WorldWideScience

Sample records for nuclear power option

  1. Reasons for the nuclear power option

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Mauna, T.

    1994-01-01

    Technical, economical and social reasons, strongly supporting the nuclear power option are reviewed. The history of Romanian nuclear power program is outlined with a particular focus on the Cernavoda Nuclear Power Plant project. Finally the prospective of nuclear power in Romania are assessed

  2. Ghana and the nuclear power option

    International Nuclear Information System (INIS)

    Fletcher, J.J.; Ennison, I.

    2000-01-01

    For every country, dependable and continuous supply of electricity is a prerequisite for ensuring sustainable development. In Ghana, Ghanaians have currently known the consequences of disrupted and inadequate supply of electricity. Globally too the call of ''Agenda 21'' of the Rio de Janeiro Conference (Earth Summit) to engage in the development and supply of electricity in a sustainable manner imposes on us certain limitations in our choice of energy option to utilise. Taking into account the high economic and population growths with the subsequent increase in demand for electricity in the 21st century, the fact that Ghana has no coal and imports oil which will be in dwindling supply in the 21st century and that the total hydro supply in Ghana will not be sufficient for our electricity demand in the next century, this paper proposes that Ghana starts now to plan for the introduction of the nuclear option so that in the long term we may have in place an environmentally friendly, dependable and reliable supply of energy. The paper also highlights the economic competitiveness of nuclear power over the other energy options in Ghana and addresses the apprehension and misunderstanding surrounding the nuclear power option. (author)

  3. Nuclear power: A competitive option? Annex 3

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2002-01-01

    Because the future development of nuclear power will depend largely on its economic performance compared to alternatives, the OECD Nuclear Energy Agency (NEA) investigates continuously the economic aspects of nuclear power. This paper provides key findings from a series of OECD studies on projected costs of generating electricity and other related NEA activities. It addresses the cost economics necessary for nuclear units to be competitive, and discusses the challenges and opportunities currently faced by nuclear power. (author)

  4. Sustaining the nuclear power option in Malaysia

    International Nuclear Information System (INIS)

    Jamal Khaer bin Ibrahim.

    1989-01-01

    This paper describes the approach taken to establish the information base required prior to a decision on a nuclear power programme, and the strategy adopted and the rationale behind the development of the basic core expertise on nuclear reactor technology. The effect of a lack of decision on the question of nuclear power generation on efforts to build this core technical expertise is also described. (author)

  5. Nuclear power- the inevitable option for future energy needs

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1995-01-01

    In the ensuring era development and deployment of electrical power sources will be governed by environmental changes, energy security and economical competitiveness. In the energy-mix scenario nuclear power has the potential and will make significant contributions in the coming decades. It is certain that nuclear power will continue to play a vital role in bridging the widening gap of demand and availability of energy in the years to come. In sum and substance, with the limited energy options available with India, nuclear power must assume greater share to meet the rapidly growing energy demands. Fortunately, country has a sound base for achieving the goal. 14 tabs., 3 figs

  6. Approach to studying the nuclear power option in Malaysia

    International Nuclear Information System (INIS)

    Jamal Khair Ibrahim; Mohamad Zam Zam

    1986-01-01

    As a rapid growth in industrialisation and population policy, energy consumption in Malaysia has increased cosiderably. The nation is pursuing a course of diversification of primary energy sources: gas, hydro, coal and oil. Recently nuclear power programme is assessed and evaluated as another energy option in the fuel strategy. Studies of infrastructure, manpower technological and other related considerations are included. Impacts and policy implications of the introduction of nuclear power in Malaysia are also discussed. (A.J.)

  7. Nuclear Power Options Viability Study. Volume 4. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B; White, J D; Sims, J W [eds.

    1986-09-01

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number.

  8. Nuclear Power Options Viability Study. Volume 4. Bibliography

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.; Sims, J.W.

    1986-09-01

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number

  9. Spallator: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated.

  10. Spallator: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated

  11. Development of real options model for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Kenji

    2004-01-01

    As the Japanese electricity market is deregulated, it becomes more important for electric utilities to recognize their financial risks and to adopt strategic and scientific decision making methodology. We have developed two models for valuation of Japanese nuclear power plants to support utilities' decision making. One is a net present value (NPV) model using discounted cash flow analysis method. Another is a real options model. This model is based on strict financial technology theory and can calculate value of early retirement, life extension and new unit addition options of nuclear units under electricity price uncertainty. This can also derive an optimal period for retirement, life extension and new unit addition. (author)

  12. Nuclear options: is the climate right for nuclear power?

    International Nuclear Information System (INIS)

    Switkowski, Z.E.

    2009-01-01

    An increasing number of countries around the world are turning to nuclear power to meet growing demand for electricity, avoid use of fossil fuels, reduce greenhouse gas emissions and diversify their energy mix away from a dominant supplier. Australia is following a different path. Does this make strategic sense?

  13. Choosing the nuclear power option: Factors to be considered

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Mahadeva Rao, K.V.

    2000-01-01

    To plan and develop a nuclear power program, policies must be formulated and decided at different stages and at different levels by the government and its organizations, by the utility and by other organizations in industry and research and education, each within its sphere of interest and influence. The purpose of this paper is to highlight areas where policy decisions are needed, the options available, what they mean and the contexts in which they should be considered. (author)

  14. Evaluating nuclear power as the next baseload generation option

    International Nuclear Information System (INIS)

    Jackson, K.J.; Sanford, M.O.

    1992-01-01

    Numerous factors must be taken into account when planning to meet baseload generating needs of the next century. Examining nuclear power as an option to meet these needs offers significant challenges with respect to evaluating and managing the business risks. This paper describes one mechanism to accomplish this while continuing to participate in industry activities targeted at advancing the nuclear option. One possible model of pursuing high-risk, long-term projects, like nuclear power, is to spread these risks among the project participants and for each organization to commit slowly. With this model of progressive engagement, participants may invest in early information gathering with the objective of uncertainty reduction at preliminary stages in the project, before large investments must be made. For nuclear power, a partnership between a utility (or utility group) and a supplier team may well be the best means of implementing such a model. A partnership also provides opportunity to develop the long-term relationships within the industry which are imperative

  15. A feasibility study on nuclear power options in Mongolia

    International Nuclear Information System (INIS)

    Minato, A.; Sekimoto, H.; Amartaivan, T.

    2010-10-01

    There is a growing interest among utilities in the United States in small and medium reactors due primarily to the smaller investment and perhaps shorter construction time involved as compared to those large reactors. The potential market for small reactors (those below 300 M We) exists, specially with sizes of 50 and 100 M We. A feasibility study was conducted on nuclear power options for Ulaanbaatar, Mongolia, a country which has a potential market for small reactors. The study was focused on an optimization of a combination of coal-fired and nuclear power plants taking into account Mongolia's future nuclear program plan, future population and economic growth, and the increased electricity and district heating demands. (Author)

  16. An Evaluation of Energy Storage Options for Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dufek, Eric J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    examination of energy storage options that could be integrated with nuclear generation. Figure 1 provides an overview of the 2015 energy mix by sector, which shows that NPPs are currently used exclusively for electricity generation that is ultimately consumed in the residential, commercial, and industrial sectors. Some areas for NPP energy growth in the future include power generation for electrified transportation and thermal generation for storage and industrial applications. Currently, most industrial thermal energy users combust fossil resources (i.e., coal or natural gas) to meet the energy needs of the processes, but heat from nuclear operations could also be used in certain specific applications.

  17. An Evaluation of Energy Storage Options for Nuclear Power

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bragg-Sitton, Shannon M.; Dufek, Eric J.

    2017-01-01

    examination of energy storage options that could be integrated with nuclear generation. Figure 1 provides an overview of the 2015 energy mix by sector, which shows that NPPs are currently used exclusively for electricity generation that is ultimately consumed in the residential, commercial, and industrial sectors. Some areas for NPP energy growth in the future include power generation for electrified transportation and thermal generation for storage and industrial applications. Currently, most industrial thermal energy users combust fossil resources (i.e., coal or natural gas) to meet the energy needs of the processes, but heat from nuclear operations could also be used in certain specific applications.

  18. Preliminary study of the nuclear power option in Belarus

    International Nuclear Information System (INIS)

    Grusha, N.M.; Kazazyan, V.T.; Malykhin, A.P.; Mikhalevich, A.A.; Yakushau, A.P.; Yaroshevich, O.I.

    1999-01-01

    The Republic of Belarus possesses an economy with many energy intensive branches. At the same time the share of domestic energy resources is about 15% of total energy demand. The share of the payment for primary energy resources reaches 60% or USD 2 billion of the total energy import. That is comparable with the annual state budget. In addition to that, about half of the installed capacities have reached their operation life and 90% of the units have to be retrofitted or replaced until 2010. Thus, the problem of energy supply is one of the most important ones for Belarus' economy. The nuclear power appears to be one of the possible ways for solving the energy demand problem in Belarus which has, as in case of many countries of Central and South-Eastern Europe, limited energy resources. In 1992 - 1994 the works for studying the possibility of NPP siting were recommenced and six relatively competitive sites have been chosen out from 54 possible locations for NPP siting. Parallely, works on assessment of environmental NPP effect in these sites were carried out. As concerning the reactors to be purchased and installed in the sites selected, the following options were taken into consideration: PWR of American Company WESTINGHOUSE; PWR N4 of France Company FRAMATOME; PWR KONVOI of German Company SIEMENS. Also promising are the new generation of Russian Reactor NPP, namely NPP - 91, NPP - 92 and NPP with NGWWER - 640 reactors. Preliminary assessment having in view the feasibility characteristics, safety, reliability as well as the degree of completion shows the Russian projects NPP - 92 and NGWWER - 640 as more preferably at present. Concerning the radioactive waste management, sites for storing low and medium active waste have been determined as well as regions for high active waste disposal. At present Belarus Republic disposes of a definite production, engineering and scientific potential, which can be used when the nuclear power program will be launched. Construction

  19. Nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Kemm, K R

    1978-05-01

    The global outlook is that nuclear reactors are here to stay and South Africa has already entered the nuclear power stakes. This article discusses the rocketing oil prices, and the alternatives that can be used in power generation, the good safety record of the nuclear industry and the effect that South Africa's first nuclear power station should have on the environment.

  20. Nuclear Power Options Viability Study. Volume 3. Nuclear discipline topics

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.; Bowers, H.I.

    1986-09-01

    Innovative reactor concepts are described and evaluated in accordance with criteria established in the study. The reactors to be studied were chosen on the basis of three ground rules: (1) the potential for commercialization between 2000-2010, (2) economic competiveness with coal-fired plants, and (3) the degree of passive safety in the design. The concepts, classified by coolants, were light water reactors, liquid metal reactors, and high temperature reactors, and most were of modular design. All the concepts appear to be potentially viable in the time frame selected, but the information available is not adequate for a definitive evaluation of their economic competitiveness. This volume primarily reports in greater detail on several topics from the study. These are: Construction, Economics, Regulation, Safety and Economic Risk, Nuclear Waste Transportation and Disposal, and Market Acceptance. Although treated generically, the topics are presented in the context of the reactor concepts of the study

  1. Nuclear Power Options Viability Study. Volume 3. Nuclear discipline topics

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B; White, J D; Bowers, H I; Braid, R B; Cantor, R A; Daniels, L; Davis, R M; Delene, J G; Gat, U; Hood, T C

    1986-09-01

    Innovative reactor concepts are described and evaluated in accordance with criteria established in the study. The reactors to be studied were chosen on the basis of three ground rules: (1) the potential for commercialization between 2000-2010, (2) economic competiveness with coal-fired plants, and (3) the degree of passive safety in the design. The concepts, classified by coolants, were light water reactors, liquid metal reactors, and high temperature reactors, and most were of modular design. All the concepts appear to be potentially viable in the time frame selected, but the information available is not adequate for a definitive evaluation of their economic competitiveness. This volume primarily reports in greater detail on several topics from the study. These are: Construction, Economics, Regulation, Safety and Economic Risk, Nuclear Waste Transportation and Disposal, and Market Acceptance. Although treated generically, the topics are presented in the context of the reactor concepts of the study.

  2. Comparison and evaluation of nuclear power plant options for geosynchronous power stations

    International Nuclear Information System (INIS)

    Williams, J.R.

    1975-01-01

    A solution to the safety, safeguards, and radwaste disposal problems of nuclear power is to locate the breeder reactor power plants far out in geosynchronous orbit and beam the power to earth with microwaves. The generation of nuclear power in space is technologically feasible and has already been demonstrated on a small scale. It has also been shown that high efficiency microwave transmission of power from synchronous orbit to earth is feasible and is not hazardous. The reactor safety problem would be virtually eliminated because of the remoteness of the satellite power station in geosynchronous orbit. The worst possible accident at such a plant would have negligible effect on the earth, certainly less than the high altitude nuclear explosions which have been conducted in the past. Accidental re-entry from geosynchronous orbit could not occur because of the very large velocity change required. The safeguards problem can be virtually eliminated by adopting the following procedures: 1) The plant is initially started up using U-235 fuel or bred plutonium or U-233 from another geosynchronous power plant, 2) Once the plant is operating, only nonhazardous fertile materials (thorium or depleted uranium) are shipped up from earth, 3) The fissile fuel is bred and used in space, and none of this highly toxic fissile material is ever returned to earth. The radioactive waste could be concentrated and ejected in canisters into deep space away from the earth. The geosynchronous nuclear power plant offers unlimited nuclear power without nuclear hazards or nuclear pollution, but at somewhat higher cost. Whether or not society will be willing to pay these higher costs of nuclear power from space, or whether new energy resources such as nuclear fusion or solar power become feasible, remains to be seen. A prudent course to follow would be to give careful consideration to all future options for large scale energy generation, including the option of nuclear power from space

  3. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  4. China's Nuclear Power Program: Options for the US

    International Nuclear Information System (INIS)

    Suttmeier, R.P.

    1985-01-01

    The issue of American nuclear cooperation with the People's Republic of China is examined with regards to political relations, commercial benefits to the United States, and nonproliferation. China's interest in nuclear power is examined, and its nuclear program is briefly reviewed from the 1950's to present. China's international nuclear relations with other countries are discussed, and implications for the United States examined, particularly with regards to China's intentions toward nuclear proliferation, danger of diversion of material for nuclear weapons, use of pressurized water reactor technology for Chinese naval reactors, and the terms of the nuclear cooperation agreement

  5. Choosing the nuclear power option: Factors to be considered

    International Nuclear Information System (INIS)

    1998-01-01

    A need was expressed by Member States for guidance on policy issues to be addressed by decision makers considering the introduction of nuclear power programmes. This publication has been prepared by the IAEA, on the basis of past experience with nuclear power programmes in Member States and the current realities of the world nuclear regime, to provide information on political, governmental, economic, financial, technical and safety issues associated with planning and implementing a nuclear power programme. It highlights the main areas in which policies must be developed as well as the roles and responsibilities of the government, the plant owner and the national industry. For those interested in examining some of the issues in more depth, a list of related IAEA publications is provided in the bibliography. It is hoped that this guide will serve a useful purpose in assisting decision makers and governments in Member States considering the introduction of nuclear power programmes

  6. Nuclear option

    International Nuclear Information System (INIS)

    Olson, P.S.

    1983-01-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed

  7. Options for shortening nuclear power plant refueling outages

    International Nuclear Information System (INIS)

    Kastl, H.

    2001-01-01

    Deregulation of the European electricity market on 01.01.1999 forced a large number of electric utilities- especially nuclear power plant operators - to find ways of drastically cutting down their costs in order to be able to compete successfully within the new market environment. Nuclear power plants currently in operation mainly have three potential ways of reducing their power generating costs: by increasing plant availability, reducing fuel costs and cutting down operating costs. The optimization of plant refueling outages offers considerable potential for enhancing plant availability, but also helps bring down operating costs by reducing expenditure on maintenance. In order to optimize an outage in terms of its duration and costs, a variety of approaches are possible - all of which, however, involve certain key factors such as good organization, planning, logistics and control, improvement of equipment and tools, as well as motivation of personnel. Another aspect is the introduction of innovative technologies. In the last few years, such technologies have frequently enabled maintenance effort to be reduced, thus saving considerable time, and have also resulted in a need for fewer personnel to carry out the work, thus reducing radiation exposure. In many instances they have also improved the quality of work and outage performance as a whole. The paper uses recent examples to show how innovative technologies can contribute to-wards reducing nuclear plant maintenance costs and shorten the duration of refueling out-ages. (author)

  8. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  9. Indonesia - nuclear power as option for the future?

    International Nuclear Information System (INIS)

    Wiesegart, K.

    1993-01-01

    The Republic of Indonesia consists of 13.600 islands, about 6.000 of them are populated. More than half of the ca. 182 mio. inhabitants (1991) live on the main island Java which only has a share of 7% of the total area of the East Asian country. The developing country Indonesia is characterized by economic stability - according to the World Bank its chances to reach the circle of industrialized countries till the year 2000 are good. But electricity supply of the country lags behind overall economic development. Here about 20% of the demand can not be covered. There are high losses in energy production, transmission and distribution. The Indonesian government plans extensions in the power supply area, a doubling of 1991 capacities are strived for till 2000. Financially this is to be attained with the instruments denationalization and deregulation. Apart from coal, water power and geothermal energy now also nuclear power will be used. (orig.) [de

  10. The Nuclear Power Options for the Climate Change Dilemma

    International Nuclear Information System (INIS)

    Ibrahim, Y.M.; Hussein, A.S.

    2009-01-01

    The world population is currently about 6.5 billion and expected to reach 9 billion by 2050.This population increase and economic development will bring dramatic increase of energy demand in all over the world, especially in developing countries. Global electricity demand grows at 2.4% per year. To meet this growth, the worlds electricity generating capacity grows from about 3700 G We in 2004 to 7303 G We in 2030.The world may run short of fossil fuels, in particular oil. The protection of the global environment including the reduction of carbon dioxide emissions will be an important issue also. Nuclear energy is clean, safe, reliable and cost-effective, with many environmental benefits. It does not emit greenhouse gases that contribute to climate change, or combustion products and acid gases that cause air , water resource and land pollution. As of 14 January 2008 there were 439 nuclear power plants in operation around the world. They total about 372 G We of generating capacity and supply about 16% of the world electricity, 7 % of global energy. The present article briefly summaries the environmental aspects of the nuclear power and varies factors which support the attractiveness of it for many countries all over the world.

  11. Vision of Nuclear Power Options for XXI Century

    Energy Technology Data Exchange (ETDEWEB)

    Adamov, E.; Muraviev, E.; Orlov, V.

    2007-07-01

    This work once again brings to attention the fundamental ideas of the long-term nuclear power development on the basis of the new generation of Fast neutron Reactors, naturally safe, economically attractive and employing the proliferation-resistant and low-waste fuel cycle. The Universal System Model (USM-1), new analytical research tool recently developed in N.A. Dollezhal Research and Design Institute of Power Engineering (Moscow, Russia) has been used to evaluate several scenarios (including traditional ones) of the World nuclear power development for electricity production within the XXI century. For scenarios comparison 3 criteria were used: the levelized cost of electricity, the fuel supply security (in terms of natural uranium total consumption and prospects for further fuel balance), and the potential hazard of radioactive wastes. The clear advantage of scenario with the most complete realization of the new Fast Reactors technology potential is revealed. The authors strongly believe that the prospects of this new technology worldwide implementation deserve the due attention of responsible governments and international organizations. 2 Tables, 13 Figures, 10 References. (auth)

  12. Reactivity control of nuclear power reactors: new options

    International Nuclear Information System (INIS)

    Alcala, F.

    1984-01-01

    Some actual aspects (referring to economy, non-proliferation and environmental impact) of nuclear power reactors has been analyzed from the point of view of the reactivity control physics. Specially studied have been the physical mechanisms related with the spectral shift control method and their general positive effects on those aspects. The analysis carried out suggested the application of the above method of control to reactors with non-hydrogenous fuel cells, which are mainly characterized by their high moderator/fuel ratio. Finally three different types of such fuel cells are presented and some results about one of them (belonging to a PHWR controlled by graphite rods) are given. (author)

  13. Nuclear Power Options Viability Study. Volume 1. Executive summary

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.; Booth, R.S.

    1986-09-01

    Innovative reactor concepts are described and evaluated in accordance with criteria established in the study. The reactors to be studied were selected on the basis of three ground rules: (1) the potential for commercialization between 2000 to 2010, (2) economic competitiveness with coal, and (3) the degree of passive safety in the design. The concepts, classified by coolants, were light water reactors, liquid metal reactors, and high-temperature reactors, and most were of modular design. Although the information available is not adequate for a definitive evaluation of economic competitiveness, all of the concepts appear to be potentially viable in the time frame selected. Public and institutional acceptance of nuclear power was found to be affected primarily by four issues: (1) operational safety, (2) waste handling and disposal, (3) construction and operating costs, and (4) the adequacy of management and regulatory controls

  14. Nuclear power as a necessary option, albeit in insufficient one

    International Nuclear Information System (INIS)

    Altin, V.

    2007-01-01

    In this presentation a comparative assessment of known energy resources are made with respect to their energy densities. Fossil fuels have formed the foundation of a worldwide economic development realized throughout the 20th century. Their comparatively high energy densities have made faster energy flows and thereby higher power levels and speedy development possible. However, renewable sources that are already feasible have much lower levels of energy densities. Their large scale utilization in lieu of fossil fuels would necessitate either reduction of economic growth rates to 'sustainable' levels or speedy development of feasible large scale storage technologies. Nuclear energy appears to impose itself as a necessity to alleviate this transition period, albeit within the constraint of known uranium reserves an insufficient one

  15. Advanced nuclear power options: The driving forces and their results

    International Nuclear Information System (INIS)

    Golay, M.W.

    1990-01-01

    Successful nuclear power plant concepts must simultaneously demonstrate satisfactory performance in terms of both safety and economics. In order to be attractive to both electric utility companies and the public, such plants must produce economical electric energy consistent with a level of safety which is acceptable to both the public and the plant owner. Programs for reactor development worldwide can be classified according to whether the reactor concept pursues improved safety or improved economic performance as the primary objective. When improved safety is the primary goal, safety enters the solution of the design problem as a constraint which restricts the set of allowed solutions. Conversely, when improved economic performance is the primary goal it is allowed to be pursued only to an extent which is compatible with stringent safety requirements. The three major reactor coolants under consideration for future advanced reactor use are water, helium and sodium. Reactor development programs focused upon safety and upon economics using each coolant are being pursued worldwide. It is seen that the safety-oriented concepts are typically of lower capacity by approximately an order of magnitude, than the economics-oriented concepts. This is the result, in the former concept, of using less efficient, but more reliable, means of accomplishing essential safety functions. (author)

  16. Advanced nuclear power options: The driving forces and their results

    Energy Technology Data Exchange (ETDEWEB)

    Golay, M W [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1990-07-01

    Successful nuclear power plant concepts must simultaneously demonstrate satisfactory performance in terms of both safety and economics. In order to be attractive to both electric utility companies and the public, such plants must produce economical electric energy consistent with a level of safety which is acceptable to both the public and the plant owner. Programs for reactor development worldwide can be classified according to whether the reactor concept pursues improved safety or improved economic performance as the primary objective. When improved safety is the primary goal, safety enters the solution of the design problem as a constraint which restricts the set of allowed solutions. Conversely, when improved economic performance is the primary goal it is allowed to be pursued only to an extent which is compatible with stringent safety requirements. The three major reactor coolants under consideration for future advanced reactor use are water, helium and sodium. Reactor development programs focused upon safety and upon economics using each coolant are being pursued worldwide. It is seen that the safety-oriented concepts are typically of lower capacity by approximately an order of magnitude, than the economics-oriented concepts. This is the result, in the former concept, of using less efficient, but more reliable, means of accomplishing essential safety functions. (author)

  17. Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix

    International Nuclear Information System (INIS)

    Cany, Camille; Mansilla, Christine; Costa, Pascal da; Mathonnière, Gilles; Duquesnoy, Thierry; Baschwitz, Anne

    2016-01-01

    The complementary features of low-carbon power sources are a central issue in designing energy transition policies. The French current electricity mix is characterised by a high share of nuclear power which equalled 76% of the total electric production in 2015. With the increase in intermittent renewable sources, nuclear flexibility is examined as part of the solution to balance electricity supply and demand. Our proposed methodology involves designing scenarios with nuclear and intermittent renewable penetration levels, and developing residual load duration curves in each case. The load modulation impact on the nuclear production cost is estimated. This article shows to which extent the nuclear annual energy production will decrease with high shares of intermittent renewables (down to load factors of 40% for proactive assumptions). However, the production cost increase could be compensated by progressively replacing the plants. Moreover, incentives are necessary if nuclear is to compete with combined-cycle gas turbines as its alternative back-up option. In order to reconcile the social planner with plant operator goals, the solution could be to find new outlets rather than reducing nuclear load factors. Nuclear flexibility could then be considered in terms of using its power to produce heat or hydrogen. - Highlights: •Nuclear flexibility is examined to balance the system with high renewables share. •Impacts of wind and solar shares on the nuclear load factor and LCOE are assessed. •Nuclear fleet replacement must be progressive to ensure competitive load-following. •Incentives are needed for nuclear to compete with CCGT gas back-up. •We recommend considering nuclear flexibility through the power use.

  18. The role of nuclear power in the option zero emission technologies for fossil fuels

    International Nuclear Information System (INIS)

    Corak, Z.

    2006-01-01

    The energy sector is one of the main sources of greenhouse gas (GHG) emissions particularly carbon dioxide (CO2) increasing concerns due to their potential risk to induce global warming and climate change. The Parties having signed the Kyoto Protocol in December 1997, committed to decrease their GHG emissions. The Protocol states that countries shall undertake promotion, research, development and increased use of new and renewable forms of energy, of carbon dioxide sequestration technologies and of advanced and innovative environmentally sound technologies. The one significant option that is not specifically mentioned is nuclear energy which is essentially carbon-free. There are a number of technical options that could help reducing, or at least slowing the increase of, GHG emissions from the energy sector. The list of options includes: improving the efficiency of energy conversion and end-use processes; shifting to less carbon intensive energy sources (e.g. shifting from coal to natural gas); developing carbon-free or low-carbon energy sources; and carbon sequestration (e.g. planting forests or capturing and storing carbon dioxide). It must be pointed out that nuclear power is one of the few options that are currently available on the market, competitive in a number of countries, especially if global costs to society of alternative options are considered; practically carbon-free; and sustainable at large-scale deployment. The nuclear power could play significant role in alleviating the risk of global climate change. The main objective of the article is to present sequestration options, their cost evaluation as well as comparation with alternative possibilities of nuclear energy production. (author)

  19. Considering environmental health risks of energy options. Hydraulic fracturing and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    MacDonell, Margaret; Raymond, Michelle; Burganowski, Rachael; Vetrone, Andrea; Alonzo, Sydney [Argonne National Laboratory, Argonne, IL (United States). Environmental Science Div.

    2014-07-01

    Growing public concerns about climate change and environmental health impacts related to energy production have led to increased consideration of alternate sources. Nuclear power and unconventional oil and shale gas development are among the options least favored by the public, with pollutant releases resulting from routine operations as well as accidents being among the key concerns. Advances in ICT approaches and the increasingly widespread accessibility of information resources and tools have facilitated community-based initiatives and broader data sharing that can directly contribute to more informed evaluations of energy options, toward more sustainable programs from the local to the global scale.

  20. Preserving the nuclear option: The AIAA position paper on space nuclear power

    International Nuclear Information System (INIS)

    Allen, D.M.; Bennett, G.L.; El-Genk, M.S.; Newhouse, A.R.; Rose, M.F.; Rovang, R.D.

    1996-01-01

    In response to published reports about the decline in funding for space nuclear power, the Board of Directors of the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper in March 1995 that recommends (1) development and support of an integrated space nuclear power program by DOE, NASA and DoD; (2) Congressional support for the program; (3) advocacy of the program by government and industry leaders; and (4) continuation of cooperation between the U.S. and other countries to advance nuclear power source technology and to promote safety. This position paper has been distributed to various people having oversight of the U.S. space nuclear power program. copyright 1996 American Institute of Physics

  1. Nuclear Power Remains Important Energy Option for Many Countries, IAEA Ministerial Conference Concludes

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Nuclear power remains an important option for many countries to improve energy security, provide energy for development and fight climate change, the International Ministerial Conference on Nuclear Power in the 21st Century concluded today. Participants also emphasised the importance of nuclear safety in the future growth of nuclear power, noting that nuclear safety has been strengthened worldwide following the March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station. The Conference was organised by the International Atomic Energy Agency (IAEA) in cooperation with the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD), and hosted by the Government of the Russian Federation through the State Atomic Energy Corporation ROSATOM. Sergei Kirienko, Director General of the State Atomic Energy Corporation ROSATOM, said: ''The Conference has achieved its main goal: to confirm that nuclear energy is an important part of the world's energy-mix. The innovative character of this type of energy provides us with sustainable development in the future. The closed nuclear fuel cycle and fusion may open for humanity absolutely new horizons. The Conference underlined the leading role of the IAEA in promoting the peaceful use of nuclear power and provision of the non-proliferation regime. Russia as a co-founder of the IAEA will always support its efforts to develop and expand safety and security standards all over the world.'' ''I believe we can look ahead with confidence and optimism to the future of nuclear power in the 21st century,'' said IAEA Director General Yukiya Amano. After the accident at the Fukushima Daiichi Nuclear Power Plant in Japan in March 2011, ''effective steps have been taken to make nuclear power plants safer everywhere,'' he stressed. ''Nuclear power will make a significant and growing contribution to sustainable development in the coming decades. The IAEA is committed to ensuring that the

  2. Alternative fuel cycle options: performance characteristics and impact on nuclear power growth potential

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.; Rudolph, R.R.; Deen, J.R.; King, M.J.

    1977-09-01

    The fuel utilization characteristics for LWR, SSCR, CANDU and LMFBR reactor concepts are quantified for various fuel cycle options, including once-through cycles, thorium cycles, and denatured cycles. The implications of various alternative reactor deployment strategies on the long-term nuclear power growth potential are then quantified in terms of the maximum nuclear capacity that can be achieved and the growth pattern over time, subject to the constraint of a fixed uranium-resource base. The overall objective of this study is to shed light on any large differences in the long-term potential that exist between various alternative reactor/fuel cycle deployment strategies

  3. Nuclear Option in Korea

    International Nuclear Information System (INIS)

    Han, K. I.

    2002-01-01

    With sixteen(16) operating nuclear units in Korea, the share of nuclear power generation reached 41% of the total electric power generation as of December 2000. A prediction is that it would further increase to 44.5% by year 2015 according to the national long term power development plan. Four units are currently under construction with 6 more units in order. With little domestic energy resource and increasing energy demand to support national economic growth, Korea has chosen nuclear power as one of the major energy sources to ensure stable power supply and to promote energy self-sufficiency. It has been recognized that nuclear power in Korea is not a selective option but rather a necessity. The Korean nuclear power development started with construction of a 600 MWe size reactor that was designed and constructed by foreign vendors. As the national grid capacity became larger, the size of nuclear units increased to 1000 MWe class. In the mean time, the need for nuclear technology self-reliance grew not only in operation and maintenance but also in construction, manufacturing and design. For this, a nuclear technology self-reliance program has been embarked with the support of the Government and utility, and the 1000 MWe class KSNP(Korean Standard Nuclear Power Plant) has been developed. The KSNPs are currently being designed, manufactured, constructed and operated by relevant Korean entities themselves. To fit into a larger capacity national grid and also to improve nuclear economic competitiveness, the 1400 MWe class KNGR(Korean Next Generation Reactor) design has been developed uprating the 1000 MWe KSNP design. Its construction project is currently under contract negotiation, and is planned to be finished by 2010. In the mean time, to be ready for future electric power market deregulation, the 600 MWe class small KSNP design is being developed downsizing the KSNP. A modular small size reactor, SMART(System Integrated Modular Advanced Reactor) is also being

  4. Annual conference on nuclear technology. Nuclear power 2001: option for the future

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Dresden Palace for Culture was the venue of the ANNUAL MEETING ON NUCLEAR TECHNOLOGY on May 15-17, 2001, the first to be held in Dresden and the first also to be held in one of the new German federal states. Although no nuclear plant is in operation in East Germany after the Greifswald Nuclear Power Station was decommissioned, nuclear technology continues to play an important role especially in research and university teaching in this part of Germany. The organizers of the conference, Deutsches Atomforum e.V. (DAtF) and Kerntechnische Gesellschaft e.V. (KTG), welcomed more than 1000 participants from nineteen countries. The three-day program, with its traditional, proven structure, featured plenary sessions on the first day, and specialized sessions, technical sessions, poster sessions, and other events on the following days. The partner country at the Annual Meeting on Nuclear Technology was Russia, with a session specially devoted to selected topics of the country. The conference was accompanied by a technical exhibition with company meeting points of vendors, suppliers, and service industries. A video film forum was arranged for the interested public which featured contributions about nuclear research, nuclear power plant operation, transport and storage as well as decommissioning. Another major event was a workshop on 'Preserving Competence in Nuclear Technology'. The plenary day is described in this summary report, while the results of the technical sessions as seen by the rapporteurs are printed elsewhere in this issue of atw 8/9, 2001. (orig.) [de

  5. Role of nuclear option in sustainable power system planning in Croatia

    International Nuclear Information System (INIS)

    Tomsic, Z.; Kovacevic, T.; Feretic, D.

    1998-01-01

    To support the projected economic growth, electricity consumption in Croatia should rise by an average annual rate of at least 2.3% till the year 2030. After examining the potentials of new renewable energy sources (wind and solar energy and biomass) for large-scale electricity generation, projections of the required new generating capacities are made and possible developing scenarios of Croatian power system created. Nuclear and non-nuclear expansion options are analyzed, and optimal capacity and generation mixes are found on the basis of annual production costs and the assumption that the natural gas availability is limited. Emissions of SO 2 , NO x , particulates and CO 2 to the atmosphere in both options are calculated. Apart from that, it is analyzed how the hypothetical introduction of a CO 2 emission charge would affect the optimal capacity mix. (author)

  6. Nuclear power as an option in electrical generation planning for Croatia

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Cavlina, N.; Kovacevic, T.

    2000-01-01

    The expected increase of electricity consumption in the next two decades, if covered mainly by domestic production, will require roughly 4500 MW of new installed capacity. The question is which resource mix would be optimal for the future power plants. Taking into account lack of domestic resources for electricity generation, current trends in the European energy markets, and environmental impact of various energy technologies, it seems reasonable for Croatia to keep the nuclear option open in the future energy planning. In line with that conclusion, this paper analyzes how the introduction of nuclear power plants would influence future power system expansion plans in Croatia, and the possibility to meet the Kyoto requirement. The effects of CO 2 emission tax and external costs on the optimal capacity mix and the emissions levels are also examined. (author)

  7. Analysis of an option to finance the investment in a nuclear power plant

    International Nuclear Information System (INIS)

    Villanueva M, C.

    2011-11-01

    According to the recent projection of costs of electric generation published by the International Atomic Energy Agency, with a rate of discount of 10% annual the even unitary cost of a nuclear power station of 1,400 MW of capacity would be 98. 75 USD 2010 /MWh, while for a combined cycle of same capacity that burns natural gas the cost it would be 92. 11 USD 2010 /MWh, operating the power stations with a capacity factor of 85% to generate 10,424 annual G Wh. To 5% annual, the costs would decrease at 58. 53 USD 2010 /MWh for the nuclear energy and at 85. 77 USD 2010 /MWh for the combined cycle. In an indifference analysis of the price of natural gas against the investment cost in the nuclear, with a rate of discount of 10% annual the common cost would be 97. 31 USD 2010 /MWh, when the even price of the natural gas was 10. 50 USD 2010 /G J and simultaneously the unitary cost of investment of the nuclear was 4,023 USD 2010 /kw. Under similar conditions, if the investment in the nuclear power station was 4,163 USD 2010 /Kw to redeem it in 60 years of economic useful life the equivalent annuity would be of USD 2010 790.060 millions that would have the same value of the annual invoice of the natural gas consumed by the combined cycle power station to the price of 12. 00 USD 2010 /G J. Then, as example of an excellent option of the Federal Commission of Electricity to finance with own resources budget them a new nuclear power station, the investment could redeem annually with the savings that it would represent to stop to burn natural gas when displacing the equivalent generation in central of combined cycle. (Author)

  8. Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    2013-01-01

    start a nuclear power programme. The IAEA has published guidance on particular elements of radioactive waste and spent fuel management, such as establishing nuclear technical and regulatory infrastructure, relevant financing schemes, national policy and strategies, multinational approaches and other aspects linked to building nuclear power plants. The present publication is intended to provide a concise summary of key issues related to the development of a sound radioactive waste and spent nuclear fuel management system. It is designed to brief countries with small or newly established nuclear power programmes about the challenges of, and to describe current and potential alternatives for, managing spent fuel and radioactive waste arising during operation and decommissioning of nuclear power plants. The publication deals primarily with current technical options, but also considers possible future developments and discusses relevant legal, political, technical and safety issues. It identifies the role of, and potential actions to be adopted by, the international community, including the IAEA, in order to support the responsible introduction of nuclear power in interested countries

  9. Safety-related topics from the Nuclear Power Options Viability Study

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.

    1986-01-01

    The Nuclear Power Options Viability Study (NPOVS) evaluated innovative reactor concepts, and this article reviews NPOVS findings, with emphasis on safety and licensing. The reactors studied were of light-water, liquid-metal, and helium-cooled concepts, and most were of modular design. Prelicensed standard plants offer an important step toward regulatory stability and early licensing approvals with public participation before major expenditures. Advanced reactors with passive safety features offer the possibility of performance-based regulation. The concepts studied appear to be potentially viable, but more complete designs will be required before economic evaluations can be definitive

  10. Long-term issues associated with spent nuclear power fuel management options

    International Nuclear Information System (INIS)

    Jae-Sol, Lee; Kosaku, Fukuda; Burcl, R.; Bell, M.

    2003-01-01

    Spent fuel management is perceived as one of the crucial issues to be resolved for sustainable utilisation of nuclear power. In the last decades, spent fuel management policies have shown diverging tendencies among the nuclear power production countries - a group has adhered to reprocessing- recycle and another has turned to direct disposal, while the rest of the countries have not taken decision yet, often with ''wait and see'' position. Both the closed and open fuel cycle options for spent fuel management have been subject to a number of debates with pros and cons on various issues such as proliferation risk, environmental impact, etc. The anticipation for better technical solutions that would mitigate those issues has given rise to the renewal of interest in partitioning and transmutation of harmful nuclides to be disposed of, and in a broader context, the recent initiatives for development of innovative nuclear systems. The current trend toward globalization of market economy, which has already brought important impacts on nuclear industry, might have a stimulating effect on regional-international co-operations for cost-effective efforts to mitigate some of those long-term issues associated with spent fuel management. (author)

  11. Nuclear Power as an Option in Electrical Generation Planning for Small Economy and Electricity Grid

    International Nuclear Information System (INIS)

    Tomsic, Z.

    2012-01-01

    Implementing a NPP in countries with relatively small total GDP (small economy) and usually with small electricity grid face two major problems and constrains: the ability to obtain the considerable financial resources required on reasonable terms and to connect large NPP to small electricity grid. Nuclear generation financing in developing countries involves complex issues that need to be fully understood and dealt with by all the parties involved. The main topics covered by paper will be the: special circumstances related to the financing of NPP, costs and economic feasibility of NPP, conventional approaches for financing power generation projects in developing countries, alternative approaches for mobilizing financial resources. The safe and economic operation of a nuclear power plant (NPP) requires the plant to be connected to an electrical grid system that has adequate capacity for exporting the power from the NPP, and for providing a reliable electrical supply to the NPP for safe start-up, operation and normal or emergency shut-down of the plant. Connection of any large new power plant to the electrical grid system in a country may require significant modification and strengthening of the grid system, but for NPPs there may be added requirements to the structure of the grid system and the way it is controlled and maintained to ensure adequate reliability. Paper shows the comparative assesment of differrent base load technologies as an option in electrical generation planning for small economy and electricity grid.(author).

  12. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste

  13. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste.

  14. The nuclear option: The case for using nuclear power to combat climate change

    International Nuclear Information System (INIS)

    Stone, Robert

    2015-01-01

    In December 2015, world leaders will gather in Paris to hammer out a global treaty designed to ratchet back emissions of CO_2 into the atmosphere caused by the burning of fossil fuels. I would urge each delegate, upon checking into his or her hotel room, to step out on to the balcony, take a deep breath, look out at the lights of nuclear-powered Paris and draw inspiration for what a clean energy future might look like. Thanks to France’s decision to deploy nuclear power in a big way some 30 years ago, the country’s electric grid is now almost entirely carbon free. What’s even more remarkable is that the vast majority of that transition was carried out in just 11 years (1969–1980), using the technology of the time. France today enjoys almost zero air pollution from the production of electricity and the cheapest electricity rates in western Europe. Will the climate activists and delegates take heed of what France has accomplished and look to it as a precursor of what might be possible globally? Preliminary negotiations in Lima in late 2014 have taken nuclear energy off the agenda of the climate talks. The world’s leading environmental groups, which are largely driving the agenda, posit that nuclear energy is an unnecessary distraction on the road to a renewable energy future. In making their case they argue that humanity can reduce overall energy demand while simultaneously providing adequate energy to the 3 billion people who currently live with little or no electricity at all, and take care of the additional 3 billion people to be born between now and 2050. They argue that we are on track to being able to replace the entire existing fossil fuel infrastructure, abandon nuclear energy altogether, and meet all the world’s energy needs by using renewable energy alone. And we’ve barely begun to talk about the additional energy that will be required to electrify the world’s transportation sector and meet the growing demand for energy-intensive water

  15. The nuclear option: The case for using nuclear power to combat climate change

    International Nuclear Information System (INIS)

    Stone, Robert

    2015-01-01

    In December 2015, world leaders will gather in Paris to hammer out a global treaty designed to ratchet back emissions of CO 2 into the atmosphere caused by the burning of fossil fuels. I would urge each delegate, upon checking into his or her hotel room, to step out on to the balcony, take a deep breath, look out at the lights of nuclear-powered Paris and draw inspiration for what a clean energy future might look like. Thanks to France’s decision to deploy nuclear power in a big way some 30 years ago, the country’s electric grid is now almost entirely carbon free. What’s even more remarkable is that the vast majority of that transition was carried out in just 11 years (1969–1980), using the technology of the time. France today enjoys almost zero air pollution from the production of electricity and the cheapest electricity rates in western Europe. Will the climate activists and delegates take heed of what France has accomplished and look to it as a precursor of what might be possible globally? Preliminary negotiations in Lima in late 2014 have taken nuclear energy off the agenda of the climate talks. The world’s leading environmental groups, which are largely driving the agenda, posit that nuclear energy is an unnecessary distraction on the road to a renewable energy future. In making their case they argue that humanity can reduce overall energy demand while simultaneously providing adequate energy to the 3 billion people who currently live with little or no electricity at all, and take care of the additional 3 billion people to be born between now and 2050. They argue that we are on track to being able to replace the entire existing fossil fuel infrastructure, abandon nuclear energy altogether, and meet all the world’s energy needs by using renewable energy alone. And we’ve barely begun to talk about the additional energy that will be required to electrify the world’s transportation sector and meet the growing demand for energy-intensive water

  16. Optimal electricity generation system expansion and nuclear power option in Belarus

    International Nuclear Information System (INIS)

    Yakushau, A.; Mikhalevich, A.

    2000-01-01

    After having declared independence, the Republic of Belarus was forced to import 90% of fuel consumed and 25% of electricity. The deficit of peak electric capacity reached 40%. The imported fuel covers the last years because the drop in the production reduced the energy consumption in the Republic but not the needs of the energy sector. Annual payments for imported fuel and electricity are equal to the sum of an annual state budget of Belarus (about 1.5 billion USD) and current debts were not lower 300 million. Comparative analysis of the different scenarios of the electricity generation system expansion showed that an optimum way for electricity generation is installation of the combine cycle units and construction nuclear power plants. The results of the study also showed that the option based on replacement of deficit of the electricity generation by the way of the construction combine cycle units with capacities 450 MW turned out to be the best solution among non nuclear options. (author)

  17. Reactivation of nuclear power plant construction projects. Plant status, policy issues and regulatory options

    International Nuclear Information System (INIS)

    Spangler, M.B.

    1986-07-01

    Prior to the TMI-2 accident on March 28, 1979, four nuclear power plant units that had previously been issued a construction permit were cancelled, principally because of reduced projections of regional power demand. Since that time, an additional 31 units with CPs have been cancelled and eight units deferred. On December 23, 1985 one of the deferred units (Limerick-2) was reactivated and construction resumed. The primary objective of this policy study is to identify the principal issues requiring office-level consideration in the event of reactivation of the construction of one or more of the nuclear power plants falling into two categories: (1) LWR units issued a construction permit whose construction has been cancelled, and (2) LWR units whose construction has been deferred. The study scope is limited to identifying regulatory issues or questions deserving analysis rather than providing, at this time, answers or recommended actions. Five tasks are addressed: a tabulation and discussion of the status of all cancelled and deferred LWR units; and identification of potential safety and environmental issues; an identification of regulatory or policy issues and needed information to determine the desirability of revising certain rules and policies; and identification of regulatory options and decision criteria; and an identification of decision considerations in determining staff requirements and organizational coordination of LWR reactivation policy and implementation efforts. 41 refs

  18. The nuclear power option. Proceedings of an international conference on the nuclear power option held in Vienna, 5-8 September 1994

    International Nuclear Information System (INIS)

    1995-01-01

    At 11 sessions of the conference present status and different aspects of future nuclear power development were discussed. About 150 participants from 37 countries and 7 international organizations attended the conference. 57 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  19. Use of real options in nuclear power plant valuation in the presence of uncertainty with CO2 emission credit

    International Nuclear Information System (INIS)

    Kiriyama, Eriko; Suzuki, Atsuyuki

    2004-01-01

    The purpose of this study is to analyze the value of an investment in power generation assets that do not emit CO 2 , by using a real option model. This study evaluates the effects of future uncertainty on investment decision-making, by focusing on the uncertainty of CO 2 emission credits [yen/t-CO 2 ] in the fairly near future in Japan. Electric utilities are required to keep plans to prepare for various future uncertainties such as the price of CO 2 emission credits. The real option approach can evaluate the option value of decision-making under uncertainty. This study examined the option value of a power plant [yen/KW] to evaluate the effects of an externality under uncertainty. The results showed that nuclear power would have the most value under the forthcoming CO 2 emission limitations. In order to secure the effectiveness of measures against global warming, we should reconsider the roles of nuclear power plants in Japan. Finally, the real option model is shown to be an effective candidate for a decision-making support tool to deal with problems in energy environmental policy. (author)

  20. The nuclear option

    International Nuclear Information System (INIS)

    De Villiers, J.W.L.

    1982-01-01

    Atomic Energy Board President, Dr J.W.L. de Villiers, looks at South Africa's power needs and seeks to justify the country's move into nuclear energy. South Africa's energy requirements, energy resources, future prospects for nuclear energy in South Africa and resource independence are discussed

  1. Longer operating times of nuclear power plants. Options for compensating public utility advantages

    International Nuclear Information System (INIS)

    Bode, Sven; Kondziella, Hendrik; Bruckner, Thomas

    2010-01-01

    The current German government of CDU/CSU and FDP intends to prolong the operating time of existing nuclear power plants in Germany. The advantages resulting for public utilities are to be compensated. The authors discuss how compensation may be achieved and outline the available instruments. (orig.)

  2. Early site reviews for nuclear power facilities: procedures and possible technical review options. Draft

    International Nuclear Information System (INIS)

    1978-02-01

    The document provides guidance for utility companies, State and other governmental agencies, and others who may request or may wish to participate in an early review of site suitability issues related to a site proposed for a nuclear power or test reactor. Although the emphasis of this document is on a nuclear electric generating station, the guidance provided can be used for a test reactor or other kinds of reactors. The procedures to be followed by applicants for construction permits and by others are described and the possible significant areas of technical review are delineated

  3. Nuclear technology options

    International Nuclear Information System (INIS)

    Salvatores, Massimo

    2013-01-01

    Different strategies and motivations in different countries have led to diverse options. In Europe the SNETP (Sustainable Nuclear Energy Technology Platform) has the objective of developing R&D supporting GEN-II (present) and GEN-III nuclear systems under development; allowing sustainability and minimisation of waste burden, promoting advanced Gen-IV Fast Reactors; and accounting for a Nuclear Cogeneration Industrial Initiative. A remarkable initiative in the USA has been the promotion of small modular reactors (SMRs) – at less than 300 MWe in capacity, much smaller than typical reactors – which can be an ideal choice for (remote) areas which cannot support a larger reactor. Compact scalable design offers a host of potential safety, construction and economic benefits. More “upbeat” strategies are expected in other areas of the world where significant increase in nuclear energy demand is predicted in the next decades. If this growth materialises, future fuel cycles characteristics, feasibility and acceptability will be crucial. This paper will discuss different scenarios for future fuel cycles, resources optimisation and/or waste minimization, the range from full fast reactor deployment to phase-out, management of spent nuclear fuel and the significant potential benefits of advanced cycles. The next 45 years will be dominated by deployment of standard large or medium size plants operating for 60 years. Available resources do allow it. However, fuel cycle will be a growing and most challenging issue and early assessments will be needed for public acceptance and policy decisions.

  4. Indonesia - nuclear power as option for the future. Indonesien - Kernenergie als Zukunftsoption

    Energy Technology Data Exchange (ETDEWEB)

    Wiesegart, K [Zentrale Exportabteilung, Asea Brown Boveri (ABB) AG, Mannheim (Germany)

    1993-11-01

    The Republic of Indonesia consists of 13.600 islands, about 6.000 of them are populated. More than half of the ca. 182 mio. inhabitants (1991) live on the main island Java which only has a share of 7% of the total area of the East Asian country. The developing country Indonesia is characterized by economic stability - according to the World Bank its chances to reach the circle of industrialized countries till the year 2000 are good. But electricity supply of the country lags behind overall economic development. Here about 20% of the demand can not be covered. There are high losses in energy production, transmission and distribution. The Indonesian government plans extensions in the power supply area, a doubling of 1991 capacities are strived for till 2000. Financially this is to be attained with the instruments denationalization and deregulation. Apart from coal, water power and geothermal energy now also nuclear power will be used. (orig.)

  5. The role of nuclear power and other options in competitive electricity market study using message model

    International Nuclear Information System (INIS)

    Scorpio Sri Herdinie and Edi Sartono

    2003-01-01

    The electricity demand in Indonesia is very high due to the National Economic Development based on industrialization and supported by a strong agriculture base. It can be noted that in the last five years, the annual electricity growth rate has been reaching around 15% per annum. Though during the economic crisis the electricity demand have time to reduction. Start early 2000s the economic growth in Indonesia will gradually increase. As a consequence, the electricity growth rate also increase in the next coming decades. MESSAGE (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) is a model designed for the optimization of energy system(i.e. energy supplies and utilization). The goal of this study is to support the national planning and decision making process in the energy and electricity sector in Indonesia with regard to the economic, health, environmental and safety aspects. The objective of this study is to analyse the role of Nuclear Power Plant in the whole energy systems by introducing the new electricity regulation and structure in the market. Seen that Nuclear Power Plant will be enter the Java Bali system in the period between 2015-2020. and will dominate the addition of capacities by the end period of study (year 2020-2025). Nuclear energy has very important long term roles in the energy scenario and it is possible to do the market competitive when the Multi buyer Multi Seller (MBMS) will be done in the system electricity in Indonesia(the government has changed the target of MBMS realization into 2007). (author)

  6. Case study on comparative assessment of nuclear and coal-fueled electricity generation options and strategy for nuclear power development in China

    International Nuclear Information System (INIS)

    Zhao Shiping; Shi Xiangjun; Bao Yunqiao; Mo Xuefeng; Wei Zhihong; Fang Dong; Ma Yuqing; Li Hong; Pan Ziqiang; Li Xutong

    2001-01-01

    China, as other countries in the world, is seeking for a way of sustainable development. In energy/electricity field, nuclear power is one of electric energy options considering the Chinese capability of nuclear industry. The purpose of this study is to investigate the role of nuclear power in Chinese energy/electricity system in future by comprehensive assessment. The main conclusions obtained from this study are: (1) China will need a total generation capacity of 750 - 879 GW in 2020, which means new power units of 460 - 590 GW generation capacity will be built from 2001 to 2020. (2) the total amount of SO 2 emission from power production will rise to 16 - 18 Mt in 2020, about 2.8 - 3.2 times of 1995, even if the measures to control SO 2 emission are taken for all new coal units. (3) CO 2 emission from electricity generation will reach 21 - 24 Gt in 2020. (4) the environmental impacts and health risks of coal-fired energy chain are greater than that of nuclear chain. The normalized health risk caused by coal chain is 20.12 deaths/GW·a but 4.63 deaths/GW·a by nuclear chain in China. (5) As estimated by experts, there will be a shortage of 200 GW in 2050 in China even if considering the maximum production of coal, the utilization of hydropower and renewable resource. Nuclear power is the only way to fill the gap between demand and supply

  7. Feasibility analysis in the expansion proposal of the nuclear power plant Laguna Verde: application of real options, binomial model

    International Nuclear Information System (INIS)

    Hernandez I, S.; Ortiz C, E.; Chavez M, C.

    2011-11-01

    At the present time, is an unquestionable fact that the nuclear electrical energy is a topic of vital importance, no more because eliminates the dependence of the hydrocarbons and is friendly with the environment, but because is also a sure and reliable energy source, and represents a viable alternative before the claims in the growing demand of electricity in Mexico. Before this panorama, was intended several scenarios to elevate the capacity of electric generation of nuclear origin with a variable participation. One of the contemplated scenarios is represented by the expansion project of the nuclear power plant Laguna Verde through the addition of a third reactor that serves as detonator of an integral program that proposes the installation of more nuclear reactors in the country. Before this possible scenario, the Federal Commission of Electricity like responsible organism of supplying energy to the population should have tools that offer it the flexibility to be adapted to the possible changes that will be presented along the project and also gives a value to the risk to future. The methodology denominated Real Options, Binomial model was proposed as an evaluation tool that allows to quantify the value of the expansion proposal, demonstrating the feasibility of the project through a periodic visualization of their evolution, all with the objective of supplying a financial analysis that serves as base and justification before the evident apogee of the nuclear energy that will be presented in future years. (Author)

  8. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  9. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  10. Comparative assessment of nuclear power and other options: the DECADES project

    International Nuclear Information System (INIS)

    Vladu, I. F.

    1996-01-01

    This paper presents the results obtained in constructing and implementing a general framework for performing comprehensive assessment within the inter-agency joint project on Databases and Methodologies for Comparative Assessment of Different Energy Sources for electricity generation. The project was established in 1992 by nine international organizations. A short description of the DECADES project objectives, structure and main components is given. The technology inventory databases, which are a major part of the project, address all the levels of different energy chains, from fuel extraction through electricity generation to waste disposal. These databases support comparative assessment in the power sector, by providing generic information as well as country or region specific information on existing technologies and on those expected to enter the market in the next two to three decades. The paper further touches on the types of assessment that can be carried out using the methodology and databases developed. It point out in this regard the possibilities and limitations of comparative assessments performed at the level of power plant, full electricity supply chain and country or region electricity generation system. Illustrative results are presented for comparisons performed at all these levels. Case studies and workshops and seminars are one of the main activities carried out until now for validation and dissemination of the DECADES Computer Tools. In those studies where it was considered, nuclear power appeared to be cost effective for reducing emissions of CO 2 , SO 2 , NO x and other greenhouse gases. Finally, the paper briefly introduce the activities envisaged for the phase II of the DECADES project which will focus on disseminating the current computer tools, providing training in the use of the tools, and supporting country studies, and on development of new analytical capabilities. The paper concludes with some findings and remarks pointing out the

  11. USP university students social representations and views on nuclear power as energy option

    International Nuclear Information System (INIS)

    Farias, Luciana A.; Favaro, Deborah I.T.

    2011-01-01

    The Nuclear Energy Research Institute (IPEN) is located on the campus of the University of Sao Paulo and has long been publishing nuclear science projects in order to improve public opinion and disseminate nuclear energy issues. However, few studies have investigated the perception of university students concerning nuclear energy. This study questioned whether the location of a nuclear research facility, as well as promotion of scientific projects, can positively influence student opinion when the nuclear research reactor is on campus and used purely for research purposes. This study further investigated the students' understanding of the terms 'nuclear energy' as well as their perception of the social issues involved. Free evocations of words were produced and collected starting from the stimulative inductor 'Nuclear Energy'. In this test, the interviewees are asked to associate five words and answer a questionnaire. A total of 124 students were interviewed for this study: 62 from the Chemistry, Pharmacy, Environmental Chemistry, Chemical Engineering and Nutrition Departments, 29 from the Oceanography Department and 33 from the Economics, Business Administration and Accounting Department. A total of 78% of the interviewed students answered that they had basic or average knowledge of nuclear energy, 46% claimed to have no knowledge of IPEN and the remainder students have answered that IPEN's activities were aimed at research in energy and production of radiopharmaceuticals, which shows little knowledge of the activities of the Institute. However, these students indicated Nuclear Energy as a strong for the diversification of energy sources. It should be noted that this study was undertaken before the nuclear accident caused by the 2011 Japan tsunami and earthquake. (author)

  12. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  13. Report of “the 2013 international forum on peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Ensuring nuclear non-proliferation and nuclear security of nuclear fuel cycle options in consideration of the accident at TEPCO's Fukushima Daiichi Nuclear Power Station”

    International Nuclear Information System (INIS)

    Yamamura, Tsukasa; Suda, Kazunori; Tomikawa, Hirofumi; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro

    2014-03-01

    The Japan Atomic Energy Agency (JAEA) held “International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-proliferation and Nuclear Security – Ensuring Nuclear Non-Proliferation and Nuclear Security of Nuclear Fuel Cycle Options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station –” on 3 and 4 December 2013, with the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo, as co-hosts. In the Forum, officials from Japan, the United States, France and International Atomic Energy Agency (IAEA) explained their efforts regarding peaceful use of nuclear energy and nuclear non-proliferation. Discussion was made in two panels, entitled “Nuclear non-proliferation and nuclear security measures of nuclear fuel cycle options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station” and “Roles of safeguards and technical measures for ensuring nuclear non-proliferation for nuclear fuel cycle options”. In the first panel based on the implications of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station on the domestic and global nuclear energy use and increased interest in the back end of nuclear fuel cycle, discussion was made on nuclear non-proliferation and nuclear security challenges on both fuel cycle options from the policy and institutional viewpoints whereas in the second panel the roles of safeguards and proliferation resistant nuclear technology including plutonium burning technology in ensuring nuclear non-proliferation and nuclear security in the back end of nuclear fuel cycle were discussed. Officials and experts from Japan, IAEA, the United States, France and Republic of Korea participated in the panel and made contributions to active discussion. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording

  14. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  15. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  16. An assessment of the potentials of nuclear power and carbon capture and storage in the long-term global warming mitigation options based on Asian Modeling Exercise scenarios

    International Nuclear Information System (INIS)

    Mori, Shunsuke

    2012-01-01

    This paper presents an evaluation of global warming mitigation options based on scenarios from the Asian Modeling Exercise. Using an extended version of the integrated assessment model MARIA-23 (Multiregional Approach for Resource and Industry Allocation), we analyze nuclear fuel recycling options, carbon capture and storage technologies (CCS), and biomass utilization. To assess the potential implications of decreased social acceptance of nuclear power in the wake of the Fukushima nuclear accident, additional scenarios including a nuclear power expansion limitation, are analyzed. We also evaluate MARIA-23 model simulation estimates of long-term contributions and interrelationships among nuclear power, biomass, and CCS. Finally, potential costs of nuclear limitation under carbon control policies are assessed. The simulation results in this paper suggest the following: (1) under the reference scenario, global GDP losses in climate limitation scenarios range from 1.3% per year to 3.9% per year in 2060, rising to between 3.5% per year and 4.5% per year in 2100; (2) the use of nuclear fuel reprocessing technologies increase rapidly in all carbon control policy scenarios; (3) under a scenario where the price of CO 2 is $30 and nuclear power expansion is strictly limited, GDP losses increase significantly—from 4.5% per year to 6.4% per year by 2100; (4) nuclear power and CCS are substitute mitigation technologies. With nuclear power technology available CCS deployment reaches approximately 15,000 Mt-CO 2 per year by 2010; without a nuclear power option, CCS deployment rises to more than 80,000 Mt-CO 2 per year; and (5) biomass utilization cannot fully compensate for limitations to nuclear power expansion in policy scenarios. In addition to examining the role of these three technologies on global scales, we report results for several major Asian regions, namely Japan, China, and India. China tends to deploy nuclear power (if available) in response to rapidly growing

  17. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  18. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  19. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  20. The nuclear option

    International Nuclear Information System (INIS)

    Herken, G.

    1992-01-01

    A development history and current status evaluation are presented for nuclear-thermal rocket propulsion systems applicable to interplanetary flight. While the most advanced current chemical rocket engines, such as the SSMEs of the Space Shuttle, produce specific impulses of the order of 450 secs, a nuclear-thermal rocket engine tested at Los Alamos in 1969 generated 845 secs; such specific impulse improvements could represent weeks or months of interplanetary travel time. Attention is given to the achievements of the historical Nuclear Engine for Rocket Vehicle Application, Helios, and Orion design programs, as well as to the current Vehicle for Interplanetary Space Transportation Applications, which is fusion-based

  1. A Study on the Economic Analysis for Overseas Project of New Nuclear Power Plant Using Binomial Option Pricing Model and Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beong Gwon; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    Real options approach is suitable for evaluation of large-scale investment project with great uncertainties. Takizawa and Omori (2001) introduced a real option approach to calculate electricity price for economic feasibility. Rothwell (2006) modeled the net present value (NPV) of building an ABWR in Texas using ROA to determine the risk premium associated with net revenue uncertainty. W.C Yoon (2006) evaluated nuclear power plant construction value using DCF and ROA with sensitivity analysis. The value evaluations involved with nuclear power are very uncertain. This is because of a long period of construction as well as the cost uncertainties of decommissioning and nuclear waste management. Even more elements should be considered in new nuclear power valuation, including the uncertainty from the technology, operating costs, the potential risk of radiation, electricity mechanism and climate policy. In this respect, a traditional method such as discounted cash flow (DCF) can't fully catch the impacts of these uncertainties on nuclear power investment. So it is necessary to develop a proper method to handle such kinds of uncertainties to evaluate the new deployment of nuclear power plants. Meanwhile, overseas construction projects which are required capital investment, localization by target countries are increasing in these days. These elements may influence the uncertainty of project too.

  2. The politics of nuclear power

    International Nuclear Information System (INIS)

    Elliott, D.

    1978-01-01

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  3. Assessing the impact of framing on the comparative favourability of nuclear power as an electricity generating option in the UK

    International Nuclear Information System (INIS)

    Jones, Christopher R.; Eiser, J. Richard; Gamble, Tim R.

    2012-01-01

    In 2007 the UK government's public consultation on the future of nuclear power courted much criticism. Three studies were conducted to assess whether key arguments used by government within this consultation might have influenced public opinion about the technology. Participants first read a passage of text that made salient certain positive (climate change mitigation, increased energy security) or negative (nuclear waste) aspects of the nuclear debate. Participants then completed a task that required them to create an electricity mix for the UK by varying the contributions made by each of five energy sources (coal, gas, nuclear, renewables and electric import). Study 1 seemed to indicate that pitching the debate in terms of climate change mitigation was effective in increasing endorsement of nuclear power. The results of studies 2 and 3, however, contested this conclusion, suggesting that these arguments were having little direct impact upon participants' preferences for nuclear power. The results of these studies hold implications for UK energy policy and attitude assessment and can contribute to the understanding of how the arguments used by government in the 2007 consultation might have influenced public opinion. - Highlights: ► Three studies investigate the acceptability of nuclear power in response to ‘framing’ used by government in 2007 UK consultation. ► Acceptability of nuclear power was compared against four energy sources in an ‘electricity calculator’ task. ► Study 1 showed an apparent increase in the endorsement of nuclear following climate change ‘framing’. ► Studies 2 and 3 contradict this finding, suggesting that ‘framing’ had a limited direct effect on preferences for nuclear power.

  4. Village power options

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, P. [National Renewable Energy Laboratory, Golden, CO (United States)

    1997-12-01

    This paper describes three different computer codes which have been written to model village power applications. The reasons which have driven the development of these codes include: the existance of limited field data; diverse applications can be modeled; models allow cost and performance comparisons; simulations generate insights into cost structures. The models which are discussed are: Hybrid2, a public code which provides detailed engineering simulations to analyze the performance of a particular configuration; HOMER - the hybrid optimization model for electric renewables - which provides economic screening for sensitivity analyses; and VIPOR the village power model - which is a network optimization model for comparing mini-grids to individual systems. Examples of the output of these codes are presented for specific applications.

  5. Public perceptions of nuclear power, climate change and energy options in Britain: summary findings of a survey conducted during October and November 2005

    Energy Technology Data Exchange (ETDEWEB)

    Wouter Poortinga; Nick Pidgeon; Irene Lorenzoni [University of East Anglia, Norwich (United Kingdom). Centre for Environmental Risk, School of Environmental Sciences

    2006-07-01

    This report presents the findings of a large-scale British survey (n=1491) of public opinion towards future energy options for the nation, with a focus on attitudes to nuclear power in the context of climate change. People are generally more interested and concerned about climate change than they are about nuclear power. People tend to favour renewable energy sources over fossil fuels, whilst nuclear power is the least favoured of the three. When asked about the future contribution of energy sources to reliable and secure electricity supplies, a slightly different picture appears: renewables are still most favoured, but nuclear power now gains a ranking above coal and oil and one comparable with gas. People do differentiate various electricity generation sources in terms of their (generally positive and negative) factors. In this respect the general stigma attached to nuclear power remains. Specifically, many people think it creates dangerous waste and is a hazard to human health. On the other hand, most people perceive wind power as clean, safe, good for the economy and cheap. Coal on the other hand is seen as polluting and (correctly) as a cause of climate change. If the costs of supplying the UK's energy needs were the same from either nuclear power or renewable energy sources, 77% of the respondents indicated they would prefer renewable energy sources. Less than 10% would prefer nuclear power over renewables under such circumstances. There was a strong preference for solutions other than nuclear power to mitigate climate change, such as promoting renewable energies (78%), or through lifestyle changes and energy efficiency (76%). 14 refs., 3 tabs.

  6. Nuclear power - the future

    International Nuclear Information System (INIS)

    Hann, J.

    1991-01-01

    It is asserted by the author that nuclear power is the only available resource - indeed the only solution to an ever-increasing demand for energy in the United Kingdom over the next 50-100 years. It must be the cornerstone of a practical integrated energy policy, covering that sort of time-scale. In fact, it is going to be a strategic necessity. In this paper the background to establishing a policy is sketched. An explanation is given of what the nuclear industry is doing so as to ensure that the nuclear option is very definitely retained as a result of the 1994 Review of nuclear power in the UK. (author)

  7. The perspectives of nuclear option for Croatia

    International Nuclear Information System (INIS)

    Feretic, D.

    2004-01-01

    In order to satisfy the expected level of electricity consumption in Croatia it will be necessary, as a minimum, until the year 2020 to install about 2000 MW in new power plants. Gas and coal fired plants presently are main competitors to nuclear power plants. In near future it my be different due to expected problems with gas availability and cost increase and also in adverse environmental impact (particularly due to CO 2 emissions) of coal fired plants. Nuclear power plants have advantage not only in economics of produced energy but also in impact to the environment. Preservation of knowledge obtained during construction of NPP Krsko is also an important reason to maintain nuclear option. Pre construction and construction period for new plants (particularly for coal fired and nuclear plants) could be long so that timely start of preparatory activities is indispensable to meet the required schedule.(author)

  8. Aspect of nuclear power

    International Nuclear Information System (INIS)

    Haghighi Oskoei, R.; Raeis Hosseiny, N.

    2004-01-01

    Over the next 50 years, unless patterns change dramatically, energy production and use will contribute to global warming through large-scale greenhouse gas emissions-hundreds of billions of tonnes of carbon in the form of carbon dioxide. Nuclear power would be one option for reducing carbon emissions. At present, however, this is unlikely: nuclear power faces stagnation and decline. We decided to study the future of nuclear power because we believe this technology , despite the changes it faces, is an important option for the world to meet future energy needs without emitting carbon dioxide and other atmospheric pollutants. Other options include increased efficiency, renewable and sequestration. We believe that all options should be preserved as nations develop strategies at provide energy while meeting important environmental challenges. The nuclear power option will only be exercised, however if the technology demonstrates better economics, improved safety, successful waste management, and low proliferation risk, and if public policies place a significant value on electricity production that does not produce carbon dioxide

  9. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  10. Nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.

    1985-01-01

    The question 'Do we really need nuclear power' is tackled within the context of Christian beliefs. First, an estimate is made of the energy requirements in the future and whether it can be got in conventional ways. The dangers of all the ways of supplying energy (eg coal mining, oil and gas production) are considered scientifically. Also the cost of each source and its environmental effects are debated. The consequences of developing a new energy source, as well as the consequences of not developing it, are considered. Decisions must also take into account a belief about the ultimate purpose of life, the relation of men to each other and to nature. Each issue is raised and questions for discussion are posed. On the whole the book comes down in favour of nuclear power.

  11. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  12. The future of the nuclear option

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1992-01-01

    This paper reports on the future of the nuclear option. No nuclear power reactors have been ordered in the U.S.A. since 1975, but the number of operating reactors has increased to the 115 operating today. The demand for electric power continues to grow. At this time, concern over the environmental effects of fossil fuels has grown; global warming and acid rain effects are major determinants of energy policy. In these circumstances nuclear power may be the only viable option to meet the growing demand for electricity. In the past decade the nuclear power industry has addressed its major critics by standardizing designs, improving operator training, and developing safe methods of disposing of waste products. Fast breeder reactors have taken a new lease on life through the American Integral Fast Reactor (IFR) design which is inherently safe, proliferation resistant, and helps the waste-disposal problem. It will probably not be commercially available until well into the next century. The extension of reactor life raises questions of long-term thermal and radiation effects

  13. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  14. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  15. Energy and the environment: 'the nuclear option'

    International Nuclear Information System (INIS)

    Hawley, Robert

    1997-01-01

    The world's consumption of primary energy continues to rise rapidly, mainly because of the developing countries who cannot yet provide the services essential to improving the quality of life. Increasing energy consumption, the effect it will have on the world's finite resources and, more importantly, on the environment, leave the world's population facing serious challenges. This paper will briefly consider the power generation technology options that offer sustainable development including the role that nuclear power plays today, and will need to play in the next century, to preserve and improve the quality of life worldwide. (author)

  16. Options contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    This article discusses options trading in the nuclear fuels industry. Although there now exists no formal options market in the nuclear industry, flexibilities, or embedded options, are actually quite common in the long-term supply contracts. The value of these flexibilities can be estimated by applying the methods used to evaluate options. The method used is the Black-Scholes Model, and it is applied to a number of examples

  17. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  18. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  19. Options for the ultimate storage of low and medium level radioactive wastes produced at Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Emeterio, Miguel

    1991-01-01

    The devoted time and still to be expend in prepare, execute and teach permanent and safe solutions to the problem of the evaluation of radioactive wastes reflects the political, economic and environmental importance with respect to public health and safety invested in this task, as well as, its technological challenges. In the case of Laguna Verde nuclear power plant, its low and medium level radioactive wastes are stored in the beginning in a temporal store with a capacity of 2000 m 3 sufficient to four years of normal operation; according to what it is necessary to select one of different ways of waste storage. Different technologies has been evaluated and the preliminary conclusion is that for Mexico the more feasible way to store radioactive wastes is in tumulus (Author)

  20. Multi-criteria Evaluation of Nuclear Option

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Jaksic, D.

    2002-01-01

    When evaluating power system expansion scenarios there is a need to take into consideration a range of measurable and non-measurable impacts. Measurable impacts are fixed and variable production costs and, recently, external costs. Non-measurable impacts include public attitude to certain energy technology and investor's risk in achieving the expected profit (regulatory and political risk). Public attitude has a large and sometimes essential impact on decision-making. It is mostly associated with the expected environmental impact of a potential power plant and can be divided in rational and non-rational part. Rational part, which is in proportion with scientifically approved environmental impact of energy options (inversely proportional to external costs) is relatively small, while the other, non-rational category which is not proportional with the actual environmental impact (especially in the case of nuclear power), is much larger. Investor's risk in achieving the expected profit is mostly associated with possible changes of domestic or foreign regulations or policy that can influence power plant operation and long-term fuel availability and price. Two factors that affect decision-making should be distinguished. The first is the total impact of certain non-measurable factor and the other is the impact of certain technology on that non-measurable factor like public impact, for example. The objective of multi-criteria evaluation, after weighting and quantification of all impacts is to determine the most acceptable power system expansion option. In the article a simplified quantification will be made of measurable (investment costs, annual maintenance costs, fuel price, indirect costs of power plants) and non-measurable (public attitude, investor's risk) elements that affect future investment decision. For that purpose possible relative values of non-measurable impacts of different options will be determined (their weights and impact on relative increase of annual

  1. Nuclear power

    International Nuclear Information System (INIS)

    d'Easum, Lille.

    1976-03-01

    An environmentalist's criticism of nuclear energy is given, on a layman's level. Such subjects as conflict of interest in controlling bodies, low-level radiation, reactor safety, liability insurance, thermal pollution, economics, heavy water production, export of nuclear technology, and the history of the anti-nuclear movement are discussed in a sensationalistic tone. (E.C.B.)

  2. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  3. Strategy for utilizing nuclear power

    International Nuclear Information System (INIS)

    Martens, E.J.

    1977-01-01

    One of the national goals is to achieve independence in the area of energy supplies in the next few years. It is believed that attaining this goal will require extensive utilization of nuclear power in conventional fission reactors. It is proposed that the best way to develop the nuclear resource is through government ownership of the reactors. It is argued that this will minimize the risks associated with the nuclear-power option and clear the way for its exploitation

  4. Can nuclear power compete?

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1993-01-01

    The competitiveness of electricity generation from new nuclear plant with that from fossil-fired plant depends on a number of factors, the most important of which are the future costs of fossil fuels and the required rate of return on capital. Nuclear power is generally expected to remain competitive for baseload generation in OECD countries except in regions with direct access to cheap fossil fuels, based on the economic criteria and price expectations prevailing in the different countries. The situation in the United Kingdom will be clearer later in 1993 when comparisons prepared for the Government's Nuclear Review are published, but on the basis of the information available new nuclear plants should be competitive with the other technical options available for deployment around the year 2000. (author)

  5. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  6. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  7. A case for reviving the nuclear option

    International Nuclear Information System (INIS)

    Smith, S.H. Jr.

    1991-01-01

    The US simply cannot afford to ignore an energy source that provides the economic, environmental, and strategic benefits that nuclear power has provided over the past three decades. Compared to the mix of coal, oil, and gas that would have been used to generate electricity in its absence, nuclear power has saved American consumers almost $5 billion in electricity charges since 1973; has cut annual SO 2 emissions by 5 million tons, NO x emissions by 2 million tons, and CO 2 emissions by 128 million tons; and has reduced annual oil imports by 270 million barrels. Indications are that the new advanced design reactors presently under development will be able to provide consumers with competitively priced electricity for decades to come. However, political issues, not technical ones, stand in the way. The industry is doing its part to make nuclear energy a viable option. But the industry cannot do it alone. Universities, environmental groups, political organizations, and others also have important roles to play

  8. Nuclear options in Latin America

    International Nuclear Information System (INIS)

    1983-11-01

    An account is given of the Treaty of Tlatelolco, 1967, providing for the designation of Latin America as a Nuclear Weapon-Free Zone (NWFZ); additional protocols attached to the Treaty are available for signature by States outside the region. The Treaty is administered by the Organisation for the Prohibition of Nuclear Weapons in Latin America (OPANAL). Reference is made to its latest meeting, held in May 1983. The present paper also discusses the following: Non-Proliferation Treaty (with references to safeguards agreements concluded between each State and the IAEA); nuclear suppliers' group; peaceful nuclear explosions; nuclear energy programmes in Latin America. (U.K.)

  9. Public enlightment seminar on nuclear power. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, N

    1998-12-31

    The seminar considered different aspects of nuclear power development, including the following issues: electricity generation, power supply and demand, energy sources, consumption of electricity, energy outlook in Europe, comparative analysis of energy options, safety of modern nuclear power plants, radiation and human health, radioactive waste management, nuclear techniques to promote world food security, public information issues.

  10. Public enlightment seminar on nuclear power. Proceedings

    International Nuclear Information System (INIS)

    Yildirim, N.

    1997-01-01

    The seminar considered different aspects of nuclear power development, including the following issues: electricity generation, power supply and demand, energy sources, consumption of electricity, energy outlook in Europe, comparative analysis of energy options, safety of modern nuclear power plants, radiation and human health, radioactive waste management, nuclear techniques to promote world food security, public information issues

  11. Economical viability of the nuclear option in Mexico

    International Nuclear Information System (INIS)

    Ortiz, R.; Alonso, G.; Sanchez, J.

    2006-01-01

    Due to the high volatility of the gas prices and the concern for CO2 emissions, the nuclear option seems to be an option that needs to consider in a electricity expansion portfolio. In this paper a levelized electricity cost analysis is performed to compared different scenarios of electricity generation using combined cycles by using gas and nuclear power stations. The scenarios comprises different discount rates for the investment that goes from 5% to 12%, gas prices from 4.44 USD/mmBTU to 7 USD/mmBTU and overnight cost for Nuclear Power Plants from 1200 USD/kW to 1600 USD/kW. The overall cash flow including investment is analyzed during the whole life of the power plants to test the convenience of the best option in the long run

  12. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Single Channel Trip System for the Dungeness B AGRs in the United Kingdom has enabled Nuclear Electric to enhance the performance of each of the twin reactors progressively towards the design figure of 660MW. The unique self-testing dynamic nature of the microprocessor-based ISAT system was one of the key factors in satisfying the UK Regulator that the system met the demanding requirements of the Dungeness B application, and current operational and maintenance experience is very encouraging. Systems based on the ISAT principle have application in reactor protection systems throughout the world. (Author)

  13. Facts about nuclear power

    International Nuclear Information System (INIS)

    Muench, E.

    1980-01-01

    The argument concerning the introduction and the further expansion of nuclear energy in the Federal Republic of Germany has been existing for several years in differing intensities and most different forms. The arguments and theses of the discussion deal with the various aspects of the reciprocity between nuclear energy and environment. This is the key-note for the scientists to treat the relevant problems and questions in the discussion about nuclear energy. The controversy in which often emotional theses are stated instead of reasonably deliberating the pros and contras includes civil initiatives, societies, and environment protection organisations on the one hand and authorities, producers, and operators of nuclear-technical plants on the other. And the scale of the different opinions reaches from real agreement to deep condemnation of a technology which represents an option to meet the energy need in the future. In this situation, this book is an attempt to de-emotionalize the whole discussion. Most of the authors of the articles come from research centres and have been working on the problems they deal with for years. The spectrum of the topics includes the energy-political coherences of nuclear energy, the technical fundaments of the individual reactor types, safety and security of nuclear-technical plants the fuel cycle, especially the waste management in nuclear power plants, environmental aspects of energy generation in general and nuclear energy in special, the question of Plutonium and the presentation of alternative energy sources including nuclear fusion. The arrangement of these topics is meant to help to clarify the complex coherences of nuclear energy and to help those interested in problems of energy policy to make their own personal decisions. (orig./RW) [de

  14. The nuclear option in Canada - why it is gaining ground

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Alizadeh, A.; Hedges, K.R.; Tighe, P.

    2005-01-01

    Over the last five years, the nuclear option in Canada has gone from 'off-the-radar' to an essential part of the energy debate. In Ontario, in particular, building new nuclear plants, along with life-extension of existing plants, has been recommended by government commissions as one of the vital energy-supply options to be pursued. Both life-extension and introduction of new nuclear power plants are complicated by uncertainties in the energy market, and by changes in the organizational and policy environment. Public and policy-maker recognition of the nuclear role are steadily growing, but commercial conditions to support nuclear projects are still difficult to define and obtain. In Canada, as in many OECD countries, the need to add to electricity infrastructure is becoming apparent. Life-extension of existing nuclear units, and projects to build new unit, are being planned. The key challenges, once energy policy issues have been addressed, are mainly commercial. Based on its successful experience with overseas projects such as Quinshan, and on its evolutionary approach to design of new, advanced power plants, AECL is well placed to meet these challenges and launch a new round of nuclear projects. Overall, the Canadian perspective is towards increasing support for the nuclear option. Canada is poised to join the vanguard of the broadening nuclear power expansion. (orig.)

  15. Ukraine's non-nuclear option

    International Nuclear Information System (INIS)

    Batiouk, V.

    1992-01-01

    It seems that only yesterday the dilemma confronting our world was not that of war or peace but rather of life or death for mankind, the reason being mainly the prospect of mass annihilation which became increasingly vivid with each and every new explosive nuclear device added to the already existing enormous stockpiles of warheads of mass annihilation. Against this gloomy background of a despairingly reckless arms race, the long-awaited signs began to appear. First the United States and the Soviet Union found it possible to initiate the process by cutting into their immeasurable nuclear arsenals, then Ukraine declared its intention to become non-nuclear by the end of 1994. All the newly independent States, of the former Soviet Union, except Russia, also agreed to renounce possession of nuclear arms. The declarations were put into effect and the most recent specific action was the removal by 6 may 1992 of all short-range nuclear weapons from Ukrainian territory to Russian soil with a view to their ultimate dismantlement. The signature on 23 May 1992 in Lisbon by four ex-Soviet States (Belarus, Kazakhstan, Russia and Ukraine) and the United States of a Protocol to the 1991 Treaty on the Reduction of Strategic Offensive Weapons (START), significantly lowered the risk of nuclear war. By this accord Belarus, Kazakhstan and Ukraine agreed to destroy or turn over to Russia all strategic nuclear warheads and to accede ''in the shortest possible time to the 1968 Nuclear Non-proliferation Treaty''. In early May, Ukraine proposed to remove all nuclear weapons from the Black Sea and make it a zone of peace

  16. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  17. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    Rosen, M.

    2000-01-01

    The substantial increase in global energy consumption in coming decades will be driven principally by the developing world. Although there is some awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favored option in a sustainable energy future. This paper, after discussion of rising energy consumption, concentrates on a comparison of the environmental impacts of the available energy options. (author)

  18. FEL options for power beaming

    International Nuclear Information System (INIS)

    Kim, K.J.; Zholents, A.A.; Zolotorev, M.S.; Vinokurov, N.A.

    1997-10-01

    The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ''slot'' in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is P L = 200kW. The wavelength is chosen to be λ 0.84 microm, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes

  19. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  20. Nuclear power in Italy

    International Nuclear Information System (INIS)

    Santarossa, G.

    1990-01-01

    As is known to most of this audience in November of 1987 a referendum determined a rejection of nuclear power in Italy. The referendum may be taken into consideration here as a large scale experiment which offers points of interest to this conference and problems to be aware of, in approaching a severe confrontation with the public. To give a synopsis of the Italian perspective I will examine: first the public acceptance in the situation before Chernobyl, then the most disturbing and sensitive factors of Chernobyl's consequences; how the opposition to nuclear energy worked with the support of most media and the strong pressures of an anti-nuclear political party, the syllogism of the opponents and the arguments used, the causes of major weakness of the defenders and how a new perception of nuclear risk was generated in the public. I will come to the topic of utility acceptance by mentioning that ENEL, as the National Utility, in its role is bound to a policy of compliance with Government decisions. It is oriented today to performance of feasibility studies and development of requirements for the next generation of reactors in order to maintain an updated proposal for a future recovery of the nuclear option. I will then try to identify in general terms the factors determining the future acceptance of nuclear power. They will be determined in the interdisciplinary area of politics, media and public interactions with the utilities the uses of the technology are forced to follow, by political constraints, two main directives: working only in new projects to achieve, if possible, new safety goals

  1. Nuclear power in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Santarossa, G [ENEA, Rome (Italy)

    1990-07-01

    As is known to most of this audience in November of 1987 a referendum determined a rejection of nuclear power in Italy. The referendum may be taken into consideration here as a large scale experiment which offers points of interest to this conference and problems to be aware of, in approaching a severe confrontation with the public. To give a synopsis of the Italian perspective I will examine: first the public acceptance in the situation before Chernobyl, then the most disturbing and sensitive factors of Chernobyl's consequences; how the opposition to nuclear energy worked with the support of most media and the strong pressures of an anti-nuclear political party, the syllogism of the opponents and the arguments used, the causes of major weakness of the defenders and how a new perception of nuclear risk was generated in the public. I will come to the topic of utility acceptance by mentioning that ENEL, as the National Utility, in its role is bound to a policy of compliance with Government decisions. It is oriented today to performance of feasibility studies and development of requirements for the next generation of reactors in order to maintain an updated proposal for a future recovery of the nuclear option. I will then try to identify in general terms the factors determining the future acceptance of nuclear power. They will be determined in the interdisciplinary area of politics, media and public interactions with the utilities the uses of the technology are forced to follow, by political constraints, two main directives: working only in new projects to achieve, if possible, new safety goals.

  2. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  3. BS degree in nuclear engineering or a nuclear option

    International Nuclear Information System (INIS)

    Williams on, T.G.

    1988-01-01

    Many nuclear engineering educators are concerned about the health of nuclear engineering academic departments. As part of a review of the BS nuclear engineering degree program at the University of Virginia, the authors surveyed several local utilities with operating nuclear plants about their needs for nuclear engineering graduates. The perception of many of the utility executives about a nuclear engineering degree and about a nuclear option in another engineering curriculum does not agree with the way the authors view these two degrees. The responses to two of the survey questions were of particular interest: (1) does your company have a preference between nuclear engineering graduates and graduates in other fields with a nuclear option? (2) what do you consider to be a minimum level of education in nuclear engineering for a nuclear option in mechanical engineering? All of the four utilities that were surveyed stated a preference for mechanical or electrical engineers with a nuclear option, although two indicated that there are certain jobs for which a nuclear engineering graduate is desired

  4. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  5. Nuclear power of Korea

    International Nuclear Information System (INIS)

    Chun Bee-Ho

    2011-01-01

    National nuclear is presented. Nuclear energy safety after Fukushima, international cooperation in nuclear energy is discussed. Nuclear projects with the United Arab Emirates have been developed to build 4 nuclear power plants in the UAE - APR 1400. At the Korea-Bulgaria Industrial Committee Meeting in Sofia (March 2011) Korean side proposed Nuclear Safety Training Program in Korea for Bulgarian government officials and experts transfer of know-how and profound expertise on world-class nuclear technology and nuclear safety

  6. Nuclear power regional analysis

    International Nuclear Information System (INIS)

    Parera, María Delia

    2011-01-01

    In this study, a regional analysis of the Argentine electricity market was carried out considering the effects of regional cooperation, national and international interconnections; additionally, the possibilities of insertion of new nuclear power plants in different regions were evaluated, indicating the most suitable areas for these facilities to increase the penetration of nuclear energy in national energy matrix. The interconnection of electricity markets and natural gas due to the linkage between both energy forms was also studied. With this purpose, MESSAGE program was used (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts), promoted by the International Atomic Energy Agency (IAEA). This model performs a country-level economic optimization, resulting in the minimum cost for the modelling system. Regionalization executed by the Wholesale Electricity Market Management Company (CAMMESA, by its Spanish acronym) that divides the country into eight regions. The characteristics and the needs of each region, their respective demands and supplies of electricity and natural gas, as well as existing and planned interconnections, consisting of power lines and pipelines were taken into account. According to the results obtained through the model, nuclear is a competitive option. (author) [es

  7. Nuclear energy: a necessary option

    International Nuclear Information System (INIS)

    Robles N, A. G.; Ramirez S, J. R.; Esquivel E, J.

    2017-09-01

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO 2eq as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO 2eq and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  8. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  9. China and nuclear power

    International Nuclear Information System (INIS)

    Fouquoire-Brillet, E.

    1999-01-01

    This book presents the history of nuclear power development in China from the first research works started in the 1950's for the manufacturing of nuclear weapons to the recent development of nuclear power plants. This study tries to answer the main questions raised by the attitude of China with respect to the civil and military nuclear programs. (J.S.)

  10. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  11. Nuclear waste disposal: regional options for the Western Pacific

    International Nuclear Information System (INIS)

    Childs, I.

    1985-01-01

    The disposal of nuclear waste is a complex environmental problem involving the technology of containing a radiation hazard and the political problem of finding an acceptable site for a hazardous waste facility. The focus of discussion here is the degree to which Western Pacific countries are committed to nuclear power as an energy source, and the political and economic interdependencies in the region which will influence waste disposal options

  12. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  13. Climate change and nuclear power

    International Nuclear Information System (INIS)

    2000-11-01

    Today, the nuclear power industry is an established, experienced industry that generates one sixth of the world's electricity, one fifth of the USA's, and almost one third of Western Europe's. The recent SIRES scenarios highlight that, even in the absence of policies to limit GHG emissions, meeting the energy needs and economic development aspirations of the 21st century will require the full range of energy supply options available including nuclear power. None of the world's available energy supplies should be excluded. Fossil, nuclear, and renewable resources are all large, and the future evolution of the world's energy system is less likely to be determined by resource constraints than by active choices made by governments, the private sector, and individuals. Nuclear power has the potential to fill a substantial part of the gap between where emissions from Annex I countries are now headed, and where they are required to be in 2008-2012 according to the Kyoto Protocol. If the CDM is taken into account, nuclear power's potential approximately doubles. And if the path charted by the Kyoto Protocol is to continue beyond the 2008-2012 commitment window, the potential importance of nuclear power only grows. The best chance for sustainable development - for meeting the needs of the present generation without compromising the ability of future generations to meet their needs - lies in allowing all energy supply options to compete, improve, and contribute on a level playing field directly on the basis of cost-effectiveness, environmental protection, and safety

  14. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2006-04-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible

  15. The importance of university research in maintaining the nuclear option

    International Nuclear Information System (INIS)

    Bruschi, H.J.; Hochreiter, L.E.

    1991-01-01

    The role of the university in maintaining and revitalizing the nuclear option should have four goals. First, it must attract highly skilled students who have an interest in math and science and help foster their interest in nuclear science and engineering. Next, it must present a state-of-the-art educational program that contains meaningful research to maintain these students. The third goal of nuclear engineering departments is to provide the nontechnical student a fair assessment of benefits and risks associated with commercial nuclear power relative to other sources of electricity. Lastly, it must effectively communicate to all students a compelling vision of nuclear power as a vital energy resource that will grow. The most difficult role for the university is to successfully convey a future for those in the nuclear science and engineering program

  16. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  17. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  18. Canadian attitudes to nuclear power

    International Nuclear Information System (INIS)

    Davies, J.E.O.

    1977-01-01

    In the past ten years, public interest in nuclear power and its relationship to the environment has grown. Although most Canadians have accepted nuclear power as a means of generating electricity, there is significant opposition to its use. This opposition has effectively forced the Canadian nuclear industry to modify its behaviour to the public in the face of growing concern over the safety of nuclear power and related matters. The paper reviews Canadian experience concerning public acceptance of nuclear power, with special reference to the public information activities of the Canadian nuclear industry. Experience has shown the need for scientific social data that will permit the nuclear industry to involve the public in a rational examination of its concern about nuclear power. The Canadian Nuclear Association sponsored such studies in 1976 and the findings are discussed. They consisted of a national assessment of public attitudes, two regional studies and a study of Canadian policy-makers' views on nuclear energy. The social data obtained were of a base-line nature describing Canadian perceptions of and attitudes to nuclear power at that time. This research established that Canadian levels of knowledge about nuclear power are very low and that there are marked regional differences. Only 56% of the population have the minimum knowledge required to indicate that they know that nuclear power can be used to generate electricity. Nevertheless, 21% of informed Canadians oppose nuclear power primarily on the grounds that it is not safe. Radiation and waste management are seen to be major disadvantages. In perspective, Canadians are more concerned with inflation than with the energy supply. About half of all Canadians see the question of energy supplies as a future problem (within five years), not a present one. A more important aspect of energy is seen by the majority of Canadians to be some form of energy independence. The use of data from these studies is no easy

  19. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mishiro, M.

    2000-01-01

    This article describes the advantages of nuclear energy for Japan. In 1997 the composition of the total primary energy supply (TPES) was oil 52.7%, coal 16.5%, nuclear 16.1% and natural gas 10.7%. Nuclear power has a significant role to play in contributing to 3 national interests: i) energy security, ii) economic growth and iii) environmental protection. Energy security is assured because a stable supply of uranium fuel can be reasonably expected in spite of dependence on import from abroad. Economic growth implies the reduction of energy costs. As nuclear power is capital intensive, the power generation cost is less affected by the fuel cost, therefore nuclear power can realize low cost by favoring high capacity utilization factor. Fossil fuels have substantial impacts on environment such as global warming and acid rain by releasing massive quantities of CO 2 , so nuclear power is a major option for meeting the Kyoto limitations. In Japan, in 2010 nuclear power is expected to reach 17% of TPES and 45% of electricity generated. (A.C.)

  20. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    1997-11-01

    Although there is an awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favoured option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. With various groups calling for a role for nuclear power, there is a need openly and objectively to discuss the concerns that limit its acceptance: the perceived health effects, the consequences of severe accidents, the disposal of high level waste and nuclear proliferation. This brochure discusses these concerns, and also the distinct advantages of nuclear power. Extensive comparisons with other energy sources are made

  1. Sustainable development and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Although there is an awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favoured option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. With various groups calling for a role for nuclear power, there is a need openly and objectively to discuss the concerns that limit its acceptance: the perceived health effects, the consequences of severe accidents, the disposal of high level waste and nuclear proliferation. This brochure discusses these concerns, and also the distinct advantages of nuclear power. Extensive comparisons with other energy sources are made. Figs, tabs.

  2. Seawater desalination with nuclear power

    International Nuclear Information System (INIS)

    2005-01-01

    Nuclear power helps reduce costs for energy-intensive processes such as seawater desalination. A new generation of innovative small and medium nuclear power plants could co-generate electricity and potable water from seawater, both safely and at competitive prices in today's market. The IAEA provides technical support to Member States facing water shortage problems, on assessing the viability of nuclear power in seawater desalination. The support, usually channelled through national Technical Cooperation (TC) projects, can take several forms, ranging from educational training and technical advice on feasibility studies to design and safety review of demonstration projects. The IAEA offers a software tool (DEEP) that can be used to evaluate the economics of the different desalination and heat source configurations, including nuclear and fossil options

  3. An options model for electric power markets

    International Nuclear Information System (INIS)

    Ghosh, Kanchan; Ramesh, V.C.

    1997-01-01

    The international electric utility industry is undergoing a radical transformation from an essentially regulated and monopolistic industry to an industry made uncertain with impending deregulation and the advent of competitive forces. This paper investigates the development of an options market for bulk power trading in a market setup while considering power system planning and operational constraints and/or requirements. In so doing it considers the different market based financial derivative instruments while can be used to trade electrical power in bulk and examines how established tools such as Optimal Power Flow (OPF) may be applied in helping to develop a price for bulk power transactions under a market based setup. (Author)

  4. Renewable and nuclear power: A common future?

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Nuclear power and renewable energy are the main options to bring down the carbon intensity of commercial energy supply. What technology is unlimited backstop supply depends on its performance on the sustainability criteria: democratic decided, globally accessible, environmental benign, low risk, affordable. Renewable power meets all criteria, with affordability under debate. Maximizing energy efficiency as prerequisite, the affordable sustainable option in fact is the twin efficiency/renewable power. Nuclear power falls short on the sustainability criteria and its public acceptance is low. Nuclear proponents now propose nuclear and renewable energy as a suitable couple to address the climate change challenge. The two antagonists however are mutually exclusive on the five major directions of future power systems. First, nuclear power has been architect of the expansive 'business-as-usual' energy economy since the 1950s. Second, add-on by fossil-fuelled power plants is bulky and expansive for nuclear power, but is distributed, flexible and contracting over time for renewable power. Third, power grids for spreading bulky nuclear outputs are other than the interconnection between millions of distributed power sources requires. Fourth, risks and externalities and the proper technology itself of nuclear power limit its development perspectives, while efficiency/renewable power are still in their infancy. Fifth, their stalemate for R and D resources and for production capacities will intensify. Nuclear power and renewable power have no common future in safeguarding 'Our Common Future'

  5. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  6. Nuclear power status 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives statistical information on nuclear power plants status in the world in 1999, including the number of reactors in operation or under construction, the electricity supplied by nuclear power reactors and the respective percentage of electricity produced by nuclear energy in 1999, and the total operating experience to 31 December 1999, by country

  7. Iran's nuclear power programme revisited

    International Nuclear Information System (INIS)

    Mossavar-Rahmani, B.

    1980-01-01

    Iran's new government has not yet made a final decision about the fate of that country's once ambitious nuclear power programme. If the programme is kept alive, it will be limited to the completion of at most one or two of the reactors that were already well underway when the revolution broke out. The author traces the origins and growth of the Iranian nuclear power programme between 1974 and 1978, summarizes the principal economic, infrastructural, and political criticisms of the programme as originally planned, discusses the potential for greater use of natural gas as an alternative and, finally, recommends a long, detailed reassessment of Iran's energy options. (author)

  8. The nuclear energy option an alternative for the 90s

    CERN Document Server

    Cohen, Bernard L

    1990-01-01

    University of Pittsburgh physicist Cohen provides accessible, scientifically sound risk analyses of the energy options that he believes must be exercised in the next 10 years. This update of his work on public energy policy stands opposed to the stack of recent greenhouse effect-oriented titles by proposing more nuclear power plants (including fuel reprocessing plants) as statistically the safest, most environmentally sound solution. Cohen advances the debate on energy policy for all sides by first quantifying the human health costs of coal- and oil-generated electricity, and by debunking solar technology's deus ex machina role. In this context, Cohen looks at issues surrounding nuclear power since Three Mile Island, such as the "unsolved problem" of nuclear waste disposal and the "China Syndrome." Media people especially are urged to re-examine "nuclear hysteria" (no one ever writes about " deadly natural gas," Cohen notes), and even anti-nuclear activists will find the study's appendices and notes a sourceb...

  9. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  10. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  11. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  12. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  13. Safe and green nuclear power

    International Nuclear Information System (INIS)

    Kushwaha, H.S.

    2010-01-01

    Energy development plays an important role in the national economic growth. Presently the per capita consumption of energy in our country is about 750 kWh including captive power generation which is low in comparison to that in the developed countries like USA where it is about 12,000 kWh. As of now the total installed capacity of electricity generation is about 152,148 MW(e) which is drawn from Thermal (65%), Hydel (24%), Nuclear (3%) power plants and Renewables (8%). It is expected that by the end of year 2020, the required installed capacity would be more than 3,00,000 MW(e), if we assume per capita consumption of about 800-1000 kWh for Indian population of well over one billion. To meet the projected power requirement in India, suitable options need to be identified and explored for generation of electricity. For choosing better alternatives various factors such as availability of resources, potential to generate commercial power, economic viability, etc. need to be considered. Besides these factors, an important factor which must be taken into consideration is protection of environment around the operating power stations. This paper attempts to demonstrate that the nuclear power generation is an environmentally benign option for meeting the future requirement of electricity in India. It also discusses the need for creating the public awareness about the safe operations of the nuclear power plants and ionising radiation. (author)

  14. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  15. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  16. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  17. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  18. Role of nuclear power

    International Nuclear Information System (INIS)

    Eklund, S.

    1982-01-01

    A survey of world nuclear installations, the operating experiences of power reactors, and estimates of future nuclear growth leads to the conclusion that nuclear power's share of world electric power supply will grow slowly, but steadily during this decade. This growth will lead advanced countries to use the commercial breeder by the end of the century. Nuclear power is economically viable for most industrialized and many developing countries if public acceptance problems can be resolved. A restructuring of operational safety and regulations must occur first, as well as a resolution of the safeguards and technology transfer issue. 7 figures, 7 tables

  19. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  20. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  1. Energy and the need for nuclear power

    International Nuclear Information System (INIS)

    1982-11-01

    The subject is discussed under the headings: fuel and mankind (world population estimates); fuel supply and demand (world nuclear and total primary energy demand forecasts); oil dependence; oil, gas and coal (world oil production and consumption; world coal reserves); nuclear option (consumption of nuclear energy in Western Europe; nuclear plant worldwide at December 1981; uranium reserves 1981); renewable resources; price of energy; Britain's need for nuclear power. (U.K.)

  2. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  3. Regulation and the nuclear option: Summary of a workshop on long-range nuclear power regulatory issues, August 20-21, 1986

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Weinberg, A.M.

    1987-01-01

    Nuclear reactor regulation is discussed in the light of institutional and technological changes and analytical tools for failure and risk analysis. It is suggested that distinctions be drawn between higher risk and lower risk reactor operations and that lower-risk operations be afforded more autonomy. Discussion of public acceptability emphasized political accommodation entailing development of a future generation of inherently safe reactors and a commitment to fix existing reactors and increase solar energy research. Several statements on regulatory reform are appended as well as the NRC's advanced reactor policy

  4. The future of nuclear power

    International Nuclear Information System (INIS)

    Horton, S.G.

    1987-01-01

    Canadians are heavily dependent upon reliable and affordable sources of energy to sustain their lifestyle. In a world threatened by diminishing energy resources, Canadians need to plan for the future. Canadian electrical utilities must respond to rapidly changing circumstances and uncertainties to ensure that the public's demand for electricity is met with a high quality product. There is a need to strike a proper balance between demand management alternatives and new supply options. Nuclear power will remain as an alternative supply option. The place of CANDU will depend upon its continued high performance, public acceptance and the leadership given to the program

  5. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  6. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Kendall, J.; Kupitz, J.; Rogner, H. H.

    2000-01-01

    Nuclear power is a proven technology which currently makes a large contribution to the electricity supply in a number of countries and, to a much less extent, to heat supply in some countries. Nuclear power is economically competitive with fossil fuels for base load electricity generation in many countries, and is one of the commercially proven energy supply options that could be expanded in the future to reduce environmental burdens, especially greenhouse gas emissions, from the electricity sector. Over the past five decades, nearly ten thousand reactor-years of operating experience have been accumulated with current nuclear power plants. Building upon this background of success and applying lessons learned from the experience of operating plants, new generations of nuclear power plants have been, or are being developed. Improvements incorporated into these advance designs include features that will allow operators more time to perform equipment protection and safety actions in response to equipment failures and other off normal operating conditions, and that will reduce and simplify the actions required. Great attention is also paid to making new plants simpler to operate, inspect, maintain and repair, thus increasing their overall cost efficiency and their compatibility with the infrastructure of developing countries. The paper provides a discussion of future world energy supply and demand projections, current status and prospects for nuclear power, a short summary of advanced reactor concepts and non-electrical applications of nuclear energy for developing countries, and a review of the role of the IAEA. (author)

  7. Environmental aspects of nuclear power

    International Nuclear Information System (INIS)

    Ward, D.P.

    1987-01-01

    Nuclear power provides the world with an important option for generating electricity. To successfully and safely utilize this power, engineering and environmental factors should be carefully considered throughout a nuclear power plant project, especially during the planning stages. This paper discusses the major environmental aspects of a nuclear power plant project from site selection to retirement. During the site selection process, both engineering and environmental resources must be identified and evaluated. Environmental resources include areas that support agricultural or aquatic commercial activities, habitats for commercial or endangered species, population centers, transportation systems, and recreational areas. Also, during the site selection process, the potential impacts of both construction and operating activities must be considered. In addition to the area actually disturbed by construction, construction activities also affect local services, such as transportation systems, housing, school systems, and other social services. Since nuclear power plants use a 'clean fuel,' generally the most significant operating activity having a potential environmental impact is the discharge of cooling water. The potential effect of this discharge on commercial activities and sensitive habitats should be thoroughly evaluated. Lastly, the method of decommissioning can affect long-range land use planning and should therefore be considered during the planning process. With appropriate planning, nuclear power plants can be constructed and operated with minimum environmental impact. (author)

  8. Nuclear power: the future reassessed

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L [East Anglia Univ., Norwich (UK). Environmental Risk Assessment Unit (ERAU)

    1991-02-01

    In recommending that consent be given for the construction of a further Pressurized Water Reactor at Hinkley Point in Somerset, UK, the Inspector at the Public Inquiry underlined two major benefits: (i) the contribution an additional large nuclear plant would make to the strategic objective of diversity of supply, and (ii) the environmental benefits of nuclear power compared to many alternative forms of electricity generation. The major environmental advantages of nuclear power over fossil fuel combustion arise both because of the small amounts of fuel required - 1/18,000 compared to coal - thus minimizing transport needs and land use, and because of the virtual absence of atmospheric emissions from nuclear stations. Nuclear reactors emit no acid gases and the nuclear fuel cycle gives rise to only small amounts of carbon dioxide. An expansion of the nuclear option is often opposed on three grounds; the need to dispose of radioactive waste; the danger of the proliferation of nuclear weapons and the risk of a large scale accident. However all these doubts can be answered and the arguments supporting nuclear safety are summarized. It is argued that the contribution to primary energy demand in Europe could be doubled or trebled by 2020 with considerable benefits in overall safety environmental impacts at no extra cost. (author).

  9. Nuclear power: the future reassessed

    International Nuclear Information System (INIS)

    Roberts, L.

    1991-01-01

    In recommending that consent be given for the construction of a further Pressurized Water Reactor at Hinkley Point in Somerset, UK, the Inspector at the Public Inquiry underlined two major benefits: (i) the contribution an additional large nuclear plant would make to the strategic objective of diversity of supply, and (ii) the environmental benefits of nuclear power compared to many alternative forms of electricity generation. The major environmental advantages of nuclear power over fossil fuel combustion arise both because of the small amounts of fuel required - 1/18,000 compared to coal - thus minimizing transport needs and land use, and because of the virtual absence of atmospheric emissions from nuclear stations. Nuclear reactors emit no acid gases and the nuclear fuel cycle gives rise to only small amounts of carbon dioxide. An expansion of the nuclear option is often opposed on three grounds; the need to dispose of radioactive waste; the danger of the proliferation of nuclear weapons and the risk of a large scale accident. However all these doubts can be answered and the arguments supporting nuclear safety are summarized. It is argued that the contribution to primary energy demand in Europe could be doubled or trebled by 2020 with considerable benefits in overall safety environmental impacts at no extra cost. (author)

  10. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  11. The nuclear power decisions

    International Nuclear Information System (INIS)

    Williams, R.

    1980-01-01

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  12. Nuclear power status 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The document gives general statistical information (by country) about electricity produced by nuclear power plants in the world in 1998, and in a table the number of nuclear reactors in operation, under construction, nuclear electricity supplied in 1998, and total operating experience as of 31 December 1998

  13. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  14. Balakovo nuclear power station

    International Nuclear Information System (INIS)

    1996-01-01

    A key means of improving the safety and reliability of nuclear power plants is through effective training of plant personnel. The goal of this paper is to show the progress of the training at the Balakovo Nuclear Power Plant, and the important role that international cooperation programs have played in that progress

  15. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  16. Nuclear power: Pt. 3

    International Nuclear Information System (INIS)

    Van Wyk, A.

    1985-01-01

    The use of nuclear power in warfare is viewed from the point of use usefullness, essentiality and demolition. The effects of a H-bomb explosion are discussed as well as the use of nuclear power in warfare, with a Christian ethical background

  17. Consideration of nuclear power

    International Nuclear Information System (INIS)

    Smart, I.

    1982-01-01

    Mr. Smart notes that the optimistic promise of nuclear energy for developing countries has not been met, but feels that nuclear power can still provide a growing share of energy during the transition from oil dependence. He observes that cost-benefit analyses vary for each country, but good planning and management can give nuclear power a positive future for those developing countries which can establish a need for it; have access to the economic, technological, and human resources necessary to develop and operate it; and can make nuclear power compatible with the social, economic, and cultural structure. 11 references

  18. Nuclear power in crisis

    International Nuclear Information System (INIS)

    Blowers, Andrew.; Pepper, David.

    1987-01-01

    Six themes run through this book: nuclear decision making and democratic accountability, nuclear bias and a narrow-based energy policy, scientific discredit and popular expertise, fusing science with social values, managerial competence and the geography of nuclear power. These are covered in thirteen chapters (all indexed separately) grouped into four parts -the political and planning context, nuclear waste, risk and impact - the social dimension and the future of nuclear power. It considers aspects in France, the United States and the United Kingdom with particular references to the Sizewell-B inquiry and the Sellafield reprocessing plant. (UK)

  19. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  20. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  1. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Perera, J.

    2000-01-01

    Currently nuclear power accounts for more than 25% of total electricity production in Europe (including Eastern Europe and the former Soviet Union) However, significant new construction is planned in Central and Eastern Europe only, apart from some in France and, possibly in Finland. Many countries in Western Europe have put nuclear construction plans on hold and several have cancelled their nuclear programs. This report looks at the history of nuclear power and its current status in both Eastern and Western Europe. It provides an outline of nuclear fuel cycle facilities, from uranium procurement to final waste disposal. Economic and environmental issues are discussed, as well as the prospect of increased East-West trade and cooperation in the new poso-cold war world. Detailed profiles are provided of all the countries in Western Europe with significant nuclear power programs, as well as profiles of major energy and nuclear companies

  2. Repowering options for steam power plants

    International Nuclear Information System (INIS)

    Wen, H.; Gopalarathinam, R.

    1992-01-01

    Repowering an existing steam power plant with a gas turbine offers an attractive alternative to a new plant or life extension, especially for unit sizes smaller than 300 MWe. Gas turbine repowering improves thermal efficiency and substantially increases the plant output. Based on recent repowering studies and projects, this paper examines gas turbine repowering options for 100 MWe, 200 MWe and 300 MWe units originally designed for coal firing and currently firing either coal or natural gas. Also discussed is the option for a phased future conversion of the repowered unit to fire coal-derived gas, should there be a fluctuation in the price or availability of natural gas. A modular coal gasification plant designed to shorten the conversion time is presented. Repowering options, performance, costs, and availability impacts are discussed for selected cases

  3. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  4. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  5. The nuclear power station

    International Nuclear Information System (INIS)

    Plettner, B.

    1987-04-01

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG) [de

  6. Nuclear power in Spain

    International Nuclear Information System (INIS)

    1979-01-01

    the plans of the Spanish Government to reduce their dependence on oil over the next ten years by a considerable increase in nuclear generating capacity are outlined. Data on the type, generating power, location and commissioning data of a number of nuclear power stations in Spain are tabulated. The use of foreign companies for the design and construction of the nuclear stations and the national organisations responsible for different aspects of the programme are considered. (UK)

  7. Nuclear power in space

    International Nuclear Information System (INIS)

    Aftergood, S.; Hafemeister, D.W.; Prilutsky, O.F.; Rodionov, S.N.; Primack, J.R.

    1991-01-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space

  8. Nuclear power experience

    International Nuclear Information System (INIS)

    Daglish, J.

    1982-01-01

    A report is given of a recent international conference convened by the IAEA to consider the technical and economic experience acquired by the nuclear industry during the past 30 years. Quotations are given from a number of contributors. Most authors shared the opinion that nuclear power should play a major role in meeting future energy needs and it was considered that the conference had contributed to make nuclear power more viable. (U.K.)

  9. Governance of nuclear power

    International Nuclear Information System (INIS)

    Allison, G.; Carnesale, A.; Zigman, P.; DeRosa, F.

    1981-01-01

    Utility decisions on whether to invest in nuclear power plants are complicated by uncertainties over future power demand, regulatory changes, public perceptions of nuclear power, and capital costs. A review of the issues and obstacles confronting nuclear power also covers the factors affecting national policies, focusing on three institutional questions: regulating the industry, regulating the regulators, and regulatory procedures. The specific recommendations made to improve safety, cost, and public acceptance will still not eliminate uncertainties unless the suggested fundamental changes are made. 29 references

  10. Nuclear power. A cornerstone of energy security

    International Nuclear Information System (INIS)

    Andrews, H.R.; Harvey, M.

    1985-09-01

    Energy options for Canada are examined. Increasing difficulties with oil and gas supplies will induce a growth in electricity demand beyond that presently projected. Nuclear power is the only option that can supply as much energy as needed for as long as needed at predictable costs and with minimal environmental effects

  11. Standardization's role in revitalizing the nuclear option

    International Nuclear Information System (INIS)

    Ward, J.E.

    1986-01-01

    Considering the moribund status of the nuclear industry, something has to be done in the near-term to reverse the decaying economics of nuclear power. Standardization can turn around nuclear economics in the short term and in the longer term can foster a significant return to nuclear power. In the short term the industry needs to take advantage of those current designs that have proved their worth by excellent operating records. These designs can be replicated taking advantage of the complete status of the design and the construction techniques already in place. In the longer term it needs to develop preapproved designs and sites. Further, it must develop a discipline within the system of regulation as well as within the utility management to accept a power design as is. They cannot afford customized regulation nor customized design. Traditional institutional structures may also be up for grabs as utilities struggle to be more cost-effective. Generating companies may plan a significant role in the future of electric utilities. This kind of emphasis will also provide an impetus for the use of cost-effective, standardized designs that can be the catalyst for nuclear power's resurgence

  12. Nuclear power under strain

    International Nuclear Information System (INIS)

    1978-08-01

    The German citizen faces the complex problem of nuclear power industry with slight feeling of uncertainty. The topics in question can only be briefly dealt with in this context, e.g.: 1. Only nuclear energy can compensate the energy shortage. 2. Coal and nuclear energy. 3. Keeping the risk small. 4. Safety test series. 5. Status and tendencies of nuclear energy planning in the East and West. (GL) [de

  13. Nuclear Power Project in Thailand

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  14. Nuclear power in a changing world

    International Nuclear Information System (INIS)

    Taylor, J.

    1996-01-01

    Nuclear power has a future that will only be fully realised if it is shown to be a solution to some of the world's most pressing energy, and associated environmental, problems. This can only be done if nuclear power itself ceases to be perceived as a problem by the public, interest groups, governments and financial institutions. In public relations terms, this means removing the persistent distortions and misconceptions about the nuclear industry. Environmentally, it involves showing that nuclear power is the only alternative energy source which does not contribute to climate change, preserves rare minerals and recycles its raw materials. Governments must be persuaded to see that nuclear power is the only economic answer to the growing energy demand arising from increased industrialisation and population growth. Financiers need convincing that nuclear power is the investment of the future and generators that it is the lowest cost economic and environmental option. The future of nuclear power depends on meeting these challenges. (UK)

  15. National energy planning with nuclear option

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y.; Hastowo, Hudi; Soentono, Soedyartomo

    2002-01-01

    National energy planning with nuclear option. Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1998-2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. The optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The results shows that Indonesia's need for final energy is forecasted to increase two times, from 4028,4 PJ at the beginning of study become 8145,6 PJ at the end of study. Performing the sensitivity study, it is predicted that nuclear energy could be introduced in the Java-Bali electricity grid about year 2016

  16. An analysis of international nuclear fuel supply options

    Science.gov (United States)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet

  17. Decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Gregory, A.R.

    1988-01-01

    In the United Kingdom the Electricity Boards, the United Kingdom Atomic Energy Authority (UKAEA) and BNFL cooperate on all matters relating to the decommissioning of nuclear plant. The Central Electricity Generating Board's (CEGB) policy endorses the continuing need for nuclear power, the principle of reusing existing sites where possible and the building up of sufficient funds during the operating life of a nuclear power station to meet the cost of its complete clearance in the future. The safety of the plant is the responsibility of the licensee even in the decommissioning phase. The CEGB has carried out decommissioning studies on Magnox stations in general and Bradwell and Berkeley in particular. It has also been involved in the UKAEA Windscale AGR decommissioning programme. The options as to which stage to decommission to are considered. Methods, costs and waste management are also considered. (U.K.)

  18. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  19. Training options for countering nuclear smuggling

    International Nuclear Information System (INIS)

    Ball, D Y; Erickson, S A

    1999-01-01

    The burden of stopping a nuclear smuggling attempt at the border rests most heavily on the front-line customs inspector. He needs to know how to use the technological tools at his disposal, how to discern tell-tale anomalies in export documents and manifests, how to notice psychological signs of a smuggler's tension, and how to search anything that might hide nuclear material. This means that assistance in the counter-nuclear smuggling training of customs officers is one of the most critical areas of help that the United States can provide. This paper discusses the various modes of specialized training, both in the field and in courses, as well as the types of assistance that can be provided. Training for nuclear customs specialists, and supervisors and managers of nuclear smuggling detection systems is also important, and differs from front-line inspector training in several aspects. The limitations of training and technological tools such as expert centers that will overcome these limitations are also discussed. Training assistance planned by DOE/NN-43 to Russia within the Second Line of Defense program is discussed in the light of these options, and future possibilities for such training are projected

  20. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  1. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  2. New materials options for nuclear systems

    International Nuclear Information System (INIS)

    Jones, R.H.; Garner, F.A.; Bruemmer, S.M.; Gelles, D.S.

    1989-01-01

    Development of new materials for nuclear reactor systems is continuing to produce options for improved reactor designs. Materials with reduced environment-induced crack growth is a key materials issue for the light water reactor (LWR) industry while the development of low activation ferritic, austenitic and vanadium alloys has been an active area for materials development for fusion reactor structural applications. Development of advanced materials such as metal matrix and ceramic matrix composites for reactor systems have received a limited amount of attention. (author)

  3. The nuclear power cycle

    International Nuclear Information System (INIS)

    2004-01-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  4. Commercial nuclear power 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs

  5. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  6. The Prospective of Nuclear Power in China

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2018-06-01

    Full Text Available From scratch to current stage, China’s nuclear power technology has experienced rapid development, and now China has begun to export nuclear power technology. As a kind of highly efficient and clean energy source, nuclear energy is also a priority option to solve energy crisis, replace traditional fossil fuels and reduce air pollution. By analyzing the short-term and long-term development trend of nuclear power in China, the paper has reached the following conclusions: (1 Under the current situation of excess supply, due to high investment cost of first-kind reactors, the decline of utilization hours and the additional cost of ancillary service obligations, the levelized cost of energy (LCOE of the third generation nuclear power will significantly increase, and the internal rate of return (IRR will significantly fall. In the short term, market competitiveness of nuclear power will be a major problem, which affects investment enthusiasm. (2 With technology learning of third generation technology, the LCOE of nuclear power will be competitive with that of coal power in 2030. (3 The CO2 emissions reduction potential of nuclear power is greater than coal power with CCS and the avoided CO2 costs of nuclear power is much lower. Therefore, nuclear power is an important option for China’s long-term low-carbon energy system transition. The paper proposes to subsidize the technical learning costs of new technology through clean technology fund at the early commercialization stage. When designing power market rules, the technical characteristics of nuclear power should be fully considered to ensure efficient operation of nuclear power.

  7. LDC nuclear power: Brazil

    International Nuclear Information System (INIS)

    Johnson, V.

    1982-01-01

    Brazil has been expanding its nuclear power since 1975, following the Bonn-Brasilia sales agreement and the 1974 denial of US enriched uranium, in an effort to develop an energy mix that will reduce dependence and vulnerability to a single energy source or supplier. An overview of the nuclear program goes on to describe domestic non-nuclear alternatives, none of which has an adequate base. The country's need for transfers of capital, technology, and raw materials raises questions about the advisability of an aggressive nuclear program in pursuit of great power status. 33 references

  8. Nuclear power and the public

    International Nuclear Information System (INIS)

    Kovacs, P.; Gordelier, S.

    2009-01-01

    Issues such as climate change, energy security and the longer-term availability of fossil fuels are causing many governments to reconsider their national energy policies. Promotion of renewable energy sources is often a first policy response but, increasingly, it is being recognised that renewable sources may only provide a partial solution, especially in countries where heavy industry or large cities make intense demands on electricity supply. Governments are coming to recognize nuclear power as an attractive option because of its near absence of carbon dioxide emissions and the widespread availability of uranium which serves as fuel. Furthermore, the major uranium producers Canada and Australia are noted for their long term stability and good governance. The difficulty, of course, is that concerns over the safety and security of nuclear power often make it unpopular among the public. Hence, whether governments propose to introduce nuclear power for the first time, to simply replace existing ageing plant or to expand generating capacity, public acceptability questions must be faced. The apparent intractability of this issue has given rise to innumerable studies of public attitudes to nuclear power. The NEA has recently completed a review of this information what might be called a poll of polls. Particularly useful sources of information are surveys conducted for the European Commission (the Eurobarometer series) and the International Atomic Energy Agency (IAEA) between 2005 and 2007. Together, these provide in-depth information that helps to explain country-to-country differences and people's underlying reasons for supporting or opposing nuclear generated electricity. (author)

  9. Nuclear power and climate change

    International Nuclear Information System (INIS)

    1998-04-01

    In the Kyoto Protocol, agreed upon by the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) in December 1997, Annex I countries committed to reduce their greenhouse gas (GHG) emissions. Also, the Protocol states that Annex I countries shall undertake promotion, research, development and increased use of new and renewable forms of energy, of carbon dioxide sequestration technologies and of advanced and innovative environmentally sound technologies. One important option that could be covered by the last phrase, and is not specifically mentioned, is nuclear energy which is essentially carbon-free. Nuclear Energy Agency (NEA) has investigated the role that nuclear power could play in alleviating the risk of global climate change. The main objective of the study is to provide a quantitative basis for assessing the consequences for the nuclear sector and for the reduction of GHG emissions of alternative nuclear development paths. The analysis covers the economic, financial, industrial and potential environmental effects of three alternative nuclear power development paths ('nuclear variants'). (K.A.)

  10. Environmental aspects of nuclear power

    International Nuclear Information System (INIS)

    Ward, D.P.

    1988-01-01

    Nuclear power provides the world with an important option for generating electricity. To successfully and safely utilize this power, engineering and environmental factors should be carefully considered throughout a nuclear power plant project, especially during the planning stages. This paper discusses the major environmental aspects of a nuclear power plant project from site selection to retirement. During the site selection process, both engineering and environmental resources must be identified and evaluated. Environmental resources include areas that support agricultural or aquatic commercial activities, habitats for commercial or endangered species, population centers, transportation systems, and recreational areas. Also during the site selection process, the potential impacts of both construction and operating activities must be considered. In addition to the area actually disturbed by construction, construction activities also affect local services, such as transportation systems, housing, school systems, and other social services. Since nuclear power plants use a ''clean fuel,'' generally the most significant operating activity having a potential environmental impact is the discharge of cooling water. The potential effect of this discharge on commercial activities and sensitive habitats should be thoroughly evaluated. Lastly, the method of decommissioning can affect long-range land use planning and should therefore be considered during the planning process

  11. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  12. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  13. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  14. Net energy analysis - powerful tool for selecting elective power options

    Energy Technology Data Exchange (ETDEWEB)

    Baron, S. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-01

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  15. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  16. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  17. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  18. Canada's nuclear power programme

    International Nuclear Information System (INIS)

    Peden, W.

    1976-01-01

    Although Canada has developed the CANDU type reactor, and has an ambitious programme of nuclear power plant construction, there has been virtually no nuclear controversy. This progress was seen as a means to bring Canada out of the 'resource cow' era, and onto a more equal footing with technologically elite nations. However the Indian nuclear explosion test, waste storage problems, contamination problems arising from use of uranium ore processing waste as land fill and subsidised sale of nuclear power plants to Argentina and South Korea have initiated public and parliamentary interest. Some economists have also maintained that Canada is approaching over-supply of nuclear power and over-investment in plant. Canada has no official overall energy production plan and alternative sources have not been evaluated. (JIW)

  19. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  20. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  1. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  2. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  3. Safety and nuclear power

    International Nuclear Information System (INIS)

    Gittus, John; Gunning, Angela.

    1988-01-01

    Representatives of the supporters and opponents of civil nuclear power put forward the arguments they feel the public should consider when making up their mind about the nuclear industry. The main argument in favour of nuclear power is about the low risk in comparison with other risks and the amount of radiation received on average by the population in the United Kingdom from different sources. The aim is to show that the nuclear industry is fully committed to the cause of safety and this has resulted in a healthy workforce and a safe environment for the public. The arguments against are that the nuclear industry is deceitful, secretive and politically motivated and thus its arguments about safety, risks, etc, cannot be trusted. The question of safety is considered further - in particular the perceptions, definitions and responsibility. The economic case for nuclear electricity is not accepted. (U.K.)

  4. Nuclear power training courses

    International Nuclear Information System (INIS)

    1977-01-01

    The training of technical manpower for nuclear power projects in developing countries is now a significant part of the IAEA Technical Assistance Programme. Two basic courses are the cornerstones of the Agency's training programme for nuclear power: a course in planning and implementation, and a course in construction and operation management. These two courses are independent of each other. They are designed to train personnel for two distinct phases of project implementation. The nuclear power project training programme has proven to be successful. A considerable number of highly qualified professionals from developing countries have been given the opportunity to learn through direct contact with experts who have had first-hand experience. It is recognized that the courses are not a substitute for on-the-job training, but their purpose is achieved if they have resulted in the transfer of practical, reliable information and have helped developing countries to prepare themselves for the planning, construction and operation management of nuclear power stations

  5. Nuclear power plant construction

    International Nuclear Information System (INIS)

    Lima Moreira, Y.M. de.

    1979-01-01

    The legal aspects of nuclear power plant construction in Brazil, derived from governamental political guidelines, are presented. Their evolution, as a consequence of tecnology development is related. (A.L.S.L.) [pt

  6. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  7. Nuclear power in Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, Z.H.; Qureshi, I.H.

    2005-01-01

    Pakistan started its nuclear power program by installing a 137 M We Canadian Deuterium Reactor (Candu) at Karachi in 1971 which became operational in 1972. The post-contract technical support for the Karachi Nuclear Power Plant (KANUPP) was withdrawn by Canada in 196 as a consequence of Indian nuclear device test in 1974. In spite of various difficulties PAEC resolved to continue to operate KANUPP and started a process for the indigenous fabrication of spare parts and nuclear fuel. The first fuel bundle fabricated in Pakistan was loaded in the core in 1980. Since then KANUPP has been operating on the indigenously fabricated fuel. The plant computer systems and the most critical instrumentation and Control system were also replaced with up-to date technology. In 2002 KANUPP completed its original design life of 30 year. A program for the life extension of the plant had already been started. The second nuclear power plant of 300 M We pressurized water reactor purchased from China was installed in Chashma in 1997, which started commercial operations in 2001. Another unit of 300 M We will be installed at Chashma in near future. These nuclear power plants have been operating under IAEA safeguards agreements. PAEC through the long-term performance of the two power plants has demonstrated its competence to safely and successfully operate and maintain nuclear power plants. Pakistan foresees an increasingly important and significant share of nuclear power in the energy sector. The Government has recently allocated a share of 8000 MWe for nuclear energy in the total energy scenario of Pakistan by the year 2025. (author)

  8. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  9. Commercial nuclear power 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents historical data on commercial nuclear power in the United States, with projections of domestic nuclear capacity and generation through the year 2020. The report also gives country-specific projections of nuclear capacity and generation through the year 2010 for other countries in the world outside centrally planned economic areas (WOCA). Information is also presented regarding operable reactors and those under construction in countries with centrally planned economies. 39 tabs

  10. [Nuclear News -- Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The topics discussed in this section are: (1) NU(Northeast Utilities) receives largest court fine levied for false records. (2) ComEd nuclear fleet has best-ever performance. (3) Perry and Beaver Valley now run by First Energy Nuclear. (4) Slight reactor power increases may save dollars; (5) Nuclear plants shares to change hands. (6) Y2K nonsafety-related work scheduled for completion. (7) New NRC plan for reviewing plant license transfers with foreign ownership.

  11. Nuclear power and acceptation

    International Nuclear Information System (INIS)

    Speelman, J.E.

    1990-01-01

    In 1989 a workshop was held organized by the IAEA and the Argonne National Laboratory. The purpose was to investigate under which circumstances a large-scale extension of nuclear power can be accepted. Besides the important technical information, the care for the environment determined the atmosphere during the workshop. The opinion dominated that nuclear power can contribute in tackling the environment problems, but that the social and political climate this almost makes impossible. (author). 7 refs.; 1 fig.; 1 tab

  12. Discounting and nuclear power

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1984-01-01

    The paper describes the practice of discounting and its applicability to nuclear power, and the choice of discount rates. Opportunity cost of capital; risk; social time preference; intergenerational equity; non-monetary aspects; and discounting and nuclear energy; are all discussed. (U.K.)

  13. Nuclear power and leukaemia

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    This booklet describes the nature of leukaemia, disease incidence in the UK and the possible causes. Epidemiological studies observing rates of leukaemia near nuclear power stations in the UK and other parts of the world are discussed. Possible causes of leukaemia excesses near nuclear establishments include radioactive discharges into the environment, paternal radiation exposure and viral causes. (UK)

  14. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  15. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  16. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1978-01-01

    A 'comic strip' account of nuclear power, covering weapons and weapons proliferation, reactor accidents involving human errors, radiation hazards, radioactive waste management and the fuel cycle, fast breeder reactors and plutonium, security, public relations and sociological aspects, energy consumption patterns, energy conservation and alternative energy sources, environmental aspects and anti-nuclear activities. (U.K.)

  17. Progress by nuclear power

    International Nuclear Information System (INIS)

    Creamer, A.

    1980-01-01

    United States scientist Petr Beckmann predicts that there will eventually be nuclear power stations in the Transvaal in South Africa. This will take place for two reasons: to decrease pollution problems and to ensure economic advancement. He also refers to the the toxicity of nuclear wastes and coal wastes

  18. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel... activities leading to a comprehensive evaluation and screening of nuclear fuel cycle options in 2013. At this... fuel cycle options developed for the evaluation and screening provides a comprehensive representation...

  19. Medium-size power plants. Economic options

    International Nuclear Information System (INIS)

    Vogelweith, L.; Baujat, J.; Goutail, J.

    1978-01-01

    In this paper the authors describe a method for economic evaluation of a nuclear power plant project such as advocated by the IAEA but modified through the introduction of various parameters that may affect the evaluation, i.e. the weighted evaluation rate, the annual increase in the cost of fuel, and the discount rate. The method is applied to barge-based medium-size reactors (125 MW(e)). The authors calculate the investment cost, together with the costs of administration, operation and maintenance; use is made of current assumptions regarding the price of fuel for the case of a reference nuclear plant and an oil-fired plant of the same power and in the same programme. In this way the authors derive the discounted cost of the nuclear programme and concurrent conventional programme on the basis of the following assumptions: a weighted inflation rate varying between 0 and 6% per year; an annual increase in real fuel prices ranging from 0 to 3%; and a real discount rate, equal to the real interest rate, varying between 4 and 7% per year and corresponding to nominal discount rates of up to 13.4%. The conclusion reached is that, given the real interest rates actually prevailing on the financial market, a weighted inflation rate foreseen by the majority of experts, and a rise in real fuel prices of the order of 1% per year, the medium-size nuclear power plant is more economical than a conventional plant of the same output. (author)

  20. World status - nuclear power

    International Nuclear Information System (INIS)

    Holmes, A.

    1984-01-01

    The problems of nuclear power are not so much anti-nuclear public opinion, but more the decrease of electricity consumption growth rate and the high cost of building reactors. Because of these factors, forecasts of world nuclear capacity have had to be reduced considerably over the last three years. The performance of reactors is considered. The CANDU reactor remains the world's best performer and overall tends to out-perform larger reactors. The nuclear plant due to come on line in 1984 are listed by country; this shows that nuclear capacity will increase substantially over a short period. At a time of stagnant demand this will make nuclear energy an important factor in the world energy balance. Nuclear power stations in operation and under construction in 1983 are listed and major developments in commercial nuclear power in 1983 are taken country by country. In most, the report is the same; national reactor ordering cut back because the expected increase in energy demand has not happened. Also the cost-benefit of nuclear over other forms of energy is no longer as favourable. The export opportunities have also declined as many of the less developed countries are unable to afford reactors. (U.K.)

  1. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  2. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  3. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1979-01-01

    Witty, critically, and with expert knowledge, 'Atomic power for beginners' describes the development of nuclear power for military purposes and its 'peaceful uses' against the will of the population. Atomic power, the civil baby of the bomb is not only a danger to our lives - it is enemy to all life as all hard technologies are on which economic systems preoccupied with growth put their hopes. Therefore, 'Atomic power for beginners' does not stop at nuclear engineering but proceeds to investigate its consequences, nationally and with a view to the Third World. And since the consequences are so fatal and it is not enough to say no to nuclear power, it gives some thoughts to a better future - with soft technology and alternative production. (orig.) 891 HP/orig. 892 MKO [de

  4. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Csik, B.J.; Konstantinov, L.V.; Dastidar, P.

    1989-09-01

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  5. Country nuclear power profiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA`s programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA`s programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ``profiles``, to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future. Refs, figs, tabs.

  6. Country nuclear power profiles

    International Nuclear Information System (INIS)

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  7. Economics of nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.; Derian, J.C.; Donsimoni, M.P.; Treitel, R.

    1975-01-01

    Present trends in nuclear reactor costs are interpreted as the economic result of a fundamental debate regarding the social acceptability of nuclear power. Rising capital costs for nuclear power plants are evaluated through statistical analysis of time-related factors, characteristics of licensing and construction costs, physical characteristics of reactors, and geographic and site-related factors. Conclusions are drawn regarding the impact of social acceptability on reactor costs, engineering estimates of future costs, and the possibility of increased potential relative competitiveness for coal-fueled plants. 7 references. (U.S.)

  8. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  9. The reality of nuclear power

    International Nuclear Information System (INIS)

    Murphy, D.

    1979-01-01

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  10. NUCLEAR POWER PLANT

    Science.gov (United States)

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  11. Nuclear power prospects

    International Nuclear Information System (INIS)

    Staebler, K.

    1994-01-01

    The technical, economic and political prospects of nuclear power are described with regard to ecological aspects. The consensus talks, which failed in spite of the fact that they were stripped of emotional elements and in spite of major concessions on the part of the power industry, are discussed with a view to the political and social conditions. (orig.) [de

  12. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  13. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  14. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1980-01-01

    The nuclear power debate hinges upon three major issues: radioactive waste disposal, reactor safety and proliferation. An alternative strategy for waste disposal is advocated which involves disposing of the radwaste (immobilized in SYNROC, a titanate ceramic waste form) in deep (4 km) drill-holes widely dispersed throughout the entire country. It is demonstrated that this strategy possesses major technical (safety) advantages over centralized, mined repositories. The comparative risks associated with coal-fired power generation and with the nuclear fuel cycle have been evaluated by many scientists, who conclude that nuclear power is far less hazardous. Considerable improvements in reactor design and safety are readily attainable. The nuclear industry should be obliged to meet these higher standards. The most hopeful means of limiting proliferation lies in international agreements, possibly combined with international monitoring and control of key segments of the fuel cycle, such as reprocessing

  15. LDC nuclear power: Egypt

    International Nuclear Information System (INIS)

    Selim, M.E.S.

    1982-01-01

    This chapter reviews the evolution of Egypt's nuclear program, the major factors that influenced the successive series of nuclear decisions, and the public debate over the far-reaching program attempted by the late President Anwar El-Sadat. Egypt's program is important, not only because it was the first Arab country to enter the nuclear age, but because it is an ambitious program that includes the installation of eight reactors at a time when many countries are reducing their commitment to nuclear power. Major obstacles remain in terms of human, organizational, and natural resource constraints. 68 references, 1 table

  16. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  17. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  18. Nuclear power in Japan

    International Nuclear Information System (INIS)

    Kishida, J.

    1990-01-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  19. Nuclear power in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, J [Japan Research Institute, Ltd., Tokyo (Japan)

    1990-07-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations.

  20. Steps to nuclear power

    International Nuclear Information System (INIS)

    1975-01-01

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  1. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  2. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  3. Nuclear power industry

    International Nuclear Information System (INIS)

    1999-01-01

    This press dossier presented in Shanghai (China) in April 1999, describes first the activities of the Framatome group in the people's republic of China with a short presentation of the Daya Bay power plant and of the future Ling Ao project, and with a description of the technological cooperation with China in the nuclear domain (technology transfers, nuclear fuels) and in other industrial domains (mechanics, oil and gas, connectors, food and agriculture, paper industry etc..). The general activities of the Framatome group in the domain of energy (nuclear realizations in France, EPR project, export activities, nuclear services, nuclear fuels, nuclear equipments, industrial equipments) and of connectors engineering are presented in a second and third part with the 1998 performances. (J.S.)

  4. Abuse of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J [UKAEA

    1976-09-01

    This paper reproduces an address by Sir John Hill, Chairman of the United Kingdom Atomic Energy Authority, at a conference in London organised by the Financial Times in July 1976. Actions that, in the author's view, could be regarded as constituting abuse of nuclear power are first summarised, and the various aspects of the use and abuse of nuclear power are discussed. The author considers that achieving the maximum degree of acceptance of the Non-Proliferation Treaty is the most important political objective in nuclear power, but considers that nuclear terrorism would be abortive and that, so far as the UK is concerned, the present precautions are adequate and will remain so. It is considered that much abuse of nuclear power arises from the prevalence of its critics, particularly with reference to Pu hazards, the health of nuclear employees, and possible damage to the health of the public. The Pu problem is considered to be far more emotive than rational. The possibility of lung cancer and leukaemia is discussed. It is concluded that atomic energy is one of the best of industries in which to work, both from the health and interest points of view.

  5. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  6. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1985-01-01

    On the occasion of the retirement of the Editor-in-chief of 'atomwirtschaft', the author gave a keynote speech on the development of nuclear power in the Federal Republic of Germany at the headquarters of the Handelsblatt Verlag in Duesseldorf on October 30, 1984. He subdivided the period under discussion into five phases, the first of which comprises the 'founding years' of 1955 to 1960. This was the time when activities in nuclear research and nuclear technology in Germany, which were permitted again in mid-1955, began with the establishment of the national research centers, the first Atomic Power Program, the promulgation of the Atomic Energy Act, the foundation of government organizations, including the Federal Ministry for Atomic Energy, etc. In the second phase, between 1960 and 1970, a solid foundation was laid for the industrial peaceful uses of nuclear power in the construction of the first LWR experimental nuclear power stations, the first successful export contracts, the beginnings of the first nuclear fuel cycle plants, such as the WAK reprocessing plant, the Asse experimental repository, the Almelo agreement on centrifuge enrichment. The third phase, between 1970 and 1975, was a period of euphoria, full of programs and forecasts of a tremendous boom in nuclear generating capacities, which were further enhanced by the 1973 oil squeeze. In 1973 and 1974, construction permits for ten nuclear power plants were applied for. The fourth phase, between 1975 and 1980, became a period of crisis. The fifth phase, the eighties, give rise to hope for a return to reason. (orig./UA) [de

  7. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  8. Nuclear power's burdened future

    International Nuclear Information System (INIS)

    Flavin, C.

    1987-01-01

    Although governments of the world's leading nations are reiterating their faith in nuclear power, Chernobyl has brought into focus the public's overwhelming feeling that the current generation of nuclear technology is simple not working. Despite the drastic slowdown, however, the global nuclear enterprise is large. As of mid-1986, the world had 366 nuclear power plants in operation, with a generating capacity of 255,670 MW. These facilities generate about 15% of the world's electricity, ranging from 65% in France to 31% in West Germany, 23% in Japan, 16% in the United States, 10% in the Soviet Union, and non in most developing nations. Nuclear development is clearly dominated by the most economically powerful and technologically advanced nations. The United States, France, the Soviet Union, Japan, and West Germany has 72% of the world's generating capacity and set the international nuclear pace. The reasons for scaling back nuclear programs are almost as diverse as the countries themselves. High costs, slowing electricity demand growth, technical problems, mismanagement, and political opposition have all had an effect. Yet these various factors actually form a complex web of inter-related problems. For example, rising costs usually represent some combination of technical problems and mismanagement, and political opposition often occurs because of safety concerns or rising costs. 13 references

  9. Nuclear power: Europa report

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union (EU-15) nuclear power plants have been operation. In 7 of the 13 EU Candidate Countries (incl. Turkey) nuclear energy was used for power production. A total of 208 plants with an aggregate net capacity of 171 031 MWe and an aggregate gross capacity of 180 263 MWe were in operation at the end of 2003. No unit reached first criticality in 2003 or was connected to the grid. The unit Calder Hall 1 to Calder Hall 4 have been permanently shut down in Great Britain due to economical reasons and an earlier decision. In Germany the NPP Stade was closed. The utility E.ON has decided to shut down the plant due to the efforts of the liberalisation of the electricity markets. Last year, 8 plants were under construction in Romania (1), Russia (3), Slovakia (2 - suspended), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. The consortium led by Framatome ANP was awarded the contract to build the new nuclear power plant (EPR, 1 600 MW) in Olkiluoto. In eight countries of the European Union 136 nuclear power plants have been operated with an aggregate gross capacity of 127 708 MWe and an aggregate net capacity of 121 709 MWe. Net electricity production in 2003 in the EU amounts to approx. 905 TWh gross, which means a share of about 33 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 80% in Lithuania, 78% in France, 57% in the Slovak Republic, 57% in Belgium, and 46% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. (orig.)

  10. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  11. France without nuclear power

    International Nuclear Information System (INIS)

    Barre, B.; Charmant, A.; Devezeaux, J.G.; Ladoux, N.; Vielle, M.

    1995-01-01

    As environmental issues (particularly questions associated with the greenhouse effect) become a matter of increasing current concern, the French nuclear power programme can, in retrospect, be seen to have had a highly positive impact upon emissions of atmospheric pollutants. The most spectacular effect of this programme was the reduction of carbon dioxide emissions from 530 million tonnes per annum in 1973 to 387 million tonnes per annum today. Obviously, this result cannot be considered in isolation from the economic consequences of the nuclear power programme, which have been highly significant.The most obvious consequence of nuclear power has been the production of cheap electricity, while a further consequence has been the stability of electricity prices resulting from the increasing self-sufficiency of France in energy supplies (from 22% in 1973 to 49.% in 1992). Moreover, French nuclear industry exports. In 1993, 61.7 TW·h from nuclear production were exported, which contributed F.Fr. 14.2 billion to the credit side of the balance of payment. For the same year, Framatome exports are assessed at about F.Fr. 2 billion, corresponding to manufacturing and erection of heavy components, and maintenance services. Cogema, the French nuclear fuel operator, sold nuclear materials and services for F.Fr. 9.3 billion. Thus, nuclear activities contributed more than F.Fr. 25 billion to the balance of payment. Therefore, a numerical assessment of the macroeconomic impact of the nuclear power programme is essential for any accurate evaluation of the environmental consequences of that programme. For this assessment, which is presented in the paper, the Micro-Melodie macroeconomic and energy supply model developed by the Commissariat a l'energie atomique has been used. (author). 6 refs, 4 figs, 1 tab

  12. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    Bigot, B.

    2011-01-01

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  13. France without nuclear power

    International Nuclear Information System (INIS)

    Charmant, A.; Devezeaux, J.G.; Ladoux, N.; Vielle, M.

    1991-01-01

    As coal production declined and France found herself in a condition of energy dependency, the country decided to turn to nuclear power and a major construction program was undertaken in 1970. The consequences of this step are examined in this article, by imagining where France would be without its nuclear power. At the end of the sixties, fuel-oil incontestably offered the cheapest way of producing electricity; but the first petroleum crisis was to upset the order of economic performance, and coal then became the more attractive fuel. The first part of this article therefore presents coal as an alternative to nuclear power, describing the coal scenario first and then comparing the relative costs of nuclear and coal investment strategies and operating costs (the item that differs most is the price of the fuel). The second part of the article analyzes the consequences this would have on the electrical power market, from the supply and demand point of view, and in terms of prices. The third part of the article discusses the macro-economic consequences of such a step: the drop in the level of energy dependency, increased costs and the disappearance of electricity exports. The article ends with an analysis of the environmental consequences, which are of greater and greater concern today. The advantage here falls very much in favor of nuclear power, if we judge by the lesser emissions of sulfur dioxide, nitrogen oxides and especially carbon dioxide. 22 refs.; 13 figs.; 10 tabs

  14. Reviewing nuclear power

    International Nuclear Information System (INIS)

    Robinson, Colin

    1990-01-01

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  15. Scientists, government, and nuclear power

    International Nuclear Information System (INIS)

    Katz, J.E.

    1982-01-01

    Scientists in less-developed countries (LDCs) that undertake nuclear programs become involved in political decisions on manpower and resource allocations that will preclude other options. Controversy over the adoption of sophisticated technology has put those who see science as the servant of society in conflict with those who see the pursuit of science as a social service. The role model which LDC scientists present in this issue has given them increasing power, which can be either in accord with or in conflict with the perceived national interest. 29 references

  16. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  17. Nuclear power production costs

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The economic competitiveness of nuclear power in different highly developed countries is shown, by reviewing various international studies made on the subject. Generation costs (historical values) of Atucha I and Embalse Nuclear Power Plants, which are of the type used in those countries, are also included. The results of an international study on the economic aspects of the back end of the nuclear fuel cycle are also reviewed. This study shows its relatively low incidence in the generation costs. The conclusion is that if in Argentina the same principles of economic racionality were followed, nuclear energy would be economically competitive in the future, as it is today. This is of great importance in view of its almost unavoidable character of alternative source of energy, and specially since we have to expect an important growth in the consumption of electricity, due to its low share in the total consumption of energy, and the low energy consumption per capita in Argentina. (Author) [es

  18. Environment and nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Aimed at the general public this leaflet, one of a series prepared by AEA Technology, on behalf of the British Nuclear Industry Forum, seeks to put the case for generating electricity to meet United Kingdom and world demand using nuclear power. It examines the environmental problems linked to the use of fossil-fuels in power stations and other uses, such as the Greenhouse Effect. Problems associated with excess carbon dioxide emissions are also discussed, such as acid rain, the effects of deforestation and lead in petrol. The role of renewable energy sources is mentioned briefly. The leaflet also seeks to reassure on issues such as nuclear waste managements and the likelihood and effects of nuclear accidents. (UK)

  19. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  20. Pulsed nuclear power plant

    International Nuclear Information System (INIS)

    David, C.V.

    1986-01-01

    This patent describes a nuclear power plant. This power plant consists of: 1.) a cavity; 2.) a detonatable nuclear device in a central region of the cavity; 3.) a working fluid inside of the cavity; 4.) a method to denote a nuclear device inside of the cavity; 5.) a mechanical projection from an interior wall of the cavity for recoiling to absorb a shock wave produced by the detonation of the nuclear device and thereby protecting the cavity from damage. A plurality of segments defines a shell within the cavity and a plurality of shock absorbers, each connecting a corresponding segment to a corresponding location on the wall of the cavity. Each of these shock absorbers regulate the recoil action of the segments; and 6.) means for permitting controlled extraction of a quantity of hot gases from the cavity produced by the vaporization of the working fluid upon detonation of the nuclear device. A method of generating power is also described. This method consists of: 1.) introducing a quantity of water in an underground cavity; 2.) heating the water in the cavity to form saturated steam; 3.) detonating a nuclear device at a central location inside the cavity; 4.) recoiling plate-like elements inside the cavity away from the central location in a mechanically regulated and controlled manner to absorb a shock wave produced by the nuclear device detonation and thereby protect the underground cavity against damage; 5.) extracting a quantity of superheated steam produced by the detonation of the nuclear device; and 6.) Converting the energy in the extracted superheated steam into electrical power

  1. Misunderstanding nuclear power

    International Nuclear Information System (INIS)

    Tombs, F.

    1981-01-01

    The inaugural lecture of Sir Francis Tombs as newly installed President of the Institution of Electrical Engineers, on the reasons for the widely differing perceptions of opposing factions in the nuclear debate, is reviewed with extensive quotations. The lecturer pointed out that development of nuclear power as an energy source requires the consent of the majority and the uncommitted must be persuaded to spend the time necessary to understand the issues and to evaluate the arguments in an objective way. (U.K.)

  2. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Schaefer, A.

    1990-01-01

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy

  3. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 181,120 MWe and an aggregate gross capacity of 171,802 MWe were in operation. Two units, i.e. Civaux 2 in France and Mochovce-2 in Slovakia went critical for the first time and started commercial operation after having been connected to the grid. Three further units in France, Chooz 1 and 2 and Civaux 1, started commercial operation in 1999 after the completion of technical measures in the primary circuit. Last year, 13 plants were under construction in Romania, Russia, Slovakia and the Czech Republic, that is only in East European countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129.772 MWe and an aggregate net capacity of 123.668 MWe. Net electricity production in 1999 in the EU amounts to approx. 840.2 TWh, which means a share of 35 per cent of the total production. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, 58 per cent in Belgium and 47 per cent in Bulgaria, Sweden and Slovakia. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal and Austria. (orig.) [de

  4. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Last year, 2000, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 172 259 MWe and an aggregate gross capacity of 181 642 MWe were in operation (31.12.2000; 215 plants, 180 067 MWe (gross), 172 259 MWe (net)). One unit, i.e. Temelin in the Czech Republic went critical for the first time and started test operation after having been connected to the grid. Temelin adds about 981 MWe (gross) and 912 MWe (net) to the electricity production capacity. Three units, Hinkley Point A1 and A2 in United Kingdom, and Chernobyl 3 in the Ukraine have been shut down during the year 2000. This means a loss of 1534 MWe gross capacity and 1420 MWe net capacity. Last year, 12 plants (31.12.2000: 11 plants) were under construction in Romania, Russia, Slovakia, the Czech Republic and the Ukraine, that is only in east european countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129 188 MWe and an aggregate net capacity of 123 061 MWe (31.12.2000: 144 plants, 128 613 MWe (gross), 122 627 MWe (net)). Net electricity production in 2000 in the EU amounts to approx. 818.8 TWh, which means a share of 35 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 76 per cent in France, 74 per cent in Lithuania, 57 per cent in Belgium and 47 per cent in the Ukraine. Nuclear power also provides an noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e. g. Italy, Portugal and Austria. (orig.) [de

  5. How nuclear power began

    International Nuclear Information System (INIS)

    Gowing, M.

    1987-01-01

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  6. The third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1987-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached of are about to step into the third generation phase of development. The paper concludes that to achieve the objective of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry. (author)

  7. Third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1988-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached or are about to step into the third generation phase of development. The paper concludes that to achieve the objectives of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry

  8. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  9. Nuclear power and physics

    International Nuclear Information System (INIS)

    Xu Mi

    2006-01-01

    During the 30s and 40s of the last century atomic physicists discovered the fission of uranium nuclei bombarded by neutrons and realized the first self-sustaining controlled fission chain reaction, which ushered in the atomic age. After 50 years of electricity production, in 2003 nuclear power plants were generating 16% of the total electricity in the world. Of these, thermal neutron reactors make up over 99%. For the large scale production of nuclear power, say up to hundreds of GWe, it is very important to speed up the development and deployment of fast breeder reactors to avoid the future lack of uranium resources. (authors)

  10. Nuclear power plants maintenance

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Nuclear power plants maintenance now appears as an important factor contributing to the competitivity of nuclea energy. The articles published in this issue describe the way maintenance has been organized in France and how it led to an actual industrial activity developing and providing products and services. An information note about Georges Besse uranium enrichment plant (Eurodif) recalls that maintenance has become a main data not only for power plants but for all nuclear industry installations. (The second part of this dossier will be published in the next issue: vol. 1 January-February 1989) [fr

  11. Nuclear power safety economics

    International Nuclear Information System (INIS)

    Legasov, V.A.; Demin, V.F.; Shevelev, Ya.V.

    1984-01-01

    The existing conceptual and methodical basis for the decision-making process insuring safety of the nuclear power and other (industrial and non-industrial) human activities is critically analyzed. Necessity of development a generalized economic safety analysis method (GESAM) is shown. Its purpose is justifying safety measures. Problems of GESAM development are considered including the problem of costing human risk. A number of suggestions on solving them are given. Using the discounting procedure in the assessment of risk or detriment caused by harmful impact on human health is substantiated. Examples of analyzing some safety systems in the nuclear power and other spheres of human activity are given

  12. Feasibility analysis in the expansion proposal of the nuclear power plant Laguna Verde: application of real options, binomial model; Analisis de viabilidad en la propuesta de expansion de la central nucleoelectrica Laguna Verde: aplicacion de opciones reales, modelo binomial

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez I, S.; Ortiz C, E.; Chavez M, C., E-mail: lunitza@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2011-11-15

    At the present time, is an unquestionable fact that the nuclear electrical energy is a topic of vital importance, no more because eliminates the dependence of the hydrocarbons and is friendly with the environment, but because is also a sure and reliable energy source, and represents a viable alternative before the claims in the growing demand of electricity in Mexico. Before this panorama, was intended several scenarios to elevate the capacity of electric generation of nuclear origin with a variable participation. One of the contemplated scenarios is represented by the expansion project of the nuclear power plant Laguna Verde through the addition of a third reactor that serves as detonator of an integral program that proposes the installation of more nuclear reactors in the country. Before this possible scenario, the Federal Commission of Electricity like responsible organism of supplying energy to the population should have tools that offer it the flexibility to be adapted to the possible changes that will be presented along the project and also gives a value to the risk to future. The methodology denominated Real Options, Binomial model was proposed as an evaluation tool that allows to quantify the value of the expansion proposal, demonstrating the feasibility of the project through a periodic visualization of their evolution, all with the objective of supplying a financial analysis that serves as base and justification before the evident apogee of the nuclear energy that will be presented in future years. (Author)

  13. Assessment of the environmental impact of available options in electric power development under Polish conditions

    International Nuclear Information System (INIS)

    Cofala, Janusz; ); Jankowski, Boleslaw

    1999-01-01

    The current European initiatives limiting environmental impacts of energy production and use are presented and the proposal emission levels together with benefits are given. The role of nuclear power in achieving environmental targets in the EU countries is stressed. Then a comparison of the following 3 major electricity production options: modern coal fired power plants, gas fired combined cycle power plants and nuclear power plants is done. In the comparison Polish conditions are taken into account

  14. Beloyarsk Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-01-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities

  15. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  16. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  17. A Real Options Approach to Nuclear Waste Disposal in Sweden

    International Nuclear Information System (INIS)

    Soederkvist, Jonas; Joensson, Kristian

    2004-04-01

    This report is concerned with an investigation of how the real options approach can be useful for managerial decisions regarding the phase-out of nuclear power generation in Sweden. The problem of interest is the optimal time-schedule for phase-out activities, where the optimal time-schedule is defined in purely economical terms. The approach taken is actual construction and application of three real options models, which capture different aspects of managerial decisions. The first model concerns when investments in deep disposal facilities should optimally be made. Although the model is a rough simplification of reality, the result is clear. It is economically advantageous to postpone deep disposal forever. The second model focuses on how the uncertainty of future costs relates to managerial investment decisions. Construction of this model required some creativity, as the nuclear phase-out turns out to be quite a special project. The result from the second model is that there can be a value associated with deferral of investments due to the uncertainty of future costs, but the result is less clear-cut compared to the first model. In the third model, we extend an approach suggested by Louberge, Villeneuve and Chesney. The risk of a nuclear accident is introduced through this model and we develop its application to investigate the Swedish phase-out in particular, which implies that waste continuously disposed. In the third model, focus is shifted from investment timing to implementation timing. The results from the third model are merely qualitative, as it is considered beyond the scope of this work to quantitatively determine all relevant inputs. It is concluded that the phase-out of nuclear power generation in Sweden is not just another area of application for standard real options techniques. A main reason is that although there are a lot of uncertain issues regarding the phase-out, those uncertainties do not leave a lot of room for managerial flexibility if

  18. Photovoltaic power - An important new energy option

    Science.gov (United States)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  19. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  20. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  1. Nuclear power and modern society

    International Nuclear Information System (INIS)

    Komarek, A.

    1999-01-01

    A treatise consisting of the following sections: Development of modern society (Origin of modern society; Industrial society; The year 1968; Post-industrial society; Worldwide civic society); Historic breaks in the development of the stationary power sector (Stationary thermal power; Historic breaks in the development of nuclear power); Czech nuclear power engineering in the globalization era (Major causes of success of Czech nuclear power engineering; Future of Czech nuclear power engineering). (P.A.)

  2. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  3. LDC nuclear power: Argentina

    International Nuclear Information System (INIS)

    Tweedale, D.L.

    1982-01-01

    Argentina's 31-year-old nuclear research and power program makes it a Third World leader and the preeminent Latin American country. Easily accessible uranium fuels the heavy water reactor, Atucha I, which provides 10% of the country's electric power. Atucha II and III are under construction. Several domestic and international factors combined to make Argentina's program succeed, but achieving fuel-cycle independence and the capacity to divert fissionable material to military uses is a cause for some concern. 60 references

  4. Nuclear power: Pt. 6

    International Nuclear Information System (INIS)

    Janse van Rensburg, H.J.

    1985-01-01

    Based on the annual growthrate of 2,5% in the need for energy and the present coal, oil, gas and uranium reserves, it is expected that there will be an energy deficiency early in the twentieth century. Coal-fired power stations have the disadvantage of pollution and a high water consumption. The use of nuclear power in South Africa is backed-up by its uranium reserves

  5. Reversing nuclear power cost trends

    International Nuclear Information System (INIS)

    Corey, G.R.; Peoples, D.L.

    1988-01-01

    Nuclear power production expenses rose steadily during the 5-year period 1979 through 1984 at rates ranging from 15 to 25% per year for nonfuel expenses. During that period, fuel costs rose about 14% per year. Experience of the past few years demonstrates that significant economies-of-scale do exist in plant operation and maintenance. A regional operating company could exploit such economies-of-scale and would also be expected to attract and retain a more-experienced and stable staff. Over the years, that combination should significantly improve plant operating performance and safety. The net effect would be a combination of reduced operating expenses; improved availability; higher capacity factors; and, possibly, lower heat rates. In an era of increasing competition within energy business, all options should be considered carefully. Bold innovation will be the key to a nuclear future. 5 references, 8 figures

  6. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    Different aspects of possible abuse of nuclear power by countries or individuals are discussed. Special attention is paid to the advantage of nuclear power, despite the risk of weapon proliferation or terrorism. The concepts of some nuclear power critics, concerning health risks in the nuclear sector are rejected as untrue and abusive

  7. Nuclear power plant analyzer

    International Nuclear Information System (INIS)

    Stritar, A.

    1986-01-01

    The development of Nuclear Power Plant Analyzers in USA is described. There are two different types of Analyzers under development in USA, the forst in Idaho and Los Alamos national Lab, the second in brookhaven National lab. That one is described in detail. The computer hardware and the mathematical models of the reactor vessel thermalhydraulics are described. (author)

  8. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  9. Nuclear power and safety

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Some aspects of safety of nuclear power with special reference to Indian nuclear power programme are discussed. India must develop technology to protect herself from the adverse economic impact arising out of the restrictive regime which is being created through globalization of safety and environmental issues. Though the studies done and experience gained so far have shown that the PHWR system adopted by India has a number of superior safety features, research work is needed in the field of operation and maintenance of reactors and also in the field of reactor life extension through delaying of ageing effects. Public relations work must be pursued to convince the public at large of the safety of nuclear power programme. The new reactor designs in the second stage of evolution are based on either further improvement of existing well-proven designs or adoptions of more innovative ideas based on physical principles to ensure a higher level of safety. The development of Indian nuclear power programme is characterised by a balanced approach in the matter of assuring safety. Safety enforcement is not just looked upon as a pure administrative matter, but experts with independent minds are also involved in safety related matters. (M.G.B.)

  10. Nuclear Power in Space.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…

  11. Captivated by nuclear power

    International Nuclear Information System (INIS)

    Kaageson, P.; Kjellstroem, B.

    1984-01-01

    The Swedish decision to discontinue nuclear power production is discussed. The basis of the referendum is presented. A number of cases where the decision to stop production in the year 2010 is counteracted, are described. The political and technical steps to facilitate the settlement are presented. (GB)

  12. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  13. Financing aspects of nuclear power plant construction under Polish economic conditions

    International Nuclear Information System (INIS)

    Besant-Jones, John E.

    1999-01-01

    Within the framework of the new Polish Energy Law the different issues important far financing a programme to develop nuclear power power in Poland such as: economic competitiveness of nuclear power, financing options for nuclear power projects, managing the various risks for financing nuclear power as well as nuclear and business liability are considered. The importance of policy issues is stressed

  14. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  15. Safe nuclear power

    International Nuclear Information System (INIS)

    Cady, K.B.

    1992-01-01

    Nearly 22 percent of the electricity generated in the United States already comes from nuclear power plants, but no new plants have been ordered since 1978. This paper reports that the problems that stand in the way of further development have to do with complexity and perceived risk. Licensing, construction management, and waste disposal are complex matters, and the possibility of accident has alienated a significant portion of the public. But a national poll conducted by Bruskin/Goldring at the beginning of February shows that opposition to nuclear energy is softening. Sixty percent of the American people support (strongly or moderately) the use of nuclear power, and 18 percent moderately oppose it. Only 15 percent remain obstinately opposed. Perhaps they are not aware of recent advances in reactor technology

  16. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  17. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  18. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  19. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  20. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Lee, Young Gun; Lee, Han Myung; Song, Ki Dong; Lee, Man Ki; Kim, Seung Su; Moon, Kee Hwan; Chung, Whan Sam; Kim, Kyung Pyo; Cho, Sang Goo

    1992-01-01

    The purpose of this study is to clarify the role of nuclear power generation under the circumstances of growing concerns about environmental impact and to help decision making in electricity sector. In this study, efforts are made to estimate electricity power generation cost of major power options by incorporating additional cost to reduce environmental impact and to suggest an optimal plant mix in this case. (Author)

  1. Turbopump options for nuclear thermal rockets

    International Nuclear Information System (INIS)

    Bissell, W.R.; Gunn, S.V.

    1992-07-01

    Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range. 10 refs

  2. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  3. Nuclear power. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, W.C.

    1983-01-01

    Lay language brings an understanding of nuclear technology and nuclear politics to the non-specialist reader. The author notes that there has been little change in the technology during the four decades of the nuclear age, but mankind has still to learn how to live with it. Part One explains how reactors work, identifies different reactor types, and describes the fuel cycle. Part two follows research developments during the pre-Manhatten Project days, the war effort, and the decision to pursue commercial nuclear power. He traces the development of policies to secure fission materials and international efforts to prevent the proliferation of weapons grade material and the safe handling of radioactive wastes on a global as well as national scale. There are four appendices, including an annotated reference to other publications. 9 figures.

  4. Nuclear-powered submarines

    International Nuclear Information System (INIS)

    Curren, T.

    1989-01-01

    The proposed acquisition of nuclear-powered submarines by the Canadian Armed Forces raises a number of legitimate concerns, including that of their potential impact on the environment. The use of nuclear reactors as the propulsion units in these submarines merits special consideration. Radioactivity, as an environmental pollutant, has unique qualities and engenders particular fears among the general population. The effects of nuclear submarines on the environment fall into two distinct categories: those deriving from normal operations of the submarine (the chief concern of this paper), and those deriving from a reactor accident. An enormous body of data must exist to support the safe operation of nuclear submarines; however, little information on this aspect of the proposed submarine program has been made available to the Canadian public. (5 refs.)

  5. LDC nuclear power: Philippines

    International Nuclear Information System (INIS)

    Scherr, S.J.

    1982-01-01

    The US created the need for nuclear power in the Phillipines and then provided the means to fill it, but the 20-year nuclear program was reversed in 1976 because of public opposition to heavy-handed government policies. The situation illustrates the overriding importance of foreign influence and political judgment. Despite substantial investments in the training of Filipino nuclear scientists and technicians, nuclear energy continues to be viewed as an alien technology by the people. Even the protracted debate over the first reactor has been dominated by US experts and advisers because the traditional transnational cooperation was extended beyond government to nongovernmental citizen organizations when Filipno protestors sought help from US groups. 120 references

  6. Meeting world energy needs. The economic and environmental aspects of the nuclear option

    International Nuclear Information System (INIS)

    Ward, D.P.; Chalpin, D.M.

    1994-01-01

    Tabulated capital, operating, and overall production costs for nuclear, coal, and gas-fuelled power show that nuclear power is a viable option for meeting the world's energy needs. The advantage of nuclear, otherwise limited to certain markets, is seen to be much greater when credit is taken for environmental factors, namely emissions of carbon dioxide and acidic gases by fossil-fuelled plants. 5 figs

  7. Economics of nuclear power

    International Nuclear Information System (INIS)

    Roth, B.F.

    1977-01-01

    The economics of electricity supply and production in the FRG is to see on the background of the unique European interconnected grid system which makes very significant contributions to the availability of standby energy and peak load power. On this basis and the existing high voltage grid system, we can build large nuclear generating units and realise the favorable cost aspects per installed KW and reduced standby power. An example of calculating the overall electricity generating costs based on the present worth method is explained. From the figures shown, the sensitivity of the generating costs with respect to the different cost components can be derived. It is apparent from the example used, that the major advantage of nuclear power stations compared with fossil fired stations lies in the relatively small percentage fraction contributed by the fuel costs to the electricity generating costs. (orig.) [de

  8. Nuclear power and weapons proliferation

    International Nuclear Information System (INIS)

    Greenwood, T.; Rathjens, C.W.; Ruina, J.

    1977-01-01

    The relationship between nuclear weapons development and nuclear electric power is examined. A brief description of nuclear weapons design is first given. This is then followed by a discussion of various aspects of nuclear power technology and of how they affect a nuclear weapon programme. These include fuel cycles, chemical reprocessing of spent fuel, uranium enrichment, and the control of dissemination of nuclear technology. In conclusion there is a discussion of possible political and institutional controls for limiting nuclear proliferation. (U.K.)

  9. Is nuclear power competitive

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1984-01-01

    The first phase of a two-phase study of the competitiveness of electricity from new coal and nuclear plants with oil and natural gas in common markets concludes that, with few exceptions throughout the country, overall levelized nuclear generating cost could be lower than coal generating costs by more than 40%. The study shows a wider margin of economic superiority for nuclear than has been seen in other recent studies. Capital and fuel costs are the major determinants of relative nuclear and coal economics. The only substantial difference in the input assumptions has related to a shorter lead time for both coal and nuclear units, which reduces capital costs. The study gives substance to the charge that delaying tactics by intervenors and an unstable licensing environment drove up lifetime costs of both coal and nuclear plants. This caused an increase in electric rates and affected the entire economy. The study shows that nuclear power is competitive when large baseload capacity is required. 14 figures

  10. Economics of nuclear power

    International Nuclear Information System (INIS)

    Reichle, L.F.C.

    1977-01-01

    Mr. Reichle feels that the economic advantages of pursuing nuclear power should prompt Congress and the administration to seek ways of eliminating undue delays and enabling industry to proceed with the design, construction, and management of nuclear plants and facilities. Abundant, low-cost energy, which can only be supplied by coal and nuclear, is vital to growth in our gross national product, he states. While conservation efforts are commendable, we must have more energy if we are to maintain our standard of living. Current energy resources projections into the next century indicate an energy gap of 42 quads with a 3 percent growth and 72 quads with a 4 percent growth. Comparisons of fuel prices, plant capital investment, and electric generation costs are developed for both coal and nuclear energy; these show that nuclear energy has a clear advantage economically as long as light water reactors are supplemented by breeder reactor development and the nuclear industry can demonstrate that these reactors are safe, reliable, and compatible with the environment. Mr. Reichle says excessive regulation and legal challenges combined with public apathy toward developing nuclear energy are delaying decisions and actions that should be taken now

  11. The problem of nuclear power

    International Nuclear Information System (INIS)

    Heimbrecht, J.; Kade, G.; Krusewitz, K.; Moldenhauer, B.; Steinhaus, K.; Weish, P.

    1977-01-01

    The battle over the problems of nuclear power has gone on in the Federal Republic for several years. The Buergerinitiativen, which used to be small and largely unpolitical, have become a major social force during this time. Subjects: 1) Dangers of nuclear power - can the risk be justified; 2)The necessity of nuclear power; 3) The enforcement of nuclear power - political and economic background; 4) Limits of power generation - limits of growth or limits of the system. (orig./HP) [de

  12. Nuclear Power Prospects

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    The present trend is to construct larger plants: the average power of the plants under construction at present, including prototypes, is 300 MW(e), i.e. three times higher than in the case of plants already in operation. Examples of new large-scale plants ares (a) Wylfa, Anglesey, United Kingdom - scheduled power of 1180 MW(e) (800 MW to be installed by 1967), to be completed in 1968; (b) ''Dungeness B'', United Kingdom - scheduled power of 1200 MW(e); (c) second unit for United States Dresden power plant - scheduled power of 715 MW(e) minimum to almost 800 MW(e). Nuclear plants on the whole serve the same purpose as conventional thermal plants

  13. The nuclear power debate

    International Nuclear Information System (INIS)

    Woerndl, B.

    1992-01-01

    This material-intensive analysis of the public dispute about nuclear power plants uses the fundamental thoughts of the conflict theory approach by Georg Simmel, linking them to results of recent value change research. Through the medium of a qualitative content analysis of arguments in favour of and against nuclear energy it is shown how values are expressed and move, how they differentiate and get modified, in conflicting argumentation patterns. The first part reconstructs the history of the nuclear power conflict under the aspect of its subject priorities changing from time to time. The second part shows, based on three debate priorities, how social value patterns recognized for the moment changed in and by the conflict: the argumentation is that the nuclear power controversy has led to a relativization of its scientific claim for recognition; it has created a problem awareness with regard to purely quantitatively oriented growth objectives and developed criteria of an ecologically controlled satisfaction of needs; the debate has paved the way, in the area of political regulation models, for the advancement of basic democratic elements within a representative democracy. (orig./HP) [de

  14. Nuclear power for desalination

    International Nuclear Information System (INIS)

    Patil, Siddhanth; Lanjekar, Sanket; Jagdale, Bhushan; Srivastava, V.K.

    2015-01-01

    Water is one of the most important assets to mankind and without which the human race would cease to exist. Water is required by us right from domestic to industrial levels. As notified by the 'American Nuclear Society' and 'World Nuclear Association' about 1/5 th of the world population does not access to portable water especially in the Asian and African subcontinent. The situation is becoming adverse day by day due to rise in population and industrialization. The need of alternative water resource is thus becoming vital. About 97.5% of Earth is covered by oceans. Desalination of saline water to generate potable water is thus an important topic of research. Currently about 12,500 desalination plants are operating worldwide with a capacity of about 35 million m 3 /day using mainly fossil fuels for generation of large amount of energy required for processing water. These thermal power station release large amount of carbon dioxide and other green house gases. Nuclear reactors are capable of delivering energy to the high energy-intensive processes without any environmental concerns for climate change etc., giving a vision to sustainable growth of desalination process. These projects are currently employed in Kazakhstan, India, Japan, and Pakistan and are coupled to the nuclear reactor for generating electricity and potable water as well. The current climatic scenario favors the need for expanding dual purpose nuclear power plants producing energy and water at the same location. (author)

  15. Wireless Power Transmission Options for Space Solar Power

    Science.gov (United States)

    Potter, Seth; Davis, Dean; Born, Martin; Bayer, Martin; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 40 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  16. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  17. Prospects for nuclear power

    International Nuclear Information System (INIS)

    Kaplan, G.

    1983-01-01

    Describes how the nuclear power industry is improving plant operation and safety procedures and is reducing maintenance costs as it hopes for a brighter political climate. Points out that most of the efforts focus on key areas, such as improvements in control rooms and operator training and studies of physical processes within the reactor and associated systems. Discusses the increasing complexity of nuclear plants, the use of computers to process data in BWR plants, the decommissioning of old plants, and plant safety research activities worldwide. Offers an annotated bibliography

  18. Economics of nuclear power

    International Nuclear Information System (INIS)

    Marwah, O.S.

    1982-01-01

    There can be no precise economic measures, in the abstract, of the costs of nuclear power production in the less-developed countries (LDCs). The conditions that affect the calculations have to be evaluated specifically for each country and individually for each nuclear-related project in that country. These conditions are a combination of internal and external factors, and their mix for one project can change during the course of construction. The author lists 21 factors that may vary according to individual national costs. 6 references, 4 tables

  19. Environmental hazards and nuclear power phaseout

    International Nuclear Information System (INIS)

    Guck, R.

    1989-01-01

    The paper analyses the radiation exposure of the population during normal operation and in the wake of accidents at nuclear power plants, and discusses hypothetic accidents. It also judges the additional radiation exposure of the population from nuclear energy, investigates forest decline and radioactivity, as well as radioactive waste disposal and underground storage. In the upshot, nuclear power after and in spite of Chernobyl still remains an important option and an ecologically reasonable possibility for safeguarding the fundamental needs of the five billion people now living, and those further billions to be added in the decades to come. (orig./HSCH) [de

  20. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  1. Making nuclear power sustainable

    International Nuclear Information System (INIS)

    Barre, B

    2003-01-01

    According to the present data, we must double our energy production while dividing by a factor of two the greenhouse gases emissions, knowing that today, 80% of our energy comes from the combustion of coal, gas and oil, all of which produce CO, released in the atmosphere. This is the toughest challenge facing us in the next few decades, and I include the water challenge, since producing drinking water will also increase our energy needs. This formidable challenge will not be easily met. No magic bullet is in sight, not even a nuclear bullet. To have any chance of success, we must actually implement all the available measures, and invent some more. In fact, we shall certainly need a three-pronged approach: Increase energy efficiency to limit energy consumption in our developed countries; Diversify our energy mix to reduce the share supplied by fossil fuels and that translates into increasing nuclear and renewable energy source; Trap and sequester CO 2 wherever and whenever economically possible. This article focuses on the nuclear issue. According to International Energy Agency (lEA) statistics, nuclear energy accounts today for 6.8% of the world energy supply. Is it realistic to expect this share to grow, when many forecasts (including lEA's own) predict a slow reduction? The future is not engraved in marble, it is ours to make; the future role of nuclear power will depend on the results of our present efforts to expand or overcome its limitations. It is quite possible that, within four decades, 40% of the electric power generated in all OECD countries, plus Russia, China, India and Brazil, comes from nuclear reactors. It is not far-fetched, when you consider that it took only two decades for France to increase its nuclear share of electricity from 8% to 80%. More ambitious, let's assume that in the same time frame and within the same countries 15% of the fuels for transportation come from nuclear produced hydrogen and that 10% of the space heating is supplied by

  2. Power plants 2020+. Power plant options for the future and the related demand for research

    International Nuclear Information System (INIS)

    2010-01-01

    This short overview already demonstrates that in the foreseeable future all generation options - nuclear power, fossil-fired power plants and renewable sources of energy - will continue to be applied. If, however, due to climate protection targets, energy conversion processes are to be to switched to CO 2 -free or -low carbon energy sources, comprehensive research endeavours will be required in order to advance existing technology options and to adjust them to changing conditions. This paper is bound to recommend individual fields of research from the viewpoint of the VGB Scientific Advisory Board for the period 2020 and beyond. Firstly, the generation structure in the European high-voltage grid and its development until 2020 will be considered, then the research demand for - Hard coal- and lignite-fired power plants, - Renewables-based electricity generation (wind, solar energy) and - Nuclear-based electricity generation will be outlined briefly, listing the main technology issues to be answered by researchers in order to increase efficiency and to settle any ''loose ends''. Apart from generation technologies, the options for storing electrical energy will also be dealt with. These options can contribute to make the feed-in of renewables-based electricity more permanent and sustainable. (orig.)

  3. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  4. Preparedness against nuclear power accidents

    International Nuclear Information System (INIS)

    1985-01-01

    This booklet contains information about the organization against nuclear power accidents, which exist in the four Swedish counties with nuclear power plants. It is aimed at classes 7-9 of the Swedish schools. (L.E.)

  5. Nuclear power: pros and cons

    International Nuclear Information System (INIS)

    Hirsch, H.

    1977-01-01

    The author deals with the nuclear power controversy in science and indicates the main points of the nuclear power debate by the population. The different scientific and ideological positions shown by the results of the campaign are explained. (HP) [de

  6. Ethical aspects of nuclear power

    International Nuclear Information System (INIS)

    Streithofen, H.B.

    1989-01-01

    The nuclear controversy comprises many ethical aspects, e.g. the waste disposal problem. Nuclear opponents should not neglect the environmental protection aspect; for example, the use of nuclear power alone brought about an 8% reduction of the CO 2 burden in 1987. Our responsibility towards nature and humans in the Third World leaves us no alternative to nuclear power. On the other hand, the nuclear power debate should not become a matter of religious beliefs. (DG) [de

  7. US nuclear power programs

    International Nuclear Information System (INIS)

    McGolf, D.J.

    1994-01-01

    In the United States, coal provided 56 percent of the electricity generated in 1992. Nuclear energy was the next largest contributor, supplying 22 percent. Natural gas provided 9 percent, while hydro-electric and renewables together supplied another 9 percent. Currently, the 109 nuclear power plants in the U.S. have an overall generating capacity of 99,000 MWe. To improve efficiency, safety, and performance, the lessons of 30 years of experience with nuclear powerplants are being incorporated into design criteria for the next generation of U.S. plants. The new Advanced Light Water Reactor plants will feature simpler designs, which will enable more cost-effective construction and maintenance. To enhance safety, design margins are being increased, and human factors are being considered and incorporated into the designs

  8. Lessons of nuclear power

    International Nuclear Information System (INIS)

    Collingridge, D.

    1984-01-01

    In an earlier article the author has argued that the turbulent history of nuclear power in Britain and the USA stems from the technology itself, and has little to do with the very different institutional arrangements made for the new technology in the two countries. Nuclear plant has various features which make its planning extraordinarily difficult. Its long lead time, large unit size, capital intensity and dependence on complex infrastructure combine to ensure that mistakes are likely to be made in planning the technology and that what mistakes do occur are expensive. This article aims to expand on the earlier one in two ways; by looking at the apparent success of the French nuclear programme which seems to run counter to the thesis of the earlier article, and by trying to draw lessons from the earlier analysis for the breeder reactor. (author)

  9. Insurance and nuclear power

    International Nuclear Information System (INIS)

    Whipple, C.

    1985-01-01

    The Price-Anderson Act is discussed, which establishes procedures for insuring nuclear facilities (including nuclear power plants). The act was enacted with the dual purpose of protecting the public and encouraging the development of a private nuclear energy industry. Criticisms that can generally be grouped into four categories regarding the Act are presented, the most controversial aspect being that should an accident occur, the aggregate liability of the reactor operator, the NRC, or any others who might be at fault is limited to $560 million. Lawsuits for amounts in excess of $560 million are prohibited. The 1975 renewal of the Price-Anderson Act does provide that damages in excess of the $560 million prompt Congress to review the particular incident and take action to protect the public from the consequences of a disaster of such magnitude

  10. US nuclear power programs

    Energy Technology Data Exchange (ETDEWEB)

    McGolf, D J

    1994-12-31

    In the United States, coal provided 56 percent of the electricity generated in 1992. Nuclear energy was the next largest contributor, supplying 22 percent. Natural gas provided 9 percent, while hydro-electric and renewables together supplied another 9 percent. Currently, the 109 nuclear power plants in the U.S. have an overall generating capacity of 99,000 MWe. To improve efficiency, safety, and performance, the lessons of 30 years of experience with nuclear powerplants are being incorporated into design criteria for the next generation of U.S. plants. The new Advanced Light Water Reactor plants will feature simpler designs, which will enable more cost-effective construction and maintenance. To enhance safety, design margins are being increased, and human factors are being considered and incorporated into the designs.

  11. Ardennes nuclear power plant

    International Nuclear Information System (INIS)

    1974-12-01

    The SENA nuclear power plant continued to operate, as before, at authorized rated power, namely 905MWth during the first half year and 950MWth during the second half year. Net energy production:2028GWh; hours phased to the line: 7534H; availability factor: 84%; utilization factor: 84%; total shutdowns:19; number of scrams:10; cost per KWh: 4,35 French centimes. Overall, the plant is performing very satisfactory. Over the last three years net production has been 5900GWh, corresponding to in average utilization factor of 83%

  12. Nuclear power plant

    International Nuclear Information System (INIS)

    Orlov, V.V.; Rineisky, A.A.

    1975-01-01

    The invention is aimed at designing a nuclear power plant with a heat transfer system which permits an accelerated fuel regeneration maintaining relatively high initial steam values and efficiency of the steam power circuit. In case of a plant with three circuits the secondary cooling circuit includes a steam generator with preheater, evaporator, steam superheater and intermediate steam superheater. At the heat supply side the latter is connected with its inlet to the outlet of the evaporator and with its outlet to the low-temperature side of the secondary circuit

  13. Siting nuclear power plants

    International Nuclear Information System (INIS)

    Yellin, J.; Joskow, P.L.

    1980-01-01

    The first edition of this journal is devoted to the policies and problems of siting nuclear power plants and the question of how far commercial reactors should be placed from urban areas. The article is divided into four major siting issues: policies, risk evaluation, accident consequences, and economic and physical constraints. One concern is how to treat currently operating reactors and those under construction that were established under less-stringent criteria if siting is to be used as a way to limit the consequences of accidents. Mehanical cost-benefit analyses are not as appropriate as the systematic use of empirical observations in assessing the values involved. Stricter siting rules are justified because (1) opposition because of safety is growing: (2) remote siting will make the industry more stable; (3) the conflict is eliminated between regulatory policies and the probability basis for nuclear insurance; and (4) joint ownership of utilities and power-pooling are increasing. 227 references, 7 tables

  14. Nuclear power and ethics

    International Nuclear Information System (INIS)

    Schwery, H.

    1998-01-01

    The author can see no sense in demanding an ethical regime to be applied exclusively to nuclear power but rather calls for an approach that discusses nuclear power as one constituent of the complex energy issue in a way spanning all dimensions involved, as e.g. the technological, economic, cultural, humanitarian, and humanistic aspects. An ethical approach does not question scientific research, or science or technology, but examines their relation to man and the future of humanity, so that an ethical approach will first of all demand that society will bring forward conscientious experts as reliable partners in the process of discussing the ethical implications of progress and development in a higly industrialised civilisation. (orig./CB) [de

  15. Nuclear power plant

    International Nuclear Information System (INIS)

    Aisaka, Tatsuyoshi; Kamahara, Hisato; Yanagisawa, Ko.

    1982-01-01

    Purpose: To prevent corrosion stress cracks in structural materials in a BWR type nuclear power plant by decreasing the oxygen concentration in the reactor coolants. Constitution: A hydrogen injector is connected between the condensator and a condensate clean up system of a nuclear power plant. The injector is incorporated with hydrogenated compounds formed from metal hydrides, for example, of alloys such as lanthanum-nickel alloy, iron titanium alloy, vanadium, palladium, magnesium-copper alloy, magnesium-nickel alloy and the like. Even if the pressure of hydrogen obtained from a hydrogen bomb or by way of water electrolysis is changed, the hydrogen can always be injected into a reactor coolant at a pressure equal to the equilibrium dissociation pressure for metal hydride by introducing the hydrogen into the hydrogen injector. (Seki, T.)

  16. Nuclear power: Year 2000

    International Nuclear Information System (INIS)

    Siegel, J.R.

    1984-01-01

    This paper offers a contrary view on the future of nuclear power in the U.S. Contrarian, in that it argues that it is quite possible that the installed U.S. nuclear capacity in the year 2000 will be in the range of 250GWe. This projection is based on the longer view - a 20-30 year picture - of the price trends of the fuels commercially available to make electricity. And on the belief that other projections of nuclear capacity for the year 2000, while generally acknowledging the need to add significant amounts of new electricity capacity, are essentially discounting nuclear power. And thus, are ignoring fundamental economics. The logic for the projected 250 GWe follows: The demand for electricity is continuing to grow, albeit at a slower rate than that experienced prior to 1973; The excess generating capacity in the construction pipeline, which developed during the 1970s as economic growth rates came in at half the projections made in 1973, has been worked off; in fact, the pendulum has swung past the mid-point; U.S. utilities need to order an additional 200-350 GWe of capacity for service between 1992 and 2000; The real capital costs of plants, particularly nuclear plants, ordered in the 1980s will be less than that being completed today, as this new plant will be completed on a more expedient basis for reliability reasons, and built in an improved financial climate for utilities; Owing primarily to more favorable economics, but also to environmental considerations, at least half of new generating capacity will be nuclear

  17. Workforce Planning for New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    2011-01-01

    An appropriate infrastructure is essential for the efficient, safe, reliable and sustainable use of nuclear power. The IAEA continues to be encouraged by its Member States to provide assistance to those considering the introduction of nuclear power. Its response has been to increase technical assistance, organize more missions and hold workshops, as well as to issue new and updated publications in the IAEA Nuclear Energy Series. Milestones in the Development of a National Infrastructure for Nuclear Power, an IAEA Nuclear Energy Series publication (NG-G-3.1), provides detailed guidance on a holistic approach to national nuclear infrastructure development involving three phases. Nineteen issues are identified in this guide, ranging from development of a government's national position on nuclear power to planning for procurement related to the first nuclear power plant. One of these 19 issues upon which each of the other 18 depend is suitable human resources development. As a growing number of Member States begin to consider the nuclear power option, they ask for guidance from the IAEA on how to develop the human resources necessary to launch a nuclear power programme. The nuclear power field, comprising industry, government authorities, regulators, R and D organizations and educational institutions, relies on a specialized, highly trained and motivated workforce for its sustainability and continued success, quite possibly more than any other industrial field. This report has been prepared to provide information on the use of integrated workforce planning as a tool to effectively develop these resources for the spectrum of organizations that have a stake in such nuclear power programmes. These include, during the initial stages, a nuclear energy programme implementing organization (NEPIO), as well as the future operating organization, nuclear regulatory body, government authorities and technical support organizations if a decision is made to initiate a nuclear power

  18. AAEC nuclear power projections

    International Nuclear Information System (INIS)

    Khoe, G.; Fredsall, J.; Scurr, I.; Plotnikoff, W.

    1981-01-01

    The nuclear power capacity projections developed in the May-June period of 1981 by the AAEC are presented. There have been downward revisions for nearly all countries with centrally planned economies. Projections for the year 2000 for the Western World have decreased in aggregate by 4.7% (27Gw) compared to those of 1980. However, this reduction is less than the previous estimate reduction and there appears to have been a stabilisation in the projection

  19. Nuclear power plant

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1976-01-01

    The invention concerns a quick-acting valve on the main-steam pipe of a nuclear power plant. The engineering design of the valve is to be improved. To the main valve disc, a piston-operated auxiliary valve disc is to be assigned closing a section of the area of the main valve disc. This way it is avoided that the drive of the main valve disc has to carry out different movements. 15 sub-claims. (UWI) [de

  20. Nuclear power in British politics

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1987-01-01

    The paper concerns the subject of nuclear power in British politics in 1986. The policies of the major political parties towards nuclear power are briefly outlined, along with public attitudes to nuclear energy, Chernobyl, and the rise of the anti-nuclear campaigners. (UK)

  1. Submarine nuclear power plant

    International Nuclear Information System (INIS)

    Enohara, Masami; Araragi, Fujio.

    1980-01-01

    Purpose: To provide a ballast tank, and nuclear power facilities within the containment shell of a pressure resistance structure and a maintenance operator's entrance and a transmission cable cut-off device at the outer part of the containment shell, whereby after the construction, the shell is towed, and installed by self-submerging, and it can be refloated for repairs by its own strength. Constitution: Within a containment shell having a ballast tank and a pressure resisting structure, there are provided nuclear power facilities including a nuclear power generating chamber, a maintenance operator's living room and the like. Furthermore, a maintenance operator's entrance and exit device and a transmission cable cut-off device are provided within the shell, whereby when it is towed to a predetermined a area after the construction, it submerges by its own strength and when any repair inspection is necessary, it can float up by its own strength, and can be towed to a repair dock or the like. (Yoshihara, H.)

  2. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  3. Nuclear power: the turning tide

    International Nuclear Information System (INIS)

    Riley, P.J.; Warren, D.S.

    1981-01-01

    During 1980 and 1981, opposition to the expansion of the nuclear power generation programme grew from about 45% of the population to approximately 53%. Women, young people and labour voters are the most strongly opposed to nuclear power but among no section of the population is there a clear majority in favour of building more nuclear power stations. (author)

  4. Nuclear power in the EC

    International Nuclear Information System (INIS)

    Charrault, J.C.

    1991-01-01

    Nuclear power accounts for some 35% of electricity production in the European Community (EC). Using a mathematical analysis, based on different scenarios, i.e. low/high electricity demand and nuclear moratorium/revival, various demand forecasts are made. A pragmatic approach, considering conventional power generation pollution problems, forecasts a revival of nuclear power

  5. Overview paper on nuclear power

    International Nuclear Information System (INIS)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power

  6. Nuclear power proliferation

    International Nuclear Information System (INIS)

    Johnson, B.

    1977-01-01

    The nuclear industry is experiencing a multiple crisis in which economic, technical and ethical aspects are blended inextricably. Nuclear hardware costs have everywhere soared far beyond inflation in the last five years, largely as a result of delays in programme completion arising from problems of reactor and fuel cycle. Meanwhile, partly as a result of this cost escalation, there is widespread and growing doubt as to whether capital will be available to finance the electricity generating levels projected by the industry and by governments for the 1990s. The nuclear industry is now in trouble at every stage of the fuel cycle. The industry's difficulties have also revealed a lack of overall - but particularly nuclear - energy strategy at either national or international levels, and a lack of will to create regulations and institutional machinery at either of these levels which might reassure both concerned publics and the energy industries themselves. This paper appraises some of the present limitations of international institutions in achieving control and management of nuclear power. (author)

  7. Nuclear power and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An appropriate non-proliferation treaty should not discriminate among the non-weapon states, but should seek a cooperative approach with all countries seeking nuclear power and willing to accept international safeguards. Near-term proliferation problems, represented by nations already on the threshold of weapon capability, should not be confused with the long-term problem of world-wide nuclear development. The first can be handled with incentives and disincentives imposed on specific countries, while the latter involves the distribution of plutonium on the basis of alternative fuel cycles. To retain world leadership, U.S. efforts along these lines should be to encourage a dialogue between suppliers and recipients and to coordinate the economic and security issues of its own non-proliferation and foreign policies. One option is a U.S. commitment to a multinational fuel storage and reprocessing facility. Technical evaluation and demonstration of alternative fuel cycles to reach an international consensus would be a parallel activity

  8. Nuclear power: time to start again

    International Nuclear Information System (INIS)

    Rezak, W.D.

    2004-01-01

    This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result is that the US nuclear industry is alive and well. Perhaps it's time to start anew the building of nuclear power plants. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in over 30 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crises in California and the Northeast. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year's operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation

  9. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  10. Nuclear Power and Sustainable Development (French Edition)

    International Nuclear Information System (INIS)

    2008-01-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible [fr

  11. Nuclear Power and Sustainable Development (Spanish Edition)

    International Nuclear Information System (INIS)

    2008-02-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible [es

  12. Nuclear power in an age of uncertainty

    International Nuclear Information System (INIS)

    1984-02-01

    The present nuclear era is drawing to a close. Unit 1 of the Washington Public Power Supply System was indefinitely, perhaps permanently, deferred even though it was 60% complete and $2.1 billion had been invested. This plant and others such as Zimmer and Marble Hill epitomize the difficulties facing the nuclear industry. It is important to remember, however, that other nuclear plants have been very successful and produce reliable, low cost electricity. The future of nuclear power poses a complex dilemma of policymakers. It has advantages that may prove crucial to this nation's energy system in the coming decades, but at present it is an option that no electric utility would seriously consider. OTA examined questions of demand growth, costs, regulation, and public acceptance to evaluate how these factors affect nuclear power's future. We reviewed research directions which could improve conventional light water reactor technology and opportunities to develop other types of reactor concepts that might enhance safe and reliable operation. In addition, the crucial role of utility management in constructing and operating nuclear powerplants is examined at length. The controversy about nuclear safety regulation is also analyzed, and is presented with a review of current proposals for regulatory reform. Finally, the study discusses policy approaches that could assist a revival of the nuclear option should that be a choice of Congress

  13. Climate Change and Nuclear Power 2015

    International Nuclear Information System (INIS)

    2015-09-01

    Climate change is one of the most important environmental challenges facing the world today. Nuclear power can make a significant contribution to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for growing populations and socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably at stable and foreseeable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. Yet, more than four years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other economic, energy and environmental challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in electricity generation and distribution technologies and their impacts on nuclear power are also presented. This edition has been

  14. Climate Change and Nuclear Power 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-10-15

    Climate change is the foremost global environmental issue today. Nuclear power is one of the low carbon technologies that can contribute to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for growing populations and socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably at stable and foreseeable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power — a reminder that safety can never be taken for granted. Yet, more than three years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in resource supply, changes in

  15. Climate Change and Nuclear Power 2016

    International Nuclear Information System (INIS)

    2016-09-01

    Climate change is one of the most important environmental challenges facing the world today. Nuclear power can make a significant contribution to reducing greenhouse gas (GHG) emissions while delivering energy in the increasingly large quantities needed for the socioeconomic well-being of a growing population. Nuclear power plants produce virtually no GHG emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably and at stable and predictable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. Yet, more than five years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This publication provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other economic, environmental and social sustainability challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, financing, safety, waste management and non-proliferation. Recent and future trends in the increasing share of renewables in overall electricity generation and its effect on nuclear power are also presented

  16. Climate Change and Nuclear Power 2014

    International Nuclear Information System (INIS)

    2014-10-01

    Climate change is the foremost global environmental issue today. Nuclear power is one of the low carbon technologies that can contribute to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for growing populations and socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably at stable and foreseeable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power — a reminder that safety can never be taken for granted. Yet, more than three years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in resource supply, changes in

  17. Nuclear power and the logic of globalization

    International Nuclear Information System (INIS)

    Weizsaecker, C.C. von

    2000-01-01

    The article discusses effects and results of globalization for nuclear power and other options of electricity generation. According to the present state of knowledge, it will not be possible to meet the growing worldwide energy requirement with fossil and renewable energy sources only - also because of the CO 2 problem. Consequently, nuclear power will remain an important alternative. On an international scale, this applies in particular to large countries, such as China and India, as large national economies particularly benefit from the economies of scale offered by nuclear power. This could well make Chinese nuclear technology a product for the world market. Thinking along these lines has not really gained ground in Germany, as nuclear power, being a technology requiring considerably capital outlay, is considered unsuitable for southern countries. It is an illusion to believe that Germany's opting out of the use of nuclear power could be a model to others. Instead, we are faced by the ethical question of how we can help to minimize the accident risks of nuclear facilities worldwide. We can do so only by maintaining the use of nuclear power and exporting our level of safety, for the risks will not become any smaller merely as a result of our opting out. (orig.) [de

  18. Banning nuclear power at sea

    International Nuclear Information System (INIS)

    Handler, J.

    1993-01-01

    This article argues that now that the East-West conflict is over, nuclear-powered vessels should be retired. Nuclear-powered ships and submarines lack military missions, are expensive to build and operate, generate large amounts of long-lived deadly nuclear waste from their normal operations and when they are decommissioned, and are subject to accidents or deliberate attack which can result in the sinking of nuclear reactors and the release of radiation. With the costs of nuclear-powered vessels mounting, the time has come to ban nuclear power at sea. (author)

  19. The need for nuclear power

    International Nuclear Information System (INIS)

    1977-12-01

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  20. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  1. Torness: proposed nuclear power station

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for and desirability of nuclear power, and in particular the proposed nuclear power station at Torness in Scotland, are questioned. Questions are asked, and answered, on the following topics: position, appearance and cost of the proposed Torness plant, and whether necessary; present availability of electricity, and forecast of future needs, in Scotland; energy conservation and alternative energy sources; radiation hazards from nuclear power stations (outside, inside, and in case of an accident); transport of spent fuel from Torness to Windscale; radioactive waste management; possibility of terrorists making a bomb with radioactive fuel from a nuclear power station; cost of electricity from nuclear power; how to stop Torness. (U.K.)

  2. Nuclear Power Plant 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Again this year, our magazine presents the details of the conference on Spanish nuclear power plant operation held in February and that was devoted to 1996 operating results. The Protocol for Establishment of a New Electrical Sector Regulation that was signed last December will undoubtedly represent a new challenge for the nuclear industry. By clearing stating that current standards of quality and safety should be maintained or even increased if possible, the Protocol will force the Sector to improve its productivity, which is already high as demonstrated by the results of the last few years described during this conference and by recent sectorial economic studies. Generation of a nuclear kWh that can compete with other types of power plants is the new challenge for the Sector's professionals, who do not fear the new liberalization policies and approaching competition. Lower inflation and the resulting lower interest rates, apart from being representative indices of our economy's marked improvement, will be very helpful in facing this challenge. (Author)

  3. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Hirschmann, H.; Vennemann, J.

    1980-01-01

    The paper describes the energy policy quandary of developing countries and explains why nuclear power plants of a suitable size - the KKW 200 MW BWR nuclear power plant for electric power and/or process steam generation is briefly presented here - have an economic advantage over fossil-fuelled power plants. (HP) [de

  4. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  5. Nuclear power in Sweden

    International Nuclear Information System (INIS)

    Wikdahl, C.E.

    1999-01-01

    Sweden uses 16,000 kWh of electricity per person, by far the highest consumption in EU. The reason is a well-developed electricity intensive industry and a cold climate with high share of electric heating. The annual power consumption has for several years been about 140 TWh and a normal year almost 50 per cent is produced by hydro and 50 percent by nuclear. A new legislation, giving the Government the right to ordering the closure nuclear power plants of political reasons without any reference to safety, has been accepted by the Parliament. The new act, in force since January 1, 1998, is a specially tailored expropriation act. Certain rules for the economical compensation to the owner of a plant to be closed are defined in the new act. The common view in the Swedish industry is that the energy conservation methods proposed by the Government are unrealistic. During the first period of about five years the import from coal fired plants in Denmark and Germany is the only realistic alternative. Later natural gas combi units and new bioenergy plants for co-production of heat and power (CHP) might be available. (orig.) [de

  6. Bradwell Nuclear Power Station

    International Nuclear Information System (INIS)

    1987-01-01

    When built, the Magnox reactors were expected to have operating lifetimes of 20-25 years. In order to satisfy the licensing authorities of their continued safety, long term safety reviews (LTSRs) are being carried out as the reactors reach 20 years of operation. This is the Nuclear Installations Inspectorate's (NII) summary report on Bradwell nuclear power station. The objectives of the LTSR are stated. A description of the plant is followed by an explanation of the statutory position on licensing. The responsibilities of the Central Electricity Generating Board (CEGB) and the NII are defined. From the examination of the CEGB's LTSR it is concluded that this generally confirms the validity of the existing safety case for present operation. However, some recommendations are made as to work required for reactor operation up to 1992. A summary of the NII findings is presented. This includes the reactor pressure circuit integrity, effects of ageing and in-service wear and radiation doses. (U.K.)

  7. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  8. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  9. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  10. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  11. Nuclear power plant disasters

    International Nuclear Information System (INIS)

    Trott, K.R.

    1979-01-01

    The possibility of a nuclear power plant disaster is small but not excluded: in its event, assistance to the affected population mainly depends on local practitioners. Already existing diseases have to be diagnosed and treated; moreover, these physicians are responsible for the early detection of those individuals exposed to radiation doses high enough to induce acute illness. Here we present the pathogenesis, clinical development and possible diagnostic and therapeutical problems related to acute radiation-induced diseases. The differentiation of persons according to therapy need and prognosis is done on the sole base of the clinical evidence and the peripheral blood count. (orig.) [de

  12. Nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Hollo, E.; Siklossy, P.

    1982-01-01

    The cooling circuit vibration diagnostic system of the Block 1 of the Paks nuclear power station is described. The automatic online vibration monitoring system consisting presently of 42 acceleration sensors and 9 pressure fluctuation sensors, which could be extended, performs both global and local inspection of the primary cooling circuit and its components. The offline data processing system evaluates the data for failure mode analysis. The software under development will be appropriate for partial preliminary identification of failure reasons during their initial phases. The installation experiences and the preliminary results during the hot operational testing of Block 1 are presented. (Sz.J.)

  13. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  14. How available is the nuclear option

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1982-01-01

    Energy ministers and heads of government of the major industrialized countries specify that we must make much greater use of nuclear energy by the end of this century. Developing countries give ample warning that their needs are just beginning to be felt. Experts are unanimous that the age of oil is finished and that coal and nuclear must be used to displace oil. Yet the facts today point in a different direction. What is the problem. Is more nuclear really needed. Is it really available. There is no technological factor that would preclude a much-larger role for nuclear energy. The conclusion must be that, despite all the brave pronouncements, decision makers do not want nuclear. This chapter considers some of the bases for this conclusion and deals with the reasons for concluding that there are no current technological impediments to nuclear energy

  15. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  16. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  17. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  18. Climate Change and Nuclear Power 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Climate change is one of the most important issues facing the world today. Nuclear power can make an important contribution to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for global socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. The accident at the Fukushima Daiichi nuclear power plant of March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power - a reminder that safety can never be taken for granted. Yet, in the wake of the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The International Atomic Energy Agency provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report has been substantially revised, updated and extended since the 2012 edition. It summarizes the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change-nuclear energy nexus, such as cost, safety, waste management and non-proliferation. New developments in resource supply, innovative reactor technologies and related fuel cycles are also presented

  19. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  20. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  1. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    Lauritzen, B.; Nonboel, E.; Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2013-11-01

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  2. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  3. International nuclear power status 2001

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  4. International nuclear power status 2002

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  5. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  6. Ecological problems of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Babaev, N S; Demin, V F; Kuz' min, I I; Stepanchikov, V I [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1978-10-01

    Modern power sources including nuclear one are characterized. Basic information on radiation protection of man and biosphere is presented. Problems of radiation effect of nuclear fuel cycle enterprises on population and environment are discussed. Comparative evaluation of nuclear and thermal power effect on biosphere is made. It is shown that nuclear power is the safest power source at the present development state. The conclusion is drawn that the use of nuclear energy controlled and limited by scientifically founded norms does not present radiation hazard for population and environment.

  7. Nuclear power in western society

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1977-01-01

    The degree to which problems of public acceptance have contributed to the slowdown in progress of nuclear power in Western European countries and the USA is discussed. Some of the effects on the nuclear power industry, i.e. the electrical utilities, the power station suppliers, and the fuel cycle contractors are described. The problem of the lack of public acceptance is examined by consideration of four areas: the position of the employee working in nuclear installations, opposition from the local community, the question of terrorism and its impact on nuclear policy, and finally, what is felt to constitute the greatest anxiety concerning nuclear power, that of proliferation. (U.K.)

  8. Building infrastructure for new nuclear power programmes

    International Nuclear Information System (INIS)

    Starz, A.; Aoki, M.

    2010-01-01

    In recent years, more than sixty countries have indicated that they are considering or launching nuclear power programmes. It has been more than a decade since a country commissioned its first nuclear power plant. In meantime, the global nuclear community has faced greater concerns about safety, security and non-proliferation, resulting in increased international obligations and a greater expectation for transparency and openness regarding nuclear power programmes. Many of these 'nuclear newcomers' are turning to International Atomic Energy Agency (IAEA) to understand the implications of the nuclear power option and to receive advice about how to proceed with implementing a national programme. In response to growing demand for assistance, the IAEA developed a comprehensive, phased approach to establishing the infrastructure necessary to support a national nuclear power programme. This 'Milestones' approach is described in Nuclear Energy Series Guide NG-G-3.1 'Milestones in the Development of a National Infrastructure for Nuclear Power' (2007). From establishing the national position and legal framework to nuclear safety, security and safeguards, the Milestones covers 19 issues that need to be addressed. This approach also places special emphasis on the need for involvement of the Government, utility, industry, academic, and other stakeholders in a national decision-making process. The IAEA is also helping 'newcomers' to better understand its Safety Standards, which were written from the perspective of operating nuclear power programmes. A new safety guide is in development which provides a Road-map to the safety standards and identifies the standards that are relevant for each phase consistent with the Milestones. Several countries in the Europe region are working with the IAEA to understand the issues associated with a nuclear power programme in preparation for making a knowledgeable commitment. The starting points and approaches vary widely: some are European

  9. Accelerators and alternative nuclear fuel management options

    International Nuclear Information System (INIS)

    Harms, A.A.

    1983-01-01

    The development of special accelerators suggests the po tential for new directions in nuclear energy systems evolution. Such directions point towards a more acceptable form of nuclear energy by reason of the consequent accessibility of enhanced fuel management choices. Essential and specifically directed research and development activity needs to be under taken in order to clarify and resolve a number of technical issues

  10. Is nuclear power and alternative?

    International Nuclear Information System (INIS)

    Lejon, E.

    1996-01-01

    In this chapter of the book author deals with the historical background for the nuclear energy power. Some statistical data about nuclear power stations as well as on radioactive wastes are given. The Chernobyl catastrophe is described. Author thinks that nuclear energy is not safe and it has no perspective in future

  11. The implications of the nuclear option in Quebec

    International Nuclear Information System (INIS)

    Sauvageau, P.A.; Boivin, M.

    1979-10-01

    Problems concerning the nuclear option as a component of the energy balance of Quebec are presented. The demand for electrical energy for the periods 1977-1985 and 1985-2000, the energy resources of Quebec, and an analysis of nuclear fission energy are considered. In 1978 65.5 percent of Quebec's energy needs were supplied by imported petroleum, 7.1 percent by imported gas, and 1.4 percent by imported coal. Hydroelectricity supplied 21.9 percent of the energy budget in 1976. According to projections electricity's share will be around 41 percent in 1990 after conservation, and approximately 50 percent in 2000, while petroleum and gas will have 44 percent, new energies 5 percent, and coal 1 percent. The acceptability of nuclear power can be broken down into six factors, for each of which a decision criterion can be recognized: technical feasibility, economic feasibility, security of supply, side effects for Quebec, human and ecological risks, and socio-political factors. The first four criteria are acceptable and even in certain cases desirable. The acceptability of risks is subjective and should be a collective decision, and therefore is policitcal. Even if Quebec does not need nuclear at the present or in the next decade, it is still a form of energy which it will be necessary to come to terms with eventually. Thus it is important to maintain the capacity to have recourse to it, and to start a program of public dialogue by setting up a 'Permanent Council for Energy Forecasting'. The democratic participation of a well-informed population in a neutral and objective nuclear debate is thus essential. (LL)

  12. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  13. Nuclear Power Division

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The 1981-85 research program planned by the Nuclear Power Division of EPRI places major emphasis on the assurance of safety and realiability of light water reactors (LWRs). Of high priority is a better knowledge of LWR-system behavior undeer abnormal conditions and the behavior of structural materials used for pressure vessels, piping, and large nuclear-plant components. Strong emphasis is also placed on achieving the most-effective performance and utilization of nuclear fuels and improving the corrosion resistance of pressurized-water-reactor steam generators. Efforts are underway to reduce radiation exposure and outage duration and to investigate the human factors involved in plant operation and maintenance. Substantial emphasis is placed on short-range goals designed to achieve useful results in the next two to seven years. The Division's mid- and long-range goal is to improve the use of fissionable and fertile materials and aid in the realization of other reactor systems. A series of general goals, categorized into three time frames and planned expenditures shows the trend of work to be undertaken. 53 figures

  14. Nuclear power in Spain

    International Nuclear Information System (INIS)

    Koryakin, Yu.I.

    1977-01-01

    The present states of nuclear power in Spain is shortly surveyed. Data are provided on NPPs currently in operation, under construction, designed and planned. In line with the 10-year ''National programme of electricity supply'' a major and all increasing part of the electricity generation growth is to be ensured by NPPs and to account for more than 50% by the end of the period (1987). Out of the 7 units of NPPs now under construction, 6 units utilize PWR reactors and only 1 unit- a BWR reactor. The roles of private and public sectors are noted. Main characteristics of the ''ENSA'' plant now under construction are provided where components of NPPs with PWR and BWR reactors will be fabricated. Major developments in the fields of mining, milling and extraction of U from lignites, U enrichment, fuel fabrication and spent fuel reprocessing are considered. Measures now taken to improve the licensing procedure, surveillance of NPPs and personnel training are to advance the nuclear power development programme in the country

  15. Nuclear power: how and why

    International Nuclear Information System (INIS)

    1982-10-01

    The subject is discussed, with special reference to the United Kingdom, under the headings: the need for nuclear power; Britain's experience (nuclear reactors); the nuclear process; how fuel is made; recycling fuel; wastes and their treatment; decommissioning; fast reactors; nuclear fusion; safety and radiation. (U.K.)

  16. Nuclear power plant emergency preparedness

    International Nuclear Information System (INIS)

    2005-01-01

    The guide sets forth detailed requirements on how the licensee of a nuclear power plant shall plan, implement and maintain emergency response arrangements. The guide is also applied to nuclear material and nuclear waste transport in situations referred to in guide YVL 6.5. Requirements on physical protection are presented in a separate guide of Finnish Radiation and Nuclear Safety Authority (STUK)

  17. Nuclear power without nuclear weapons

    International Nuclear Information System (INIS)

    Kaiser, K.; Klein, F.J.

    1982-01-01

    In this study leading experts summarize the work of a working group meeting during several years, and they represent the state of the art of the international discussion about the non-proliferation of nuclear weapons. The technical basis of proliferation, the relations between energy policy and nuclear energy, as well as the development of the non-proliferation system up to the present are thoroughly studied. Special attention is paid to the further development of the instruments of the non-proliferation policy, and approaches and ways to improving the control of the fuel cycle, e.g. by means of multinational methods or by improving the control requirements are analyzed. Also the field of positive inducements and negative sanctions to prevent the proliferation as well as the question of ensured supply are elucidated in detail. A further section then analyzes the functions of the international organizations active in this field and the nuclear policy of the most important western industrial nations, the RGW-states and the threshold countries of the Third World. This volume pays special attention to the nuclear policy of the Federal Republic of Germany and to the possibilities and necessities of a further development of the non-proliferation policy. (orig.) [de

  18. Nuclear power generation and fuel cycle report 1997

    International Nuclear Information System (INIS)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East

  19. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  20. Canada's steps towards nuclear power

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1958-09-01

    This paper describes the policy development of nuclear power in Canada. Canada has a natural abundance of coal, oil, natural gas, water power and uranium. It was recognized that the demand for nuclear power would only materialize if it met an economically competitive range.

  1. Nuclear energy - option for the future. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of this conference was to analyse the future national and international problems arising with energy supplies with regard to the large mass flows and CO 2 flows involved in the use of nuclear energy. The following topics are dealt with: - nuclear energy, world-wide energy management and developments in Europe and Asia - disposal and ultimate waste disposal, plutonium management, an assessment of the Chernobyl accident 10 years on - new reactor developments in the energy mix - the costs arising with nuclear energy in the energy mix. In view of the demand made by climate researchers, to reduce CO 2 , and the additional construction work planned in the eastern and Asian areas, it will remain necessary for the Federal Republic of Germany,too, to maintain the know-how and technology for nuclear energy generation. (orig./DG)

  2. Fields of nuclear power application

    International Nuclear Information System (INIS)

    Laue, H.J.

    1975-01-01

    The paper deals with nuclear power application in fields different from electricity generation, i.e. district heating, sea water desalination, coal gasification and nuclear splitting of water. (RW) [de

  3. Nuclear power: a British view

    International Nuclear Information System (INIS)

    Shaw, G.

    1985-01-01

    The subject is covered in sections, entitled: importance of nuclear power; the problems; fuel availability (uranium purchasing policy; uranium market; longer-term demand; enrichment market; fast reactor); non-proliferation and nuclear export policy; public acceptability. (U.K.)

  4. Services for nuclear power stations

    International Nuclear Information System (INIS)

    Fremann, M.; Ryckelynck

    1987-01-01

    This article gives an information as complete as possible about the activities of the french nuclear industry on the export-market. It describes the equipment and services available in the field of services for nuclear power stations [fr

  5. The benefits of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This article briefly outlines the benefits of nuclear power. Nuclear electricity generation is compared with fossil-fuel generated electricity in terms of environmental pollution and accidents and disease hazards

  6. Nuclear power in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. (Sussex Univ., Brighton (UK). Science Policy Research Unit)

    1991-01-01

    The main aim of this article is that of illustrating the experience of the use of nuclear power in Eastern Europe in order to estimate the degree of adequacy or inadequacy of COMECON's nuclear technology. The author examines four areas of interest concerning: the feasibility of new orders for nuclear plants in Eastern Europe; the pros and cons of completing half-built nuclear power plants; current policy towards existing nuclear power plants; and a review of the available evidence on the operating performance of plants in Eastern Europe. The common belief that the nuclear power experience had by old COMECON countries is uniformly bad does not seem to be fully supported by the limited evidence available. In the author's opinion, the prospects for a successful nuclear power industry in these countries depends on a series on interdependent factors among which, human skills hold a prominent position.

  7. Nuclear power plants

    International Nuclear Information System (INIS)

    Ushijima, Susumu.

    1984-01-01

    Purpose: To enable to prevent the degradation in the quality of condensated water in a case where sea water leakage should occur in a steam condenser of a BWR type nuclear power plant. Constitution: Increase in the ion concentration in condensated water is detected by an ion concentration detector and the leaking factor of sea water is calculated in a leaking factor calculator. If the sea water leaking factor exceeds a predetermined value, a leak generation signal is sent from a judging device to a reactor power control device to reduce the reactor power. At ehe same tiem, the leak generation signal is also sent to a steam condenser selection and isolation device to interrupt the sea water pump of a specified steam condenser based on the signal from the ion concentration detector, as well as close the inlet and outlet valves while open vent and drain valves to thereby forcively discharge the sea water in the cooling water pipes. This can keep the condensate desalting device from ion breaking and prevent the degradation in the quality of the reactor water. (Horiuchi, T.)

  8. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  9. Problems of nuclear power development

    International Nuclear Information System (INIS)

    Panasenkov, A.

    1982-01-01

    The answers are reported given by the head of the department for peaceful uses of nuclear energy of the secretariat of the Council of Mutual Economic Assistance, Mr. A. Pasenkov to questions given him in an interview for APN. The questions were related to the current state and development of world nuclear power, nuclear safety and the attitude of the general public to nuclear power in the West and in the CMEA countries. (B.S.)

  10. Nuclear power in East Asia

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1996-01-01

    This editorial discusses the shifting dominance in the nuclear reactor technology from the USA to new leadership in East Asia. With the expanding economies and electricity demand, Design, construction and operation of a large number of nuclear power plants in east Asia will support nuclear engineers, technologist, manufacturing facilities, and potential weapons experts. In contrast, the cessation of construction of power reactors in the US is leading to deminished nuclear capabilities

  11. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    Elleman, T.S.; Gilligan, J.G.

    1991-01-01

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  12. Nuclear power 2005: European report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In 2005, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 204 power reactors with a gross power of 181,030 MWe and a net power of 171,8479 MWe were in operation at the end of the year. In 2005, no nuclear power plant was commissioned. Two nuclear power plants were decommissioned in Europe in the course of 2005. In Germany the Obrigheim NPP and in Sweden the Barsebaeck 2 NPP have been permanently shut down due to political decisions. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.6 GW. In late 2005, five nuclear generating units were under construction in Finland (1), Romania (1), and Russia (3). 148 nuclear power plants were operated in thirteen states of the European Union (EU-25). They had an aggregate gross power of 137,023 MWe and a net power of 130,415 MWe, generating approx. 970 billion gross kWh of electricity in 2005, thus again contributing some 31% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in France (80%), followed by 72% in Lithuania, 55% in the Slovak Republic, 55% in Belgium, and 51% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as a result of electricity imports. (All statistical data in the country report apply to 2004 unless indicated otherwise. This is the year for which sound preliminary data are currently available for the states listed.) (orig.)

  13. Discharges from nuclear power stations

    International Nuclear Information System (INIS)

    1991-02-01

    HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report contains details of the technologies used at many nuclear power stations to treat and control radioactive discharges and gives, where information was available, details of discharges and authorised discharge limits. (author)

  14. Energy situation and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, M R [Reactor and Neutron physics Department Nuclear Research Center A.E., Cairo (Egypt)

    1997-12-31

    A brief general review is given concerning the requirements of power throughout history with an indication to the world capital reserves of energy. The energy released from the conversion of mass in chemical and nuclear processes is also discussed with comparative analysis between conventional fuel fired plant and nuclear power plant having the same energy output. The advantages and disadvantages arising from having a nuclear power programme are also discussed. 1 fig.

  15. Nuclear power news no 38

    International Nuclear Information System (INIS)

    1986-01-01

    The following matters are treated: What happened at the Chernobyl accident? - The Russian graphite reactor - a comparison with light water reactors. - The Soviet program for nuclear power. - Serious organizational unsatisfactory state of things at the nuclear power plants of Soviet. - Graphite reactors of the nuclear power program of the world. - The radioactive fallout in Sweden after Chernobyl. - The risks involved in radioactive radiation - an experts conception

  16. Manpower development for nuclear power

    International Nuclear Information System (INIS)

    1980-01-01

    This Guidebook provides policy-makers and managers of nuclear power programmes with information and guidance on the role, requirements, planning and implementation of manpower development programmes. It presents and discusses the manpower requirements associated with the activities of a nuclear power programme, the technical qualifications of this manpower and the manpower development corresponding to these requirements and qualifications. The Guidebook also discusses the purpose and conditions of national participation in the activities of a nuclear power programme

  17. Nuclear power - facts, trends, problems

    International Nuclear Information System (INIS)

    Spickermann, W.

    1981-01-01

    An attempt has been made to describe the state-of-the-art of nuclear power utilization, particularly for energy production. On the basis of information obtained from study tours through the USSR a rather comprehensive review of nuclear power plants and research establishments in the Soviet Union, of desalination reactors, ship propulsion reactors and fast breeder reactors is given, including nuclear facilities of other countries, e.g. France, USA, GDR. Heat generation, radiation-induced chemical processes and aspects associated with nuclear energy uses, such as risks, environmental protection or radioactive wastes, are also considered. Moreover, the author attempts to outline the social relevance of nuclear power

  18. Identification of the real options in a program of nuclear plants

    International Nuclear Information System (INIS)

    Camacho G, D.; Diaz N, M. J.; Reinking C, A.

    2008-01-01

    The development of our societies and our economies this intimately related to electric power and this as well with the generating sources, due to the projection of world-wide growth should go associate with a strategy of growth of energy generation. Considering to the nuclear power as an option to satisfy the energy needs that a country can provide two main immediate benefits: The stabilization of prices of security of provision of electric power of the nation. The care of the environment, since the gas discharges greenhouse are almost null. At the moment nuclear energy represents economically a viable option for the capital investment, taking into account the development from technology, the policies implemented by the state and the prices of other fuels. Due to the great investment that its require for the nuclear plants are necessary to use financial tools that allow to analyze the future scenes in which ours investment can be seen affected and to value the flexibility of being able to enlarge, to postpone or to stop our project in order to have majors profits or to diminish the lost ones. This valuation of the flexibility can be obtained from the called method Real Options. By analysis of Real Options the process is understood to apply to the methodology of the Financial Options to the valuation of projects or the management of real assets. The Real Options appear in flexible plans, projects, activities or enterprise investments, like for example, to leave or to sell the investment project before concluding it, changing to their use or its technology, to prolong their life, the option to choose, one or the other capacity, among others possibilities. In this work is an example of the application of the method of Real Options in the decision to invest or to defer the investment for the construction of a nuclear plant following the behavior of the tariffs in the market or the costs of generation of other technologies with which a nuclear plant competes. (Author)

  19. Wuergassen nuclear power plant

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The decision of the Federal Court of Administration concerns an application for immediate decommissioning of a nuclear power plant (Wuergassen reactor): The repeal of the permit granted. The decision dismisses the appeal for non-admission lodged by the plaintiffs against the ruling of the Higher Court of Administration (OVG) of North-Rhine Westphalia of December 19th 1988 (File no. 21 AK 8/88). As to the matter in dispute, the Federal Court of Administration confirms the opinion of the Higher Court of Administration. As to the headnotes, reference can be made to that decision. Federal Court of Administration, decision of April 5th 1989 - 7 B 47.89. Lower instance: OVG NW, Az.: 21 AK 8/88. (orig./RST) [de

  20. Nuclear power plant

    International Nuclear Information System (INIS)

    Uruma, Hiroshi

    1998-01-01

    In the first embodiment of the present invention, elements less activated by neutrons are used as reactor core structural materials placed under high neutron irradiation. In the second embodiment of the present invention, materials less activated by neutrons when corrosive materials intrude to a reactor core are used as structural materials constituting portions where corrosion products are generated. In the third embodiment, chemical species comprising elements less activated by neutrons are used as chemical species to be added to reactor water with an aim of controlling water quality. A nuclear power plant causing less radioactivity can be provided by using structural materials comprising a group of specific elements hardly forming radioactivity by activation of neutrons or by controlling isotope ratios. (N.H.)

  1. Nuclear power plant

    International Nuclear Information System (INIS)

    Schabert, H.P.

    1976-01-01

    A nuclear power plant is described which includes a steam generator supplied via an input inlet with feedwater heated by reactor coolant to generate steam, the steam being conducted to a steam engine having a high pressure stage to which the steam is supplied, and which exhausts the steam through a reheater to a low pressure stage. The reheater is a heat exchanger requiring a supply of hot fluid. To avoid the extra load that would be placed on the steam generator by using a portion of its steam output as such heating fluid, a portion of the water in the steam generator is removed and passed through the reheater, this water having received at least adequate heating in the steam generator to make the reheater effective, but not at the time of its removal being in a boiling condition

  2. Politics of nuclear power and fuel cycle

    International Nuclear Information System (INIS)

    Uddin, R.

    2007-01-01

    -is likely to remain evolving depending on regional and global affairs. Opposition or support for nuclear technology is also likely to be a function of regional and global politics. In response to such pressures, IAEA is organizing a workshop of 140 countries to discuss proposals to guarantee countries' supply of nuclear fuel (September 19-21-, 2006; Vienna). Premise and Question: A single nuclear power plant in a country may be good for the prestige of the country, but such units are unlikely to make a major impact on the energy scene. Hence, in order for nuclear power to play a significant role, countries that decide to 'go nuclear,' would most likely want to diversify a significant fraction of their electricity generating capacity (and possibly heating and, in the future, hydrogen production) to nuclear, possibly requiring at least few and possibly many nuclear power plants. In order to proceed with the nuclear option, these countries would expect a certain level of long term assurance on the fuel supply. What is the kind of options that would satisfy the needs of these countries and at the same time addressing the non-proliferation concerns? Options: The options available to countries for their nuclear program can be categorized as follows. A. Fully indigenous program with complete development of power plants and fuel cycle. B. Fully or partly indigenous program for power plant development; while depending on international consortium for fuel supply and waste treatment. C. Rely on international consortia to build and operate all aspects of nuclear power plants (with local manpower). Others: A total of around fifty to seventy five countries are likely to be interested in nuclear power in the next fifty years. These can be divided in to the three groups (A-C) given above. It is likely that, with time, there will be some expectation to move to higher levels (C to B and B to A). Countries already in group A and those willing to start in group C do not pose an issue. It is

  3. Nuclear power ecology: comparative analysis

    International Nuclear Information System (INIS)

    Trofimenko, A.P.; Lips'ka, A.Yi.; Pisanko, Zh.Yi.

    2005-01-01

    Ecological effects of different energy sources are compared. Main actions for further nuclear power development - safety increase and waste management, are noted. Reasons of restrained public position to nuclear power and role of social and political factors in it are analyzed. An attempt is undertaken to separate real difficulties of nuclear power from imaginary ones that appear in some mass media. International actions of environment protection are noted. Risk factors at different energy source using are compared. The results of analysis indicate that ecological influence and risk for nuclear power are of minimum

  4. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  5. Nuclear power plants

    International Nuclear Information System (INIS)

    Kiyokawa, Teruyuki; Soman, Yoshindo.

    1985-01-01

    Purpose: To constitute a heat exchanger as one unit by integrating primary and secondary coolant circuits with secondary coolant circuit and steam circuit into a single primary circuit and steam circuit. Constitution: A nuclear power plant comprises a nuclear reactor vessel, primary coolant pipeways and a leakage detection system, in which a dual-pipe type heat exchanger is connected to the primary circuit pipeway. The heat conduction tube of the heat exchanger has a dual pipe structure, in which the inside of the inner tube is connected to the primary circuit pipeway, the outside of the outer tube is connected to steam circuit pipeway and a fluid channel is disposed between the inner and outer tubes and the fluid channel is connected to the inside of an expansion tank for intermediate heat medium. The leak detection system is disposed to the intermediate heat medium expansion tank. Sodium as the intermediate heat medium is introduced from the intermediate portion (between the inner and outer tubes) by way of inermediate heat medium pipeways to the intermediate heat medium expansion tank and, further, to the intermediate portion for recycling. (Kawakami, Y.)

  6. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The increase in electronuclear production is the result of an investment policy which was started twenty years ago and actively pursued, notably by France where the programme was speeded up during the last decade. Over the whole of Europe taken in the widest sense, that is to say over the 10 million sq kms which stretch from the Atlantic to the Eastern borders of the Soviet Union with its population of nearly 664 million inhabitants (a sixth of the world population), the number of reactors continues to grow. In Eastern Europe a major investment programme is in progress and the Soviets have already reached the 1,500 MWe level. In the West, after a period of uncertainty marked by a systematic opposition to nuclear, public opinion is now much more favourable to this form of energy. The next referendum due to be held in Switzerland is likely to confirm this trend. There is still some uncertainty over the size of programmes as in Spain and Italy but it is true that the economic crisis had lead to a cut-back in energy demand. Consumption increases however turn up increasingly often. The following study examines 17 European countries which have already built nuclear power plants or are just about to do so [fr

  7. Assessment of environmental impact of nuclear and other options for electricity generation in Croatia

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Kovacevic, T.

    1996-01-01

    Possible scenarios of future electricity production and supply, especially their environmental impact and social acceptability, have recently been put in the focus of overall interest. This paper analyzes the air impact and costs of possible developing options, varying the fuel types for future power plants. Nuclear option has also been taken in consideration. Two categories of costs have been introduced: internal cost (investment, O and M and fuel cost) and external cost (monetary equivalent of the environmental damage caused by plant operation). (author)

  8. Nuclear power perspective in China

    International Nuclear Information System (INIS)

    Liu Xinrong; Xu Changhua

    2003-01-01

    China started developing nuclear technology for power generation in the 1970s. A substantial step toward building nuclear power plants was taken as the beginning of 1980 s. The successful constructions and operations of Qinshan - 1 NPP, which was an indigenous PWR design with the capacity of 300 MWe, and Daya Bay NPP, which was an imported twin-unit PWR plant from France with the capacity of 900 MWe each, give impetus to further Chinese nuclear power development. Now there are 8 units with the total capacity of 6100 MWe in operation and 3 units with the total capacity of 2600 MWe under construction. For the sake of meeting the increasing demand for electricity for the sustainable economic development, changing the energy mix and mitigating the environment pollution impact caused by fossil fuel power plant, a near and middle term electrical power development program will be established soon. It is preliminarily predicted that the total power installation capacity will be 750-800GWe by the year 2020. The nuclear share will account for at least 4.0-4.5 percent of the total. This situation leaves the Chinese nuclear power industry with a good opportunity but also a great challenge. A practical nuclear power program and a consistent policy and strategy for future nuclear power development will be carefully prepared and implemented so as to maintain the nuclear power industry to be healthfully developed. (author)

  9. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  10. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  11. Nuclear power falling to pieces

    International Nuclear Information System (INIS)

    Moberg, Aa.

    1985-01-01

    The international development during the 80s is reviewed. It is stated that the construction of plants has come to a standstill. The forecasting of nuclear power as a simple and cheap source of energy has been erroneous because of cracks and leakage, unsolved waste problems and incidents. Nuclear power companies go into liquidation and reactors are for sale. Sweden has become the country with most nuclear power per capita mainly due to its controlled decommissioning. The civilian nuclear power makes the proliferation of nuclear weapons possible. With 324 reactors all over the world, a conventional war may cause disasters like Hiroshima. It is stated that the nuclear power is a dangerous and expensive source of energy and impossible to manage. (G.B.)

  12. Nuclear power - the Hydra's head

    Energy Technology Data Exchange (ETDEWEB)

    Bunyard, P

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead.

  13. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  14. Nuclear power and the UK

    International Nuclear Information System (INIS)

    Murphy, St.

    2009-01-01

    This series of slides describes the policy of the UK government concerning nuclear power. In January 2008 the UK Government published the White Paper on the Future of Nuclear Power. The White Paper concluded that new nuclear power stations should have a role to play in this country's future energy mix. The role of the Government is neither to build nuclear power plants nor to finance them. The White Paper set out the facilitative actions the Government planned to take to reduce regulatory and planning risks associated with investing in new nuclear power stations. The White Paper followed a lengthy period of consultation where the UK Government sought a wide variety of views from stakeholders and the public across the country on the future of nuclear power. In total energy companies will need to invest in around 30-35 GW of new electricity generating capacity over the next two decades. This is equivalent to about one-third of our existing capacity. The first plants are expected to enter into service by 2018 or sooner. The Office for Nuclear Development (OND) has been created to facilitate new nuclear investment in the UK while the Nuclear Development Forum (NDF) has been established to lock in momentum to secure the long-term future of nuclear power generation in the UK. (A.C.)

  15. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  16. Advanced nuclear plant design options to cope with external events

    International Nuclear Information System (INIS)

    2006-02-01

    With the stagnation period of nuclear power apparently coming to an end, there is a renewed interest in many Member States in the development and application of nuclear power plants (NPPs) with advanced reactors. Decisions on the construction of several NPPs with evolutionary light water reactors have been made (e.g. EPR Finland for Finland and France) and more are under consideration. There is a noticeable progress in the development and demonstration of innovative high temperature gas cooled reactors, for example, in China, South Africa and Japan. The Generation IV International Forum has defined the International Near Term Deployment programme and, for a more distant perspective, six innovative nuclear energy systems have been selected and certain R and D started by several participating countries. National efforts on design and technology development for NPPs with advanced reactors, both evolutionary and innovative, are ongoing in many Member States. Advanced NPPs have an opportunity to be built at many sites around the world, with very broad siting conditions. There are special concerns that safety of these advanced reactors may be challenged by external events following new scenarios and failure modes, different from those well known for the currently operated reactors. Therefore, the engineering community identified the need to assess the proposed design configurations in relation to external scenarios at the earliest stages of the design development. It appears that an early design optimization in relation to external events is a necessary requirement to achieve safe and economical advanced nuclear power plants. Reflecting on these developments, the IAEA has planned the preparation of a report to define design options for protection from external event impacts in NPPs with evolutionary and innovative reactors. The objective of this publication is to present the state-of-the-art in design approaches for the protection of NPPs with evolutionary and innovative

  17. Nuclear power in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V A

    1981-04-01

    This article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950s, their contribution had grown to 6% of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast-breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow. The status of nuclear power stations at 20 locations is summarized in a table.

  18. Nuclear power in the USSR

    International Nuclear Information System (INIS)

    Vasiliev, V.A.

    1982-01-01

    This Article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950s, their contribution had grown to 6% of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow. (author)

  19. Power peaking nuclear reliability factors

    International Nuclear Information System (INIS)

    Hassan, H.A.; Pegram, J.W.; Mays, C.W.; Romano, J.J.; Woods, J.J.; Warren, H.D.

    1977-11-01

    The Calculational Nuclear Reliability Factor (CNRF) assigned to the limiting power density calculated in reactor design has been determined. The CNRF is presented as a function of the relative power density of the fuel assembly and its radial local. In addition, the Measurement Nuclear Reliability Factor (MNRF) for the measured peak hot pellet power in the core has been evaluated. This MNRF is also presented as a function of the relative power density and radial local within the fuel assembly

  20. Nuclear power in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V A [AN SSSR, Moscow. Akusticheskij Inst.

    1982-04-01

    This Article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950s, their contribution had grown to 6% of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow.

  1. Nuclear power in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V A [State Committee for Science and Technology, Moscow, USSR

    1981-04-01

    This article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950's, their contribution had grown to six per cent of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow.

  2. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  3. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  4. Nuclear Option for a Secure and Sustainable Energy Supply

    International Nuclear Information System (INIS)

    Kolundzija, V.; Mesarovic, M.

    2002-01-01

    Present energy policy is required to ensure a balance between security of supply, competitiveness and environmental requirements. Recent changes involved by deregulation and liberalization of electricity and natural gas markets even strengthen such a policy. However, dependency on external energy sources carries risks that have to be managed since a large proportion of both oil and gas reserves are found in politically unstable regions. Electrical energy is a fundamental prerequisite for a civilized life and an essential commodity, but it cannot be stored and this restricts the extent to which there can be a real free market for electricity. Therefore, relying on imports of electricity to a large extent may prove unsecure because this requires a true, completely open market in which the opportunities for cross-border trade are effective and balanced and transport connections are adequate. This is equally applied to the countries in the South-Eastern Europe, despite very good prospects for development of the regional electricity market there. In this regard, the use of nuclear energy has not any risk associated with external dependency because there are abundant quantities of uranium available world-wide from many diverse sources. The inherent mitigation of supply risk associated with the use of uranium should act as an incentive to the further use of nuclear energy. In addition, already very large stocks of fuel assemblies and fuel-making materials available, especially when these are measured in terms of power generating capacity per year at current production rates. It is, therefore, very important for any country to recognize such strategic aspect of nuclear energy when addressing the issue of security of power supply. Nuclear option is in a unique position to restore its original role of the main source of energy with an increased attention paid to the security of electricity supply as well as regulatory changes affecting fossil fuels, particularly with due

  5. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  6. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  7. Economic perspectives of using nuclear power

    International Nuclear Information System (INIS)

    Hansen, U.

    1991-01-01

    The economic efficiency of nuclear power is a point which is being raised again and again, despite the existing wide background of earlier, in-depth, studies. The problems lie in the underlying assumptions. For nuclear power plants yet to be built, assumptions must be made about the basic economic development over the next 20 or 30 years, and data are required about the technical options available. Many data are open to interpretation, also as a function of possible future developments, and may well result in contradictory findings when interpreted onesidedly. In nuclear power, most parameters by now can be estimated quite well. Nuclear power has meanwhile established itself in many countries, and has become the most important source of power for electricity generation in the Federal Republic of Germany and elsewhere. The biggest economic obstacle now to be overcome by nuclear power are the high initial capital investments required. This makes it imperative for vendors to reduce plant costs and construction times. (orig.) [de

  8. Current problems of nuclear arms: some options

    International Nuclear Information System (INIS)

    Bocharov, I.F.

    1992-01-01

    Possible solutions of certain problems of the soviet nuclear weapons resulting from spontaneously changing military-political situation and social-economical living conditions on geostrategical space of the former USSR are discussed. Reliable stabilization of military-political situation on the former USSR territory is required for solving the above problems, which in its turn will possibly require active efforts of the international community. The idea on creation the Committee on non-prolifiration by the UN Security Council is proposed

  9. Nuclear energy-an essential option for sustainable development of global economy

    International Nuclear Information System (INIS)

    Tokio Kanoh

    2005-01-01

    Increased use of nuclear energy is an essential option for us to take the sustainable development of the global economy. The reasons are as follows: 1. Energy demand, especially in oil demand; 2. Environmental impact, especially greenhouse effect and carbon dioxide emissions, CO 2 emissions to be reduced 40% by increased use of nuclear power; 3. In the era of hydrogen, nuclear power can contribute in two ways. One is hydrogen production by electrolysis of water in conventional light water reactors powered by less costly late night electricity and the other by paralysis using high temperature gas produced in a high temperature testing reactor, Electric power consumption will increase 50% from 1990 to 2050. What is striking about his projection is types of fuels in use for power generation at that time which will consist of 60% nuclear, 10% hydro and 10% of other renewable energies. In other words, nearly 80% of fuels will be non-fossil sources

  10. Present and future of Korean nuclear power

    International Nuclear Information System (INIS)

    Min, K-H

    2014-01-01

    'Full text:' The Korean nuclear power industry has devoted itself to technological development and self-reliance over the last 30 years since Kori unit 1, the first nuclear power plant commenced its commercial operation in 1978. As a result of such efforts and accumulated experiences, the Korean nuclear power industry has developed the OPR 1000 and APR 1400 units and is almost completing the development of the APR+ as a 1,500MW class reactor with its own technologies of design and manufacturing. Also, the Korean nuclear power industry has been able to build a strong supply chain from engineering, manufacturing, construction, and fuel supply, to operation and maintenance. At present, Korea is operating 23 commercial power reactors with a total installed capacity of 20,716 MW, accounting for 25 percent of the installed capacity and one third of the nation's total electricity generation. Also, the share of nuclear power generation capacity will be 29 percent by 2035 in the Long Term Energy Development Plan and 43 GW of nuclear energy capacity will be needed. Thanks to nuclear power generation as an essential driving force, Korea has been able to supply cheap and stable electricity. However, amid the growing public concerns about nuclear safety after the Fukushima accident, the Korean government and related organizations are exerting its utmost effort in all areas, for example, enhancing nuclear safety and safety culture, carrying out management innovation, and communicating with the public in order to enhance transparency. Also, the Korean government launched the Public Engagement Commission on spent nuclear fuel (SNF) management in 2013, which is tasked to initiate public consultation & discussion and submit recommendation to government after in-depth review and analysis on SNF management options by the end of 2014. Nuclear power has become very essential part of national economy in Korea because Korea has virtually no indigenous energy resources and

  11. Present and future of Korean nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Min, K-H [Korea Atomic Industrial Forum, Inc., Seoul (Korea, Republic of)

    2014-07-01

    'Full text:' The Korean nuclear power industry has devoted itself to technological development and self-reliance over the last 30 years since Kori unit 1, the first nuclear power plant commenced its commercial operation in 1978. As a result of such efforts and accumulated experiences, the Korean nuclear power industry has developed the OPR 1000 and APR 1400 units and is almost completing the development of the APR+ as a 1,500MW class reactor with its own technologies of design and manufacturing. Also, the Korean nuclear power industry has been able to build a strong supply chain from engineering, manufacturing, construction, and fuel supply, to operation and maintenance. At present, Korea is operating 23 commercial power reactors with a total installed capacity of 20,716 MW, accounting for 25 percent of the installed capacity and one third of the nation's total electricity generation. Also, the share of nuclear power generation capacity will be 29 percent by 2035 in the Long Term Energy Development Plan and 43 GW of nuclear energy capacity will be needed. Thanks to nuclear power generation as an essential driving force, Korea has been able to supply cheap and stable electricity. However, amid the growing public concerns about nuclear safety after the Fukushima accident, the Korean government and related organizations are exerting its utmost effort in all areas, for example, enhancing nuclear safety and safety culture, carrying out management innovation, and communicating with the public in order to enhance transparency. Also, the Korean government launched the Public Engagement Commission on spent nuclear fuel (SNF) management in 2013, which is tasked to initiate public consultation & discussion and submit recommendation to government after in-depth review and analysis on SNF management options by the end of 2014. Nuclear power has become very essential part of national economy in Korea because Korea has virtually no indigenous energy resources and

  12. US nuclear power industry overview

    International Nuclear Information System (INIS)

    Wood, C.J.

    1995-01-01

    The electric utilities in the United States are facing a number of challenges as deregulation proceeds. Cost control is one of these challenges that impacts directly the operators of nuclear power plants. This presentation reviews recent data on the performance of nuclear power plants and discusses technical developments to reduce operating costs, with particular reference to low-level radioactive waste issues

  13. Islands for nuclear power stations

    International Nuclear Information System (INIS)

    Usher, E.F.F.W.; Fraser, A.P.

    1981-01-01

    The safety principles, design criteria and types of artificial island for an offshore nuclear power station are discussed with particular reference to siting adjacent to an industrial island. The paper concludes that the engineering problems are soluble and that offshore nuclear power stations will eventually be built but that much fundamental work is still required. (author)

  14. Nuclear power - the moral question

    International Nuclear Information System (INIS)

    Searby, P.

    1978-01-01

    Nuclear power has raised moral and ethical as well as technological issues and the British Council of churches, recognising this, has participated in the UK nuclear power debate. In this short article, Mr Philip Searby, Secretary of the UKAEA, considers some of the views adopted by the Council. (author)

  15. Nuclear power and the environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    One of the most important points of agreement arising from international studies of nuclear energy is that no significant change to the environment has occurred as a result of operating power plants. This emerged from the Agency's symposium at United Nations headquarters during August on Environmental Aspects of Nuclear Power. (author)

  16. Competitive economics of nuclear power

    International Nuclear Information System (INIS)

    Hellman, R.

    1981-01-01

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics

  17. Social aspects of nuclear power

    International Nuclear Information System (INIS)

    Koryakin, Yu.I.

    1990-01-01

    Social aspects of nuclear power crisis in the USSR are considered. It is shown that the system of economic and social stimulation and different compensations widely used abroad when locating nuclear power plants, is the effective factor, providing loyal attitude to them

  18. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Sugawara, A.

    1994-01-01

    Energy situation in Japan and Japan's strategy for stable supply of energy are discussed. Benefits of nuclear power in comparison with other energy sources is considered. History of nuclear power development in Japan, modern status and future trends are described. 6 figs

  19. 25 years of nuclear power

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1984-01-01

    The paper lists some of the notable events of the British nuclear power industry during the past 25 years. The list includes achievements in nuclear power station technology, administrative reorganisation and public concern about the industry's impact on the environment. (U.K.)

  20. Nuclear power in the US

    International Nuclear Information System (INIS)

    Judson, Tim

    2018-01-01

    The Trump government promotes the further operation of aging nuclear power plants in the US by governmental support although several operators close their nuclear power plants due to economic reasons. The Trump government is also repowering the Yucca-Mountain-Project for radioactive waste disposal that was stopped by the Obama government based on geological problems in the region.

  1. International nuclear power status 2000

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2001-03-01

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  2. The collapse of nuclear power

    International Nuclear Information System (INIS)

    Jeffery, J.W.

    1991-01-01

    The decision of the UK government of 9 November 1989, withdrawing all nuclear stations from privatization and cancelling the three PWRs which were to have followed on from Sizewell B, was a shattering blow to the nuclear industry. The reversal (at least temporarily) of decades of government support for nuclear power, and the figures which were becoming available of its relatively high-cost (confirmed by the levy on electricity sales to subsidize nuclear and other non-fossil generation), caused the House of Commons Energy Select Committee to conduct the inquiry culminating in its Report The Cost of Nuclear power. (author)

  3. Crunch time for nuclear power

    International Nuclear Information System (INIS)

    Edwards, Rob.

    1994-01-01

    The Federal Republic of Germany, one of the most advanced nations, technically has a thriving nuclear power industry. However there is stiff opposition to nuclear power from political parties and environmental groups. General elections due to be held in mid October hold the future of the nuclear industry in the balance. If the present opposition party comes to power, it is committed to a policy of phasing out nuclear power completely. At the centre of the political uproar is the Gorleben ''interim store'' which is intended to house Germany's spent fuel for at least the next forty years. The nuclear industry must resolve the issue of nuclear waste disposal to the voters' satisfaction if it is to have a viable future. (UK)

  4. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Blix, H.

    1989-11-01

    The IAEA Director General pointed out that continued and expanded use of nuclear power must be one among several measures to restrain the use of fossil fuels and thereby limit the emissions of greenhouse gases. With regards to future trends in world electricity demands, the Director General emphasized the existing gap between the frequent claims as to what conservation can achieve and actual energy plans. The objections to nuclear power which are related to safety, waste disposal and the risk of proliferation of nuclear weapons are also discussed. His conclusion is that nuclear power can help significantly to meet growing needs of electricity without contributing to global warming, acid rains or dying forests, responsible management and disposal of nuclear wastes is entirely feasible, and the safety of nuclear power must be continuously strengthened through technological improvement and methods of operation

  5. Best power mix under nuclear-decreasing society

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Nakao, Kazuhide

    2012-01-01

    East Japan Great Earthquake and the subsequent failures of nuclear power plants compel Japanese to consider a new paradigm of national energy policy. In this study, we discuss the future power mix scenario considering a variety of power options; nuclear, coal fire, LNG fire, oil fire, LNG combined cycle, hydro, hydropump, battery, photovoltaic, wind, and geothermal. Future developments of installed capacity, properties such as efficiency, etc. are discussed for each type of power option. Seven sets of daily demand profile are used. Power generation mix model developed in preceding studies is used to estimate the installation and operation of each power option for representative years of 2010, 2020, 2030, 2040, and 2050. Future power mix is discussed on the basis of results from power generation mix model. (author)

  6. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1980-01-01

    A few of the essential issues which arise when we consider nuclear power and development together in the context of energy policy are discussed. Ethical concerns must ultimately be expressed through policies and their impact on people. There are ethical issues associated with nuclear power in the developing countries which deserve our attention. Four aspects of the question of nuclear power in developing countries are considered: their energy situation; the characteristics of nuclear power which are relevant to them; whether developing countries will undertake nuclear power programmes; and finally the ethical implications of such programmes. It is concluded that what happens in developing countries will depend more on the ethical nature of major political decisions and actions than on the particular technology they use to generate their electricity. (LL)

  7. Nuclear power supply (Japan Nuclear Safety Institute)

    International Nuclear Information System (INIS)

    Kameyama, Masashi

    2013-01-01

    After experienced nuclear disaster occurred on March 11, 2011, role of nuclear power in future energy share in Japan became uncertain because most public seemed to prefer nuclear power phase out to energy security or costs. Whether nuclear power plants were safe shutdown or operational, technologies were requisite for maintaining their equipment by refurbishment, partly replacement or pressure proof function recovery works, all of which were basically performed by welding. Nuclear power plants consisted of tanks, piping and pumps, and considered as giant welded structures welding was mostly used. Reactor pressure vessel subject to high temperature and high pressure was around 200mm thick and made of low-alloy steels (A533B), stainless steels (308, 316) and nickel base alloys (Alloy 600, 690). Kinds of welding at site were mostly shielded-metal arc welding and TIG welding, and sometimes laser welding. Radiation effects on welding of materials were limited although radiation protection was needed for welding works under radiation environment. New welding technologies had been applied after their technical validation by experiments applicable to required regulation standards. Latest developed welding technologies were seal welding to prevent SCC propagation and temper-bead welding for cladding after removal of cracks. Detailed procedures of repair welding of Alloy 600 at the reactor outlet pipe at Oi Nuclear Power Plants unit 3 due to PWSCC were described as an example of crack removal and water jet peening, and then overlay by temper-bead welding using Alloy 600 and clad welding using Alloy 690. (T. Tanaka)

  8. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  9. Separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1978-01-01

    A successful development of the proposed combination of the Fast Breeder Reactor and the CIVEX fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/CIVEX system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/CIVEX for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. From a historical view, it would restore fast reactor development to the path originally foreseen in the programs of worldwide nuclear energy authorities, including the Atomic Energy Commission during its first two decades of existence

  10. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  11. Nuclear power systems for Lunar and Mars exploration

    International Nuclear Information System (INIS)

    Sovie, R.J.; Bozek, J.M.

    1994-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications

  12. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  13. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  14. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  15. French lessons in nuclear power

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    In stark contrast to the American atomic power experience is that of the French. Even the disaster at Chernobyl in 1986, which chilled nuclear programs throughout Western Europe, did not slow the pace of the nuclear program of the state-owned Electricite de France (EDF), based in Paris. Another five units are under construction and are scheduled to be connected to the French national power grid before the end of 1993. In 1989, the EDF's 58 nuclear reactors supplied 73 percent of French electrical needs, a higher percentage than any other country. In the United States, for example, only about 18 percent of electrical power is derived from the atom. Underpinning the success of nuclear energy in France is its use of standardized plant design and technology. This has been an imperative for the French nuclear power industry since 1974, when an intensive program of nuclear power plant construction began. It was then, in the aftermath of the first oil embargo, that the French government decided to reduce its dependence on imported oil by substituting atomic power sources for hydrocarbons. Other pillars supporting French nuclear success include retrofitting older plants with technological or design advances, intensive training of personnel, using robotic and computer aids to reduce downtime, controlling the entire nuclear fuel cycle, and maintaining a comprehensive public information effort about the nuclear program

  16. Climate change and nuclear power

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  17. Nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Hidehiro; Oya, Takashi

    1996-11-05

    The present invention provides a highly safe light water-cooled type nuclear power plant capable of reducing radiation dose by suppressing deposition of activated corrosion products by a simple constitution. Namely, equipments and pipelines for fluid such as pumps at least in one of fluid systems such as a condensate cleanup system are constituted by a material containing metal species such as Zn having an effect of suppressing deposition of radioactivity. Alternatively, the surface of these equipments and pipelines for fluids on which water passes is formed by a coating layer comprising a material containing a metal having a radiation deposition suppressing effect. As a result, radioactivity deposited on the equipments and pipelines for fluids is reduced. In addition, since the method described above may be applied only at least to a portion of the members constituting at least one of the systems for fluids, it is economical. Accordingly, radiation dose upon inspection of equipments and pipelines for fluids can be reduced simply and reliably. (I.S.)

  18. Nuclear power plant

    International Nuclear Information System (INIS)

    Urata, Hidehiro; Oya, Takashi.

    1996-01-01

    The present invention provides a highly safe light water-cooled type nuclear power plant capable of reducing radiation dose by suppressing deposition of activated corrosion products by a simple constitution. Namely, equipments and pipelines for fluid such as pumps at least in one of fluid systems such as a condensate cleanup system are constituted by a material containing metal species such as Zn having an effect of suppressing deposition of radioactivity. Alternatively, the surface of these equipments and pipelines for fluids on which water passes is formed by a coating layer comprising a material containing a metal having a radiation deposition suppressing effect. As a result, radioactivity deposited on the equipments and pipelines for fluids is reduced. In addition, since the method described above may be applied only at least to a portion of the members constituting at least one of the systems for fluids, it is economical. Accordingly, radiation dose upon inspection of equipments and pipelines for fluids can be reduced simply and reliably. (I.S.)

  19. Underground nuclear power plant

    International Nuclear Information System (INIS)

    Takahashi, Hideo.

    1997-01-01

    In an underground-type nuclear power plant, groups of containing cavities comprising a plurality of containing cavities connected in series laterally by way of partition walls are disposed in parallel underground. Controlled communication tunnels for communicating the containing cavities belonging to a control region to each other, and non-controlled communication tunnels for communicating containing cavities belonging to a non-controlled area to each other are disposed underground. A controlled corridor tunnel and a non-controlled corridor tunnel extended so as to surround the containing cavity groups are disposed underground, and the containing cavities belonging to the controlled area are connected to the controlled corridor tunnel respectively, and the containing cavities belonging to the non-controlled area are connected to the non-controlled corridor tunnel respectively. The excavating amount of earth and sand upon construction can be reduced by disposing the containing cavity groups comprising a plurality of containing cavities connected in series laterally. The time and the cost for the construction can be reduced, and various excellent effects can be provided. (N.H.)

  20. Garigliano nuclear power plant

    International Nuclear Information System (INIS)

    1976-03-01

    During the period under review, the Garigliano power station produced 1,028,77 million kWh with a utilization factor of 73,41% and an availability factor of 85,64%. The disparity between the utilization and availability factors was mainly due to a shutdown of about one and half months owing to lack of staff at the plant. The reasons for nonavailability (14.36%) break down as follows: nuclear reasons 11,49%; conventional reasons 2,81%; other reasons 0,06%. During the period under review, no fuel replacements took place. The plant functioned throughout with a single reactor reticulation pump and resulting maximum available capacity of 150 MWe gross. After the month of August, the plant was operated at levels slightly below the maximum available capacity in order to lengthen the fuel cycle. The total number of outages during the period under review was 11. Since the plant was brought into commercial operation, it has produced 9.226 million kWh