactor ordering programme. The British nuclear fuel industry has similarly been affected by fluctuating demand but, because of the continuing demand for replacement fuel and the steps taken to secure overseas business and develop international collaborative arrangements, to a much lesser extent. Nuclear fuel services, formerly the responsibility of the Atomic Energy Authority's Production Group and now of British Nuclear Fuels Limited, have built up to an annual business of Pounds 55M., on which a trading profit of Pounds 7 1/2 M. was earned in 1971/72, and the wide experience gained over many years and the substantial improvements made in the manufacturing plants give good prospects for the future. As we have learnt from past experience, the forecasting of electricity demand over a period as long as twenty years is always a difficult and uncertain task, especially at a time when the rate of increase in electricity consumption in the U. K. has been unusually low. However, it seems probable that the growth rate in electricity consumption will return in due course to the higher levels achieved in the past. Bearing this in

  12. The licensing of nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Purdue, M.

    1988-01-01

    The siting of a nuclear power plant inevitably raises complex technical, social and political issues. In Australia, the idea has been mooted, but never progressed to reality (in Victoria legislation specifically bans such a proposal). The conflicts engendered, however, by, say, a proposal to establish a high-temperature toxic waste incinerator; toxic waste dump; chemical factory or other potentially dangerous industry, raise similar problems which are familiar on the Australian scene. In this article the author examines the American way of investigating a contentious proposal and concludes that standard trial-type hearings are not necessarily the most efficient way of dealing with complex and competing issues and concerns

  13. Summary revaluation of energetic start-up of the unit 1 of nuclear power plant Mochovce

    International Nuclear Information System (INIS)

    Sarvaic, I.; Miskolci, M.

    1998-01-01

    The document contents stage revaluation of energetic start-up of the unit 1 of nuclear power plant Mochovce. Test results of the stage of energetic start-up are summarized in the document, valuation of important systems and block devices as well as fulfilling the operation limits and conditions has been performed. On that base conclusions and recommendations for start-up the unit 2 and for commercial operation of the unit 1 are elaborated. The valuation has been elaborated by a scientific management for start-up nuclear power plant Mochovce of nuclear safety of nuclear power facilities. Scientific management for start-up of nuclear power plant Mochovce performed continuous valuation of individual power levels after ending of each individual level and it gave its valuation to energy power level with recommendations and conditions for further start-up process and operation. Scientific management finished its activity at the unit 1 of nuclear power plant Mochovce according to a statute of scientific management for start-up after successful completion of conclusive block run. Scientific management group was founded in February 1998 at nuclear power plant Mochovce. Its members are experts from Slovak, Czech, Russian and French organizations which are participating in power plant completion. Members are listed in a supplement No. 2

  14. Situation and development trend of nuclear power and uranium industry in the united states and Russia

    International Nuclear Information System (INIS)

    Tan Chenglong

    2005-01-01

    This paper introduces the situation, trend of nuclear electrical and uranium industry in the United States and Russia. The United States and Russia are the two biggest countries in the world which generated nuclear power earliest. After 40 years' development, nuclear power in the United States and Russia are approximately 20%, 11% respectively of the total generation capacity in 2001. In the United States, only 6% of the nuclear power consumed uranium resource is domestic, in Russia about half of its uranium production is for export. Due to the collision between the energy development and environment protection, nuclear power in USA is still strong, but the uranium industry declines. In the future, uranium production for nuclear power in the United States will depend on the international market and the uranium storage of different levels. On the basis of pacifying people and making the country prosper, Russia has established their great plans for nuclear power with their substantial uranium resources. The author considers the supply and demand of uranium industry will remain balanced in the future decade on the whole, despite the United States and Russia's trend of uranium industry could take a major effect on uranium industry to the world. (authors)

  15. Nuclear design report for Yonggwang nuclear power plant unit 2 cycle 7

    International Nuclear Information System (INIS)

    Zee, Sung Kyun; Choi, Gyoo Hwan; Lee, Ki Bog; Park, Sang Yoon

    1993-02-01

    This report presents nuclear design calculations for Cycle 7 of Yonggwang Unit 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA's enriched by nominally 3.70 w/o U235. Among the KOFA's, 40 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 7 amounts to 367 EFPD corresponding to a cycle burnup of 14770 MWD/MTU. (Author)

  16. 77 FR 50533 - Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit 3

    Science.gov (United States)

    2012-08-21

    ....; Millstone Power Station, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... search, select ``ADAMS Public Documents'' and then select ``Begin Web- based ADAMS Search.'' For problems... Optimized ZIRLO\\TM\\ fuel rod cladding in future core reload applications for Millstone Power Station, Unit 3...

  17. Limitation for performance of jobs in power unit control room of nuclear power plant

    International Nuclear Information System (INIS)

    Janas, D.

    1988-01-01

    The procedure is described for an analysis of the somatic and mental health condition of operating personnel in the unit control room of a nuclear power plant. It was divided into three stages, viz.: (1) determination of adverse and favorable effects of work; (2) the recording of social, psychological, physiological and biochemical changes in the personnel; (3) determination of possibilities of controlling the limit for performance of a job. The analysis showed that the problem is complex and should permanently remain in the centre of attention. (J.B.). 3 refs

  18. Planning for decommissioning of Ignalina Nuclear Power Plant Unit-1

    International Nuclear Information System (INIS)

    Poskas, P.; Poskas, R.; Zujus, R.

    2002-01-01

    In accordance to Ignalina NPP Unit 1 Closure Law, the Government of Lithuania approved the Ignalina NPP Unit 1 Decommissioning Program until 2005. For enforcement of this program, the plan of measures for implementation of the program was prepared and approved by the Minister of Economy. The plan consists of two parts, namely technical- environmental and social-economic. Technical-environmental measures are mostly oriented to the safe management of spent nuclear fuel and operational radioactive waste stored at the plant and preparation of licensing documents for Unit 1 decommissioning. Social-economic measures are oriented to mitigate the negative social and economic impact on Lithuania, inhabitants of the region, and, particularly, on the staff of Ignalina NPP by means of creating favorable conditions for a balanced social and economic development of the region. In this paper analysis of planned radioactive waste management technologies, licensing documents for decommissioning, other technical-environmental and also social-economic measures is presented. Specific conditions in Lithuania important for defining the decommissioning strategy are highlighted. (author)

  19. Alteration in reactor installation (addition of Unit 2) in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. (inquiry)

    International Nuclear Information System (INIS)

    1983-01-01

    An inquiry was made by the Ministry of International Trade and Industry to Nuclear Safety Commission on the addition of Unit 2 in Shimane Nuclear Power Station of The Chugoku Electric Power Co., Inc., concerning the technical capability of Chugoku Electric Power Co., Inc., and the plant safety. The NSC requested the Committee on Examination of Reactor Safety to make a deliberation on this subject. Both the technical capability and the safety of Unit 1 were already confirmed by MITI. Unit 2 to be newly added in the Shimane Nuclear Power Station is a BWR power plant with electric output of 820 MW. The examination made by MITI is described: the technical capability of Chugoku Electric Power Co., Inc., the safety of Unit 2 about its siting, reactor proper, reactor cooling system, radioactive waste management, etc. (J.P.N.)

  20. Interim reliability evaluation program: analysis of the Arkansas Nuclear One. Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kolb, G.J.; Kunsman, D.M.; Bell, B.J.

    1982-06-01

    This report represents the results of the analysis of Arkansas Nuclear One (ANO) Unit 1 nuclear power plant which was performed as part of the Interim Reliability Evaluation Program (IREP). The IREP has several objectives, two of which are achieved by the analysis presented in this report. These objectives are: (1) the identification, in a preliminary way, of those accident sequences which are expected to dominate the public health and safety risks; and (2) the development of state-of-the-art plant system models which can be used as a foundation for subsequent, more intensive applications of probabilistic risk assessment. The primary methodological tools used in the analysis were event trees and fault trees. These tools were used to study core melt accidents initiated by loss of coolant accidents (LOCAs) of six different break size ranges and eight different types of transients

  1. United States panel presentations[Nuclear power technology in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Beyea, J [National Audubon Society, New York, NY (United States)

    1990-07-01

    Before I begin I have to make a disclaimer. That is that I am going to be talking about public perception because I think that is very important. But I do not want to give the impression that I think the public is wrong. I happen to agree with the public's perception of nuclear power, and I want to make that clear. I do not like the current generation of nuclear plants as I have made clear in many statements that I have made. On the other hand, in the long term, I feel that we have only two choices on the supply side, and that is nuclear power and solar electricity. And although I think solar electricity has the best chance, I am realistic enough to know that technologies do not always work the way I want. And so I think it is necessary to have at least some kind of nuclear option available. On the other hand, I do not think just any kind of nuclear technology will do. I want to talk to you about the conditions that I think you have to take into account when you try to design reactors that are publicly acceptable. I look at this as an insurance policy. Again, I do not want to be misquoted: I think nuclear power should be considered as an insurance policy, not as our first line of defense. Having made those disclaimers, what we need to do is set out a problem statement. The problem statement I set out is, 'How could one design and demonstrate a nuclear reactor that would regain public confidence in the United States, if one chose to do that?' By regaining confidence, I mean regaining sufficient confidence to site reactors at a number of locations. It is a pretty heavy task because the public cannot judge the technical issues. They have to judge the players by their characters and their histories, just as the way we calibrate anyone that knows things that we do not. I have three theses that I think are crucial. The first is that people do not believe in the claims of advocates, of any point of view, not just nuclear power, once the advocates have been proved wrong on

  2. United States nuclear regulatory commission program for inspection of decommissioning nuclear power plants

    International Nuclear Information System (INIS)

    Harris, P.W.

    2001-01-01

    The United States Nuclear Regulatory Commission (USNRC or Commission) has been inspecting decommissioning commercial nuclear power plants in the United States (U.S.) since the first such facility permanently shutdown in September 1967. Decommissioning inspections have principally focused on the safe storage and maintenance of spent reactor fuel; occupational radiation exposure; environmental radiological releases; the dismantlement and decontamination of structures, systems, and components identified to contain or potentially contain licensed radioactive material; and the performance of final radiological survey of the site and remaining structures to support termination of the USNRC-issued operating license. Over the last 5 years, USNRC inspection effort in these areas has been assessed and found to provide reasonable confidence that decommissioning can be conducted safely and in accordance with Commission rules and regulations. Recently, the staff has achieved a better understanding of the risks associated with particular decommissioning accidents 1 and plans to apply these insights to amendments proposed to enhance decommissioning rules and regulations. The probabilities, scenarios, and conclusions resulting from this effort are being assessed as to their applicability to the inspection of decommissioning commercial power reactors. (author)

  3. United States nuclear regulatory commission program for inspection of decommissioning nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Harris, P.W. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2001-07-01

    The United States Nuclear Regulatory Commission (USNRC or Commission) has been inspecting decommissioning commercial nuclear power plants in the United States (U.S.) since the first such facility permanently shutdown in September 1967. Decommissioning inspections have principally focused on the safe storage and maintenance of spent reactor fuel; occupational radiation exposure; environmental radiological releases; the dismantlement and decontamination of structures, systems, and components identified to contain or potentially contain licensed radioactive material; and the performance of final radiological survey of the site and remaining structures to support termination of the USNRC-issued operating license. Over the last 5 years, USNRC inspection effort in these areas has been assessed and found to provide reasonable confidence that decommissioning can be conducted safely and in accordance with Commission rules and regulations. Recently, the staff has achieved a better understanding of the risks associated with particular decommissioning accidents 1 and plans to apply these insights to amendments proposed to enhance decommissioning rules and regulations. The probabilities, scenarios, and conclusions resulting from this effort are being assessed as to their applicability to the inspection of decommissioning commercial power reactors. (author)

  4. Development of a method to evaluate shared alternate AC power source effects in multi-unit nuclear power plants

    International Nuclear Information System (INIS)

    Jung, Woo Sik; Yang, Joon Eun

    2003-07-01

    In order to evaluate accurately a Station BlackOut (SBO) event frequency of a multi-unit nuclear power plant that has a shared Alternate AC (AAC) power source, an approach has been developed which accommodates the complex inter-unit behavior of the shared AAC power source under multi-unit Loss Of Offsite Power (LOOP) conditions. The approach is illustrated for two cases, 2 units and 4 units at a single site, and generalized for a multi-unit site. Furthermore, the SBO frequency of the first unit of the 2-unit site is quantified. The SBO frequency at a target unit of Probabilistic Safety Assessment (PSA) could be underestimated if the inter-unit dependency of the shared AAC power source is not properly modeled. The effect of the inter-unit behavior of the shared AAC power source on the SBO frequency is not negligible depending on the Common Cause Failure (CCF) characteristics among AC power sources. The methodology suggested in the present report is believed to be very useful in evaluating the SBO frequency and the core damage frequency resulting from the SBO event. This approach is also applicable to the probabilistic evaluation of the other shared systems in a multi-unit nuclear power plant

  5. The virtual digital nuclear power plant: A modern tool for supporting the lifecycle of VVER-based nuclear power units

    Science.gov (United States)

    Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.

    2014-10-01

    The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.

  6. Outline of construction and facility features of Onagawa nuclear power station Unit No. 2

    International Nuclear Information System (INIS)

    Umimura, Yoshiharu; Tsunoda, Ryohei; Watanabe, Kazunori

    1996-01-01

    Tohoku Electric Power Company promotes development of various power sources to provide a stable supply of electricity in the future, and nuclear power takes a leading part. In August 1989, construction of Onagawa nuclear power plant Unit No. 2 (825MW) was started, following Unit No. 1 (524MW) which went on line in 1984 as Tohoku Electric's first nuclear power plant unit. Unit No. 2 began commercial operation in July 1995 through satisfactory construction work such as RPV hydraulic test in March 1994, fuel loading in October 1994, and various startup tests in each power stage. The design and construction of Unit No. 2 reflect construction and operation experience gained from Unit No. 1, and the latest technology, including that of the LWR Improvement and Standardization Program, was adopted to enhance facility reliability, improve operation and maintenance performance, and reduce worker dosage. Features of the facility, construction techniques, and a description of preoperation of Onagawa nuclear power plant Unit No. 2 are described in this paper. (author)

  7. The comparison of license management procedure for nuclear power plant in China and United States

    International Nuclear Information System (INIS)

    Yu Zusheng

    2006-01-01

    'Tow steps' license management procedure for nuclear power plant has been performed bas- ted on the requirement of 10CFR Part50-DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES in United States since last century fifties. In order to ulterior reduce the risk of investment and technical for new construction nuclear power plants, new regulations 'One step' license management procedure-10CFR Part52-EARLY SITE PERMITS; STANDARD DESIGN CERTIFICATIONS; AND COMBINED LICENSES FOR NUCLEAR POWER PLANTS issued in 1989. The new regulations has been adopted by new design of nuclear power plant, for example AP1000. ‘The similar tow steps’ license management procedure for nuclear power plant has been performed basted on the requirement of HAFO01/01 Rules for the Implementation of Regulations on the Safety Regulation for Civilian Nuclear Installations of the People's Re- public of China Part One: Application and Issuance of Safety License for Nuclear Power Plant (December 1993) in China since last century nineties. This article introduces and compares the requirements and characteristics of above license management procedure for nuclear power plant in China and United States. (author)

  8. Human resource development for the new nuclear power plant unit in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, A.; Galstyan, A.; Donovan, M.

    2008-01-01

    This paper presents a discussion of a study to define the programs for development of the human resource infrastructure needed for a new nuclear power plant unit in the Republic of Armenia. While Armenia has a workforce experienced in operation and regulation of a nuclear power plant (NPP), a significant portion of the current Armenia Nuclear Power Plant (ANPP) workforce is approaching retirement age and will not be available for the new plant. The Government of Armenia is performing a human resource infrastructure study in cooperation with the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), sponsored by the JAEA. The study of Human Resource Development for Armenia uses the INPRO methodology for assessment of human resources. The results of this study will provide the basis for decisions on human resource development programs for nuclear power in Armenia and provide a model for countries with the limited resources that are working to develop nuclear energy in the future. (authors)

  9. Standardization of nuclear power plants in the United States: recent regulatory developments

    International Nuclear Information System (INIS)

    Cowan, B.Z.; Tourtellotte, J.R.

    1992-01-01

    On April 18, 1989, the United States (U.S.) Nuclear Regulatory Commission (NRC) amended the regulations governing the process for licensing nuclear power plants in the United States to provide for issuance of early site permits, standard design certifications and combined construction permits and operating licenses for nuclear power reactors. The new regulations are designed to achieve early resolution of licensing issues and facilitate standardization of nuclear power plants in the United States. The program for design standardization is central to efforts mounted by the U.S. government and industry to ensure that there will be a next generation of nuclear power facilities in the U.S. The most significant changes are provisions for certification of standard designs and for issuance prior to start of construction of combined licenses which incorporate a construction permit and an operating license with conditions. Such certifications and combined licenses must contain tests, inspections and analyses, and acceptance criteria, which are necessary and sufficient to provide reasonable assurance that the facility has been constructed and will operate in accordance with the combined license. A number of significant implementation issues have arisen. In addition a major court case brought by several anti-nuclear groups is pending, challenging NRC authority to issue combined licenses. It is the goal of the U.S. nuclear industry to have the first of the next generation of standardized nuclear power plants ordered, licensed, constructed and on-line by the year 2000. (author)

  10. Nuclear power in the United Arab Emirates: Legal framework and regulatory cooperation

    International Nuclear Information System (INIS)

    Vasquez-Maignan, X.

    2012-01-01

    As part of a decision to diversify its energy mix, the United Arab Emirates (UAE) has begun construction of its first nuclear power plant. In that context, it has also taken a number of important steps to integrate itself into the international regime for nuclear safety: adoption of the UAE's Federal Law No. 6 of 2009 on the peaceful uses of nuclear energy, establishment of the Federal Authority for Nuclear Regulation (FANR), establishment of the Emirates Nuclear Energy Corporation (ENEC), awarding of the first contract for nuclear power plants in the UAE, etc. The UAE nuclear liability regime is then presented, with details on the basic principles that form the foundation of the nuclear liability conventions, followed by the participation of the FANR in the Multinational Design Evaluation Programme (MDEP) in September 2012

  11. Station black out of Fukushima Daiichi Nuclear Power Station Unit 1 was not caused by tsunamis

    International Nuclear Information System (INIS)

    Ito, Yoshinori

    2013-01-01

    Station black out (SBO) of Fukushima Daiichi Nuclear Power Station Unit 1 would be concluded to be caused before 15:37 on March 11, 2011 because losses of emergency ac power A system was in 15:36 and ac losses of B system in 15:37 according to the data published by Tokyo Electric Power Co. (TEPCO) in May 10, 2013. Tsunami attacked the site of Fukushima Daiichi Nuclear Power Station passed through the position of wave amplitude meter installed at 1.5 km off the coast after 15:35 and it was also recognized tsunami arrived at the coast of Unit 4 sea side area around in 15:37 judging from a series of photographs taken from the south side of the site and general knowledge of wave propagation. From a series of photographs and witness testimony, tsunami didn't attack Fukushima Daiichi Nuclear Power Station uniformly and tsunami's arrival time at the site of Unit 1 would be far later than arrival time at the coast of Unit 4 sea side area, which suggested it would be around in 15:39. TEPCO insisted tsunami passed through 1.5 km off the coast around in 15:33 and clock of wave amplitude meter was incorrect, which might be wrong. Thus SBO of Fukushima Daiichi Nuclear Power Station Unit 1 occurred before tsunami's arrival at the site of Unit 1 and was not caused by tsunami. (T. Tanaka)

  12. Start up and commercial operation of Laguna Verde nuclear power plant. Unit 1

    International Nuclear Information System (INIS)

    Torres Ramirez, J.F.

    1991-01-01

    Prior to start up of Laguna Verde nuclear power plant preoperational tests and start tests were performed and they are described in its more eminent aspects. In relation to commercial operation of nuclear station a series of indicator were set to which allow the measurement of performance in unit 1, in areas of plant efficiency and personal safety. Antecedents. Laguna Verde station is located in Alto Lucero municipality in Veracruz state, 70 kilometers north-northeast from port of Veracruz and a 290 kilometers east-northeast from Mexico city. The station consist of two units manufactured by General Electric, with a nuclear system of vapor supply also called boiling water (BWR/5), and with a system turbine-generator manufactured by Mitsubishi. Each unit has a nominal power of 1931 MWt and a level design power of 675 Mwe and a net power of 654 Electric Megawatts

  13. Designing a nuclear power plant with 1000 MW WWER-type units

    Energy Technology Data Exchange (ETDEWEB)

    Berkovich, V; Kaloshin, J; Tatarnikov, V; Shenderovich, A

    1977-06-01

    A brief description is presented of a WWER-1000 nuclear power plant also considering its environmental impact and the problem of core poisoning. The following indicators are graphically shown in relation to the reactor output: turbogenerator unit outputs, efficiency, specific capital costs and own costs of electric power generated by the Voronezh nuclear power plant. Also listed are the specific consumption of metal and concrete, specific equipment weight and the specific volume of the buildings of the main generating unit as well as the cross section thereof.

  14. Designing a nuclear power plant with 1000 MW WWER-type units

    International Nuclear Information System (INIS)

    Berkovich, V.; Kaloshin, J.; Tatarnikov, V.; Shenderovich, A.

    1977-01-01

    A brief description is presented of a WWER-1000 nuclear power plant also considering its environmental impact and the problem of core poisoning. The following indicators are graphically shown in relation to the reactor output: turbogenerator unit outputs, efficiency, specific capital costs and own costs of electric power generated by the Voronezh nuclear power plant. Also listed are the specific consumption of metal and concrete, specific equipment weight and the specific volume of the buildings of the main generating unit as well as the cross section thereof. (J.B.)

  15. Nuclear design report for Yonggwang nuclear power plant unit 4 cycle 2

    International Nuclear Information System (INIS)

    Park, Chan Oh; Park, Sang Yoon; Yoo, Choon Sung; Ryu, Hyo Sang; Park, Jin Ha; Cho, Young Chul; Song, Jae Woong; Lee Chung Chan.

    1996-10-01

    This report presents nuclear design calculations for Cycle 2 of Yonggwang Unit 4. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths, and operational limits. In addition, the report contains necessary data for the startup tests and for the assurance of shutdown margin during reactor operation. The reload core consists of 48 fresh KSFAs. Among the 48 fresh KSFAs, 32 fuel assemblies contain burnable poison rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 2 amounts to 275 EFPD corresponding to a cycle burnup of 10,100 MWD/MTU. (author). 31 tabs., 92 figs., 7 refs

  16. Nuclear design report for Yonggwang nuclear power plant unit 3 cycle 2

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Song, Jae Woong; Song, Jae Seung; Park, Sang Yoon; Yoo, Choon Sung; Baek, Byung Chan; Ryu, Hyo Sang; Park, Jin Ha; Cho, Young Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    This report presents nuclear design calculations for Cycle 2 of Yonggwang Unit 3. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths, and operational limits. In addition, the report contains necessary data for the startup tests and for the assurance of shutdown margin during reactor operation. The reload core consists of 48 fresh Korean Standard Fuel Assemblies (KSFAs)and 129 burned KSFAs. Among the 48 fresh KSFAs, 32 fuel assemblies contain burnable poison rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 2 amounts to 276 EFPD corresponding to a cycle burnup of 10,160 MWD/MTU. 95 figs., 31 tabs., 7 refs. (Author) .new.

  17. Nuclear design report for Ulchin nuclear power plant unit 1, cycle 7

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Park, Yong soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-04-01

    This report presents nuclear design calculations for Cycle 7 of Ulchin Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 56 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s 36 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 7 amounts to 355 EFPD corresponding to a cycle burnup of 14280 MWD/MTU. (Author) 8 refs., 55 figs., 21 tabs.

  18. Nuclear design report for Kori nuclear power plant unit 4 cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyoon; Jung, Yil Sub; Kim, Si Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 4. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s 48 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 421 EFPD corresponding to a cycle burnup of 16950 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  19. Nuclear design report for Ulchin nuclear power plant unit 2 cycle 5

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ha; Park, Yong Soo; Cho, Byeong Ho; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-09-01

    This report presents nuclear design calculations for cycle 5 of Ulchin unit it 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 48 KOFA`s enriched by nominally 3.50 w/o U{sub 235}. Among the KOFA`s, 20 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 5 amounts to 293 EFPD corresponding to a cycle burnup of 11780 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  20. Nuclear design report for Kori nuclear power plant unit 1, cycle 13

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Moon, Bok Ja; Cho, Byeong Ho; Jung, Yil Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-04-01

    This report presents nuclear design calculations for cycle 13 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 13 amounts to 355 EFPD corresponding to a cycle burnup of 13240 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  1. Nuclear design report for Yonggwang nuclear power plant unit 1 cycle 9

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young chul; Kim, Jae Hak; Song, Jae Woong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-03-01

    This report presents nuclear design calculations for Cycle 6 of Yonggwng Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s, 60 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 9 amounts to 434 EFPD corresponding to a cycle burnup of 17470 MWD/MTU. (Author) 8 refs., 55 figs., 19 tabs.

  2. Nuclear design report for Ulchin nuclear power plant unit 1, cycle 6

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Kim, Yong Rae; Park, Yong Soo; Cho, Byeong Ho; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-12-01

    This report presents nuclear design calculations for cycle 6 of Ulchin unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 32 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 6 amounts to 369 EFPD corresponding to a cycle burnup of 14850 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  3. Nuclear design report for Ulchin nuclear power plant unit 2, cycle 6

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Oh; Park, Jin Ha; Kim, Yong Rae; Park, Sang Yoon; Lee, Jong Chul; Baik, Joo Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    This report presents nuclear design calculations for cycle 6 of Ulchin unit 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA`s enriched by nominally 3.80 w/o U{sub 235}. Among the KOFA`s, 36 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 6 amounts to 388 EFPD corresponding to a cycle burnup of 15610 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  4. Nuclear design report for Ulchin nuclear power plant unit 2 cycle 5

    International Nuclear Information System (INIS)

    Park, Jin Ha; Park, Yong Soo; Cho, Byeong Ho; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan

    1993-09-01

    This report presents nuclear design calculations for cycle 5 of Ulchin unit it 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 48 KOFA's enriched by nominally 3.50 w/o U 235 . Among the KOFA's, 20 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 5 amounts to 293 EFPD corresponding to a cycle burnup of 11780 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs

  5. Nuclear design report for Yonggwang nuclear power plant unit 1, cycle 8

    International Nuclear Information System (INIS)

    Cho, Young Chul; Kim, Jae Hak; Park, Sang Yoon; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan

    1993-10-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA's enriched by nominally 3.70 w/o U 235 . Among the KOFA's, 56 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 447 EFPD corresponding to a cycle burnup of 18020 MWD/MTU. (Author) 8 refs., 39 figs., 17 tabs

  6. Nuclear design report for Yonggwang nuclear power plant unit 1, cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Chul; Kim, Jae Hak; Park, Sang Yoon; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-10-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 56 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 447 EFPD corresponding to a cycle burnup of 18020 MWD/MTU. (Author) 8 refs., 39 figs., 17 tabs.

  7. Summary data for U.S. commercial nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Heddleson, F.A.

    1978-01-01

    A compilation of data is presented for all United States commercial nuclear power plants for which a construction permit application was made through the Nuclear Regulatory Commission. The data are compiled in four separate tables with cross-referencing indexes: Table 1--General Data; Table 2--Reactor Data; Table 3--Site Data, and Table 4--Circulating-Water System Data. The power plants are listed in numerical order by docket number in all four tables

  8. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  9. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  10. The economics of nuclear power programs in the United Kingdom

    International Nuclear Information System (INIS)

    Jones, P.L.

    1984-01-01

    This book presents an economic evaluation of both coal and nuclear-fueled electricity-generating plants on the basis of the social costs incurred from the operation of one additional plant. The author investigates the technology involved in operating a nuclear plant and its environmental impact, analyzes the international uranium market and the reprocessing plant under construction at Windscale, and appraises future investment in generating plants that will be required in the UK to supply four different electricity demand scenarios

  11. The economics of nuclear power programmes in the United Kingdom

    International Nuclear Information System (INIS)

    Jones, P.L.

    1984-01-01

    In Chapter 1 an overview of the technology involved in the operation of various nuclear reactor types, both thermal and fast breeder, is provided, and the operations that comprise the alternative nuclear fuel cycles examined. Chapter 2 traces the historical development of the uranium market and highlights the effect that institutional arrangements such as the formation of a cartel has had on the market price of uranium. The prospects for increased uranium exploration activity and likely demand scenarios are then reviewed. In Chapter 3 the economic viability of reprocessing 'spent' nuclear fuel in the UK is analysed within the context of the decision to proceed with the construction of the thermal-oxide reprocessing plant (THORP) at Windscale in Cumbria. The various radioactive waste substances emanating from nuclear fuel-cycle operations undertaken in the UK are described in Chapter 4 and the prospects for their safe management and disposal examined. Chapter 5 provides an economic appraisal of both coal and nuclear-fuelled electricity generating plant based on the criterion of social cost. The results are used as the data-input for an appraisal of the investment in generating plant that will be required in the UK to supply four different electricity demand scenarios. The conclusions are discussed in Chapter 6. (author)

  12. Pilgrim Nuclear Power Station, Unit 1. Annual operating report, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 2,587,248 MWH(e) with the reactor on line 6,242.4 hr. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, and reportable occurrences

  13. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Science.gov (United States)

    2011-11-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-295 and 50-304; NRC-2011-0244] ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor...

  14. 78 FR 49305 - Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2013-08-13

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-445 and 50-446; NRC-2013-0182] Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2; Application for Amendment to Facility... Operating License Nos. NPF-87 and NPF-89 for the Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

  15. 78 FR 14361 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Science.gov (United States)

    2013-03-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0310; Docket Nos. 50-445 and 50-446; License Nos. NPF-87 and NPF-89] In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units... Nuclear Power Plant, Units 1 and 2 (CPNPP), and its Independent Spent Fuel Storage Installation Facility...

  16. New nuclear power plant unit in Finland accepted by the Finnish Parliament

    International Nuclear Information System (INIS)

    Kaetkae, M.

    2002-01-01

    The nuclear option has been included in Finland's energy strategy since late 1990's. Based on TVO's application the Finnish Parliament accepted in May 2002 the decision in principle to build a new nuclear power plant unit. The main arguments were the growth of electricity demand, reduction of CO 2 emissions, security of energy supply and reasonable as well as predictable electricity price. TVO's intention is to get the new power plant unit into commercial operation at the end of this decade.(author)

  17. Smart Power: The United States, Iran, and a Nuclear Deal

    Science.gov (United States)

    2014-05-22

    87Katzman, The Iran Sanctions Act (ISA), 1. 88Robert J. Einhorn, “Solving the Iranian Nuclear Puzzle,” Arms Control Association briefing, Carnegie ...114Catherine Dale , Operation Iraqi Freedom: Strategies, Approaches, Results, and Issue for Congress (Washington, DC: Congressional Research Service...fire-on-u-s-drone/ (accessed on September 28, 2013). Dale , Catherine. Operation Iraqi Freedom: Strategies, Approaches, Results, and Issue for

  18. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise required to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.

  19. Commercial nuclear power 1988: Prospects for the United States and the world

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents historical data on commercial nuclear power in the United States, with projections of domestic nuclear capacity and generation through the year 2020. The report also gives country-specific projections of nuclear capacity and generation through the year 2010 for other countries in the world outside centrally planned economic areas (WOCA). Information is also presented regarding operable reactors and those under construction in countries with centrally planned economies. This report presents three different nuclear supply scenarios. The Optimistic-case scenario, included in previous issues of this report, has been deleted. 7 figs; 36 tabs

  20. Pilgrim Nuclear Power Station, Unit 1. Annual operating report, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electric power generated in 1975 was 1,074,401 MW(e) with the generator on line 4,680.7 hrs. Information is presented concerning operations, maintenance, radioactive effluents and waste shipments, health physics, shutdowns, and personnel exposures

  1. Rise and fall of nuclear power in the United States and the limits of regulation

    International Nuclear Information System (INIS)

    Del Sesto, S.L.

    1982-01-01

    This paper documents the rapid growth of nuclear power in the United States and its subsequent decline in the late 1970s. It demonstrates that the increase in numbers of new orders for nuclear plants created pressures for additional licensing complexity to insure safety and provide public intervenors with opportunities to participate in the regulatory process. The resulting protraction of the licensing process combined with increasing political opposition to nuclear power caused construction delays and bureaucratic bottlenecks at a time when soaring interest rates and double-digit inflation have pushed the cost of building new facilities out of the reach of the financially battered utility industry. Together with a downturn in demand for electricity and increasing uncertainty over nuclear power, no reactor orders have been placed since late 1978. It is argued that renewed growth of nuclear power in the United States is unlikely, especially in a regulatory environment which fosters increased costs of electricity to consumers and a simultaneous abrogation of the economies of scale. The consequences of the impending atrophication of the nuclear industry in America and its effects on future energy mixes and long-term national interests must be considered in future nuclear policies and reforms

  2. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  3. Reactor units for power supply to the Russian Arctic regions: Priority assessment of nuclear energy sources

    Directory of Open Access Journals (Sweden)

    Mel'nikov N. N.

    2017-03-01

    Full Text Available Under conditions of competitiveness of small nuclear power plants (SNPP and feasibility of their use to supply power to remote and inaccessible regions the competition occurs between nuclear energy sources, which is caused by a wide range of proposals for solving the problem of power supply to different consumers in the decentralized area of the Russian Arctic power complex. The paper suggests a methodological approach for expert assessment of the priority of small power reactor units based on the application of the point system. The priority types of the reactor units have been determined based on evaluation of the unit's conformity to the following criteria: the level of referentiality and readiness degree of reactor units to implementation; duration of the fuel cycle, which largely determines an autonomy level of the nuclear energy source; the possibility of creating a modular block structure of SNPP; the maximum weight of a transported single equipment for the reactor unit; service life of the main equipment. Within the proposed methodological approach the authors have performed a preliminary ranking of the reactor units according to various criteria, which allows quantitatively determining relative difference and priority of the small nuclear power plants projects aimed at energy supply to the Russian Arctic. To assess the sensitivity of the ranking results to the parameters of the point system the authors have observed the five-point and ten-point scales under variations of importance (weights of different criteria. The paper presents the results of preliminary ranking, which have allowed distinguishing the following types of the reactor units in order of their priority: ABV-6E (ABV-6M, "Uniterm" and SVBR-10 in the energy range up to 20 MW; RITM-200 (RITM-200M, KLT-40S and SVBR-100 in the energy range above 20 MW.

  4. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Science.gov (United States)

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services...

  5. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  6. Nuclear design report for Kori nuclear power plant unit 1, cycle 14

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Oh; Kim, Joo Young; Park, Sang Yoon; Song, Jae Woong; Lee, Chong Chul; Baik, Joo Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report presents nuclear design calculations for cycle 14 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 14 amounts to 366 EFPD corresponding to a cycle burnup of 13680 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs. nozzle by vortex formation during mid-loop operation condition are experimentally investigated. The critical submergence is determined for various types of suction nozzle, and the measurements of velocity distribution are performed in the flow fields near the t-shaped suction nozzle. (Author) 11 refs., 41 figs., 13 tabs.

  7. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  8. The benefits of nuclear power to the United Kingdom

    International Nuclear Information System (INIS)

    Allen, A.M.

    1985-01-01

    The larger of Great Britain's generating boards, the CEGB, is seeking approval for the PWR on its Sizewell site based on Westinghouse designs. The very thorough enquiry which lasted for more than a year was completed in March and now awaits the Inspector's report and recommendations, which are not expected before the Autumn at the earliest. The CEGB put forward various weighty reasons for the station amongst other things it argued that building a PWR at Sizewell, even in advance of a need for additional capacity, would save more in fuel bills than it would cost to build and run it. Its net effective cost is negative. The opponents have contested demand projections, all aspects of rector costs, fossil fuel price projections (on which benefit estimates are based), safety arguments and other concerns. Their basic line of argument, as one might expect, is that the reactor is not needed now, even if it were it would be uneconomic, or if economic it would be unsafe, or if safe and economic there are other preferable designs, and in any case proliferation considerations or local impacts should rule a nuclear choice out altogether. All these issues are both debated

  9. Modelling and simulation of containment on full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zou Tingyun

    1996-01-01

    A multi-node containment thermal-hydraulic model has been developed and adapted in Full Scope Simulator for Qinshan 300 MW Nuclear Power Unit with good realtime simulation effects. Containment pressure for LBLOCA calculated by the model is well agreed with those of CONTEMPT-4/MOD3

  10. A comparison between regulation of nuclear power in Canada and the United States

    International Nuclear Information System (INIS)

    Ahearne, J.F.

    1988-01-01

    The agencies that regulate commercial nuclear power in Canada and the United States differ in five significant characteristics: size and responsibility; use of legalism and formality; inspection and enforcement approaches; relationships to the government, public and industry; and the basic philosophy of regulation. Examination shows strengths and weaknesses in each approach, tied to basic differences in philosophy of government. (author)

  11. Brief introduction to project management of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Chen Jie

    1996-01-01

    The key points in development and engineering project management of full scope simulator for Qinshan 300 MW Nuclear Power Unit are briefly introduced. The Gantt chart, some project management methods and experience are presented. The key points analysis along with the project procedure will be useful to the similar project

  12. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  13. Nuclear power of Korea

    International Nuclear Information System (INIS)

    Chun Bee-Ho

    2011-01-01

    National nuclear is presented. Nuclear energy safety after Fukushima, international cooperation in nuclear energy is discussed. Nuclear projects with the United Arab Emirates have been developed to build 4 nuclear power plants in the UAE - APR 1400. At the Korea-Bulgaria Industrial Committee Meeting in Sofia (March 2011) Korean side proposed Nuclear Safety Training Program in Korea for Bulgarian government officials and experts transfer of know-how and profound expertise on world-class nuclear technology and nuclear safety

  14. Safety review on unit testing of safety system software of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Le; Zhang Qi

    2013-01-01

    Software unit testing has an important place in the testing of safety system software of nuclear power plants, and in the wider scope of the verification and validation. It is a comprehensive, systematic process, and its documentation shall meet the related requirements. When reviewing software unit testing, attention should be paid to the coverage of software safety requirements, the coverage of software internal structure, and the independence of the work. (authors)

  15. In core reload design for cycle 4 of Daya Bay nuclear power station both units

    International Nuclear Information System (INIS)

    Zhang Zongyao; Liu Xudong; Xian Chunyu; Li Dongsheng; Zhang Hong; Liu Changwen; Rui Min; Wang Yingming; Zhao Ke; Zhang Hong; Xiao Min

    1998-01-01

    The basic principles and the contents of the reload design for Daya Bay nuclear power station are briefly introduced. The in core reload design results, and the comparison between the calculated values and the measured values of both units the fourth cycle are also given. The reload design results of the two units satisfy all the economic requirements and safety criteria. The experimented results shown that the predicated values are tally good with all the measurement values

  16. Commerical electric power cost studies. Capital cost addendum multi-unit coal and nuclear stations

    International Nuclear Information System (INIS)

    1977-09-01

    This report is the culmination of a study performed to develop designs and associated capital cost estimates for multi-unit nuclear and coal commercial electric power stations, and to determine the distribution of these costs among the individual units. This report addresses six different types of 2400 MWe (nominal) multi-unit stations as follows: Two Unit PWR Station-1139 MWe Each, Two Unit BWR Station-1190 MWe Each, Two Unit High Sulfur Coal-Fired Station-1232 MWe Each, Two Unit Low Sulfur Coal-Fired Station-1243 MWe Each, Three Unit High Sulfur Coal-Fired Station-794 MWe Each, Three Unit Low Sulfur Coal-Fired Station-801 MWe Each. Recent capital cost studies performed for ERDA/NRC of single unit nuclear and coal stations are used as the basis for developing the designs and costs of the multi-unit stations. This report includes the major study groundrules, a summary of single and multi-unit stations total base cost estimates, details of cost estimates at the three digit account level and plot plan drawings for each multi-unit station identified

  17. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Science.gov (United States)

    2012-08-07

    ... for Nuclear Power Plant Personnel,'' endorses the Nuclear Energy Institute (NEI) report NEI 06-11...(c)(25). Pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment... hereafter in effect. The facility consists of two pressurized-water reactors (PWRs) located in Calvert...

  18. Nuclear power in the United States: a new strategy to build on

    International Nuclear Information System (INIS)

    Bayne, Phillip

    1991-01-01

    The aim of this paper is to present the US utility industry's perspective on nuclear power, and to look ahead to what might happen during the 1990s, a time of great uncertainty. The US nuclear industry has, succeeded in taking a strategic approach to nuclear power. Two years ago, the Nuclear Power Oversight Committee (NPOC) started working on a Strategic Plan for Building New Nuclear Power Plants. NPOC is a group of senior executives representing private and public electric utilities, equipment suppliers and architect-engineers. Its role is to give broad policy guidance to the entire industry. NPOC's goal was to develop a comprehensive, integrated list of all the conditions that had to be met and the issues that had to be resolved in order to create an environment in which utilities would feel comfortable considering the nuclear option. The strategic plan, which was published in November 1990, identified fourteen issues, and assigned responsibility to different organisations for managing the issues. It also set timetables and milestones against which progress could be measured. Its goal is to create the conditions under which utilities can place an order or orders for new nuclear plants by the mid-1990s, with the first new unit on line by the turn of the century. The structure and content of the plan are discussed in this paper. (author)

  19. 'Kazmer' a complex noise diagnostic system for 1000 MWe PWR WWER type nuclear power units

    International Nuclear Information System (INIS)

    Por, G.

    1992-06-01

    Noise diagnostic systems have previously been developed and installed for the WWER-440 type reactors at the Paks Nuclear Power Plant, Hungary. Based on the experiences, the system has been extended and modified for use in 1000 MWe, WWER-1000 type units. KAZMER consists of three subsystem, the KARD reactor noise diagnostic system, ARGUS vibration monitoring system for rotation machinery, and ALMOS acoustic monitoring system. The installation of the KAZMER system at the Kalinin Nuclear Power Station, Russia, and the first operational experiences are outlined. (R.P.) 15 refs.; 9 figs

  20. 77 FR 13156 - Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Science.gov (United States)

    2012-03-05

    ... generation, and cladding oxidation from the metal/water reaction shall be calculated using the Baker-Just... boiling or pressurized light-water nuclear power reactor fueled with uranium oxide pellets within... spring 2012. The AREVA fuel design consists of low enriched uranium oxide fuel within M5 \\TM\\ zirconium...

  1. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  2. Nuclear power in the United States: public views and industry actions

    International Nuclear Information System (INIS)

    Poncelet, C.G.

    1981-01-01

    The author describes the public policy environment that surround the nuclear power program in the United States and the social implications as an expression of the public opinion, the mass media as a source of information and the organized opposition movements with their socio-political motivations. The political climate after the new Republican government is also analysed as well as the communication efforts of the nuclear industry to ascertain the need of assertive programs and the sense of cooperation and commitment on the part of both the nuclear and electric utility industries. The general situation is characterized on the one hand by the growing acknowledgement of the need for nuclear power development in an economy dominated by the oil crisis; on the other hand, it is the financial crisis faced by electric utilities which directly impacts on this future development. (AF)

  3. An integrated nuclear reactor unit for a floating low capacity nuclear power plant designed for power supply in remote areas with difficult access

    International Nuclear Information System (INIS)

    Achkasov, A.N.; Grechko, G.I.; Gladkov, O.G.; Pavlov, V.L.; Pepa, V.N.; Shishkin, V.A.

    1997-01-01

    The paper describes the conceptual design of an integrated advanced safety nuclear reactor unit for a low capacity floating, NPP designed for power supply in areas which are remote with difficult access. The paper describes the major structural and lay-out components of the steam generator and reactor units with main technical characteristics. (author)

  4. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L [ed.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  5. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Abbott, L.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures

  6. Job creation due to nuclear power resurgence in the United States

    International Nuclear Information System (INIS)

    Kenley, C.R.; Klingler, R.D.; Plowman, C.M.; Soto, R.; Turk, R.J.; Baker, R.L.; Close, S.A.; McDonnell, V.L.; Paul, S.W.; Rabideau, L.R.; Rao, S.S.; Reilly, B.P.

    2009-01-01

    The recent revival of global interest in the next generation of nuclear power reactors is causing a re-examination of the role of nuclear power in the United States. This renewed interest has led to questions regarding the capability and capacity of current US industries to support a renewal of nuclear power plant deployment. Key among the many questions currently being asked is what potential exists for the creation of new jobs as a result of developing and operating these new plants? Idaho National Laboratory and Bechtel Power Corporation collaborated to perform a Department of Energy-sponsored study that evaluated the potential for job creation in the United States should these new next generation nuclear power plants be built. The study focused primarily on providing an initial estimate of the numbers of new manufacturing jobs that could be created, including those that could be repatriated from overseas, resulting from the construction of these new reactors. In addition to the growth in the manufacturing sector, the study attempted to estimate the potential increase in construction trades necessary to accomplish the new construction. (author)

  7. On economic efficiency of nuclear power unit life extension using steam-gas topping plant

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Lisitsa, F.D.; Smirnov, V.G.

    2001-01-01

    The different options for life extension of the operating nuclear power units have been analyzed in the report with regard for their economic efficiency. A particular attention is given to the option envisaging the reduction of reactor power output and its subsequent compensation with a steam-gas topping plant. Steam generated at its heat-recovery boilers is proposed to be used for the additional loading of the nuclear plant turbine so as to reach its nominal output. It would be demonstrated that the implementation of this option allows to reduce total costs in the period of power plant life extension by 24-29% as compared with the alternative use of the replacing steam-gas unit and the saved resources could be directed, for instance, for decommissioning of a reactor facility. (authors)

  8. Shutdown and low-power operation at commercial nuclear power plants in the United States

    International Nuclear Information System (INIS)

    1993-09-01

    The report contains the results of the NRC Staff's evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements

  9. United States panel presentations[Nuclear power technology in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Young, H [U.S. Department of Energy, Washington, DC (United States)

    1990-07-01

    The Department of Energy is supporting a number of programs directed at improving nuclear power's ability to compete by the mid 1990s in providing some of what will be urgently needed new baseload capacity, and at meeting both utility requirements and public goals. More specifically, we are co-funding demonstration by 1993 of the process for life extension of current nuclear plants. We are supporting the development of new ALWR designs which rely more on methods such as natural circulation, gravity, reduced power density, or the characteristics of materials, rather than engineered systems to provide safety. These designs will meet the criteria set forth in EPRI's Utility Requirements Documents. We have established a cost-sharing program to demonstrate the success of the nuclear plant standardization and licensing process by obtaining NRC certification by 1992 or 1993 of two evolutionary 1300MWe ALWR designs. We are also cost-sharing a program to certify by 1995 passively safe 600MWe ALWRs employing more natural safety features and modular construction. These programs will involve a rule-making hearing process. We are supporting the development and possible certification early in the next century of modular high temperature gas reactor and advanced liquid metal reactor plant designs. We are planning to demonstrate the early site approval licensing process through a cost-sharing arrangement with the private sector by 1995. In developing the National Energy Strategy, we are examining the issue of a fully satisfactory regulatory process, including the possibility of legislation codifying 10 CFR Part 52, limiting the possible delays associated with a potential second hearing and dealing with emergency planning issues before start of construction. We recently announced a restructured plan to develop a permanent waste repository by 2010. By 1995 we expect to have made significant progress in evaluating the suitability of Yucca Mountain. We expect to have selected a

  10. A closed Brayton power conversion unit concept for nuclear electric propulsion for deep space missions

    International Nuclear Information System (INIS)

    Joyner, Claude Russell II; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt and Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level

  11. Current status of nuclear power in the United States and around the world.

    Science.gov (United States)

    McKlveen, J W

    1990-09-01

    Nuclear energy's share of the world electricity market has been growing over the past 35 years. In 1989, eight generating units entered commercial operation abroad and three new units were licensed in the U.S. In early 1990, Mexico became the 26th country to produce electricity from nuclear power. Currently the 426 operating reactors supply one sixth of the world's total electrical capacity. Fourteen countries have now operated nuclear plants for 20 or more years. Since 1980, France has been the leader in the use of nuclear power and currently generates three quarters of its electricity from 54 nuclear plants. The U.S. has 112 nuclear plants, the largest number of any country in the world. These plants satisfy almost 20 percent of U.S. electrical energy requirements. Last year Three Mile Island, the would-be icon for everything that is wrong with the nuclear industry was rated as the most efficient nuclear plant in the world. The worldwide trend toward acceptance of nuclear is improving slightly, but many political and societal issues need to be resolved. Whereas recent polls indicate that a majority of the people realize nuclear must be a major contributor to the energy mix of the future, many are reluctant to support the technology until the issue of waste disposal has been resolved. Fears of another Chernobyl, lack of capital, and a new anti-nuclear campaign by Greenpeace will keep the nuclear debate alive in many countries. Additional stumbling blocks in the U.S. include the need to develop a new generation of improved reactor designs which emphasize passive safety features, standardized designs and a stream-lined federal licensing process. Nuclear power is really not dead. Even environmentalists are starting to give it another look. A nuclear renaissance will occur in the U.S. How soon or under what conditions remain to be seen. The next crisis in the U.S. will not be a shortage of energy, rather a shortage of electricity.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  13. Second periodic safety review of Angra Nuclear Power Station, unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M., E-mail: ottoncf@tecnatom.com.br, E-mail: emfreire46@gmail.com, E-mail: robcrepaldi@hotmail.com [Tecnatom do Brasil Engenharia e Servicos Ltda, Rio de Janeiro, RJ (Brazil); Campello, Sergio A., E-mail: sacampe@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  14. Second periodic safety review of Angra Nuclear Power Station, unit 1

    International Nuclear Information System (INIS)

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M.; Campello, Sergio A.

    2015-01-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  15. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  16. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  17. Analysis of internal events for the Unit 1 of the Laguna Verde Nuclear Power Station. Appendixes

    International Nuclear Information System (INIS)

    Huerta B, A.; Lopez M, R.

    1995-01-01

    This volume contains the appendices for the accident sequences analysis for those internally initiated events for Laguna Verde Unit 1, Nuclear Power Plant. The appendix A presents the comments raised by the Sandia National Laboratories technical staff as a result of the review of the Internal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant. This review was performed during a joint Sandia/CNSNS multi-day meeting by the end 1992. Also included is a brief evaluation on the applicability of these comments to the present study. The appendix B presents the fault tree models printed for each of the systems included and.analyzed in the Internal Event Analysis for LVNPP. The appendice C presents the outputs of the TEMAC code, used for the cuantification of the dominant accident sequences as well as for the final core damage evaluation. (Author)

  18. Analysis of internal events for the Unit 1 of the Laguna Verde Nuclear Power Station. Appendixes

    International Nuclear Information System (INIS)

    Huerta B, A.; Lopez M, R.

    1995-01-01

    This volume contains the appendices for the accident sequences analysis for those internally initiated events for Laguna Verde Unit 1, Nuclear Power Plant. The appendix A presents the comments raised by the Sandia National Laboratories technical staff as a result of the review of the Internal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant. This review was performed during a joint Sandia/CNSNS multi-day meeting by the end 1992. Also included is a brief evaluation on the applicability of these comments to the present study. The appendix B presents the fault tree models printed for each of the systems included and analyzed in the Internal Event Analysis for LVNPP. The appendice C presents the outputs of the TEMAC code, used for the cuantification of the dominant accident sequences as well as for the final core damage evaluation. (Author)

  19. Summary of inspection findings of licensee inservice testing programs at United States commercial nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, A.; Colaccino, J.

    1996-12-01

    Periodic inspections of pump and valve inservice testing (IST) programs in United States commercial nuclear power plants are performed by Nuclear Regulatory Commission (NRC) Regional Inspectors to verify licensee regulatory compliance and licensee commitments. IST inspections are conducted using NRC Inspection Procedure 73756, {open_quotes}Inservice Testing of Pumps and Valves{close_quotes} (IP 73756), which was updated on July 27, 1995. A large number of IST inspections have also been conducted using Temporary Instruction 2515/114, {open_quotes}Inspection Requirements for Generic Letter 89-04, Acceptable Inservice Testing Programs{close_quotes} (TI-2515/114), which was issued January 15, 1992. A majority of U.S. commercial nuclear power plants have had an IST inspection to either IP 73756 or TI 2515/114. This paper is intended to summarize the significant and recurring findings from a number of these inspections since January of 1990.

  20. The software testing of PPS for shin Ulchin nuclear power plant units 1 and 2

    International Nuclear Information System (INIS)

    Kang, Dong Pa; Park, Cheol Lak; Cho, Chang Hui; Sohn, Se Do; Baek, Seung Min

    2012-01-01

    The testing of software (S/W) is the process of analyzing a software item to detect the differences between existing and required conditions to evaluate the features of the software items. This paper introduces the S/W testing of Plant Protection System (PPS), as a safety system which actuate Reactor Trip (RT) and Engineered Safety Features (ESF) for Shin Ulchin Nuclear Power Plant Units 1 and 2 (SUN 1 and 2)

  1. Contribution of Anticipated Transients Without Scram (ATWS) to core melt at United States nuclear power plants

    International Nuclear Information System (INIS)

    Giachetti, R.T.

    1989-09-01

    This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs

  2. Upgrade of Control and Protection System of the Ignalina Nuclear Power Plant Units 1 and 2

    International Nuclear Information System (INIS)

    Wright, Ronald E.; Fletcher, Norman; Sidnev, Victor E.; Bickel, John H.; Vianello, Aldo; Pearsall, Raymond D.

    2003-01-01

    The Ignalina nuclear power plant (NPP) Units 1 and 2 are Soviet-designed, RBMK (Reaktor Bolshoi Moschnosti Kipyashchiy), channelized, large power-type reactors. The original-design electrical capacity for each unit was 1500 MW. Unit 1 began operating in 1983, and Unit 2 was started up in 1987. In 1994, the government of Lithuania agreed to accept grant support for the Ignalina NPP Safety Improvement Program with funding supplied by the Nuclear Safety Account of the European Bank for Reconstruction and Development (EBRD). As conditions for receiving this funding, the Ignalina NPP agreed to prepare a comprehensive safety analysis report that would undergo independent peer review after it was issued. The EBRD Safety Panel oversaw preparation and review of the report. In 1996, the safety analysis report for Unit 1 was completed and delivered to the EBRD. Part of the analyses covered anticipated transients without scram (ATWS). The analysis showed that some ATWS scenarios could lead to unacceptable consequences in <1 min. The EBRD Safety Panel recommended to the government of Lithuania that the Ignalina NPP develop and implement a program of compensatory measures for the control and protection system before the unit would be allowed to return to operation following its 1998 maintenance outage. A compensatory control and protection system that would mitigate the unacceptable consequences was designed, procured, manufactured, tested, and installed. The project was funded by U.S. Department of Energy

  3. The trip status and the reduction countermeasure in Kori nuclear power plant unit 1 and 2

    International Nuclear Information System (INIS)

    Kim, Jung-Soo

    1991-01-01

    Nuclear power account for 36% of Korea's total electric capacity and provided over 50% of the net electric power supply by June 1991. These plants supply US with the cheapest and most stable electric supply available. However each units capacity is very large and a plant trip due to failure of a component or a human error has a great influence on the nations electric power supply and drastically decreases the reserve margin. This report will analyze the trip causes and measure the trip frequency from the first commercial operation of Kori unit 1 and 2 to the end of June 1991, reflect to the plant operation, management and facility modification, etc. This will minimize the number of trips or urgent power reductions and thus contribute to an increase in plant capacity factor and safety, and stabilize the electric power demand and supply. The safety and the economy of nuclear power plant have to be secured and raised respectably by increasing the capacity factor. Since the prevention of trips plays an important role in the plant safety and economy, we have to do our best to prevent the unexpected trip

  4. Optimization of the scheduled maintenance on the power units of the nuclear power plants with WWER

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Kovrizhkin, Yu.L.; Kolykhanov, V.N.; Kochneva, V.Yu.; Urbanskij, V.V.

    2008-01-01

    The advanced international and domestic experience in the field of the maintenance optimization of the power units of NPPs, as well, as on the base of the planning optimization, the maintenance organization and carrying out, the technical maintenance and repair control system automatization, the testing and monitoring optimization during the service process, the modernization of the technology and technical tools of the maintenance service and control is represented

  5. Controlling engineering project changes for multi-unit, multi-site standardized nuclear power plants

    International Nuclear Information System (INIS)

    Randall, E.; Boddeker, G.; McGugin, H.; Strother, E.; Waggoner, G.

    1978-01-01

    Multibillioin dollar multiple nuclear power plant projects have numerous potential sources of engineering changes. The majority of these are internally generated changes, client generated changes, and changes from construction, procurement, other engineering organizations, and regulatory organizations. For multiunit, multisite projects, the use of a standardized design is cost effective. Engineering changes can then be controlled for a single standardized design, and the unit or site unique changes can be treated as deviations. Once an effective change procedure is established for change control of the standardized design, the same procedures can be used for control of unit or site unique changes

  6. Start-up test of Fukushima Daini Nuclear Power Station Unit No.3

    International Nuclear Information System (INIS)

    Inomata, Toshio; Umezu, Akira; Kajikawa, Makoto; Koibuchi, Hiroshi; Netsu, Nobuhiko.

    1986-01-01

    In Unit 3 of the Fukushima Nuclear Power Station II (daini), a BWR power plant of output 1,100 MW, commercial operation was started in June 1985. Its start-up test was finished successfully in about nine months. That is, new equipments introduced were demonstration tested. Though the items of testing are increased, the start-up test took short time, resulting in construction period only 54.7 months of the Unit 3, the shortest in the world. During the test, there was no scramming other than the planned. Described are the following: an outline of the Unit 3, the items of its improvement and standardization, including the new equipments, preparations for the start-up test, the start-up test and its evaluation. (Mori, K.)

  7. Introduction of construction management system for preparation work of Shimane Nuclear Power Station Unit-3

    International Nuclear Information System (INIS)

    Sasaki, Yutaka; Tsumura, Isamu; Hayashi, Minoru; Nakamoto, Kenji

    2005-01-01

    The construction management system aims to have information on the construction management between the Chugoku Electric Power Co. Inc. and each contractor, and to work efficiently. The system has been operating during about half year. The system manages the manufacturing process, safety and quality. The aims, development process, characteristics, network construction of the system are reported. As outline of the construction management system, functions and construction management of each process, safety and quality and ITV camera are explained. The system will be used at construction of Shimane nuclear power station unit-3. (S.Y.)

  8. Probabilistic fire risk assessment for Koeberg Nuclear Power Station Unit 1

    International Nuclear Information System (INIS)

    Grobbelaar, J.F.; Foster, N.A.S.; Luesse, L.J.

    1995-01-01

    A probabilistic fire risk assessment was done for Koeberg Nuclear Power Station Unit 1. Areas where fires are likely to start were identified. Equipment important to safety, as well as their power and/or control cable routes were identified in each fire confinement sector. Fire confinement sectors where internal initiating events could be caused by fire were identified. Detection failure and suppression failure fault trees and event trees were constructed. The core damage frequency associated with each fire confinement sector was calculated, and important fire confinement sectors were identified. (author)

  9. Nuclear Power Plant Control and Instrumentation activities in the United Kingdom

    International Nuclear Information System (INIS)

    Goodings, A.

    1990-01-01

    The paper describes the status of the NPP control and instrumentation in the United Kingdom. The general technology underlying most aspects of power reactor C and I in the UK has not altered since the last progress report although there have been many improvements in detail. In one field, however, that of computer applications, the change has almost been one of kind rather than degree. The following fields are briefly described: The status of nuclear power in the UK, the development of sensors, the development of electronic equipment, signal processing - information technology, quality assurance and the validation and verification of software, expert systems, training simulators. (author). 1 ref

  10. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  11. Calculation of radioactive inventory of activated parts for nuclear power unit and analysis of influence factors

    International Nuclear Information System (INIS)

    Liu Yang; Cai Qi; Lin Xiaoling

    2011-01-01

    Based on the operation characteristics of the nuclear power unit, the radioactive inventory of activated parts was calculated by ORIGEN2, and the effects of bum-up, operation mode and power change on the radioactive inventory for activated parts were analyzed. The results indicated that the radioactive inventory grew with the increasing of burn-up, and when the actual operation time was longer than the effective operation time, the increasing rate of nuclide activity approximated the burn-up increasing; Radioactive inventory of activated parts was influenced directly by the operation modes of the nuclear power unit, and under same reactor load, operation power and bum-up, the radioactive inventory for non-continuous operation mode is less than that for the continuous operation mode. Effects of operation modes on radioactive inventory reversed with half life of nuclides. Under same bum-up and longer operation time, the effect of operation power change on the radioactive inventory is not obvious, (authors)

  12. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    Science.gov (United States)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  13. Use mobile pumps and liquid chilling water units to provide chilled water for nuclear reactor during nuclear power plant accident

    International Nuclear Information System (INIS)

    Zhang Guobin; Feng Jiaxuan

    2012-01-01

    From the nuclear accident in Japan Fuksuhima in March this year, despite a shut down of the reactor, the residue heat inside the reactor was not able to remove due to the failure of the cooling system and it finally caused the catastrophe. It was observed that when the failure of the cooling system after an earthquake of magnitude 9 and a tsunami of 28 meters height, the containment vessel for the reactor core was still able to maintain its integrity in the first 24 hours before the first explosion was happened. A backup emergency heat removal system for nuclear power plants using mo- bile pumps and liquid chilling units has been proposed 20 years ago by Cheung [Ref. 1]. Due to the fact that there are more than 400 nuclear power plants around the world and 10% of them are located in earthquake active zone, together with the aging of some of the power plants which were built more than 30 years ago, the risk of another nuclear accident becomes high. An emergency safety measure has to be designed in order to deal with the unforeseen scenario. This re- port re-visits the proposal again; to re-design to the suit the need and to integrate with the current situation of the nuclear industry. (authors)

  14. 78 FR 47011 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2013-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Unit Testing for Digital Computer Software... revised regulatory guide (RG), revision 1 of RG 1.171, ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This RG endorses American National Standards...

  15. 77 FR 50722 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2012-08-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Unit Testing for Digital Computer Software...) is issuing for public comment draft regulatory guide (DG), DG-1208, ``Software Unit Testing for Digital Computer Software used in Safety Systems of Nuclear Power Plants.'' The DG-1208 is proposed...

  16. Experience with respect to dose limitation in nuclear fuel service operations in the United Kingdom supporting civil nuclear power programmes

    International Nuclear Information System (INIS)

    Kennedy, J.W.

    1983-01-01

    Within the United Kingdom, the nuclear power generation programme is supported by nuclear fuel services including uranium enrichment, fuel fabrication and reprocessing, operated by British Nuclear Fuels Limited (BNFL). These have entailed the processing of large quantities of uranium and of plutonium and fission products arising in the course of irradiation of fuel in nuclear power stations and have necessitated substantial programmes for the radiological protection of the public and of the workers employed in the industry. This paper presents and reviews the statistics of doses recorded in the various sectors of nuclear fuel services operations against the background of the standards to which the industry is required to operate. A description is given of the development of BNFL policy in keeping with the objective of being recognized as among those industries regarded as safe and the resource implications of measures to reduce doses received by workers are reviewed in the light of experience. Finally, the paper reviews the epidemiological data which have been, and continue to be, collected for workers who have been employed in these nuclear fuel services. (author)

  17. Primary Water Chemistry Control at Units of Paks Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, J.; Pinter, G. Patek T.; Tilky, P.; Doma, A. [Paks Nuclear Power Plant Co. Ltd., Paks (Hungary); Osz, J. [Budapest University of Technology and Economics, Budapest (Hungary)

    2013-03-15

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western type PWR units, taking into consideration some Russian modifications. The political changes in the 1990s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of WWER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The need for lifetime extensions worldwide has made the development of startup and shutdown chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  18. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1. Docket No. 50-322

    International Nuclear Information System (INIS)

    1983-02-01

    Supplement No. 3 to the Safety Evaluation Report of Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have come to light since the previous supplement was issued

  19. 75 FR 75704 - Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of...

    Science.gov (United States)

    2010-12-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-275-LR; 50-323-LR] Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of Appointment of Adjudicatory Employee... Seismologist, Office of Nuclear Material Safety and Safeguards, has been appointed as a Commission adjudicatory...

  20. Internal event analysis of Laguna Verde Unit 1 Nuclear Power Plant. System Analysis

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1993-01-01

    The Level 1 results of Laguna Verde Nuclear Power Plant PRA are presented in the I nternal Event Analysis of Laguna Verde Unit 1 Nuclear Power Plant , CNSNS-TR-004, in five volumes. The reports are organized as follows: CNSNS-TR-004 Volume 1: Introduction and Methodology. CNSNS-TR-004 Volume 2: Initiating Event and Accident Sequences. CNSNS-TR-004 Volume 3: System Analysis. CNSNS-TR-004 Volume 4: Accident Sequence Quantification and Results. CNSNS-TR-004 Volume 5: Appendices A, B and C. This volume presents the results of the system analysis for the Laguna Verde Unit 1 Nuclear Power Plant. The system analysis involved the development of logical models for all the systems included in the accident sequence event tree headings, and for all the support systems required to operate the front line systems. For the Internal Event analysis for Laguna Verde, 16 front line systems and 5 support systems were included. Detailed fault trees were developed for most of the important systems. Simplified fault trees focusing on major faults were constructed for those systems that can be adequately represent,ed using this kind of modeling. For those systems where fault tree models were not constructed, actual data were used to represent the dominant failures of the systems. The main failures included in the fault trees are hardware failures, test and maintenance unavailabilities, common cause failures, and human errors. The SETS and TEMAC codes were used to perform the qualitative and quantitative fault tree analyses. (Author)

  1. Cross-connected onsite emergency A.C. power supplies for multi-unit nuclear power plant sites

    International Nuclear Information System (INIS)

    Martore, J.A.; Voss, J.D.; Duncil, B.

    1987-01-01

    Recently, utility management, both at the corporate and plant operations levels, have reinforced their commitment to assuring increased plant reliability and availability. One means of achieving this objective involves an effective preventive maintenance program with technical specifications which allow implementation of certain preventive maintenance without plant shutdown. To accomplish this, Southern California Edison Company (SCE) has proposed a design change for San Onofre nuclear generating station (SONGS) units 2 and 3 to permit on emergency diesel generator for one unit to perform as an available AC power source for both units. Technical specifications for SCE's SONGS units 2 and 3, as at most nuclear power plants, currently require plant shutdown should one of the two dedicated onsite emergency AC power sources (diesel generators) become inoperable for more than 72 hours. This duration hinders root cause failure analysis, tends to limit the flexibility of preventive maintenance and precludes plant operation in the event of component failure. Therefore, this proposed diesel generator cross-connect design change offers an innovative means for averting plant shutdown should a single diesel generator become inoperable for longer than 72 hours. (orig./GL)

  2. The civil design of the Angra Nuclear power plant, units 2 and 3

    International Nuclear Information System (INIS)

    Zuegel, L.C.; Diaz, B.E.; Cunha, M.T.

    1988-01-01

    The civil design of the Angra Nuclear Power Plant, Units 2 and 3 represents an important step in the technological development of Brazil, correlated to high technology enterprises. This design was developed in Brazil, by Brazilian technicians, in a comprehensive way. In all individual and global phases of the design, a full participation of the Brazilian state and private companies has been observed. In order to proceed with the design in this way, a group of Nuclen engineers has stayed for a while in Germany, in KWU's office, for a proper training. The Brazilian design companies, on the other hand, have received a special consulting support given by engineers of German construction companies, especialized in nuclear power plant construction. For the nuclear civil design, as well as for the dynamic analyses and structural design of reinforced concrete and steel structures, the design job assumes an important position in the Brazilian technical experience. The structural design of the reinforced concrete structures of the nuclear power plant, for instance, is the largest one ever performed in Brazil in terms of difficulty, complexity and amount of man-hours expediture. A summary of the civil design steps will be described in this paper. (author) [pt

  3. Integrated Level 3 risk assessment for the LaSalle Unit 2 nuclear power plant

    International Nuclear Information System (INIS)

    Payne, A.C. Jr.; Brown, T.D.; Miller, L.A.

    1991-01-01

    An integrated Level 3 probabilistic risk assessment (PRA) was performed on the LaSalle County Station nuclear power plant using state-of-the-art PRA analysis techniques. The objective of this study was to provide an estimate of the risk to the offsite population during full power operation of the plant and to include a characterization of the uncertainties in the calculated risk values. Uncertainties were included in the accident frequency analysis, accident progression analysis, and the source term analysis. Only weather uncertainties were included in the consequence analysis. In this paper selected results from the accident frequency, accident progression, source term, consequence, and integrated risk analyses are discussed and the methods used to perform a fully integrated Level 3 PRA are examined. LaSalle County Station is a two-unit nuclear power plant located 55 miles southwest of Chicago, Illinois. Each unit utilizes a Mark 2 containment to house a General Electric 3323 MWt BWR-5 reactor. This PRA, which was performed on Unit 2, included internal as well as external events. External events that were propagated through the risk analysis included earthquakes, fires, and floods. The internal event accident scenarios included transients, transient-induced LOCAs (inadvertently stuck open relief valves), anticipated transients without scram, and loss of coolant accidents

  4. Analysis of the Opportunity for an Increase in the Thermal Power of Power Generating Units of Nuclear Power Plants (Part 1)

    OpenAIRE

    Chernousenko, Olga Yuriivna; Nikulenkova, Tetiana Volodymyrivna; Nikulenkov, Anatolii Hennadiiovych

    2017-01-01

    For Ukraine the realization of available reserves to increase the power of operating power units of nuclear plants is a vital problem the solution of which would allow us to increase electric power output. A special role is also played by economic priorities; in particular an increase in power by 1 kW is ten times cheaper in comparison with the construction of 1 kW of new power facilities. One more factor is the world experience in the field of an increase in the thermal power of operating po...

  5. Nuclear power in crisis

    International Nuclear Information System (INIS)

    Blowers, Andrew.; Pepper, David.

    1987-01-01

    Six themes run through this book: nuclear decision making and democratic accountability, nuclear bias and a narrow-based energy policy, scientific discredit and popular expertise, fusing science with social values, managerial competence and the geography of nuclear power. These are covered in thirteen chapters (all indexed separately) grouped into four parts -the political and planning context, nuclear waste, risk and impact - the social dimension and the future of nuclear power. It considers aspects in France, the United States and the United Kingdom with particular references to the Sizewell-B inquiry and the Sellafield reprocessing plant. (UK)

  6. The technology of the bearings used in the nuclear power generation system turbine generator units

    International Nuclear Information System (INIS)

    Vialettes, J.M.; Rossato, M.

    1997-01-01

    A bearing consists of all the stationary part which allow the relative motion in rotation or in translation, of a shaft line. Inside the bearing there is a journal bearing with a metallic anti-friction coating (the babbitt metal). The high power turbine generator unit rotors are supported by smooth transversal journal bearings fed with oil which fills the empty space and runs along the shaft. The technologies used for the bearings and the thrust bearings of the turbine generator units and the various shaft lines of the French CP0/CP1- and CP2/1300 MW-type nuclear power plants are described. The experience feedback is then discussed in terms of the dynamics of the shaft line, i.e. vibrational problems, the influence of the alignment and the babbitt metal incidents. (author)

  7. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru [National Research University “Moscow State University of Civil Engineering,” (Russian Federation)

    2017-03-15

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  8. Radiation protection for repairs of reactor's internals at the 2nd Unit of the Nuclear Power Plant Temelin

    International Nuclear Information System (INIS)

    Zapletal, P.; Konop, R.; Koc, J.; Kvasnicka, O.; Hort, M.

    2011-01-01

    This presentation describes the process and extent of repairs of the 2 nd unit of the Nuclear power plant Temelin during the shutdown of the reactor. All works were optimized in terms of radiation protection of workers.

  9. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  10. Decommissioning of units 1 - 4 at Kozloduy nuclear power plant in Bulgaria

    International Nuclear Information System (INIS)

    Dishkova, Denitsa

    2014-01-01

    Nuclear safety and security are absolute priorities for the European Union countries and this applies not only to nuclear power plants in operation but also to decommissioning. In terms of my technical background and my working experience in the field of licensing and environmental impact assessment during the decommissioning of Units 1 to 4 at Kozloduy Nuclear Power Plant (KNPP) in Bulgaria, I decided to present the strategy for decommissioning of Units 1 to 4 at KNPP which was selected and followed to achieve safe and effective decommissioning process. The selected strategy in each case must meet the legislative framework, to ensure safe management of spent fuel and radioactive waste, to provide adequate funding and to lead to positive socio-economic impact. The activities during the decommissioning generate large volume of waste. In order to minimize their costs and environmental impact it should be given a serious consideration to the choice, the development and the implementation of the most adequate process for treatment and the most appropriate measurement techniques. The licensing process of the decommissioning activities is extremely important and need to cope with all safety concerns and ensure optimal waste management. (authors)

  11. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  12. Nuclear power and the energy crisis. Politics and the atomic industry. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Burn, D

    1978-01-01

    An analysis is presented of the politics and economics of the decisions made during the past decade on the development and supply of nuclear power. The subject is treated under the following headings: first competitive reactor - the light water reactor (the paradox of LWR development, competitiveness accepted, the rise of costs - extent and sources, safety of the LWR, peak and collapse 1974 to 76, the LWR outside the United States); AGR to SGHWR (the course of AGR development, sources of the AGR disaster, response to failure - two governments decide, single D and C company, LWR versus SGHWR).

  13. Modernization programme for nuclear power plant units with VVER-1000 in Ukraine

    International Nuclear Information System (INIS)

    Shenderovich, V.

    1997-01-01

    All Ukrainian nuclear power plants with WWER type reactors are briefly described from the safety point of view. Information is given on the design and construction of the units. The main goals of upgrading are: elimination of incompliances with current safety standards, improvement of the reliability of safety significant systems, equipment and elements, and implementation of IAEA recommendations. A list of actions making up the large upgrading programme is given; it includes 181 measures to be taken. At present the measures are being designed in order to find appropriate engineering solutions, to develop technical specifications for new equipment, and to ensure precise cost estimation. (M.D.)

  14. Instructor station of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Wu Fanghui

    1996-01-01

    The instructor station of Full Scope Simulator for Qinshan 300 MW Nuclear Power Unit is based on SGI graphic workstation. The operation system is real time UNIX, and the development of man-machine interface, mainly depends on standard X window system, special for X TOOLKITS and MOTIF. The instructor station has been designed to increase training effectiveness and provide the most flexible environment possible to enhance its usefulness. Based on experiences in the development of the instructor station, many new features have been added including I/O panel diagrams, simulation diagrams, graphic operation of malfunction, remote function and I/O overrides etc

  15. The United Kingdom Law on the authorisation of nuclear power stations

    International Nuclear Information System (INIS)

    Savinson, R.

    1977-01-01

    This paper explains the requirements of the law of the United Kingdom as to the authorisations needed to construct and operate nuclear power plants in Great Britain. For simplicity, the texts referred to apply to England and Wales, Scottish law differing in detail but not in principle. Implementation of this legal system is studied in particular from the viewpoint of the Central Electricity Generating Board (CEGB) which is at present the body exclusively responsible for generating and supplying electricity in England and Wales. (NEA) [fr

  16. Data book of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    2002-03-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The result of the present examination has already been reported to NISA and has also been published as the JAERI-Tech report No.2001-94. This report is a data book containing the detailed data obtained by the present examination. (author)

  17. Report of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    2001-12-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The following findings and conclusion were made as the result of the present examination. (1) Wall thickness of the pipe was significantly reduced in the ruptured region. (2) Dimple pattern resulting from ductile fracture by shearing was observed in the fracture surfaces of nearly all of the pieces and no indication of fatigue crack growth was found. (3) Microstructure showed a typical carbon

  18. Draft environmental impact statement. River Bend Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Federal financing of an undivided ownership interest of River Bend Nuclear Power Station Unit 1 on a 3293-acre site near St. Francisville, Louisiana is proposed in a supplement to the final environmental impact statement of September 1974. The facility would consist of a boiling-water reactor that would produce a maximum of 2894 megawatts (MW) of electrical power. A design level of 3015 MW of electric power could be realized at some time in the future. Exhaust steam would be cooled by mechanical cooling towers using makeup water obtained from and discharged to the Mississippi River. Power generated by the unit would be transmitted via three lines totaling 140 circuit miles traversing portions of the parishes of West Feliciana, East Feliciana, East Baton Rouge, West Baton Rouge, Pointe Coupee, and Iberville. The unit would help the applicant meet the power needs of rural electric consumers in the region, and the applicant would contribute significanlty to area tax base and employment rolls during the life of the unit. Construction related activities would disturb 700 forested acres on the site and 1156 acres along the transmission routes. Of the 60 cubic feet per second (cfs) taken from the river, 48 cfs would evaporate during the cooling process and 12 cfs would return to the river with dissolved solids concentrations increased by 500%. The terrace aquifer would be dewatered for 16 months in order to lower the water table at the building site, and Grants Bayou would be transformed from a lentic to a lotic habitat during this period. Fogging and icing due to evaporation and drift from the cooling towers would increase slightly. During the construction period, farming, hunting, and fishing on the site would be suspended, and the social infractructure would be stressed due to the influx of a maximum of 2200 workers

  19. Plutonium fuel and nuclear power - reflections after 21 years. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Grainger, L [Branon PLC (UK)

    1983-02-01

    A review of the last 20 years of nuclear power development is presented in celebration of the 21st birthday of the British Nuclear Energy Society's journal. It examines the changes since the author's 1962 paper, 'Plutonium fuel and nuclear power'.

  20. Evaluation of the control system checkout test at 100% power for Yonggwang Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Kim, Shin Whan; Lee, Joo Han; Baek, Jong Man; Seo, Jong Tae; Lee, Sang Keun; Kang, In Koo; Ju, Hee Wan; Min, Kyung Soo; Kim, Byung Gon

    1995-01-01

    Control system checkout tests at various powers for Yonggwang Nuclear Power Plant Unit 3(YGN3) were performed to demonstrate the accuracies and proper performances of the control systems of the plant. Tested control systems included the feedwater control system, steam bypass control system, reactor regulation system, control element drive mechanism control system, pressurizer level control system, and pressurizer pressure control system. The measured test data during the control system checkout test at 100% power are evaluated. The test results showed that the control systems of YGN 3 properly control system was simulated by using the LTC code which is the performance analysis code for YGN 3 and 4 design. Comparisons of the predicted results with the measured data confirmed that the feedwater control system controls the steam generator level as designed

  1. Summary of plant life management evaluation for Onagawa Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    Nodate, Kazumi

    2014-01-01

    The Onagawa Nuclear Power Station Unit-1 (Onagawa NPS-1) began commercial operation on June 1, 1984, and has reached 30-year from starting of operation on June of 2014. To that end, we implemented the Plant Life Management (PLM) evaluation for Onagawa NPS-1 as our first experience. We decided on a Long-term Maintenance Management Policy from result of the evaluation, and then applied the Safety-Regulations change approval application on November 6, 2013 and its correcting application on April 16, 2014. Our application was approved on May 21, 2014 through investigation by the Nuclear Regulatory Agency. Also at implementation of the PLM evaluation, we considered effects of the Great East Japan Earthquake that occurred on March 11, 2011 against ageing phenomena. In this paper, we introduce summary of PLM evaluation for Onagawa NPS-1 and the evaluation that considered effects of the Great East Japan Earthquake. (author)

  2. Evaluation of nuclear facility decommissioning projects. Status report. Humboldt Bay Power Plant Unit 3, SAFSTOR decommissioning

    International Nuclear Information System (INIS)

    Baumann, B.L.; Haffner, D.R.; Miller, R.L.; Scotti, K.S.

    1986-06-01

    This document explains the purpose of the US Nuclear Regulatory Commission's (NRC) Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program and summarizes information concerning the decommissioning of the Humboldt Bay Power Plant (HBPP) Unit 3 facility. Preparations to put this facility into a custodial safe storage (SAFSTOR) mode are currently scheduled for completion by June 30, 1986. This report gives the status of activities as of June 1985. A final summary report will be issued after completion of this SAFSTOR decommissioning activity. Information included in this status report has been collected from the facility decommissioning plan, environmental report, and other sources made available by the licensee. This data has been placed in a computerized data base system which permits data manipulation and summarization. A description of the computer reports that can be generated by the decommissioning data system (DDS) for Humboldt Bay and samples of those reports are included in this document

  3. Evaluation of external hazards to nuclear power plants in the United States: Other external events

    International Nuclear Information System (INIS)

    Kimura, C.Y.; Prassinos, P.G.

    1989-02-01

    In support of implementation of the Nuclear Regulatory Commission's Severe Accident Policy, the Lawrence Livermore National Laboratory (LLNL) has performed a study of the risk of core damage to nuclear power plants in the United States due to ''other external events.'' The broad objective has been to gain an understanding of whether ''other external events'' (the hazards not covered by previous reports) are among the major potential accident initiators that may pose a threat of severe reactor core damage or of large radioactive release to the environment from the reactor. The ''other external events'' covered in this report are nearby industrial/military facility accidents, on site hazardous material storage accidents, severe temperature transients, severe weather storms, lightning strikes, external fires, extraterrestrial activity, volcanic activity, earth movement, and abrasive windstorms. The analysis was based on two figures-of-merit, one based on core damage frequency and the other based on the frequency of large radioactive releases. 37 refs., 8 tabs

  4. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  5. RCGVS design improvement and depressurization capability tests for Ulchin nuclear power plant units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kang Sik; Seong, Ho Je; Jeong, Won Sang; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Lim, Keun Hyo; Choi, Kwon Sik; Oh, Chul Sung [Korea Electric Power Cooperation, Taejon (Korea, Republic of)

    1999-12-31

    The Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3 and 4 (UCN 3 and 4) has been improved from the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 and 4) based on the evaluation results for depressurization capability tests performed at YGN 3 and 4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown phenomena in order to optimize the orifice size of UCN 3 and 4 RCGVS. Based on these analyses results, the RCGVS orifics size for UCN 3 and 4 has been reduced to 9/32 inch from the 11/32 inch for YGN 3 and 4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3 and 4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation. 6 refs., 5 figs., 1 tab. (Author)

  6. RCGVS design improvement and depressurization capability tests for Ulchin nuclear power plant units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kang Sik; Seong, Ho Je; Jeong, Won Sang; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Lim, Keun Hyo; Choi, Kwon Sik; Oh, Chul Sung [Korea Electric Power Cooperation, Taejon (Korea, Republic of)

    1998-12-31

    The Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3 and 4 (UCN 3 and 4) has been improved from the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 and 4) based on the evaluation results for depressurization capability tests performed at YGN 3 and 4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown phenomena in order to optimize the orifice size of UCN 3 and 4 RCGVS. Based on these analyses results, the RCGVS orifics size for UCN 3 and 4 has been reduced to 9/32 inch from the 11/32 inch for YGN 3 and 4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3 and 4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation. 6 refs., 5 figs., 1 tab. (Author)

  7. Nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.

    1985-01-01

    The question 'Do we really need nuclear power' is tackled within the context of Christian beliefs. First, an estimate is made of the energy requirements in the future and whether it can be got in conventional ways. The dangers of all the ways of supplying energy (eg coal mining, oil and gas production) are considered scientifically. Also the cost of each source and its environmental effects are debated. The consequences of developing a new energy source, as well as the consequences of not developing it, are considered. Decisions must also take into account a belief about the ultimate purpose of life, the relation of men to each other and to nature. Each issue is raised and questions for discussion are posed. On the whole the book comes down in favour of nuclear power.

  8. Start-up tests of Kashiwazakikariwa Nuclear Power Station Unit No.2 and No.5

    International Nuclear Information System (INIS)

    Fueki, Kensuke; Aoki, Shiro; Tanaka, Yasuhisa; Yahagi, Kimitoshi

    1991-01-01

    The Kashiwazakikariwa Nuclear Power Station Units No.5 and No.2 started commercial operation on April 10 and September 28 of 1990 respectively. As the result of the application of the First and Second LWR Improvement and Standardization Program, the plants were designed aiming at improvement of reliability, operation, and maintenance while maintaining safety. Construction of the plants took 6.5 to 7 years for completion, during which period the last 10 months were spent for the start up tests program. Start up tests were carried out under deliberate management to assure that the plants can operate safely and steadily at the prescribed operating points, and the schedules and tests item modifications adopted in Unit No.2 and No.5 were verified under the start up tests program. (author)

  9. Efficient erection of a piping unit in a nuclear power station

    International Nuclear Information System (INIS)

    Halstrick, V.; Peters, G.

    1986-01-01

    In consideration of the negative experience gathered in the past extensive project logistics are required for the erection of piping units in a nuclear power station in order to be able to recognize and master the numerous influences and different marginal conditions with reasonable certainty and at an early stage. The utilization of requirements from the analysis of experience for the conception of project management begins with the erection planning and results in check lists for the execution of erection. During production planning these check lists are verified for realization. Because of the extensive data, EDP-aided systems are applied for checking and controlling the flow of information and material. A dialogue-aided system is presented for project planning and controlling which enables a transparent and farsighted execution of a project. By means of comparable piping units it is demonstrated that due to the created controlling system a great success becomes obvious in relation to the past. (orig.) [de

  10. Environmental impact assessments of a fifth nuclear power plant unit in Finland

    International Nuclear Information System (INIS)

    Aurela, Jorma; Koivisto, Katarina

    2000-01-01

    This paper presents the results of president questionnaires and media monitoring of press cuttings concerned with siting of the new fifth in a row Finnish NPP. Two years ago both Fortum Power and Heat Oy and Teollisuuden Voima Oy (TVO) launched their Environmental impact assessment (EIA) procedures of a new nuclear power unit in Finland. The EIA procedures were launched to investigate the environmental impacts of a fifth nuclear power plant which possibly will be built in Loviisa or at Olkiluoto. In Finland there are four operating NPP units, two in Loviisa (Fortum) and two in Eurajoki, Olkiluoto (TVO). In the EIA procedure citizens and various associations and authorities have an opportunity to express their views on the matters related to the project. The Ministry of Trade and Industry (MTI) as the coordination authority arranges the organisation of the EIA hearings and the collection of statements and opinions. The EIA procedure in Finland takes place in two stages. The first stage i.e. the EIA programme describes the project and presents the plan on how the environmental effects are investigated and assessed. In the second stage the actual assessment of the environmental effects of the project will be submitted. Both Fortum and Teollisuuden Voima Oy (TVO) launched in spring 1998 their EIA procedures. The main alternatives are the Loviisa 3 project includes two plant type alternatives. The size of the plant is between 1000 and 1700 MWe, and the extension project of the Olkiluoto NPP to build a NPP unit of about 1000-1500 MWe at Olkiluoto. The EIA reports were submitted to the MTI in August 1999 and after that they were on display for two months for opinions and statements

  11. Structural design of the turbine building of Angra Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Varella, L.N.; Reis, F.J.C.; Jurkiewicz, W.J.

    1978-01-01

    The Turbine Building of the Angra Nuclear Power Plant, Unit 1, and particularly its structure and structural design are described. The Turbine Building, as far as its structure is concerned, deviates from the standard structure of any turbine building due to the fact that huge ducts are provided in the foundation mat as to accomodate the circulating water system. This aspect and the fact that the building is founded upon a very deep strata of compacted and controlled fill, makes out of the building structure 'a concrete ship floating in the sea of sand', and by the same reason presents by itself an interesting structure, worth to be known to all engineers involved in design of power plants. This pape, suplemented by a few slides shown during presentation of the paper at the conference, covers the subject mainly from the designers' point of view. (Author)

  12. Part-task simulator of a WWER-440 type nuclear power plant unit

    International Nuclear Information System (INIS)

    Palecek, P.

    1990-01-01

    In the present paper the design of a part-task simulator for WWER-440 type nuclear power plant units by the CEZ (Czech Power Works) Concern is reported. This part-task simulator has been designed for the training of NPP operating personnel. It includes a central computer that is coupled with the training work places and the trainer place. Interchange of information is performed by functional keyboards and semigraphical colour displays. The process is simulated, also in real time scale, on the basis of dynamic models. In addition to the precision of the models used, great importance has primarily been attached to plasticity of information presentation. The part-task simulator may be applied to simulation and demonstration as well as to teaching purposes. The paper presents the achieved state of implementation of the part-task simulator and points out some further stage of evolution. (author)

  13. Summary of commissioning of Hamaoka Nuclear Power Station Unit No.5

    International Nuclear Information System (INIS)

    Wakunaga, T.; Sekine, Y.; Yamada, K.; Nakamura, Y.; Kawahara, M.

    2006-01-01

    The Hamaoka Nuclear Power Station Unit No.5 was put into commercial operation in January 2005, which is the 1380 MWe advanced boiling water reactor (ABWR) incorporating design improvements and latest technologies of safer operation, reliability and maintenance. For example, S-FMCRD (Sealless Fine-Motion Control Rod Drive) was equipped to eliminate the use of seal housing by adopting a magnetic coupling and also ASD (Adjustable Speed Drive- the multiple drive power supply to reactor internal pumps) that can drive two or three Recirculation Internal Pumps with a large-capacity inverter. The reactor start-up tests were performed about for eleven months from February 2004 to confirm the plant's required performance including design change points. (T. Tanaka)

  14. Internal event analysis for Laguna Verde Unit 1 Nuclear Power Plant. Accident sequence quantification and results

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1994-01-01

    The Level 1 results of Laguna Verde Nuclear Power Plant PRA are presented in the I nternal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant, CNSNS-TR 004, in five volumes. The reports are organized as follows: CNSNS-TR 004 Volume 1: Introduction and Methodology. CNSNS-TR4 Volume 2: Initiating Event and Accident Sequences. CNSNS-TR 004 Volume 3: System Analysis. CNSNS-TR 004 Volume 4: Accident Sequence Quantification and Results. CNSNS-TR 005 Volume 5: Appendices A, B and C. This volume presents the development of the dependent failure analysis, the treatment of the support system dependencies, the identification of the shared-components dependencies, and the treatment of the common cause failure. It is also presented the identification of the main human actions considered along with the possible recovery actions included. The development of the data base and the assumptions and limitations in the data base are also described in this volume. The accident sequences quantification process and the resolution of the core vulnerable sequences are presented. In this volume, the source and treatment of uncertainties associated with failure rates, component unavailabilities, initiating event frequencies, and human error probabilities are also presented. Finally, the main results and conclusions for the Internal Event Analysis for Laguna Verde Nuclear Power Plant are presented. The total core damage frequency calculated is 9.03x 10-5 per year for internal events. The most dominant accident sequences found are the transients involving the loss of offsite power, the station blackout accidents, and the anticipated transients without SCRAM (ATWS). (Author)

  15. Final environmental statement for Shoreham Nuclear Power Station, Unit 1: (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1977-10-01

    The proposed action is the issuance of an Operating License to the Long Island Lighting Company (LILCO) for the startup and operation of the Shoreham Nuclear Power Station, Unit 1 (the plant) located on the north shore of Long Island, the State of New York, County of Suffolk, in the town of Brookhaven. The Shoreham station will employ a boiling-water reactor (BWR), which will operate at a thermal output of 2436 MW leading to a gross output of 846 MWe and a net output of about 820 MWe. The unit will be cooled by once-through flow of water from the Long Island Sound. One nuclear unit with a net capacity of 820 MWe will be added to the generating resources of the Long Island Lighting Company. This will have a favorable effect on reserve margins and provide a cost savings of approximately $62.1 million (1980 dollars) in production costs in 1980 if the unit comes on line as scheduled; additional cost savings will be realized in subsequent years. Approximately 100 acres (40 hectares) of the 500-acre (202-hectare) site of rural (mostly wooded) land owned by the applicant have been cleared. Most of this will be unavailable for other uses during at least the 40-year life of the plant. No offsite acreage has been or will be cleared. Land in the vicinity of the site has undergone some residential development that is typical for all of this area of Long Island. The operation of Shoreham Unit 1 will have insignificant impacts on this and other types of land uses in the vicinity of the site. 33 figs., 56 tabs

  16. Quality control for the construction of Ikata Nuclear Power Station No. 2 Unit

    International Nuclear Information System (INIS)

    Onishi, Akiyoshi

    1983-01-01

    In the construction of No. 2 unit in Ikata Nuclear Power Station, Shikoku Electric Power Co., the quality control was practiced making effective use of the experience in preceding stations including the Three Mile Island station, U.S., and improving those. The construction works were also performed in consideration of ensuring the safe running of No. 1 unit in commercial operation. In this report, first the outline of No. 2 unit facility and the quality control in the construction processes are described sequentially. For the comprehensive quality control activity over a series of plant design, manufacturing, installation and commissioning processes, the quality control policy was fixed, the system was established, the plan was prepared, and the quality control was promoted as planned and systematically. The outline of the quality control in each stage is described as follows. Design stage: It was implemented for the confirmation of applicable standards and references, the management of drawings submitted for approval, the selection of materials used, the coordination among sub-contractors, design change and the reflection of experience in preceding stations. Manufacturing stage. It was performed for material control, manufacturing management, factory test and control. Installation stage. It was practiced for the management of installation works, the inspection during the installation, and the check-up and control after the installation. Several quality control items were implemented also in the method of construction works and construction management. (Wakatsuki, Y.)

  17. The nuclear power cycle

    International Nuclear Information System (INIS)

    2004-01-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  18. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1989-04-01

    Supplement 10 (SSER 10) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  19. Primary water chemistry control at units of Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Schunk, J.; Patek, G.; Pinter, T.; Tilky, P.; Doma, A.; Osz, J.

    2010-01-01

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western-type PWR units, taking into consideration some Soviet-Russian modifications. The political changes in 90s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of VVER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The needs for life-time extensions all over the World have made the development of start-up and shut-down chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  20. Method for controlling a nuclear fueled electric power generating unit and interfacing the same with a load dispatching system

    International Nuclear Information System (INIS)

    Mueller, N.P.; Meyer, C.E.

    1984-01-01

    A pressurized water reactor (PWR) nuclear fueled, electric power generating unit is controlled through the use of on-line calculations of the rapid, step and ramp, power change capabilities of the unit made from measured values of power level, axial offset, coolant temperature and rod position taking into account operator generated, safety and control, and balance of plant limits. The power change capabilities so generated may be fed to an automatic dispatch system which provides closed loop control of a power grid system. (author)

  1. Progress by nuclear power

    International Nuclear Information System (INIS)

    Creamer, A.

    1980-01-01

    United States scientist Petr Beckmann predicts that there will eventually be nuclear power stations in the Transvaal in South Africa. This will take place for two reasons: to decrease pollution problems and to ensure economic advancement. He also refers to the the toxicity of nuclear wastes and coal wastes

  2. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Single Channel Trip System for the Dungeness B AGRs in the United Kingdom has enabled Nuclear Electric to enhance the performance of each of the twin reactors progressively towards the design figure of 660MW. The unique self-testing dynamic nature of the microprocessor-based ISAT system was one of the key factors in satisfying the UK Regulator that the system met the demanding requirements of the Dungeness B application, and current operational and maintenance experience is very encouraging. Systems based on the ISAT principle have application in reactor protection systems throughout the world. (Author)

  3. Commercial nuclear power: prospects for the United States and the world

    International Nuclear Information System (INIS)

    1986-01-01

    This analysis report presents the current status and outlook for commercial nuclear power reactors for all countries in the world outside centrally planned economic areas (WOCA). Information regarding operable reactors in countries with centrally planned economies is presented in an appendix. The report provides documentation of the US nuclear capacity and generation projections through 1995. Projections for US nuclear capacity and generation through 2020 are presented for various nuclear power supply scenarios. These long-term projections are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 and are used to produce the projections of fuel cycle requirements and spent fuel discharges

  4. Evaluation of external hazards to nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Kimura, C.Y.; Budnitz, R.J.

    1987-12-01

    The Lawrence Livermore National Laboratory (LLNL) has performed a study of the risk of core damage to nuclear power plants in the United States due to externally initiated events. The broad objective has been to gain an understanding of whether or not each external initiator is among the major potential accident initiators that may pose a threat of severe reactor core damage or of large radioactive release to the environment from the reactor. Four external hazards were investigated in this report. These external hazards are internal fires, high winds/tornadoes, external floods, and transportation accidents. Analysis was based on two figures-of-merit, one based on core damage frequency and the other based on the frequency of large radioactive releases. Using these two figures-of-merit as evaluation criteria, it has been feasible to ascertain whether the risk from externally initiated accidents is, or is not, an important contributor to overall risk for the US nuclear power plants studied. This has been accomplished for each initiator separately. 208 refs., 17 figs., 45 tabs

  5. Kozloduy nuclear power plant. Units 1-4. Status of safety improvements. Rev. 2

    International Nuclear Information System (INIS)

    1999-01-01

    This paper presents the results of the safety improvements activities carried out by the Kozloduy Nuclear Power Plant (KNPP) within the period 1990-1998. The steam supply system of this units is based of the reactor WWER-440/ B-230, which is a PWR of russian design developed according to the safety standards in force in USSR in late sixties. Up to now 10 reactor units of this type are in operation in four NPPs. Despite of efforts of the different plants to implement safety improvements measures during first 10-15 years of operation of this type of reactor its major safety problems were not eliminated and were a subject of international concern. The systematic evaluation of the deficiencies of the original design of this type of reactors have been initiated by IAEA in the beginning of 1990 and brought to developing a comprehensive list of safety problems which required urgent implementation of safety measures in all plants. To solve this problems in 1991 KNPP initiated implementation of so called 'short term' safety improvement program, developed with the help of WANO under agreement with Bulgarian Nuclear Safety Authority (BNSA) and consortium RISKAUDIT. The program was based on a stage approach and was foreseen to be implemented by tree stages in very tight time schedule in order to achieve significant and rapid improvements of the level of safety in operation of the units. The Short term program was implemented between from 1991 to 1997 owing to strong safety commitment of NEC and KNPP staff as well as broad international cooperation and financial support. Important part of resources were supplied under PHARE program of CEC, EBRD grant agreement and EDF support. In parallel a special assessment process started in 1995 in order to evaluate the level of safety, achieved by Short Term Program, according to current safety standards and to define the measures, which should be implemented by the Utility to complete the process of improving the safety in future

  6. Nuclear power - the future

    International Nuclear Information System (INIS)

    Hann, J.

    1991-01-01

    It is asserted by the author that nuclear power is the only available resource - indeed the only solution to an ever-increasing demand for energy in the United Kingdom over the next 50-100 years. It must be the cornerstone of a practical integrated energy policy, covering that sort of time-scale. In fact, it is going to be a strategic necessity. In this paper the background to establishing a policy is sketched. An explanation is given of what the nuclear industry is doing so as to ensure that the nuclear option is very definitely retained as a result of the 1994 Review of nuclear power in the UK. (author)

  7. Method and apparatus for preventing inadvertent criticality in a nuclear fueled electric power generating unit

    International Nuclear Information System (INIS)

    Tuley, C.R.; Bauman, D.A.; Neuner, J.A.; Feilchenfeld, M.M.; Greenberg, L.

    1984-01-01

    An inadvertent approach to criticality in a nuclear fueled electric power generating unit is detected and an alarm is generated through on-line monitoring of the neutron flux. The difficulties of accurately measuring the low levels of neutron flux in a subcritical reactor are overcome by the use of a microcomputer which continuously generates average flux count rate signals for incremental time periods from thousands of samples taken during each such period and which serially stores the average flux count rate signals for a preselected time interval. At the end of each incremental time period, the microcomputer compares the latest average flux count rate signal with the oldest, and preferably each of the intervening stored values, and if it exceeds any of them by at least a preselected multiplication factor, an alarm is generated. (author)

  8. Lessons from the attempted privatization of nuclear power in the United Kingdom

    International Nuclear Information System (INIS)

    Hewlett, J.G.

    1994-01-01

    This paper describes some lessons for the US from the restructuring of the Electricity Supply Industry in the United Kingdom. The British found that the policy objective of introducing competition into the generation of electricity was not consistent with the desire to expand their nuclear power industry in the private sector. Recently passed US legislation to introduce competition in the generation of electricity might have the same effect as the restructuring of the British Electricity Supply Industry. The British pressurized water reactors are US designed/constructed and the regulatory system is similar to one that now exists in the US. The British experience suggests that the disincentives resulting from the introduction of competition could weight any benefits from regulatory reform. The British experience also shows the problems that can occur when decommissioning cost estimates begin to escalate rapidly. Comparisons of the decommissioning cost estimates in the two countries suggest that the US estimates are optimistic

  9. Results of the 5th regular inspection of Unit 1 in the Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    1983-01-01

    The 5th regular inspection of Unit 1 in the Hamaoka Nuclear Power Station was carried out from March 27 to July 27, 1982. Inspection was made on the reactor proper, reactor cooling system, instrumentation/control system, radiation control facility, etc. By the examinations of external appearance, leakage, performance, etc., no abnormality was observed. In the regular inspection, personnel exposure dose was all below the permissible level. The works done during the inspection were the following: the replacement of control rod drives, the replacement of core support-plate plugs, the repair of steam piping, steam extraction pipes and feed water heaters, the repair of a waste-liquid concentrator, the installation of barriers and leak detectors, the installation of drain sump monitors in a containment vessel, the replacement of concentrated liquid waste pumps, the employment of type B fuel. (Mori, K.)

  10. Quantitative comparison of the nuclear power plant sites in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J; Sina, A M [Queen Mary Coll., London (UK). Dept. of Nuclear Engineering

    1976-01-01

    A probabilistic method is described for a comparison of nuclear power plant sites in the United Kingdom, which evaluates quantitatively the sites in terms of favourability, by taking into account the real term meteorological conditions, i.e. wind direction, wind speed, and stability distributions, and also the population distribution around the cities. A 'site safety quality factor' is obtained for each site and is used to compare the favourability of each site with respect to releases of radioactivity. The quality factor corresponds to the average number of persons that would be exposed to the specified relative concentration averaged over all weather conditions. The sites compared are Berkeley, Bradwell, Dungeness, Hartlepool, Heysham, Oldbury, Sizewell, and Wylfa.

  11. The experience in the Cernavoda Unit 1 operation - a stimulating argument for future nuclear power development in Romania

    International Nuclear Information System (INIS)

    Rotaru, I.; Bucur, I.; Galeriu, A.C.; Budan, O.

    1999-01-01

    The Romanian nuclear program has been developed based on the option for CANDU type reactors. At the beginning, this program was unrealistically conceived and its management was inappropriate. The program was reconsidered in 1990 and the management policy and organization structure were also adapted accordingly. The paper presents, in the first part, the actual organization structure, adapted for the execution of the current and future activities, related to the nuclear power program. The performance achieved by Cernavoda Unit 1 constitutes the main part of the paper. The performances described demonstrate that the Cernavoda Unit 1 is a success and the Romania's electricity needs are satisfied in a proportion of about 12% by the nuclear power. The paper also presents a general view on Cernavoda Unit 2 perspectives. The essential conclusion of the paper is that the continuation of the nuclear program appears to be a logical option, generally accepted in Romania, limited only by financial restraints. (author)

  12. Commercial nuclear power 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents historical data on commercial nuclear power in the United States, with projections of domestic nuclear capacity and generation through the year 2020. The report also gives country-specific projections of nuclear capacity and generation through the year 2010 for other countries in the world outside centrally planned economic areas (WOCA). Information is also presented regarding operable reactors and those under construction in countries with centrally planned economies. 39 tabs

  13. Nuclear power in the United States of America and in Europe - a market survey from a vendor's point of view

    International Nuclear Information System (INIS)

    Christopher, T.A.; Gueldner, R.

    2002-01-01

    A world population continuing to grow must be provided with sufficient energy supplies at acceptable prices and so as to affect the environment and the climate as little as possible. A growing energy requirement can be met sustainably by a diversified energy mix. Globally, there is a reassessment of nuclear power. Under aspects of the economy, protection of the environment and the climate, geological availability, and geopolitics, nuclear power will make valuable contributions to a solution. In the United States, the use of nuclear power has become attractive again in the course of deregulation and as a result of massive increases in plant availability. The nuclear power plants currently in operation offer a promising outlook for the future, also because of the current price increases for natural gas. As a consequence of the Green Paper by the EU Commission on the continuity of supply, nuclear power is being reassessed also in Europe. As a result of deregulation of the electricity market, efforts have been made to increase the competitiveness of existing generating capacities. In accordance with changed market conditions, producers have adapted to the requirements of the market by establishing strategic partnerships. The envisaged construction of a nuclear power plant in Finland shows that also new nuclear power plants can be attractive in deregulated European markets and that, e.g., also the problems of spent fuel and waste management can be solved if the political will exists to do so. In Germany, on the other hand, the political framework conditions for nuclear power continue to be difficult. Unless Germany is willing to fall behind internationally in power generation, all available types of power generation will have to be advanced and combined into a mix serving future needs also in this country. There must be no disruption of technological know-how. Nuclear power must be an important option kept open under reasonable political boundary conditions. (orig.) [de

  14. Pilgrim Nuclear Power Station, Unit 1. Annual operating report for 1976

    International Nuclear Information System (INIS)

    Net electrical power generated was 2,415,511 MWH with the generator on line 5,333.6 hrs. Information is presented concerning operations, procedure changes, tests, experiments, maintenance, unit shutdowns and power reductions, and radiation doses to personnel

  15. 76 FR 30204 - Exelon Nuclear, Dresden Nuclear Power Station, Unit 1; Exemption From Certain Security Requirements

    Science.gov (United States)

    2011-05-24

    ... contained in the Responsibility Matrix of the safeguards contingency plan.'' Part 73 of Title 10 of the Code... organization, which will have as its objective to provide high assurance that activities involving special... structures) for DNPS Unit 1 is in a form that does not pose a risk of removal (i.e., an intact reactor...

  16. Kozloduy nuclear power plant. Units 1-4. Status of safety assessment activities. Rev. 2

    International Nuclear Information System (INIS)

    1999-01-01

    This paper presents the results of the status of safety assessment activities carried out by the Kozloduy Nuclear Power Plant (KNPP) in order to evaluate the current status of the safety of its reactor units 1-4. The steam supply system of this units is based of the reactor WWER-440/ B-230, which is a PWR of Russian design developed according to the safety standards in force in USSR in late 60-s. Now a days 10 reactor units of this type are in operation in four NPPs. Despite of efforts of the different plants to implement safety improvements measures during first 10-15 years of operation of this type of reactor its major safety problems were not eliminated and were a subject of international concern. The systematic evaluation of the deficiencies of the original design of this type of reactors have been initiated by IAEA in the beginning of 1990 and brought to developing a comprehensive list of safety problems which required urgent implementation of safety measures in all plants. To solve this problems in 1991 KNPP initiated implementation of so called 'short term' safety improvement program, developed with the help of WANO under agreement with Bulgarian Nuclear Safety Authority (BNSA) and consortium RISKAUDIT. The program was based on a stage approach and was foreseen to be implemented by tree stages in very tight time schedule in order to achieve significant and rapid improvements of the level of safety in operation of the units. The Short Tenn Program was implemented between the years 1991 and 1997 thanks of the strong safety commitment of NEK and KNPP staff and the broad international cooperation and financial support. Important part of resources were supplied under PHARE program of CEC, EBRD grant agreement and EDF support. The plant current safety level analysis has been performed using IAEA analytical methodology according to 50-SG-O12 standard 'Periodic safety review of operational nuclear power plants'. The approach and criteria for acceptable safety level

  17. What would it take to revitalize nuclear power in the United States?

    International Nuclear Information System (INIS)

    Morgan, M.G.

    1993-01-01

    Although nuclear power continues to play an active role in the energy planning of other nations, the U.S. nuclear power industry is dead. Its rebirth will take more than increasing energy supply pressures, public relations, and a little fine tuning. Five basic domestic problems plague the current US nuclear power system: The nation has been building the wrong kind of reactors; has organized and managed reactor construction improperly; has taken the wrong approach to handling radioactive wastes; and has failed to resolve issues that can be solved only through high-level political will and leadership. A critical element that pervades much of the nuclear issue is a failure to treat the public with respect. With a change in philosophy and some bold new programs, these five problems could be resolved domestically. A sixth problem, involving the more effective management of nuclear weapons and their proliferation, will require collective international solutions. This paper examines each of these areas

  18. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  19. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1984-07-01

    The Safety Evaluation Report for the application filed by Northeast Nuclear Energy Company, as applicant and agent for the owners, for a license to operate the Millstone Nuclear Power Station Unit 3 (Docket No. 50-423), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in the town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  20. Commercial nuclear power: prospects for the United States and the world

    International Nuclear Information System (INIS)

    Mayes, F.; Gielecki, M.; Diedrich, R.; Hewlett, J.; Murphy, T.

    1985-01-01

    This analysis report presents the current status and outlook for commercial nuclear power reactors for all countries in the world outside centrally planned economic areas (WOCA). Information regarding operable reactors in countries with centrally planned economies is also presented. The report provides documentation of the US middle-case nuclear capacity and generation projections through 1995 that are presented in the Annual Energy Outlook 1984. Additionally, US nuclear capacity and generation projections through 2020 are presented for various nuclear power supply scenarios. These long-term projections are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982. The projections for foreign nuclear capacity through 1990 supplant the preliminary foreign WOCA projections presented in the Annual Energy Outlook 1984 and are supplemented by WOCA country-specific projections through the year 2000

  1. Dictionary of nuclear power. upd. ed.

    International Nuclear Information System (INIS)

    Koelzer, W.

    2011-10-01

    The updated dictionary on nuclear power contains definitions and explanations on nuclear physics, nuclear engineering, nuclear power, radiation effects and radiation protection in alphabetic order. Attachments on units, their conversion and physical constants are included.

  2. Characteristics of organizational culture at the maintenance units of two Nordic nuclear power plants

    International Nuclear Information System (INIS)

    Reiman, Teemu; Oedewald, Pia; Rollenhagen, Carl

    2005-01-01

    This study aims to characterize and assess the organizational cultures of two Nordic nuclear power plant (NPP) maintenance units. The research consisted of NPP maintenance units of Forsmark (Sweden) and Olkiluoto (Finland). The study strives to anticipate the consequences of the current practices, conceptions and assumptions in the given organizations to their ability and willingness to fulfill the organizational core task. The methods utilized in the study were organizational culture and core task questionnaire (CULTURE02) and semi-structured interviews. Similarities and differences in the perceived organizational values, conceptions of one's own work, conceptions of the demands of the maintenance task and organizational practices at the maintenance units were explored. The maintenance units at Olkiluoto and Forsmark had quite different organizational cultures, but they also shared a set of dimensions such as strong personal emphasis placed on safety. The authors propose that different cultural features and organizational practices may be equally effective from the perspective of the core task. The results show that due to the complexity of the maintenance work, the case organizations tend to emphasize some aspects of the maintenance task more than others. The reliability consequences of these cultural solutions to the maintenance task are discussed. The authors propose that the organizational core task, in this case the maintenance task, should be clear for all the workers. The results give implications that this has been a challenge recently as the maintenance work has been changing. The concepts of organizational core task and organizational culture could be useful as management tools to anticipate the consequences of organizational changes

  3. Evaluation of electromagnetic interference environment of the instrumentation and control systems in nuclear power units

    Energy Technology Data Exchange (ETDEWEB)

    Min, Moon-Gi; Lee, Jae-Ki; Ji, Yeong-Haw; Jo, Sung-Han [Korea Hydro & Nuclear Power Co., Ltd., 1312-70 Yuesong-daero, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Hee-Je, E-mail: heeje@pusan.ac.kr [Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2015-04-15

    Highlights: • We surveyed the electromagnetic emissions at the location of I&C systems. • We assessed the electromagnetic levels on reactor types from thirteen nuclear plants. • We evaluated the margin between plant emission limits and the highest composite levels. • We presented the formula of radiated susceptibility test levels to non-safety-related I&C systems. - Abstract: The electromagnetic interference (EMI) generated from sources in power units can interfere with digital Instrument and Control (I&C) systems. When EMI is emitted with conducted and radiated noise, it interferes with the signals of the I&C systems. Since the digital I&C systems are efficient and competitively priced, the analogue I&C systems have been upgraded and replaced with digital I&C systems, but these systems have less EMI immunity. When safety-related I&C systems are installed in the units, the verification of equipment EMI should not be done in site-specific tests but in test facilities. There are needs to do the overall site-specific EMI assessment of I&C systems depending on the reactor types from thirteen operating units. This study evaluated the margin between plant emission limits and the highest composite plant emissions of the EMI. When the non-safety-related I&C equipment or systems are placed in the units, there are no individual test levels of the radiated electrical field. If need be, the level should comply with the test levels of the radiated electrical field on the safety-related I&C systems. This paper presents the test levels of radiated electrical fields to non-safety-related I&C equipment or systems.

  4. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  5. A study on the optimal replacement periods of digital control computer's components of Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il; Seong, Poong Hyun

    1993-01-01

    Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Even a trip of a single nuclear power plant (NPP) causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this paper we investigated the optimal replacement periods of the control computer's components of Wolsung nuclear power plant Unit 1. We first derived mathematical models of optimal replacement periods to the digital control computer's components of Wolsung NPP Unit 1 and calculated the optimal replacement periods analytically. We compared the periods with the replacement periods currently used at Wolsung NPP Unit 1. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained and those used in the field show a little difference. (Author)

  6. Analysis of internal events for the Unit 1 of the Laguna Verde nuclear power station

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1993-01-01

    This volume presents the results of the starter event analysis and the event tree analysis for the Unit 1 of the Laguna Verde nuclear power station. The starter event analysis includes the identification of all those internal events which cause a disturbance to the normal operation of the power station and require mitigation. Those called external events stay beyond the reach of this study. For the analysis of the Laguna Verde power station eight transient categories were identified, three categories of loss of coolant accidents (LOCA) inside the container, a LOCA out of the primary container, as well as the vessel break. The event trees analysis involves the development of the possible accident sequences for each category of starter events. Events trees by systems for the different types of LOCA and for all the transients were constructed. It was constructed the event tree for the total loss of alternating current, which represents an extension of the event tree for the loss of external power transient. Also the event tree by systems for the anticipated transients without scram was developed (ATWS). The events trees for the accident sequences includes the sequences evaluation with vulnerable nucleus, that is to say those sequences in which it is had an adequate cooling of nucleus but the remoting systems of residual heat had failed. In order to model adequately the previous, headings were added to the event tree for developing the sequences until the point where be solved the nucleus state. This process includes: the determination of the failure pressure of the primary container, the evaluation of the environment generated in the reactor building as result of the container failure or cracked of itself, the determination of the localization of the components in the reactor building and the construction of boolean expressions to estimate the failure of the subordinated components to an severe environment. (Author)

  7. Assessment of environmental public exposure from a hypothetical nuclear accident for Unit-1 Bushehr nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M.; Ghasemi, M.; Amrollahi, R.; Khamooshi, C.; Parsouzi, Z. [Amirkabir University of Technology, Health Physics and Dosimetry Research Laboratory, Department of Physics, Tehran (Iran, Islamic Republic of)

    2013-05-15

    Unit-1 of the Bushehr nuclear power plant (BNPP-1) is a VVER-type reactor with 1,000-MWe power constructed near Bushehr city at the coast of the Persian Gulf, Iran. The reactor has been recently operational to near its full power. The radiological impact of nuclear power plant (NPP) accidents is of public concern, and the assessment of radiological consequences of any hypothetical nuclear accident on public exposure is vital. The hypothetical accident scenario considered in this paper is a design-basis accident, that is, a primary coolant leakage to the secondary circuit. This scenario was selected in order to compare and verify the results obtained in the present paper with those reported in the Final Safety Analysis Report (FSAR 2007) of the BNPP-1 and to develop a well-proven methodology that can be used to study other and more severe hypothetical accident scenarios for this reactor. In the present study, the version 2.01 of the PC COSYMA code was applied. In the early phase of the accidental releases, effective doses (from external and internal exposures) as well as individual and collective doses (due to the late phase of accidental releases) were evaluated. The surrounding area of the BNPP-1 within a radius of 80 km was subdivided into seven concentric rings and 16 sectors, and distribution of population and agricultural products was calculated for this grid. The results show that during the first year following the modeled hypothetical accident, the effective doses do not exceed the limit of 5 mSv, for the considered distances from the BNPP-1. The results obtained in this study are in good agreement with those in the FSAR-2007 report. The agreement obtained is in light of many inherent uncertainties and variables existing in the two modeling procedures applied and proves that the methodology applied here can also be used to model other severe hypothetical accident scenarios of the BNPP-1 such as a small and large break in the reactor coolant system as well

  8. Subsidence analysis Forsmark nuclear power plant - unit 1; Saettningsanalys Forsmarks kaernkraftverk - aggregat 1

    Energy Technology Data Exchange (ETDEWEB)

    Bono, Nancy; Fredriksson, Anders; Maersk Hansen, Lars (Golder Associates AB (Sweden))

    2010-12-15

    On behalf of SKB, Golder Associates Ltd carried out a risk analysis of subsidence during Forsmark nuclear power plant in the construction of the final repository for spent nuclear fuel near and below existing reactors. Specifically, the effect of horizontal cracks have been studied.

  9. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  10. Technical evaluation of the proposed deletion of a reactor trip on a turbine trip below 50-percent power for the Beaver Valley nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Reeves, W.E.

    1979-12-01

    This report documents the technical evaluation of the Duquesne Light Company's proposed license amendment for the deletion of a reactor trip on a turbine trip below 50% power for the Beaver Valley nuclear power plant, Unit 1. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Program being conducted for the US Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  11. Survey II of public and leadership attitudes toward nuclear power development in the United States

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    In August 1975, Ebasco Services Incorporated released results of a survey conducted by Louis Harris and Associates, Inc. to determine attitudes of the American public and its leaders toward nuclear power development in the U.S. Results showed, among other things, that the public favored building nuclear power plants; that they believed we have an energy shortage that will not go away soon; that they were not willing to make environmental sacrifices; and that, while favoring nuclear power development, they also had concerns about some aspects of nuclear power. Except for the environmental group, the leadership group felt the same way the public does. A follow-up survey was made in July 1976 to measure any shifts in attitudes. Survey II showed that one of the real worries that remains with the American public is the shortage of energy; additionally, the public and the leaders are concerned about the U.S. dependence on imported oil. With exception of the environmentalists, the public and its leaders support a host of measures to build energy sources, including: solar and oil shale development; speeding up the Alaskan pipeline; speeding up off-shore drilling; and building nuclear power plants. The public continues to be unwilling to sacrifice the environment. There is less conviction on the part of the public that electric power will be in short supply over the next decade. The public believes the days of heavy dependence on oil or hydroelectric power are coming to an end. By a margin of 3 to 1, the public favors building more nuclear power plants in the U.S., but some concerns about the risks have not dissipated. Even though the public is worried about radioactivity escaping into the atmosphere, they consider nuclear power generation more safe than unsafe

  12. A nuclear power unit with a Babcock type steam generating system-analysis of the break-down in the Three Mile Island power plant

    International Nuclear Information System (INIS)

    Werner, A.

    1980-01-01

    Installations of the primary and the secondary circuits and basic automatic control and protection systems for a nuclear power unit with Babcock type vertical, once-through steam generator are described. On this background the course of the break-down in the Three Mile Island power plant at Harrisburg is presented and analysed. (author)

  13. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  14. Beloyarsk Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-01-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities

  15. Advances in multi-unit nuclear power plant probabilistic risk assessment

    International Nuclear Information System (INIS)

    Modarres, Mohammad; Zhou, Taotao; Massoud, Mahmoud

    2017-01-01

    The Fukushima Dai-ichi accident highlighted the importance of risks from multiple nuclear reactor unit accidents at a site. As a result, there has been considerable interest in Multi-Unit Probabilistic Risk Assessment (MUPRA) in the past few years. For considerations in nuclear safety, the MUPRA estimates measures of risk and identifies contributors to risk representing the entire site rather than the individual units in the site. In doing so, possible unit-to-unit interactions and dependencies should be modeled and accounted for in the MUPRA. In order to effectively account for these risks, six main commonality classifications—initiating events, shared connections, identical components, proximity dependencies, human dependencies, and organizational dependencies—may be used. This paper examines advances in MUPRA, offers formal definitions of multi-unit site risk measures and proposes quantitative approaches and data to account for unit-to-unit dependencies. Finally, a parametric approach for the multi-unit dependencies has been discussed and a simple example illustrates application of the proposed methodology. - Highlights: • This paper will discuss the technical aspects of an integrated MUPRA, including consideration of dependencies and assessment of the multi-unit dependency data and models for quantifying such dependencies. • The paper also provides discussions on formal definitions and metrics for multi-unit site risks. • The parametric methods are used to address multi-unit dependency situations. • A conceptual two-unit logic example is used to demonstrate the application of proposed methodology.

  16. Calvert Cliffs Nuclear Power Plant, Units 1 and 2. Annual operating report: January--December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Unit 1 successfully completed its first core cycle with unit availability of 95.2 percent. Saltwater leakage into the condenser continues to be a problem. Unit 2 achieved initial criticality November 30 and was initially paralleled to the Baltimore system on December 7. Information is presented concerning operations, specifications, maintenance, shutdowns and power reduction, and personnel exposures

  17. MSR redesign and reconstruction at Indiana Michigan Power Company's Donald C. Cook Nuclear Power Plant, Unit 1

    International Nuclear Information System (INIS)

    Yarden, A.L.; Tam, C.W.; Benes, J.D.; Arnold, W.E.

    1993-01-01

    When Indiana Michigan Power Company's (I and M) 1089- MWe, PWR, Donald C. Cook Nuclear Plant, Unit 1, (Cook 1) in Bridgeman, Michigan went into commercial operation in late 1975, its turbine generator included two Moisture Separator Reheater (MSR) vessels. Each of these original MSRs contained, in addition to the moisture separation section, a single stage 2-pass reheater consisting of 5/8 inch O.D., finned CuNi tubes with main heating steam as an energy source. The enormous size of the tube bank, with a vertical orientation of its tubes' U-bends, led the designer to choose two separate headers for the inlet side and outlet side of the tube bank. Over the years, these 2-pass reheaters had deteriorated mechanically such that maintenance costs had increased considerably. Also, the MSR performance in terms of MWe gain, had fallen off as a result of a gradual reduction of both superheat and moisture separation efficiency. In 1990, these MSRs were totally reconstructed with inherently different 4-pass reheaters and upgraded moisture separation systems. The performance and other direct parameters of these newly retrofitted and improved MSRs have exceeded original design specifications, and their operational stability has improved markedly. This MSR reconstruction at Cook 1 is the first of its kind to include a 4-pass reheater in association with a nuclear turbine generator of this design. This paper highlights the problems and solutions associated respectively with the original reheaters in the Cook 1 MSRs and their recent redesign, reconstruction, and performance

  18. Draft environmental statement related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1984-07-01

    This Draft Environmental Statement contains the second assessment of the environmental impact associated with the operation of Millstone Nuclear Power Station, Unit 3, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs

  19. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  20. Safety and nuclear power

    International Nuclear Information System (INIS)

    Gittus, John; Gunning, Angela.

    1988-01-01

    Representatives of the supporters and opponents of civil nuclear power put forward the arguments they feel the public should consider when making up their mind about the nuclear industry. The main argument in favour of nuclear power is about the low risk in comparison with other risks and the amount of radiation received on average by the population in the United Kingdom from different sources. The aim is to show that the nuclear industry is fully committed to the cause of safety and this has resulted in a healthy workforce and a safe environment for the public. The arguments against are that the nuclear industry is deceitful, secretive and politically motivated and thus its arguments about safety, risks, etc, cannot be trusted. The question of safety is considered further - in particular the perceptions, definitions and responsibility. The economic case for nuclear electricity is not accepted. (U.K.)

  1. Nuclear Power Prospects

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    The present trend is to construct larger plants: the average power of the plants under construction at present, including prototypes, is 300 MW(e), i.e. three times higher than in the case of plants already in operation. Examples of new large-scale plants ares (a) Wylfa, Anglesey, United Kingdom - scheduled power of 1180 MW(e) (800 MW to be installed by 1967), to be completed in 1968; (b) ''Dungeness B'', United Kingdom - scheduled power of 1200 MW(e); (c) second unit for United States Dresden power plant - scheduled power of 715 MW(e) minimum to almost 800 MW(e). Nuclear plants on the whole serve the same purpose as conventional thermal plants

  2. U.S. Job Creation Due to Nuclear Power Resurgence in The United States — Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Catherine M. Plowman

    2004-11-01

    The recent revival of interest in nuclear power is causing a reexamination of the role of nuclear power in the United States. This renewed interest has led to questions regarding the capability and capacity of current U.S. industries to support a renewal of nuclear power plant deployment. This study was conducted to provide an initial estimate of jobs to be gained in the U.S. through the repatriation of the nuclear manufacturing industry. In the course of the study, related job categories were also modeled to provide an additional estimate of the potential expansion of existing industries (i.e., plant construction and operations) in conjunction with the repatriation of manufacturing jobs.

  3. 75 FR 44292 - Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of...

    Science.gov (United States)

    2010-07-28

    ... and DPR-60] Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2... assessment, and behavioral observation) of the unescorted access authorization program when making the... under consideration to determine whether it met the criteria established in NRC Management Directive (MD...

  4. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    International Nuclear Information System (INIS)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do

    2015-01-01

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability

  5. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability.

  6. 78 FR 29158 - In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Approving...

    Science.gov (United States)

    2013-05-17

    ... and DPR-48] In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order... formed for the purpose of acquiring ES, Inc. and is held by certain investment fund entities organized by... Environmental Management Programs, in writing, of such receipt no later than one (1) business day prior to the...

  7. Turbine and its turbine control system of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhang Dongwei; Zhu Jinping

    1996-01-01

    The simulation for Qinshan 300 MW Nuclear Power Unit turbine and turbine control system is briefly introduced. The simulation system includes lube oil system, jacking oil pump system, turning gear system, turbine supervisor system and turbine control system. It not only correctly simulates the process of turbine normal start up, operation, and shut down, but also the response of turbine under the malfunction conditions

  8. Law on the Decommissioning of unit 1 at the state enterprise of the Republic of Lithuania Ignalina Nuclear Power Plant

    International Nuclear Information System (INIS)

    2000-01-01

    This law regulates the legal principles for the decommissioning of unit 1 at the Ignalina Nuclear Power Plant. The main deadlines for the government in the preparation for the decommissioning are set in the law. All preparatory works should be finished before the year 2005

  9. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  10. Nuclear power

    International Nuclear Information System (INIS)

    d'Easum, Lille.

    1976-03-01

    An environmentalist's criticism of nuclear energy is given, on a layman's level. Such subjects as conflict of interest in controlling bodies, low-level radiation, reactor safety, liability insurance, thermal pollution, economics, heavy water production, export of nuclear technology, and the history of the anti-nuclear movement are discussed in a sensationalistic tone. (E.C.B.)

  11. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  12. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  13. MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    International Nuclear Information System (INIS)

    GREENE, G.A.; GUPPY, J.G.

    1998-01-01

    This is the final report on the INSP project entitled, ''Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors and hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology

  14. Comprehensive vibration assessment program for Yonggwang nuclear power plant unit 4

    International Nuclear Information System (INIS)

    Rhee, Hui Nam; Hwang, Jong Keun; Kim, Tae Hyung; Kim, Jung Kyu; Song, Heuy Gap; Kim, Beom Shig

    1995-01-01

    A Comprehensive Vibration Assessment Program (CVAP) has been performed for Yonggwang Nuclear Power Plant Unit 4 (YGN 4) in order to verify the structural integrity of the reactor internals for flow induced vibrations prior to commercial operation. The theoretical evidence for the structural integrity of the reactor internals and the basis for measurement and inspection are provided by the analysis. Flow induced hydraulic loads and reactor internals vibration response data were measured during pre-core hot functional testing in YGN 4 site. Also, the critical areas in the reactor internals were inspected visually to check any existence of structural abnormality before and after the pre-core hot functional testing. Then, the measured data have been analyzed and compared with the predicted data by analysis. The measured stresses are less than the predicted values and the allowable limits. It is concluded that the vibration response of the reactor internals due to the flow induced vibration under normal operation is acceptable for long term operation

  15. Long-term measurement with calorimetric probes at unit 1 of V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Erben, O.; Szasz, Z.; Jirousek, V.; Teren, S.

    1989-01-01

    Two calorimetric probes were tested at the first unit of the Bohunice V-1 nuclear power plant in long-term operation, i.e., during one whole reactor duty time. Each probe consisted of five fission calorimeters and one compensation calorimeter with a tungsten body. The actual calorimeters were provided with jacketed thermocouples 0.5 mm indiameter and 19 m in length. A detailed description is presented of the measuring chains and measurement techniques. Also described is the method of the disposal of the irradiated probes. The method is presented of the evaluation of measured data and the results are discussed of the analysis of these data. The measurements, including measurements during reactor shut-down and the results of the analysis of the measured data proved good viability and stability of the used calorimetres. The method of measuring the thermocouple signals is simple and the in-service evaluation of required data is quick. In order to increase measurement efficiency it would be appropriate to complete the measuring chain and to automate it. Reliability is a affected merely by protecting the thermocouples against mechanical damage during measurement probe handling and on the reactor. (Z.M.). 5 figs., 5 tabs., 5 refs

  16. Results of the 4th regular inspection in Unit 1 of the Mihama Nuclear Power Station

    International Nuclear Information System (INIS)

    1981-01-01

    The 4th regular inspection of Unit 1 in the Mihama Nuclear Power Station was made from July, 1975, to December, 1980, on its reactor and associated facilities. The respective stages of inspection during the years are described. The inspection by external appearance examination, disassembling leakage inspection and performance tests indicated crackings in piping for fuel-replacement water tank, the container penetration of recirculation pipe for residual-heat removal, and main steam-relief valve, and leakage in one fuel assembly. Radiation exposure of the personnel during the inspection was less than the permissible dose. Radiation exposure data for the personnel are given in tables. The improvements and repairs done accordingly were as follows: reapir of the piping for a fuel-replacement tank and recirculation piping for residual-heat removal, replacement of the main steam-relief valve, plugging of heating tubes for the steam-generator, replacement of pins and covers for control-rod guide pipes, improvement of safety protection system and installation of rare gas monitor. (J.P.N.)

  17. Reload safety evaluation report for kori nuclear power plant unit 2 cycle 9

    International Nuclear Information System (INIS)

    Cho, Beom Jin; Kim, Si Yong; Kim, Oh Hwan; Nam, Kee Il; Um, Gil Sup; Ban, Chang Hwan; Choi, Dong Uk; Yoon, Kyung Ho

    1992-04-01

    The Kori Nuclear Power Plant Unit 2 (Kori-2) is anticipated to be refuelled with 16x16 Korean Fuel Assemblies (KOFA), which are based on the KAERI design starting from Cycle 8. This report presents a reload safety evaluation for Kori-2, Cycle 9 and demonstrates that the reactor core being composed of various fuel assembly types as described below will not adversely affect the safety of the public and the plant. The evaluation of Kori-2, Cycle 9 was accomplished utilizing the methodology described in 'Reload Transition Safety Report for KORI 2' (Ref. /1-1/). The reload core for Kori-2, Cycle 9 is entirely comprised of 16x16 KOFA. In the Kori-2 licensing documentation to KEPCO the reference safety evaluation was provided for the operation of a reactor core fully loaded with KOFA as well as associated proposed changes to the Kori-2 Technical Specifications. The reload for Kori-2, Cycle 9 also introduces UO 2 /Gd 2 O 3 containing fuel rods. The use of fuel rods with Gd 2 O 3 poisoning of the fuel has been approved as a part of the above mentioned licensing documentation. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 9 core design described herein. (Author)

  18. MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; GUPPY,J.G.

    1998-08-01

    This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors and hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.

  19. Steam Generator Lancing and FOSAR for HANUL Nuclear Power Plant Unit 2

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo-Tae [Korea Hydro and Nuclear Power Co. Ltd. Central Research Institute, Daejeon (Korea, Republic of); Kim, Sang-Tae; Yoon, Sang-Jung; Seo, Hong-Chang [Sae-An Engineering Corporation, Seoul (Korea, Republic of)

    2015-05-15

    Sludge weight removed during the deposit removal operation was 10.68 kg. Annulus, tubelane, and in-bundle area of the steam generators were searched for possible foreign objects. Three foreign objects were found and removed. Mock-up training before the operation was helpful to finish the service as scheduled. Sludge lancing and FOSAR were Sludge lancing and FOSAR were successfully completed for Hanul nuclear power plant unit 2 during the 19''t''h outage. Mock-up training before the service was helpful for the operators to finish the job on time. Inspection, barrel spray, final barrel/flushing, and sludge collector cleaning was completed for the three steam generators 'A', 'B', and 'C.' Six bag filters and 42 cartridge filters were consumed to remove 10.68 kg of sludge. Three foreign objects were found and removed. One foreign object (HU2R19SGB01) was found in SG 'B', and two objects (HU2R19SGC01, HU2R19SGC02) were found in SG 'C.'.

  20. Development of a fire incident database for the United States nuclear power industry

    International Nuclear Information System (INIS)

    Wilks, G.

    1998-01-01

    The Nuclear Power Industry in the United States has identified a need to develop and maintain a comprehensive fire events database to support anticipated performance-based or risk-based fire protection programs and regulations. These new programs will require accurate information on the frequency, severity and consequences of fire events. Previous attempts to collect fire incident data had been made over the years for other purposes, but it was recognized that the detail and form of the data collected would be insufficient to support the new initiatives. Weaknesses in the earlier efforts included the inability in some cases to obtain fire incidents reports, inconsistent of incomplete information reported, and the inability to easily retrieve, sort, analyze and trend the data. The critical elements identified for the new data collection efforts included a standardized fire incident report from to assure consistent and accurate information, some mechanism to assure that all fire events are reported, and the ability to easily access the data for trending and analysis. In addition, the database would need to be unbiased and viewed as such by outside agencies. A new database is currently being developed that should meet all of these identified need. (author)

  1. Emergency planning requirements and short-term countermeasures for commercial nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Kantor, F.; Hogan, R.; Mohseni, A.

    1995-01-01

    Since the accident at the Three Mile Island Unit, the United States Nuclear Regulatory's Commission (NRC's) emergency planning regulations are now considered and an important part of the regulatory framework for protecting the public health and safety. Many aspects of the countermeasures are presented: Emergency Planning Zones (EPZ), off-Site emergency planning and preparedness, responsibilities of nuclear power plants operators and states and local government. Finally, protective action recommendations are given as well as the federal response to an emergency. The authors noted that the use of potassium iodide is not considered as an effective countermeasure for the public protection in the US. (TEC). 1 fig

  2. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  3. Measurement of gamma ray flux within the containment building at the first unit of Kori nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. W.; Kim, K. D.; Yoon, C. H.; Han, J. M.; Hu, Y. H. [Korea Hydraulic and Nuclear Power Company, Taejon (Korea, Republic of)

    2004-07-01

    To evaluate gamma ray dose response of GM counter being used for monitoring of gamma ray field in nuclear power plants, gamma ray energy spectra and fluxes were obtained for three positions at the unit 1 of the Kori nuclear power station. By applying the response values of Eberline's E112B survey meter to the results, the doses represented on the survey meter were overestimated from 1.31 to 1.37 times when compared to the real doses for these three positions.

  4. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  5. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  6. Licensing the first nuclear power plant in the United Arab Emirates

    International Nuclear Information System (INIS)

    Grant, I.

    2013-01-01

    United Arab Emirates (UAE) has established a comprehensive legal & regulatory framework conforming to IAEA standards/guidance to regulate the nuclear sector. Federal Authority for Nuclear Regulation (FANR) is a functioning independent nuclear regulator providing controls on safety, security and non-proliferation. UAE benefits from strong international support, incl. IAEA and access to Korean organizations and practices. UAE has an active capacity building programme both human and technical. Peer reviews show UAE regulatory system is aligned with good international practices. UAE has long term commitment to develop and maintain safety culture.

  7. Economic feasibility of heat supply from nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Roe, K.K.; Oliker, I.

    1987-01-01

    Nuclear energy is regarded as competitive for urban district heating applications. Hot water heat transoport systems of up to 50 miles are feasible for heat loads over 1500 MWt, and heat load density of over 130 MWt/mi 2 is most suitable for nuclear applications. An incremental approach and a nuclear plant design provision for future heat extraction are recommended. Nuclear district heating technology status is discussed, particularly turbine design. Results of a study for retrofitting a major existing nuclear power plant to cogeneration operation are presented. The study indicates that for transmission distances up to 20 miles it is economical to generate and transport between 600 and 1200 MWt of district heat (author)

  8. Experience and development of on-line BWR surveillance system at Onagawa nuclear power station unit-1

    International Nuclear Information System (INIS)

    Kishi, A.; Chiba, K.; Kato, K.; Ebata, S.; Ando, Y.; Sakamoto, H.

    1986-01-01

    ONAGAWA nuclear power station Unit-1 (Tohoku Electric Power Co.) is a BWR-4 nuclear power station of 524 MW electric power which started commercial operation in June 1984. To attain high reliability and applicability for ONAGAWA-1, Tohoku Electric Power Co. and Toshiba started a Research and Development project on plant surveillance and diagnosis from April 1982. Main purposes of this project are to: (1) Develop an on-line surveillance system and acquire its operating experience at a commercial BWR, (2) Assist in plant operation and maintenance by data acquisition and analysis, (3) Develop a new technique for plant surveillance and diagnosis. An outline of the project, operating experience gained from the on-line surveillance system and an introduction to new diagnosis techniques are reported in this paper. (author)

  9. Nuclear power's burdened future

    International Nuclear Information System (INIS)

    Flavin, C.

    1987-01-01

    Although governments of the world's leading nations are reiterating their faith in nuclear power, Chernobyl has brought into focus the public's overwhelming feeling that the current generation of nuclear technology is simple not working. Despite the drastic slowdown, however, the global nuclear enterprise is large. As of mid-1986, the world had 366 nuclear power plants in operation, with a generating capacity of 255,670 MW. These facilities generate about 15% of the world's electricity, ranging from 65% in France to 31% in West Germany, 23% in Japan, 16% in the United States, 10% in the Soviet Union, and non in most developing nations. Nuclear development is clearly dominated by the most economically powerful and technologically advanced nations. The United States, France, the Soviet Union, Japan, and West Germany has 72% of the world's generating capacity and set the international nuclear pace. The reasons for scaling back nuclear programs are almost as diverse as the countries themselves. High costs, slowing electricity demand growth, technical problems, mismanagement, and political opposition have all had an effect. Yet these various factors actually form a complex web of inter-related problems. For example, rising costs usually represent some combination of technical problems and mismanagement, and political opposition often occurs because of safety concerns or rising costs. 13 references

  10. Nuclear power in Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, Z.H.; Qureshi, I.H.

    2005-01-01

    Pakistan started its nuclear power program by installing a 137 M We Canadian Deuterium Reactor (Candu) at Karachi in 1971 which became operational in 1972. The post-contract technical support for the Karachi Nuclear Power Plant (KANUPP) was withdrawn by Canada in 196 as a consequence of Indian nuclear device test in 1974. In spite of various difficulties PAEC resolved to continue to operate KANUPP and started a process for the indigenous fabrication of spare parts and nuclear fuel. The first fuel bundle fabricated in Pakistan was loaded in the core in 1980. Since then KANUPP has been operating on the indigenously fabricated fuel. The plant computer systems and the most critical instrumentation and Control system were also replaced with up-to date technology. In 2002 KANUPP completed its original design life of 30 year. A program for the life extension of the plant had already been started. The second nuclear power plant of 300 M We pressurized water reactor purchased from China was installed in Chashma in 1997, which started commercial operations in 2001. Another unit of 300 M We will be installed at Chashma in near future. These nuclear power plants have been operating under IAEA safeguards agreements. PAEC through the long-term performance of the two power plants has demonstrated its competence to safely and successfully operate and maintain nuclear power plants. Pakistan foresees an increasingly important and significant share of nuclear power in the energy sector. The Government has recently allocated a share of 8000 MWe for nuclear energy in the total energy scenario of Pakistan by the year 2025. (author)

  11. Nuclear power: how and why

    International Nuclear Information System (INIS)

    1982-10-01

    The subject is discussed, with special reference to the United Kingdom, under the headings: the need for nuclear power; Britain's experience (nuclear reactors); the nuclear process; how fuel is made; recycling fuel; wastes and their treatment; decommissioning; fast reactors; nuclear fusion; safety and radiation. (U.K.)

  12. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  13. Comparison between Japan and the United States in the frequency of events in equipment and components at nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2007-01-01

    The Institute of Nuclear Safety System, Incorporated (INSS) conducted trend analyses until 2005 to compare the frequency of events in certain electrical components and instrumentation components at nuclear power plants between Japan and the United States. The results revealed that events have occurred approximately an order of magnitude less often in Japan than in the United States. This paper compared Japan and the United States in more detail in terms of how often events - events reported under the reporting standards of the Nuclear Information Archive (NUCIA) or the Institute of Nuclear Power Operations (INPO) - occurred in electrical components, instrumentation components and mechanical components at nuclear power plants. The results were as follows: (1) In regard to electrical components and instrumentation components, events have occurred one-eighth less frequently in Japan than in the United States, suggesting that the previous results were correct. (2) Events have occurred more often in mechanical components than electrical components and instrumentation components in both Japan and the United States, and there was a smaller difference in the frequency of events in mechanical components between the two countries. (3) Regarding mechanical components, it was found that events in the pipes for critical systems and equipment, such as reactor coolant systems, emergency core cooling systems, instrument and control systems, ventilating and air-conditioning systems, and turbine equipment, have occurred more often in Japan than in the United States. (4) The above observations suggest that there is little scope for reducing the frequency of events in electrical components and instrumentation components, but that mechanical components such as pipes for main systems like emergency core cooling systems and turbine equipment in the case of PWRs, could be improved by re-examining inspection methods and intervals. (author)

  14. Water Hammer Analysis using RELAP5/MOD 3.3 for Yonggwang Nuclear Power Unit 1 and 2 Blowdown System

    International Nuclear Information System (INIS)

    Lee, Sang Il; Kim, Hea Zoo; Chu, Jung Ho; Ahn, Se Hong; Jung, Chang Ho

    2010-01-01

    Water hammer can be defined as a rapid pressure step occurring in the liquid in a closed pipe caused by a sudden change in the liquid velocity. This pressure acts for a period which is twice the transit time of sonic wave in the pipe. Generally, water hammer can occur in any thermal-hydraulic systems like nuclear power plant and is extremely dangerous for nuclear power plant piping system since, if the pressure induced exceeds the pressure range of the pipe given by the manufacturer, it can lead to the failure of the piping system integrity. For Yonggwang nuclear power unit 1 and 2, water hammer occurred repeatedly on the outlet piping of regenerative heat exchanger of steam generator blowdown system. Thus, design modification was performed to prevent the water hammer and the analysis of effect on water hammer before and after design modification was performed to verify the validity of the design modification

  15. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  16. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  17. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  18. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Last year, 2000, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 172 259 MWe and an aggregate gross capacity of 181 642 MWe were in operation (31.12.2000; 215 plants, 180 067 MWe (gross), 172 259 MWe (net)). One unit, i.e. Temelin in the Czech Republic went critical for the first time and started test operation after having been connected to the grid. Temelin adds about 981 MWe (gross) and 912 MWe (net) to the electricity production capacity. Three units, Hinkley Point A1 and A2 in United Kingdom, and Chernobyl 3 in the Ukraine have been shut down during the year 2000. This means a loss of 1534 MWe gross capacity and 1420 MWe net capacity. Last year, 12 plants (31.12.2000: 11 plants) were under construction in Romania, Russia, Slovakia, the Czech Republic and the Ukraine, that is only in east european countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129 188 MWe and an aggregate net capacity of 123 061 MWe (31.12.2000: 144 plants, 128 613 MWe (gross), 122 627 MWe (net)). Net electricity production in 2000 in the EU amounts to approx. 818.8 TWh, which means a share of 35 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 76 per cent in France, 74 per cent in Lithuania, 57 per cent in Belgium and 47 per cent in the Ukraine. Nuclear power also provides an noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e. g. Italy, Portugal and Austria. (orig.) [de

  19. Overview of United States Department of Energy activities to support life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Harrison, D.L.

    1993-01-01

    Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US The operating license of the first of these plants will expire in the year 2000; one-third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: establishment of regulations, technical standards, and procedures for the preparation and review of a license renewal application; development, verification, and validation of technical criteria and bases for monitoring, refurbishing, and/or replacing plant equipment; and demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE's Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues in the principal areas of reactor pressure vessel (RPV) integrity, fatigue, and environmental qualification (EQ)

  20. Safety assessment of unit 5 (WWER-440/W-213) of the Greifswald nuclear power station

    International Nuclear Information System (INIS)

    1992-02-01

    The report represents the common results of the program of German-Soviet cooperation in reactor safety and radiation protection. The technical plant and features of type WWER-440/W-213 nuclear power plants, basic legal licensing principles, reactor core and pressurized components, load resulting from accidents, systems engineering, spreading impacts, civil engineering aspects, and the evaluation of operating experience are described. (DG)

  1. Nuclear power: the achievements, the problems and the myths. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J [UKAEA

    1976-02-01

    The total energy requirements of the UK and problems associated with various energy sources including wind, tide, solar, geothermal, hydroelectric, and fossil fuels are reveiwed and their future contribution considered. Nuclear power is discussed with emphasis on costs, technical problems, and future developments.

  2. 76 FR 55422 - Indiana Michigan Power Company; Donald C. Cook Nuclear Plant, Unit 1; Exemption

    Science.gov (United States)

    2011-09-07

    ... CFR 50.46, ``Acceptance criteria for emergency core cooling systems for light-water nuclear power... contain acceptance criteria for the emergency core cooling system (ECCS) for reactors fueled with zircaloy... CFR Part 50 (1) when the exemptions are authorized by law, will not present an undue risk to public...

  3. Actinides inventory of the nuclear power plant of Laguna Verde Unit 1

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    At the present time 435 nuclear power reactors exist for the electricity generation operating in the world and 63 in construction. Mexico has two reactors type BWR in the nuclear power plant of Laguna Verde. The nuclear fuel that is used in the nuclear reactors is retired of the reactor core when the energy that this contained has been extracted. This used fuel is known as spent nuclear fuel, the problem with this fuel is that was irradiated inside the reactor and continuous emitting a high radiation, as well as a significant heat quantity when being extracted, for what is necessary to maintain it in cooling and with some shielding to be protected of the radiation that emits. This objective is achieved confining the fuel in the spent nuclear fuel pool, where it is cooled and the same pool provides the necessary shielding to maintain the surroundings in safety radiation levels for the personnel that work in the power plant. An inconvenience of the pools is its limited storage capacity and that after certain time is necessary to remove the fuel, according to the established regulation to continue operating. To correct this inconvenience, two alternatives of spent fuel disposition exist, 1) the final disposition in deep geologic repositories and 2) the reprocessing and recycled of spent fuel. Each alternative presents its particularities and specific problems; however taking many years to be able to implement anyone of them. To carry out the second option, is indispensable to estimate the total mass of actinides generated in the spent nuclear fuel, that which represents to develop a methodology for it, this action is the main purpose of the present work. Inside our calculation method was necessary to appeal to diverse computation tools as the codes Origin-S and Keno V.a. Later on the obtained were compared with a problem type Benchmark, being obtained a smaller absolute error to 1.0%. (Author)

  4. Optimal replacement and inspection periods of safety and control boards in Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il

    1993-02-01

    In nuclear power plants, the safety and control systems are important for operating and maintaining safety of nuclear power plants. Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Since the start of first commercial operation of Kori nuclear power plant (NPP) unit 1, the trips caused by instrument and control systems account for 28% of total trips of NPPs in Korea. Even a single trip of a nuclear power plant causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this work we investigated the optimal replacement periods of the digital control computer's (DCC) and the programmable digital comparator's (PDC) electronic circuit boards of Wolsung nuclear power plant Unit 1. We first derived mathematical models which calculate optimal replacement periods for electronic circuit boards of digital control computer (DCC) and for those of the programmable digital comparator (PDC) in Wolsung NPP unit 1. And we analytically obtained the optimal replacement periods of electronic circuit boards by using these models. We compared these periods with the replacement periods currently used at Wolsung NPP Unit. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained for the electronic circuit boards of DCC and those used in the field shown small difference : the optimal replacement periods analytically obtained for the electronic circuit boards of PDC are shorter than those used in the field in general. The engineered safeguards of Wolsung nuclear power plant unit 1 contains redundant systems of 2-out-of-3 logic which are not operating under normal conditions but they are called

  5. Implementation of a digital feedwater control system at Dresden Nuclear Power Plant, Units 2 and 3: Final report

    International Nuclear Information System (INIS)

    Zapotocky, A.; Popovic, J.R.; Fournier, R.D.

    1988-12-01

    This report describes the Digital Feedwater Control System Implementation at the Dresden 2 or 3 Units of the BWR Nuclear Power Plant owned by the Commonwealth Edison Company. The digital system has been operational in Unit 3 since August 1986, and in Unit 2 since April 1987. The Bailey Control's Network 90 based digital control system replaced the obsolete GE/MAC 5000 analog control system in the reactor feedwater control loop as a ''like-for-like'' replacement. Operational experience from the Digital Feedwater Control installations has been good and the system demonstrated better performance than the old analog systems. 14 refs., 15 figs., 17 tabs

  6. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  7. Environment and nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Aimed at the general public this leaflet, one of a series prepared by AEA Technology, on behalf of the British Nuclear Industry Forum, seeks to put the case for generating electricity to meet United Kingdom and world demand using nuclear power. It examines the environmental problems linked to the use of fossil-fuels in power stations and other uses, such as the Greenhouse Effect. Problems associated with excess carbon dioxide emissions are also discussed, such as acid rain, the effects of deforestation and lead in petrol. The role of renewable energy sources is mentioned briefly. The leaflet also seeks to reassure on issues such as nuclear waste managements and the likelihood and effects of nuclear accidents. (UK)

  8. Trend analysis of breaker events at United States nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Hiroki

    2006-01-01

    From events in overseas nuclear power plants recorded in the nuclear information detabase of Institute of Nuclear Safety System, Inc. (INSS), the number of events of electrical systems during the four years from 2002 to 2005 was extracted and the trend was analyzed. The results showed that breaker events were the largest in number in all years, and almost all them occurred in the US. The breaker events that occurred in US nuclear power plants in 2005 were analyzed by classifying them by cause of failure and effect on the plant, and by comparing the number of occurrences with that in Japan. As a result, the main cause of many of the breaker events was improper maintenance due to poor arrangement of maintenance manuals and human error, as well as aging degradation, they can be estimated to have been caused by insufficient maintenance control and inspection. The number of breaker failures per plant per year in our country was lower than that in the US by an order of magnitude, and there were no failures that led to a plant trip or power reduction. These facts suggest that our country's maintenance contents of breaker are advantage. (author)

  9. Nuclear power: Europa report

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union (EU-15) nuclear power plants have been operation. In 7 of the 13 EU Candidate Countries (incl. Turkey) nuclear energy was used for power production. A total of 208 plants with an aggregate net capacity of 171 031 MWe and an aggregate gross capacity of 180 263 MWe were in operation at the end of 2003. No unit reached first criticality in 2003 or was connected to the grid. The unit Calder Hall 1 to Calder Hall 4 have been permanently shut down in Great Britain due to economical reasons and an earlier decision. In Germany the NPP Stade was closed. The utility E.ON has decided to shut down the plant due to the efforts of the liberalisation of the electricity markets. Last year, 8 plants were under construction in Romania (1), Russia (3), Slovakia (2 - suspended), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. The consortium led by Framatome ANP was awarded the contract to build the new nuclear power plant (EPR, 1 600 MW) in Olkiluoto. In eight countries of the European Union 136 nuclear power plants have been operated with an aggregate gross capacity of 127 708 MWe and an aggregate net capacity of 121 709 MWe. Net electricity production in 2003 in the EU amounts to approx. 905 TWh gross, which means a share of about 33 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 80% in Lithuania, 78% in France, 57% in the Slovak Republic, 57% in Belgium, and 46% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. (orig.)

  10. Browns Ferry Nuclear Power Station, Units 1, 2, and 3. Semiannual report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Browns Ferry units 1 and 2 operated at maximum power from January 1 to March 22 except as limited by thermal margins, fuel preconditioning, optimum power shape, maintenance, and Unit 2 start-up tests. On March 22 a cable tray fire started causing spurious starting of equipment due to faulted control cables. The reactors were manually scrammed and placed in cold shutdown for fire investigation, clean up, and fuel removal. Information is also presented concerning maintenance, radiochemistry, occupational radiation exposure, release of radioactive materials, and non-radiological environmental monitoring

  11. Nuclear power, the environment and national control arrangements in the United Kingdom

    International Nuclear Information System (INIS)

    Wilson, J.A.; Stott, G.

    1982-01-01

    The national control arrangements for the prevention, monitoring and regulation of environmental pollution arising from discharges of radioactivity by nuclear fuel cycle operators are described. The regulation procedures arise from the provisions contained in the Radioactive Substances Act 1960 and embody a system of site specific Authorisation Certificates which permits the operators to release radioactive wastes to the surrounding environment. The Authorisation process is described together with the structure and inter-relationships of the enforcing Inspectorates. New responsibilities for radioactive waste management are also discussed in the light of changes in Government policy following the publication of the White Paper ''Nuclear Power and the Environment''. (author)

  12. Quality assurance evolution at Laguna Verde Nuclear Power Plant Unit 1 and 2, regulatory aspects

    International Nuclear Information System (INIS)

    Leon Martinez, Cenobia

    1996-01-01

    Quality Assurance (QA) in Mexico started with the construction of the Laguna Verde Nuclear Power Plant. The Nuclear Regulatory Body, based in the adopted regulation, required the use of Quality Assurance in the design, construction and operation of the Plant. This paper describes the evolution of QA from its beginnings, through its developing phase up to this time, and shows the role of the Regulatory Body, which has participated actively in the implantation of QA in a properly manner, enforcing the utility in avoiding deviations and non-compliancies with the established regulation. (author)

  13. Nuclear power desalinating complex with IRIS reactor plant and Russian distillation desalinating unit

    International Nuclear Information System (INIS)

    Kostin, V. I.; Panov, Yu.K.; Polunichev, V. I.; Fateev, S. A.; Gureeva, L. V.

    2004-01-01

    This paper has been prepared as a result of Russian activities on the development of nuclear power desalinating complex (NPDC) with the IRIS reactor plant (RP). The purpose of the activities was to develop the conceptual design of power desalinating complex (PDC) and to evaluate technical and economical indices, commercial attractiveness and economical efficiency of PDC based on an IRIS RP with distillation desalinating plants. The paper presents the main results of studies as applied to dual-purpose PDC based on IRIS RP with different types of desalinating plants, namely: characteristics of nuclear power desalinating complex based on IRIS reactor plant using Russian distillation desalinating technologies; prospective options of interface circuits of the IRIS RP with desalinating plants; evaluations of NPDC with IRIS RP output based on selected desalinating technologies for water and electric power supplied to the grid; cost of water generated by NPDC for selected interface circuits made by the IAEA DEEP code as well as by the Russian TEO-INVEST code; cost evaluation results for desalinated water of PDC operating on fossil fuel and conditions for competitiveness of the nuclear PDC based on IRIS RP compared with analog desalinating complexes operating on fossil fuel.(author)

  14. Simulation analysis on accident at Fukushima Daiichi Nuclear Power Plant Unit 2 by SAMPSON code

    International Nuclear Information System (INIS)

    Takahashi, Atsuo; Pellegrini, Marco; Mizouchi, Hideo; Suzuki, Hiroaki; Naitoh, Masanori

    2015-01-01

    The accident occurred at the Fukushima Daiichi Nuclear Power Plant Unit 2 has been investigated by the severe accident analysis code, SAMPSON with more realistic boundary conditions and newly introduced models. In Unit 2, the Reactor Core Isolation Cooling system (RCIC) is thought to have worked for unexpectedly long time (about 70 hours) without batteries. It is thought to be due to balance between injected water from the RCIC pump and supplied mixture of steam and water to the RCIC turbine. To confirm the RCIC working condition and reproduce the measured plant properties, such as pressure and water level in the reactor pressure vessel (RPV), we introduced two-phase turbine driven pump model into SAMPSON. In the model, mass flow rate of water injected by RCIC was calculated through mass flow rate of steam included in extracted two-phase flow, steam generated from flashing of water included in extracted two-phase flow, and turbine efficiency degradation originated by the mixture of steam and water flowing to the RCIC turbine. To reproduce the dry well (DW) pressure, we assumed that torus room was flooded by the tsunami and heat was removed from the suppression chamber to the sea water. Simulation results by SAMPSON basically agree with the measured values such as pressure in the RPV and in the DW until several days after the scram. However, some contradictions between the simulation results and the measured values, such as that inversion of the RPV pressure at 10 hours after scram in the measurement happened at 14 hours in the simulation and that the DW pressure showed different behavior between simulation and measurement when SRV started periodic operation at 71 hours, are still remain and are under consideration. In the current calculation, model for falling core to the lower plenum was modified so that debris is not retained at the core plate based on observation of the XR2-1 experiment. Additionally, model of the RPV failure by melting of the penetrating pipe

  15. Abuse of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J [UKAEA

    1976-09-01

    This paper reproduces an address by Sir John Hill, Chairman of the United Kingdom Atomic Energy Authority, at a conference in London organised by the Financial Times in July 1976. Actions that, in the author's view, could be regarded as constituting abuse of nuclear power are first summarised, and the various aspects of the use and abuse of nuclear power are discussed. The author considers that achieving the maximum degree of acceptance of the Non-Proliferation Treaty is the most important political objective in nuclear power, but considers that nuclear terrorism would be abortive and that, so far as the UK is concerned, the present precautions are adequate and will remain so. It is considered that much abuse of nuclear power arises from the prevalence of its critics, particularly with reference to Pu hazards, the health of nuclear employees, and possible damage to the health of the public. The Pu problem is considered to be far more emotive than rational. The possibility of lung cancer and leukaemia is discussed. It is concluded that atomic energy is one of the best of industries in which to work, both from the health and interest points of view.

  16. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  17. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 181,120 MWe and an aggregate gross capacity of 171,802 MWe were in operation. Two units, i.e. Civaux 2 in France and Mochovce-2 in Slovakia went critical for the first time and started commercial operation after having been connected to the grid. Three further units in France, Chooz 1 and 2 and Civaux 1, started commercial operation in 1999 after the completion of technical measures in the primary circuit. Last year, 13 plants were under construction in Romania, Russia, Slovakia and the Czech Republic, that is only in East European countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129.772 MWe and an aggregate net capacity of 123.668 MWe. Net electricity production in 1999 in the EU amounts to approx. 840.2 TWh, which means a share of 35 per cent of the total production. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, 58 per cent in Belgium and 47 per cent in Bulgaria, Sweden and Slovakia. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal and Austria. (orig.) [de

  18. Development of a power-period calculation unit for nuclear reactor Control

    International Nuclear Information System (INIS)

    Martin, J.

    1966-10-01

    The apparatus studied is a digital calculating assembly which makes it possible to prepare and to present numerically the period and power of a nuclear reactor during operation, from start-up to nominal power. The pulses from a fission chamber are analyzed continuously, using real time. A small number of elements is required because of the systematic use of a calculation technique comprising the determination of a base 2 logarithm by a linear approximation. The accuracy obtained for the period is of the order of 14%; the response time of the order of the calculated period value. An approximate value of the power (30%) is given at each calculation cycle together with the power thresholds required for the control. (author) [fr

  19. 75 FR 8757 - Nebraska Public Power District, Cooper Nuclear Station, Unit 1; Notice of Availability of the...

    Science.gov (United States)

    2010-02-25

    ..., Cooper Nuclear Station, Unit 1; Notice of Availability of the Draft Supplement 41 to the Generic... Renewal of Cooper Nuclear Station, Unit 1 Notice is hereby given that the U.S. Nuclear Regulatory... operating license DPR-46 for an additional 20 years of operation for Cooper Nuclear Station, Unit 1 (CNS-1...

  20. Potential Nuclear Power Plant Siting Issues in the United Arab Emirates

    International Nuclear Information System (INIS)

    Al Hanai, Waddah T.

    2011-01-01

    Based on the need to develop additional sources of electricity to meet future demand and to ensure the rapid growth of its economy, the United Arab Emirates has embarked on a nuclear programme. The Federal Law by Decree No. 6 of 2009, Concerning the Peaceful Uses of Nuclear Energy was signed by the President, last fall. This law created the Federal Authority for Nuclear Regulation (FANR), which is developing the framework of regulations which will guide the UAE programme. This paper reviews the development of the FANR regulation on Siting and the related environmental issues in general and those unique to the area. This will include steps being planned by the Authority to review the license application and the current concepts being looked at for the inspection programme. Among the unique aspects the author will look at are the results from a recent in-depth study performed on dust and sand storms. (author)

  1. Occupational exposure analysis at the unit 1 of Almirante Alvaro Alberto nuclear power plant

    International Nuclear Information System (INIS)

    Moraes, A.

    1985-01-01

    In order to obtain a complete knowledge of occupational conditions in a PWR nuclear power station, the individual and collective dose distributions are being analysed during the Angra I (Rio de Janeiro - Brazil) station activities. Work conditions with identification of critical areas and groups as well as classification of tasks related to reactor maintenance and startup periods are also studied. This paper analyses radiological data measured at different power levels of the reactor and during maintenance and repair services as well as the refueling operation. (author)

  2. Donald C. Cook Nuclear Power Plant, Unit 1. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    The unit was paralleled to the grid 83.1 percent of the time and 7,073,200 MWH gross was generated. There were six scheduled outages and 14 forced outages/load reductions. Information is presented concerning operations, shutdowns, power reductions, inservice maintenance, personnel radiation exposures, fuel history, and facility changes

  3. Integrated Plant Safety Assessment: Systematic Evaluation Program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245. Final report

    International Nuclear Information System (INIS)

    1983-02-01

    This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license. This report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the Draft Report, issued in November 1982

  4. Technical evaluation of RETS-required reports for Browns Ferry Nuclear Power Station, Units 1, 2, and 3, for 1983

    International Nuclear Information System (INIS)

    Young, T.E.; Magleby, E.H.

    1985-01-01

    A review was performed of reports required by federal regulations and the plant-specific radiological effluent technical specifications (RETS) for operations conducted at Tennessee Valley Authority's Browns Ferry Nuclear Station, Units 1, 2, and 3, during 1983. The two periodic reports reviewed were (a) the Effluents and Waste Disposal Semiannual Report, First Half 1983 and (b) the Effluents and Waste Disposal Semiannual Report, Second Half 1983. The principal review guidelines were the plant's specific RETs and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines

  5. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1985-09-01

    The Safety Evaluation Report issued in August 1984 provided the results of the NRC staff review of Northeast Nuclear Energy Company's application for a license to operate the Millstone Nuclear Power Station, Unit No. 3. Supplement No. 1 to that report, issued in March 1985 updated the information contained in the Safety Evaluation Report and addressed the ACRS Report issued on September 10, 1984. The Report, Supplement No. 2 updates the information contained in the Safety Evaluation Report and Supplement No. 1 and addresses prior unresolved items. The facility is located in Waterford Township, New London, Connecticut. 11 refs., 9 tabs

  6. Structural review of the Palisades Nuclear Power Plant Unit 1 containment structure under combined loads for the Systematic Evaluation Program

    International Nuclear Information System (INIS)

    Liaw, C.Y.; Debeling, A.; Tsai, N.C.

    1981-12-01

    A structural reassessment of the containment structure of the Palisades Nuclear Power Plant Unit 1 was performed for the Nuclear Regulatory Commission as part of the Systematic Evaluation Program. Conclusions about the ability of the containment structure to withstand the Abnormal/Extreme Environment are presented. The reassessment focused mainly on the overall structural integrity of the containment building for the Abnormal/Extreme Environment. In this case, the Abnormal Environmental condition is caused by the worst case of either a Loss-of-Coolant Accident or a main steam line break. The Extreme Environmental condition is the Safe Shutdown Earthquake

  7. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  8. Maintenance model for the No. 2 1300 MW unit at Philippsburg nuclear power station

    International Nuclear Information System (INIS)

    Gamer, M.; Jaeger, E.; Woehrle, G.

    1983-01-01

    In 1979 a maintenance model to the scale 1:1 was constructed for the second extension of Philippsburg Nuclear Power Station. The objective of this model, the building of which was completed at the end of 1982, the physical arrangement of the overall maintenance regime and the practice-oriented application of the ergonomics, in particular in relation to the optimization of the man-machine interface, are described. (orig.) [de

  9. Nuclear power plant performance statistics. Comparison with fossil-fired units

    International Nuclear Information System (INIS)

    Tabet, C.; Laue, H.J.; Qureshi, A.; Skjoeldebrand, R.; White, D.

    1983-01-01

    The joint UNIPEDE/World Energy Conference Committee on Availability of Thermal Generating Plants has a mandate to study the availability of thermal plants and the different factors that influence it. This has led to the collection and publication at the Congress of the World Energy Conference (WEC) every third year of availability and unavailability factors to be used in systems reliability studies and operations and maintenance planning. For nuclear power plants the joint UNIPEDE/WEC Committee relies on the IAEA to provide availability and unavailability data. The IAEA has published an annual report with operating data from nuclear plants in its Member States since 1971, covering in addition back data from the early 1960s. These reports have developed over the years and in the early 1970s the format was brought into close conformity with that used by UNIPEDE and WEC to report performance of fossil-fired generating plants. Since 1974 an annual analytical summary report has been prepared. In 1981 all information on operating experience with nuclear power plants was placed in a computer file for easier reference. The computerized Power Reactor Information System (PRIS) ensures that data are easily retrievable and at its present level it remains compatible with various national systems. The objectives for the IAEA data collection and evaluation have developed significantly since 1970. At first, the IAEA primarily wanted to enable the individual power plant operator to compare the performance of his own plant with that of others of the same type; when enough data had been collected, they provided the basis for assessment of the fundamental performance parameters used in economic project studies; now, the data base merits being used in setting availability objectives for power plant operations. (author)

  10. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  11. Nuclear power perspective in China

    International Nuclear Information System (INIS)

    Liu Xinrong; Xu Changhua

    2003-01-01

    China started developing nuclear technology for power generation in the 1970s. A substantial step toward building nuclear power plants was taken as the beginning of 1980 s. The successful constructions and operations of Qinshan - 1 NPP, which was an indigenous PWR design with the capacity of 300 MWe, and Daya Bay NPP, which was an imported twin-unit PWR plant from France with the capacity of 900 MWe each, give impetus to further Chinese nuclear power development. Now there are 8 units with the total capacity of 6100 MWe in operation and 3 units with the total capacity of 2600 MWe under construction. For the sake of meeting the increasing demand for electricity for the sustainable economic development, changing the energy mix and mitigating the environment pollution impact caused by fossil fuel power plant, a near and middle term electrical power development program will be established soon. It is preliminarily predicted that the total power installation capacity will be 750-800GWe by the year 2020. The nuclear share will account for at least 4.0-4.5 percent of the total. This situation leaves the Chinese nuclear power industry with a good opportunity but also a great challenge. A practical nuclear power program and a consistent policy and strategy for future nuclear power development will be carefully prepared and implemented so as to maintain the nuclear power industry to be healthfully developed. (author)

  12. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  13. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    International Nuclear Information System (INIS)

    Seo, Kwi Hyun; Byun, Choong Sup; Song, Dong Soo

    2006-01-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information

  14. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwi Hyun [ENERGEO Inc., Sungnam (Korea, Republic of); Byun, Choong Sup; Song, Dong Soo [KEPRI, Taejon (Korea, Republic of)

    2006-07-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information.

  15. Dresden Nuclear Power Station, Unit No. 1: Primary cooling system chemical decontamination: Draft environmental statement (Docket No. 50-10)

    International Nuclear Information System (INIS)

    1980-05-01

    The staff has considered the environmental impact and economic costs of the proposed primary cooling system chemical decontamination at Dresden Nuclear Power Station, Unit 1. The staff has focused this statement on the occupational radiation exposure associated with the proposed Unit 1 decontamination program, on alternatives to chemical decontamination, and on the environmental impact of the disposal of the solid radioactive waste generated by this decontamination. The staff has concluded that the proposed decontamination will not significantly affect the quality of the human environment. Furthermore, any impacts from the decontamination program are outweighed by its benefits. 2 figs., 7 tabs

  16. Remote techniques for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1997-01-01

    Unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MWe. It was shut down in 1977 after eleven years of operation. The actual decommissioning started in 1983. Since then more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, which uses a dual-cycle system for additional steam generation, the experience gained is transferable to pressurized water reactors. (Author)

  17. Remote control for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1996-01-01

    The unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MW e . It was shut down in 1977 after 11 years of operation. The actual decommissioning started in 1983. Meanwhile more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, using an dual cycle system for additional steam generation, the experience gained is transferable to pressurised water reactors as well. (Author)

  18. Safe nuclear power

    International Nuclear Information System (INIS)

    Cady, K.B.

    1992-01-01

    Nearly 22 percent of the electricity generated in the United States already comes from nuclear power plants, but no new plants have been ordered since 1978. This paper reports that the problems that stand in the way of further development have to do with complexity and perceived risk. Licensing, construction management, and waste disposal are complex matters, and the possibility of accident has alienated a significant portion of the public. But a national poll conducted by Bruskin/Goldring at the beginning of February shows that opposition to nuclear energy is softening. Sixty percent of the American people support (strongly or moderately) the use of nuclear power, and 18 percent moderately oppose it. Only 15 percent remain obstinately opposed. Perhaps they are not aware of recent advances in reactor technology

  19. US nuclear power industry overview

    International Nuclear Information System (INIS)

    Wood, C.J.

    1995-01-01

    The electric utilities in the United States are facing a number of challenges as deregulation proceeds. Cost control is one of these challenges that impacts directly the operators of nuclear power plants. This presentation reviews recent data on the performance of nuclear power plants and discusses technical developments to reduce operating costs, with particular reference to low-level radioactive waste issues

  20. Nuclear power and the environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    One of the most important points of agreement arising from international studies of nuclear energy is that no significant change to the environment has occurred as a result of operating power plants. This emerged from the Agency's symposium at United Nations headquarters during August on Environmental Aspects of Nuclear Power. (author)

  1. Nuclear-powered submarines

    International Nuclear Information System (INIS)

    Curren, T.

    1989-01-01

    The proposed acquisition of nuclear-powered submarines by the Canadian Armed Forces raises a number of legitimate concerns, including that of their potential impact on the environment. The use of nuclear reactors as the propulsion units in these submarines merits special consideration. Radioactivity, as an environmental pollutant, has unique qualities and engenders particular fears among the general population. The effects of nuclear submarines on the environment fall into two distinct categories: those deriving from normal operations of the submarine (the chief concern of this paper), and those deriving from a reactor accident. An enormous body of data must exist to support the safe operation of nuclear submarines; however, little information on this aspect of the proposed submarine program has been made available to the Canadian public. (5 refs.)

  2. Can nuclear power compete?

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1993-01-01

    The competitiveness of electricity generation from new nuclear plant with that from fossil-fired plant depends on a number of factors, the most important of which are the future costs of fossil fuels and the required rate of return on capital. Nuclear power is generally expected to remain competitive for baseload generation in OECD countries except in regions with direct access to cheap fossil fuels, based on the economic criteria and price expectations prevailing in the different countries. The situation in the United Kingdom will be clearer later in 1993 when comparisons prepared for the Government's Nuclear Review are published, but on the basis of the information available new nuclear plants should be competitive with the other technical options available for deployment around the year 2000. (author)

  3. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    power plants, about 5% of total installed electricity capacity in the country, are expected to start operations during 2020-2021. EGAT will be responsible as the owner and operator of these first units of nuclear power.

  4. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  5. Peer review of the Barselina Level 1 probabilistic safety assessment of the Ignalina Nuclear Power Plant, Unit 2

    International Nuclear Information System (INIS)

    McKay, S.L.; Coles, G.A.

    1995-01-01

    The Barselina Project is a Swedish-funded, cooperative effort among Lithuania, Russia and Sweden to transfer Western probabilistic safety assessment (PSA) methodology to the designers/operators of Ignalina Nuclear Power Plant (INPP). The overall goal is to use the PSA as a tool for assessing plant operational safety. The INPP is a two-unit, Former Soviet Union-designed nuclear facility located in Lithuania. The results of this PSA will ultimately be used to identify plant-specific improvements in system design and the conduct of facility operations, allowing improved operational safety. Pacific Northwest Laboratory (PNL) was asked to perform an independent expert peer review of the Barselina PSA. This report documents the findings of this review. This review, financed with nuclear safety assistance funds through the US Agency for International Development (USAID) and the US Department of Energy (DOE), satisfies Task II of the PNL peer review of the Barselina project. The objective is to provide an independent, in-proce ss examination of the Barselina Level 1 PSA of Ignalina Nuclear Power Plant, Unit 2. The review consisted of an investigation of the project documentation, interviews, and extensive discussions with the PSA staff during critical stages of the project. PNL assessed the readability, completeness, consistency, validity, and applicability of the PSA. The major aspects explored were its purpose, major assumptions, analysis/modeling, results, and interpretation. It was not within the scope of this review to perform plant walkdowns or to review material other than the PSA documentation

  6. Economics of nuclear power

    International Nuclear Information System (INIS)

    Roth, B.F.

    1977-01-01

    The economics of electricity supply and production in the FRG is to see on the background of the unique European interconnected grid system which makes very significant contributions to the availability of standby energy and peak load power. On this basis and the existing high voltage grid system, we can build large nuclear generating units and realise the favorable cost aspects per installed KW and reduced standby power. An example of calculating the overall electricity generating costs based on the present worth method is explained. From the figures shown, the sensitivity of the generating costs with respect to the different cost components can be derived. It is apparent from the example used, that the major advantage of nuclear power stations compared with fossil fired stations lies in the relatively small percentage fraction contributed by the fuel costs to the electricity generating costs. (orig.) [de

  7. Modification and backfitting at the Oskarshamn Nuclear Power Plant Unit 2 in safety related systems

    International Nuclear Information System (INIS)

    Karlsson, Leif; Nilsson, Ove; Lidh, B.

    1995-05-01

    This report is intended for use by the Swedish Nuclear Power Inspectorate. It has been published to enable comparison of modification and backfitting implemented at Oskarshamn-2, with those implemented at other plants, both domestic and abroad. The report summarizes the more notable modifications and backfitting carried out on any safety-related equipment, or software, at Barsebaeck, and covers the decade 1984 to 1994. Modifications to hardware, and to some extent to software, are catalogued, but not described in any detail. No general procedures (operational or maintenance) are dealt with. 3 refs

  8. Analysis about modeling MEC7000 excitation system of nuclear power unit

    Science.gov (United States)

    Liu, Guangshi; Sun, Zhiyuan; Dou, Qian; Liu, Mosi; Zhang, Yihui; Wang, Xiaoming

    2018-02-01

    Aiming at the importance of accurate modeling excitation system in stability calculation of nuclear power plant inland and lack of research in modeling MEC7000 excitation system,this paper summarize a general method to modeling and simulate MEC7000 excitation system. Among this method also solve the key issues of computing method of IO interface parameter and the conversion process of excitation system measured model to BPA simulation model. At last complete the simulation modeling of MEC7000 excitation system first time in domestic. By used No-load small disturbance check, demonstrates that the proposed model and algorithm is corrective and efficient.

  9. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  10. Neutron fluence measurement in the cavity of Balakovo nuclear power plant, unit 3

    International Nuclear Information System (INIS)

    Voorbraak, W.P.; Baard, J.H.; Paardekooper, A.; Nolthenius, H.J.

    1996-12-01

    An international benchmark exercise has been organized by the Russian GOSATOMNADZOR. The aim was to reduce the uncertainty of fluence measurements in Nuclear Power Plants in particular VVER-1000 reactors. The benchmark was set up in the cavity of the Balakovo NPP 3. Eight institutes were involved. This report presents the results obtained by ECN. From this report, it can be concluded that the results of the relative large monitor set (13 different reaction rates with overlapping response regions) point to possible imperfections in the calculated neutron spectra. However the experimental information is not powerful enough to reduce the uncertainty of the neutron fluence rate especially in the energy region between 0.1 and 0.5 MeV below 50 percent. (orig.)

  11. The Price-Anderson Act: A Linchpin in the Development of Commercial Nuclear Power in the United States

    International Nuclear Information System (INIS)

    Quattrocchi, J. L.

    2006-01-01

    The dawn of the atomic age brought with it both the hope of great benefit and the fear of great disaster. By the mid-1950's, the United States recognized that it was in the national interest to promote commercial development of nuclear energy in medicine and industry, particularly in the generation of electric power. The uncertainties of the technology and the potential for severe accidents were clear obstacles to commercial development. Exposure to potentially serious uninsured liabilities inhibited the private sector. These impediments led Congress to enact the Price-Anderson Act in 1957. Its three-fold purpose was to encourage private development of nuclear power, establish a framework for handling liability claims and provide a ready source of funds to compensate accident victims. The law was originally enacted for ten years but has now been extended four times. The major provisions of the Act and its importance to the public and to insurers are described in this paper.(author)

  12. Promoting excellence in nuclear power plant training in the United States

    International Nuclear Information System (INIS)

    Mangin, A.M.

    1983-01-01

    The Institute of Nuclear Power Operations (INPO) was formed in late 1979 by U.S. nuclear utilities to enhance the operational safety and reliability of their nuclear plants. One of INPO's major functions is to promote excellence in industry training and qualification programs. To accomplish this objective, INPO develops and uses guidelines and evaluation criteria to assist utilities in developing and implementing high quality training and education programs. The training guidelines permit utilities to develop performance-based programs which meet their specific need with minimal duplication of effort. INPO regularly evaluates each utility's training programs and practices in the plant evaluation and accreditation processes using criteria based on the training guidelines. In the accreditation process, INPO examines training programs and training organizations to determine whether they have the potential to produce individuals qualified to perform assigned tasks. During plant evaluations, INPO examines the implementation of the programs and their effectiveness in producing qualified individuals. After each accreditation review and plant evaluation, INPO recommends improvements and follows up to ensure they are made. (author)

  13. Damage of the Unit 1 reactor building overhead bridge crane at Onagawa Nuclear Power Station caused by the Great East Japan Earthquake and its repair works

    International Nuclear Information System (INIS)

    Sugamata, Norihiko

    2014-01-01

    The driving shaft bearings of the Unit 1 overhead bridge crane were damaged by the Great East Japan Earthquake at Onagawa Nuclear Power Station. The situation, investigation and repair works of the bearing failure are introduced in this paper. (author)

  14. Technical specifications, Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Appendix ''A'' to License No. NPF-49

    International Nuclear Information System (INIS)

    1986-01-01

    Information is presented concerning specifications on the following aspects of the Millstone Nuclear Power Station, Unit No. 3: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  15. Technical Specifications, Shearon Harris Nuclear Power Plant, Unit No. 1 (Docket No. 50-400). Appendix ''A'' to License No. NPF-53

    International Nuclear Information System (INIS)

    1986-10-01

    This report presents specifications for the Shearon Harris Nuclear Power Plant Unit No. 1 concerning: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  16. Is nuclear power competitive

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1984-01-01

    The first phase of a two-phase study of the competitiveness of electricity from new coal and nuclear plants with oil and natural gas in common markets concludes that, with few exceptions throughout the country, overall levelized nuclear generating cost could be lower than coal generating costs by more than 40%. The study shows a wider margin of economic superiority for nuclear than has been seen in other recent studies. Capital and fuel costs are the major determinants of relative nuclear and coal economics. The only substantial difference in the input assumptions has related to a shorter lead time for both coal and nuclear units, which reduces capital costs. The study gives substance to the charge that delaying tactics by intervenors and an unstable licensing environment drove up lifetime costs of both coal and nuclear plants. This caused an increase in electric rates and affected the entire economy. The study shows that nuclear power is competitive when large baseload capacity is required. 14 figures

  17. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  18. Software for automated evaluation of technical and economic performance factors of nuclear power plant units

    International Nuclear Information System (INIS)

    Cvan, M.; Zadrazil, J.; Barnak, M.

    1989-01-01

    Computer codes TEP V2, TEP EDU and TEP V1 are used especially in real-time evaluation of technical and economic performance factors of the power unit. Their basic functions include filtration of credibility of input data obtained by measurement, simultaneous calculation of flows of various types of energy, calculation of technical and economic factors, listings and filing of the results. Code ZMEK is designed for executing changes in the calculation constants file for codes TEP V2 and TEP EDU. Code TEP DEN is used in processing the complete daily report on the technical and economic performance factors of the unit. Briefly described are the basic algorithms of credibility filtration for the measured quantities, the methodology of fundamental balances and the method of guaranteeing the continuity of measurement. Experiences are given with the use of the codes, and the trends are outlined of their future development. (J.B.). 5 refs

  19. High efficiency-large capacity circulating water pump for Hamaoka Nuclear Power Station unit No.3

    International Nuclear Information System (INIS)

    Ito, Akihiko; Sasamuro, Takemi; Takeda, Hirohisa.

    1988-01-01

    No.3 plant in the Hamaoka Nuclear Power Station, Chube Electric Power Co., Inc. is the latest plant of 1100 MW class BWR type, which began the commercial operation in August, 1987. The seawater intake and discharge system of this plant is composed of the channel exceeding 2 km in the total length from the intake tower to the discharge port. The circulating water pump installed in this system has the capacity of 1620 m 3 /min and the total head of 16.5 m, which are the largest in the world. It attained the efficiency as high as more than 90%. Three pumps supply seawater to three-body condensers. The design of the impeller and the casing for obtaining high efficiency, the structural design for facilitating maintenance, the manufacture of a model pump and the performance test using it and so on are reported. The most important item in the manufacture was the form of the onebody impeller weighing 4.5t. The confirmation of the performance of the actual machines was carried out as a part of the synthetic function confirmation test at the power station, and the flow rate was measured with Pitot tubes and ultrasonic flowmeters. (Kako, I.)

  20. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 27 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for a license to operate Diablo Canyon Nuclear Power Plant, Unit 1 (Docket No. 50-275), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses the revisions to the license conditions and to the Technical Specifications as they relate to Amendment 10 to Diablo Canyon, Unit 1 Facility Operating License, DPR-76

  1. United States experience in environmental cost-benefit analysis for nuclear power plants with implications for developing countries

    International Nuclear Information System (INIS)

    Spangler, M.B.

    1980-08-01

    Environmental cost-benefit analysis in the United States involves a comparison of diverse societal impacts of the proposed developments and its alternatives. Regarding nuclear power plant licensing actions, such analyses include the need for base-load electrical generating capacity versus the no-action alternative; alternative sources of energy; alternative sites for the proposed nuclear plants; and alternative technologies for mitigating environmental impacts. Many U.S. experiences and environmental assessment practices and comparative resource requirements presented in this report will not provide a wholly reliable reflection of the precise situation of each country. Nevertheless, the procedural and substantive issues encountered by the United States in nuclear power plant licensing may exhibit a number of important, if rough, parallelisms for other countries. Procedural issues dealt with include: the scoping of alternatives and impact issues; the problem of balancing incommensurable impacts; and treating uncertainty in measuring or forecasting certain kinds of environmental impacts. Although substantive environmental impact issues will vary appreciably among nations, it is to be expected that many of the substantive impact issues such as impacts on biota, community-related effects, and aesthetic impacts will also have some measure of universal interest to other countries

  2. Final environmental statement related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1984-12-01

    This Final Environmental Statement contains the second assessment of the environmental impact associated with the operation of Millstone Nuclear Power Station, Unit 3, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic ecological impacts will be small. Operational impacts to historic and archeologic sites will be small. The effects of routine operations, energy transmission, and periodic maintenance of rights-of-way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk of radiation exposure associated with accidental release of radioactivity is very low. The net socioeconomic effects of the project will be beneficial. On the basis of the analysis and evaluation set forth in this environmental statement, it is concluded that the action called for under NEPA and 10 CFR 51 is the issuance of an operating license for Millstone Nuclear Power Station, Unit 3. 101 references, 33 figures, 30 tables

  3. The Analysis of the System of special water purification of Beloyarskaya Nuclear Power Plant unit BN-800

    Science.gov (United States)

    Valtseva, A. I.; Bibik, I. S.

    2017-11-01

    This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.

  4. Nuclear power - the Hydra's head

    Energy Technology Data Exchange (ETDEWEB)

    Bunyard, P

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead.

  5. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  6. US nuclear power programs

    International Nuclear Information System (INIS)

    McGolf, D.J.

    1994-01-01

    In the United States, coal provided 56 percent of the electricity generated in 1992. Nuclear energy was the next largest contributor, supplying 22 percent. Natural gas provided 9 percent, while hydro-electric and renewables together supplied another 9 percent. Currently, the 109 nuclear power plants in the U.S. have an overall generating capacity of 99,000 MWe. To improve efficiency, safety, and performance, the lessons of 30 years of experience with nuclear powerplants are being incorporated into design criteria for the next generation of U.S. plants. The new Advanced Light Water Reactor plants will feature simpler designs, which will enable more cost-effective construction and maintenance. To enhance safety, design margins are being increased, and human factors are being considered and incorporated into the designs

  7. Lessons of nuclear power

    International Nuclear Information System (INIS)

    Collingridge, D.

    1984-01-01

    In an earlier article the author has argued that the turbulent history of nuclear power in Britain and the USA stems from the technology itself, and has little to do with the very different institutional arrangements made for the new technology in the two countries. Nuclear plant has various features which make its planning extraordinarily difficult. Its long lead time, large unit size, capital intensity and dependence on complex infrastructure combine to ensure that mistakes are likely to be made in planning the technology and that what mistakes do occur are expensive. This article aims to expand on the earlier one in two ways; by looking at the apparent success of the French nuclear programme which seems to run counter to the thesis of the earlier article, and by trying to draw lessons from the earlier analysis for the breeder reactor. (author)

  8. US nuclear power programs

    Energy Technology Data Exchange (ETDEWEB)

    McGolf, D J

    1994-12-31

    In the United States, coal provided 56 percent of the electricity generated in 1992. Nuclear energy was the next largest contributor, supplying 22 percent. Natural gas provided 9 percent, while hydro-electric and renewables together supplied another 9 percent. Currently, the 109 nuclear power plants in the U.S. have an overall generating capacity of 99,000 MWe. To improve efficiency, safety, and performance, the lessons of 30 years of experience with nuclear powerplants are being incorporated into design criteria for the next generation of U.S. plants. The new Advanced Light Water Reactor plants will feature simpler designs, which will enable more cost-effective construction and maintenance. To enhance safety, design margins are being increased, and human factors are being considered and incorporated into the designs.

  9. China and nuclear power

    International Nuclear Information System (INIS)

    Fouquoire-Brillet, E.

    1999-01-01

    This book presents the history of nuclear power development in China from the first research works started in the 1950's for the manufacturing of nuclear weapons to the recent development of nuclear power plants. This study tries to answer the main questions raised by the attitude of China with respect to the civil and military nuclear programs. (J.S.)

  10. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  11. Nuclear power plant V-2

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -2 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - December 1976; first controlled reactor power - 7 August 1984, 2 August 1985; connection to the grid - 20 August 1984, 9 August 1985; commercial operation - 14 February 1985, 18 December 1985. This leaflet contains: NPP V-2 construction; Major technological equipment [WWER 440 V230 type reactor; Nuclear Power plant operation safety (Safety barriers; Safety systems [Active safety systems, Passive safety systems]); Centralized heat supply system; Scheme of Bohunice V-2 NPP and technical data

  12. Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system

    International Nuclear Information System (INIS)

    Almansoori, Ali; Betancourt-Torcat, Alberto

    2015-01-01

    Highlights: • A design optimization model for the power sector has been developed. • We examine the influence of exogenous variables in the UAE power infrastructure. • Subsidizing fuel prices will stimulate fossil-based electricity generation. • Carbon tax and higher fuel prices are suitable options to decrease air emissions. • Accounting the social benefits of emissions avoidance incentivizes diversification. - Abstract: A Mixed Integer Linear Programming (MILP) formulation is presented for the optimal design of the United Arab Emirates’ (UAE) power system. The model was formulated in the General Algebraic Modeling System (GAMS), which is a mathematical modeling language for programming and optimization. Previous studies have either focused on the estimation of the UAE’s energy demands or the simulation of the operation of power technologies to plan future electricity supply. However, these studies have used international simulation tools such as “MARKAL” and “MESSAGE”; whereas the present work presents an optimization model. The proposed design optimization model can be used to estimate the most suitable combination of power plants under CO 2 emission and alternative energy targets, carbon tax, and social benefits of air emissions avoidance. Although the proposed model was used to estimate the future power infrastructure in the UAE, the model includes several standard power technologies; thus, it can be extended to other countries. The proposed optimization model was verified using historical data of the UAE power sector operation in the year 2011. Likewise, the proposed model was used to study the 2020 UAE power sector operations under three scenarios: domestic vs. international natural gas prices (considering different carbon tax levels), social benefits of using low emission power technologies (e.g., renewable and nuclear), and CO 2 emission constraints. The results show that the optimization model is a practical tool for designing the

  13. A regulatory view of the seismic re-evaluation of existing nuclear power plants in the United Kingdom

    International Nuclear Information System (INIS)

    Inkester, J.E.; Bradford, P.M.

    1995-01-01

    The paper describes the background to the seismic re-evaluation of existing nuclear power plants in the United Kingdom. Nuclear installations in this country were not designed specifically to resist earthquakes until the nineteen-seventies, although older plants were robustly constructed. The seismic capability of these older installations is now being evaluated as part of the periodic safety reviews which nuclear licensees are required to carry out. The regulatory requirements which set the framework for these studies are explained and the approaches being adopted by the licensees for their assessment of the seismic capability of existing plants are outlined. The process of hazard appraisal is reported together with a general overview of UK seismicity. The paper then discusses the methodologies used to evaluate the response of plant to the hazard. Various other types of nuclear installation besides power plants are subject to licensing in the UK and the application of seismic evaluation to some of these is briefly described. Finally the paper provides some comments on future initiatives and possible areas of development. (author)

  14. APPLICATION FEATURES OF SPATIAL CONDUCTOMETRY SENSORS IN MODELLING OF COOLANT FLOW MIXING IN NUCLEAR POWER UNIT EQUIPMENT

    Directory of Open Access Journals (Sweden)

    A. A. Barinov

    2016-01-01

    Full Text Available Coolant flow mixing processes with different temperatures and concentrations of diluted additives widely known in nuclear power units operation. In some cases these processes make essential impact on the resource and behavior of the nuclear unit during transient and emergency situations. The aim of the study was creation of measurement system and test facility to carry out basic tests and to embed spatial conductometry method in investigation practice of turbulent coolant flows. In the course of investigation measurement system with sensors and experimental facility was designed, several first tests were carried out. A special attention was dedicated to calibration and clarification of conductometry sensor application methodologies in studies of turbulent flow characteristics. Investigations involved method of electrically contrast tracer jet with concurrent flow in closed channel of round crosssection. The measurements include both averaged and unsteady realizations of measurement signal. Experimental data processing shows good agreement with other tests acquired from another measurement systems based on different physical principles. Calibration functions were acquired, methodical basis of spatial conductometry measurement system application was created. Gathered experience of spatial sensor application made it possible to formulate the principles of further investigation that involve large-scale models of nuclear unit equipment. Spatial wire-mesh sensors proved to be a perspective type of eddy resolving measurement devices.

  15. Integrated plant safety assessment, Systematic Evaluation Program: Dresden Nuclear Power Station, Unit 2 (Docket No. 50-237)

    International Nuclear Information System (INIS)

    1989-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0823), under the scope of the Systematic Evaluation Program (SEP), for the Commonwealth Edison Company (CECo) Dresden Nuclear Power Station, Unit 2 located in Grundy County, Illinois. The NRC initiated the SEP to provide the framework for reviewing the design of older operating nuclear reactor plants to reconfirm and document their safety. This report documents the review completed by means of the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations subsequent to issuing the final IPSAR for Dresden Unit 2. The review was provided for (1) an assessment of the significance of differences between current technical positions on selected issues and those that existed when Dresden Unit 2 was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The final IPSAR and this supplement forms part of the bases for considering the conversion of the existing provisional operating license to a full-term operating license. 83 refs., 9 tabs

  16. Safety probabilistic study of Almirante Alvaro Alberto nuclear power plant-Unit I

    International Nuclear Information System (INIS)

    Lederman, L.; Arrieta, L.A.I.; Fernandes Filho, T.L.; Gibelli, S.M.O.; Berthoud, J.S.; Ambros, P.C.; Soares, H.V.; Camargo, C.T.M.

    1985-04-01

    The phase A of probabilistic safety study of Angra I nuclear power plant is presented, to be used by CNEN and FURNAS Centrais Eletricas S.A. as standard model in operational and safety analysis. The methodology applied is a modernization of WASH 1400/2.11/ study. Angra I safety systems are described. The selection and qualification of initiating sequence accident events which can damage the reactor core are done. The accident scenes are developed using the method of event trees. The reactor in subcritical condition (pressure, fuel temperature within limits and controlled level of reactor vessel) is studied during 24 hours. The uncertainness in failure probabilities of systems and in the determination of sequence frequencies for core danification are evaluated. Total frequency of sequences which cause the fusion of reactor core are presented. (M.C.K.) [pt

  17. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  18. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    Grimston, M.C.

    1994-01-01

    The United Kingdom Government's strategy aimed at securing sustainable development has recently been published, and is analysed here by the Energy Issues Adviser, for the British Nuclear Industry Forum. The energy framework aims to ensure secure supplies of energy at competitive prices and to minimise possible adverse environmental impacts of energy use. It is argued here that both of these aims will be promoted by the continued and growing use of nuclear power in the United Kingdom. As the cost of nuclear electricity depends chiefly on the price of uranium, which is likely to stabilize due to increased supplies from nuclear weapons destruction, uranium recycling and mixed oxide fuel reprocessing, it is unlikely that world fuel price inflation will affect these costs. Secondly, nuclear power is not associated with acid rain or the threat of global warming, so its environment protection claims can be substantiated. Indeed, unlike other fuel sources, nuclear power already pays for its waste and decommissioning procedures. (UK)

  19. Management of main generator condition during long term plant shut down at Higashidori Nuclear Power Station Unit 1

    International Nuclear Information System (INIS)

    Kato, Seiji

    2014-01-01

    Higashidori Nuclear Power Station Unit 1 shut down on February 6, 2011 to start 4th refuel outage. On March 11, 2011, we keep going refuel outage on this moment a large earthquake occurred and tsunami was generated following it which called 'Great East Japan Earthquake'. Refuel outage takes 3 ∼ 5 months normally but Higashidori NPS still keeping shut down over 3 years due to some issues. In this paper, we introduce about management of Main generator condition during long term plant shut down situation in addition to normal plant shut down situation to keep well. (author)

  20. Internalizing social costs in power plant siting: some examples for coal and nuclear plants in the United States

    International Nuclear Information System (INIS)

    Peelle, E.

    1976-01-01

    Selected aspects of the United States experience in one particular type of energy development project, the siting of nuclear and fossil fueled power generating facilities, are examined in terms of how well community-level impacts are internalized. New institutional arrangements being devised and new requirements being made at local, state, regional, and federal levels in response to these dissociations of cost and benefits from large energy development projects are discussed. Selected examples of these new institutional responses are analyzed for adequacy and significance

  1. Determination of atmospheric dispersion factors in emergency situations in Almirante Alvaro Alberto nuclear power plant - unit 1

    International Nuclear Information System (INIS)

    Leao, I.L.B.

    1987-08-01

    The necessity of Knowing the atmospheric dispersion factor, used to obtain the first estimation dose in the public case for accidents with releasing of radioactive material to atmosphere in Almirante Alvaro Alberto nuclear power plant - unit I, lead to the development of a fast and efficient method to determine the dilution factors, in a pre-determined distance from the source, to be used in the dose estimate. The ACID computer program for pocket calculation allow to obtain the meteorological information to evaluate the dose. In this work the mathemathical models used and the program developed are described. (Author) [pt

  2. Analysis of the accident in the second power-generating unit of the Chernobyl nuclear power plant caused by inadequate makeup of the reactor cooling loop

    International Nuclear Information System (INIS)

    Vasil'chenko, V.N.; Kramerov, A.Ya.; Mikhailov, D.A.

    1995-01-01

    The accident in the second power-generating unit of the Chernobyl nuclear power plant on October 11, 1991 was the result of unauthorized connection of the TG-4 turbogenerator, which was shut down for repairs, into the grid (in the off-design asynchronous engine mode), and this resulted in a serious fire in the machine room and subsequent failure of systems which are important for safety and which ensure the design mode of reactor cooling: These were primarily failures of the feed and emergency feed pumps and failure of the BRU-B control valve, which regulates steam release during cooling

  3. Regulatory application of seismic experience data for nuclear power plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Ying [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-03-01

    On the basis of its review and evaluation (Reference 3) of the SQUG GIP (Reference 2) and on the basis of the differences between current seismic qualification requirements and the criteria and procedures provided in the GIP, the NRC staff does not consider the USI A-46 methodology given in the GIP to be a `seismic qualification` procedure. Rather, the staff considers the GIP methodology to be a seismic adequacy verification procedure, which was developed on the basis of generic equipment earthquake experience data, supplemented by generic equipment test data. The implementation of the GIP approach for USI A-46 plants provides safety enhancement, in certain aspects, beyond the original licensing bases. Therefore, the GIP methodology is an acceptable evaluation method, for USI A-46 plants only, to verify the seismic adequacy of the safe-shutdown equipment installed in the NPPs in the United States. With the new development in the experience-based approach for seismic qualification of equipment currently underway in the U.S. nuclear industry, there is a potential for future regulatory application of an experience-based approach as a seismic qualification method for certain selected equipment installed in NPPs in the United States. However, industry`s use of the experience-based approach will be dependent on the submittal and staff approval of this approach. (J.P.N.)

  4. Nuclear power 2005: European report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In 2005, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 204 power reactors with a gross power of 181,030 MWe and a net power of 171,8479 MWe were in operation at the end of the year. In 2005, no nuclear power plant was commissioned. Two nuclear power plants were decommissioned in Europe in the course of 2005. In Germany the Obrigheim NPP and in Sweden the Barsebaeck 2 NPP have been permanently shut down due to political decisions. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.6 GW. In late 2005, five nuclear generating units were under construction in Finland (1), Romania (1), and Russia (3). 148 nuclear power plants were operated in thirteen states of the European Union (EU-25). They had an aggregate gross power of 137,023 MWe and a net power of 130,415 MWe, generating approx. 970 billion gross kWh of electricity in 2005, thus again contributing some 31% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in France (80%), followed by 72% in Lithuania, 55% in the Slovak Republic, 55% in Belgium, and 51% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as a result of electricity imports. (All statistical data in the country report apply to 2004 unless indicated otherwise. This is the year for which sound preliminary data are currently available for the states listed.) (orig.)

  5. Integrated-plant-safety assessment Systematic Evaluation program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245

    International Nuclear Information System (INIS)

    1982-11-01

    The Systematic Evaluation Program was initiated in February 1977 to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  6. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  7. A new concept for filtration units for trapping radioactive aerosols and iodine in the ventilation systems of nuclear power plants with WWER reactors

    International Nuclear Information System (INIS)

    Foerster, V.; Slanina, S.

    1985-01-01

    The paper describes a concept for new filtration units in the ventilation systems of nuclear power plants with WWER reactors. The new units are characterized by more stringent requirements on the efficiency of air purification (removal of radioactive contaminants) and various requirements for the quality of air purification in the ventilation systems. Work performed at the Scientific Research Institute for Air Technology has resulted in filtration units of a universal modular type, the structural design of which permits a high degree of variation in their component parts. A brief description is given of the filtration units, their basic technical characteristics and examples of their use in nuclear power plant ventilation systems. (author)

  8. Development and application of the lancing system of delta-60 steam generator-Kori nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Jeong, W. T.; Han, D. Y.; Ahn, N. S.; Jo, B. H.; Hong, Y. W.

    2001-01-01

    A lancing system for removing the deposits on the tube sheet of a nuclear steam generator using high pressure water was developed and applied to Kori Nuclear Power Plant( NPP) Unit 1. As the place where the lancing system is to be installed is relatively high radioactive area, every part consisting the equipment is carefully selected to be radiation resistant. The lancing robot was designed to be water proof to aviod possible malfunction of the lancing robot because of high pressure water. To minimize radiation exposure to operators, the system was designed considering easy installation and maintenance in mind. Water ejection nozzle are designed to have high strength with special material and heat treatment so as to lessen abrasion caused by high pressure ejection. The lancing system showed good performance during the on-site lancing using the system for Delta-60 steam generator of Kori NPP No. 1 in October 2000

  9. French lessons in nuclear power

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    In stark contrast to the American atomic power experience is that of the French. Even the disaster at Chernobyl in 1986, which chilled nuclear programs throughout Western Europe, did not slow the pace of the nuclear program of the state-owned Electricite de France (EDF), based in Paris. Another five units are under construction and are scheduled to be connected to the French national power grid before the end of 1993. In 1989, the EDF's 58 nuclear reactors supplied 73 percent of French electrical needs, a higher percentage than any other country. In the United States, for example, only about 18 percent of electrical power is derived from the atom. Underpinning the success of nuclear energy in France is its use of standardized plant design and technology. This has been an imperative for the French nuclear power industry since 1974, when an intensive program of nuclear power plant construction began. It was then, in the aftermath of the first oil embargo, that the French government decided to reduce its dependence on imported oil by substituting atomic power sources for hydrocarbons. Other pillars supporting French nuclear success include retrofitting older plants with technological or design advances, intensive training of personnel, using robotic and computer aids to reduce downtime, controlling the entire nuclear fuel cycle, and maintaining a comprehensive public information effort about the nuclear program

  10. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  11. Ensuring radiation safety during construction of the facility ''Ukrytie'' and restoration of unit 3 of the Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Belovodsky, L.F.; Panfilov, A.P.

    1997-01-01

    On April 26, 1986, an accident at the fourth power unit of the Chernobyl NPS (ChNPS) destroyed the reactor core and part of the power unit building, whereby sizeable amounts of radioactive materials, stored in reactor at operation, were released into the environment, and there were also highly active fragments of fuel elements and pieces of graphite from reactor spread on ChNPS site near to safety block. Information on the accident at ChNPS, including its cause and consequences, was considered at special meeting, conducted by IAEA on August 25-29, 1986, in Vienna. In final report of International Advisory Group for Nuclear Safety (IAGNS), prepared by results of meeting activities, the main stages of the accident effects elimination (AEE) immediately on the station site according to the data, received before August 1, 1986, were discussed. In 1987-1990 the published materials on the later period of AEE, completed by building ''Ukrytie'' installation at the fourth power unit of ChNPS

  12. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  13. Nuclear power: the political challenge

    International Nuclear Information System (INIS)

    Adam, G.

    2009-01-01

    A brief overview of the political and economical situation and nuclear energy problems in Europe is given. The author presented his opinion on topic such as need of nuclear power, Kozloduy NPP units 1-4 shutdown, climate change , energy security, environmental problems

  14. A pilot application of risk-based methods to establish in-service inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station

    International Nuclear Information System (INIS)

    Vo, T.; Gore, B.; Simonen, F.; Doctor, S.

    1994-08-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest Laboratory is developing a method that uses risk-based approaches to establish in-service inspection plans for nuclear power plant components. This method uses probabilistic risk assessment (PRA) results and Failure Modes and Effects Analysis (FEMA) techniques to identify and prioritize the most risk-important systems and components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot applications of this method. The specific systems addressed in this report are the reactor pressure vessel, the reactor coolant, the low-pressure injection, and the auxiliary feedwater. The results provide a risk-based ranking of components within these systems and relate the target risk to target failure probability values for individual components. These results will be used to guide the development of improved inspection plans for nuclear power plants. To develop inspection plans, the acceptable level of risk from structural failure for important systems and components will be apportioned as a small fraction (i.e., 5%) of the total PRA-estimated risk for core damage. This process will determine target (acceptable) risk and target failure probability values for individual components. Inspection requirements will be set at levels to assure that acceptable failure probabilistics are maintained

  15. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  16. Nuclear power in Spain

    International Nuclear Information System (INIS)

    Koryakin, Yu.I.

    1977-01-01

    The present states of nuclear power in Spain is shortly surveyed. Data are provided on NPPs currently in operation, under construction, designed and planned. In line with the 10-year ''National programme of electricity supply'' a major and all increasing part of the electricity generation growth is to be ensured by NPPs and to account for more than 50% by the end of the period (1987). Out of the 7 units of NPPs now under construction, 6 units utilize PWR reactors and only 1 unit- a BWR reactor. The roles of private and public sectors are noted. Main characteristics of the ''ENSA'' plant now under construction are provided where components of NPPs with PWR and BWR reactors will be fabricated. Major developments in the fields of mining, milling and extraction of U from lignites, U enrichment, fuel fabrication and spent fuel reprocessing are considered. Measures now taken to improve the licensing procedure, surveillance of NPPs and personnel training are to advance the nuclear power development programme in the country

  17. Nuclear power world report 2013

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year's number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units - 2 more than at the end of 2012 - were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. (orig.)

  18. Nuclear power world report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-07-15

    At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year's number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units - 2 more than at the end of 2012 - were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. (orig.)

  19. Safety evaluation report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1983-12-01

    Supplement 20 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for licenses to operate Diablo Canyon Nuclear Power Plant, Unit 1 and Unit 2 (Docket Nos. 50-275 and 50-323), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports on the verification effort for Diablo Canyon Unit 1 that was performed between November 1981 and the present in response to Commission Order CLI-81-30 and an NRC letter of November 19, 1981 to the licensee. Specifically, Supplement 20 addresses those issues and other matters identified in Supplements 18 and 19 that must be resolved prior to Unit 1 achieving criticality and operating at power levels up to 5% of rated full power. This SER Supplement applies only to Diablo Canyon Unit 1

  20. Activities at the electric power research institute to support the modernization of instrumentation and control systems in nuclear power plants in the United States of America

    International Nuclear Information System (INIS)

    Naser, J.

    1998-01-01

    Most nuclear power plants in the United States are operating with a vast majority of their original analog instrumentation and control (I and C) equipment. Many of the I and C systems in the plants need to be modernized in a reliable and cost-effective manner to replace obsolete equipment, to reduce operating and maintenance (O and M) costs, to improve plant performance, and to maintain safety. The major drivers for the replacement of the safety, control, and information systems in nuclear power plants are the obsolescence of the existing hardware and the need for more cost-effective power production. Competition between power producers is dictating the need for more cost-effective power production. The increasing O and M costs to maintain systems experiencing obsolescence problems is counter to the needs for more cost-effective power production and improved competitiveness. Modern technology, especially digital systems, offers improved functionality, performance, and reliability; solutions to obsolescence of equipment; reduction in O and M costs, and the potential to enhance safety. Digital I and C systems with their inherent advantages will be implemented only if reliable and cost-effective implementation and licensing acceptance is achieved and if the modernized system supports reduced power production costs. Increasing competition will continue to be a major factor in the operation of nuclear power plants. I will continue to dictate the need for improved productivity and cost-effectiveness. EPRI and its members utilities are working together on an industry-wide Instrumentation and Control Program to address I and C issues and to develop cost-effective solutions. (author)

  1. Application of Digital Technology for the Plant Protection System in Ulchin Nuclear Power Plant Units 5 and 6

    International Nuclear Information System (INIS)

    Deucksoo, Lee; Insik, Kim

    2006-01-01

    Since the completion of construction of Ulchin Nuclear Power Plant Units 3 and 4 (UCN 3 and 4), the first units of the OPR (Optimized Power Reactor) series, various advanced design features have been incorporated to the following OPRs. The Ulchin Nuclear Power Plant Units 5 and 6(UCN 5 and 6) which started commercial operation in Korea from 2004 and 2005 respectively, are designed to provide improvements in safety, reliability and costs by applying both advanced proven technology and experiences gained from the construction and operation of the previous OPRs. Among those improvements, the digital plant protection system (DPPS) and the digital engineered safety feature actuation system (DESFAS) are the key elements to the UCN 5 and 6 designs. The DPPS and DESFAS utilizing the digital computer technology offer a solution to the obsolescence problem of analog system. These features also provide the potential for additional benefits such as ease of maintenance, increased performance, reduction of internal and external cross channel wiring, improvement of the surveillance testability and flexibility of control logic programming change. During the initial design stage, the Korean regulatory body had evaluated these design concepts intensively and concluded it to be acceptable for the safety point of view. Also, in-depth review on the detailed design and the special evaluation/audit for the software design process has been performed to secure the quality of the software. As a result, every issue raised during licensing review has been clarified and the operating licenses for the UCN 5 and 6 were issued in October, 2003 and October, 2004 respectively, by the government. In this paper, design characteristics of the UCN 5 and 6 are introduced, and advanced design features and implementation process are presented focused on the DPPS/DESFAS with some benefit analysis results. (authors)

  2. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F.L., E-mail: fernanda.werner@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Alves, A.S.M., E-mail: asergi@eletronuclear.gov.br [Eletrobras Termonuclear (Eletronuclear), Rio de Janeiro, RJ (Brazil); Frutuoso e Melo, P.F., E-mail: frutuoso@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  3. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    International Nuclear Information System (INIS)

    Werner, F.L.; Frutuoso e Melo, P.F.

    2017-01-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  4. 2006 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    At the turn of 2006/2007, 437 nuclear power plants were available for energy supply, or were being commissioned, in 31 countries of the world. This is seven plants less than at the turn of 2005/2006. The aggregate gross power of the plants amounted to approx. 389.5 GWe, the aggregate net power, to 370.5 GWe. This indicates a slight decrease of gross power by some 0.15 GWe compared to the level the year before, while the available net power increased, also slightly, by approx. 0.2 GWe. The Tarapur 3 nuclear generating unit in India, a D 2 O PWR of 540 MWe gross power, was newly commissioned. In 2006, 8 nuclear power plants in Europe (4 in the United Kingdom, 2 in Bulgaria, 1 each in the Slovak Republic and in Spain) discontinued power operation for good. 29 nuclear generating units, i.e. 6 plants more than at the end of 2005, were under construction in late 2006 in 9 countries with an aggregate gross power of approx. 25.5 GWe. Worldwide, some 40 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases, contracts have already been signed. Net electricity generation in nuclear power plants worldwide in 2006 achieved another top ranking level of approx. 2,660 billion kWh (2005: approx. 2,750 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-1 fast breeder (USA) on December 20, 1951, cumulated gross production has reached approx. 56,875 billion kWh, and operating experience has grown to some 12,399 reactor years. (orig.)

  5. Trend analysis of nuclear reactor automatic trip events subjected to operator's human error at United States nuclear power plants

    International Nuclear Information System (INIS)

    Takagawa, Kenichi

    2009-01-01

    Trends in nuclear reactor automatic trip events due to human errors during plant operating mode have been analyzed by extracting 20 events which took place in the United States during the period of seven years from 2002 to 2008, cited in the LERs (Licensee Event Reports) submitted to the US Nuclear Regulatory Commission (NRC). It was shown that the yearly number of events was relatively large before 2005, and thereafter the number decreased. A period of stable operation, in which the yearly number was kept very small, continued for about three years, and then the yearly number turned to increase again. Before 2005, automatic trip events occurred more frequently during periodic inspections or start-up/shut-down operations. The recent trends, however, indicate that trip events became more frequent due to human errors during daily operations. Human errors were mostly caused by the self-conceit and carelessness of operators through the whole period. The before mentioned trends in the yearly number of events might be explained as follows. The decrease in the automatic trip events is attributed to sharing trouble information, leading as a consequence to improvement of the manual and training for the operations which have a higher potential risk of automatic trip. Then, while the period of stable operation continued, some operators came to pay less attention to preventing human errors and not interest in the training, leading to automatic trip events in reality due to miss-operation. From these analyses on trouble experiences in the US, we learnt the followings to prevent the occurrence similar troubles in Japan: Operators should be thoroughly skilled in basic actions to prevent human errors as persons concerned. And it should be further emphasized that they should elaborate by imaging actual plant operations even though the simulator training gives them successful experiences. (author)

  6. Nuclear power status 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives statistical information on nuclear power plants status in the world in 1999, including the number of reactors in operation or under construction, the electricity supplied by nuclear power reactors and the respective percentage of electricity produced by nuclear energy in 1999, and the total operating experience to 31 December 1999, by country

  7. Insights from Siting New Nuclear Power Plants in the Central and Eastern United States

    International Nuclear Information System (INIS)

    Munson, Clifford G.; Kugler, Andrew J.

    2011-01-01

    The staff of the U.S. Nuclear Regulatory Commission (NRC) has completed its review for four early site permits and for four standard reactor designs. It is currently reviewing applications for fourteen combined license applications and three additional reactor designs. The staff is applying lessons it has learned from the reviews to date to the review work going forward. The licensing process being used by current applicants differs significantly from that used by the current operating fleet. The previous process required two steps. First an applicant had to obtain a construction permit to build the plant. Then, near the end of construction, the applicant had to obtain an operating license. Under the process in Part 52, an applicant can apply for a combined license (COL) that allows construction and (once certain conditions are met) operation of a new plant - a one-step process. An applicant for a COL may reference an early site permit (ESP13), a standard design certification, both, or neither. In addition to developing Part 52, the NRC also revised CFR Part 100 by adding Subpart B, which includes sections 100.21, 'Non-seismic siting criteria', and 100.23, 'Geologic and seismic siting criteria'. The NRC staff also revised the Standard Review Plan (NUREG-0800) and developed Regulatory Guide (RG) 1.206, 'Combined License Applications for Nuclear Power Plants (LWR Edition).' The NRC staff incorporated into the revision of NUREG-0800 and development of RG 1.206 some early lessons learned from its review of the first three ESPs. Staff work begins before the application is received, as the staff interacts with the applicant to identify issues that will require special treatment or specific staff resources. After the application is submitted, if the NRC finds the application acceptable, the safety and environmental reviews begin, proceeding in parallel. The safety review culminates in the issuance of a safety evaluation report (SER) after it

  8. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  9. Nuclear power: restoring public confidence

    International Nuclear Information System (INIS)

    Arnold, L.

    1986-01-01

    The paper concerns a one day conference on nuclear power organised by the Centre for Science Studies and Science Policy, Lancaster, April 1986. Following the Chernobyl reactor accident, the conference concentrated on public confidence in nuclear power. Causes of lack of public confidence, public perceptions of risk, and the effect of Chernobyl in the United Kingdom, were all discussed. A Select Committee on the Environment examined the problems of radioactive waste disposal. (U.K.)

  10. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-01-01

    This report supplements the Safety Evaluation Report (NUREG-1031) issued in July 1984, Supplement 1 issued in March 1985, Supplement 2 issued in September 1985, Supplement 3 issued in November 1985, and Supplement 4 issued in November 1985 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Northeast Nuclear Energy Company (licensee and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The supplement provides more recent information regarding resolution of license conditions identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that Millstone Nuclear Power Station, Unit No. 3, can be operated by the licensee at power levels greater than 5% without endangering the health and safety of the public. 13 refs

  11. Nuclear Energy, Power and Other Applications: Future Prospects, 10 April 2013, New York, United States

    International Nuclear Information System (INIS)

    Amano, Y.

    2013-01-01

    It is a great pleasure for me finally to speak here at the Japan Society. As some of you may know, I was due to come last November. Unfortunately, Hurricane Sandy intervened. Flights from Europe were grounded and I had to cancel my trip. I am glad that I have finally made it. I was impressed to learn of the broad range of activities which the Japan Society engages in - everything from business and politics to the performing arts. I was also impressed at how quickly you reacted to the terrible earthquake and tsunami in eastern Japan in March 2011. You raised a lot of money to help the survivors. From my own visits to the disaster zone, I know how important it was for the people of the region to feel that they could count on the solidarity of their friends throughout the world. Japan has especially good friends here in the U.S. I would like to start today by talking about the aspect of the disaster with which I was closely involved: the crisis at the Fukushima Daiichi Nuclear Power Plant. This was a very serious and complex disaster. The International Atomic Energy Agency was active from day one in helping Japan to respond. I went to Tokyo soon after the accident to offer IAEA assistance to then-Prime Minister Kan. I also sent expert teams to provide advice and assistance with radiation monitoring and food safety. I wanted to go to Fukushima Daiichi during this visit, but I was told there was not enough gasoline to get me there. I never thought that this could happen in Japan. When I visited the Foreign Ministry, where I worked for 30 years, the corridors were dark because electricity was scarce. That was something else which I had never seen before. In July 2011, I finally got to visit the Fukushima Daiichi Plant. A lot of clean-up work had already been done by that stage. But the evidence of just how powerful and destructive nature can be was still all around us. It was shocking. I am used to visiting restricted sites and wearing protective clothing. This is

  12. Nuclear power. The Windscale controversy

    International Nuclear Information System (INIS)

    Boyle, G.

    1978-01-01

    The aims of this unit are: (1) to provide a basic understanding of nuclear technology and of the associated technical and environmental problems; (2) to provide an understanding of: (a) the historical growth of the nuclear industry; (b) the arguments for the continued development of nuclear power, and the institutions promoting that development; (3) to provide a basic understanding of the mechanisms and institutions which officially regulate the nuclear power programme in the UK; (4) to provide an understanding of the main issues - technical, economic, social and political - involved in the controversy over the proposed expansion of British Nuclear Fuels Ltd's reprocessing facilities at Windscale, and the events leading up to the Public Inquiry on the proposal which began in June 1977; and (5) to examine (a) the reason for the growth in opposition to nuclear power in various countries and the different approaches taken by the opposition groups; (b) the political impact and effectiveness of that opposition. (author)

  13. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1994-03-01

    In the third quarter of 1993, all of Finland's four nuclear power plant units were in power operation, with the exception of the annual maintenance outages of the Loviisa units. The load factor average of the plant units was 83.6 %. None of the events which occurred during this annual quarter had any bearing on nuclear or radiation safety. (4 figs., 5 tabs.)

  14. Safety Evaluation Report related to the operation of Shearon Harris Nuclear Power Plant, Unit No. 1 (Docket No. STN 50-400). Supplement No. 4

    International Nuclear Information System (INIS)

    1986-10-01

    This report, Supplement No. 4 to the Safety Evaluation Report for the application filed by the Carolina Power and Light Company and North Carolina Eastern Municipal Power Agency (the applicants) for a license to operate the Shearon Harris Nuclear Power Plant Unit 1 (Docket No. 50-400), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1, 2, and 3

  15. Safety evaluation report related to the operation of Shearon Harris Nuclear Power Plant, Unit No. 1 (Docket No. STN 50-400). Supplement No. 1

    International Nuclear Information System (INIS)

    1984-06-01

    This report, Supplement No. 1 to the Safety Evaluation Report for the application filed by the Carolina Power and Light Company and North Carolina Eastern Municipal Power Agency (the applicant) for license to operate the Shearon Harris Nuclear Power Plant Unit 1 (Docket No. 50-400), has been prepared by the Office of Nuclear Reactor Regulation of the U.S. Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  16. Safety Evaluation Report related to the operation of Shearon Harris Nuclear Power Plant, Unit No. 1 (Docket No. STN 50-400). Supplement No. 2

    International Nuclear Information System (INIS)

    1985-06-01

    This report, Supplement No. 2 to the Safety Evaluation Report for the application filed by the Carolina Power and Light Company and North Carolina Eastern Municipal Power Agency (the applicants) for a license to operate the Shearon Harris Nuclear Power Plant Unit 1 (Docket No. 50-400), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement No. 1

  17. Safety Evaluation Report related to the operation of Shearon Harris Nuclear Power Plant, Unit No. 1 (Docket No. STN 50-400). Supplement No. 3

    International Nuclear Information System (INIS)

    1986-05-01

    This report, Supplement No. 3 to the Safety Evaluation Report for the application filed by the Carolina Power and Light Company and North Carolina Eastern Municipal Power Agency (the applicants) for a license to operate the Shearon Harris Nuclear Power Plant Unit 1 (Docket No. 50-400), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 and 2

  18. The Paks Nuclear Power Station

    International Nuclear Information System (INIS)

    Erdosi, N.; Szabo, L.

    1978-01-01

    As the first stage in the construction of the Paks Nuclear Power Station, two units of 440 MW(e) each will be built. They are operated with two coolant loops each. The reactor units are VVER 440 type water-moderated PWR type heterogeneous power reactors designed in the Soviet Union and manufactured in Czechoslovakia. Each unit operates two Soviet-made K-220-44 steam turbines and Hungarian-made generators of an effective output of 220 MW. The output of the transformer units - also of Hungarian made - is 270 MVA. The radiation protection system of the nuclear power station is described. Protection against system failures is accomplished by specially designed equipment and security measures especially within the primary circuit. Some data on the power station under construction are given. (R.P.)

  19. Montague Nuclear Power Station, Units 1 and 2: Final environmental statement (Docket Nos. 50-496 and 50-497)

    International Nuclear Information System (INIS)

    1977-02-01

    The proposed action is the issuance of construction permits to the Northeast Nuclear Energy Company for the construction of the Montague Nuclear Power Station, Units 1 and 2, located on the Connecticut River in the Town of Montague, Massachusetts. The plant will employ two identical boiling-water reactors to produce up to 3579 megawatts thermal (MWt) each. Two steam turbine-generators will use this heat to provide 1150 MWe (net) of electrical power capacity from each turbine-generator. A design power level of 3759 MWt (1220 Mwe net) for each unit is anticipated at a future date and is considered in the assessments contained in this statement. The waste heat will be rejected through natural-draft cooling towers using makeup water obtained from and discharged to the Connecticut River. The 1900-acre site is about 90% forest, with the remaining acreage in transmission-line corridor and old-field vegetation. The total loss of mixed-age forest will be 1273 acres. Nodesignated scenic areas will be crossed. Sixty acres of public lands, State forests, and parks will be lost to transmission facilities as well as losses associated with crossings of 2.0 miles of water bodies and 11.9 miles of wetlands. The maximum estimated potential loss of salable wood products will be $849,600. A maximum of 85.8 cfs of cooling water will be withdrawn from the Connecticut River. A maximum of 17.2 cfs will be returned to the river with the dissolved solids concentration increased by a factor of about 5. A maximum of 68.6 cfs will be evaporated to the atmosphere by the cooling towers. 143 refs., 58 figs., 69 tabs

  20. Where are we now on nuclear power?

    International Nuclear Information System (INIS)

    Oppenheimer, A.

    1991-01-01

    Discussion at the March 1991 Conference of the institute of Energy 'Where are we now on Nuclear Power' is summarized. Speakers from the Institution of Nuclear Engineers, Nuclear Electric, the European Commission Energy Directorate, British Nuclear Fuels, Scottish Nuclear and others looked at the economic aspects and the safety and pollution record of nuclear power in the United Kingdom. Technically, nuclear power is doing well although political problems remain. There was a problem of retaining skilled people in the absence of an assured construction programme. However there was a mood of cautious optimism over the future of nuclear power in the UK. (UK)

  1. Safety-evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1983-09-01

    Supplement 4 (SSER 4) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  2. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-09-01

    Supplement 7 (SSER 7) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  3. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 8

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 8 (SSER 8) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  4. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1984-02-01

    Supplement 17 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for licenses to operate Diablo Canyon Nuclear Power Plants, Units 1 and 2 (Docket Nos. 50-275 and 50-323) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and the previous supplements

  5. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 6

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 6 (SSER 6) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  6. Safety Evaluation Report related to the full-term operating license for Dresden Nuclear Power Station, Unit 2 ( Docket No. 50-237)

    International Nuclear Information System (INIS)

    1990-10-01

    The Safety Evaluation Report for the full-term operating license application filed by Commonwealth Edison Company for the Dresden Nuclear Power Station, Unit 2, has been prepared by the Office of Nuclear Regulation of the US Nuclear Regulatory Commission. The facility is located in Grundy County, Illinois. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can continue to be operated without endangering the health and safety of the public. 72 refs

  7. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 9

    International Nuclear Information System (INIS)

    1985-12-01

    Supplement 9 (SSER 9) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  8. A new nuclear power project in the United States: Reality or fantasy?

    International Nuclear Information System (INIS)

    Redding, J.R.; Veitch, C.

    1996-01-01

    There is a way to go before a new nuclear project in the US is a reality. On the other hand, the prospects are not so remote that it is in the realm of fantasy. The authors think that if US companies have the opportunity to supply and build Advanced Nuclear Plants of US design outside the US, then the first US nuclear project has a chance to be economically competitive in the US. If these are built on budget and schedule, it will demonstrate to potential lenders that financing nuclear projects in the US does not represent an undue risk. The support of the US government in the export market is vital. Without the concerted effort of the government, including Department of Commerce, Department of State and the US ExIm bank, US suppliers will be at a significant disadvantage when facing international competition for orders. The authors think it is in the best interest of the government to supply such support. Nuclear projects outside the US sustains and creates high tech jobs in the US. It maintains the health of US nuclear technology which generates over 20% of the electricity in the US. Finally, it gives the US influence over the direction of nuclear programs in other countries, particularly developing countries which are intent upon increasing their use of nuclear energy. Those opposed to nuclear energy articulate a future that does not include its use. It is vital that nuclear professionals articulate a future that does include nuclear energy and its many socioeconomic benefits

  9. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  10. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  11. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  12. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  13. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  14. Nuclear power in Sweden

    International Nuclear Information System (INIS)

    Wikdahl, C.E.

    1999-01-01

    Sweden uses 16,000 kWh of electricity per person, by far the highest consumption in EU. The reason is a well-developed electricity intensive industry and a cold climate with high share of electric heating. The annual power consumption has for several years been about 140 TWh and a normal year almost 50 per cent is produced by hydro and 50 percent by nuclear. A new legislation, giving the Government the right to ordering the closure nuclear power plants of political reasons without any reference to safety, has been accepted by the Parliament. The new act, in force since January 1, 1998, is a specially tailored expropriation act. Certain rules for the economical compensation to the owner of a plant to be closed are defined in the new act. The common view in the Swedish industry is that the energy conservation methods proposed by the Government are unrealistic. During the first period of about five years the import from coal fired plants in Denmark and Germany is the only realistic alternative. Later natural gas combi units and new bioenergy plants for co-production of heat and power (CHP) might be available. (orig.) [de

  15. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  16. Role of nuclear power

    International Nuclear Information System (INIS)

    Eklund, S.

    1982-01-01

    A survey of world nuclear installations, the operating experiences of power reactors, and estimates of future nuclear growth leads to the conclusion that nuclear power's share of world electric power supply will grow slowly, but steadily during this decade. This growth will lead advanced countries to use the commercial breeder by the end of the century. Nuclear power is economically viable for most industrialized and many developing countries if public acceptance problems can be resolved. A restructuring of operational safety and regulations must occur first, as well as a resolution of the safeguards and technology transfer issue. 7 figures, 7 tables

  17. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  18. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  19. Nuclear power in the Philippines

    International Nuclear Information System (INIS)

    1965-01-01

    The first United Nations project of its kind, where the prospects of using nuclear power in a developing country are being analysed, is being carried out in the Philippines. It is entitled, 'Pre-Investment Study on Power, including Nuclear Power, in Luzon'; it is a United Nations Special Fund project, for which the International Atomic Energy Agency is acting as the executing body. Although directed specifically at the situation of the Luzon grid, the approach and the methods evolved should be useful in other countries also. The project was initiated in early 1964 and is expected to be completed by the end of 1965. The Philippines have substantial reserves of hydro capacity, but very little of fossil fuels. The country has been interested for quite some time in the possibility of using nuclear power. In 1956 a study was made of a small nuclear power plant for the Manila area, but such a plant would not have been able to compete with the fossil fuel-fired station. The Philippine Government had in mind the development of Luzon Island, which is the largest and most industrialized part of the Philippines, accounting for 50 per cent of the population and 80 per cent of the power demand. In 1960, the Government invited an Agency mission, whose report entitled, 'The Prospects of Nuclear Power for the Philippines', indicated that the possibilities of using a reasonably large nuclear plant in the Luzon grid deserved serious consideration

  20. 2010 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    At the end of 2010, 443 nuclear power plants were available for energy supply in 30 countries of the world. This are 6 plants more than at the end of 2009. The aggregate gross power of the plants amounted to approx. 396,118 MWe, the aggregate net power, to 375,947 MWe. This capacity numbers are a little bit more than one year before (gross: 391,551 MWe, net: 371,331 MWe). Six unites were commissioned in 2010; 2 units in China and India each and one unit in the Republic of Korea and Russia each. One unit, the Fast Breeder Pilot Reactor Monju in Japan, was connected to the grid after a long-term shutdown. One nuclear power plant, the Prototype Fast Breeder Reactor Phenix in France, was shut down permanently in 2010. 62 nuclear generating units, i.e. 9 plants more than at the end of 2009, were under construction in late 2010 in 15 countries with an aggregate gross power of approx. 63,998 MWe. Worldwide, some 90 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 120 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2010 achieved another reasonable ranking level of approx. 2,627.5 billion kWh (2009: approx. 2,558 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 63,100 billion kWh, and operating experience has grown to some 14,400 reactor years. (orig.)

  1. Analysis of the noise of the jet pumps of the Unit 2 of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Castillo D, R.; Ortiz V, J.; Ruiz E, J.A.; Calleros M, G.

    2004-01-01

    The use of the analysis of noise for the detection of badly functioning of the components of a BWR it is a powerful tool in the determination of abnormal conditions of operation, during the life of a nuclear plant of power. From the eighties, some nuclear reactors have presented problems related with the jet pumps and the knots of the recirculation. The Regulatory Commission of the United States, in the I E bulletin 80-07, recommended to carry out a periodic supervision of the pressure drop of the jet pumps, to prevent structural failures. In this work, methods of analysis of noise are used for the detection of abnormal conditions of operation of the jet pumps of a BWR. Signals are analysed to low and high frequency of pressure drop with the NOISE software that is in development. The obtained results show the behavior of the jet pumps of jet 6 and 11 before and after a partial blockade in their throats where the pump 6 return to their condition of previous operation and the pump 11 present a new fall of pressure, inside the limit them permissible of operation. The methodology of the analysis of noise demonstrated to be an useful tool for the badly functioning detection, and you could apply to create a database to supervise the dynamic behavior of the jet pumps of an BWR. (Author)

  2. Millstone Nuclear Power Station, Unit 1. Annual operating report: 1 January--31 December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical power generated was 3,752,445 MWh with the generator on line 6,682 hrs. Information is presented concerning operations; shutdowns and power reductions; refueling; maintenance; failed fuel elements; power generation; occupational personnel radiation exposure; and changes in technical specifications, plant design, and key supervisory personnel

  3. Nuclear power: A competitive option? Annex 3

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2002-01-01

    Because the future development of nuclear power will depend largely on its economic performance compared to alternatives, the OECD Nuclear Energy Agency (NEA) investigates continuously the economic aspects of nuclear power. This paper provides key findings from a series of OECD studies on projected costs of generating electricity and other related NEA activities. It addresses the cost economics necessary for nuclear units to be competitive, and discusses the challenges and opportunities currently faced by nuclear power. (author)

  4. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  5. The nuclear power development policy of Taipower

    International Nuclear Information System (INIS)

    Chen, J.H.

    1987-01-01

    Taipower began its nuclear power epoch in 1978 when the first unit of its First Nuclear Power Station was synchronized to the system on November 1977. At present, Taipower has six units installed in three nuclear power plants, totalling 5144 MW in operation. These units are the mainstay of the 16,600 MW system and have played a significant role in the energy supply of Taiwan. This paper will firstly give a brief overview of Taipower's system, then introduce Taipower's nuclear power policies within the frame of issues on nuclear power economy, nuclear fuel cycle management, nuclear safety and environmental concerns, radioactive waste management, public communications and personnel training. At last, this paper will present the prospect for future nuclear power development in Taiwan with reference to the above discussion. (author)

  6. An Investigation for Arranging the Video Display Unit Information in a Main Control Room of Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chong Cheng; Yang, Chih Wei [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan (China)

    2014-08-15

    Current digital instrumentation and control and main control room (MCR) technology has extended the capability of integrating information from numerous plant systems and transmitting needed information to operations personnel in a timely manner that could not be envisioned when previous generation plants were designed and built. A MCR operator can complete all necessary operating actions on the video display unit (VDU). It is extremely flexible and convenient for operators to select and to control the system display on the screen. However, a high degree of digitalization has some risks. For example, in nuclear power plants, failures in the instrumentation and control devices could stop the operation of the plant. Human factors engineering (HFE) approaches would be a manner to solve this problem. Under HFE considerations, there exists 'population stereotype' for operation. That is, the operator is used to operating a specific display on the specific VDU for operation. Under emergency conditions, there is possibility that the operator will response with this habit population stereotype, and not be aware that the current situation has already changed. Accordingly, the advanced nuclear power plant should establish the MCR VDU configuration plan to meet the consistent teamwork goal under normal operation, transient and accident conditions. On the other hand, the advanced nuclear power plant should establish the human factors verification and validation plan of the MCR VDU configuration to verify and validate the configuration of the MCR VDUs, and to ensure that the MCR VDU configuration allows the operator shift to meet the HFE consideration and the consistent teamwork goal under normal operation, transient and accident conditions. This paper is one of the HF V V plans of the MCR VDU configuration of the advanced nuclear power plant. The purpose of this study is to confirm whether the VDU configuration meets the human factors principles and the consistent

  7. An Investigation for Arranging the Video Display Unit Information in a Main Control Room of Advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hsu, Chong Cheng; Yang, Chih Wei

    2014-01-01

    Current digital instrumentation and control and main control room (MCR) technology has extended the capability of integrating information from numerous plant systems and transmitting needed information to operations personnel in a timely manner that could not be envisioned when previous generation plants were designed and built. A MCR operator can complete all necessary operating actions on the video display unit (VDU). It is extremely flexible and convenient for operators to select and to control the system display on the screen. However, a high degree of digitalization has some risks. For example, in nuclear power plants, failures in the instrumentation and control devices could stop the operation of the plant. Human factors engineering (HFE) approaches would be a manner to solve this problem. Under HFE considerations, there exists 'population stereotype' for operation. That is, the operator is used to operating a specific display on the specific VDU for operation. Under emergency conditions, there is possibility that the operator will response with this habit population stereotype, and not be aware that the current situation has already changed. Accordingly, the advanced nuclear power plant should establish the MCR VDU configuration plan to meet the consistent teamwork goal under normal operation, transient and accident conditions. On the other hand, the advanced nuclear power plant should establish the human factors verification and validation plan of the MCR VDU configuration to verify and validate the configuration of the MCR VDUs, and to ensure that the MCR VDU configuration allows the operator shift to meet the HFE consideration and the consistent teamwork goal under normal operation, transient and accident conditions. This paper is one of the HF V V plans of the MCR VDU configuration of the advanced nuclear power plant. The purpose of this study is to confirm whether the VDU configuration meets the human factors principles and the consistent

  8. 77 FR 62539 - Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit 2, Revocation of Exemption

    Science.gov (United States)

    2012-10-15

    ... that the revocation of this exemption will not have a significant effect on the quality of the human..., this 3rd day of October 2012. For the Nuclear Regulatory Commission. Michele G. Evans, Director...

  9. 77 FR 55509 - Indiana Michigan Power Company; Donald C. Cook Nuclear Plant, Unit 2; Exemption

    Science.gov (United States)

    2012-09-10

    ... significant effect on the quality of the human environment and has published an environmental assessment for... Rockville, Maryland, this 23rd day of August, 2012. For the Nuclear Regulatory Commission. Michele Evans...

  10. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  11. U.S. Forward Operating Base Applications of Nuclear Power

    International Nuclear Information System (INIS)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  12. Assessment of the radionuclide composition of "hot particles" sampled in the Chernobyl nuclear power plant fourth reactor unit.

    Science.gov (United States)

    Bondarkov, Mikhail D; Zheltonozhsky, Viktor A; Zheltonozhskaya, Maryna V; Kulich, Nadezhda V; Maksimenko, Andrey M; Farfán, Eduardo B; Jannik, G Timothy; Marra, James C

    2011-10-01

    Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified, and the fuel burn-up in these samples was determined. A systematic deviation in the burn-up values based on the cesium isotopes in comparison with other radionuclides was observed. The studies conducted were the first ever performed to demonstrate the presence of significant quantities of 242Cm and 243Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuel samples from inside of the ChNPP Confinement Shelter, starting from 241Am (and going higher) in comparison with the theoretical calculations.

  13. Heat and fluid flow in accident of Fukushima Daiichi Nuclear Power Plant, Unit 2. Accident scenario based on thermodynamic model

    International Nuclear Information System (INIS)

    Maruyama, Shigenao

    2012-01-01

    An accident scenario of Fukushima Daiichi Nuclear Power Plant, Unit 2 is analyzed from the data open to the public. Phase equilibrium process model was introduced that the vapor and water are at saturation point in the vessels. Proposed accident scenario agrees very well with the data of the plant parameters obtained just after the accident. The estimation describes that the rupture time of the reactor pressure vessel (RPV) was at 22:50 14/3/2011. The estimation shows that the rupture time of the pressure containment vessel (RCP) was at 7:40 15/3/2011. These estimations are different from the ones by TEPCO, however; many measured evidences show good accordance with the present scenario. (author)

  14. A study on determination methods of fueling machine heavy water supply setpressure for Wolsong nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Kim, J. M.; Jeong, B. Y.; Baek, S. J.; Noh, T. S.; Kim, Y. H.; Park, W. K.

    2001-01-01

    The present Wolsong 1 Fuel Handling (F/H)D 2 O Supply Pressure Control System, based on an analog cascaded Proportional-Integral-Differential (PID) control, is less accurate and requires more labor for test and maintenance in comparison with up-to-data digital controllers. Furthermore, F/H operator and technical staff have recently encountered difficulties in operation and maintenance because of frequent occurrences of system instability and failure, and obsolescence of hardware. However the analysis and design review of F/H D 2 O Supply Pressure Control System have not been performed appropriately. Therefore, the design review of F/H D 2 O Supply Pressure Control System has been thoroughly reviewed and analyzed. Based on the analysis results, the optimum pressure setpoints and its determination methods have been proposed for Wolsong Nuclear Power Plant Unit 1

  15. Dresden Nuclear Power Station, Units 1, 2, and 3. Annual operating report: January thru December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical energy generated by Unit 1 was 953,015.5 MWH with the generator on line 7,399.37 hrs. Unit 2 generated 4,371,553.689 MWH with the generator on line 6,664.58 hrs while Unit 3 generated 4,034,251 MWH with the generator on line 7,234.86 hrs. Information is presented concerning operations, maintenance, and shutdowns

  16. Nuclear power supply (Japan Nuclear Safety Institute)

    International Nuclear Information System (INIS)

    Kameyama, Masashi

    2013-01-01

    After experienced nuclear disaster occurred on March 11, 2011, role of nuclear power in future energy share in Japan became uncertain because most public seemed to prefer nuclear power phase out to energy security or costs. Whether nuclear power plants were safe shutdown or operational, technologies were requisite for maintaining their equipment by refurbishment, partly replacement or pressure proof function recovery works, all of which were basically performed by welding. Nuclear power plants consisted of tanks, piping and pumps, and considered as giant welded structures welding was mostly used. Reactor pressure vessel subject to high temperature and high pressure was around 200mm thick and made of low-alloy steels (A533B), stainless steels (308, 316) and nickel base alloys (Alloy 600, 690). Kinds of welding at site were mostly shielded-metal arc welding and TIG welding, and sometimes laser welding. Radiation effects on welding of materials were limited although radiation protection was needed for welding works under radiation environment. New welding technologies had been applied after their technical validation by experiments applicable to required regulation standards. Latest developed welding technologies were seal welding to prevent SCC propagation and temper-bead welding for cladding after removal of cracks. Detailed procedures of repair welding of Alloy 600 at the reactor outlet pipe at Oi Nuclear Power Plants unit 3 due to PWSCC were described as an example of crack removal and water jet peening, and then overlay by temper-bead welding using Alloy 600 and clad welding using Alloy 690. (T. Tanaka)

  17. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  18. Nuclear power: levels of safety

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1988-01-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the nuclear establishment itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired

  19. The debate on nuclear power

    International Nuclear Information System (INIS)

    Bethe, H.A.

    1977-01-01

    The need for nuclear power is pointed out. The Study Group on Nuclear Fuel Cycles of the American Physical Society has studied the problem of waste disposal in detail and has found that geological emplacement leads to safe waste disposal. The relation between nuclear power and weapons proliferation is discussed. The problem of preventing proliferation is primarily a political problem, and the availability of nuclear power will contribute little to the potential for proliferation. However, to further reduce this contribution, it may be desirable to keep fast-breeder reactors under international control and to use only converters for national reactors. The desirable converter is one which has a high conversion ratio, probably one using the thorium cycle, 233 U, and heavy water as the moderator. The nuclear debate in the United States of America is discussed. Work on physical and technical safeguards in the USA against diversion of fissile materials is mentioned. (author)

  20. A pilot application of risk-informed methods to establish inservice inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station. Revision 1

    International Nuclear Information System (INIS)

    Vo, T.V.; Phan, H.K.; Gore, B.F.; Simonen, F.A.; Doctor, S.R.

    1997-02-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest National Laboratory has developed risk-informed approaches for inservice inspection plans of nuclear power plants. This method uses probabilistic risk assessment (PRA) results to identify and prioritize the most risk-important components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot application of this methodology. This report, which incorporates more recent plant-specific information and improved risk-informed methodology and tools, is Revision 1 of the earlier report (NUREG/CR-6181). The methodology discussed in the original report is no longer current and a preferred methodology is presented in this Revision. This report, NUREG/CR-6181, Rev. 1, therefore supersedes the earlier NUREG/CR-6181 published in August 1994. The specific systems addressed in this report are the auxiliary feedwater, the low-pressure injection, and the reactor coolant systems. The results provide a risk-informed ranking of components within these systems

  1. The future of nuclear power

    CERN Document Server

    Mahaffey, James

    2012-01-01

    Newly conceived, safer reactor designs are being built in the United States (and around the world) to replace the 104 obsolete operating nuclear power reactors in this country alone. The designs--which once seemed exotic and futuristic--are now 40 years old, and one by one these vintage Generation II plants will reach the end of productive service in the next 30 years. The Future of Nuclear Power examines the advanced designs, practical concepts, and fully developed systems that have yet to be used. This book introduces readers to the traditional, American system of units, with some archaic te

  2. 2009 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the end of 2009, 437 nuclear power plants were available for energy supply in 30 countries of the world. This is 1 plant less than at the end of 2008. The aggregate gross power of the plants amounted to approx. 391.5 GWe, the aggregate net power, to 371.3 GWe. This capacity numbers are a little bit less than one year before (gross: 392.6 GWe, net: 372.2 GWe). Two units were commissioned in 2009; 1 unit in India (Rajasthan 5) and 1 unit in Japan (Tomari 3). Three nuclear power plant were shut down permanently in 2009 in Japan (Hamaoka 1 and Hamaoka 2) and in Lithuania (Ignalina 2). 52 nuclear generating units, i.e. 9 plants more than at the end of 2008, were under construction in late 2009 in 14 countries with an aggregate gross power of approx. 51.2 GWe. Worldwide, some 80 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 130 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2009 achieved another reasonable ranking level of approx. 2,558 billion kWh (2008: approx. 2,628 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 60,500 billion kWh, and operating experience has grown to some 13,950 reactor years. (orig.)

  3. The nuclear power decisions

    International Nuclear Information System (INIS)

    Williams, R.

    1980-01-01

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  4. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  5. Operation of the Millstone Nuclear Power Station, Unit No. 3 (NRC Docket No. 50-423) Northeast Nuclear Energy Company et. al., Waterford, New London County, Connecticut

    International Nuclear Information System (INIS)

    1984-07-01

    A draft version of the environmental impact statement (EPA No. 840331D) concerns the proposal to issue an operating license for Unit 3 of the Millstone Nuclear Power Station on Connecticut. The plant would use a four-loop pressurized water reactor to produce up to 3579 MW of thermal energy and a calculated maximum electric output of 1209 MW of electric power. A new line would require clearing about 350 acres. Positive impacts include the addition of new capacity, which would benefit the area economically and employment opportunities. Negative impacts include the loss of some winter flounder, which would be minimized by a fish return system, and some increases in the concentration of chemical constituents that would enter Long Island Sound. Policies relating to coastal areas, water pollution, and reactor regulation provide a legal mandate for the impact statement

  6. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  7. Owners of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  8. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2016-09-01

    Transforming the energy system is at the core of the dedicated sustainable development goal on energy within the new United Nations development agenda. This publication explores the possible contribution of nuclear energy to addressing the issues of sustainable development through a large selection of indicators. It reviews the characteristics of nuclear power in comparison with alternative sources of electricity supply, according to economic, social and environmental pillars of sustainability. The findings summarized in this publication will help the reader to consider, or reconsider, the contribution that can be made by the development and operation of nuclear power plants in contributing to more sustainable energy systems.

  9. Nuclear power status 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The document gives general statistical information (by country) about electricity produced by nuclear power plants in the world in 1998, and in a table the number of nuclear reactors in operation, under construction, nuclear electricity supplied in 1998, and total operating experience as of 31 December 1998

  10. Kewaunee Nuclear Power Plant, Unit 1. Annual operating report: January--December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical power generated was 3,383,265.0 MWh with the generator on line for 6,926.8 hrs. Information is presented concerning operations, power generation, changes in technical specifications, modifications, steam generator tube inspection, containment leak rate tests, in-service inspection, maintenance, environmental technical specifications, and the radiological monitoring program

  11. Kewaunee Nuclear Power Plant, Unit 1. Semiannual operating report, July--December 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 1,700,492 MWh(e) with the reactor on line 3,797.02 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, radiochemistry, health physics, release of radioactive materials, reportable occurrences, design changes, reactor engineering, environmental technical specifications, and bio testing

  12. Oyster Creek Nuclear Power Plant, Unit 1. Annual operating report No. 1: January--December 1976

    International Nuclear Information System (INIS)

    Net electrical power generated was 3,860,347 MWH with the reactor on line 6,967.3 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, reportable occurrences, fuel performance, and leak rate testing

  13. Robert Emmett Ginna Nuclear Power Plant, Unit 1. Annual report No. 12: January--December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical power generated was 2,060,941 MWH with the generator on line 5,115 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, reportable occurrences, steam generator inspections, containment integrated leak tests, and environmental monitoring

  14. Millstone Nuclear Power Station, Unit 1. Semiannual operating report, July--December 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 1,525,943 MWh(e) with the reactor on line 2,682 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, environmental effects monitoring, release of radioactive materials, and reportable occurrences. Occupational personnel radiation exposures will be submitted later

  15. Millstone Nuclear Power Station, Unit 1. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated was 2,373,130 MWH(e) with the reactor on line 3,915 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, abnormal occurrences, and environmental radiation monitoring. (FS)

  16. Donald C. Cook Nuclear Power Plant, Unit 1. Annual operating report, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated was 4,457,836,000 MWH(e) with the reactor on line 6004.2 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance occupational radiation exposure, release of radioactive materials, changes, and fuel history

  17. Balakovo nuclear power station

    International Nuclear Information System (INIS)

    1996-01-01

    A key means of improving the safety and reliability of nuclear power plants is through effective training of plant personnel. The goal of this paper is to show the progress of the training at the Balakovo Nuclear Power Plant, and the important role that international cooperation programs have played in that progress

  18. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  19. Nuclear power: Pt. 3

    International Nuclear Information System (INIS)

    Van Wyk, A.

    1985-01-01

    The use of nuclear power in warfare is viewed from the point of use usefullness, essentiality and demolition. The effects of a H-bomb explosion are discussed as well as the use of nuclear power in warfare, with a Christian ethical background

  20. Consideration of nuclear power

    International Nuclear Information System (INIS)

    Smart, I.

    1982-01-01

    Mr. Smart notes that the optimistic promise of nuclear energy for developing countries has not been met, but feels that nuclear power can still provide a growing share of energy during the transition from oil dependence. He observes that cost-benefit analyses vary for each country, but good planning and management can give nuclear power a positive future for those developing countries which can establish a need for it; have access to the economic, technological, and human resources necessary to develop and operate it; and can make nuclear power compatible with the social, economic, and cultural structure. 11 references

  1. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  2. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  3. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Perera, J.

    2000-01-01

    Currently nuclear power accounts for more than 25% of total electricity production in Europe (including Eastern Europe and the former Soviet Union) However, significant new construction is planned in Central and Eastern Europe only, apart from some in France and, possibly in Finland. Many countries in Western Europe have put nuclear construction plans on hold and several have cancelled their nuclear programs. This report looks at the history of nuclear power and its current status in both Eastern and Western Europe. It provides an outline of nuclear fuel cycle facilities, from uranium procurement to final waste disposal. Economic and environmental issues are discussed, as well as the prospect of increased East-West trade and cooperation in the new poso-cold war world. Detailed profiles are provided of all the countries in Western Europe with significant nuclear power programs, as well as profiles of major energy and nuclear companies

  4. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    ElBaradei, Mohamed

    2004-01-01

    The past two years have found the IAEA often in the spotlight - primarily because of our role as the world's 'nuclear watchdog', as we are sometimes referred to on the evening news. The most visible, and often controversial, peaceful nuclear application is the generation of electricity, the focus of this article largely from a European perspective. At the end of last year there were 440 nuclear power units operating worldwide. Together, they supply about 16% of the world's electricity. That percentage has remained relatively steady for almost 20 years. Expansion and growth prospects for nuclear power are centred in Asia. Of the 31 units under construction worldwide, 18 are located in India, Japan, South Korea and China, including Taiwan. Twenty of the last 29 reactors to be connected to the grid are also in the Far East and South Asia. That is probably more active construction than most Europeans would guess, given how little recent growth has occurred in the West. For Western Europe and North America, nuclear construction has been a frozen playing field - the last plant to be completed being Civaux-2 in France in 1999. That should raise a question: with little to no new construction, how has nuclear power been able to keep up with other energy sources, to maintain its share of electricity generation? Interestingly enough, the answer is tied directly to efforts to improve safety performance. The accident at Chernobyl in 1986 prompted the creation of the World Association of Nuclear Operators (WANO), and revolutionized the IAEA approach to nuclear power plant safety. Some analysts believe the case for new nuclear construction in Europe is gaining new ground, for a number of reasons: efforts to limit greenhouse gas emissions and reduce the risk of climate change; security of energy supply; Comparative Public Health Risk; different set of variables when choosing Each country's and region energy strategy. Looking to the future, certain key challenges are, of direct

  5. Safety evaluation report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323). Suppl. 22

    International Nuclear Information System (INIS)

    1984-03-01

    Supplement 22 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for licenses to operate Diablo Canyon Nuclear Power Plants, Unit 1 and 2 (Docket Nos. 50-275 and 50-323), has been prepared jointly by the Office of Nuclear Reactor Regulation and the Region V Office of the US Nuclear Regulatory Commission. This supplement provides the criteria that were used by the staff to determine which of the allegations that have been evaluated and must be resolved prior to Unit 1 achieving criticality and operating at power level up to 5 percent of rated power (i.e., low power operation). The supplement also reports on the status of the staff's investigation, inspection and evaluation of 219 allegations or concerns that have been identified to the NRC as of March 9, 1984, excluding those recently received under 10 CFR 2.206 petitions

  6. Construction and start-up tests for Unit No. 5 of Fukushima Daiichi Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T; Sunami, Y; Ishii, N; Yokojima, T [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1978-12-01

    This unit, with an output capacity of 874 MWe, was completed by Toshiba last April on the basis of the actual operation records of the units previously completed and the experience in construction. Since its completion it has continued very excellent operation, with no emergency stop. This article is a description of the Unit 5, about: (1) the design and major points of improvement; (2) the construction work and cleaning of the plant; and (3) the operation tests, the use of the first automatic fuel exchanger, and the plant management system including the rust-preventive measures for two years since the oil-crisis.

  7. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  8. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  9. The nuclear power station

    International Nuclear Information System (INIS)

    Plettner, B.

    1987-04-01

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG) [de

  10. Nuclear power in Spain

    International Nuclear Information System (INIS)

    1979-01-01

    the plans of the Spanish Government to reduce their dependence on oil over the next ten years by a considerable increase in nuclear generating capacity are outlined. Data on the type, generating power, location and commissioning data of a number of nuclear power stations in Spain are tabulated. The use of foreign companies for the design and construction of the nuclear stations and the national organisations responsible for different aspects of the programme are considered. (UK)

  11. Nuclear power in space

    International Nuclear Information System (INIS)

    Aftergood, S.; Hafemeister, D.W.; Prilutsky, O.F.; Rodionov, S.N.; Primack, J.R.

    1991-01-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space

  12. Nuclear power experience

    International Nuclear Information System (INIS)

    Daglish, J.

    1982-01-01

    A report is given of a recent international conference convened by the IAEA to consider the technical and economic experience acquired by the nuclear industry during the past 30 years. Quotations are given from a number of contributors. Most authors shared the opinion that nuclear power should play a major role in meeting future energy needs and it was considered that the conference had contributed to make nuclear power more viable. (U.K.)

  13. Browns Ferry Nuclear Power Station, Units 1 and 2. Semiannual report, July--December 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Both units remained shutdown during this period. The majority of the operational activities concerned identification, removal, and repair of cables and trays damaged by the fire. Scheduled modifications, inspections, and testing were performed

  14. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  15. Governance of nuclear power

    International Nuclear Information System (INIS)

    Allison, G.; Carnesale, A.; Zigman, P.; DeRosa, F.

    1981-01-01

    Utility decisions on whether to invest in nuclear power plants are complicated by uncertainties over future power demand, regulatory changes, public perceptions of nuclear power, and capital costs. A review of the issues and obstacles confronting nuclear power also covers the factors affecting national policies, focusing on three institutional questions: regulating the industry, regulating the regulators, and regulatory procedures. The specific recommendations made to improve safety, cost, and public acceptance will still not eliminate uncertainties unless the suggested fundamental changes are made. 29 references

  16. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  17. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1991-06-01

    Supplement 34 to the Safety Evaluation Report for the application by Pacific Gas and Electric Company (PG ampersand E) for licenses to operate Diablo Canyon Nuclear Power Plant, Unit Nos. 1 and 2 (Docket Nos. 50-275 and 50-323, respectively) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement documents the NRC staff review of the Long-Term Seismic Program conducted by PG ampersand E in response to License Condition 2.C.(7) of Facility Operating License DPR-80, the Diablo Canyon Unit 1 operating license. 111 refs., 20 figs., 31 tabs

  18. Safety evaluation report related to the operation of Shearon Harris Nuclear Power Plant, Units 1 and 2. Docket Nos. STN 50-400 and STN 50-401

    International Nuclear Information System (INIS)

    1983-11-01

    The Safety Evaluation Report for the application filed by the Carolina Power and Light Company, as applicant and owner, for licenses to operate the Shearon Harris Nuclear Power Plant Units 1 and 2 (Docket Nos. 50-400 and 50-401) has been prepared by the Office of Nuclear Reactor Regulation of US Nuclear Regulatory Commission. The facility is located near Raleigh, North Carolina. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  19. Starting of nuclear power stations

    International Nuclear Information System (INIS)

    Kotyza, V.

    1988-01-01

    The procedure is briefly characterized of jobs in nuclear power plant start-up and the differences are pointed out from those used in conventional power generation. Pressure tests are described oriented to tightness, tests of the secondary circuit and of the individual nodes and facilities. The possibility is shown of increased efficiency of such jobs on an example of the hydraulic tests of the second unit of the Dukovany nuclear power plant where the second and the third stages were combined in the so-colled integrated hydraulic test. (Z.M.). 5 figs

  20. Nuclear power under strain

    International Nuclear Information System (INIS)

    1978-08-01

    The German citizen faces the complex problem of nuclear power industry with slight feeling of uncertainty. The topics in question can only be briefly dealt with in this context, e.g.: 1. Only nuclear energy can compensate the energy shortage. 2. Coal and nuclear energy. 3. Keeping the risk small. 4. Safety test series. 5. Status and tendencies of nuclear energy planning in the East and West. (GL) [de

  1. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  2. Probabilistic assessment of the seismic hazard for eastern United States nuclear power plants

    International Nuclear Information System (INIS)

    Savy, J.; Bernreuter, D.; Mensing, R.

    1989-01-01

    The purpose of the seismic hazard characterization of the Eastern US project, for the Nuclear Regulatory Commission, was to develop a methodology and data bases to estimate the seismic hazard at all the plant sites east of the Rocky Mountains. A summary of important conclusions reached in this multi year study is presented in this paper. The magnitude and role of the uncertainty in the hazard estimates is emphasized in regard of the intended final use of the results

  3. Analogue to digital upgrade project-boiler feedwater control system for Bruce Power nuclear units 1 & 2

    International Nuclear Information System (INIS)

    Long, R.

    2012-01-01

    Bruce Power Nuclear Generating Station A, “Bruce A” is in the final stages of its Restart Project. This capital project will see a large scale rehabilitation of Units 1 and 2 resulting in addition of 1500MW of safe, reliable, clean electricity to the Ontario grid. Restart Project Scope 375, Boiler Feedwater Controls Upgrade was sanctioned to replace obsolete analog devices with a modern digital control system. This project replaced the existing Foxboro H Line analog controls which comprised of 81 individual control modules and support instrumentation. The replacement system was a Triconex Triple Modular Redundant PLC which interfaces with two redundant touch screen monitors. The upgraded digital system incorporates the following controls: 1. Boiler Level Control Loops 2. Dearator Level Control Loops 3. Dearator Pressure Control Loops 4. Boiler Feedwater Recirculation Flow Control Loops A number of technical challenges were addressed when installing a new digital system within the existing plant configuration. Interfaces to new, old and refurbished field devices must be understood as well as implications of connecting to the plant’s Digital Control Computers (DCC’s) and newly installed Steam Generators. The overall project involved many stakeholders to address various requirements from conceptual / design stage through procurement, construction, commissioning and return to service. In addition, the project highlighted the unique requirements found in Nuclear Industry with respect to Human Factors and Software Quality Assurance. (author)

  4. Analysis of the LaSalle Unit 2 Nuclear Power Plant: Risk Methods Integration and Evaluation Program (RMIEP)

    International Nuclear Information System (INIS)

    Payne, A.C. Jr.; Eide, S.A.; LaChance, J.C.; Whitehead, D.W.

    1992-10-01

    This volume presents the results of the initiating event and accident sequence delineation analyses of the LaSalle Unit II nuclear power plant performed as part of the Level III PRA being performed by Sandia National Laboratories for the Nuclear Regulatory Commission. The initiating event identification included a thorough review of extant data and a detailed plant specific search for special initiators. For the LaSalle analysis, the following initiating events were defined: eight general transients, ten special initiators, four LOCAs inside containment, one LOCA outside containment, and two interfacing LOCAs. Three accident sequence event trees were constructed: LOCA, transient, and ATWS. These trees were general in nature so that a tree represented all initiators of a particular type (i.e., the LOCA tree was constructed for evaluating small, medium, and large LOCAs simultaneously). The effects of the specific initiators on the systems and the different success criteria were handled by including the initiating events directly in the system fault trees. The accident sequence event trees were extended to include the evaluation of containment vulnerable sequences. These internal event accident sequence event trees were also used for the evaluation of the seismic, fire, and flood analyses

  5. Construction work management for nuclear power stations

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1982-01-01

    Nuclear power generation is positioned as the nucleus of petroleum substitution. In the Kansai Electric Power Co., efforts have been made constantly to operate its nuclear power plants in high stability and safety. At present, Kansai Electric Power Co. is constructing Units 3 and 4 in the Takahama Nuclear Power Station in Fukui Prefecture. Under the application of the management of construction works described here, both the nuclear power plants will start operation in 1985. The activities of Kansai Electric Power Co. in the area of this management are described: an outline of the construction works for nuclear power stations, the management of the construction works in nuclear power stations (the stages of design, manufacturing, installation and test operation, respectively), quality assurance activities for the construction works of nuclear power plants, important points in the construction work management (including the aspects of quality control). (J.P.N.)

  6. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  7. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  8. Investigations of the unit generation costs of the nuclear power plants

    International Nuclear Information System (INIS)

    Guntay, S.

    1977-01-01

    An extensive study has been carried out to investigate the unit generation costs of different reactor types. The study analyzes the following: i) development of capital costs, ii) Fuel cycle costs, iii) operation and maintenance costs, iv) local and foreign finance requirements for an arbitrary reactor type

  9. Robert Emmett Ginna Nuclear Power Plant, Unit 1. Annual report No. 11, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Information is presented concerning operations, power reductions, outages, personnel radiation exposures, failed fuel indications, procedure changes, system modification, and special tests. Results from radiation monitoring of dust, fallout, Lake Ontario water, well water, milk, fruit, aquatic ecosystems, and lake bottoms are tabulated

  10. Pilgrim Nuclear Power Station, Unit 1. Fifth semiannual operating and maintenance report, July--December 1974

    International Nuclear Information System (INIS)

    1974-01-01

    During this period the reactor was critical for 3,550.3 hrs and the net electrical power generated was 1,973,033 MWH. Information is presented concerning operations, maintenance, radioactive effluents, environmental monitoring, and radioactive materials released to unrestricted areas. (U.S.)

  11. Flywheel and power unit

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, R.W.

    1992-10-28

    A power unit, e.g. for an electrically driven vehicle, incorporates a flywheel for storing kinetic energy and a battery for storing electrical energy. The battery is incorporated as a substantial part of the rotating mass of the flywheel. Preferably the unit further includes an electrical machine being a motor or generator or machine operable either as a motor or a generator for transferring energy between the battery and the flywheel and/or for the input or output of rotary energy therefrom or thereto. The motor may be used for powering the flywheel and may also operate in a regenerative mode for recharging the unit on de-acceleration of the vehicle. The unit of the invention may also be utilized as an electrical stored power source, e.g. wind or water driven. (author)

  12. Status of nuclear power industry in Ukraine

    International Nuclear Information System (INIS)

    Kadenko, I.M.; Vlasenko, M.I.

    2007-01-01

    There are five nuclear power plants and sites (NPPs) with 15 units in operation, 3 units under decommissioning and 1 drastically known as the 'Shelter' object in Ukraine. Ukraine has ambitions plans to develop nuclear industry based on own mineral, human financial resources as well as world wide international cooperation with nuclear countries

  13. Commercial nuclear power 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs

  14. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  15. LDC nuclear power: Brazil

    International Nuclear Information System (INIS)

    Johnson, V.

    1982-01-01

    Brazil has been expanding its nuclear power since 1975, following the Bonn-Brasilia sales agreement and the 1974 denial of US enriched uranium, in an effort to develop an energy mix that will reduce dependence and vulnerability to a single energy source or supplier. An overview of the nuclear program goes on to describe domestic non-nuclear alternatives, none of which has an adequate base. The country's need for transfers of capital, technology, and raw materials raises questions about the advisability of an aggressive nuclear program in pursuit of great power status. 33 references

  16. Preparation for decommissioning of the Kozloduy Nuclear Power Plant units 1 and 2

    International Nuclear Information System (INIS)

    Delcheva, T.; Ribarski, V.; Demireva, E.

    2006-01-01

    The first decommissioning strategy of units 1 and 2 of Kozloduy NPP (KNPP) stipulated 3 phases: a 5 year phase including the post operation activities and preparation of the safe enclosure (SE); a 35 years SE period, followed by deferred dismantling. 'Updated Decommissioning Strategy for Units 1-4 of Kozloduy NPP' was issued in June 2006. The Updated Strategy is based on the so called 'Continuous Dismantling' Concept. The updated Strategy starts preparatory work earlier and then moves into dismantling work without a significant gap. The aim is to achieve a more optimal distribution of the dismantling activities along the time, saving jobs and the existing knowledge of the plant personnel during the decommissioning, and ensuring smooth and more effective use of financial and human resources and of the available infrastructure for waste treatment. This paper gives general information about the updated strategy and activities required for its implementation. (author)

  17. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  18. Burst protection device for largely cylindrical steam raising units, preferably of pressurized water nuclear power stations

    International Nuclear Information System (INIS)

    Mutzl, J.

    1978-01-01

    This burst protection device controls forces to be expected in an accident by resolving them into axial (vertical) and radial (horizontal) components, which are taken by a large number of elements stressed in tension. The steam raising unit is surrounded by a containment, but remains easily accessible. The containment consists of a steel jacket, lid and floor. Several cylindrical sections above one another form the steel jacket, which surrounds the steam raising unit with an intermediate insulating layer of concrete. The insulating concrete cylinder is of several times the thickness of the steel jacket, and also consists of cylindrical sections. An outer supporting ring for the lid and floor of the containment have outside diameters which project beyond the jacket. Prestressed circumferential vertical tension ropes between the supporting ring and floor take any additional tensional forces. The lid is domed with downward curvature towards the upper boiler dome. Internal bursting forces produce compressive stresses in the lid, which thus pass along its outside diameter into the surrounding ring. The lid, which is devided along one diameter, makes dismantling and access to the boiler easy even with a central steam pipe going upwards. The floor of the burst protection is also the floor of the steam raising unit. It is of several times the thickness of the tube floor, which, with its spacing above the floor forms the usual inlet and outlet space for the reactor cooling water. The main coolant pump installed there is driven by an external motor through a floor penetration. (HP) [de

  19. Results and interpretation of noise measurements using in-core self powered neutron detector strings at Unit 2 of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gloeckler, O.; Por, G.; Valko, J.

    1986-11-01

    In-core neutron noise and fuel assembly outlet temperature noise measurements were performed at Unit 2 of Paks Nuclear Power Plant. Characteristics of the reactor and the noise measuring equipment are briefly described. The in-core Rhodium emitter selfpowered neutron detector strings positioned axially above the other show high coherence and linear phase at low frequencies indicating a marked transport effect, not regularly measured in PWRs. The coherence between horizontally placed neutron detectors is small and the phase is zero. A transport effect of different nature is obtained between neutron detectors (in-core and ex-core) and fuel assembly outlet thermocouples. The observed characteristics depend on reactor and fuel assembly power in a way supporting interpretation in terms of coolant density and void content changes and power feedback effects. During routine analysis vibration of 1.1 Hz appeared as a strong peak in the power spectra. The control assembly that was responsible for the observed behaviour could be localized with high certainty. (author)

  20. Dictionary of nuclear power. January 2013 ed.

    International Nuclear Information System (INIS)

    Koelzer, Winfried

    2013-01-01

    The actualized version (January 2013) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.