WorldWideScience

Sample records for nuclear power generating

  1. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  2. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  3. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  4. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  5. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  6. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  7. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  8. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  9. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  10. Situation of nuclear power generation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S [Swedish Atomic Forum

    1978-01-01

    In Sweden, nuclear power generation was received initially favorably. In the end of 1960s, however, nuclear power generation got involved in the activities of environment preservation. Then, political parties became opposed to nuclear power generation, and now, the need of nuclear power generation itself is regarded as questionable. In the general election in 1976, the Government opposing the nuclear power generation won. As the result, the conditional nuclear power development law and the energy committee were set up. The committee composed of parliament members, experts, and representatives of enterprises and trade unions is to submit its report so that the parliament can prepare a new energy program in the fall of 1978. Meanwhile, the nuclear fuel safety project formed newly has studied to satisfy the conditions of the law. In Sweden, which has developed nuclear reactors independently from the technology of USA, the oppositions are on the decrease, however. It is awaited what decision will be made by the Government in this fall.

  11. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  12. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  13. Conscience of Japanese on nuclear power generation

    International Nuclear Information System (INIS)

    Hayashi, Chikio

    1995-01-01

    There are considerably many investigations and researches on the attitude of general public to nuclear power generation, but those which analyzed the contents of attitude or the research which got into the problem of what method is desirable to obtain the understanding of nuclear power generation for power generation side is rarely found. Therefore, the research on where is its cause was begun. As the result, since the attitude to nuclear power generation is related to the attitudes to many things that surround nuclear power generation in addition to that directly to nuclear power generation, it is necessary to elucidate the problem synthetically. The social investigation was carried out for the public of from 18 to 79 years old who live in the supply area of Kansai Electric Power Co., Inc. The data were obtained from those selected by probabilistic sampling, 1000 in urban area (rate of recovery 76%) and 440 in country area (rate of recovery 77%). The way of thinking on making questionnaire is shown. The investigation and the analysis of the obtained data were carried out. What do you recollect as a dangerous matter, the attitude to nuclear power generation, the structure of the conscience to nuclear power generation and its significance, the type classification of people and its features are reported and discussed. (K.I.)

  14. Situation of nuclear power generation in Europe

    International Nuclear Information System (INIS)

    Toukai, Kunihiro

    2003-01-01

    Nuclear power plants began to be built in Europe in the latter half of 1960. 146 plants are operating and generating about 33% of total power in 2002. France is top of Europe and operating 59 plants, which generate about 75% of power generation in the country. Germany is second and 30%. England is third and 30%. However, Germany decided not to build new atomic power plant in 2000. Movement of non-nuclear power generation is decreasing in Belgium and Switzerland. The liberalization of power generation decreased the wholesale price and BE Company in England was financial difficulties. New nuclear power generation is planning in Finland and France. (S.Y.)

  15. Third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1988-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached or are about to step into the third generation phase of development. The paper concludes that to achieve the objectives of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry

  16. Nuclear power generation: challenge in the 1980s

    International Nuclear Information System (INIS)

    Eklund, S.A.

    1981-01-01

    In the lecture ''Nuclear power generation - challenge in the 1980s'', attempt is made to predict the events arising in 1980s on the basis of the data available in the International Atomic Energy Agency. By the term ''challenge'', emphasis is placed on the potentiality of nuclear power for solving the world energy problem. This is indicated clearly by nuclear power currently accounting for 8%, of the total power generation in the world. The explanation in the above connection with figures and tables is made, including geographical distribution of reactors, nuclear power generation and total power generation in various countries, future capacity of nuclear power generation, situation of reactor operation, future installation of nuclear power plants, uranium demand/supply situation, spent fuel storage, etc. Then, discussion and analysis are made on such problems as waste management, economy, safety, and safeguards. (J.P.N.)

  17. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  18. Nuclear power generation and automation technology

    International Nuclear Information System (INIS)

    Korei, Yoshiro

    1985-01-01

    The proportion of nuclear power in the total generated electric power has been increasing year after year, and the ensuring of its stable supply has been demanded. For the further development of nuclear power generation, the heightening of economical efficiency which is the largest merit of nuclear power and the public acceptance as a safe and stable electric power source are the important subjects. In order to solve these subjects, in nuclear power generation, various automation techniques have been applied for the purpose of the heightening of reliability, labor saving and the reduction of radiation exposure. Meeting the high needs of automation, the automation technology aided by computers have been applied to the design, manufacture and construction, operation and maintenance of nuclear power plants. Computer-aided design and the examples of design of a reactor building, pipings and a fuel assembly, an automatic welder for pipings of all position TIG welding type, a new central monitoring and control system, an automatic exchanger of control rod-driving mechanism, an automatic in-service inspection system for nozzles and pipings, and a robot for steam generator maintenance are shown. The trend of technical development and an intelligent moving robot, a system maintenance robot and a four legs walking robot are explained. (Kako, I.)

  19. Nuclear power generation and fuel cycle report 1997

    International Nuclear Information System (INIS)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East

  20. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  1. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su

    1997-12-01

    The major contents in this study are as follows : - long-term forecast to the year of 2040 is provided for nuclear electricity generating capacity by means of logistic curve fitting method. - the role of nuclear power in a national economy is analyzed in terms of environmental regulation. To do so, energy-economy linked model is developed. By using this model, the benefits from the introduction of nuclear power in Korea are estimated. Study on inter-industry economic activity for nuclear industry is carried out by means of an input-output analysis. Nuclear industry is examined in terms of inducement effect of production, of value-added, and of import. - economic analysis of nuclear power generation is performed especially taking into consideration wide variations of foreign currency exchange rate. The result is expressed in levelized generating costs. (author). 27 refs., 24 tabs., 44 figs

  2. How is Electricity Generated from Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lajnef, D.

    2015-01-01

    Nuclear power is a proven, safe and clean source of power generation. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine: the energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. Nuclear Reactors are classified by several methods. It can be classified by type of nuclear reaction, by the moderator material, by coolant or by generation. There are several components common to most types of reactors: fuel, moderator, control rods, coolant, and containment. Nuclear reactor technology has been under continuous development since the first commercial exploitation of civil nuclear power in the 1950s. We can mention seven key reactor attributes that illuminate the essential differences between the various generations of reactors: cost effectiveness, safety, security and non-proliferation, fuel cycle, grid appropriateness and Economics. Today there are about 437 nuclear power reactors that are used to generate electricity in about 30 countries around the world. (author)

  3. Power generation from nuclear reactors in aerospace applications

    International Nuclear Information System (INIS)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion

  4. Power Generation from Nuclear Reactors in Aerospace Applications

    Science.gov (United States)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  5. The third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1987-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached of are about to step into the third generation phase of development. The paper concludes that to achieve the objective of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry. (author)

  6. Is there a tomorrow for nuclear power generation?

    International Nuclear Information System (INIS)

    Kanoh, T.

    1996-01-01

    Critical comments are publicly made about nuclear power generation and the nuclear fuel cycle. This criticism is directed at three areas of concern: accidents, radioactive waste disposal, and proliferation of nuclear weapons. In addition, there are other comments that ask 'Why are there countries pushing for nuclear power generation when other countries around the world are giving it up?' and 'Will further efforts to develop new energy sources and energy conservation not eliminate the nneed for nuclear power generation?' Such critical comments appear in some media more often than those expressing other opinions. Is there really no tomorrow for nuclear power? This question is studied below. (author)

  7. Power generation from nuclear reactors in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  8. Present status and problems of nuclear power generation

    International Nuclear Information System (INIS)

    Harada, Hiroshi.

    1984-01-01

    The nuclear power generation in Japan began in 1963 with the successful power generation in the JPDR of the Japan Atomic Energy Research Institute, and since then, more than 20 years have elapsed. The Japan Atomic Power Co. started the operation of an imported Calder Hall type gas-cooled reactor with 166,000 kWe output in Tokai Nuclear Power Station in July, 1966. In 1983, the quantity of nuclear power generation was 113.1 billion kWh, which was equivalent to 21.4 % of the total power generation in Japan. As of April 1, 1984, 25 nuclear power plants with 18.28 million kW output were in operation, 12 plants of 11.8 million kW were under construction, and 7 plants of 6.05 million kW were in preparation phase. Besides, the ATR ''Fugen'' with 165,000 kW output has been in operation, and the FBR ''Monju'' with 280,000 kW output is under construction. The capacity ratio of Japanese nuclear power stations attained 71.5 % in 1983. According to the ''Long term energy demand and supply outlook'' revised in November, 1983, the nuclear power generation in 2000 will be about 62 million kW to cater for about 16 % of primary energy supply. The problems are the improvement of economy, the establishment of independent nuclear fuel cycle, the decommissioning of nuclear reactors and so on. (Kako, I.)

  9. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Lim, Chae Young

    1998-12-01

    An energy security index was developed to measure how the introduction of nuclear power generation improved the national security of energy supply in Korea. Using the developed index, a quantitative effort was made to analyze the relationship between the nuclear power generation and the national energy security. Environmental impacts were evaluated and a simplified external cost of a specific coal-fired power plant in Korea was estimated using the QUERI program, which was developed by IAEA. In doing so, efforts were made to quantify the health impacts such as mortality, morbidity, and respiratory hospital admissions due to particulates, SOx, and Nox. The effects of CO 2 emission regulation on the national economy were evaluated. In doing so, the introduction of carbon tax was assumed. Several scenarios were established about the share of nuclear power generation and an effort was made to see how much contribution nuclear energy could make to lessen the burden of the regulation on the national economy. This study re-evaluated the methods for estimating and distributing decommissioning cost of nuclear power plant over lifetime. It was resulted out that the annual decommissioning deposit and consequently, the annual decommissioning cost could vary significantly depending on estimating and distributing methods. (author). 24 refs., 44 tabs., 9 figs

  10. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  11. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  12. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  13. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  14. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  15. Present state and prospect of nuclear power generation

    International Nuclear Information System (INIS)

    Fukushima, Akira

    1980-01-01

    Energy resources are scarce in Japan, therefore Japan depends heavily on imported petroleum. However, the international situation of petroleum became more unstable recently, and the promotion of the development and utilization of nuclear power generation was agreed upon in the summit meeting and the IEA. In order to achieve the stable growth of economy and improve the national welfare in Japan, it is urgent subject to accelerate the development of nuclear power generation. Japan depends the nuclear fuel also on import, but the stable supply is assured by the contract of long term purchase. It is not necessary to replace nuclear fuel usually for three years, and the transport and storage of nuclear fuel are easy because the quantity is not very large. By establishing the independent nuclear fuel cycle in Japan, it is possible to give the character similar to domestically produced energy to nuclear fuel. Moreover, uranium resources can be effectively utilized by the development of nuclear reactors of new types, such as FBRs. The cost of generating 1 kWh of electricity was about 8 yen in case of nuclear power and 15 yen in petroleum thermal power as of January, 1980. 21 nuclear power plants of about 15 million kW capacity are in operation in Japan, and about 30 million kW will be installed by 1985. The measures to promote the development of nuclear power generation are discussed. (Kako, I.)

  16. Future perspective of cost for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Ichiro

    1988-01-01

    The report presents and discussed results of evaluation of the cost for power generation in this and forthcoming years on the basis of an analysis of the current fuel prices and the economics of various power sources. Calculations show that nuclear power generation at present is inferior to coal-firing power generation in terms of required costs, but can become superior in the future due to an increased burn-up and reduced construction cost. Investigations are made of possible contributions of future technical improvements to reduction in the overall cost. Results suggest that nuclear power generation will be the most efficient among the various electric sources because of its technology-intensive feature. Development of improved light water reactors is of special importance to achieve a high burn-up and reduced construction costs. In general, the fixed cost accounts for a large part of the overall nuclear power generation cost, indicating that a reduction in construction cost can greatly increase the economic efficiency. Changes in the yen's exchange rate seem to have little effect on the economics of nuclear power generation, which represents another favorable aspect of this type of energy. (Nogami, K.)

  17. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  18. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1980-08-01

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  19. Nuclear power generation as seen from construction aspect

    International Nuclear Information System (INIS)

    Osaki, Yorihiko

    1984-01-01

    The measures to vitalize atomic energy industry in low economical growth age are grasped from the viewpoint of heightening the quality of technology, and the improvement of the economical efficiency of nuclear power generation as seen from construction aspect is discussed. By 2000, the nuclear power generation in Japan will be increased by about four times to 62 million kW, and the proportion of nuclear power increases steadily. Recently, the nuclear power stations in Japan have been stably operated at high level, and the capacity ratio has exceeded 70 %. However, the power generation cost tends to rise, and it is feared that the economical advantage over thermal power will be lost. Recently, the construction cost of nuclear power plants has continued to rise, which causes the high cost of nuclear power. The reason of the high construction cost is in short too much quantity of materials and long construction period. As the proposal to reduce the construction cost, three stages of the rationalization are discussed, such as the rationalization of simulated earthquake for design and the improvement of reactor building design. The promotion of technical development is indispensable for the cost reduction. (Kako, I.)

  20. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  1. Nuclear renaissance in Asia. Energy security and development of nuclear power generation system

    International Nuclear Information System (INIS)

    Nakasugi, Hideo

    2009-01-01

    The energy policy and strategy of development of nuclear power generation system of China, India and Korea are stated on the basis of use of light water reactors (LWRs). The conditions of power generation and introduction plans of nuclear energy of other Asian countries such as Vietnam, Thailand, Indonesia, Malaysia and Philippines are described. The power plant capacity of China increased from 50,500 MW in 2004, to 65,000 MW in 2005, and the target value is 40,000 MW of operating nuclear plants and 18,000 MW in building in 2020. China is lagging behind in peaceful use of nuclear energy technologies. A plan for the reform of nuclear industry and nuclear power generation projects of China are summarized. Total power plant capacity of India is 145,000 MW, but the nuclear plant capacity is 4,120 MW in 2008 and 63,000 MW of the target in 2032. Development of nuclear power, circumstance, and cooperation with other countries' industries are explained. 17,716 MW of nuclear power is in operation, 6,800 MW in building and 2,800 MW in the planning stage in Korea. History of development of national reactors and the subjects of development of the fourth generation reactor of Korea are stated. Management system of nuclear power plants in China, technical bases of nuclear power plants in China, development system of nuclear power generation in India, the conditions of power production of Korea in 2008, the capacity factor of Korea, Japan and world from 1998 to 2008, and comparison of nuclear industries in China, India and Korea are illustrated. (S.Y.)

  2. Nigeria nuclear power generation programme: Suggested way forward

    International Nuclear Information System (INIS)

    Adesanmi, C.A.

    2007-01-01

    It has now been established worldwide that nuclear power generation is needed to meet growing energy demands. The gases emitted from fossil fuel have serious adverse effects on the environment. The message from the 50th Annual General Conference of the International Atomic Energy Agency (IAEA) held in Vienna, September 2006 was very clear on this issue. There was a unanimous support for more nuclear power generation to meet the world energy demand. All the member states that can afford the nuclear power technology and willing to abide by the international regulations and safeguards were encouraged to do so. The requirements to participate in the nuclear power generation programme are political will and organized diplomacy, legislative and statutory framework, international safety obligations, institutional framework, public acceptability, capacity building and technology transfer, environmental concern , waste management and financing. Nigeria's performance on all the criteria was evaluated and found satisfactory. All these coupled with Nigeria's dire need for more power and better energy mix, are sufficient and undisputable reasons for the whole world to support Nigeria nuclear power generation programme. Definitely the programme poses serious challenges to the Nigerian Physicists. Therefore, Departments of Physics should endeavour to include nuclear physics option in their programme and work in collaboration with the faculty of Engineering in their various tertiary institutions in order to attain the necessary critical human capacity that will be needed to man the nuclear power industry within the next 10 years

  3. Fear of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Higson, D.J. [Paddington, NSW (Australia)

    2014-07-01

    Communicating the benefits of nuclear power generation, although essential, is unlikely to be sufficient by itself to counter the misconceptions which hinder the adoption of this technology, viz: that it is unsafe, generates intractable waste, facilitates the proliferation of nuclear weapons, etc. Underlying most of these objections is the fear of radiation, engendered by misunderstandings of the effects of exposure - not the actual risks of radiation exposure themselves. Unfortunately, some aspects of current radiation protection practices promote the misconception that there is no safe dose. A prime purpose of communications from the nuclear industry should be to dispel these misconceptions. (author)

  4. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  5. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Lee, Young Gun; Lee, Han Myung; Song, Ki Dong; Lee, Man Ki; Kim, Seung Su; Moon, Kee Hwan; Chung, Whan Sam; Kim, Kyung Pyo; Cho, Sang Goo

    1992-01-01

    The purpose of this study is to clarify the role of nuclear power generation under the circumstances of growing concerns about environmental impact and to help decision making in electricity sector. In this study, efforts are made to estimate electricity power generation cost of major power options by incorporating additional cost to reduce environmental impact and to suggest an optimal plant mix in this case. (Author)

  6. Life cycle analysis of advanced nuclear power generation technologies

    International Nuclear Information System (INIS)

    Uchiyama, Yoji; Yokoyama, Hayaichi

    1996-01-01

    In this research, as for light water reactors and fast breeder reactors, for the object of all the processes from the mining, transport and refining of fuel, electric power generation to the treatment and disposal of waste, the amount of energy input and the quantity of CO 2 emission over the life cycle were analyzed, and regarding the influence that the technical progress of nuclear power generation exerted to environment, the effect of improvement was elucidated. Attention has been paid to nuclear power generation as its CO 2 emission is least, and the effect of global warming is smallest. In order to reduce the quantity of radioactive waste generation in LWRs and the cost of fuel cycle, and to extend the operation cycle, the technical development for heightening fuel burnup is in progress. The process of investigation of the new technologies of nuclear power generation taken up in this research is described. The analysis of the energy balance of various power generation methods is discussed. In the case of pluthermal process, the improvement of energy balance ratio is dependent on uranium enrichment technology. Nuclear power generation requires much materials and energy for the construction, and emits CO 2 indirectly. The CO 2 unit emission based on the analysis of energy balance was determined for the new technologies of nuclear power generation, and the results are shown. (K.I.)

  7. A realistic way for graduating from nuclear power generation

    International Nuclear Information System (INIS)

    Kikkawa, Takeo

    2012-01-01

    After Fukushima Daiichi Nuclear Power Plant accident, fundamental reform of Japanese energy policy was under way. As for reform of power generation share for the future, nuclear power share should be decided by three independent elements of the progress: (1) extension of power generation using renewable energy, (2) reduction of power usage by electricity saving and (3) technical innovation toward zero emission of coal-fired thermal power. In 2030, nuclear power share would still remain about 20% obtained by the 'subtraction' but in the long run nuclear power would be shutdown judging from difficulties in solution of backend problems of spent fuel disposal. (T. Tanaka)

  8. A large capacity turbine generator for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Susumu; Miki, Takahiro; Suzuki, Kazuichi

    2000-01-01

    In future large capacity nuclear power plant, capacity of a generator to be applied will be 1800 MVA of the largest class in the world. In response to this, the Mitsubishi Electric Co., Ltd. began to carry out element technology verification of a four-pole large capacity turbine generator mainly using upgrading technique of large capacity, since 1994 fiscal year. And, aiming at reliability verification of the 1800 MVA class generator, a model generator with same cross-section as that of an actual one was manufactured, to carry out some verifications on its electrified tests, and so on. Every performance evaluation result of tests on the model generator were good, and high reliability to design and manufacturing technique of the 1800 MVA class generator could be verified. In future, on the base of these technologies, further upgrading of reliability on the large capacity turbine generator for nuclear power generation is intended to be carried out. (G.K.)

  9. Risk of nuclear power generation as business (continued)

    International Nuclear Information System (INIS)

    Sato, Satoshi

    2017-01-01

    This paper described the following: (1) fleet formation of power companies that operate nuclear power plants in the U.S., (2) collaboration, competition, and merger between plant makers, (3) stress corrosion cracking of stream generators for PWR and their thin heat transfer tubes, especially stress corrosion cracking under primary cooling water environment (PWSCC), and (4) replacement project from Inconel 600 MA to Inconel 600 TT or 690 TT of steam generator thin heat transfer tubes of PWR plants in the U.S. and others. In addition, it described the troubles at San Onofre Nuclear Power Station in California: wear of steam generator thin tubes of Units 2 and 3, and leakage from primary system to secondary system of Unit 3, and permanent shutdown. It also described the detail of damages compensation talks between South California Edison Company that operates San Onofre nuclear power plant and Mitsubishi Heavy Industries Ltd. which supplied the steam generator. Although the operation of the 1.7 million kW plant became impossible due to the bud shedding of nuclear power renaissance, these troubles might have saved the nightmare of drifting on the way. (A.O.)

  10. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  11. Nuclear power generation in Chile, possibility or utopia

    International Nuclear Information System (INIS)

    Vergara Aimone, Julio

    2000-01-01

    Regardless the pressure of several groups, nuclear power stands for one sixth of worldwide electricity supply, produced from a resource that well managed could be available for centuries beyond the exhaustion of oil and natural gas. Such power option could support a macro power system with low environmental impact. The Chilean power demand is growing at a high rate. Without fossil supplies, our potential hydraulic capacity would become exhausted at an early date and our country would face a severe energy dependence, without control of generation costs and with increased atmospheric emissions, some of which would be responsible for global environmental effects. Nuclear power would stabilize generation costs in the near and mid terms and would also arrest gaseous emissions. This paper discusses the current status of the nuclear industry and those pending issues, compared to other power options. It also discusses the estimated year for the operation the of first nuclear power plant. Although nuclear power technology seems to be in a mature stage, it is suggested that the aggressive use of advanced and moreover innovative reactor designs would result in a greater nuclear technology penetration. Several of such designs or concepts await commercial demonstration within the decade. Those would also extend the benefits of nuclear power to countries with reduced or moderate power grids, as is our case. (author)

  12. Outlook of nuclear power generation and international situation

    Energy Technology Data Exchange (ETDEWEB)

    Ekulund, S [International Atomic Energy Agency, Vienna (Austria)

    1978-01-01

    Nuclear power generation is advancing at rapid rate over the world, without any major accident. For the base load of electric power, when choice is made between nuclear energy and petroleum, Nuclear energy has larger economic advantages over petroleum as compared with the days before the oil crisis. The costs of its fuel and fuel cycle technology are reasonable. However, nuclear power generation currently has a number of problems. What causes this uncertainty is not technological, but political, i.e. governmental policy changes, and this is based on the apprehension about nuclear proliferation. What is necessary is to strengthen the existing international framework of nuclear nonproliferation. In this respect, IAEA through comprehensive safeguards will make contributions largely to reduction of the political uncertainty. It is important that the new initiatives toward international nuclear cooperation should eliminate the current trends of restraint and denial.

  13. Prediction of future dispute concerning nuclear power generation

    International Nuclear Information System (INIS)

    1981-04-01

    This investigation is the third research on the public acceptance of nuclear power generation by the National Congress on Social Economics. In this study, how the energy dispute including that concerning nuclear power generation will develop in 1980s and 1990s, how the form of dispute and the point of controversy will change, were predicted. Though the maintenance of the concord of groups strongly regulates the behavior of people, recently they have become to exercise individual rights frequently. The transition to the society of dispute is the natural result of the modernization of society and the increase of richness. The proper prediction of social problems and the planning and execution of proper countermeasures are very important. The background, objective, basic viewpoint, range and procedure of this investigation, the change of social dispute, the history of the dispute concerning nuclear power generation, the basic viewpoint in the prediction of the dispute concerning nuclear power generation, the social situation in 1980s, the prediction and avoidance of the dispute in view of social and energy situations, and the fundamental strategy for seeking a clue to the solution in 1980s and 1990s are described. The establishment of neutral mediation organs and the flexible technologies of nuclear reactors are necessary. (Kako, I.)

  14. Relationship between students' interests in science and attitudes toward nuclear power generation

    International Nuclear Information System (INIS)

    Komiya, Izumi; Torii, Hiroyuki; Fujii, Yasuhiko; Hayashizaki, Noriyosu

    2008-01-01

    In order to study the following two points, we conducted an attitude survey among senior high school students. Study 1 The differences in attitudes between nuclear power generation and other science and technologies. Study 2 The relationship between student's interest in science and attitudes toward nuclear power generation. In the questionnaire, the attitude toward nuclear power generation consisted of four questions: (1) pros and cons, (2) safety, (3) necessity, (4) reliability of scientists and engineers who are involved in nuclear power; and we treat four science and technology issues: (1) genetically modified foods, (2) nuclear power generation, (3) humanoid and pet robots, (4) crone technology. From study 1, on attitude to security toward nuclear power generation, about 80% of respondents answered negatively and on attitude to necessity toward it, about 75% of respondents answered positively. Therefore, we found that the structure of attitude was complicated and that it was specific to nuclear power generation. From study 2, we found students' interests in science that influence the attitude toward nuclear power generation. (author)

  15. World nuclear power generation market and prospects of industry reorganization

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2007-01-01

    In late years there are many trends placing nuclear energy with important energy in various countries in the world due to a remarkable rise to an energy price, importance of energy security and a surge of recognition to a global environment problem. Overseas nuclear industry's acquisition by a Japanese nuclear power plant maker and its capital or business tie-up with an overseas company, were announced in succession in 2006. A nuclear power plant maker has played an extremely important role supporting wide technology in all stages of a design, construction, operation and maintenance in a nuclear power generation business. After having surveyed the recent trend of world nuclear power generation situation, a background and the summary of these acquisition/tie-ups made were investigated and analyzed to consider the influence that movement of such an industry gives a world nuclear power generation market. (T. Tanaka)

  16. Process of public attitudes toward nuclear power generation

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    1993-01-01

    The Japanese public attitudes toward nuclear power generation had become negative year by year. After the Chernobyl accident, a percentage of the unfavorable respondent toward nuclear power generation has dramatically increased, and a new type of anti-nuclear movement has been observed. On the basis of our public opinion polls, the reason for this increase was found to be primarily decrease of sense of usefulness rather than increase of sense of nueasiness about nuclear safety. Particularly, social factors (change of life style, progress of civilian consciousness, credibility of the existing institutional system etc.) have influence on the attitude of either pro or anti-nuclear. Based on the above observation, we have inferred that process of the public attitudes has two flows arising from the above social factors, one is the usefulness and the other is the easiness about nuclear safety, and have formulated a model representing the process of public attitudes toward nuclear power. (author)

  17. Situation of nuclear power generation in Sweden: swaying nuclear energy policy and conversion from nuclear phase-out policy

    International Nuclear Information System (INIS)

    Kuroda, Yuji

    2017-01-01

    In Sweden, fossil fuels cannot be produced domestically, and most of them depend on foreign imports. For this reason, together with hydropower generation using abundant water resources, nuclear power generation was introduced and used since the early stage. Nuclear power generation in 2015 reached 35% of total generated power energy. As of 2016, Sweden was steadily constructing the world's second final disposal site of high-level radioactive waste. On the other hand, this country is known as the one that decided nuclear phase-out policy earliest in the world. However, the country's nuclear policy is swaying together with changes in political party power due to election results. In 1980, they decided the policy of abolishing all nuclear power generation by 2010. Thereafter, the nuclear phase-out policy was frozen and maximum 10 units of nuclear plants were accepted. The goal of the latest policy is to allow new construction up to 10 units as replacement, and to use 100% of renewable energy in 2040. However, the year of 2040 is not a deadline for the abolishment of nuclear power generation. In Sweden's public opinion on nuclear power generation, the early abolition was dominant at about 50% during 1986∼1995, but this opinion decreased to about 10% in the 2000s. There is an increasing number of opinions saying that the existing nuclear plants should be continuously operated for a while, and phased out step by step in the future. (A.O.)

  18. Fuqing nuclear power of nuclear steam turbine generating unit No.1 at the implementation and feedback

    International Nuclear Information System (INIS)

    Cao Yuhua; Xiao Bo; He Liu; Huang Min

    2014-01-01

    The article introduces the Fuqing nuclear power of nuclear steam turbine generating unit no.l purpose, range of experience, experiment preparation, implementation, feedback and response. Turn of nuclear steam turbo-generator set flush, using the main reactor coolant pump and regulator of the heat generated by the electric heating element and the total heat capacity in secondary circuit of reactor coolant system (steam generator secondary side) of saturated steam turbine rushed to 1500 RPM, Fuqing nuclear power of nuclear steam turbine generating unit no.1 implementation of the performance of the inspection of steam turbine and its auxiliary system, through the test problems found in the clean up in time, the nuclear steam sweep turn smooth realization has accumulated experience. At the same time, Fuqing nuclear power of nuclear steam turbine generating unit no.1 at turn is half speed steam turbine generator non-nuclear turn at the first, with its smooth realization of other nuclear power steam turbine generator set in the field of non-nuclear turn play a reference role. (authors)

  19. The Japanese attitude towards nuclear power generation. Changes as seen through time series

    International Nuclear Information System (INIS)

    Kitada, Atsuko; Hayashi, Chikio

    1999-01-01

    This study is intended to determine people's attitudes toward nuclear power generation, shedding light on the changed and unchanged structures of attitudes by comparing data on nuclear power generation for 1993 and 1998. Although some nuclear facility accidents occurred during the last five years, public attitudes toward nuclear power generation remain almost the same. For the utilization of nuclear power generation, there was a slight increase in passive affirmation. The percentage of active affirmation was less than 10 percent, but if passive affirmation is included a high percentage exceeding 70 percent acknowledged the utilization of nuclear power. It was found that people's attitudes toward the utilization of nuclear power became slightly more positive in 1998 than in 1993. The difference was found in the general measure of attitudes based on many questions about nuclear power generation, and in the importance and the utility of nuclear power generation including the purpose of nuclear power generation. People are not conscious of the anxiety about nuclear power generation in ordinary life. However, when people were made to think about nuclear power generation, the degree of anxiety increases even if provided with data that prove its safety. On the other hand, it was revealed that the degree of anxiety about nuclear facility accidents remains the same in the last five years, that is, it has not increased, although a growing interest in the disposal and treatment of radioactive wastes was seen. As a result of a comparison of the structure of attitudes, based on the study by Hayashi 1994, it was found that the group that had no interest in nuclear power generation offered the most noticeable features in answering pattern in both 1993 and 1998. Moreover, it was found also that the latter group of respondents were characterized by a little opportunity to have information. A similarity in the relationship between people's attitudes toward nuclear power generation

  20. Promotion of public awareness relating nuclear power in young generation

    International Nuclear Information System (INIS)

    Kobayashi, Yoko

    2011-01-01

    Although nuclear power presents problems of waste, safety and non-proliferation, many people understand that it is an essential energy for addressing the global climate and reducing CO2. However, a vague negative-image to the radiation and nuclear power is deep-rooted among the public. Young generation is not an exception. It is very important to transfer many information from the experienced generation in the industry to young generations. In this paper, the research that applied the information intelligence to nuclear power, which involves of the nuclear fuel cycle, and the communication related activities for the social acceptance and improvement. (author)

  1. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  2. Major issues associated with nuclear power generation cost and their evaluation

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Shimogori, Kei; Suzuki, Atsuhiko

    2015-01-01

    This paper discusses the evaluation of power generation cost that is an important item for energy policy planning. Especially with a focus on nuclear power generation cost, it reviews what will become a focal point on evaluating power generation cost at the present point after the estimates of the 'Investigation Committee on Costs' that was organized by the government have been issued, and what will be a major factor affecting future changes in costs. This paper firstly compared several estimation results on nuclear power generation cost, and extracted/arranged controversial points and unsolved points for discussing nuclear power generation cost. In evaluating nuclear power generation cost, the comparison of capital cost and other costs can give the understanding of what can be important issues. Then, as the main issues, this paper evaluated/discussed the construction cost, operation/maintenance cost, external cost, issue of discount rate, as well as power generation costs in foreign countries and the impact of fossil fuel prices. As other issues related to power generation cost evaluation, it took up expenses for decommissioning, disposal of high-level radioactive waste, and re-processing, outlined the evaluation results by the 'Investigation Committee on Costs,' and compared them with the evaluation examples in foreign countries. These costs do not account for a large share of the entire nuclear power generation costs. The most important point for considering future energy policy is the issue of discount rate, that is, the issue of fund-raising environment for entrepreneurs. This is the factor to greatly affect the economy of future nuclear power generation. (A.O.)

  3. Facing the challenges of nuclear power at Ontario Power Generation

    International Nuclear Information System (INIS)

    Howes, H.

    1999-01-01

    Nuclear power represents a major portion of Ontario Power Generation's generation mix and it will be the bedrock upon which we build a successful, competitive company. Our nuclear units offer many environmental and economic benefits, the one most relevant to this meeting is their significant contribution to the relatively low carbon intensity of Ontario's and Canada's electricity supply. In recent weeks, we have listened with great interest to the endorsement by our federal Minister of the Environment of nuclear technology as a means of reducing global warming. But endorsements of this type alone are not sufficient to ensure that nuclear remains an acceptable option for managing greenhouse gas emissions. Without public acceptance and support, the entire nuclear investment is endangered. At OPG we face three challenges to building this public support: we must continue to improve our safety margins and operating performance; we must continue to improve the environmental performance at our stations; and we must increase our community outreach. Today I would like to focus on the last two challenges and the actions that we are taking to maintain our social and environmental 'licence to operate.' But before I describe these initiatives, I will tell you about: the new company - Ontario Power Generation; the changes in store for Ontario's electricity sector; and our greenhouse gas emissions - the legacy from Ontario Hydro. (author)

  4. Steam generators for nuclear power plants

    International Nuclear Information System (INIS)

    Tillequin, Jean

    1975-01-01

    The role and the general characteristics of steam generators in nuclear power plants are indicated, and particular types are described according to the coolant nature (carbon dioxide, helium, light water, heavy water, sodium) [fr

  5. The trend of the public opinion upon nuclear power generation in internet blog

    International Nuclear Information System (INIS)

    Maruta, Katsuhiko; Ueda, Yoshitaka

    2011-01-01

    The authors pay attention to and survey internet information which is called 'blog' to grasp how nuclear power generation information is treated in internet and forms public opinion. Examples of the outcomes are as follows. 1) Numbers of blog reference will change by public opinion upon nuclear power generation. A lot of blog references about nuclear power plants are conducted when a big earthquake occurred. 2) As a feature of the report, numbers of the references against nuclear power generation exceed those which are positive for nuclear power. There are a lot of blog reports which are against nuclear power generation and easy to make readers believe that they are true even if they are based on misunderstanding. It is worried that such reports give people too much negative influence for the public opinion upon nuclear power generation. The authors survey short term trend of the internet public opinion after TEPCO's Fukushima Daiichi Power Plants Accident too. As a result, it is made clear that people's concern upon nuclear power became very high and the ratio of the supporters of nuclear power generation changed after the accident. (author)

  6. Thermal and nuclear power generation cost estimates using corporate financial statements

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Nagatomi, Yu; Murakami, Tomoko

    2012-01-01

    There are two generally accepted methods for estimating power generation costs: so-called 'model plant' method and the method using corporate financial statements. The method using corporate financial statements, though under some constraints, can provide useful information for comparing thermal and nuclear power generation costs. This study used this method for estimating thermal and nuclear power generation costs in Japan for the past five years, finding that the nuclear power generation cost remained stable at around 7 yen per kilowatt-hour (kWh) while the thermal power generation cost moved within a wide range of 9 to 12 yen/kWh in line with wild fluctuations in primary energy prices. The cost of nuclear power generation is expected to increase due to the enhancement of safety measures and accident damage compensation in the future, while there are reactor decommissioning, backend and many other costs that the financial statement-using approach cannot accurately estimate. In the future, efforts should be continued to comprehensively and accurately estimate total costs. (author)

  7. Nuclear Power as a Basis for Future Electricity Generation

    Science.gov (United States)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  8. Nuclear power generation costs in the United States of America

    International Nuclear Information System (INIS)

    Willis, W.F.

    1983-01-01

    Increasing world energy prices and shortages of fuel resources make the utilization of nuclear power extremely important. The United States nuclear power industry represents the largest body of nuclear power experience in the world. Analysis of the recent United States experience of substantial increases in the cost of nuclear power generation provides good insight into the interdependence of technological, financial, and institutional influences and their combined impact on the economic viability of nuclear power generation. The various factors influencing ultimate generation costs, including construction cost, fuel cost, regulatory reviews, and siting considerations are discussed, and their relative impacts are explored, including discussion of design complexity and related regulatory response. A closer look into the recent relatively high escalation of nuclear plant construction costs shows how differing economic conditions can affect the relative cost effectiveness of various methods of power generation. The vulnerability of capital-intensive, long-lead-time projects to changes in economic conditions and uncertainty in future power demands is discussed. Likewise, the pitfalls of new designs and increased sophistication are contrasted to the advantages which result from proven designs, reliable engineering, and shorter lead times. The value of reliable architect-engineers experienced in the design and construction of the plant is discussed. A discussion is presented of additional regulatory requirements stemming from public safety aspects of nuclear power. These include recognition of requirements for the very large effort for quality assurance of materials and workmanship during plant construction and operation. Likewise, a discussion is included of the demanding nature of operations, maintenance, and modification of plants during the operational phase because of the need for highly qualified operations and maintenance personnel and strict quality assurance

  9. Simulation on effect of stopping nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki; Kumakura, Osamu; Sakurai, Norihisa; Nagata, Yutaka; Hattori, Tsuneaki

    1990-01-01

    The effects that the stopping of nuclear power generation exerts on the price of primary energy such as petroleum, LNG and coal and the trend of Japanese energy and economy are analyzed by using the medium term economy forecasting system. In the simulation, the case of stopping nuclear power generation in seven countries of OECD is supposed, and as for the process of stopping, two cases of immediate stopping and stopping by gradual reduction are set up. The models used for the simulation are the world energy model, the competition among energies model and the multiple category model. By the decrease of nuclear power generation, thermal power generation increases, and the demand of fossil fuel increases. As the result, the price of fossil fuel rises (the world energy model), and the price of fossil fuel imported to Japan rises. Also the quantity of fossil fuel import to Japan increase. These price rise and quantity increase exert deflation effect to Japanese economy (the multiple category model). The price rise of fossil fuel affects the competition among energies in Japan through the relative change of secondary energy price (the competition among energies model). The impact to the world and to Japan is discussed. (K.I.)

  10. Effects of the accident at Mihama Nuclear Power Plant Unit 3 on the public's attitude to nuclear power generation

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2005-01-01

    As part of an ongoing public opinion survey regarding nuclear power generation, which started in 1993, a survey was carried out in the Kansai and Kanto regions two months after the accident at Unit 3 of the Mihama Nuclear Power Plant. In addition to analyzing the statistically significant changes that have taken place since the previous survey (taken in 2003), increase and decrease of the ratio of answers to all the questions related to nuclear power before and after the two accidents were compared in the case of the accidents which occurred in the Mihama Unit 3 and the JCO company's nuclear-fuel plant. In the Kansai region, a feeling of uneasiness about the risky character of nuclear power generation increased to some extent, while the public's trust in the safety of nuclear power plants decreased somewhat. After a safety-related explanation on ''Early detection of troubles'' and Accident prevention'' was given from a managerial standpoint, people felt a little less at ease than they had before. Uneasiness, however, did not increase in relation to the overall safety explanation given about the engineering and technical functioning of the plant. There was no significant negative effect on the respondents' evaluation of or attitude toward nuclear power generation. It was found that the people's awareness about the Mihama Unit 3 accident was lower and the effect of the accident on their awareness of nuclear power generation was more limited and smaller when compared with the case of the JCO accident. In the Kanto region, people knew less about the Mihama Unit 3 accident than those living in the Kansai region, and they remembered the JCO accident, the subsequent cover-up by Tokyo Electric Power Company, and the resulting power shortage better than those living in Kansai. This suggested that there was a little difference in terms of psychological distance in relation to the accidents an incidents depending on the place where the events occurred and the company which

  11. Nuclear power - strategic planning for the next generation

    International Nuclear Information System (INIS)

    Turner, K.H.

    1989-01-01

    Regardless of the real or perceived causes of the nuclear power industry's current difficulties, a number of recent trends-increasing electricity demand, foreign oil dependency, and attention paid to acid rain and the greenhouse effect-taken together, point of the most favorable atmosphere in recent history for nuclear power. Already, serious public discussion of its advantages have begun anew. Thus, the time is ripe to consider the developmental structure of nuclear power's next generation. Although much uncertainty still surrounds the nuclear industry, valuable lessons have been learned, and the evolution of the industry from this point cannot be left to chance. The purpose of this paper is to discuss a framework for nuclear power strategic planning activities. The strategic planning objectives outlined in this paper span issues that affect virtually every aspect of the nuclear power industry. Piecemeal responses to the vagaries of random stimuli will not be adequate. A proactive, integrated, industry-wide initiative-an Institute of Nuclear Power Planning, actively supported by the members of the industry-should be undertaken immediately to fill the strategic planning role. In so doing, the industry will not only be acting in its own best interest but will also be helping the nation realize the real and important benefits of its nuclear power technology

  12. KOREAN STUDENTS' BEHAVIORAL CHANGE TOWARD NUCLEAR POWER GENERATION THROUGH EDUCATION

    Directory of Open Access Journals (Sweden)

    EUN OK HAN

    2014-10-01

    Full Text Available As a result of conducting a 45 minute-long seminar on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of perception including the necessity (p<0.017, safety (p<0.000, information acquisition (p<0.000, and subjective knowledge (p<0.000, objective knowledge (p<0.000, attitude (p<0.000, and behavior (p<0.000 were all significantly higher. This indicates that education can be effective in promoting widespread social acceptance of nuclear power and its continued use. In order to induce behavior change toward positive judgments on nuclear power generation, it is necessary to focus on attitude improvement while providing the information in all areas related to the perception, knowledge, attitude, and behavior. Here, the positive message on the convenience and the safety of nuclear power generation should be highlighted.

  13. Some consideration on nuclear power development. Topics aroused by U.S. proposed 'Generation IV Nuclear Power System

    International Nuclear Information System (INIS)

    Wang Chuanying; Chen Shiqi

    2001-01-01

    U.S. proposed 'Generation IV Nuclear Power System' concept. Its origin and proposed goals for it are analyzed; goals are compared with requirements of URD. In particular, discussed issues on nuclear fuel cycle and Non-proliferation. A well-considered nuclear power development plan, paying close attention to international trend and considering comprehensively domestic situation, is expected

  14. The Carem reactor: Bridging the gap to nuclear power generation

    International Nuclear Information System (INIS)

    Ordonez, J.P.

    1998-01-01

    An idea is presented as an alternative for the introduction of nuclear power in presently non-nuclear countries. This idea involves going through an intermediate step between the traditional research reactor and the first commercial nuclear power plant. This intermediate step would consist of a very small nuclear power plant, with the principal goal of gaining in experience in the country on all the processes involved in introducing commercial nuclear generation. (author)

  15. Present status and future outlook of nuclear power generation in Japan

    International Nuclear Information System (INIS)

    Kunikazu Aisaka

    1987-01-01

    The structure of energy consumption in Japan is heavily dependent on imported oil, therefore Japan has been making its greatest effort in developing nuclear power among other alternatives of oil. The capacity factor of the nuclear power plants in Japan marked 76% in FY 1986, exceeding 70% level for the past several years. The share of nuclear power is expected to increase steadily in the future. Future scale of the nuclear power generation is projected as 62,000 MW in year 2000 and as 137,000 MW in 2030. Nuclear power is expected to produce 58% of the nation's total power generation in 2030. Under the present circumstances, Janpan is executing a nuclear energy policy based on the following guidelines: 1. Promoting the safety advancement program; 2. Improving LWR technologies; 3. Program on use of plutonium in thermal reactors; 4. Advanced thermal reactors (ATRs); 5. Promotion of FBR development; 6. Nuclear fuel cycle. (Liu)

  16. Efforts onto electricity and instrumentation technology for nuclear power generation

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi

    2000-01-01

    Nuclear power generation shares more than 1/3 of all amounts of in-land generation at present, as a supplying source of stable electric energy after 2000 either. As a recent example of efforts onto electricity and instrumentation technology for nuclear power generation, there are, on instrumentation control system a new central control board aiming at reduction of operator's load, protection of human error, and upgrading of system reliability and economics by applying high level micro-processor applied technique and high speed data transfer technique to central monitoring operation and plant control protection, on a field of reactor instrumentation a new digital control rod position indicator improved of conventional system on a base of operation experience and recent technology, on a field of radiation instrumentation a new radiation instrumentation system accumulating actual results in a wide application field on a concept of application to nuclear power plant by adopting in-situ separation processing system using local network technique, and on a field of operation maintenance and management a conservation management system for nuclear generation plant intending of further effectiveness of operation maintenance management of power plant by applying of operation experience and recent data processing and communication technology. And, in the large electric apparatus, there are some generators carried out production and verification of a model one with actual size in lengthwise dimension, to correspond to future large capacity nuclear power plant. By this verification, it was proved that even large capacity generator of 1800 MVA class could be manufactured. (G.K.)

  17. Electricity Generation Through the Koeberg Nuclear Power Station of Eskom in South Africa

    International Nuclear Information System (INIS)

    Dladla, G.; Joubert, J.

    2015-01-01

    The poster provides information on the process of nuclear energy generation in a nuclear power plant in order to produce electricity. Nuclear energy currently provides approximately 11% of the world’s electricity needs, with Koeberg Nuclear Power Station situated in the Western Cape providing 4.4% of South Africa’s electricity needs. As Africa’s first nuclear power station, Koeberg has an installed capacity of 1910 MW of power. Koeberg’ s total net output is 1860 MW. While there are significant differences, there are many similarities between nuclear power plants and other electrical generating facilities. Uranium is used for fuel in nuclear power plants to make electricity. With the exception of solar, wind, and hydroelectric plants, all others including nuclear plants convert water to steam that spins the propeller-like blades of a turbine that spins the shaft of a generator. Inside the generator coils of wire and magnetic fields interact to create electricity. The energy needed to boil water into steam is produced in one of two ways: by burning coal, oil, or gas (fossil fuels) in a furnace or by splitting certain atoms of uranium in a nuclear energy plant. The uranium fuel generates heat through a controlled fission process fission, which is described in this poster presentation. The Koeberg Nuclear Power Station is a Pressurised water reactor (PWR). The operating method and the components of the Koeberg Power Station are also described. The nuclear waste generated at a nuclear power station is described under three headings— low-level waste, intermediate-level waste and used or spent fuel, which can be solid, liquid or gaseous. (author)

  18. Location condition of nuclear power generation at a viewpoint of location area

    International Nuclear Information System (INIS)

    Kawase, Kazuharu

    1999-01-01

    In the thirty years memorial meeting of the National Nuclear Power Generation located Commune Conference (NNGC) held in October, 1998, an extremely important fact was clarified, relation deeply to main aim of NNGC that permanent development was not promised at the location area even if a nuclear power plant was constructed there. Therefore, it is required that Japan government receives operation of three laws on electric source development as soon as possible, establishes a basic target on permanent area promotion in the nuclear power generation located commune, realizes some examples on development of the commune together with nuclear power generation and intends to promoted its location. (G.K.)

  19. Recognition of people with an opinion that nuclear power generation causes global warming

    International Nuclear Information System (INIS)

    Fukue, Chiyokazu

    2004-01-01

    Almost a half of the people are thinking that nuclear power generation causes global warming. We conducted a survey in order to explore the recognition and background for the thinking of people. Consequently, the existence of the right knowledge ''nuclear power generation does not discharge carbon dioxide at the time of power generation'' influenced most the idea which nuclear power generation prevents global warming. On the other hand, the misunderstanding as ''the radioactive material produced from a nuclear power plant advances global warming'' has influenced the idea considered as a cause, and it is though that this misunderstanding depend on the negative image to nuclear power generation. Moreover, many people do not recognize the mechanism of global warming, and it is thought that they confuse global warming with the other global environment problems, such as acid rain or ozone layer destruction. Therefore, it is required to spread the knowledge that nuclear power generation does not discharge carbon dioxide, and to promote the understanding that a radioactive material is not related to global warming. Furthermore, it is required to distinguish global warming from the other global environment problems, and to explain them intelligibly. (author)

  20. Fitting of power generated by nuclear power plants into the Hungarian electricity system

    International Nuclear Information System (INIS)

    Lengyel, Gyula; Potecz, Bela

    1984-01-01

    The moderate increase of electrical energy demands (3% at present) can only be met by the parallel application of fossil and nuclear power plants and by electric power import via the transmission lines of the CMEA countries. The changes in the electrical energy and fuel demands and the development of the available capacities during the last 35 years are reviewed. The major purpose of Hungarian power economy is to save hydrocarbon fuels by taking advantages of power import opportunities by operating nuclear power plants at maximum capacity and the coal fired power stations at high capacity. The basic principles, the algorithm applied to optimize the load distribution of the electrical power system are discussed in detail with special attention to the role of nuclear power. The planned availability of nuclear power plants and the amount of electricity generated by nuclear plants should also be optimized. (V.N.)

  1. Nuclear power plants and their position in the competitive generation industry of the USA

    International Nuclear Information System (INIS)

    Petroll, M.R.

    2000-01-01

    One effect to be observed in the USA is that power trading in the deregulated electricity sector initiates a 'comeback' of the nuclear power stations, reputed to be dead by anti-nuclear power policy followers. Quite to the contrary, growing competition in the generation industry and the resulting upward pressure on costs increasingly induce power generation companies to enter into competitive buying of nuclear power stations, which offer better availability and prolonged service life. The article gives the technical details and explains the economic reasons for this trend in an analysis comparing nuclear power generation with conventional or new non-nuclear generation technologies. (orig./CB) [de

  2. New generation nuclear power units of PWR type integral reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Kurachen Kov, A.V.; Malamud, V.A.; Panov, Yu.K.; Runov, B.I.; Flerov, L.N.

    1997-01-01

    Design bases of new generation nuclear power units (nuclear power plants - NPP, nuclear co-generation plants - NCP, nuclear distract heating plants - NDHP), using integral type PWPS, developed in OKBM, Nizhny Novgorod and trends of design decisions optimization are considered in this report. The problems of diagnostics, servicing and repair of the integral reactor components in course of operation are discussed. The results of safety analysis, including the problems of several accident localization with postulated core melting and keeping corium in the reactor vessel and guard vessel are presented. Information on experimental substantiation of the suggested plant design decisions is presented. (author)

  3. Background submission to the Royal Commission on Nuclear Power Generation

    International Nuclear Information System (INIS)

    1976-12-01

    The Royal Commission on Nuclear Power Generation in New Zealand is required to inquire into and report upon the likely consequences of a nuclear power programme. The New Zealand Electricity Department would have prime responsibilty for implementing the construction, operation and maintenance of nuclear power plants should the need be established and should this be acceptable to the Government. In this submission the Department has attempted to present the issues raised by the introduction of nuclear power in relatively simple terms on the assumption that elaboration can be provided later if necessary

  4. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  5. Waste generation comparison: Coal-fired versus nuclear power plants

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1998-01-01

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant

  6. Environmental and health effects of fossil fuel and nuclear power generation

    International Nuclear Information System (INIS)

    Naqvi, S.J.; Black, D.B.; Phillips, C.R.

    1978-03-01

    The objective of this study was to identify and assess the present and future dimensions of environmental effects and impacts of various energy generation alternatives, and to place safety and environmental risks associated with the nuclear industry in Canada in perspective with the risks from other sources. It was found that nuclear power generation involves a comparable risk to that of conventional methods of thermoelectric power generation

  7. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    International Nuclear Information System (INIS)

    Hashiba, Takashi

    2001-01-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO 2 on generation, and awareness of energy environmental concerns. (author)

  8. Reliability of diesel generators in the Finnish and Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Huovinen, T.; Norros, L.; Vanhala, J.

    1989-10-01

    Diesel generators are used as emergency AC-power sources in nuclear power plants and they produce electric power for other emergency systems during accidents in which offsite power is lost. The reliability of diesel generators is thus of major concern for overall safety of nuclear power plants. In this study we consider the reliability of diesel generators in the Swedish and Finnish nuclear power plants on the basis of collected operational experience. We classify the occurred failures according to their functional criticality, type and cause. The failures caused by human errors in maintenance and testing are analysed in detail. We analyse also the reliability of the diesel generator subsystems. Further, we study the effect of surveillance test and the type of test on the reliability. Finally we construct an unavailability model for single diesel generator unit and discuss the findings of the study giving some practical recommendations

  9. Korean students' behavioral change toward nuclear power generation through education

    International Nuclear Information System (INIS)

    Han, Eun Ok; Kim, Jae Rok; Choi, Yoon Seok

    2014-01-01

    As a result of conducting a 45 minute-long seminar on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of perception including the necessity (p<0.017), safety (p<0.000), information acquisition (p<0.000), and subjective knowledge (p<0.000), objective knowledge (p<0.000), attitude (p<0.000), and behavior (p<0.000) were all significantly higher. This indicates that education can be effective in promoting widespread social acceptance of nuclear power and its continued use. In order to induce behavior change toward positive judgments on nuclear power generation, it is necessary to focus on attitude improvement while providing the information in all areas related to the perception, knowledge, attitude, and behavior. Here, the positive message on the convenience and the safety of nuclear power generation should be highlighted.

  10. Korean students' behavioral change toward nuclear power generation through education

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok; Kim, Jae Rok; Choi, Yoon Seok [Dept. of Education and Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2014-10-15

    As a result of conducting a 45 minute-long seminar on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of perception including the necessity (p<0.017), safety (p<0.000), information acquisition (p<0.000), and subjective knowledge (p<0.000), objective knowledge (p<0.000), attitude (p<0.000), and behavior (p<0.000) were all significantly higher. This indicates that education can be effective in promoting widespread social acceptance of nuclear power and its continued use. In order to induce behavior change toward positive judgments on nuclear power generation, it is necessary to focus on attitude improvement while providing the information in all areas related to the perception, knowledge, attitude, and behavior. Here, the positive message on the convenience and the safety of nuclear power generation should be highlighted.

  11. Adoption of nuclear power generation

    International Nuclear Information System (INIS)

    Sommers, P.

    1980-01-01

    This article develops a model of the innovation-adoption decision. The model allows the economic situation of a utility and its perception of uncertainty associated with an innovation to affect the probability of adopting it. This model is useful when uncertainties affecting decisions about adoption persist throughout the diffusion process, thereby making the usual adoption model implicit in rate-of-diffusion studies inappropriate. An empirical test of the model finds that firm size, power pool size, and selected aspects of uncertainty about the innovation are significant predictors of US utility companies' decisions on whether or not to adopt nuclear power generation. 17 references, 2 tables

  12. French nuclear power plants for heat generation

    International Nuclear Information System (INIS)

    Girard, Y.

    1984-01-01

    The considerable importance that France attributes to nuclear energy is well known even though as a result of the economic crisis and the energy savings it is possible to observe a certain downward trend in the rate at which new power plants are being started up. In July 1983, a symbolic turning-point was reached - at more than 10 thousand million kW.h nuclear power accounted, for the first time, for more than 50% of the total amount of electricity generated, or approx. 80% of the total electricity output of thermal origin. On the other hand, the direct contribution - excluding the use of electricity - of nuclear energy to the heat market in France remains virtually nil. The first part of this paper discusses the prospects and realities of the application, at low and intermediate temperatures, of nuclear heat in France, while the second part describes the French nuclear projects best suited to the heat market (excluding high temperatures). (author)

  13. EARTHQUAKE RESEARCH PROBLEMS OF NUCLEAR POWER GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Housner, G. W.; Hudson, D. E.

    1963-10-15

    Earthquake problems associated with the construction of nuclear power generators require a more extensive and a more precise knowledge of earthquake characteristics and the dynamic behavior of structures than was considered necessary for ordinary buildings. Economic considerations indicate the desirability of additional research on the problems of earthquakes and nuclear reactors. The nature of these earthquake-resistant design problems is discussed and programs of research are recommended. (auth)

  14. Nuclear power - a business driver for the next generation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.R. [American Nuclear Society, La Grange Park, Illinois (United States)

    2013-07-01

    This paper the business aspects of nuclear power. It gives a snapshot of energy sources in the US and the distribution of electricity generation between coal, natural gas, hydropower, renewables such as biomass, geothermal, solar, wind, petroleum and other gases. Nuclear power continues to be an important source of electricity. It outlines the impact of new construction in creating jobs, economics and price stability of electricity.

  15. Laser peening applications for next generation of nuclear power facilities

    International Nuclear Information System (INIS)

    Rankin, J.; Truong, C.; Walter, M.; Chen, H.-L.; Hackel, L.

    2008-01-01

    Generation of electricity by nuclear power can assist in achieving goals of reduced greenhouse gas emissions. Increased safety and reliability are necessary attributes of any new nuclear power plants. High pressure, hot water and radiation contribute to operating environments where Stress Corrosion Cracking (SCC) and hydrogen embrittlement can lead to potential component failures. Desire for improved steam conversion efficiency pushes the fatigue stress limits of turbine blades and other rotating equipment. For nuclear reactor facilities now being designed and built and for the next generations of designs, laser peening could be incorporated to provide significant performance life to critical subsystems and components making them less susceptible to fatigue, SCC and radiation induced embrittlement. These types of components include steam turbine blades, hubs and bearings as well as reactor components including cladding material, housings, welded assemblies, fittings, pipes, flanges, vessel penetrations, nuclear waste storage canisters. Laser peening has proven to be a commercial success in aerospace applications and has recently been put into use for gas and steam turbine generators and light water reactors. An expanded role for this technology for the broader nuclear power industry would be a beneficial extension. (author)

  16. Strain measurements of nuclear power plant steam generator antiseismic supports

    International Nuclear Information System (INIS)

    Kulichevsky, R.

    1997-01-01

    The nuclear power plants steam generators have different types of structural supports. One of these types are the antiseismic supports, which are intended to be under stress only if a seismic event takes place. Nevertheless, the antiseismic supports lugs, that are welded to the steam generator vessel, are subjected to thermal fatigue because of the temperature cycles related with the shut down and start up operations performed during the life of the nuclear power plant. In order to evaluate the stresses that the lugs are subjected to, several strain gages were welded on two supports lugs, positioned at two heights of one of the Embalse nuclear power plant steam generators. In this paper, the instrumentation used and the strain measurements obtained during two start up operations are presented. The influence of the plant start up operation parameters on the lugs strain evolution is also analyzed. (author) [es

  17. Research on the response of various persons to information about nuclear power generation

    International Nuclear Information System (INIS)

    Maruta, Katsuhiko

    2014-01-01

    The author surveyed blogs readily available on the Internet for three purposes: (1) to grasp the public response to nuclear problems after the accident at the Fukushima Daiichi Nuclear Power Station, (2) to determine changes in the number of blogs based on an article search, and (3) to identify the stance of bloggers on the necessity of nuclear power generation based on reading contribution contents. Furthermore the author conducted a questionnaire survey of public response in reference to the results of the blog survey. From the blog survey, it was found that immediately after the accident, the number of blogs which were negative toward nuclear power generation drastically increased, but as time has passed, blogs which are positive are increasing in number somewhat in expectation of stabilized economic and living conditions. The main results of the questionnaire survey are as follows. (1) Many persons want power generation that is non-nuclear; this is because they have good expectations for renewable energy sources or new thermal power generation as an alternative energy and they strongly feel anxious about the issue of disposal of spent nuclear fuel. (2) Because of the risk of negative impacts which electricity shortages bring on the economy and lifestyles, some persons do not want immediate decommissioning of nuclear power reactors, they favor a phase-out of nuclear power generation. Though public opinion about nuclear problems includes the expectation that one alternative energy can be selected, there is a possibility that this opinion will shift to find an optimum energy mix of plural energy sources. (author)

  18. Nuclear position in power generation sector - under the pressure of anti-global warming and power market reform

    International Nuclear Information System (INIS)

    Hayashi, Taizo

    2005-01-01

    The future structure surrounding fuel choice in power generation sector should be understood how to evaluate actual and potential merit and demerit both in economic and environmental aspects on nuclear power generation. That is i.e. nuclear can be understood as superior power source without GHGs and on the other hand, as unfavorable power source which might cause some critical dangers due to its hazardous radioactive nuclear waste. On this specific characteristic, this theme on fuel choice surrounding nuclear in power generation sector could be understood as a highly cultural problem as much as economic and political one. For instance, we can observe quite opposite direction with each other on nuclear power development in European countries like France and Finland on one hand and Germany and Sweden on the other hand. Looking at Asian countries, we also observe the very reality of high economic growth with rapid growth of electricity demand like China. What on earth, is it really possible without nuclear power source for such gigantic countries. I will develop my personal idea on nuclear power source based on Japanese experience towards successfully managing nuclear power technologies in the world, consisting of developing countries with growing economies and of advanced ones with rather matured nuclear technology under the pressure of environmentally restricted world order. My basic view point to discuss nuclear power problem has, conclusionally speaking, several aspects; The first one is in the relation with deregulation or liberalization of electricity market, which has been undergoing among such developed countries as OECD member countries i.e. USA, EU, Japan and other countries. Deregulation or liberalization of electricity market seems to be the inevitable process towards more matured market economy among developed countries group, and that process inevitably forces management of power companies towards more near sighted attitude if those companies are

  19. Steam generator and condenser design of WWER-1000 type of nuclear power plant

    International Nuclear Information System (INIS)

    Zare Shahneh, Abolghasem.

    1995-03-01

    Design process of steam generator and condenser at Russian nuclear power plant type WWER-1000 is identified. The four chapter of the books are organized as nuclear power plant, types of steam generators specially horizontal steam generator, process of steam generator design and the description of condenser and its process design

  20. Attitude changes toward nuclear power generation. Analysis of data from a longitudinal survey

    International Nuclear Information System (INIS)

    Matsuda, Toshihiro

    1998-01-01

    The Attitude changes toward nuclear power generation in response to incidents/accidents at the nuclear facilities were examined, using a longitudinal survey. A replicated survey was conducted in Kansai area following the incidents in 1995 and 1997, and a panel survey was conducted in 1997, using the same subjects as those in the survey conducted by C. Hayashi in 1993 about the attitude toward nuclear power generation. The results of the panel survey showed that an anxiety about a nuclear incident/accident tended to increase and that the number of those who decreased an anxiety about a nuclear incident/accident was relatively small, compared to an anxiety about other incidents/accidents. Using the quantification theory to analyze the group that showed changes in attitude toward nuclear power generation, it was suggested that the increase or decrease in the level of anxiety about a nuclear power incident/accident had an influence on the changes in attitude. However, the influence was not the most significant one compared to other factors. With the inclusion of the group that showed no change in attitude, the general population structure that the approval for nuclear power generation because of inevitable use of nuclear energy accounted for sixty percent remained with no significant change. (author)

  1. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  2. Power systems with nuclear-electric generators - Modelling methods

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin

    2002-01-01

    This is a vast analysis on the issue of sustainable nuclear power development with direct conclusions regarding the Nuclear Programme of Romania. The work is targeting specialists and decision making boards. Specific to the nuclear power development is its public implication, the public being most often misinformed by non-professional media. The following problems are debated thoroughly: - safety, nuclear risk, respectively, is treated in chapter 1 and 7 aiming at highlighting the quality of nuclear power and consequently paving the way to public acceptance; - the environment considered both as resource of raw materials and medium essential for life continuation, which should be appropriately protected to ensure healthy and sustainable development of human society; its analysis is also presented in chapter 1 and 7, where the problem of safe management of radioactive waste is addressed too; - investigation methods based on information science of nuclear systems, applied in carrying out the nuclear strategy and planning are widely analyzed in the chapter 2, 3 and 6; - optimizing the processes by following up the structure of investment and operation costs, and, generally, the management of nuclear units is treated in the chapter 5 and 7; - nuclear weapon proliferation as a possible consequence of nuclear power generation is treated as a legal issue. The development of Romanian NPP at Cernavoda, practically, the core of the National Nuclear Programme, is described in chapter 8. Actually, the originality of the present work consists in the selection and adaptation from a multitude of mathematical models applicable to the local and specific conditions of nuclear power plant at Cernavoda. The Romanian economy development and power development oriented towards reduction of fossil fuel consumption and protection of environment, most reliably ensured by the nuclear power, is discussed in the frame of the world trends of the energy production. Various scenarios are

  3. Nuclear reactor capable of electric power generation during in-service inspection

    International Nuclear Information System (INIS)

    Nakamura, Shinsuke; Nogami, Hitoshi.

    1992-01-01

    The nuclear power plant according to the present invention can generate electric power even in a period when one of a pair of reactors is put to in-service inspection. That is, the nuclear power plant of the present invention comprises a system constitution of two nuclear reactors each of 50% thermal power and one turbine power generator of 100% electric power. Further, facilities of various systems relevant to the two reactors each of 50% thermal power, as a pair, are used in common as much as possible in order to reduce the cost for construction and maintenance/ inspection. Further, a reactor building and a turbine building disposed in adjacent with each for paired two reactors each of 50% thermal power are arranged vertically. This arrangement can facilitate the common use of the facilities for various systems and equipments to attain branching and joining of fluids in reactor feed water systems and main steam system pipelines easily with low pressure loss and low impact shocks. The facility utilization factor of such reactors is remarkably improved by doubling the period of continuous power generation. As a result, economic property is remarkably improved. (I.S.)

  4. Nuclear Power and Ghana's Future Electricity Generation

    International Nuclear Information System (INIS)

    Ennison, I.; Dzobo, M.

    2011-01-01

    One of the major challenges facing Ghana in her developmental efforts is the generation of adequate and affordable electricity to meet increasing demand. Problems with the dependency on hydro power has brought insecurity in electricity supply due to periodic droughts. Thermal power systems have been introduced into the electricity generation mix to complement the hydro power supply but there are problems associated with their use. The high price of crude oil on the international market has made them expensive to run and the supply of less expensive gas from Steps are being taken to run the thermal plants on less expensive gas from Nigeria has delayed due to conflicts in the Niger Delta region and other factors. The existing situation has therefore called for the diversification of the electricity generation mix so as to ensure energy security and affordable power supply. This paper presents the nuclear option as a suitable alternative energy source which can be used to address the energy supply problems facing the nation as well the steps being taken towards its introduction in the national energy mix. In addition, electricity demand projections using the MAED model as well as other studies are presented. The expected electricity demand of 350000 GWh (4000MWyr) in 2030, exceeds the total electricity supply capability of the existing hydropower system, untapped hydro resources and the maximum amount of gas that can be imported from Nigeria through the West Africa pipeline. Also presented is a technological assessment on the type of nuclear reactor to be used. The technological assessment which was done based on economics, grid size, technological maturity, passive safety and standardization of reactor design, indicate that a medium sized pressurized water reactor (i.e. a PWR with capacity 300MW to 700MW) is the most favourable type of reactor. In addition the challenges facing the implementation of the nuclear power programme in Ghana are presented. (author)

  5. Change of public awareness on nuclear power generation in 2010

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    2011-01-01

    The eighth attitude survey for nuclear power generation was carried out by two methods (the written questionnaire survey and online survey), from 22nd in October to 22nd in November, 2010. The survey population of the first method was 500, 250 of male and 250 female from over twenty years old lived within 30 km from Tokyo station. That of second method was 500 from over twenty years old lived in the Metropolitan area. The questionnaire consisted of four items such as awareness on the general public and life, energy problems, nuclear power generation and others. The written questionnaire survey showed almost same results as the previous surveys. New results showed some subjects (23%) thought the nuclear power generation was useful at that time but not useful in the future. Outline of survey, the main results, the analytical results and comparison between the written questionnaire survey and online survey were reported. (S.Y.)

  6. Basic recognition on safety of nuclear electric power generation

    International Nuclear Information System (INIS)

    Miyazaki, Keiji

    1995-01-01

    The safety of nuclear electric power generation is not to inflict radiation damage on public. Natural radiation is about 1 mSv every year. As far as the core melting on large scale does not occur, there is not the possibility of exerting serious radiation effect to public. The way of thinking on ensuring the safety is defense in depth. The first protection is the prevention of abnormality, the second protection is the prevention of accidents, and the third protection is the relaxation of effect. As design base accidents, the loss of coolant accident due to the breakdown of inlet pipings of reactors and the breaking of fine tubes in steam generators are included. The suitability of location is evaluated. As the large scale accidents of nuclear power stations in the past, Chernobyl accident and Three Mile Island accident are explained. The features of the countermeasures to the accident in Mihama No. 2 plant are described. The countermeasures to severe accidents, namely accident management and general preventive maintenance are explained. The background of the nonconfidence feeling to nuclear electric power generation and the importance of opening information to public are shown. (K.I.)

  7. Why nuclear power generation must be developed? A many-faceted verification of its irreplaceable role

    International Nuclear Information System (INIS)

    Kawai, Yuichi; Oda, Toshiyuki

    1998-01-01

    Given the poor public acceptance right now, the future of nuclear power development is not necessarily bright. Yet, from the energy security aspect, the role of nuclear power, already responsible for about 30% of Japan's generated output, is never negligible. Also, Japan could hardly meet the GHG reduction target under the Kyoto Protocol without carbon-free nuclear power generation. While Japan is required to deal with both energy security and global warming from now on, to satisfy the two concurrently without nuclear power development is nearly impossible in practical terms. We have to consider calmly how nuclear power generation should be understood and treated in our effort to ensure energy supply and mitigate global warming. With this study, the need for nuclear power development was verified anew by reevaluating nuclear power generation from many facets, which are energy (electricity) supply and demand, environmental measures, energy security, and cost. Verification results showed: On supply and demand, the absence of nuclear power causes an electricity shortage during peak hours; On environment, no GHG-free power sources but nuclear currently have a sufficient supply capacity; On energy security, nuclear fuel procurement sources are diverse and located in relatively stable areas; On cost, the strong yen and cheap oil favors fossil fuels, and the weak yen and dear oil does nuclear power, though depending on unpredictable elements to send their cost up, typically waste disposal cost incurred in nuclear power, and CO 2 reduction cost in fossil fuels. With all these factors taken into consideration, the best mix of power sources should be figured out. From the verification results, we can conclude that nuclear power is one of irreplaceable energy sources for Japan. To prepare for growing electricity demand and care the environment better, Japan has few choices but to increase the installed capacity of nuclear power generation in the years to come. (author)

  8. Regional comparison of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Bowers, H.I.

    1984-01-01

    Nuclear's main disadvantages are its high capital investment cost and uncertainty in schedule compared with alternatives. Nuclear plant costs continue to rise whereas coal plant investment costs are staying relative steady. Based on average experience, nuclear capital investment costs are nearly double those of coal-fired generation plants. The capital investment cost disadvantage of nuclear is balanced by its fuel cost advantages. New base load nuclear power plants were projected to be competitive with coal-fired plants in most regions of the country. Nuclear power costs wre projected to be significantly less (10% or more) than coal-fired power costs in the South Atlantic region. Coal-fired plants were projected to have a significant economic advantage over nuclear plants in the Central and North Central regions. In the remaining seven regions, the levelized cost of power from either option was projected to be within 10%. Uncertainties in future costs of materials, services, and financing affect the relative economics of the nuclear and coal options significantly. 10 figures

  9. Attitudes of the general public and electric power company employees toward nuclear power generation

    International Nuclear Information System (INIS)

    Komiyama, Hisashi

    1997-01-01

    We conducted an awareness survey targeted at members of the general public residing in urban areas and in areas scheduled for construction of nuclear power plants as well as employees of electric power company in order to determine the awareness and attitude structures of people residing near scheduled construction sites of nuclear power plants with respect to nuclear power generation, and to examine ways of making improvements in terms of promoting nuclear power plant construction sites. Analysis of those results revealed that there are no significant differences in the awareness and attitudes of people residing in urban areas and in areas near scheduled construction sites. On the contrary, a general sense of apprehension regarding the construction of nuclear power plants was observed common to both groups. In addition, significant differences in awareness and attitudes with respect to various factors were determined to exist between members of the general public residing in urban areas and scheduled construction sites and employees of electric power company. (author)

  10. Generation of artificial earthquakes for dynamic analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Tsushima, Y.; Hiromatsu, T.; Abe, Y.; Tamaki, T.

    1979-01-01

    A procedure for generating artificial earthquakes for the purpose of the dynamic analysis of the nuclear power plant has been studied and relevant computer codes developed. This paper describes brieafly the generation procedure employed in the computer codes and also deals with the results of two artificial earthquakes generated as an example for input motions for the aseismic design of a BWR-type reactor building. Using one of the generated artificial earthquakes and two actually recorded earthquakes, non-linear responses of the reactor building were computed and the results were compared with each other. From this comparison, it has been concluded that the computer codes are practically usable and the generated artificial earthquakes are useful and powerful as input motions for dynamic analysis of a nuclear power plant. (author)

  11. Environmental and other considerations in development of new nuclear power generation

    International Nuclear Information System (INIS)

    Wan, P.K.

    2005-01-01

    Power generation is well recognized as a major prerequisite for a country's economic development. When developing a new nuclear power project, major environmental issues range from understanding of the environmental regulations of the country where the project is going to be built and the policies of the financial institution(s) involved, to dealing with the logistical issues associated with the acquisition of in country consultants, and language and cultural differences in producing the required environmental documents. One of the important pre-construction environmental efforts for nuclear power project is preparation of an Environmental Impact Assessment (EIA). An EIA is typically required to be performed for both the host country and the financial institutions engaged. The primary issues addressed in the EIA prepared for the country and that prepared for the bank are not necessarily the same, nor are the level of analyses likely to be conducted for a given environmental topic. The consequences for the development of a nuclear power project can be far-reaching, since the proposed project has the potential to cause significant socioeconomic impacts on local population and government, if it is not properly sited and/or designed. Thus, many of the financial institutions (such as the World Bank) require environmental and social-economic impact assessments as pre-requisite for funding approval. In addition, sustainable development objectives must be identified and fulfilled to alleviate the risks associated with project go-ahead decision. This paper addresses environmental and other considerations in development of nuclear power generation systems under an electric power industry privatization environment. Case studies of recent permitting activities for new nuclear power generation projects in the United States and funding issues for a nuclear power plant recently built in China are also discussed. (authors)

  12. Ontario Power Generation Nuclear: results and opportunities

    International Nuclear Information System (INIS)

    Dermarkar, F.

    2006-01-01

    This paper describes the accomplishments of Ontario Power Generation (OPG) Nuclear and outlines future opportunities. OPG's mandate is to cost effectively produce electricity, while operating in a safe, open and environmentally responsible manner. OPG's nuclear production has been increasing over the past three years - partly from the addition of newly refurbished Pickering A Units 1 and 4, and partly from the increased production from Darlington and Pickering B. OPG will demonstrate its proficiency and capability in nuclear by continuing to enhance the performance and cost effectiveness of its existing operations. Its priorities are to focus on performance excellence, commercial success, openness, accountability and transparency

  13. Regional projections of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1983-12-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base load nuclear and coal-fired power plants with a startup date of January 1995. A complete data set is supplied which specifies each parameter used to obtain the comparative results. When the comparison is based on reference cost parameters, nuclear- and coal-fired generation costs are found to be very close in most regions of the country. Nuclear power is favored in the South Atlantic region where coal must be transported over long distances, while coal-fired generation is favored in the Central and North Central regions where large reserves of cheaply mineable coal exist. The reference data set reflects recent electric utility construction experience. Significantly lower nuclear capital investment costs would result if regulatory reform and improved construction practices were instituted. The electric power generation costs for base load oil- and natural gas-fired plants were also estimated. These plants were found to be noncompetitive in all regions for those scenarios most likely to develop. Generation cost sensitivity to changes in various parameters was examined at a reference location. The sensitivity parameters included capital investment costs, lead times, capacity factors, costs of money, and coal and uranium prices. In addition to the levelized lifetime costs, year-by-year cash flows and revenue requirements are presented. The report concludes with an analysis of the economic merits of recycling spent fuel in light-water reactors

  14. Iran's nuclear program - for power generation or nuclear weapons?

    International Nuclear Information System (INIS)

    Kippe, Halvor

    2008-11-01

    would withdraw from the Nuclear Non-proliferation Treaty (NPT), has generated enough concern among several of the dominant nations in the world, that they have gone to great lengths to try to dissuade Tehran from the continued pursuit of its in principle legal nuclear activities. As this report is issued, Iran still has some way ahead before its infrastructure can readily provide it with nuclear weapons on demand. But Iran seems almost to have overcome the presumably highest technological threshold, namely full-scale uranium enrichment. Today's infrastructure is far from sufficiently developed to be able to fully support Iran's planned nuclear power developments, but on the other hand the need for indigenously produced nuclear fuel is also several years ahead, as long as Iran's first self-constructed nuclear power plant is far from completion. The known and assumed uranium deposits, however, are of minute proportions compared to the stated ambitions of their nuclear power programme (20 GWe within 2030). Iran's future reactors will hardly be able to go online before they become dependent on fuel from abroad. The uranium deposits are, on the other hand, abundant for the future production of several thousands of nuclear weapons. And if the infrastructure that is arising today is actually directed towards that purpose, Iran will in theory some day be able to produce more than a hundred nuclear weapons a year. (Author)

  15. Automatic motion inhibit system for a nuclear power generating system

    International Nuclear Information System (INIS)

    Musick, C.R.; Torres, J.M.

    1977-01-01

    Disclosed is an automatic motion inhibit system for a nuclear power generating system for inhibiting automatic motion of the control elements to reduce reactor power in response to a turbine load reduction. The system generates a final reactor power level setpoint signal which is continuously compared with a reactor power signal. The final reactor power level setpoint is a setpoint within the capacity of the bypass valves to bypass steam which in no event is lower in value than the lower limit of automatic control of the reactor. If the final reactor power level setpoint is greater than the reactor power, an inhibit signal is generated to inhibit automatic control of the reactor. 6 claims, 5 figures

  16. Study on economic potential of nuclear-gas combined cycle power generation in Chinese market

    International Nuclear Information System (INIS)

    Zhou Zhiwei; Bian Zhiqiang; Yang Mengjia

    2004-01-01

    Facing the challenges of separation of electric power plant and grid, and the deregulation of Chinese electricity supplying market in near future, nuclear power plants mainly operated as based load at the present regulated market should look for new operation mode. The economics of electric generation with nuclear-natural gas combined cycle is studied based on current conditions of natural gas and nuclear power plants in China. The results indicate that the technology development of nuclear-natural gas combined cycle for power generation is of potential prospects in Chinese electric market. (authors)

  17. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hashiba, Takashi [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO{sub 2} on generation, and awareness of energy environmental concerns. (author)

  18. A study of the public opinion concerning nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2008-01-01

    In this study, I surveyed the outcome of opinion poll about people's attitude toward nuclear power and analysed their awareness of nuclear power generation in the United States. As a result, it was found that percentage of the people who have positive attitude toward nuclear power has been over 60% since 1998. This result corresponds to the fact that people's preference is tending more toward nuclear power generation which is called the nuclear power Renaissance in the United States. Furthermore, analysis of the outcome of the opinion poll in power stations site region was also conducted and it was found that attitude of the people in the site region was more positive than that of average level in the United States. (author)

  19. Power generation

    International Nuclear Information System (INIS)

    Nunez, Anibal D.

    2001-01-01

    In the second half of twentieth century, nuclear power became an industrial reality. Now the operating 433 power plants, the 37 plants under construction, near 9000 years/reactor with only one serious accident with emission of radioactive material to the environment (Chernobyl) show the maturity of this technology. Today nuclear power contribute a 17% to the global generation and an increase of 75 % of the demand of electricity is estimated for 2020 while this demand is expected to triplicate by 2050. How this requirement can be satisfied? All the indicators seems to demonstrate that nuclear power will be the solution because of the shortage of other sources, the increase of the prices of the non renewable fuels and the scarce contribution of the renewable ones. In addition, the climatic changes produced by the greenhouse effect make even more attractive nuclear power. The situation of Argentina is analyzed and compared with other countries. The convenience of an increase of nuclear power contribution to the total national generation seems clear and the conclusion of the construction of the Atucha II nuclear power plant is recommended

  20. Public attitudes toward nuclear power generation. Focusing on measurement of attitude intensity

    International Nuclear Information System (INIS)

    Nagai, Yasuko; Hayashi, Chikio

    1999-01-01

    The purpose of the present study was to 1) examine the differences of the perception between nuclear power generation (NPG) and electric power generation by nuclear fusion, 2) find the structural characteristics of the attitude toward NPG, 3) shed light on the characteristics of knowledge about NPG, and 4) develop a scale to measure the intensity in attitude toward NPG. Subjects (N = 1,582) were randomly assigned into 4 groups and were asked to answer a questionnaire including public attitudes toward NPG and related matters. The results were as follows: 1) the perception of electric power generation by nuclear fusion was less favorable than that of NPG; 2) Items which correlated with attitudes toward NPG were: 'sense of anxiety,' sensitivity to risk,' 'trust in science and technology,' 'evaluation of Japan's nuclear policy', 'evaluation of electric power companies,' and interest in life and environmental issues.' Moreover, people with a strong attitude tended to be rational and had a better knowledge of NPG; 3) The evaluation of the amount of subjective knowledge concerning nuclear power and electric power generation was reliable as a measure of objective knowledge; 4) The measurement method used in this study was characterized by the use of biased questions(ten positively and ten negatively biased questions) which were shown to the subjects using the split-half method. An attempt was made to measure the attitude and its intensity taking into consideration gender, positive or negative attitude toward NPG, level of knowledge about NPG, age, and occupation. As a result, differences in intensity between different attributes were found. (author)

  1. Design of a partial inter-tube lancing system actuated by hydraulic power for type F model steam generator in nuclear power plant

    International Nuclear Information System (INIS)

    Kim, S. T.; Jeong, W. T.

    2008-01-01

    The sludge grown up in steam generators of nuclear power plants shortens the life-cycle of steam generators and reduces the output of power plants. So KHNP(Korea Hydro and Nuclear Power), the only nuclear power utility in Korea, removes it periodically using a steam generator lancing system during the outage of plants for an overhaul. KEPRI(Korea Electric Power Research Institute) has developed lancing systems with high pressured water nozzle for steam generators of nuclear power plants since 2001. In this paper, the design of a partial inter-tube lancing system for model F type steam generators will be described. The system is actuated without a DC motor inner steam generators because the motors in a steam generator make a trouble from high intensity of radioactivity as a break down

  2. Electric utilities deregulation and its impact on nuclear power generating stations

    International Nuclear Information System (INIS)

    Trehan, N.K.

    1998-01-01

    Under restructuring and deregulation, it is not clear as to who would have the responsibility, and what obligations the market participants would have to ensure that the electrical system reliability (stability) is maintained. Due to the dynamic nature of the electrical grid, especially with the implementation of restructuring and deregulation, vulnerabilities exist which may impact the reliability (stability) of the offsite electrical power system. In a nuclear power generating unit, an offsite electric power system and an onsite electric power system are required to permit the functioning of structures, systems, and components which are important to safety. The safety function for each system is to provide sufficient capacity and capability to assure that the containment integrity is maintained during power operation or in the event of a postulated accident. Analyses performed by the applicants must verify that the electrical grid remains stable in the event of a loss of the nuclear unit generator, the largest other unit on the grid or the most critical transmission line. The stability of the electric grid is assumed in the safety analyses and a change in it would impact those analyses. However, it may impact the availability of a stable electric power to the safety buses because of the limited number of available transmission lines. This paper discusses electrical power generation and demand, reserve margins, power transfer capability, development of new innovative technologies to compensate for lack of the construction of transmission lines, legislation for the formulation of a self regulation organization (SRO), grid disturbances that may lead to a voltage collapse, and the vulnerabilities which may impact the availability of a stable power to the nuclear power generating stations

  3. Evaluating nuclear power as the next baseload generation option

    International Nuclear Information System (INIS)

    Jackson, K.J.; Sanford, M.O.

    1992-01-01

    Numerous factors must be taken into account when planning to meet baseload generating needs of the next century. Examining nuclear power as an option to meet these needs offers significant challenges with respect to evaluating and managing the business risks. This paper describes one mechanism to accomplish this while continuing to participate in industry activities targeted at advancing the nuclear option. One possible model of pursuing high-risk, long-term projects, like nuclear power, is to spread these risks among the project participants and for each organization to commit slowly. With this model of progressive engagement, participants may invest in early information gathering with the objective of uncertainty reduction at preliminary stages in the project, before large investments must be made. For nuclear power, a partnership between a utility (or utility group) and a supplier team may well be the best means of implementing such a model. A partnership also provides opportunity to develop the long-term relationships within the industry which are imperative

  4. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    International Nuclear Information System (INIS)

    Shin, Jung Ho; Roh, Myung Sub

    2013-01-01

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3 rd through 5 th BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6 th BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3 th , 4 th , 5 th entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then compensating the shortage by

  5. Effects of a power shortage in the Tokyo metropolitan area on awareness of nuclear power generation and power savings behavior

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2004-01-01

    The shutdown of a number of nuclear power stations of the Tokyo Electric Power Company in the summer of 2003 caused a power shortage problem in the Tokyo Metropolitan area. To examine the effects of the power shortage, in September 2003 a survey was conducted in the service areas of the Kansai Electric Power Company (Kansai region) and the Tokyo Electric Power Company (Kanto region). This survey was part of a wider opinion survey begun in 1993 concerning nuclear power generation. The results of the September 2003 survey are as follows: The degree of recognition of the power shortage problem in the Metropolitan area was high, with 40% of respondents in the Kansai region and nearly 70% in the Kanto region understanding that the shortage was caused by the shutdown of several nuclear power station. The overall awareness of nuclear power generation was little affected in both the Kansai and Kanto regions, though the sense of a shortage of the generating capacity had been raised slightly. Once respondents knew about the power shortage problem, they estimated the likelihood of an occurrence of large-scale service interruption to be low, nearly at an even chance, and they had been only slightly worried about it, essentially viewing the problem optimistically. In the Kanto region, where public relations activities for power savings had been actively pursued, the frequency of experiencing exposure to such public relations activities was remarkably higher than in the Kansai region. The relation between exposure to public relations activities for power savings and power savings behavior was analyzed using quantification method II. Analysis results suggest that public relations activities for power savings in the Kanto region had the effect of urging power savings behavior. However, the difference in the rate of putting power savings behavior into practice was small between the Kanto and Kansai regions, indicating that public relation activities for power savings in the Kanto

  6. Nuclear power generation and global heating

    International Nuclear Information System (INIS)

    Taboada, Horacio

    1999-01-01

    The Professionals Association and Nuclear Activity of National Atomic Energy Commission (CNEA) are following with great interest the worldwide discussions on global heating and the role that nuclear power is going to play. The Association has an active presence, as part of the WONUC (recognized by the United Nations as a Non-Governmental Organization) in the COP4, which was held in Buenos Aires in November 1998. The environmental problems are closely related to human development, the way of power production, the techniques for industrial production and exploitation fields. CO 2 is the most important gas with hothouse effects, responsible of progressive climatic changes, as floods, desertification, increase of average global temperature, thermal expansion in seas and even polar casks melting and ice falls. The consequences that global heating will have on the life and economy of human society cannot be sufficiently emphasized, great economical impact, destruction of ecosystems, loss of great coast areas and complete disappearance of islands owing to water level rise. The increase of power retained in the atmosphere generates more violent hurricanes and storms. In this work, the topics presented in the former AATN Meeting is analyzed in detail and different technological options and perspectives to mitigate CO 2 emission, as well as economical-financial aspects, are explored. (author)

  7. Current status of nuclear power generation in Japan and directions in water cooled reactor technology development

    International Nuclear Information System (INIS)

    Miwa, T.

    1991-01-01

    Electric power demand aspects and current status of nuclear power generation in Japan are outlined. Although the future plan for nuclear power generation has not been determined yet the Japanese nuclear research centers and institutes are investigating and developing some projects on the next generation of light water reactors and other types of reactors. The paper describes these main activities

  8. Trends on nuclear power generation and industry in European and American nations

    International Nuclear Information System (INIS)

    Tokai, Kunihiro

    2001-01-01

    In European and American nations, competitive principle was also recently introduced to electric industry allowed its local exclusion as a public business before today by liberalization of electric power market due to regulative relaxation, and then the existing electric power companies are now under serious competition with the other companies, of course with IPP which is its new comer. And, as nuclear power generation has already established there its position for an important source essential for electric power supply, by liberalization of electric power economy has also been severely required to the nuclear power generation. Then, the electric power companies intend to carry out cost-down by various means such as contraction of periodical inspection, and so on. Especially, in U.S.A., not only rationalization effort at a pace of every company but also various cost-down procedures ranging to reorganization of business such as purchase of other company power station, establishment of operation company integrally carrying out operation management of some companies, and so on, As a result, the nuclear power generation has come to obtain an evaluation to be an electric source sufficiently capable of competing with the other sources even at competitive market. On the other hand, its new construction continues at difficult condition. By adding to traditional objection against nuclear energy, in general, by recently entering of environmental protection party to the regime in some nations of western Europe, political environment around nuclear energy becomes unstable. And, liberalization of electric power also forms an investment environment advantageous for natural gas burning thermal power plants capable of carrying out short term capital recovery, in general. Therefore, the electric companies tend strongly to correspond to rather life elongation of the present plant than new plan construction. (G.K.)

  9. Diagnostic knowledge generation of nuclear power plants using knowledge compilers

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji; Endou, Akira; Ikeda, Mitsuru; Mizoguchi, Riichiro

    1994-01-01

    This paper discusses a method to generate diagnostic knowledge of nuclear power plants, from commonly accepted physical knowledge and design information about plant configuration. This method is based on qualitative reasoning, which is advantageous to numerical information processing in the sense that system can explain why and how directly applicable knowledge is correctly generated, and that knowledge base is highly reusable and expandable because it is independent on detailed numerical design specifications. However, reasoning ambiguity has been found as the largest problem in applying the technique to nuclear power plants. The proposed approach mainly consists of a knowledge representation scheme, reasoning algorithm, and qualitative model construction method. (author). 4 refs, 8 figs, 1 tab

  10. Steam generator for use in nuclear power plants

    International Nuclear Information System (INIS)

    Cella, A.

    1980-01-01

    An improved steam generator is described for use in a nuclear power plant of the pressurized water type in which a turbine generator is driven by the steam output of the steam generator to provide electrical power therefrom. The improvement comprises providing a vertically movable grid structure vertically extending within the interior of the lower housing portion of the steam generator through which individual tubes comprising a vertically extending tube bundle extend. The tube bundle has a tube sheet at one end thereof supporting the tube bundle for the tubes extending through the tube sheet in flow through communication with a heat exchange fluid inlet. The grid structure defines grid apertures therein through which the individual tubes extend with each of the grid apertures being in surrounding relationship with a portion of an associated one of the tubes. The grid structure is movable for a predetermined vertical extent, such as by hydraulic means, such as a piston, along the tubes for vertically displacing the means defining the grid apertures by a sufficient amount for removing the previously surrounded portion of each of the tubes from the associated grid apertures whereby an enhanced reading of the condition of the tubes at the previously surrounded portion is enabled. The steam generator may comprise vertically assemblable modules which are removably mounted together in sealing relationship, with the modules comprising a base module, a tube bundle module removably mountable on the base module in sealing relationship therewith and an uppermost drier module removably mountable on the tube bundle module in sealing relationship therewith whereby ready access to removal of the tube bundle module in situ from the nuclear power plant steam generator is facilitated

  11. Nuclear Power for Electricity Generation in Ghana: Issues and Challenges

    International Nuclear Information System (INIS)

    Nyarko, B.J.B.; Akaho, E.H.K.; Ennison, I.

    2011-01-01

    Ghana's electricity demand has been estimated to be growing at a high rate of about 7% per annum over the last ten years. This is due to the relatively high population growth, economic aspiration of the country and the extension of electricity to rural areas. Electricity supply, on the contrary, has been unable to meet the demand due to high dependency on rain-fed hydropower plants, which started operating in 1965 and currently account for about 68% of the total installed capacity. Within the last 28 years, climatic changes and draughts have caused the nation to experience three major power crises. These climate changes resulted in low inflows and thus reduced power generation from hydropower systems. To complement the hydropower systems, the Government in 1997 installed thermal plants based on light crude oil. However, due to the high crude oil prices on the international market in recent times have made the operation of these plants very expensive. Ghana's crude oil find can boost its energy supply when the oil exploration begins somewhere in 2010. For rural cooking, domestic biomass is employed. Ghana has no domestic coal resources. The Government of Ghana is concerned with: limited further growth potential of domestic hydro; high cost of imported oil and gas and environmental issues associated with use of imported coal. Small Solar and wind generation exist in some sectors, but potential large-scale development is not envisioned for the near future. With these in mind, the President of Ghana set up a Committee involving Stakeholder Institutions to formulate the Nuclear Power Policy and develop the basic elements of Nuclear Infrastructure and to assess the viability of introducing the nuclear power option in Ghana's energy mix. Cabinet took a decision to include the nuclear power for electricity generation after the Committee submitted his report to the President in 2008. (author)

  12. Applications of nuclear-powered thermoelectric generators in space

    International Nuclear Information System (INIS)

    Rowe, D.M.

    1991-01-01

    The source of electrical power which enables information to be transmitted from the space crafts Voyager 1 and 2 back to Earth after a time period of more than a decade and at a distance of more than a billion miles is known as an RTG (radioisotope thermoelectric generator). It utilises the Seebeck effect in producing electricity from heat. In essence it consists of a large number of semiconductor thermocouples connected electrically in series and thermally in parallel. A temperature difference is maintained across the thermocouples by providing a heat source, which in the case of an RTG is a radioactive isotope, and the heat sink is space. The combination of an energy-conversion system, free of moving parts and a long-life, high energy-density heat source, provides a supply of electrical power typically in the range of tens to hundred of watts and which operates reliably over extended periods of time. An electric power source, based upon thermoelectric conversion by which utilises a nuclear reactor as a heat source, has also been deployed in space and a 100-kW system is being developed to provide electrical power to a variety of commercial and military projects including SDI. Developments in thermoelectrics that have taken place in the western world during the past 30 years are primarily due to United States interest and involvement in the exploration of space. This paper reviews US applications of nuclear-powered thermoelectric generators in space. (author)

  13. Nuclear power generation alternative for a clean energy future

    International Nuclear Information System (INIS)

    Simionov, V; Ibadula, R.; Popescu, Ion.; Bobric, Elena

    2001-01-01

    World Energy Council stated that to raise the efficiency in which energy is provided is a huge challenge for power engineering. Over 60% of primary energy is in effect, wasted. At present 63% of the world's electricity comes from thermal power (coal, oil and gas), 19% from hydro, 17% from nuclear, 0.5% from geothermal and 0.1% from solar, wind and biomass. Nuclear power almost completely avoids all the problems associated within fossil fuels: no greenhouse effect, no acid rain, no air pollution with sulfur dioxide, nitrogen oxides, no oil spills, etc. Its impact on health and environment is related to radiation and is relatively minor. Without pretending a high accuracy of numbers, if the first Romanian nuclear power reactor will be replaced by a coal plant of equivalent capacity, about 5 millions tons of CO 2 and large quantities of associated sulfur and nitrous oxides, would be discharged to the atmosphere each year. However, the acceptance of nuclear power is largely an emotional issue. Based on the environmental monitoring program this paper tries to demonstrate that the routine radioactive emissions of Cernavoda NPP, which are limited by competent national authority, constitutes an insignificant risk increase. The concept of sustainable development was elaborated in the late 1980s and defined as a development that fulfil the needs of the present, without compromising the ability of future generations to meet their own needs. Sustainable development incorporates equity within and across countries as well as across generations, and integrates economic growth, environmental protection and social welfare. To analyze nuclear energy from a sustainable development perspective it is necessary to consider its economic, environmental and social impacts characteristics, both positive and negative. It is obvious that the development of nuclear energy broadens the natural resource base usable for energy production, and increases human and man-made capital. There are also

  14. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  15. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  16. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3{sup rd} through 5{sup th} BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6{sup th} BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3{sup th}, 4{sup th}, 5{sup th} entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then

  17. Blown by the wind. Replacing nuclear power in German electricity generation

    International Nuclear Information System (INIS)

    Lechtenböhmer, Stefan; Samadi, Sascha

    2013-01-01

    Only three days after the beginning of the nuclear catastrophe in Fukushima, Japan, on 11 March 2011, the German government ordered 8 of the country's 17 existing nuclear power plants (NPPs) to stop operating within a few days. In summer 2011 the government put forward a law – passed in parliament by a large majority – that calls for a complete nuclear phase-out by the end of 2022. These government actions were in contrast to its initial plans, laid out in fall 2010, to expand the lifetimes of the country's NPPs. The immediate closure of 8 NPPs and the plans for a complete nuclear phase-out within little more than a decade, raised concerns about Germany's ability to secure a stable supply of electricity. Some observers feared power supply shortages, increasing CO 2 -emissions and a need for Germany to become a net importer of electricity. Now – a little more than a year after the phase-out law entered into force – this paper examines these concerns using (a) recent statistical data on electricity production and demand in the first 15 months after the German government's immediate reaction to the Fukushima accident and (b) reviews the most recent projections and scenarios by different stakeholders on how the German electricity system may develop until 2025, when NPPs will no longer be in operation. The paper finds that Germany has a realistic chance of fully replacing nuclear power with additional renewable electricity generation on an annual basis by 2025 or earlier, provided that several related challenges, e.g. expansion of the grids and provision of balancing power, can be solved successfully. Already in 2012 additional electricity generation from renewable energy sources in combination with a reduced domestic demand for electricity will likely fully compensate for the reduced power generation from the NPPs shut down in March 2011. If current political targets will be realised, Germany neither has to become a net electricity importer, nor will be unable

  18. Economic impacts of electricity liberalization on the status of nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Hattori, Toru

    2015-01-01

    This paper discusses the economic impact of electricity liberalization on the status of nuclear power generation in the United States. Nuclear power plants have been treated equally with other types of power plants in the liberalized electricity market. The existing nuclear power plants were thought to be competitive in liberalized wholesale electricity market. Competitive pressure from the market also facilitated efficiency improvement among the existing nuclear power plants. Although it was difficult to build new reactor, the U.S. nuclear power generators expanded capacity through up rates. In recent years, however, nuclear power plants suffer from the decline in wholesale power prices and some of them are forced to retire early. Although there are some market design issues that could be improved to maintain the efficient nuclear power plants in competitive environment, it is now argued that some additional arrangements to mitigate the investment risks of the nuclear power plants are necessary. (author)

  19. Nuclear power for the next generation. Proceedings. Kernenergie fuer die naechste Generation. Berichte

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The Chernobyl reactor accident was just the last but not the only occasion that threw out the question of whether nuclear power generation has reached its peak, or probably already is on the decline, or whether there will be new chances for nuclear energy on the power market. The answer to these questions depends on a variety of factors, among which the development of demand for energy, and especially electrical energy, certainly is the decisive factor. The summarizing statements published in the proceedings in hand have been written in January 1986, i.e. before the Chernobyl reactor accident; but they still are relevant, as the long-term problems of energy policy persist, and nuclear energy has to tackle the same problems as before.

  20. Foundations for the Fourth Generation of Nuclear Power

    International Nuclear Information System (INIS)

    Lake, James Alan

    2000-01-01

    Plentiful, affordable electrical energy is a critically important commodity to nations wishing to grow their economy. Energy, and more specifically electricity, is the fuel of economic growth. More than one-third of the world's population (more than 2 billion people), however, live today without access to any electricity. Further, another 2 billion people in the world exist on less than 100 watts of electricity per capita. By comparison, the large economies of Japan and France use more than 800 watts of electricity per capita, and the United States uses nearly 1500 watts of electricity per capita. As the governments of developing nations strive to improve their economies, and hence the standard of living of their people, electricity use is increasing. Several forecasts of electrical generation growth have concluded that world electricity demand will roughly double in the next 20-25 years, and possibly triple by 2050. This electrical generation growth will occur primarily in the rapidly developing and growing economies in Asia and Latin America. This net growth is in addition to the need for replacement generating capacity in the United States and Europe as aging power plants (primarily fossil-fueled) are replaced. This very substantial worldwide electricity demand growth places the issue of where this new electricity generation capacity is to come from squarely in front of the developed countries. They have a fundamental desire (if not a moral obligation) to help these developing countries sustain their economic growth and improve their standard of living, while at the same time protecting the energy (and economic) security of their own countries. There are currently 435 power reactors generating about 16 percent of the world's electricity. We know full well that nuclear power shows great promise as an economical, safe, and emissions-free source of electrical energy, but it also carries at least the perception of great problems, from public safety to dealing with

  1. An experimental study on the effect of TV commercials on the attitudes towards nuclear power generation

    International Nuclear Information System (INIS)

    Tada, Yasuyuki

    1999-01-01

    The present study is about the effect TV commercials have on the subjects' attitudes towards nuclear power generation. A number of 191 female students participated in the experiment. It was hypothesized that TV commercials would have a positive effect on the viewer's attitude towards nuclear power generation. The main results of the study supported this hypothesis, demonstrating that TV commercials constitute an effective means for changing people's perception of nuclear power generation. (author)

  2. Nuclear reactors for electric power generation

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1987-01-01

    In this article the operation of a nuclear power plant, the status quo about the application of nuclear energy in the world are explained, the subjects of discussion between supporters and adversaries nowadays and the prospects for prolonged usage of nuclear power are summarized, viewed from the actual technical possibilities. 2 refs.; 7 figs.; 2 tabs

  3. Generation of floor response spectra for a model structure of nuclear power plant

    International Nuclear Information System (INIS)

    Vaidyanathan, C.V.; Kamatchi, P.; Ravichandran, R.; Lakshmanan, N.

    2003-01-01

    The importance of Nuclear power plants and the consequences of a nuclear accident require that the nuclear structures be designed for the most severe environmental conditions. Earthquakes constitutes major design consideration for the system, structures and equipment of a nuclear power plant. The design of structures on ground is based on the ground response spectra. Many important parts of a nuclear power plant facility are attached to the principal parts of the structure and respond in a manner determined by the structural response rather than by the general ground motion to which the structure is supported. Hence the seismic response of equipment is generally based on the response spectrum of the floor on which it is mounted. In this paper such floor response spectra have been generated at different nodes of a chosen model structure of a nuclear power plant. In the present study a detailed nonlinear time history analysis has been carried out on the mathematical model of the chosen Nuclear Power Plant model structure with the spectrum compatible time history. The acceleration response results of the time history analysis has been used in the spectral analysis and the response spectra are generated. Further peak broadening has been done to account for uncertainties in the material properties and soil characteristics. (author)

  4. Effects of the criticality accident at Tokai-mura on the public's attitude to nuclear power generation

    International Nuclear Information System (INIS)

    Kitada, Atsuko; Hayashi, Chikio

    2000-01-01

    The objective of our study was to clarify the effects on the public's attitude of nuclear power and the criticality accident that occurred at the JCO plant in Tokai-mura, Ibaraki Prefecture. For this purpose, we conducted an awareness survey in the Kansai and Kanto areas two months after the accident. Analysis was made on the basis of the comparison of the survey results with the data that the Institute of Nuclear Safety System had accumulated through continuous awareness surveys on nuclear power generation (regular surveys) since 1993. The public's reactions were twofold. On one hand, there were emotional reactions about accidents in nuclear facilities and a reduction in the sense of security. On the other hand, there were reactions concerning the image of nuclear power plant workers and demand on electricity utilities for enhanced employee education and training. The latter reactions correspond to the problems pointed out after the JCO accident. Regarding the utilization of nuclear power generation, the opinion that 'the utilization of nuclear power generation is unavoidable' accounts for 60% of those surveyed. With the opinion that 'nuclear power generation should be utilized' added, 70% of those surveyed take an affirmative attitude to nuclear power utilization. This situation has remained about the same since 1998, the year before the JCO accident. Using the quantification method III to analyze a number of questionnaires about nuclear power generation such as the anxiety about it, we determined overall attitude indexes regarding nuclear power to perform a time sequence comparison. The comparison shows that the attitude after the JCO accident tended to be more negative than in 1998. However, no significant difference in the overall indexes is seen between 1993 and 1998. Judging the comparison results on the basis of the time span starting in 1993 allows us to conclude that the JCO accident has not greatly contributed to worsening the attitude towards nuclear

  5. Reactor trip on turbine trip inhibit control system for nuclear power generating system

    International Nuclear Information System (INIS)

    Torres, J.M.; Musick, C.R.

    1976-01-01

    A reactor trip on turbine trip inhibit control system for a nuclear power generating system which utilizes steam bypass valves is described. The control system inhibits a normally automatic reactor trip on turbine trip when the bypass valves have the capability of bypassing enough steam to prevent reactor trip limits from being reached and/or to prevent opening of the secondary safety pressure valves. The control system generates a bypass valve capability signal which is continuously compared with the reactor power. If the capability is greater than the reactor power, then an inhibit signal is generated which prevents a turbine trip signal from tripping the nuclear reactor. 10 claims, 4 figures

  6. An experimental study on the effect of TV commercials on the attitudes towards nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Yasuyuki [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    1999-09-01

    The present study is about the effect TV commercials have on the subjects' attitudes towards nuclear power generation. A number of 191 female students participated in the experiment. It was hypothesized that TV commercials would have a positive effect on the viewer's attitude towards nuclear power generation. The main results of the study supported this hypothesis, demonstrating that TV commercials constitute an effective means for changing people's perception of nuclear power generation. (author)

  7. Economics issues - nuclear power generation in North America

    International Nuclear Information System (INIS)

    Jones, R.; Taylor, J.; Santucci, J.

    1996-01-01

    The structure of the US utility industry is in transition. Political, social, and economic factors are contributing to a rapid shift from a monopoly structure (captive markets, cost-plus prices, negotiated rate of return on capital) to a highly competitive one (choices for customers, prices determined by the market place, earnings based on market price less cost). The rate of change has been accelerating. For example, what just two years ago would have been thought of as highly unlikely -- competition for the individual electric customer -- is now part of the plan in California and other states. In our view, technology is at the root of many of these structural changes with more to come. Yet another round of technological change is afoot, involving even more efficient gas turbines, new methods of utilizing transmission lines, distributed generation, and new opportunities for electricity use and service. It can be argued that the restructuring of the marketplace reflects, in some measure, anticipation for these advances. For the foreseeable future, nuclear energy will continue to play a significant role in the generating grid of North America. However, new nuclear generation will be held to standards of competition that are dictated by market forces, and by advances in competing technologies for base load generation. It is important to understand these forces, and devise a response which ensures that nuclear energy will continue to provide a viable, competitive, and environmentally superior option for generating electricity in the 21st century. The EPRI Nuclear Power program is focused on achieving these goals. (author)

  8. General design criteria for diesel-generator sets for nuclear power plants

    International Nuclear Information System (INIS)

    Rangarao, G.

    1975-01-01

    The design criteria for diesel-generators for nuclear power plants are examined. Applicable standards, loading, design performance, and characteristics to be considered in the selection of diesel-generator set and its auxiliary system are discussed. Also, engineered safety features loads together with loss of power safe shutdown loads and their starting sequence, analysis of voltage and frequency response and the diesel-generator ability to start various load blocks successfully to meet the reactor emergency core cooling requirements are discussed

  9. The role of nuclear power generation in aspects of the foreign currency outflow

    International Nuclear Information System (INIS)

    Kim, Seung Su; Lee, Man Ki

    2005-01-01

    Korea has little domestic energy resources and so imported almost all of the primary energy consumed from the foreign countries, with the foreign energy dependency being about more than 97% in recent years. In the meantime, the import amount of energy together with the rapid economic growth has increased continuously during the past 30 years to be 49.6 billion dollar in 2004 while the Current Account Balance was 27.6 billion dollar in the same year. Especially, the growth rate of electric consumption greatly surpassed ones in GDP and primary energy over the past 20 years. Nuclear power generation has played an important role in Korean society by supporting the industrial development as well as stabilizing downward the electricity price. The steady progress in the localization of nuclear construction has decreased the amount of foreign currency outflow by the nuclear power plant construction. In addition, nuclear fuel cost is the most competitive among those of the other fossil fuel power sources, so that this situation resulted in the large decrease of foreign currency outflow in power sector. In this thesis, we focused on the savings effect in foreign currency outflow by nuclear power generation using the scenario method. We tried to evaluate what amount of foreign currency has been saved by the introduction of nuclear power plant instead of the other fossil fuel power plants

  10. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  11. Design and construction features of steam generators at a nuclear power station

    International Nuclear Information System (INIS)

    Chakrabarti, A.K.; Gupta, K.N.; Bapat, C.N.; Sharma, V.K.

    1996-01-01

    The Indian nuclear power programme is based on Pressurised Heavy Water Reactors (PHWRs) using natural uranium as fuel and heavy water as reactor coolant as well as moderator. The nuclear heat is generated in the fuel located in the pressure tubes. Pressurised heavy water in the primary heat transport (PHT) system is circulated through the tubes which picks up the heat from the fuel and transfers it to ordinary water in steam generators (SGs) to produce steam. The steam is used for providing power to the turbine. The steam generator is a critical equipment in the nuclear steam supply system (NSSS) of a nuclear reactor. SG tube surface area constitute about 80% of total primary circuit surface area. A typical value in a 220 MWe reactor is 9000 m 2 which can release considerable amount of corrosion products unless very low corrosion rates are achieved by proper design, material selection and water chemistry control. Design and construction features of SGs are given. 1 tab

  12. The future of nuclear power and fourth-generation reactors

    International Nuclear Information System (INIS)

    Carre, F.; Renault, C.

    2006-01-01

    Faced with the exhaustion of fossil fuel resources, the output of existing nuclear power must quadruple between now and 2050, and the Commissariat a l'Energie atomique (CEA) and its industrial partners are cooperating in a programme of R and D on future nuclear power. France strategy puts rapid neutron reactors (RNR) at the forefront, in view of their possible introduction by 2040. These reactors allow a more efficient use of uranium resources and minimise the production of long-life nuclear waste. Two technologies which use respectively, sodium and gas as their coolant are being studied. For the sodium RNR, which benefits from significant existing experience, the key is to first improve its economic performance. For the gas RNR, which draws on the principles and the generic assets of the RNR, for those using helium as the coolant, and those with applications at high temperature, it is important firstly to demonstrate the key technologies such as the fuel. The decision of President Chirac to launch the study of a prototype, fourth-generation reactor for 2020 is stimulating the research effort into France future nuclear power. (author)

  13. Protection device for use in stopping a turbine generator in nuclear power plant

    International Nuclear Information System (INIS)

    Nagahama, Mizuo.

    1974-01-01

    Object: To supply to as great an extent as possible the residual output of a nuclear reactor to a turbine after the reactor is shutdown and to prevent overpower and motoring of a turbine by connecting a power direction relay to a secondary circuit of a current transformer and an instrumentation transformer at the high voltage side of a main transformer of a transmission bus line. Structure: When the output power of a generator after shuttingdown a nuclear reactor decreases below the sum of the mechanical losses of the turbine and the generator and the power for the house-auxiliaries connected to a fixed bus line, the direction of the current is reversed and the power is supplied from the transmission bus line through a circuit breaker for the generator and a main transformer onto the house-side, whereby a time limit relay of the power direction relay is actuated to disconnect the generator and the turbine. (Kamimura, M.)

  14. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    Wang Yingrong

    2011-01-01

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  15. The feature of emergency diesel generator relaying protection in Tianwan nuclear power station

    International Nuclear Information System (INIS)

    Jiang Xiaopeng; Shi Yan; Li Cong

    2014-01-01

    This paper mainly introduces the function and feature of emergency diesel generator in nuclear power plant, which plays an important role in nuclear accident. It minutely tells about the feature and configuration of relay protection and discusses the rationality of protection scheme, which shows that it can be completely contented all kinds of operation states. It is an analysis and argument about the principle of relay protection in detail, that would operate correctly when emergency diesel generator be in abnormal operating and serious fault conditions, such as cut off emergency diesel generator in order to avoid more harm to emergency diesel generator. It analyzes how the relay responses quickly and locks up the protection action under perturbations in the external power, so it can avoid unnecessary resection of emergency diesel generator to emergency power supply loss and effect of nuclear safety. It also analyzes the flexible use of protection setting of the protective relay to meet various operating status. It elaborates the particularity of relay protection which is due to the particularity of nuclear safety. It analyses the possibility of relay protection which has to be applied to other equipment and the protection setting that was provided by design institute, and puts forward the author's viewpoints. (authors)

  16. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  17. Effect of nuclear power generation on the electricity price in Korea

    International Nuclear Information System (INIS)

    Lee, Man Kee; Song, Kee Dong; Kim, Seung Soo; Kim, Sung Kee; Lee, Yung Kun

    1994-12-01

    The main purpose of this study is to estimate the effect of nuclear power generation on the electricity price by analysing electricity supply sector. The effects on electricity price changes are estimated in terms of following respects: - Restriction on the additional introduction of nuclear power plant. - CO 2 emission quantity control and carbon tax. A computer model by using Linear Programming optimization technique was also developed for these analyses. 10 figs, 12 tabs, 32 refs. (Author)

  18. Life cycle analysis on carbon emissions from power generation – The nuclear energy example

    International Nuclear Information System (INIS)

    Nian, Victor; Chou, S.K.; Su, Bin; Bauly, John

    2014-01-01

    Highlights: • This paper discusses about a methodology on the life cycle analysis of power generation using nuclear as an example. • The methodology encompasses generic system, input–output, and boundaries definitions. • The boundaries facilitate the use of Kaya Identity and decomposition technique to identify carbon emission streams. - Abstract: A common value of carbon emission factor, t-CO 2 /GWh, in nuclear power generation reported in the literature varies by more than a factor of 100. Such a variation suggests a margin of uncertainty and reliability. In this study, we employ a bottom-up approach to better define the system, its input and output, and boundaries. This approach offers improved granularity at the process level and consistency in the results. Based on this approach, we have developed a methodology to enable comparison of carbon emissions from nuclear power generation. The proposed methodology employs the principle of energy balance on a defined power generation system. The resulting system boundary facilitates the use of the “Kaya Identity” and the decomposition technique to identify the carbon emission streams. Using nuclear power as a case study, we obtained a carbon emission factor of 22.80 t-CO 2 /GWh, which falls to within 2.5% of the median of globally reported LCA results. We demonstrate that the resulting methodology could be used as a generic tool for life cycle analysis of carbon emissions from other power generation technologies and systems

  19. Future of nuclear power in Japan - Development of next Generation LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Eiji; Yamamoto, T.; Kurosaki, K.; Ohga, Y.; Tsuzuki, K.; Kasai, S.; Tanaka, T.

    2010-09-15

    Japan's energy policies have been to decrease the oil portion and dependence on the Middle East for energy security, as well as satisfy environmental requirement. The report of 2008 targeted reducing GHG emission by 60-80% before 2050, and highlighted ''Cool Earth-Innovative Energy Technology Program'' featuring 21 innovative technologies. In this context nuclear power is expected as a core power source. In April 2008, ''Next Generation Light Water Power Reactor Development Program'' was launched with the IAE as the core organization in alliance with Japan's major vendors and in collaboration with METI and power utilities for the future of nuclear power.

  20. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  1. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  2. Awareness of the general public relations strategy for nuclear power generation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chano-Ok

    1989-02-01

    Ten years has passed since the first nuclear power plant was established in Korea. During the period, the total nuclear power generation capacity has increased to 5,716,000 kW, and additional two 950,000 kW plants currently under construction will start operating in 1988 and 1989, respectively. As of the end of 1987, nuclear power generation accounted for 53.1 % of the total power generated in the nation. The average utilization rate of the plants increased continuously from 46.3 % ten years ago up to 79.7 % in 1987. Public opinion polls were conducted in August and October of 1986, the year when the Chernobyl accident took place. The first survey covered 2,000 residents in urban and rural areas while the second one covered a total 1,000 nuclear-related engineers, scientists, administrative officials, businessmen, journalists and writers. The surveys have shown that 74.4 % of the general public agree on the construction of more nuclear power plants. The corresponding figure was 75 % for engineers and 50 % for journalists and writers. However, 73 % of the respondents who are for their construction did not want such a plant to be constructed near their residences. Concerning the safety of these plants, 79.5 % of the experts gave a positive reply while the corresponding figure was only 48.3 % for the general public. It is concluded that more active public relations activities are required in the future. (Nogami, K.).

  3. Awareness of the general public relations strategy for nuclear power generation in Korea

    International Nuclear Information System (INIS)

    Kim, Chano-Ok

    1989-01-01

    Ten years has passed since the first nuclear power plant was established in Korea. During the period, the total nuclear power generation capacity has increased to 5,716,000 kW, and additional two 950,000 kW plants currently under construction will start operating in 1988 and 1989, respectively. As of the end of 1987, nuclear power generation accounted for 53.1 % of the total power generated in the nation. The average utilization rate of the plants increased continuously from 46.3 % ten years ago up to 79.7 % in 1987. Public opinion polls were conducted in August and October of 1986, the year when the Chernobyl accident took place. The first survey covered 2,000 residents in urban and rural areas while the second one covered a total 1,000 nuclear-related engineers, scientists, administrative officials, businessmen, journalists and writers. The surveys have shown that 74.4 % of the general public agree on the construction of more nuclear power plants. The corresponding figure was 75 % for engineers and 50 % for journalists and writers. However, 73 % of the respondents who are for their construction did not want such a plant to be constructed near their residences. Concerning the safety of these plants, 79.5 % of the experts gave a positive reply while the corresponding figure was only 48.3 % for the general public. It is concluded that more active public relations activities are required in the future. (Nogami, K.)

  4. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  5. Nuclear Power for Future Electricity Generation in Ghana: Issues and Challenges

    International Nuclear Information System (INIS)

    Nyarko, B.J.B.; Akaho, E.H.K.; Ennison, I.

    2011-01-01

    Ghana's electricity demand has been estimated to be growing at a high rate of about 7% per annum over the last ten years. This is due to the relatively high population growth, economic aspiration of the country and the extension of electricity to rural areas. Electricity supply, on the contrary, has been unable to meet the demand due to high dependency on rain-fed hydropower plants, which started operating in 1965 and currently account for about 68% of the total installed capacity. Within the last 28 years, climatic changes and draughts have caused the nation to experience three major power crises. These climate changes resulted in low inflows and thus reduced power generation from hydropower systems. To complement the hydropower systems, the Government in 1997 installed thermal plants based on light crude oil. However, due to the high crude oil prices on the international market in recent times have made the operation of these plants very expensive. Ghana's crude oil find can boost its energy supply when the oil exploration begins somewhere in 2010. For rural cooking, domestic biomass is employed. Ghana has no domestic coal resources. The Government of Ghana is concerned with: limited further growth potential of domestic hydro; high cost of imported oil and gas and environmental issues associated with use of imported coal. Small Solar and wind generation exist in some sectors, but potential large-scale development is not envisioned for the near future. With these in mind, the President of Ghana set up a Committee involving Stakeholder Institutions to formulate the Nuclear Power Policy and develop the basic elements of Nuclear Infrastructure and to assess the viability of introducing the nuclear power option in Ghana's energy mix. Cabinet took a decision to include the nuclear power for electricity generation after the Committee submitted his report to the President in 2008. (author)

  6. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  7. On PA of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  8. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  9. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  10. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  11. Introduction to the methods of estimating nuclear power generating costs

    Energy Technology Data Exchange (ETDEWEB)

    1961-11-01

    The present report prepared by the Agency with the guidance and assistance of a panel of experts from Member States, the names of whom will be found at the end of this report, represents the first step in the methods of cost evaluation. The main objectives of the report are: (1) The preparation of a full list of the cost items likely to be encountered so that the preliminary estimates for a given nuclear power system can be relied upon in deciding on its economic merits. (2) A survey of the methods currently used for the estimation of the generating costs of the power produced by a nuclear station. The survey is intended for a wide audience ranging from engineers to public officials with an interest in the prospects of nuclear power. An attempt has therefore been made to refrain from detailed technical discussions in order to make the presentation easily understandable to readers with only a very general knowledge of the principles of nuclear engineering. 3 figs, tabs.

  12. Introduction to the methods of estimating nuclear power generating costs

    International Nuclear Information System (INIS)

    1961-01-01

    The present report prepared by the Agency with the guidance and assistance of a panel of experts from Member States, the names of whom will be found at the end of this report, represents the first step in the methods of cost evaluation. The main objectives of the report are: (1) The preparation of a full list of the cost items likely to be encountered so that the preliminary estimates for a given nuclear power system can be relied upon in deciding on its economic merits. (2) A survey of the methods currently used for the estimation of the generating costs of the power produced by a nuclear station. The survey is intended for a wide audience ranging from engineers to public officials with an interest in the prospects of nuclear power. An attempt has therefore been made to refrain from detailed technical discussions in order to make the presentation easily understandable to readers with only a very general knowledge of the principles of nuclear engineering. 3 figs, tabs

  13. Nuclear power generation and nuclear nonproliferation

    International Nuclear Information System (INIS)

    Walske, C.

    1978-01-01

    In the future outlook around year 2000 of nuclear power, thought must be given to fuel reprocessing and plutonium utilization. The adverse utilization of plutonium may be prevented by the means balanced with its economical value. As the method of less cost with lower effect of nonproliferation, combination of fuel reprocessing and fuel fabrication facilities and mixed plutonium/uranium processing are possible. As the method of more cost with higher effect of nonproliferation the maintenance of high radioactivity and inaccessibility of plutonium is conceivable. As for the agreeable methods in 2000, seven principles may be mentioned, such as the dependence upon the agreements among major nations and upon nuclear exporting countries. These are still inadequate, however. What is important is to provide with the sufficient safeguards to countries concerned to negate the need for nuclear weapons. Efforts are then necessary for leading nuclear countries to extend aids to other nuclear-oriented countries. (Mori, K.)

  14. Qualifying commercial grade instruments for use in nuclear power generating stations

    International Nuclear Information System (INIS)

    Lamothe, R.J.; Scally, C.R.

    1983-01-01

    Nuclear environmental qualification of instrumentation has been successfully accomplished by many commercial grade equipment manufacturers. This paper was prepared as a guide to those manufacturers who want some insight into a qualification program. The areas addressed are the regulations and documents, the qualification program, and a case history of a chart recorder qualifications. The principal standards relating to a nuclear qualification program are IEEE Std. 323-1974 IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations, IEEE Std. 344-1975 IEEE Recommended Practices for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations and 10CFR50.49. Previously NUREG 0588 Interim Staff Position on Environmental Qualification of Safety-Related Equipment. These define the intent and purpose of the qualification. The qualification program itself consists of several distinct parts which require explanation, including the determination of qualified life, choice of test samples, selection of appropriate acceptance criteria, aging program, radiation testing, seismic testing, abnormal environment tests and others. The case history illustrates the qualification program and the thought processes involved

  15. Nuclear power and sustainable development. Maintaining and increasing the overall assets available to future generations

    International Nuclear Information System (INIS)

    2002-01-01

    A central goal of sustainable development is to maintain or increase the overall assets available to future generations, while minimizing consumption of finite resources and not exceeding the carrying capacities of ecosystems. The development of nuclear power broadens the natural resource base usable for energy production, increases human and man-made capital, and, when safely handled, has little impact on ecosystems. Energy is essential for sustainable development. With continuing population and economic growth, and increasing needs in the developing world, substantially greater energy demand is a given, even taking into account continuing and accelerated energy efficiency and intensity improvements. Today, nuclear power is mostly utilized in industrialized countries that have the necessary technological, institutional and financial resources. Many of the industrialized countries that are able and willing to use nuclear power are also large energy consumers. Nuclear power currently generates 16% of the world's electricity. It produces virtually no sulfur dioxide, particulates, nitrogen oxides, volatile organic compounds or greenhouse gases. Globally, nuclear power currently avoids approximately 600 million tonnes of carbon emissions annually, about the same as hydropower. The 600 MtC avoided by nuclear power equals 8% of current global greenhouse gases emissions. In the OECD countries, nuclear power has for 35 years accounted for most of the reduction in the carbon intensity per unit of delivered energy. Existing operating nuclear power plants (NPPs) for which initial capital investments are largely depreciated are also often the most cost-effective way to reduce carbon emissions from electricity generation. In fact in the United States in 2000, NPPs were the most cost-effective way to generate electricity, irrespective of avoided carbon emissions. In other countries the advantages of existing nuclear generating stations are also increasingly recognized. Interest

  16. Progress of international cooperation of nuclear power generation

    International Nuclear Information System (INIS)

    Sasaki, Sadaaki; Ishikawa, Hidetaka; Eda, Hisao; Noda, Hiroshi; Kobayashi, Ichiro; Kawahara, Akira; Nagano, Akira

    1999-01-01

    International cooperation on nuclear power technology under promotion of the Japan Electric Power Information Center can be divided roughly to two items: one is an assistant project of Japan Keirin Association and another is an international training of operation management and so forth on nuclear power plant trusted by Ministry of International Trade and Industry. Among upgrading needs of technical cooperation on nuclear power to the developing nations, the electric companies were received a request on private cooperation by the Ministry of International Trade and Industry. In 1985, it was decided that the nuclear power technical cooperation through an subsidy project of the Japan Keirin Association was advanced mainly by every electric companies as a window of the Japan Electric Power Information Center in Japan Electric Industry Association. And, by receiving another request, the Japan Electric Power Information Center began an international training on operation management and so one of the nuclear power plant since October, 1992. Here were introduced outlines of both technical cooperation on nuclear power and international training on operation management. (G.K.)

  17. Current Status and Future Outlook of Nuclear Power Generation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuro; Yoshii, Ryosuke

    2007-07-01

    For Japan, a country poor in natural resources, in light of the tough energy situation in recent times, a National Energy Strategy with energy security at its core was established in May 2006. The key point of the Strategy is nuclear power generation, and the aim is to ensure that nuclear power generation continues to account for 30 to 40 percent or more of total electricity generated even after 2030. The first step to achieving this goal is to make maximum use of existing plants (55 plants, 49580MWe), and the aim is to achieve a 60-year service life by making improvements to plant operation and maintenance, such as extending current monitoring and maintenance of plant condition, and the implementation of plant aging management. In Japan, plant construction has been continuous since the 1970s. The current new plant construction plan (13 plants, 17230MWe) is to be achieved with a concerted, cohesive national effort. In addition, in order to complete the nuclear fuel cycle, a reprocessing plant is being constructed strictly for peaceful use, and construction of a site for disposing of high-level radioactive waste is also proceeding. Development of the next generation light water reactors and fast breeder reactor cycle is also underway. (auth)

  18. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    International Nuclear Information System (INIS)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive

  19. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  20. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  1. Nuclear Energy - a Part of a Solution to Generate Electric Power in Croatia?

    International Nuclear Information System (INIS)

    Mikulicic, V.; Simic, Z.

    1998-01-01

    The growth in Croatian energy, particularly electricity, demand together with growing environmental considerations is such that Croatia needs to have flexibility to respond, by having the option of expanding the nuclear sector. This paper deals with nuclear energy as an option for sustainable Croatian economic development, and with the nuclear power controversy. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia. Most certainly the nuclear technology can provide the energy necessary to sustain progress and, as a country without coal, Croatia should favour nuclear power utilisation as the lowest cost option for base-load electricity generation. (author)

  2. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  3. Load following generation in nuclear power plants by latent thermal energy storage

    International Nuclear Information System (INIS)

    Abe, Yoshiyuki; Takahashi, Yoshio; Kamimoto, Masayuki; Sakamoto, Ryuji; Kanari, Katsuhiko; Ozawa, Takeo

    1985-01-01

    The recent increase in nuclear power plants and the growing difference between peak and off-peak demands imperatively need load following generation in nuclear power plants to meet the time-variant demands. One possible way to resolve the problem is, obviously, a prompt reaction conrol in the reactors. Alternatively, energy storage gives another sophisticated path to make load following generation in more effective manner. Latent thermal energy storage enjoys high storage density and allows thermal extraction at nearly constant temperature, i.e. phase change temperature. The present report is an attempt to evaluate the feasibility of load following electric power generation in nuclear plants (actually Pressurized Water Reactors) by latent thermal energy storage. In this concept, the excess thermal energy in the off-peak period is stored in molten salt latent thermal energy storage unit, and additional power output is generated in auxiliary generator in the peak demand duration using the stored thermal energy. The present evaluation gives encouraging results and shows the primary subject to be taken up at first is the compatibility of candidate storage materials with inexpensive structural metal materials. Chapter 1 denotes the background of the present report, and Chapter 2 reviews the previous studies on the peak load coverage by thermal energy storage. To figure out the concept of the storage systems, present power plant systems and possible constitution of storage systems are briefly shown in Chapter 3. The details of the evaluation of the candidate storage media, and the compilation of the materials' properties are presented in Chapter 4. In Chapter 5, the concept of the storage systems is depicted, and the economical feasibility of the systems is evaluated. The concluding remarks are summarized in Chapter 6. (author)

  4. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  5. Global movement in reviewing nuclear power generation

    International Nuclear Information System (INIS)

    Kimura, Yoshiyasu

    2007-01-01

    The price of crude oil, natural gas and coal has increased since 2004 with the rapid increase of primary energy demand in China, India and other developing countries. Moreover due to the political uncertainty in the Middle East, and the state control of energy resources in countries like Russia, the issue of energy security has become a critical issue. Nuclear power has been reconsidered in recent years in the US and European countries, because nuclear power is one of the cheapest sources of low carbon energy and also has relatively stable costs, and is thereby useful to energy security and to prevent climate change. Electricity demand is growing very rapidly in China and additional reactors are planned to give a fivefold increase in nuclear capacity to 40,000 MWe by 2020. India has a largely indigenous nuclear power program and expects to have 20,000 MWe nuclear capacity by 2020. Russia is moving steadily forward with plans for a much expanded role of nuclear energy, and the restructuring of nuclear industries has begun to strengthen competitiveness in international nuclear markets. (author)

  6. Trend analyses of the emergency diesel generator problem events in Japanese and U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2011-01-01

    Up to 2009, the author and a colleague conducted trend analyses of problem events related to main generators, emergency diesel generators, breakers, motors and transformers which are more likely to cause problems than other electric components in nuclear power plants. Among the electric components with high frequency of defect occurrence, i.e., emergency diesel generators, several years have passed since the last analyses. These are very important components needed to stop a nuclear reactor safely and to cool it down during external power supply loses. Then trend analyses were conducted for the second time. The trend analyses were performed on 80 problem events with emergency diesel generators which had occurred in U.S. nuclear power plants in the five years from 2005 through 2009 among events reported in the Licensee Event Reports (LERs: event reports submitted to NRC by U.S. nuclear power plants) which have been registered in the nuclear information database of the Institute of Nuclear Safety System, Inc. (INSS) , as well as 40 events registered in the Nuclear Information Archives (NUCIA), which occurred in Japanese nuclear power plants in the same time period. It was learned from the trend analyses of the problem events with emergency diesel generators that frequency of defect occurrence are high in both Japanese and US plants during plant operations and functional tests (that is, defects can be discovered effectively in advance), so that implementation of periodical functional tests under plant operation is an important task for the future. (author)

  7. Generation IV nuclear energy systems: road map and concepts. 2. Generation II Measurement Systems for Generation IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Miller, Don W.

    2001-01-01

    need for substantial research. As we consider I and C systems in Generation IV reactors, we have the opportunity to take a much less 'timid' design philosophy than was taken in the design of I and C systems in the ALWRs. We need to make use of advanced technology to design an I and C system for the Generation IV multi-unit plant designs currently being considered. Such a design should accomplish the following: 1. provides for multi-unit control; 2. contributes to a plant design objective of a very low core damage frequency; 3. maximizes plant thermal efficiency (>50%); 4. maximizes plant capacity factor (>90%); 5. optimizes operability; 6. maximizes maintainability; 7. provides for on-line monitoring, calibration, and diagnostics; 8. provides optimum response to disturbances; 9. provides excellent load-following capability. When we consider the current situation in operating Generation I and II nuclear power plants and even Generation III ALWR design, we conclude that Generation IV reactors should employ at least Generation II measurement systems. Let us first consider data transmission, which is a form of communication, and ask the question: Do new communication-transferring methods by electrons flow in copper wires? The obvious answer is no. Virtually all new communication systems are using some electromagnetic method, such as light, microwaves, HF or VHF radio signals, and virtually no copper wires. When we envision Generation IV nuclear power plants, we should minimize the use of copper wires for data transmission. We should transmit data primarily by fiber optics and various wireless methods, some of which can penetrate thick barriers. Now let us consider sensors. If we use light for data transmission, then we should also use optical-based sensors. We should also take advantage of microprocessors, which provide opportunities to embed 'intelligence' in the sensor that can be used to increase accuracy, stability, and tolerance to external stressors (i.e., radiation

  8. Nuclear power/water pumping-up composite power plant

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi.

    1995-01-01

    In a nuclear power/water pumping-up composite power plant, a reversible pump for pumping-up power generation connected to a steam turbine is connected to an upper water reservoir and a lower water reservoir. A pumping-up steam turbine for driving the turbine power generator, a hydraulic pump for driving water power generator by water flowing from the upper water reservoir and a steam turbine for driving the pumping-up pump by steams from a nuclear reactor are disposed. When power demand is small during night, the steam turbine is rotated by steams of the reactor, to pump up the water in the lower water reservoir to the upper water reservoir by the reversible pump. Upon peak of power demand during day time, power is generated by the steams of the reactor, as well as the reversible pump is rotated by the flowing water from the upper water reservoir to conduct hydraulic power generation. Alternatively, hydraulic power generation is conducted by flowing water from the upper reservoir. Since the number of energy conversion steps in the combination of nuclear power generation and pumping-up power generation is reduced, energy loss is reduced and utilization efficiency can be improved. (N.H.)

  9. Effects of the criticality accident at Tokai-mura on the public's attitude to nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kitada, Atsuko [Institute of Social Research, Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Hayashi, Chikio [The Institute of Statistical Mathematics, Tokyo (Japan)

    2000-09-01

    The objective of our study was to clarify the effects on the public's attitude of nuclear power and the criticality accident that occurred at the JCO plant in Tokai-mura, Ibaraki Prefecture. For this purpose, we conducted an awareness survey in the Kansai and Kanto areas two months after the accident. Analysis was made on the basis of the comparison of the survey results with the data that the Institute of Nuclear Safety System had accumulated through continuous awareness surveys on nuclear power generation (regular surveys) since 1993. The public's reactions were twofold. On one hand, there were emotional reactions about accidents in nuclear facilities and a reduction in the sense of security. On the other hand, there were reactions concerning the image of nuclear power plant workers and demand on electricity utilities for enhanced employee education and training. The latter reactions correspond to the problems pointed out after the JCO accident. Regarding the utilization of nuclear power generation, the opinion that 'the utilization of nuclear power generation is unavoidable' accounts for 60% of those surveyed. With the opinion that 'nuclear power generation should be utilized' added, 70% of those surveyed take an affirmative attitude to nuclear power utilization. This situation has remained about the same since 1998, the year before the JCO accident. Using the quantification method III to analyze a number of questionnaires about nuclear power generation such as the anxiety about it, we determined overall attitude indexes regarding nuclear power to perform a time sequence comparison. The comparison shows that the attitude after the JCO accident tended to be more negative than in 1998. However, no significant difference in the overall indexes is seen between 1993 and 1998. Judging the comparison results on the basis of the time span starting in 1993 allows us to conclude that the JCO accident has not greatly contributed to worsening

  10. Nuclear Power and Environment Comparative Assessment of Environmental and Health Impacts of Electricity Generating Systems

    International Nuclear Information System (INIS)

    Rashed, S.M.

    1999-01-01

    This paper deals with comparative assessment of the environmental and health impacts of nuclear and other electricity generation systems. The study including normal operations and accidents in full energy chain analysis. The comparison of the environmental impacts arising from the waste management cycles associated with non emission waste are also discussed. Nuclear Power while economically feasible and meeting 17% of the world,s demand for electricity is almost free of the air polluting gases that threaten the global climate. Comparing nuclear power with other sources for electricity generation in terms of their associated environmental releases of pollutant such as SO 2 , NOX, CO 2 , CH 4 and radioisotopes, taking into account the full fuel chains chains of supply option, nuclear power will help to reduce environmental degradation due to electricity generation activities. In view of CO 2 emission, the ranking order commences with hydro, followed by nuclear, wind and photovoltaic Power Plants. CO 2 emissions from a nuclear power plant are by two orders of magnitude lower than those of fossil fueled power plants. A consequent risk comparison between different energy sources has to include al phases of the whole energy cycle. Coal mines accidents have resulted in several 1000 acute deaths over the years. Later fatalities have never been estimated. Then came hydropower, also resulting in many catastrophes and losses of human lives. Followed oil and gas energy industry, its tribute in acute fatalities is expressed in more than 1000 life lost. No estimate is available concerning later fatalities. latest in the list is commercial nuclear energy, badly illustrated by the Chernobyl accident resulting officially in 31 acute fatalities, 145 latent fatalities, and 135000 evacuated individuals. The paper offers some findings and conclusions on the role of nuclear power in protecting the global environment

  11. Nuclear power 2005: European report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In 2005, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 204 power reactors with a gross power of 181,030 MWe and a net power of 171,8479 MWe were in operation at the end of the year. In 2005, no nuclear power plant was commissioned. Two nuclear power plants were decommissioned in Europe in the course of 2005. In Germany the Obrigheim NPP and in Sweden the Barsebaeck 2 NPP have been permanently shut down due to political decisions. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.6 GW. In late 2005, five nuclear generating units were under construction in Finland (1), Romania (1), and Russia (3). 148 nuclear power plants were operated in thirteen states of the European Union (EU-25). They had an aggregate gross power of 137,023 MWe and a net power of 130,415 MWe, generating approx. 970 billion gross kWh of electricity in 2005, thus again contributing some 31% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in France (80%), followed by 72% in Lithuania, 55% in the Slovak Republic, 55% in Belgium, and 51% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as a result of electricity imports. (All statistical data in the country report apply to 2004 unless indicated otherwise. This is the year for which sound preliminary data are currently available for the states listed.) (orig.)

  12. Phytotoxicology section investigation in the vicinity of the Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the Darlington Nuclear Generating Station, in October, 1989

    International Nuclear Information System (INIS)

    1991-02-01

    The Phytotoxicology Section, Air Resources Branch is a participant in the Pickering and Bruce Nuclear Contingency Plans. The Phytotoxicology Emergency Response Team is responsible for collecting vegetation samples in the event of a nuclear emergency at any of the nuclear generating stations in the province. As part of its responsibility the Phytotoxicology Section collects samples around the nuclear generating stations for comparison purposes in the event of an emergency. Because of the limited frequency of sampling, the data from the surveys are not intended to be used as part of a regulatory monitoring program. These data represent an effort by the MOE to begin to establish a data base of tritium concentrations in vegetation. The Phytotoxicology Section has carried out seven surveys in the vicinity of Ontario Hydro nuclear generating stations since 1981. Surveys were conducted for tritium in snow in the vicinity of Bruce Nuclear Power Development (BNPD), February, 1981; tritium in cell-free water of white ash in the vicinity of BNPD, September, 1981; tritium in snow in the vicinity of BNPD, March, 1982; tritium in tree sap in the vicinity of BNPD, April, 1982; tritium in tree sap in the vicinity of BNPD, April, 1984, tritium in the cell-free water of white ash in the vicinity of BNPD, September, 1985; and, tritium in cell-free water of grass in the vicinity of Pickering Nuclear Generation Station (PNGS), October 1986. In all cases a pattern of decreasing tritium levels with increasing distance from the stations was observed. In October, 1989, assessment surveys were conducted around Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the new Darlington Nuclear Generating Station (DNGS). The purpose of these surveys was to provide baseline data for tritium in cell-free water of grass at all three locations at the same time of year. As none of the reactor units at DNGS had been brought on line at the time of the survey, this data was to be

  13. Present and future nuclear power generation as a reflection of individual countries' resources and objectives

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1987-01-01

    The nuclear reactor industry has been in a state of decline for more than a decade in most of the world. The reasons are numerous and often unique to the energy situation of individual countries. Two commonly cited issues influence decisions relating to construction of reactors: costs and the need, or lack thereof, for additional generating capacity. Public concern has ''politicized'' the nuclear industry in many non-communist countries, causing a profound effect on the economics of the option. The nuclear installations and future plans are reviewed on a country-by-country basis for 36 countries in the light of the resources and objectives of each. Because oil and gas for power production throughout the world are being phased out as much as possible, coal-fired generation currently tends to be the chosen alternative to nuclear power production. Exceptions occur in many of the less developed countries that collectively have a very limited operating experience with nuclear reactors. The Chernobyl accident in the USSR alarmed the public; however, national strategies and plans to build reactors have not changed markedly in the interim. Assuming that the next decade of nuclear power generation is uneventful, additional electrical demand would cause the nuclear power industry to experience a rejuvenation in Europe as well as in the US. 80 refs., 3 figs., 22 tabs

  14. Thermo hydrodynamical analyses of steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Petelin, S.; Gregoric, M.

    1984-01-01

    SMUP computer code for stationary model of a U-tube steam generator of a PWR nuclear power plant was developed. feed water flow can enter through main and auxiliary path. The computer code is based on the one dimensional mathematical model. Among the results that give an insight into physical processes along the tubes of steam generator are distribution of temperatures, water qualities, heat transfer rates. Parametric analysis permits conclusion on advantage of each design solution regarding heat transfer effects and safety of steam generator. (author)

  15. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  16. A distributed process monitoring system for nuclear powered electrical generating facilities

    International Nuclear Information System (INIS)

    Sweney, A.D.

    1991-01-01

    Duke Power Company is one of the largest investor owned utilities in the United States, with a service area of 20,000 square miles extending across North and South Carolina. Oconee Nuclear Station, one of Duke Power's three nuclear generating facilities, is a three unit pressurized water reactor site and has, over the course of its 15-year operating lifetime, effectively run out of plant processing capability. From a severely overcrowded cable spread room to an aging overtaxed Operator Aid Computer, the problems with trying to add additional process variables to the present centralized Operator Aid Computer are almost insurmountable obstacles. This paper reports that for this reason, and to realize the inherent benefits of a distributed process monitoring and control system, Oconee has embarked on a project to demonstrate the ability of a distributed system to perform in the nuclear power plant environment

  17. Optimization for set-points and robust model predictive control for steam generator in nuclear power plants

    International Nuclear Information System (INIS)

    Osgouee, Ahmad

    2010-01-01

    Full Text: Nuclear power plants will be needed for future energy demands, which are expected to grow at different rates around the world. Lower operating cost is one of the major benefits of nuclear power plants over fossil power plants. Also, the plant availability is a key factor to economic index of a nuclear power plant. The opportunities for building new nuclear power plants around the world will depend on the need for clean energy with zero, or minimal emissions to support healthy communities, supply reliable energy with stable prices, and issues related to global warming and climate change. Compared to other types of power plants, nuclear power plants are preferred for their numerous advantages, including low operating costs, emission free operation with no smog, no acid rain, and no effect on global warming. Economic feasibility of a nuclear power plant requires for smooth and uninterrupted plant operation during electrical power demand variations. The steam generator (SG) in a nuclear power plant plays an important role in cooling of the reactor, balancing energy between reactor and turbine and producing steam for the turbine-generators. SG acts as an additional safety barrier between the nuclear reactor and the outside world also. As a result, control of the water inventory in the SG is very important to ensure continuous cooling of the nuclear reactor core, plant protection and at the same time, to prevent the SG tubes and turbine blades failure. A review of past nuclear power plant operation experiences indicates that unplanned reactor trips due to steam generator level (SGL) control have been significant contributors to plant unavailability. During low power operation, the level control is complicated by the thermal reverse effects known as 'shrink and swell'. Manual operator intervention to the SGL control system at low reactor power and to the unit upset conditions has been identified as an operator response in most nuclear power plants. In spite of

  18. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  19. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  20. The Use of Nuclear Generation to Provide Power System Stability

    OpenAIRE

    Heather Wyman-Pain; Yuankai Bian; Furong Li

    2016-01-01

    The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor dev...

  1. Way of future development of nuclear power generation and its promotion

    International Nuclear Information System (INIS)

    Kodama, Katsuomi

    1976-01-01

    In the development of nuclear power generation in the world, light water reactors amount to 80 1/2 of the whole. The present status of these reactors are described together with the other types of reactors. In the nuclear power generation in Japan, the reliability should be analysed from the various operation experiences of annual utilization rate, failure of achieving maximum approved power, number of failure occurrence, and shut down period including both scheduled and accidental. Reconsideration to control and maintenance should be made after the above analysis. To say about the domestic production of light water reactors, ''what to produce'' must be considered and promoted seriously, instead of ''how to produce skillfully''. It seems to be necessary to assimilate the light water reactor techniques born in U.S. so as to take root in the soil of Japan, because original ideas have begun to appear from users and makers as the operation, construction and maintenance experiences on light water reactors have increased. The tendency of improving light water reactor techniques is the standardization. It is also required for the promotion of nuclear power generation to establish the fuel cycle, and to solve the waste processing and disposal. For low level solid wastes, the policy has been decided to perform it by combining underground and ocean disposal. In order to smooth the siting problems, it will be required to practice adequate and effective public relations while proving the safety, investigating the influence of warm water discharge on the environment and establishing their countermeasures. The way of thinking to obtain peoples' consensus for the safety is described. (Wakatsuki, Y.)

  2. Challenges of deploying nuclear energy for power generation in Malaysia

    Science.gov (United States)

    Jaafar, Mohd Zamzam; Nazaruddin, Nurul Huda; Lye, Jonathan Tan Thiam

    2017-01-01

    Under the 10th Malaysia Plan (2010-2015) and the Economic Transformation Programme (ETP), nuclear energy was identified as a potential long-term option to be explored for electricity generation in Peninsular Malaysia. The energy sector in Malaysia currently faces several concerns including depleting domestic gas supply which will affect security and reliability of supply as well as overdependance on fossil fuels - mainly gas and imported coal, and nuclear energy may offer a possible solution to these issues as well as global climate change concern. Pursuing the nuclear option, Malaysia Nuclear Power Corporation (MNPC) is undertaking a series of comprehensive studies to facilitate an informed Government decision on the matter. This paper aims to discuss the many challenges towards the peaceful use of nuclear energy for electricity generation in the context of the New Energy Policy 2010 to achieve a balanced and sustainable energy mix. This effort will continue in the 11th Malaysia Plan (2016-2020) with emphasis on implementing a comprehensive communications plan and public awareness programme for the potential use of nuclear energy in the future. In analysing the challenges for the development of nuclear energy in Malaysia, the traditional triple bottom line (TBL) framework for sustainability, encompassing economic, social and environmental objectives is utilized. An additional factor, technical, is also included in the analysis to provide a more holistic view. It is opined that the main challenges of developing nuclear energy for electricity generation in a newcomer country like Malaysia can be attributed primarily to domestic non-technical factors compared to the technical factor.

  3. Conflict nuclear power. Theses for current supply with and without nuclear power

    International Nuclear Information System (INIS)

    Schwarz, E.

    2007-01-01

    In the context of a lecture at the 2nd Internationally Renewable Energy Storage Conference at 19th to 21st November, 2007, in Bonn (Federal Republic of Germany), the author of the contribution under consideration reports on theses for current supply with and without nuclear power. (1) Theses for current supply with nuclear energy: Due to a relative amount of 17 % of nuclear energy in the world-wide energy production and due to the present reactor technology, the supplies of uranium amount nearly 50 to 70 years. The security of the nuclear power stations is controversially judged in the public and policy. In a catastrophic accident in a nuclear power station, an amount of nearly 2.5 billion Euro is available for adjustment of damages (cover note). The disposal of radioactive wastes is not solved anywhere in the world. The politically demanded separation between military and civilian use of the nuclear energy technology is not possible. The exit from the nuclear energy is fixed in the atomic law. By any means, the Federal Republic of Germany is not insulated in the European Union according to its politics of nuclear exit. After legal adjustment of the exit from the nuclear energy the Federal Republic of Germany should unfold appropriate activities for the re-orientation of Euratom, Nuclear Energy Agency and the International Atomic Energy Agency. The consideration of the use of nuclear energy in relation to the risks has to result that its current kind of use is not acceptable and to be terminated as fast as possible. (2) Theses for current supply without nuclear energy: The scenario technology enables a transparency of energy future being deliverable for political decisions. In accordance with this scenario, the initial extra costs of the development of the renewable energies and the combined heat and power generation amount approximately 4 billion Euro per year. The conversion of the power generation to renewable energies and combined heat and power generation

  4. IEEE Std 649-1980: IEEE standard for qualifying Class 1E motor control centers for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard describes the basic principles, requirements, and methods for qualifying Class 1E motor control centers for outside containment applications in nuclear power generating stations. Qualification of motor control centers located inside containment in a nuclear power generating station is beyond the scope of this standard. The purpose of this standard is (1) to define specific qualification requirements for Class 1E motor control centers in accordance with the more general qualification requirements of IEEE Std 323-1974, IEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations; (2) to provide guidance in establishing a qualification program for demonstrating the design adequacy of Class 1E motor control centers in nuclear power generating station applications

  5. Economic benefits of the nuclear power

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1985-01-01

    The historical and projected benefits of nuclear power are estimated as the cost differential between nuclear power and an alternative baseload generating source times the quantity of electricity generated. From 1976 through 1981 coal and nuclear power were close competitors in most regions, with nuclear power holding a small cost advantage overall in 1976 and 1977 that subsequently eroded. When nuclear power costs are contrasted to coal power costs, national benefits from nuclear power are estimated to be $336 million from 1976 to 1981, with an additional $1.8 billion for the present value of existing plants. Fuel oil has been the dominant source of baseload generation in California, Florida, and New England. When nuclear power costs are contrasted to those of fuel oil, the benefits of nuclear power in these three regions are estimated to be $8.3 billion and $28.1 billion in terms of present value. The present value of benefits of future nuclear plants is estimated to be $8.2 billion under a midcase scenario and $43 billion under an optimistic scenario. 18 references, 10 tables

  6. Outlook for world nuclear power generation and long-term energy supply and demand situations

    International Nuclear Information System (INIS)

    Matsuo, Yuhji

    2012-01-01

    In this article, the author presents a long-term outlook for the world's nuclear generating capacity, taking into account the nuclear policy changes after Fukushima Daiichi nuclear power plant accident. World primary energy demand will grow from 11.2 billion tons of oil equivalent (toe) in 2009 to 17.3 billion toe in 2035. Along with this rapid increase in global energy consumption, the world's nuclear generating capacity will grow from 392 GW in 2010 to 484 GW in 2020 and 574 GW in 2035 in the 'Reference scenario'. Even in the 'Low nuclear scenario', where the maximum impact of Fukushima accident to the nuclear policies of each government is assumed, it will continue to grow in the future, exceeding 500 GW in 2035. In particular, Asian countries such as China and India will lead the growth both in the energy demand and in the nuclear power capacity. Therefore, it is essential to better ensure the safety of nuclear power generation. It is important for technologically developed countries, including Japan, to make active contributions to the establishment of a global nuclear safety control system. On the other hand, energy security and global warming will continue to be major issues, which will make it indispensable to make the best effort to save energy and expand renewable energy utilization. Japan is competitive in energy-saving and environmental conservation technologies, thus further development and utilization of there technologies should be a key option of Japan's growth growth strategy in the future. (author)

  7. Inner conflict between nuclear power generation and electricity rates: A Japanese case study

    International Nuclear Information System (INIS)

    Ida, Takanori; Takemura, Kosuke; Sato, Masayuki

    2015-01-01

    Since the March 11 earthquake, Japanese households have been facing a trade-off problem between decreasing dependency on nuclear power generation and avoiding an increase in electricity rates. We analyze this inner conflict quantitatively, adopting two economic–psychological approaches: First, we note that the trade-off causes cognitive dissonance after making a choice that results in a wider desirability gap between the chosen and rejected alternatives. Second, the consumer surplus improves by 11.2% with a no-choice option for suspending judgment in the presence of cognitive dissonance. Third, individual characteristics such as gender and annual household income are significantly correlated with both cognitive dissonance and a preference for the no-choice option. - Highlights: • The Fukushima crisis shocked Japanese citizens' attitudes on nuclear power plants. • Citizens' attitudes toward nuclear power generation and electricity rates surveyed • The trade-off caused cognitive dissonance resulting in a hardline stance. • The consumer surplus improves with a no-choice option for suspending judgment

  8. Artificial earthquake generation for nuclear power plant design

    International Nuclear Information System (INIS)

    King, A.C.Y.; Chen, C.

    1977-01-01

    The time history method has been one of the analytical tools applied in the seismic resistant design of nuclear power plants. The time histories used are required to be consistent with the specified design Spectra. Since the spectra of recorded strong motion earthquake or conventionally generated artificial time history have local peaks and valleys, iteration procedures must be applied to generate the artificial time history with desired spectra. The paper describes a detailed method for generating a time history which is consistent with a specified design spectra. There are several advantages of this method described herein. First of all, frequency content of the time history is well under control. Secondly, if one wishes to generate the three components of an earthquake at one site, the inherent nature of this method will make the correlations among these three components to simulate closely the actual recorded time histories. Thirdly, a single time history can be generated to match a spectra for different damping values. (auth.)

  9. Nuclear power and the environment: comparative assessment of environmental and health impacts of electricity-generating systems

    International Nuclear Information System (INIS)

    Rashad, S.M.; Hammad, F.H.

    2000-01-01

    This paper deals with comparative assessment of the environmental and health impacts of nuclear and other electricity-generation systems. The study includes normal operations and accidents in the full energy chain analysis. The comparison of environmental impacts arising from the waste-management cycles associated with non-emission waste are also discussed. Nuclear power, while economically feasible and meeting 17% of the world's demand for electricity, is almost free of the air polluting gases that threaten the global climate. Comparing nuclear power with other sources for electricity generation in terms of their associated environmental releases of pollutant such as SO 2 , NOx, CO 2 CH 4 and radioisotopes, taking into account the full fuel chains of supply option, nuclear power will help to reduce environmental degradation due to electricity generation activities. In view of CO 2 emission, the ranking order commences with hydro, followed by nuclear, wind and photovoltaic power plants. CO 2 emissions from a nuclear power plant are by two order of magnitude lower than those of fossil-fuelled power plants. A consequent risk comparison between different energy sources has to include all phases of the whole energy cycle. Coal mine accidents have resulted in several 1000 acute deaths over the years. Then came hydropower, also resulting in many catastrophes and loss of human lives, followed by the oil and gas energy industries, last in the list is commercial nuclear energy, which has had a 'bad' press because of the Chernobyl accidents, resulting officially in 31 acute fatalities, and at least 145 latent fatalities. The paper offers some findings and conclusions on the role of nuclear power in protecting the global environment. (Author)

  10. The regulation for delivery of subsidies for measures of promoting power source location for nuclear power generating facilities

    International Nuclear Information System (INIS)

    1977-01-01

    The Regulation is based on the prescriptions of the Enforcement Order for the Law for Arrangement of Surrounding Areas of Power Generating Facilities, the Law for Proper Budget Enforcement Concerning Subsidies and its Enforcement Order. These rules apply to the subsidies concerning nuclear power generating facilities, reprocessing facilities and test and examination facilities for nuclear fuel materials used for power generating reactors, reactors used for research on the safety of power generating reactors, and experimental reactors for fast breeder reactors. The limits of subsidies are specified respectively for the cases that a unit of power generating facility or two and more units of such facilities are set up in a local municipality. The subsidies are delivered for the expenses occurred in the period, beginning from the fiscal year when construction of the generating facility concerned starts or the arrangement plan of the concerned project is approved, and ending in the fiscal year when such construction comes to an end. The subsidies are given as evenly as possible in each fiscal year. The applicants of the subsidies file the applications attached with the explanations of the projects to the chief of the competent ministry (Director General of the Science and Technology Agency or the Minister of International Trade and Industry). Terms of delivery, reports submitted by the receivers of the subsidies and other related matters are specified. (Okada, K.)

  11. Public acceptance of nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Liverman, J.L.; Thorne, R.D.

    1977-01-01

    Within the United States environmental awareness has spread and matured since the early 1960's. Evidence of this is found in cautious attitudes toward the installation of nuclear power reactors and other components of the nuclear fuel cycle. Hazards associated with nuclear energy technologies appear to attract a greater share of public attention than the hazards of nonnuclear counterparts. The association of nuclear power with nuclear weapons may be at the root of this concern. The explicit identification of increased incidences of cancer and genetic effects in humans as potential consequences of exposure to ionizing radiation and knowledge that radiation exposures and health consequences arising from nuclear power operations might occur many generations after operations cease also underlie this concern. Based in large part on these concerns, a number of actions have been taken in the United States to prevent and to delay installation and development of nuclear technology. These actions are reviewed and analyzed with emphasis on the 1976 California nuclear moratorium referendum and other more recent actions at state and national levels. They are compared with the status and outcome of similar actions in other nations as is possible. Additionally, ERDA's current approaches to public involvement in the decision making process is discussed, including the value of comprehensive analyses of health, environmental, and socioeconomic aspects of alternative energy sources in responding to public needs. U.S. plans for providing such analyses for all installed and developing energy technologies are presented with special reference to areas which require international cooperation for implementation. The value of international analysis and internationally accepted environmental control strategies for all energy technologies is also addressed

  12. Safety improvement technologies for nuclear power generation

    International Nuclear Information System (INIS)

    Nishida, Koji; Adachi, Hirokazu; Kinoshita, Hirofumi; Takeshi, Noriaki; Yoshikawa, Kazuhiro; Itou, Kanta; Kurihara, Takao; Hino, Tetsushi

    2015-01-01

    As the Hitachi Group's efforts in nuclear power generation, this paper explains the safety improvement technologies that are currently under development or promotion. As efforts for the decommissioning of Fukushima Daiichi Nuclear Power Station, the following items have been developed. (1) As for the spent fuel removal of Unit 4, the following items have mainly been conducted: removal of the debris piled up on the top surface of existing reactor building (R/B), removal of the debris deposited in spent fuel pool (SFP), and fuel transfer operation by means of remote underwater work. The removal of all spent fuels was completed in 2014. (2) The survey robots inside R/B, which are composed of a basement survey robot to check leaking spots at upper pressure suppression chamber and a floor running robot to check leaking spots in water, were verified with a field demonstration test at Unit 1. These robots were able to find the leaking spots at midair pipe expansion joint. (3) As the survey robot for reactor containment shells, robots of I-letter posture and horizontal U-letter posture were developed, and the survey on the upper part of first-floor grating inside the containment shells was performed. (4) As the facilities for contaminated water measures, sub-drain purification equipment, Advanced Liquid Processing System, etc. were developed and supplied, which are now showing good performance. On the other hand, an advanced boiling water reactor with high safety of the United Kingdom (UK ABWR) is under procedure of approval for introduction. In addition, a next-generation light-water reactor of transuranic element combustion type is under development. (A.O.)

  13. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  14. Quality control of stainless steel pipings for nuclear power generation

    International Nuclear Information System (INIS)

    Miki, Minoru; Kitamura, Ichiro; Ito, Hisao; Sasaki, Ryoichi

    1979-01-01

    The proportion of nuclear power in total power generation is increasing recently in order to avoid the concentrated dependence on petroleum resources, consequently the reliability of operation of nuclear power plants has become important. In order to improve the reliability of plants, the reliability of each machine or equipment must be improved, and for the purpose, the quality control at the time of manufacture is the important factor. The piping systems for BWRs are mostly made of carbon steel, and stainless steel pipings are used for the recirculation system cooling reactors and instrumentation system. Recently, grain boundary type stress corrosion cracking has occurred in the heat-affected zones of welded stainless steel pipings in some BWR plants. In this paper, the quality control of stainless steel pipings is described from the standpoint of preventing stress corrosion cracking in BWR plants. The pipings for nuclear power plants must have sufficient toughness so that the sudden rupture never occurs, and also sufficient corrosion resistance so that corrosion products do not raise the radioactivity level in reactors. The stress corrosion cracking occurred in SUS 304 pipings, the factors affecting the quality of stainless steel pipings, the working method which improves the corrosion resistance and welding control are explained. (Kako, I.)

  15. Design of a fault diagnosis system for next generation nuclear power plants

    International Nuclear Information System (INIS)

    Zhao, K.; Upadhyaya, B.R.; Wood, R.T.

    2004-01-01

    A new design approach for fault diagnosis is developed for next generation nuclear power plants. In the nuclear reactor design phase, data reconciliation is used as an efficient tool to determine the measurement requirements to achieve the specified goal of fault diagnosis. In the reactor operation phase, the plant measurements are collected to estimate uncertain model parameters so that a high fidelity model can be obtained for fault diagnosis. The proposed algorithm of fault detection and isolation is able to combine the strength of first principle model based fault diagnosis and the historical data based fault diagnosis. Principal component analysis on the reconciled data is used to develop a statistical model for fault detection. The updating of the principal component model based on the most recent reconciled data is a locally linearized model around the current plant measurements, so that it is applicable to any generic nonlinear systems. The sensor fault diagnosis and process fault diagnosis are decoupled through considering the process fault diagnosis as a parameter estimation problem. The developed approach has been applied to the IRIS helical coil steam generator system to monitor the operational performance of individual steam generators. This approach is general enough to design fault diagnosis systems for the next generation nuclear power plants. (authors)

  16. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  17. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  18. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  19. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  20. Nuclear power in the Soviet Union

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.

    1989-01-01

    The pros and cons of nuclear power are similar in many countries, but the following pro factors are specific to the Soviet Union: the major sources of conventional fuel are in one area of the country, but energy consumption is concentrated in another; and a large portion of energy is generated using oil and gas. The arguments against nuclear power are as follows: safety requirements and expectations have been increased; and public opinion is negative. A program of nuclear power generation has been developed. New techniques are being implemented to increase safety and enhance operations of different types of nuclear power plants. Its should be obvious in the future that a nuclear power plant has better economic and environmental parameters than existing methods of power generation

  1. Ergonomics and nuclear power generation

    International Nuclear Information System (INIS)

    Beyers, C.J.; Bogie, K.D.

    1986-01-01

    The design and construction of nuclear power plants are executed to rigorous standards of safety and reliability. Similarly the human interface within the nuclear power plant must meet very high standards, and these must be demonstrated to be maintained and assured through time. The control room, as the operating nerve-centre of the plant, carries a large part of this responsibility. It is the work space dimension within which the operator-instrumentation interface must function as efficiently as possible. This paper provides an overview of how ergonomics has been used as a major tool in reshaping the man-machine interface within the control room in the interest of safety and reliability. Topics covered in the paper include workspace design, control panel layout, demarcation and labelling, switch and meter types, and annunciated and unannunciated alarms

  2. Energy resources for electrical power generation - the contribution from nuclear power

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1974-01-01

    This paper examines the history of the growth of nuclear power with particular reference to a few selected countries, the likely trends in the future, and the factors which appear important. It then looks briefly at the situation in Australia and concludes that because of a relative abundance of low cost fossil fuel, there is no pressing need to exploit nuclear power, and that nuclear power is unlikely to become a generally preferred alternative to conventional power before 1990. In the meantime it proposes that efforts should be directed toward policy formulation and the overall planning of energy resources, together with the development of licensing and regulatory procedures covering all aspects of nuclear power. Because of national and international implications it is considered that, in line with overseas trends, the Australian Government will play a major role in all such matters. (author)

  3. Design of nuclear power generation plants adopting model engineering method

    International Nuclear Information System (INIS)

    Waki, Masato

    1983-01-01

    The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)

  4. Nuclear energy resources for electrical power generation

    International Nuclear Information System (INIS)

    Alder, K.F.

    1974-01-01

    'Nuclear Energy Resources' is interpreted as the nuclear power systems currently available commercially and those at an advanced stage of development, together with full and associated resources required to implement large-scale nuclear programs. Technical advantages and disadvantages of the established power reactor systems are reviewed, and the uranium fuel situation is outlined in terms of supply and demand, the relationship of resources to the requiremnts of current reactor types, and the likely future implications of the Fast Breeder Reactor (FBR). Because of its importance for the future, the problems, status, and likely time scale of the FBR are discussed in some detail. It is concluded that the most important areas for nearterm attention in Australia are the criteria and conditions that would apply to nuclear installations, and the possible development of uranium fuel cycle industries. The pattern of development of reactor and fuel cycle strategies overseas is important for uranium industry planning, and in the long term plutonium availability may be a key factor in power and energy planning. Finally, acceptance of nuclear power includes acceptance that its radioactive wastes will have to be stored on earth, and recent developments to demonstrate that this can be done safely and economically are very important in terms of longterm public attitudes. (author)

  5. Factors affecting the next generation of nuclear power

    International Nuclear Information System (INIS)

    Remick, F.J.

    1990-01-01

    For both financial, environmental and health reasons, and because of external and internal factors affecting this nation's energy supply, nuclear power will likely play a part in supplying this nation's energy in the coming decades. I believe this to be true for some other parts of the world as well. Even some severe critics of the nuclear power industry and the NRC might agree with me on this point. Increasing concern with the environmental consequences of the burning of fossil fuels has led some former opponents of the use of nuclear power to balance anew the risks and benefits of nuclear power and to modify to some degree their former opposition. A related concern with the adequacy of the energy supply is leading others to modify their positions. According to analyses done by the U.S. Department of Energy, after 1994 the United States will no longer be able to assure all its citizens a reliable supply of electricity. Already, many areas of the country are in need of additional electric capacity. In both Sweden and Switzerland, similar concerns have led to the adoption by many of more compromising positions. Some critics of nuclear power may in the end still reject it as an alternative, but, with the increased pressures on the environment and on our energy supply, nuclear power is an alternative which cannot be rejected without the most serious consideration. This should be, I believe, a point of consensus among us. In sum, there is a future for nuclear power in the sense that there is a use for it

  6. Factors affecting the next generation of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Remick, F J [Nuclear Regulatory Commission, Washington, DC (United States)

    1990-07-01

    For both financial, environmental and health reasons, and because of external and internal factors affecting this nation's energy supply, nuclear power will likely play a part in supplying this nation's energy in the coming decades. I believe this to be true for some other parts of the world as well. Even some severe critics of the nuclear power industry and the NRC might agree with me on this point. Increasing concern with the environmental consequences of the burning of fossil fuels has led some former opponents of the use of nuclear power to balance anew the risks and benefits of nuclear power and to modify to some degree their former opposition. A related concern with the adequacy of the energy supply is leading others to modify their positions. According to analyses done by the U.S. Department of Energy, after 1994 the United States will no longer be able to assure all its citizens a reliable supply of electricity. Already, many areas of the country are in need of additional electric capacity. In both Sweden and Switzerland, similar concerns have led to the adoption by many of more compromising positions. Some critics of nuclear power may in the end still reject it as an alternative, but, with the increased pressures on the environment and on our energy supply, nuclear power is an alternative which cannot be rejected without the most serious consideration. This should be, I believe, a point of consensus among us. In sum, there is a future for nuclear power in the sense that there is a use for it.

  7. Consolidated nuclear steam generator

    International Nuclear Information System (INIS)

    Jabsen, F.S.; Schluderberg, D.C.; Paulson, A.E.

    1978-01-01

    An improved system of providing power has a unique generating means for nuclear reactors with a number of steam generators in the form of replaceable modular units of the expendable type to attain the optimum in effective and efficient vaporization of fluid during the generating power. The system is most adaptable to undrground power plants and marine usage

  8. Nuclear power as an option in electrical generation planning for Croatia

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Cavlina, N.; Kovacevic, T.

    2000-01-01

    The expected increase of electricity consumption in the next two decades, if covered mainly by domestic production, will require roughly 4500 MW of new installed capacity. The question is which resource mix would be optimal for the future power plants. Taking into account lack of domestic resources for electricity generation, current trends in the European energy markets, and environmental impact of various energy technologies, it seems reasonable for Croatia to keep the nuclear option open in the future energy planning. In line with that conclusion, this paper analyzes how the introduction of nuclear power plants would influence future power system expansion plans in Croatia, and the possibility to meet the Kyoto requirement. The effects of CO 2 emission tax and external costs on the optimal capacity mix and the emissions levels are also examined. (author)

  9. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Csik, B.J.; Konstantinov, L.V.; Dastidar, P.

    1989-09-01

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  10. The economic valuation on atmospheric improvement benefit by nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, S. J.; Yoo, S. H.; Han, S. Y.; Do, G. W.; Lee, J. S. [Korea Univ., Seoul (Korea)

    2000-12-01

    The major contents are as follows : To begin with, major air pollutants' emissions and emission reduction facilities in industrial sectors including a power generation were investigated and the future prospect was suggested. Environmental effects by attributes of air pollutions were summarized through a extensive literature survey. And the concept of benefit-cost based upon social costs and economic values of generation was established to estimate atmospheric improvement benefits by using a nuclear power. As a result of investigating many valuation methodologies that can estimate economic values of environmental improvement, we adopted MAUA(multi-attribute utility assessment) as a research method and estimated environmental costs by air pollutant and by power generating source. Also, we presented foreign case studies related to social costs in power generating sector and horizontally compared study's results home and abroad. Then, we set up four scenarios based on total generation that the 5th long-term power resources planning forecasted and calculated economic values of atmospheric improvement benefits among scenarios. Further, we suggested the results incorporating uncertainty of estimation parameters. Finally, we suggested a rational ground to move toward environment-friendly energy consumption and proposed a plan for the national energy policy against the green age in the 21th century. 147 refs., 45 figs., 103 tabs. (Author)

  11. The economic valuation on atmospheric improvement benefit by nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, S J; Yoo, S H; Han, S Y; Do, G W; Lee, J S [Korea Univ., Seoul (Korea)

    2000-12-01

    The major contents are as follows : To begin with, major air pollutants' emissions and emission reduction facilities in industrial sectors including a power generation were investigated and the future prospect was suggested. Environmental effects by attributes of air pollutions were summarized through a extensive literature survey. And the concept of benefit-cost based upon social costs and economic values of generation was established to estimate atmospheric improvement benefits by using a nuclear power. As a result of investigating many valuation methodologies that can estimate economic values of environmental improvement, we adopted MAUA(multi-attribute utility assessment) as a research method and estimated environmental costs by air pollutant and by power generating source. Also, we presented foreign case studies related to social costs in power generating sector and horizontally compared study's results home and abroad. Then, we set up four scenarios based on total generation that the 5th long-term power resources planning forecasted and calculated economic values of atmospheric improvement benefits among scenarios. Further, we suggested the results incorporating uncertainty of estimation parameters. Finally, we suggested a rational ground to move toward environment-friendly energy consumption and proposed a plan for the national energy policy against the green age in the 21th century. 147 refs., 45 figs., 103 tabs. (Author)

  12. 2006 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    At the turn of 2006/2007, 437 nuclear power plants were available for energy supply, or were being commissioned, in 31 countries of the world. This is seven plants less than at the turn of 2005/2006. The aggregate gross power of the plants amounted to approx. 389.5 GWe, the aggregate net power, to 370.5 GWe. This indicates a slight decrease of gross power by some 0.15 GWe compared to the level the year before, while the available net power increased, also slightly, by approx. 0.2 GWe. The Tarapur 3 nuclear generating unit in India, a D 2 O PWR of 540 MWe gross power, was newly commissioned. In 2006, 8 nuclear power plants in Europe (4 in the United Kingdom, 2 in Bulgaria, 1 each in the Slovak Republic and in Spain) discontinued power operation for good. 29 nuclear generating units, i.e. 6 plants more than at the end of 2005, were under construction in late 2006 in 9 countries with an aggregate gross power of approx. 25.5 GWe. Worldwide, some 40 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases, contracts have already been signed. Net electricity generation in nuclear power plants worldwide in 2006 achieved another top ranking level of approx. 2,660 billion kWh (2005: approx. 2,750 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-1 fast breeder (USA) on December 20, 1951, cumulated gross production has reached approx. 56,875 billion kWh, and operating experience has grown to some 12,399 reactor years. (orig.)

  13. Case study on comparative assessment of nuclear and coal-fueled electricity generation options and strategy for nuclear power development in China

    International Nuclear Information System (INIS)

    Zhao Shiping; Shi Xiangjun; Bao Yunqiao; Mo Xuefeng; Wei Zhihong; Fang Dong; Ma Yuqing; Li Hong; Pan Ziqiang; Li Xutong

    2001-01-01

    China, as other countries in the world, is seeking for a way of sustainable development. In energy/electricity field, nuclear power is one of electric energy options considering the Chinese capability of nuclear industry. The purpose of this study is to investigate the role of nuclear power in Chinese energy/electricity system in future by comprehensive assessment. The main conclusions obtained from this study are: (1) China will need a total generation capacity of 750 - 879 GW in 2020, which means new power units of 460 - 590 GW generation capacity will be built from 2001 to 2020. (2) the total amount of SO 2 emission from power production will rise to 16 - 18 Mt in 2020, about 2.8 - 3.2 times of 1995, even if the measures to control SO 2 emission are taken for all new coal units. (3) CO 2 emission from electricity generation will reach 21 - 24 Gt in 2020. (4) the environmental impacts and health risks of coal-fired energy chain are greater than that of nuclear chain. The normalized health risk caused by coal chain is 20.12 deaths/GW·a but 4.63 deaths/GW·a by nuclear chain in China. (5) As estimated by experts, there will be a shortage of 200 GW in 2050 in China even if considering the maximum production of coal, the utilization of hydropower and renewable resource. Nuclear power is the only way to fill the gap between demand and supply

  14. Static and dynamic high power, space nuclear electric generating systems

    International Nuclear Information System (INIS)

    Wetch, J.R.; Begg, L.L.; Koester, J.K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed. 10 references

  15. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  16. History of the nuclear power generation technology in Japan

    International Nuclear Information System (INIS)

    2016-01-01

    First, the outline of the historical fact is described. Next, the research institution, the industrial world, and the government which were the bearers of technical development are described and look back upon the history of development from each position. The focus is a viewpoint based on refection of a Fukushima disaster. 'Teachings from history' seen from each actor was described being based on the objective fact. Moreover, it focuses also on the society, the politics, and the economic factor which affected development of nuclear development. The following three were treated as themes. 1. Relation with the atomic power and the nonproliferation policy of the U.S. government. 2. Relation with public opinion or media. 3. Social responsibility of a society, or a scientist and an engineering person. Finally, based on these teachings, the viewpoint considered to be important for future nuclear power generation and technical development was summarized as a proposal. (author)

  17. Nuclear power: achievement and prospects

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1993-01-01

    History of nuclear power generation from the time it was a technological curiosity to the time when it developed into a mature, sizeable international industry is outlined. Nuclear power now accounts for 17% of the world's total electricity generated. However, it is noted that the presently installed capacity of nuclear power generation falls short of early expectations and nuclear power is not as cheap as it was hoped earlier. There is opposition to nuclear power from environmentalists and the public due to fear of radiation and the spread of radioactivity during accidents, even though nuclear reactors by and large have a good safety record. Taking into account the fact that electricity consumption is growing at the rate of 2-3% in the industrialized world and at over 5% in the rest of world and pollution levels are increasing due to burning of fossil fuels and subsequent greenhouse effect, the demand for power will have to be be met by increasing use of non-fossil fuels. One of the most promising non-fossil fuels is the nuclear fuel. In the next 30 years, the nuclear power generation capacity can be increased two to three times the present capacity by: (1) managing economics, (2) extending uranium resources by reprocessing spent fuel and recycling the recovered uranium and plutonium and by using fast reactor technology (3) getting public acceptance of and support for nuclear power by allaying the fear of radiation and the fear of large scale accidents through quantitative risk analysis and (4) establishing public confidence in waste disposal methods. (M.G.B.). 18 refs., 2 tabs

  18. 1999 Nuclear power world report

    International Nuclear Information System (INIS)

    Wesselmann, C.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply and under construction, respectively, in 33 countries. A total of 436 nuclear power plants with an aggregate net power of 350.228 MWe and an aggregate gross power of 366.988 MWe were in operation in 31 countries. Four units with an aggregate of 2.900 MWe, i.e. Civaux 2 in France, Kaiga 2 and Rajasthan 3 in India, and Wolsung-4 in the Republic of Korea, went critical for the first time or started commercial operation after having been synchronized with the power grid. After 26 years of operation, the BN 350 sodium cooled fast breeder was permanently decommissioned in Kazakhstan. The plant not only generated electricity (its capacity was 135 MWe) but also supplied process heat to a seawater desalination plant. In 1999, however, it did not contribute to the supply of electricity. In Sweden, unit 1 of the Barsebaeck nuclear power station (600 Mwe net) was decommissioned because of political decisions. This step entails financial compensation payments and substitute electricity generating capacity made available to the power plant operators. Net electricity generation in 1999 amounts to approx. 2.395 Twh, which marks a 100 TWh increase over the preceding year. Since the first generation of electricity from nuclear power in 1951, the cumulated world generation amounts to nearly 37.200 TWh of electricity, and experience in the operation of nuclear power plants has increased to 9414 years. Last year, 38 plants were under construction. This slight increase is due to the start of construction of a total of seven projects: Two each in Japan, the Republic of Korea and Taiwan, and one in China. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, and 58 per cent in Belgium. With a share of approx. 20 per cent and more than 720 TWh, the US is the largest producer worldwide of electricity from nuclear power. As far as the aggregate

  19. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  20. Economic assessment of coal-fired and nuclear power generation in the year 2000 -Equal health hazard risk basis-

    International Nuclear Information System (INIS)

    Seong, Ki Bong; Lee, Byong Whi

    1989-01-01

    On the basis of equal health hazard risk, economic assessment of nuclear was compared with that of coal for the expansion planning of electric power generation in the year 2000. In comparing health risks, the risk of coal was roughly ten times higher than that of nuclear according to various previous risk assessments of energy system. The zero risk condition can never be achievable. Therefore, only excess relative health risk of coal over nuclear was considered as social cost. The social cost of health risk was estimated by calculation of mortality and morbidity costs. Mortality cost was $250,000 and morbidity cost was $90,000 in the year 2000.(1986US$) Through Cost/Benefit Analysis, the optimal emission standards of coal-fired power generation were predicted. These were obtained at the point of least social cost for power generation. In the year 2000, the optimal emission standard of SO x was analyzed as 165ppm for coal-fired power plants in Korea. From this assessment, economic comparison of nuclear and coal in the year 2000 showed that nuclear would be more economical than coal, whereas uncertainty of future power generation cost of nuclear would be larger than that of coal. (Author)

  1. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  2. Control-oriented modeling of the energy-production of a synchronous generator in a nuclear power plant

    International Nuclear Information System (INIS)

    Fodor, Attila; Magyar, Attila; Hangos, Katalin M.

    2012-01-01

    Nuclear Power Plant (Hungary) is developed in this paper based on first engineering principles that is able to describe the time-varying active and reactive power output of the generator. These generators are required to take part in the reactive power support of the power grid following the demand of a central dispatch center, and also contribute to the frequency control of the grid. The developed model has been verified under the usual controlled operating conditions when the frequency and the active power are controlled. Static and dynamic sensitivity analysis has been applied to determine the model parameters to be estimated. The model parameters have been estimated applying the asynchronous parallel pattern search method using real measured data from the nuclear power plant. The confidence regions in the parameter space have been analyzed by investigating the geometry of the estimation error function. The developed model can serve as a basis for controlling the optimal energy production of the generator using both the active and reactive power components. -- Highlights: ► A dynamic model of a synchronous generator in a Nuclear Power Plant is developed. ► The model has been verified under the usual controlled operating conditions. ► The sensitivity analysis has been applied to determine the model parameters. ► The parameters have been estimated applying the APPS method using measured data. ► The model serves as a basis for controlling the optimal energy production of the generator.

  3. Impact of the TEPCO incident on the public's attitude to nuclear power generation. Periodic survey No.3

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2003-01-01

    The impact of the TEPCO incident, was examined, using the data collected by public opinion polls on power generation, which have been conducted persistently since 1993. The survey revealed that there were no negative changes in the public's attitude overall (including their concerns about nuclear power accidents, their sense of danger of such accidents, the image of organizations involved in nuclear power generation, their confidence in such organizations, and their opinion on the use of nuclear power generation), and that the TEPCO incident had no impact on the public's attitude to nuclear power generation. In contrast with the JCO accident, which did affect the public's attitude to nuclear power generation, the TEPCO incident left a strong impression on few people, and public awareness was limited. Such low public awareness is deemed to relate to its lack of impact on the public's attitude to nuclear power generation. In the case of the JCO accident, even individuals who had limited exposure to the mass media were highly of it, whereas in the case of the TEPCO incident, individuals who were relatively unexposed to the mass media were substantially less aware of the incident than their more mass-media-exposed counterparts. This is deemed to have been due to the difference in mass media reports. A comparison of newspaper articles covering the TEPCO and the JCO accident substantiated the quantitative difference in mass media reports: articles on the former numbered less than half of the latter. Correlation analysis with respect to the awareness of the TEPCO incident was conducted, in order to identify the impact of the incident on individuals with a high level of awareness. Such individuals were highly confident that safe operation is being regarded as the top-priority objective by staff at the nuclear power plants, indicating that their confidence was not undermined by the TEPCO incident. However, there was a high level of distrust, that the truth about safety is

  4. Nuclear power in Japan in 1987

    International Nuclear Information System (INIS)

    Molodtsov, S.D.

    1989-01-01

    Data on the development level of nuclear power in Japan as of 1988 beginning are presented. Total registed electric power of 36 nuclear power units under operation constituted 28046 MW. 13 power units with 12268 MW total power are under construction. In 1987 188.4 TWH electric power was generated at the Japanese NPPs, it constituted 31.7% of total electric power generation. About 360 bil. yens were assigned from the state budget to further development of nuclear power engineering. Efforts to create the improved BWR type reactor, as well as, scientific and research efforts on the development of fast breeder reactors, improvement of uranium enrichment and radioactive waste storage are carried out. It is expected that share of nuclear power in electric power generation in Japan will reach 40% to the beginning of the 21-th century

  5. World electricity generation, nuclear power, and oil markets

    International Nuclear Information System (INIS)

    1990-01-01

    Striking changes have characterized the world's production and use of energy over the past 15 years. Most prominent have been the wide price fluctuations, politicization of world oil prices and supply, along with profound changes in patterns of production and consumption. This report, based on a study by energy analysts at Science Concepts, Inc., in the United States, traces changes in world energy supply since 1973-74 - the time of the first oil ''price shocks''. In so doing, it identifies important lessons for the future. The study focused in particular on the role of the electric power sector because the growth in fuel use in it has been accomplished without oil. Instead, the growth has directly displaced oil. In the pre-1973 era, the world relied increasingly on oil for many energy applications, including the production of electricity. By 1973, more than on-fourth of the world's electricity was produced by burning oil. By 1987, however, despite a large increase in electric demand, the use of oil was reigned back to generating less than 10% of the world's electricity. Nuclear power played a major role in this turnaround. From 1973-87, analysts at Science Concepts found, nuclear power displaced the burning of 11.7 billion barrels of oil world-wide and avoided US $323 billion in oil purchases

  6. Nuclear power in the Ukraine: Problems and prospects

    International Nuclear Information System (INIS)

    Nigmatullin, N.R.

    1995-01-01

    Nuclear power production in the Ukraine started in 1977 with the startup of the first 1000-MW power-generating unit at the Chernobyl nuclear power plant. During the period from 1977 to 1989 sixteen power-generating units with a total electric capacity of 14,880 MW were put into operation at five nuclear power plants: ten VVER-1000, two VVER-440, and four RBMK-1000. As a result of the accident in 1986 in the fourth power-generating unit and the fire in 1991 in the second power-generating unit of the Chernobyl nuclear power plant, these units are no longer operating. Therefore the total installed nuclear power plant capacity is 12,880 MW. Moreover, the construction of three more power-generating units with VVER-1000 reactors is almost completed at three nuclear power plants - Zaporozh'e, Roven, and Khmel'nitsk. These units are not in operation because of the moratorium announced by the Supreme Council of Ukraine. In connection with the Council's decision, the Chernobyl nuclear power plant should have been shut down in 1993

  7. Nuclear power in Spain

    International Nuclear Information System (INIS)

    1979-01-01

    the plans of the Spanish Government to reduce their dependence on oil over the next ten years by a considerable increase in nuclear generating capacity are outlined. Data on the type, generating power, location and commissioning data of a number of nuclear power stations in Spain are tabulated. The use of foreign companies for the design and construction of the nuclear stations and the national organisations responsible for different aspects of the programme are considered. (UK)

  8. Power generation in South Africa

    International Nuclear Information System (INIS)

    Van der Walt, N.T.

    1976-01-01

    There have been extensive developments in the power supply industry in South Africa. The most evident of these has been the increase in the size of generating units. Escom has recently placed orders for 600 MW units. In South Africa, with its large indigenous reserves of cheap coal, there was no need to rush into a nuclear power programme before it would be economic and, accordingly the first serious study of nuclear power generation was not undertaken until 1966. A final aspect of power generation which is becoming very important is the control of pollution and protection of the environment

  9. The state of radioactive waste management and of personnel radiation exposure in nuclear power generating facilities in fiscal 1983

    International Nuclear Information System (INIS)

    1985-01-01

    (1) The state of radioactive waste management in nuclear power generating facilities: In the nuclear power stations, the released quantities of radioactive gaseous and liquid wastes are all below the control objective levels. For the respective nuclear power stations, the released quantities of radioactive gaseous and liquid wastes in fiscal 1983 and the objective levels are given in table. And, the quantities of solid wastes taken into storage and the cumulative amounts are given. For reference, the results each year since fiscal 1974 are shown. (2) The state of personnel radiation exposure in nuclear power generating facilities: In the nuclear power stations, the personnel radiation exposures are all below the permissible levels. The dose distribution etc. in the respective nuclear power stations are given in table. For reference, the results each year since fiscal 1974 are shown. (Mori, K.)

  10. Modular steam generator for use in nuclear power plants

    International Nuclear Information System (INIS)

    Cella, A.

    1979-01-01

    An improved steam generator for a PWR is described. A turbine generator is driven by the steam output of the steam generator to provide electrical power. The improvement provides vertically assemblable modules which are removably mounted together in sealing relationship. The modules comprising a base module, a tube bundle module removably mountable on the base module in sealing relationship, and an uppermost dryer module removably mountable on the tube bundle module in sealing relationship. Ready access to and removal of the tube bundle module in situ from the nuclear power plant steam generator is facilitated. The dryer module contains moisture separator for drying the generated steam. The base module, upon which the associated weight of the vertically assembled dryer module and tube bundle module are supported, contains the inlet and outlet for the heat exchange fluid. The tube bundle module contains the tube bundle through which the heat exchange fluid flows as well as an inlet for feedwater. The tube sheet serves as a closure flange for the tube bundle module, with the associated weight of the vertically assembled dryer module and tube bundle module on the tube sheet closure flange effectuating the sealing relationship between the base module and the tube bundle module for facilitating closure

  11. The Cattenom nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Lorraine region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Cattenom comprises 4 production units of 1300 MW each (5200 MW as a whole). The facility generated 34 billion kWh in 2009, i.e. 8% of the French national power generation. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  12. The Chinon nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Centre region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Chinon comprises 4 production units of 900 MW each (3600 MW as a whole). The facility generated 19.03 billion kWh in 2009, i.e. 4.8% of the French national power generation. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  13. Nuclear power's burdened future

    International Nuclear Information System (INIS)

    Flavin, C.

    1987-01-01

    Although governments of the world's leading nations are reiterating their faith in nuclear power, Chernobyl has brought into focus the public's overwhelming feeling that the current generation of nuclear technology is simple not working. Despite the drastic slowdown, however, the global nuclear enterprise is large. As of mid-1986, the world had 366 nuclear power plants in operation, with a generating capacity of 255,670 MW. These facilities generate about 15% of the world's electricity, ranging from 65% in France to 31% in West Germany, 23% in Japan, 16% in the United States, 10% in the Soviet Union, and non in most developing nations. Nuclear development is clearly dominated by the most economically powerful and technologically advanced nations. The United States, France, the Soviet Union, Japan, and West Germany has 72% of the world's generating capacity and set the international nuclear pace. The reasons for scaling back nuclear programs are almost as diverse as the countries themselves. High costs, slowing electricity demand growth, technical problems, mismanagement, and political opposition have all had an effect. Yet these various factors actually form a complex web of inter-related problems. For example, rising costs usually represent some combination of technical problems and mismanagement, and political opposition often occurs because of safety concerns or rising costs. 13 references

  14. Steam generator materials and secondary side water chemistry in nuclear power stations

    International Nuclear Information System (INIS)

    Rudelli, M.D.

    1979-04-01

    The main purpose of this work is to summarize the European and North American experiences regarding the materials used for the construction of the steam generators and their relative corrosion resistance considering the water chemestry control method. Reasons underlying decision for the adoption of Incoloy 800 as the material for the secondary steam generator system for Atucha I Nuclear Power Plant (Atucha Reactor) and Embalse de Rio III Nuclear Power Plant (Cordoba Reactor) are pointed out. Backup information taken into consideration for the decision of utilizing the All Volatil Treatment for the water chemistry control of the Cordoba Reactor is detailed. Also all the reasonswhich justify to continue with the congruent fosfatic method for the Atucha Reactor are analyzed. Some investigation objectives which would eventually permit the revision of the decisions taken on these subjects are proposed. (E.A.C.) [es

  15. On the reliability of steam generator performance at nuclear power plants with WWER type reactors

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Margulova, T.Kh.

    1974-01-01

    The problem of ensuring reliable operation of steam generators in a nuclear power plant with a water-cooled, water-moderated reactor (WWER) was studied. At a nuclear power plant with a vertical steam generator (specifically, a Westinghouse product) the steam generator tubes were found to have been penetrated. Shutdown was due to corrosion disintegration of the austenitic stainless steel, type 18/8, used as pipe material for the heater surface. The corrosion was the result of the action of chlorine ions concentrated in the moisture contained in the iron oxide films deposited in low parts of the tube bundle, directly at the tube plate. Blowing through did not ensure complete removal of the film, and in some cases the construction features of the steam generator made removal of the film practically impossible. Replacement of type 18/8 stainless steel by other construction material, e.g., Inconel, did not give good results. To ensure reliable operation of vertical steam generators in domestic practice, the generators are designed without a low tube plate (a variant diagram of the vertical steam generator of such construction for the water-cooled, water-moderated reactor 1000 is presented). When low tube plates are used the film deposition is intolerable. For organization of a non-film regime a complex treatment of the feed water is used, in which the amount of complexion is calculated from the stoichmetric ratios with the composition of the feed water. It is noted that, if 100% condensate purification is used with complexon processing of the feed water to the generator, we can calculate the surface of the steam-generator heater without considering the outer placement on the tubes. In this the cost of the steam generator and all the nuclear power plants with WWER type reactors is decreased even with installation of a 100% condensate purification. It is concluded that only simultaneous solution of construction and water-regime problems will ensure relaible operation of

  16. Questioning the economic viability of nuclear power

    International Nuclear Information System (INIS)

    Murota, Takeshi

    1981-01-01

    In the United States, the pioneer in nuclear power generation, the economic aspect of nuclear power is now questioned. Its economy in Japan is supported by the entirely monopolistic nature of the power generating firms. The economy of the nuclear power generation in Japan is first examined in its original cost. It is then analyzed in legislative economics. In the conventional arguments, the authorities in favor of nuclear power stick to its practical safety, acknowledging its potential danger, while the people against it adheres to its danger. Thus both arguments go in parallel, never converging. It is attempted to elucidate through the atomic energy damage compensation system, on the boundary between legislation and economy, to whom nuclear power generation is safe, and to whom it is dangerous. (J.P.N.)

  17. Management of radioactive waste generated from nuclear power reactors in Korea

    International Nuclear Information System (INIS)

    Jeong-Mook Kim

    2000-01-01

    Fundamental objectives and efforts to safely manage radioactive wastes generating from the expanding nuclear power industry in the Republic of Korea are described. Management, treatment and storage of radioactive wastes arising in different form are addressed. A long tern plan to reduce the volume of solid waste is outlined. (author)

  18. Design and development of microcontroller based programmable ramp generator for AC-DC converter for simulating decay power transient in experimental facility for nuclear power plants

    International Nuclear Information System (INIS)

    Srivastava, Gaurava Deep; Kulkarni, R.D.

    2015-01-01

    In nuclear power plants, fuel is subjected to a wide range of power and temperature transients during normal and abnormal conditions. The reactor setback and step-back power pattern, fast temperature profile occurred during Loss of Coolant Accident and decay power followed by shutdown of power plant are the typical transients in nuclear power plant. For a variety of reactor engineering and reactor safety related study, one needs to simulate these transients in experimental facility. In experimental facilities, high response AC-DC converters are used to handle these power and temperature transients safely in a controlled manner for generating a database which is utilized for design of thermal hydraulic system, development of computer codes, study of reliability of reactor safety system, etc. for nuclear power plants. The paper presents the methodology developed for simulating the typical reactor decay power transient in an experimental facility. The design and simulation of AC-DC power electronic converter of 3 MW capacity is also presented. The microcontroller based programmable ramp generator is designed and hardware implemented for feeding reference voltage to the closed loop control system of AC-DC converter for obtaining the decay power profile at the converter output. The typical decay power transient of the nuclear power plant is divided into several small power ramps for simulating the transient. The signal corresponding to each power ramp is generated by programmable ramp generator and fed to the comparator for generating control signal for the converter. The actual decay power transient obtained from the converter is compared with the theoretical decay power transient. (author)

  19. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  20. Nuclear energy cost data base: A reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    1988-09-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on a once-through cycle, and high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line around the turn of the century. In addition to current generation light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on improved and advanced light-water reactors, liquid metal reactor plants and fuel cycle facilities. This report includes an updated data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, a sample calculation for illustrative and benchmark purposes and projected power generation costs for fission and coal-fired alternatives. Effects of the 1986 Tax Reform Act are included. 126 refs., 17 figs., 47 tabs

  1. Steam generator replacement at the Obrigheim nuclear power station

    International Nuclear Information System (INIS)

    Pickel, E.; Schenk, H.; Huemmler, A.

    1984-01-01

    The Obrigheim Nuclear Power Station (KWO) is equipped with a dual-loop pressurized water reactor of 345 MW electric power; it was built by Siemens in the period 1965 to 1968. By the end of 1983, KWO had produced some 35 billion kWh in 109,000 hours of operation. Repeated leaks in the heater tubes of the two steam generators had occurred since 1971. Both steam generators were replaced in the course of the 1983 annual revision. Kraftwerk Union AG (KWU) was commissioned to plant and carry out the replacement work. Despite the leakages the steam generators had been run safely and reliably over a period of 14 years until their replacement. Replacing the steam generators was completed within twelve weeks. In addition to the KWO staff and the supervising crew of KWU, some 400 external fitters were employed on the job at peak work-load periods. For the revision of the whole plant, work on the emergency systems and replacement of the steam generators a maximum number of approx. 900 external fitters were employed in the plant in addition to some 250 members of the plant crew. The exposure dose of the personnel sustained in the course of the steam generator replacement was 690 man-rem, which was clearly below previous estimates. (orig.) [de

  2. Construction costs of nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Mandel, H

    1976-03-01

    It is assumed that the demand for electrical energy will continue to rise and that nuclear power will increasingly supply the base-load of electricity generation in the industrialized world. The author identifies areas where techniques and practices to control costs can be improved. Nuclear power offers an alternative to liquid and gaseous fossil fuels and contributes to a relative stability in the price of electric energy. Nuclear power plants can now generate power more cheaply than other thermal power plants down into the upper middle load sector, as indicated in calculations based on a construction time of six years for nuclear plants and four years for others. Special legal provisions, different conditions of financing and taxation, varying methods of power generation cost accounting, and the nonuniform layout of the plant in the various countries make it difficult to compare power generation costs. The author uses mostly experiences gained in the Federal Republic of Germany for some calculations for comparison; he cites lack of standardization and over-long licensing times as major factors in the recent rapid escalation of nuclear power costs and suggests that adoption of standard reactor designs, encouragement of a vigorous and competitive European nuclear industry, and streamlining of licensing procedures to improve the situation. (MCW)

  3. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  4. Power generator in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to perform stable and dynamic conditioning operation for nuclear fuels in BWR type reactors. Constitution: The conditioning operation for the nuclear fuels is performed by varying the reactor core thermal power in a predetermined pattern by changing the predetermined power changing pattern of generator power, the rising rate of the reactor core thermal power and the upper limit for the rising power of the reactor core thermal power are calculated and the power pattern for the generator is corrected by a power conditioning device such that the upper limit for the thermal power rising rate and the upper limit for the thermal power rising rate are at the predetermined levels. Thus, when the relation between the reactor core thermal power and the generator electrical power is fluctuated, the fluctuation is detected based on the variation in the thermal power rising rate and the limit value for the thermal power rising rate, and the correction is made to the generator power changing pattern so that these values take the predetermined values to thereby perform the stable conditioning operation for the nuclear fuels. (Moriyama, K.)

  5. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    International Nuclear Information System (INIS)

    Chan, Yea-Kuang; Tsai, Yu-Ching

    2017-01-01

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  6. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yea-Kuang; Tsai, Yu-Ching [Institute of Nuclear Energy Research, Taoyuan City, Taiwan (China). Nuclear Engineering Division

    2017-03-15

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  7. DIMOS: a new generation of nuclear power plant process monitoring systems

    International Nuclear Information System (INIS)

    Vlaminck, M. de; Gilliot, B.; Remacle, J.

    1993-01-01

    A new generation of nuclear power plant supervision systems is described, called DIMOS (DIstributed MOnitoring System). It was installed in August 1991 at the Doel nuclear power plant and is now monitoring reactors 1 and 2. The system represents one of the largest and most advanced process monitoring systems in operation. DIMOS has successfully provided the solution to the old system's limitations such as functional deficiencies, low response time, management and coherence of the data, maintenance costs, spare parts, and system availability. The use of the software development methodologies HOOD and ADA have not only allowed a rapid integration and installation of a robust system, but will also make further developments and improvements possible with maximum flexibility. (Z.S.) 2 figs

  8. 78 FR 49305 - Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2013-08-13

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-445 and 50-446; NRC-2013-0182] Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2; Application for Amendment to Facility... Operating License Nos. NPF-87 and NPF-89 for the Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

  9. Nuclear generation cost and nuclear research development fund

    International Nuclear Information System (INIS)

    Kim, S. S.; Song, G. D.

    2000-01-01

    The main objective of this study is to analyze the effects of nuclear R and D fund to nuclear generation cost and to assess the adaptability of fund size through the comparison with the nuclear research fund in Japan. It was estimated that nuclear R and D fund increased the average annual unit cost of nuclear power generation by 1.14 won/kWh. When the size of nuclear R and D fund is compared with that in Japan, this study suggests that the current nuclear R and D fund should be largely increased taking into consideration the ratio of R and D fund to nuclear generation

  10. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  11. Possibilities of electricity generation in Schleswig-Holstein without using nuclear power

    International Nuclear Information System (INIS)

    Fischer; Kohler; Natsch; Rossnagel; Sailer.

    1986-10-01

    The study is arranged in three main parts: Part A discusses safety reasons for backing out of nuclear energy utilisation, and the current legal situation and available scope of action. Part B investigates the technical feasibility of an immediate, complete reactor shut-down in Schleswig-Holstein (in 1987). Part C deals with the framework conditions of a nuclear power shut-off and with accompanying measures on the energy market. According to the order, the main goal of the study was to prove that a nuclear power shut-off is technically feasible. So this study presents assessments with a view to technical feasibility, legal scope of action, costs, ecological effects, and alternative strategies for efficient energy policy on the Land level. This relatively restricted framework, considering exclusively the possibilities of the Land Schleswig-Holstein, necessarily brings about a reduction of the scope of action or optimisation. It is therefore recommended to have an analysis prepared that considers the country as a whole, in order to enhance perspectives and the scope of action. The study does not deal with aspects such as political acceptability and feasibility, or concrete legal processes or procedural steps that would have to be taken in case of backing out and making the turn in energy. The study to a great part relies on assumptions and framework conditions defined in another study by the authors Mueller-Reissmann and Schaffner, entitled 'Power generation without nuclear energy - consequences of backing out of nuclear power'. A brief summary of this study is given in the appendix to the study in hand. (orig./UA) [de

  12. Financing of nuclear power plant using resources of power generation

    International Nuclear Information System (INIS)

    Slechta, V.; Milackova, H.

    1987-01-01

    It is proved that during the lifetime of a power plant, financial resources are produced from depreciation and from the profit for the delivered electrical power in an amount allowing to meet the cost of construction, interests of credits, the corporation taxes, and the means usable by the utility for simple reproduction of the power plant, additional investment, or for the ultimate decommissioning of the nuclear power plant. The considerations are simplified to 1 MW of installed capacity of a WWER-440 nuclear power plant. The breakdown is shown of the profit and the depreciation over the power plant lifetime, the resources of regular payments of credit instalments for the construction and the method of its calculation, and the income for the state budget and for the utility during the plant liofetime. (J.B.). 5 tabs., 5 refs

  13. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mishiro, M.

    2000-01-01

    This article describes the advantages of nuclear energy for Japan. In 1997 the composition of the total primary energy supply (TPES) was oil 52.7%, coal 16.5%, nuclear 16.1% and natural gas 10.7%. Nuclear power has a significant role to play in contributing to 3 national interests: i) energy security, ii) economic growth and iii) environmental protection. Energy security is assured because a stable supply of uranium fuel can be reasonably expected in spite of dependence on import from abroad. Economic growth implies the reduction of energy costs. As nuclear power is capital intensive, the power generation cost is less affected by the fuel cost, therefore nuclear power can realize low cost by favoring high capacity utilization factor. Fossil fuels have substantial impacts on environment such as global warming and acid rain by releasing massive quantities of CO 2 , so nuclear power is a major option for meeting the Kyoto limitations. In Japan, in 2010 nuclear power is expected to reach 17% of TPES and 45% of electricity generated. (A.C.)

  14. Italian nuclear power industry after nuclear power moratorium: Current state and future prospects

    International Nuclear Information System (INIS)

    Adinolfi, R.; Previti, G.

    1992-01-01

    Following Italy's nuclear power referendum results and their interpretation, all construction and operation activities in the field of nuclear power were suspended by a political decision with consequent heavy impacts on Italian industry. Nevertheless, a 'nuclear presidium' has been maintained, thanks to the fundamental contribution of activities abroad, succeeding in retaining national know-how and developing the new technologies called for the new generation of nuclear power plants equipped with intrinsic and/or passive reactor safety systems

  15. Near-term and next-generation nuclear power plant concepts

    International Nuclear Information System (INIS)

    Shiga, Shigenori; Handa, Norihiko; Heki, Hideaki

    2002-01-01

    Near-term and next-generation nuclear reactors will be required to have high economic competitiveness in the deregulated electricity market, flexibility with respect to electricity demand and investment, and good public acceptability. For near-term reactors in the 2010s, Toshiba is developing an improved advanced boiling water reactor (ABWR) based on the present ABWR with newly rationalized systems and components; a construction period of 36 months, one year shorter than the current period; and a power lineup ranging from 800 MWe to 1,600 MWe. For future reactors in the 2020s and beyond, Toshiba is developing the ABWR-II for large-scale, centralized power sources; a supercritical water-cooled power reactor with high thermal efficiency for medium-scale power sources; a modular reactor with siting flexibility for small-scale power sources; and a small, fast neutron reactor with inherent safety for independent power sources. From the viewpoint of efficient uranium resource utilization, a low-moderation BWR core with a high conversion factor is also being developed. (author)

  16. Commercial nuclear power 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs

  17. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  18. Control technology for nuclear power system of next generation

    International Nuclear Information System (INIS)

    1995-01-01

    This report is the summary of the results obtained by the investigation activities for two years carried out by the expert committee on investigation of control technology for nuclear power system of next generation. The course of investigation is outlined, and as the results, as advanced control technologies, adaptive control. H sub (infinite) control, fuzzy control and the application of autonomous distributed system and genetic algorithm to control; as operation support technology, the operation and monitoring system for nuclear power plants and safety support system; as interface technology which is the basic technology of them, virtual reality, multimedia and so on; further, various problems due to human factors, computer technology, artificial intelligence and others were taken up, and the grasp of the present status and the future subjects was carried out, including the information in international conferences. The items of the investigation are roughly divided into measurement and control technologies, interface technology and operation support, human factors, computer technology and artificial intelligence, and the trend in foreign countries, and the results of investigation for respective items are reported. (K.I.)

  19. Quantifying the costs of electricity generation in Alberta - modelling Alberta with nuclear power generation in place of coal and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Toor, J.; Donev, J.M.K.C., E-mail: jstoor@ucalgary.ca, E-mail: jmdonev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada)

    2014-07-01

    The study determines the externality impacts on Alberta assuming the use nuclear power instead of coal and natural gas. For historical time (1976-2006) it was found that replacing coal generation with nuclear power could have displaced over a million kilotons (kt) of Carbon dioxide (CO{sub 2}) release to the atmosphere, prevented at least 7000 premature deaths and saved a mean value of over $33.1 Billion dollars (2007 USD) at the cost of storing 20.7 kt of spent nuclear fuel ($11.5 Billion). The same calculations were also made for a projection period (2006-2101) and also for the replacement of natural gas with nuclear power. (author)

  20. Quantifying the costs of electricity generation in Alberta - modelling Alberta with nuclear power generation in place of coal and natural gas

    International Nuclear Information System (INIS)

    Toor, J.; Donev, J.M.K.C.

    2014-01-01

    The study determines the externality impacts on Alberta assuming the use nuclear power instead of coal and natural gas. For historical time (1976-2006) it was found that replacing coal generation with nuclear power could have displaced over a million kilotons (kt) of Carbon dioxide (CO 2 ) release to the atmosphere, prevented at least 7000 premature deaths and saved a mean value of over $33.1 Billion dollars (2007 USD) at the cost of storing 20.7 kt of spent nuclear fuel ($11.5 Billion). The same calculations were also made for a projection period (2006-2101) and also for the replacement of natural gas with nuclear power. (author)

  1. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  2. State-of-the-art of world nuclear power

    International Nuclear Information System (INIS)

    Margulova, T.Kh.

    1987-01-01

    World-wide development of nuclear power is reviewed in short. It noted, that by the 1970 the overall capacity of world nuclear power plants have been reached 24 GW and the cost of nuclear power became equal the cost of power generated at coal-fired stations. By the end of 1985 the LWR-type reactors generated 87 per sent of overale nuclear capacity. Especially considerable developmet of nuclear power have been achieved in France, where 50 per sent of power consumption is provided with nuclear power

  3. Nuclear power investment and generating costs from a utility point of view

    International Nuclear Information System (INIS)

    Roth, B.F.

    1975-01-01

    Nuclear power stations presently in operation in the Federal Republic of Germany have electricity generating costs between 3.5 Pf/kWh and 4.5 Pf/kWh. The higher electricity generating costs are due mainly to the increased expenditure required for the protection of plants against airplane crashes, earthquakes and sabotage, and to the higher costs of the entire fuel cycle. (orig./RW) [de

  4. Elecnuc. Nuclear power plants in the world. 1997

    International Nuclear Information System (INIS)

    Maubacq, F.; Tailland, C.

    1997-04-01

    This small booklet provides information about all type of nuclear power plants worldwide. It is based on the data taken from the CEA/DSE/SEE Elecnuc database. The content comprises: the 1996 highlights, the main characteristics of the different type of reactors in operation or under construction, the map of the French nuclear power plant sites, the worldwide status of nuclear power plants at the end of 1996, the nuclear power plants in operation, under construction or on order (by groups of reactor-types), the power capacity evolution of power plants in operation, the net and gross capacity of the power plants on the grid, the commercial operation and grid connection forecasts, the first achieved or expected power generation supplied by a nuclear reactor for each country and the power generation from nuclear reactors, the performance indicator of the PWR units in France, the trends of the power generation indicator worldwide, the nuclear power plants in operation, under construction, on order, planned, cancelled, decommissioned and exported worldwide, the schedule of steam generator replacements, and the MOX fuel plutonium recycling programme. (J.S.)

  5. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  6. Nuclear power for environmental protection

    International Nuclear Information System (INIS)

    Souza Marques de, J.A.; Bennett, L.L.

    1989-09-01

    Nuclear power does not produce CO 2 or other greenhouse gases, and also does not produce any SO 2 , NO x or other gases which contribute to acid rain. These characteristics of nuclear power are especially important in comparison to coal-fired generation of electricity. As an example, in comparison with a coal-fired power plant of the same size, with abatement systems, a 1300 MW(e) nuclear power plant eliminates annually emissions to the air of about: 2000 t of particulates; 8.5 million t of CO 2 : 12,000 t of SO 2 ; and 6,000 t of NO x , the precise quantities being dependent on coal quality, power plant design and thermal efficiency, and on the effectiveness of the abatement systems. Opponents of nuclear power concede these facts, but argue that nuclear power is such a small part of the world energy balance that it is insignificant to the big issue of CO 2 . This is hardly correct. Today, 16% of the world's electricity (and 5% of the world's total primary energy) is generated using nuclear power. If this electricity were to have been generated using coal, it would have resulted in about 1600 million tons of CO 2 annually. This is 8% of the 20,000 million tons of CO 2 now emitted annually from the burning of fossil fuels, an amount which the Toronto Conference proposed should be cut by 20% up to the year 2005. A further major difference in the two energy systems is that the relatively smaller amount of nuclear wastes is fully isolated from the environment. In addition to discussing the global contributions of nuclear power to environmental improvement, the paper presents actual results achieved in a number of countries, demonstrating the positive contribution which nuclear power has made to reducing the environmental impacts of electricity production. 7 figs, 12 tabs

  7. Human factor problem in nuclear power generation

    International Nuclear Information System (INIS)

    Yoshino, Kenji; Fujimoto, Junzo

    1999-01-01

    Since a nuclear power plant accident at Threemile Island in U.S.A. occurred in March, 1979, twenty years have passed. After the accident, the human factor problem became focussed in nuclear power, to succeed its research at present. For direct reason of human error, most of factors at individual level or work operation level are often listed at their center. Then, it is natural that studies on design of a machine or apparatus suitable for various human functions and abilities and on improvement of relationship between 'human being and machine' and 'human being and working environment' are important in future. Here was, as first, described on outlines of the human factor problem in a nuclear power plant developed at a chance of past important accident, and then was described on educational training for its countermeasure. At last, some concrete researching results obtained by human factor research were introduced. (G.K.)

  8. Nuclear power development: History and outlook

    International Nuclear Information System (INIS)

    Char, N.L.; Csik, B.J.

    1987-01-01

    The history of nuclear power development is briefly described (including the boosts from oil price shocks to the promotion of nuclear energy). The role of public opinion in relation to nuclear power is mentioned too, in particular in connection with accidents in nuclear plants. The recent trends in nuclear power development are described and the role of nuclear power is foreseen. Estimates of total and nuclear electrical generating capacity are made

  9. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-15

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century.

  10. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-01

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century

  11. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  12. Limits to the Recognizability of Flaws in Non-Destructive Testing Steam-Generator Tubes for Nuclear-Power Plants

    International Nuclear Information System (INIS)

    Kuhlmann, A.; Adamsky, F.-J.

    1965-01-01

    In the Federal Republic of Germany there are nuclear reactors under construction with steam generators inside the reactor pressure-vessel. As a result design repairs of steam- generator tubes are very difficult and cause large shut-down times of the nuclear-power plant. It is known that numerous troubles in operating conventional power plants are results of steam-generator tube damages. Because of the high total costs of these reactors it. is necessary to construct the steam generators especially in such a manner that the load factor of the power plant is as high as possible. The Technischer Überwachungs-Verein Rheinland was charged to supervise and to test fabrication and construction of the steam generators to see that this part of the plant was as free of defects as possible. The experience gained during this work is of interest for manufacture and construction of steam generators for nuclear-power plants in general. This paper deals with the efficiency limits of non-destructive testing steam-generator tubes. The following tests performed will be discussed in detail: (a) Automatic ultrasonic testing of the straight tubes in the production facility; (b) Combined ultrasonic and radiographic testing of the bent tubes and tube weldings; (c) Other non-destructive tests. (author) [fr

  13. The variance of the model representation of nuclear power generation and its implication to the climate change mitigation assessment

    International Nuclear Information System (INIS)

    Wada, Kenichi; Sano, Fuminori; Oshima, Kanji; Akimoto, Keigo

    2013-01-01

    Nuclear power secures affordable carbon-free energy supply, but entails various risks and constraints, such as safety concerns, waste disposal protest campaign, and proliferation. Given the nature of these characteristics of nuclear power generation, there is wide range of variations in representation of nuclear power technologies across models. In this paper, we explore the variance of the model representation of nuclear power generation and its implication to the climate change mitigation assessment, based on the EMF27 study. The most common result is that under efforts to mitigate climate change more nuclear energy use is needed. We find, however, that perspectives on the contribution of nuclear energy to global energy needs vary tremendously among the modeling teams. This diversity mainly comes from the difference in the level of detail that characterize nuclear energy technologies and the broad range of nuclear contributions in the long-term scenarios of global energy use. (author)

  14. Technology standards for structure, etc. concerning nuclear power generating facilities

    International Nuclear Information System (INIS)

    1977-01-01

    Based on the Ordinance for the Technology Standards concerning Nuclear Power Generating Facilities, the technology standards are established for the vessels of class 1 to 4 (including reactor pressure vessels, reactor containment vessels, etc.), the pipes of class 1 to 3, safety valves, pressure test and monitoring test specimens. Those specified are materials, nondestructive tests, structures, shapes, shells, flanges, etc. for the vessels and the pipes, and so on. (Mori, K.)

  15. Nuclear power in the EC

    International Nuclear Information System (INIS)

    Charrault, J.C.

    1991-01-01

    Nuclear power accounts for some 35% of electricity production in the European Community (EC). Using a mathematical analysis, based on different scenarios, i.e. low/high electricity demand and nuclear moratorium/revival, various demand forecasts are made. A pragmatic approach, considering conventional power generation pollution problems, forecasts a revival of nuclear power

  16. The Blayais nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Aquitaine region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Blayais comprises 4 production units of 900 MW each (3600 MW as a whole). The facility generated 21.3 billion kWh in 2009, i.e. 5.5% of the French national power generation and 1.2 times the energy consumed in the Aquitaine region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  17. Banning nuclear power at sea

    International Nuclear Information System (INIS)

    Handler, J.

    1993-01-01

    This article argues that now that the East-West conflict is over, nuclear-powered vessels should be retired. Nuclear-powered ships and submarines lack military missions, are expensive to build and operate, generate large amounts of long-lived deadly nuclear waste from their normal operations and when they are decommissioned, and are subject to accidents or deliberate attack which can result in the sinking of nuclear reactors and the release of radiation. With the costs of nuclear-powered vessels mounting, the time has come to ban nuclear power at sea. (author)

  18. The problem of nuclear power

    International Nuclear Information System (INIS)

    Heimbrecht, J.; Kade, G.; Krusewitz, K.; Moldenhauer, B.; Steinhaus, K.; Weish, P.

    1977-01-01

    The battle over the problems of nuclear power has gone on in the Federal Republic for several years. The Buergerinitiativen, which used to be small and largely unpolitical, have become a major social force during this time. Subjects: 1) Dangers of nuclear power - can the risk be justified; 2)The necessity of nuclear power; 3) The enforcement of nuclear power - political and economic background; 4) Limits of power generation - limits of growth or limits of the system. (orig./HP) [de

  19. The Fessenheim nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Alsace region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Fessenheim comprises two production units of 900 MW each (1800 MW as a whole). The facility generated 8.7 billion kWh in 2009, i.e. 70% of the energy consumed in the Alsace region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  20. The potential of nuclear energy to generate clean electric power in Brazil

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine; Giarola, Rodrigo S.; Coelho, Talita S.

    2013-01-01

    The generation of electricity in Brazil is concentrated in hydroelectric generation, renewable and clean source, but that does not satisfy all the demand and leads to necessity of a supplementary thermal sources portion. Considering the predictions of increase in demand for electricity in the next years, it becomes necessary to insert new sources to complement the production taking into account both the volume being produced and the needs of environmental preservation. Thus, nuclear power can be considered a potential supplementary source for electricity generation in Brazil as well as the country has large reserves of fissile material, the generation emits no greenhouse gases, the country has technological mastery of the fuel cycle and it enables the production of large volumes of clean energy. The objective of this study is to demonstrate the potential of nuclear energy in electricity production in Brazil cleanly and safely, ensuring the supplies necessary to maintain the country's economic growth and the increased demand sustainable. For this, will be made an analysis of economic and social indicators of the characteristics of our energy matrix and the availability of our sources, as well as a description of the nuclear source and arguments that justify a higher share of nuclear energy in the matrix of the country. Then, after these analysis, will notice that the generation of electricity from nuclear source has all the conditions to supplement safely and clean supply of electricity in Brazil. (author)

  1. Comparison between the public opinion and the image of public opinion on nuclear power generation. From the viewpoint of risk communication

    International Nuclear Information System (INIS)

    Matsuda, Toshihiro

    2003-01-01

    One objective for risk communication is to improve the understanding of public values and concerns. This paper examined the perceptions of nuclear power plant engineers of an electric power company, about public values and concerns regarding nuclear power generation (image of public opinion), and compared them with actual public opinion. The image of public opinion was surveyed by questionnaire method. In the questionnaire, the subjects were asked to estimate the most preferred answer given to questions posed to the Japanese public. For some questions, subjects were asked to estimate the percentage of Japanese who selected a certain answer for a question or the distribution of the answers. The results showed: (1) Nuclear power plant engineers correctly recognized the existence of high anxiety in the public's mind concerning nuclear power generation. (2) Engineers were apt to underestimate the percentage of Japanese who think nuclear power generation is useful in our society. (3) The majority of Japanese assume that when nuclear power plant accidents occur radioactive leakage is so severe that it affects the health of inhabitants. However, the engineers were apt to estimate that the majority of Japanese think radioactive leakage is not so severe. (4) Engineers correctly recognized that the majority of Japanese think it is a realistic option to use the nuclear power generation. However, they incorrectly estimated that only 40% of Japanese think it is a realistic option to use the nuclear power generation when in fact 67% think so. These gaps between public opinion and the image of public opinion by the engineers were classified into two groups, one that stems from the cognitive bias when people estimate public opinion and one that is inherent in the engineers of nuclear power plants. (author)

  2. A study of wet deposition of atmospheric tritium releases at the Ontario Power Generation, Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    Crooks, G.; DeWilde, J.; Yu, L.

    2001-01-01

    The Ontario Power Generation,Pickering Nuclear Generating Station (PNGS) has been investigating deposition of atmospheric releases of tritium on their site. This study has included numerical dispersion modelling studies conducted over the past three years, as well as an ongoing field monitoring study. The following paper will present results of the field monitoring study and make comparisons to the numerical modelling. The results of this study could be of potential use to nuclear stations in quantifying tritium deposition in near field regions where building wake effects dominate pollutant dispersion

  3. Nuclear power and the UK

    International Nuclear Information System (INIS)

    Murphy, St.

    2009-01-01

    This series of slides describes the policy of the UK government concerning nuclear power. In January 2008 the UK Government published the White Paper on the Future of Nuclear Power. The White Paper concluded that new nuclear power stations should have a role to play in this country's future energy mix. The role of the Government is neither to build nuclear power plants nor to finance them. The White Paper set out the facilitative actions the Government planned to take to reduce regulatory and planning risks associated with investing in new nuclear power stations. The White Paper followed a lengthy period of consultation where the UK Government sought a wide variety of views from stakeholders and the public across the country on the future of nuclear power. In total energy companies will need to invest in around 30-35 GW of new electricity generating capacity over the next two decades. This is equivalent to about one-third of our existing capacity. The first plants are expected to enter into service by 2018 or sooner. The Office for Nuclear Development (OND) has been created to facilitate new nuclear investment in the UK while the Nuclear Development Forum (NDF) has been established to lock in momentum to secure the long-term future of nuclear power generation in the UK. (A.C.)

  4. Improvements to feed water system of vapor generators of nuclear power stations

    International Nuclear Information System (INIS)

    Byerlex, W.M.

    1976-01-01

    The description is given of a feed water system related to the steam generators for nuclear power stations and which have a water feed ring around their upper part. This water intake system enables water hammer to be avoided even during operation under low load [fr

  5. The benefits of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This article briefly outlines the benefits of nuclear power. Nuclear electricity generation is compared with fossil-fuel generated electricity in terms of environmental pollution and accidents and disease hazards

  6. China's nuclear energy demand and CGNPC's nuclear power development

    International Nuclear Information System (INIS)

    Rugang, Sh.

    2007-01-01

    By importation, assimilation and innovation from French nuclear power technology and experience, the China Guangdong Nuclear Power Plant Holding Company (CGNPC) has developed the capabilities of indigenous construction and operation of 1000 MW-class nuclear power plants. Through the industrial development over the past 20 years, four 1000 MW-class reactors have been built and put into commercial operation in China. CGNPC is negotiating with AREVA on the transfer of the EPR technology and the application of this technology for the Yangjang nuclear power plant depends on the negotiation results. Since China became a member of the 4. Generation International Forum, CGNPC as a large state-owned enterprise, will take an active part in the 4. generation nuclear power technology developments under the leadership of China Atomic Energy Authority, particularly it will contribute to the research work on the high-temperature gas-cooled reactor and on the super-critical water reactor

  7. Counter Action Procedure Generation in an Emergency Situation of Nuclear Power Plants

    Science.gov (United States)

    Gofuku, A.

    2018-02-01

    Lessons learned from the Fukushima Daiichi accident revealed various weak points in the design and operation of nuclear power plants at the time although there were many resilient activities made by the plant staff under difficult work environment. In order to reinforce the measures to make nuclear power plants more resilient, improvement of hardware and improvement of education and training of nuclear personnel are considered. In addition, considering the advancement of computer technology and artificial intelligence, it is a promising way to develop software tools to support the activities of plant staff.This paper focuses on the software tools to support the operations by human operators and introduces a concept of an intelligent operator support system that is called as co-operator. This paper also describes a counter operation generation technique the authors are studying as a core component of the co-operator.

  8. Nuclear power: the turning tide

    International Nuclear Information System (INIS)

    Riley, P.J.; Warren, D.S.

    1981-01-01

    During 1980 and 1981, opposition to the expansion of the nuclear power generation programme grew from about 45% of the population to approximately 53%. Women, young people and labour voters are the most strongly opposed to nuclear power but among no section of the population is there a clear majority in favour of building more nuclear power stations. (author)

  9. Steam Generator control in Nuclear Power Plants by water mass inventory

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States); Doster, J. Michael [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)], E-mail: doster@eos.ncsu.edu; Mayo, Charles W. [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)

    2008-04-15

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators.

  10. Steam Generator control in Nuclear Power Plants by water mass inventory

    International Nuclear Information System (INIS)

    Dong Wei; Doster, J. Michael; Mayo, Charles W.

    2008-01-01

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators

  11. Nuclear Energy Cost Data Base: A reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1986-12-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on either the current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line around the turn of the century. In additions to light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on liquid metal reactor plants. This report includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative benchmark purposes

  12. Nuclear Energy Cost Data Base: a reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    1985-06-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on either the current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line in the last decade of this century. In addition to light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on liquid metal reactor plants. This report includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative and benchmark purposes

  13. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  14. The Paluel nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Haute Normandie region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Paluel comprises 4 production units of 1300 MW each (5200 MW as a whole). The facility generated 29.5 billion kWh in 2009, i.e. about 7% of the French national power generation and 35% of the energy produced in the Normandie region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  15. The Bugey nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Rhone-Alpes region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Bugey comprises 4 production units of 900 MW each (3600 MW as a whole). The facility generated 20.87 billion kWh in 2009, i.e. 5% of the French national power generation and 40% of the energy consumed in the Rhone-Alpes region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  16. Investment strategy for low-carbon power generation

    International Nuclear Information System (INIS)

    Yamasaki, Yukihiro; Matsuhashi, Ryuji; Yoshida, Yoshikuni

    2011-01-01

    Recently, it is needed to reduce CO 2 emissions for prevention of global warming. In Japan, the power generation sector is the biggest part in terms of CO 2 emissions, therefore it is very important to cope with the reduction of the emissions from this sector. From this point of view, it is assumed that the nuclear power generation is the most practical option to reduce them. In order to evaluate the possibility of introduction of the nuclear power, we built a generation planning model and simulate to analyze the transition of the optimal generation mix. Also, we evaluate the investment in the introduction of the nuclear power quantitatively using the real option analysis. (author)

  17. Why do we build nuclear power stations

    International Nuclear Information System (INIS)

    Keppler, E.

    1984-01-01

    The author discusses some aspects of interest in the context of opposition to nuclear power in Switzerland. The part played and to be played by nuclear power in Switzerland is discussed, criticisms and objections are countered, the implications of power generation without further nuclear contribution are examined, and requests in certain quarters for a tax on power generation except from alternative sources are rejected. (P.G.R.)

  18. Simulating the steam generator and the pressurizer of a PWR nuclear power plant

    International Nuclear Information System (INIS)

    De Greef, J.F.

    1985-01-01

    In a PWR nuclear power plant, considered as a power generating device, the steam generator as a subset plays an important role in the generation process, whereas the pressurizer rather acts as a control device for security purposes. Nevertheless, from a thermodynamical point of view, the two subsets behave basically in the same way, so that a common set of basic equations may be suggested to develop for each the proper mathematical simulation model. In this paper the generation of this common set of basic equations is described, from which a specific model for each device is derived. A numerical illustration of the behaviour of the two devices for typical inputs to the derived simulation model is pictured. (author)

  19. The economics of nuclear power

    International Nuclear Information System (INIS)

    Hunt, H.; Betteridge, G.

    1978-01-01

    It is stated that nuclear power stations throughout the world are now providing consumers with substantially the cheapest electricity, except in areas with extensive hydro-power or cheap, clean, local coal. Thermal nuclear power stations will continue to provide economic electricity until the cost of uranium rises to several times the present level; fast reactors have the potential to continue to stabilise the cost of electricity and by moderating demand for other fuels will keep down their cost also. Headings of this paper include -The historical perspective; methods of comparing nuclear and fossil generating costs; historical comparisons of UK nuclear and fossil generating costs; waste storage and decommissioning; future changes in costs; criteria for future investment in nuclear power; alternative methods of comparison; total system cost analysis; the economics of fast reactors; and the ultimate role of fast reactors. 13 references. (author)

  20. Utilization of nuclear energy for generating electric power in the FRG, with special regard to LWR-type reactors

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    Comments on interdependencies in energy industry and energy generation as seen by energy supply utilities, stating that the generation of electric power in Germany can only be based on coal and nuclear energy in the long run, are followed by the most important, fundamental, nuclear-physical, technological and in part political interdependencies prevailing in the starting situation of 1955/58 when the construction of nuclear power plant reactors began. Then the development ranging to the 28000 MW nuclear power output to be expected in 1985 is outlined, totalling in 115000 MW electric power in the FRG. Finally, using the respectively latest order, the technical set up of each of the reactor types with 1300 MWe unit power offered by German manufacturers are described: BBC/BBR PWR-type reactor Neupotz, KWU-PWR-type reactor Hamm and KWU PWR-type reactor double unit B+C Gundremmingen. (orig.) [de

  1. The structure of trust in the safety of nuclear power generation

    International Nuclear Information System (INIS)

    Watabe, Motoki; Haruna, Yasuhiro; Kitada, Atsuko.

    1994-01-01

    The purpose of this research is to clarify the structure of people's trust in electric power companies and nuclear power generation. For this purpose, we carried out questionnaire surveys in the United States and Japan with a special emphasis on the trustworthiness of electric power companies. The results indicated that trustworthiness of electric power companies were rated higher by Americans than by Japanese. Furthermore, trustworthiness of electric power companies in the United States was highly correlated with their trustfulness in private companies in general, whereas one in Japan was rather than correlated with their trust level in the government. This difference may imply Americans do not differentiate electric power companies from other private organizations, while Japanese assign a special status to them closely linked to the government. (author)

  2. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  3. Criteria for the design of the control room complex for a nuclear power generating station

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This Standard addresses the central control room of a nuclear power generating station and the overall complex in which this room is housed. It is not intended to cover special or normally unattended control rooms, such as those provided for radioactive waste handling or for emergency shutdown operations. The nuclear power generating station control room complex provides a protective envelope for plant operating personnel and for instrument and control equipment vital to the operation of the plant during normal and abnormal conditions. In this capacity, the control room complex must be designed and constructed to meet the following criteria contained in Appendix A of 10CFR50, General Design criteria for Nuclear Power Plants: (1) Criterion 2: design bases for protection against natural phenomena; (2) Criterion 3: fire protection; (3) Criterion 4: environmental and missile design bases; (4) Criterion 5: sharing of structures, systems and components (multiunit stations only); and (5) Criterion 19: control room

  4. Nuclear power: levels of safety

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1988-01-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the nuclear establishment itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired

  5. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Hirschmann, H.; Vennemann, J.

    1980-01-01

    The paper describes the energy policy quandary of developing countries and explains why nuclear power plants of a suitable size - the KKW 200 MW BWR nuclear power plant for electric power and/or process steam generation is briefly presented here - have an economic advantage over fossil-fuelled power plants. (HP) [de

  6. Working environment in power generation

    International Nuclear Information System (INIS)

    1989-05-01

    The proceedings contain 21 papers, of which 7 are devoted to nuclear power generation. They are concerned with the working environment in the controlled areas of the Bohunice nuclear power plant, the unsuitable design of the control rooms with respect to reliability and safety of operation of the nuclear power plant, optimization of the man-working conditions relation, operation of transport facilities, refuelling and fuel element inspection, the human factor and the probabilityy assessment of the nuclear power plant operating safety, a proposal to establish a universal ergonometric programme for the electric power distribution system, and physical factors in the ergonometric analysis of the working environment. (J.B.)

  7. Can global warming save nuclear power?

    International Nuclear Information System (INIS)

    Pearce, D.

    1994-01-01

    Nuclear powered electricity generation in the United Kingdom has an uncertain future. The relative costs of generating electricity by nuclear fission compared to other means and the need for a desirable mixture or ''portfolio'' of energy sources in the electricity industry are identified as the key to this uncertainty. The author argues that Government commitments to reducing Carbon Monoxide (CO) emissions, and hence global warming, may strengthen arguments in favour of a firm commitment to nuclear power, as even modern fossil-fuelled power plants emit nearly 90 times as much CO as nuclear plants. (UK)

  8. IEEE guide for planning of pre-operational testing programs for class 1E power systems for nuclear-power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) guide for pre-operational testing of Class 1E power systems for nuclear-power generating stations is presented. The guidelines apply to power systems both ac and dc supplies but not to the equipment which utilizes the ac and dc power. The pre-operational tests are performed after appropriate construction tests

  9. Optimal electricity generation system expansion and nuclear power option in Belarus

    International Nuclear Information System (INIS)

    Yakushau, A.; Mikhalevich, A.

    2000-01-01

    After having declared independence, the Republic of Belarus was forced to import 90% of fuel consumed and 25% of electricity. The deficit of peak electric capacity reached 40%. The imported fuel covers the last years because the drop in the production reduced the energy consumption in the Republic but not the needs of the energy sector. Annual payments for imported fuel and electricity are equal to the sum of an annual state budget of Belarus (about 1.5 billion USD) and current debts were not lower 300 million. Comparative analysis of the different scenarios of the electricity generation system expansion showed that an optimum way for electricity generation is installation of the combine cycle units and construction nuclear power plants. The results of the study also showed that the option based on replacement of deficit of the electricity generation by the way of the construction combine cycle units with capacities 450 MW turned out to be the best solution among non nuclear options. (author)

  10. Fuzzy algorithms to generate level controllers for nuclear power plant steam generators

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Park, Jae Chang; Kim, Dong Hwa; Kim, Byung Koo

    1993-01-01

    In this paper, we present two sets of fuzzy algorithms for the steam generater level control; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used. (Author)

  11. Projected role of nuclear power in Egypt and problems encountered in implementing the first nuclear power plant

    International Nuclear Information System (INIS)

    Effat, K.E.A.; Sirry, H.; El-Sharkawy, E.

    1977-01-01

    The increasing rise in fossil-fuel prices has favourably affected the economics of nuclear power generation bringing down the economically competitive size of nuclear units closer to small sizes compatible with grid capacities in developing countries. This encouraged Egypt to turn to nuclear power to fulfil its future power needs. In implementing its first nuclear power plant, Egypt is facing various problems. The capacity of the national electric power system and its inherent characteristics pose certain restrictions on the size and design of the nuclear plant required. The availability of sufficient local qualified management, engineering and technical personnel to participate in both precontractual and construction phases of the plant is quite a major problem. Lack of local developed industry to back up the construction phase implies the dependence to a large extent on imported equipment, materials and technology. The paper reviews the present and projected power demands in Egypt and the factors behind the decision to introduce a nuclear power generation programme. Various problems encountered and anticipated in introducing the first nuclear power plant are also discussed. (author)

  12. Production of gel 99mTc generators for Nuclear Medicine at the Nuclear Power Institute of China, Chengdu

    International Nuclear Information System (INIS)

    Boyd, R.E.

    1996-07-01

    The development and testing of the gel-type 99m Tc generator technology has been going on for several years at the Nuclear Power Institute of China. This generator type has already been licensed by the Ministry of Health. With the co-operation of the IAEA, under Model Project CPR/2/006,it is intended to upgrade and optimise the existing facility for large scale production and continue to improve the generator performance in terms of quality and reliability of its use in nuclear medicine. The expert mission objective was to carry out final laboratory tests to assess the performance of the gel- type 99m Tc, locally produced, as well as to assess the suitability of the corresponding 99m Tc eluate for nuclear medicine studies. In particular, the expert tested the suitability of the 99m Tc for the labelling of sensitive biomolecules and its general performance in a nuclear medicine service

  13. The Economics of Nuclear Power: Is Nuclear Power a Cost-Effective Way to Tackle Climate Change

    International Nuclear Information System (INIS)

    Thomas, S.

    2009-01-01

    The role nuclear power can play in combating climate change is limited by the fact that nuclear can have little role in the transport sector, one of the two major emitters of greenhouse gases. However, nuclear power is often portrayed as the most important potential measure to reduce emissions in the other major emitter of greenhouse gases, the power generation sector. For nearly a decade, there has been talk of a 'nuclear renaissance'. Under this, a new generation of nuclear power plants, so called generation III+ designs, would revitalize ordering in markets, especially Europe and North America, that had seen no orders since the 1980s or earlier. This renaissance and the potential role of nuclear power in combating climate change raise a number of issues, including: 1) Is nuclear power the most cost-effective way to replace fossil fuel power generation? 2) Can the issues that nuclear power brings with it, including environmental impact, safety, waste disposal and weapons proliferation be dealt with effectively enough that they will not be a barrier to the use of nuclear power? 3) Are uranium resources sufficient to allow deployment of nuclear power on the scale necessary to have a significant impact on greenhouse gas emissions with existing technologies or would unproven and even more controversial technologies that use natural uranium more sparingly, such as fast reactors, be required? This paper focuses on the first question and in particular, it examines whether economic factors are behind the failure of the long-forecast 'nuclear renaissance' to materialize in Europe and North America. It examines factors such as the construction cost escalation, difficulties of finance and the cost of capital, the financial crisis of 2008/09, the delays in getting regulatory approval for the new designs, and skills and equipment shortages. It concludes that the main factors behind the delays in new orders are: 1) Poor construction experience with the only two new orders

  14. Competitiveness of nuclear power in Japanese liberalized electricity market

    International Nuclear Information System (INIS)

    Abe, Y.

    2006-01-01

    The liberalization of Japanese electricity market expanded to customers of over 50 kV on April 1, 2005 and more than 60% of the market has been already open. The discussion about the assistance measures of nuclear power generation in Japanese liberalization of electricity market has come to grow warmer gradually. The opinions on the competitiveness of nuclear power are inconsistency among the supporters of nuclear power. Some says that nuclear power is the most competitive, others says nuclear power require some sort of financial or political assistance in the deregulation of electricity market. In this study, based on financial statements of each Japanese electric power company, the constitution of generation cost of nuclear power is illustrated and various financial and economic characteristics, including ''merit of scale'' and the impact of new nuclear power plant construction on the finance of electric power company, are discussed. In addition, the economic features of nuclear power generation are compared with those of thermal power generation through the analysis of financial statements. Finally, support policies for nuclear power required in deregulation of electric utilities are examined in terms of fairness of competition and security of electricity supply

  15. Nuclear power in the Soviet Bloc

    International Nuclear Information System (INIS)

    Davey, W.G.

    1982-03-01

    The growth of Soviet Bloc nuclear power generation to the end of the century is evaluated on the basis of policy statements of objectives, past and current nuclear power plant construction, and trends in the potential for future construction. Central to this study is a detailed examination of individual reactor construction and site development that provides specific performance data not given elsewhere. A major commitment to nuclear power is abundantly clear and an expansion of ten times in nuclear electric generation is estimated between 1980 and 2000. This rate of growth is likely to have significant impact upon the total energy economy of the Soviet Bloc including lessening demands for use of coal, oil, and gas for electricity generation

  16. Nuclear power in the Soviet Bloc

    Energy Technology Data Exchange (ETDEWEB)

    Davey, W.G.

    1982-03-01

    The growth of Soviet Bloc nuclear power generation to the end of the century is evaluated on the basis of policy statements of objectives, past and current nuclear power plant construction, and trends in the potential for future construction. Central to this study is a detailed examination of individual reactor construction and site development that provides specific performance data not given elsewhere. A major commitment to nuclear power is abundantly clear and an expansion of ten times in nuclear electric generation is estimated between 1980 and 2000. This rate of growth is likely to have significant impact upon the total energy economy of the Soviet Bloc including lessening demands for use of coal, oil, and gas for electricity generation.

  17. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  18. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    Science.gov (United States)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic

  19. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  20. Guide to the collection and presentation of electrical, electronic, and sensing component reliability data for nuclear-power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This Guide is intended to establish a method of collecting and presenting reliability data for quantitative systematic reliability analysis in nuclear power generating stations, as outlined in IEEE Std 351-1975. Appendix D, which is not a part of IEEE Std 500-1977 but which comprises the bulk of this publication, presents tables of reliability data for nuclear power generating stations, intended for use of nuclear systems reliability analysts or design engineers

  1. Nuclear power and greenhouse - twin issues

    International Nuclear Information System (INIS)

    Row, R.W.

    1990-01-01

    It is shown that nuclear electric power generation has been widely vilified in recent years. Its detractors have gained ascendancy over its proponents in guiding the political processes that control the approval of new civilian nuclear power stations for electricity generation in many countries. As a consequence, worldwide nuclear capacity growth is slowing to about 2.5% per year through the 1990s with a potential decline in nuclear capacity thereafter. This is occurring despite nuclear power's excellent record of safety and economy in comparison with other means of producing electricity, and while technical developments to improve this record continue. Proponents hope that its virtue of being the only proven means of generating electricity worldwide on a large scale that does not produce any greenhouse gases will appeal to environmentalists and help lead to a renewed nuclear age. This paper suggests that more than hope and rational argument based on scientific facts are needed to persuade the public to revise its opinion of nuclear power. A widespread nuclear fear based in part on ignorance, misinformation, and nuclear mythology, encouraged by nuclear opponents and ineptly countered by nuclear advocates, has had an important role in creating this situation. The greenhouse issues, closely resembling the nuclear issues in a number of ways, are also discussed. 23 refs

  2. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  3. The Penly nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Haute Normandie region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Penly comprises 2 production units of 1300 MW each (2600 MW as a whole). The facility generated 18.5 billion kWh in 2009, i.e. 3.57% of the French national power generation and 80% of the energy consumed in the Haute-Normandie region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  4. The Golfech nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Midi-Pyrenees region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Golfech comprises two production units of 1300 MW each (2600 MW as a whole). The facility generated 19.7 billion kWh in 2009, i.e. more than 5% of the French national power generation and 100% of the energy consumed in the Midi-Pyrenees region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  5. Nuclear power: time to start again

    International Nuclear Information System (INIS)

    Rezak, W.D.

    2004-01-01

    This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result is that the US nuclear industry is alive and well. Perhaps it's time to start anew the building of nuclear power plants. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in over 30 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crises in California and the Northeast. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year's operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation

  6. Worldwide experience in nuclear power generation

    International Nuclear Information System (INIS)

    Stueger, R.; Krejsa, P.; Putz, F.

    1982-01-01

    Five years after their own big conference on nuclear energy and the nuclear fuel cycle of 1977 in Salzburg, and one year before the new Geneva conference planned by the United Nations, the International Atomic Energy Organization (IAEO) organized from 13. to 17.9.82 in Vienna in connection with their 25 years' existence an international conference on nuclear power experience. The NPE differs from other big international conferences of the present year and the last years with similar overall topics mainly by the fact that the Soviet Union and other Eastern countries as well as a great number of developing countries were very much represented, with contributions. (orig.) [de

  7. An evaluation of light water breeder reactor system (LWBR) as an alternative for nuclear power generation in Brazil

    International Nuclear Information System (INIS)

    Sauer, I.L.

    1981-01-01

    The LWBR system as an alternative for nuclear power generation in Brazil, was technically and economically evaluated. The LWBR system has been characterized comparatively with the Pressurized Water Reactors through technological and investment cost analysis and through the analysis of the processes and unit costs of the fuel cycle stages. The characteristics of the LWBR system in comparison to the PWR system, with respect to utilization and cumulative consumption of uranium and thorium resources, fuel cycle processes and associated costs have been determined for possible alternatives of nuclear power participation in the Brazilian hidro-thermal electricity generating system. The analysis concluded that the LWBR system does not represent an attractive alternative for nuclear power generation in Brazil and even has no potential to compete with conventional Pressurized Water Reactors. (Author) [pt

  8. Nuclear power plants: 2009 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the turn of 2009/2010, nuclear power plants were available for energy supply in 30 countries of the world. A total of 437 nuclear power plants, which is one plant less than at the 2008/2009 turn, were in operation with an aggregate gross power of approx. 391 GWe and an aggregate net power, respectively, of 371 GWe. The available gross power of nuclear power plants did not changed noticeably from 2008 to the end of 2009. In total 2 nuclear generating units were commissioned in 2009. One NPP started operation in India and one in Japan. Three nuclear generating units in Japan (2) und Lithuania (1) were decomissioned in 2009. 52 nuclear generating units, i.e. 10 plants more than at the end of 2008, with an aggregate gross power of approx. 51 GWe, were under construction in 14 countries end of 2009. New or continued projects are notified from (number of new projects): China (+9), Russia (1), and South Korea (1). Some 84 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another units are in their preliminary project phases. (orig.)

  9. Nuclear power plants: 2008 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    At the turn of 2008/2009, nuclear power plants were available for energy supply in 31 countries of the world. A total of 438 nuclear power plants, which is one plant less than at the 2007/2008 turn, were in operation with an aggregate gross power of approx. 393 GWe and an aggregate net power, respectively, of 372 GWe. The available gross power of nuclear power plants didn't changed noticeabely from 2007 to the end of 2008. No nuclear generating unit was commissioned in 2008. One nuclear generating unit in the Slovak Republic was decomissioned in 2008. 42 nuclear generating units, i.e. 10 plants more than at the end of 2007, with an aggregate gross power of approx. 38 GWe, were under construction in 14 countries end of 2008. New or continued projects are notified from (in brackets: number of new projects): Bulgaria (2), China (5), South Korea (2), Russia (1), and the Slovak Republic (2). Some 80 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another approximately 120 units are in their preliminary project phases. (orig.)

  10. The technology of the bearings used in the nuclear power generation system turbine generator units

    International Nuclear Information System (INIS)

    Vialettes, J.M.; Rossato, M.

    1997-01-01

    A bearing consists of all the stationary part which allow the relative motion in rotation or in translation, of a shaft line. Inside the bearing there is a journal bearing with a metallic anti-friction coating (the babbitt metal). The high power turbine generator unit rotors are supported by smooth transversal journal bearings fed with oil which fills the empty space and runs along the shaft. The technologies used for the bearings and the thrust bearings of the turbine generator units and the various shaft lines of the French CP0/CP1- and CP2/1300 MW-type nuclear power plants are described. The experience feedback is then discussed in terms of the dynamics of the shaft line, i.e. vibrational problems, the influence of the alignment and the babbitt metal incidents. (author)

  11. Nuclear power plants 1995 - a world survey

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The atw Statistics Report compiled by atw lists 428 nuclear power plants with 363 397 gross MWe in operation in 30 countries in late 1995. Another 62 units with 55 180 gross MWe were under construction in 18 countries. This adds up to a total of 490 units with an aggregate 418 577 MWe. In the course of 1995 four units in four countries started commercial operation. In the survey of electricity generation in 1995 for which no information was made available from China and Kasachstan, a total of 417 nuclear power plants were covered. In the year under review they generated an aggregate 2 282 614 GWH, which is 3.4% more than in the previous year. The highest nuclear generation again was recorded in the USA with 705 771 GWh, followed by France with 377 021 GWh. The Grohnde power station in Germany attained the maximum annual production figure of 11 359 GWh. The survey includes nine tables indicating the generating performance of each nuclear power plant, the development of electricity generation in nuclear plants, and status of nuclear power plants at the end of 1995 arranged by countries, types of reactors, and reactor manufacturers. (orig.) [de

  12. 2009 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the end of 2009, 437 nuclear power plants were available for energy supply in 30 countries of the world. This is 1 plant less than at the end of 2008. The aggregate gross power of the plants amounted to approx. 391.5 GWe, the aggregate net power, to 371.3 GWe. This capacity numbers are a little bit less than one year before (gross: 392.6 GWe, net: 372.2 GWe). Two units were commissioned in 2009; 1 unit in India (Rajasthan 5) and 1 unit in Japan (Tomari 3). Three nuclear power plant were shut down permanently in 2009 in Japan (Hamaoka 1 and Hamaoka 2) and in Lithuania (Ignalina 2). 52 nuclear generating units, i.e. 9 plants more than at the end of 2008, were under construction in late 2009 in 14 countries with an aggregate gross power of approx. 51.2 GWe. Worldwide, some 80 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 130 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2009 achieved another reasonable ranking level of approx. 2,558 billion kWh (2008: approx. 2,628 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 60,500 billion kWh, and operating experience has grown to some 13,950 reactor years. (orig.)

  13. Global outlook for nuclear power

    International Nuclear Information System (INIS)

    Southworth, F.H.

    2010-01-01

    'Full text:' The global nuclear power forecast, the North American outlook and the effect of nuclear power growth on greenhouse gas emissions in North America will be discussed. The construction of Generation III reactors will replace aging power plants and, further, add capacity that is environmentally sustainable. The outlook for Generation IV reactors also may significantly improve the environmental balance after 2030, both in electrical markets, waste reduction, and in non-traditional markets such as process heat. (author)

  14. 3D model of steam generator of nuclear power plant Krsko

    International Nuclear Information System (INIS)

    Ravnikar, I.; Petelin, S.

    1995-01-01

    The Westinghouse Electric Corporation D4 steam generator design was analyzed from a thermal-hydraulic point of view using the 3D PHOENICS computer code. Void fraction, velocity and enthalpy distributions were obtained in the U-tube riser. The boundary conditions of primary side were provided by SMUP 1D code. The calculations were carried out for present operating conditions of nuclear power plant Krsko. (author)

  15. Nuclear Co-Generating Plants for Powering and Heating to Cleaning the Warsaw's Environment

    International Nuclear Information System (INIS)

    Baurski, J.

    2010-01-01

    In 2009 the Polish Government made a decision to introduce nuclear power to Poland. Two nuclear power plants (NPPs) will be constructed nearly at the same time - the first unit should start operation in 2020, and by 2030 there should be about 6000 MWe added to the national electrical grid. The Commissioner of the Government was nominated to introduce the Polish Nuclear Power Program (PNPP). One of the four vertically integrated - the biggest energy company (PGE - the Polish Energy Group with headquarters in Warsaw) was appointed to prepare investments. These activities are planned in four stages: I. up to 31.12.2010 - The PNPP will be prepared and the program must then be accepted by the Government. II. 2011 - 2013 - Sites will be determined, and the contract for construction of the first NPP will be closed. III. 2014 - 2015 - Technical specifications will be prepared and accepted according the law. IV. 2016 - 2020 - The first NPP in Poland will be constructed. At present, the Government is receiving proposals from some regions of Poland asking that they be chosen for the NPP. One of the obvious locations for the NPP is a 40-kilometer vicinity of Warsaw (1.8 mln inhabitants). The need for both electric power and heat is increasing because of the rapidly growing town. It gives the extremely valuable chance for a very high thermodynamic efficiency of 80% in co-generation instead of 33% (max 36% for EPR-1600) for NPP generated electric power only. The Warsaw heating system has a capacity of 3950 MWt and is the biggest among EU countries. It is the third biggest in the world. Two NPPs, each of 2 x 1000 MWe could be built on the Vistula River up and down the town. In 2005, UE calculated losses caused by gas emissions at 24 mld eur, and the span of human lives was six months shorter in western countries and 8 months shorter in Poland. Warsaw's atmosphere is very polluted also because there are four heat and power generating plants: three coal and one oil -fired. In these

  16. Reliability of diesel generators at the Finnish and Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Pulkkinen, Urho [Technical Research Centre of Finland, Vuorimiehentie 5, SF-02150, Espoo (Finland)

    1986-02-15

    The operating experiences of 40 stand-by diesel generators at the Finnish and Swedish nuclear power plants have been analysed with special emphasis on the impact of the frequency of surveillance testing and of the test procedure on diesel generator reliability, the contribution of design, manufacturing, testing and maintenance errors and the potential and actual common cause failures, The results pf the analyses consisted both practical recommendations and mathematical reliability models and useful reliability data. (author)

  17. Seawater desalination with nuclear power

    International Nuclear Information System (INIS)

    2005-01-01

    Nuclear power helps reduce costs for energy-intensive processes such as seawater desalination. A new generation of innovative small and medium nuclear power plants could co-generate electricity and potable water from seawater, both safely and at competitive prices in today's market. The IAEA provides technical support to Member States facing water shortage problems, on assessing the viability of nuclear power in seawater desalination. The support, usually channelled through national Technical Cooperation (TC) projects, can take several forms, ranging from educational training and technical advice on feasibility studies to design and safety review of demonstration projects. The IAEA offers a software tool (DEEP) that can be used to evaluate the economics of the different desalination and heat source configurations, including nuclear and fossil options

  18. Steam generator tube failures: experience with water-cooled nuclear power reactors during 1976

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1978-02-01

    A survey was conducted of experience with steam generator tubes at nuclear power stations during 1976. Failures were reported at 25 out of 68 water-cooled reactors. The causes of these failures and the repair and inspection procedures designed to cope with them are summarized. Examination of the data indicates that corrosion was the major cause of steam generator tube failures. Improvements are needed in steam generator design, condenser integrity and secondary water chemistry control. (author)

  19. The generation characteristics of solid radioactive wastes in the KEPCO nuclear power plants

    International Nuclear Information System (INIS)

    Shon, Soon Hwan; Kang, Duck Won; Kim, Hee Keun

    1991-01-01

    Solid radwastes generation trend and characteristics were discussed for nuclear power plants in KEPCO. Each plant has a specific tendency of solid radwastes generation due to the plant characteristics. The total volume of solid radwastes generated from nine power plants was accumulated in 23,012 drums by the end of 1989. The average annual volume per unit was about 670 drums. The solid radwaste mostly consisted of solidified concentrates and contaminated trash. The contaminated trash has been the major portion of the solid radwastes since 1982. The volume of the contaminated trash was dependent on the availability factor and period of overhaul. Therefore, the contaminated trash was considered to be a prime target for the solid radwastes minimization plan

  20. Nuclear power plants in the world - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2009 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2010/01/01, Worldwide status of nuclear power plants (12/31/2009), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2009, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear power plants by country at the end 2009, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2009, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2009, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2009, Long term shutdown units at 12/31/2009, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  1. Philosophy of power generation

    International Nuclear Information System (INIS)

    Amein, H.; Joyia, Y.; Qureshi, M.N.; Asif, M.

    1995-01-01

    In view of the huge power demand in future, the capital investment requirements for the development of power projects to meet the future energy requirements are so alarming that public sector alone cannot manage to raise funds and participation of the private sector in power generation development has become imperative. This paper discusses a power generation philosophy based on preference to the exploitation of indigenous resources and participation of private sector. In order to have diversification in generation resources, due consideration has been given to the development of nuclear power and even non-conventional but promising technologies of solar, wind, biomass and geothermal etc. (author)

  2. Benefits and hazards of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    Compilation of a seminar at the KFA Juelich on topical problems of nuclear power. Subjects: Energy demand, its expected development and possibilities of coverage; physical fundamentals and technical realisation of power generation by nuclear fission; fuel cycle problems and solutions; effects of radioactive radiation; safety of nuclear power plants and the nuclear hazard as compared with other hazards. (orig./RW) [de

  3. Super long-term scenario of world nuclear power generation and uranium supply and demand until 2030 and further 2100

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Kakinoki, Tatsuro

    2007-01-01

    Based on latest nuclear policy and development trend in each country in the world, quantity of nuclear power generation and the uranium supply and demand until 2030 and further 2100 were predicted. As a result, the introduction of nuclear power stations spreads around Asia until 2030. The limitation on the uranium resources clearly does not exist until 2030, but a development period of around 10 years is necessary for exploitation of uranium resources. If timely development investment does not advance, it may invite shortage of uranium supply and promote a remarkable rise of uranium supply price. If the reinforcement of the anti-global warming measure and the diversification of the energy source advance at the super long-term time span called 2100, the world coal power largely decreases and the introduction of the nuclear power enlarges steadily. Introduction of the light water reactor (LWR) extends until 2080 since the fuel uses uranium resources of about 70 year ratio of reserves to production, but quantity of LWR power stations and power generation changes for the decrease due to the limitation of uranium resources after it. On the other hand, sustained expansion of the plutonium utilization by the fuel cycle technology and the introduction of the fast breeder reactor (FBR) advance after 2050. Then the sustained expansion of nuclear power is surely expected to occupy the first share of power generation in 2100. On this account it is necessary to push forward the plutonium use, backend technology and FBR development globally, and Japan is expected to carry a positive role to lead international nuclear energy technology development as a nuclear energy developed nation. (T. Tanaka)

  4. Problems facing a first nuclear power plant

    International Nuclear Information System (INIS)

    Diaz, E.

    1986-01-01

    Requirement of nuclear power generation. Reason for considering a nuclear power programme. Decision to 'go nuclear'. Existing antecedents in the country (nuclear research institution, conventional generating plants, other nuclear utilities). - First organizational steps. Feasibility studies. Site selection and power module. Eventual reactor type decision. Site approval. - Pre-purchasing activities. Eventual selection of a consultant. Domestic participation capabilities. Pre-qualification bids. - Definition of contract type and scopes. Turn-key/non-turn-key. Architect Engineer organization. Bidding documentation. Financing. Warranties. Role of the owner. Licensing procedures and regulations. (orig./GL)

  5. Modern nuclear power-green power of the millennium

    International Nuclear Information System (INIS)

    Biswas, R.N.

    2003-01-01

    In India, as well as many developing countries, the demand for power continues to race ahead of the supply position. Our present generating capacity of about 1,08,000 MW needs to be increased by another 1 lac MW during 10th and 11th 5-year plans. Whereas more friendly renewable energy may reach about 10-12%, the rest has to come from conventional thermal, hydel or nuclear energy. Thermal energy actually needs low investment per MW but it is the least eco-friendly. Hydel power is green and clean power but the actual energy generated depends on the water quantity available, hence not fully dependable. Therefore in short, nuclear energy available in abundance, has no option for meeting the increasing base demand, as has been proved in Britain, USA, France, Japan and other countries. This paper gives the latest improvements in nuclear power plant design and construction for improved efficiency, operating safety and safe waste storage facilities and explains that nuclear power is affordable and indispensable

  6. IEEE standard requirements for reliability analysis in the design and operation of safety systems for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The purpose of this standard is to provide uniform, minimum acceptable requirements for the performance of reliability analyses for safety-related systems found in nuclear-power generating stations, but not to define the need for an analysis. The need for reliability analysis has been identified in other standards which expand the requirements of regulations (e.g., IEEE Std 379-1972 (ANSI N41.2-1972), ''Guide for the Application of the Single-Failure Criterion to Nuclear Power Generating Station Protection System,'' which describes the application of the single-failure criterion). IEEE Std 352-1975, ''Guide for General Principles of Reliability Analysis of Nuclear Power Generating Station Protection Systems,'' provides guidance in the application and use of reliability techniques referred to in this standard

  7. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  8. Type test of Class 1E electric cables, field splices, and connections for nuclear power generating stations - 1975

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides direction for establishing type tests which may be used in qualifying Class 1E electric cables, field splices, and other connections for service in nuclear power generating stations. General guidelines for qualifications are given in IEEE Std 323-1974, Standard for Qualifying Class 1E Electric Equipment for Nuclear Power Generating Stations. Categories of cables covered are those used for power control and instrumentation services. Though intended primarily to pertain to cable for field installation, this guide may also be used for the qualification of internal wiring of manufactured devices

  9. Attitude of students intending to be teachers toward nuclear power generation and the environment

    International Nuclear Information System (INIS)

    Shiomi, Tetsuro; Tada, Yasuyuki

    2002-01-01

    The ''Period for Integrated study'' will be added to the existing subjects in elementary schools, junior and high schools from 2002. Subjects included in the period are, for example, international understanding, information, environment, etc. To treat the issues about environment, energy and nuclear power generation in the period, it is necessary to study the attitude of the teachers and the students intending to be teachers toward environment, energy, atomic power and integrated study. The results of the present survey show that the teachers studying in under graduate schools and the students intending to be teachers have negative attitude toward nuclear power, have concern about environment and energy, value cooperation with a company in the period. When they deal with the environment, energy and nuclear power in the period, individual ideas and principles are not taught, and teachers gather information from the pros and cons, and motivate the children to judge by themselves. This reflects the basic idea of ''the Period of Integrated Study''. (author)

  10. Nuclear power in Japan and the USA

    International Nuclear Information System (INIS)

    Titterton, E.

    1979-06-01

    The development of the nuclear power industry in Japan and the USA is discussed. The author lists the number of nuclear power plants operating, under construction and planned and considers the contribution made by nuclear power stations to the total electricity generated. The advantages of nuclear power to both countries are outlined and forecasts are made of the role to be played by nuclear power in future years

  11. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  12. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  13. 78 FR 14361 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Science.gov (United States)

    2013-03-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0310; Docket Nos. 50-445 and 50-446; License Nos. NPF-87 and NPF-89] In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units... Nuclear Power Plant, Units 1 and 2 (CPNPP), and its Independent Spent Fuel Storage Installation Facility...

  14. The Cruas-Meysse nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Rhone-Alpes region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Cruas-Meysse comprises 4 production units of 900 MW each (3600 MW as a whole). The facility generated 23.587 billion kWh in 2009, i.e. 5% of the French national power generation and 40% of the energy consumed in the Rhone-Alpes region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  15. Nuclear power within liberalised electricity markets

    International Nuclear Information System (INIS)

    Kidd, Stephen W.

    2002-01-01

    Competition between various methods of generating electricity in liberalised markets means that all power plants must be cost-effective. The price of electricity from nuclear power includes all waste disposal and decommissioning costs, unlike other electricity generating technologies. Most existing nuclear power plants are likely to prosper under electricity liberalization. Many will receive operating life extensions and be able to compete in the electricity market for many years to come. Investment costs are particularly heavy for nuclear plants. Capital expenditure appraisal methodologies mean that such plants suffer financial disadvantages in times of high interest rates. Low and stable fuel costs are the prime advantage of nuclear plants against other sources of generating electricity. There will be significant demand for new generating capacity, both incremental and replacement, in the next 20 years. Under present conditions, where there is access to a stable and cheap supply of piped gas, nuclear and coal plants find it difficult to compete against gas-fired plants. The nuclear industry is addressing the need for new reactor designs, offering significant capital and operating cost reductions from the previous generation of reactors. This development and the need for carbon abatement on a worldwide basis offers nuclear plants a further economic advantage against alternative technologies. (author)

  16. Slovenske elektrarne, a.s., Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1998-01-01

    In this booklet the uranium atom nucleus fission as well as electricity generation in a nuclear power plant (primary circuit, reactor, reactor pressure vessel, fuel assembly, control rod and reactor power control) are explained. Scheme of electricity generation in nuclear power plant and Cross-section of Mochovce Nuclear Power Plant unit are included. In next part a reactor scram, refuelling of fuel, instrumentation and control system as well as principles of nuclear safety and safety improvements are are described

  17. Nuclear energy cost data base. A reference data base for nuclear and coal-fired powerplant power-generation cost analysis

    International Nuclear Information System (INIS)

    1982-10-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for DOE/NE. Proposals are presented for such a methodology and for reference assumptions and data to be used with the methodology. This report is intended to provide basic guidelines or a starting point for analysis and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base-load light water reactors on either a current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil and natural gas-fired electric generating plant coming on line in the last decade of this century. This paper includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative and benchmark purposes

  18. Economic analysis of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Chae, Kyu Nam

    1996-12-01

    The major contents in this study are as follows : (1) Efforts are made to examine the role of nuclear energy considering environmental regulation. An econometric model for energy demand and supply including carbon tax imposition is established. (2) Analysis for the learning effect of nuclear power plant operation is performed. The study is focused to measure the effect of technology homogeneity on the operation performance. (3) A preliminary capital cost of the KALIMER is estimated by using cost computer program, which is developed in this study. (author). 36 refs.,46 tabs., 15 figs.

  19. Simulation-based Investigation of Electric Power Generation by Using Gamma Radiation from Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    This study investigates the feasibility of using gamma radiation energy from spent nuclear fuels to produce electricity as emergency power source. The proposed electric power system includes electricity generation and storage. Electricity generation was based on conversion of gamma energy to light energy using a scintillator and then to electric energy using a solar cell. Generated electricity was to be stored in a battery as a power source. The efficiency of energy conversion and the extent of the resulting electric power source capability were examined by computer model-based simulation. Main factors which affect to total electric power generated include thermal power of nuclear power plant, average burn-up period for fuel rod, battery charging time, and scintillator thickness. The estimated total power generation and its possible application is discussed. Although the output power increases as scintillator becomes thicker, thick scintillator can be problem because of its high price. There are two ways to solve this problem. The first one is to use thin scintillator to whole fuel assembly area. The second one is to use thick scintillator to limited region. But the current per fuel assembly for the first case for 4000MWth, 72 month burnup is about several to tens of microampere scale, which is too small to charge. Because of this the system is supposed to have thick scintillator system with limited region. Based on the results, the generated electricity is expected to be insufficient to operate the safety injection pumps even at the maximum power output. This may be important for security purposes. Based on the current design, the solar cell efficiency is estimated to be around 1.5-4%. As the efficiency is a strong function of scintillation wavelength, improving the efficiency may be possible by broadening the wavelength through the use of multiple scintillators. Future work will also include validation of the results through experiments, and material reliability

  20. Simulation-based Investigation of Electric Power Generation by Using Gamma Radiation from Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Mansung

    2014-01-01

    This study investigates the feasibility of using gamma radiation energy from spent nuclear fuels to produce electricity as emergency power source. The proposed electric power system includes electricity generation and storage. Electricity generation was based on conversion of gamma energy to light energy using a scintillator and then to electric energy using a solar cell. Generated electricity was to be stored in a battery as a power source. The efficiency of energy conversion and the extent of the resulting electric power source capability were examined by computer model-based simulation. Main factors which affect to total electric power generated include thermal power of nuclear power plant, average burn-up period for fuel rod, battery charging time, and scintillator thickness. The estimated total power generation and its possible application is discussed. Although the output power increases as scintillator becomes thicker, thick scintillator can be problem because of its high price. There are two ways to solve this problem. The first one is to use thin scintillator to whole fuel assembly area. The second one is to use thick scintillator to limited region. But the current per fuel assembly for the first case for 4000MWth, 72 month burnup is about several to tens of microampere scale, which is too small to charge. Because of this the system is supposed to have thick scintillator system with limited region. Based on the results, the generated electricity is expected to be insufficient to operate the safety injection pumps even at the maximum power output. This may be important for security purposes. Based on the current design, the solar cell efficiency is estimated to be around 1.5-4%. As the efficiency is a strong function of scintillation wavelength, improving the efficiency may be possible by broadening the wavelength through the use of multiple scintillators. Future work will also include validation of the results through experiments, and material reliability

  1. Determination of reliability criteria for standby diesel generators at a nuclear power station

    International Nuclear Information System (INIS)

    Evans, M.G.K.

    1987-01-01

    The requirement for standby diesel generators at nuclear power stations is developed and a probabilistic approach used to define the reliability parameters. The present criteria used when ordering a diesel generator are compared with the testing required by the regulatory body and the most likely requirement following an accident. The impact of this on the diesels at a particular station and the root cause of failures are discussed. (orig.)

  2. Commercial nuclear power 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents historical data on commercial nuclear power in the United States, with projections of domestic nuclear capacity and generation through the year 2020. The report also gives country-specific projections of nuclear capacity and generation through the year 2010 for other countries in the world outside centrally planned economic areas (WOCA). Information is also presented regarding operable reactors and those under construction in countries with centrally planned economies. 39 tabs

  3. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  4. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  5. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  6. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  7. Economics of nuclear power

    International Nuclear Information System (INIS)

    Roth, B.F.

    1977-01-01

    The economics of electricity supply and production in the FRG is to see on the background of the unique European interconnected grid system which makes very significant contributions to the availability of standby energy and peak load power. On this basis and the existing high voltage grid system, we can build large nuclear generating units and realise the favorable cost aspects per installed KW and reduced standby power. An example of calculating the overall electricity generating costs based on the present worth method is explained. From the figures shown, the sensitivity of the generating costs with respect to the different cost components can be derived. It is apparent from the example used, that the major advantage of nuclear power stations compared with fossil fired stations lies in the relatively small percentage fraction contributed by the fuel costs to the electricity generating costs. (orig.) [de

  8. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  9. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  10. The concept of electro-nuclear facility for useful power generation and minor actinides transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Bergelson, B.R.; Balyuk, S.A. [ITEP, Moscow (Russian Federation)

    1995-10-01

    The possibility is shown to design in principle the double-purpose liquid fuel electro nuclear facility for useful power generation and minor actinides transmutation in U-Pu fuel cycle conditions. D{sub 2}O and a melt of fluorine salts are considered as a working media for liquid fuel. Such facility replenished with depicted or natural uranium only makes it possible to generate power of 900 MW (c) for external consumers and serve 20 WWER-1000 reactors for transmutation of MA. The facility could be thought as an alternative to fast reactors since appr. 30% of the total power confined in uranium is utilized in it.

  11. Climate change and nuclear power

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  12. How would nuclear power impact the Australian economy?

    International Nuclear Information System (INIS)

    Nicholson, Martin

    2013-01-01

    Two government agencies recently produced models of Australia’s future electricity generation mix out to 2050. One was from the Department of Resources, Energy and Tourism, titled Energy White Paper (2012), and the other from CSIRO, called eFuture. The EWP did not include nuclear power in the mix while the CSIRO web-based modelling tool had provision to include nuclear power. By using these models, it was possible to assess the economic impact out to 2050. The areas of national economic impact evaluated were: 1. The cost of greenhouse gas abatement; 2. The cost of health damage from burning fossil fuels to generate electricity; 3. The cost of on-grid electricity generation and its impact on the retail cost of electricity; 4. The jobs created in developing a nuclear power industry in Australia; 5. The investment costs involved to change the generator mix; and 6. The cost of delaying the introduction of nuclear power. The analysis showed that by using nuclear power, a significant reduction in abatement and health costs was possible, totalling $150 billion. The wholesale and retail cost of electricity could be reduced by 20 per cent and 29,000 nuclear jobs could be created. There would be no significant increase in capital investment needed to introduce nuclear power into the generation mix. Delaying the implementation of nuclear power could cost $8 billion per year in abatement and health costs.

  13. Generation of floor spectra compatible time histories for equipment seismic qualification in nuclear power plants

    International Nuclear Information System (INIS)

    Shyu, Y.-S.; Luh, Gary G.; Blum, Arie

    2004-01-01

    This paper proposes a procedure for generating floor response spectra compatible time histories used for equipment seismic qualification in nuclear power plants. From the 84th percentile power spectrum density function of an earthquake ensemble of four randomly generated time history motions, a statistically equivalent time history can be obtained by converting the power spectrum density function from the frequency domain into the time domain. With minor modification, if needed, the converted time history will satisfy both the spectral and the power spectrum density enveloping criteria, as required by the USNRC per Revision 2 of the Standard Review Plan, Section 3.7.1. Step-by-step generating procedures and two numerical examples are presented to illustrate the applications of the methodology. (author)

  14. Education and public relations in nuclear power toward the next generation in Korea

    International Nuclear Information System (INIS)

    I, Han-Joo; Seo, Doo-Han.

    1989-01-01

    The report outlines the education in nuclear engineering in colleges and universities in Korea, experiments and training in nuclear reactor operation, research project for education in peaceful utilization of nuclear power, and public relations activities and special plans intended for the new generation in the nation. Programs covering the education of students in nuclear engineering in colleges and universities in Korea, and public relations toward some selected groups and brackets have been conducted successfully, producing good results. On the other hand, some improvements in educational activities, including the revision of textbooks, are required in such a field of education of pupils in primary, middle and high schools. Specially-designed introductory courses and advanced courses in the peaceful utilization of nuclear power should be established to ensure that students in scientific or technological fields other than nuclear engineering will gain deeper understanding of the issue. For this, the preparation of textbooks are currently under way. It is hoped that public relations activities will be expanded on a more continuous and consistent basis, instead of the current intermittent basis, by making good use of the mass media to distribute information among the general public. (Nogami. K.)

  15. Education and public relations in nuclear power toward the next generation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    I, Han-Joo; Seo, Doo-Han.

    1989-02-01

    The report outlines the education in nuclear engineering in colleges and universities in Korea, experiments and training in nuclear reactor operation, research project for education in peaceful utilization of nuclear power, and public relations activities and special plans intended for the new generation in the nation. Programs covering the education of students in nuclear engineering in colleges and universities in Korea, and public relations toward some selected groups and brackets have been conducted successfully, producing good results. On the other hand, some improvements in educational activities, including the revision of textbooks, are required in such a field of education of pupils in primary, middle and high schools. Specially-designed introductory courses and advanced courses in the peaceful utilization of nuclear power should be established to ensure that students in scientific or technological fields other than nuclear engineering will gain deeper understanding of the issue. For this, the preparation of textbooks are currently under way. It is hoped that public relations activities will be expanded on a more continuous and consistent basis, instead of the current intermittent basis, by making good use of the mass media to distribute information among the general public. (Nogami. K.).

  16. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  17. The influence nuclear power has on corporate image and the effect of offering merit information of nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2006-01-01

    Many electric power companies in Japan, irrespective of their nuclear power generation ratio's difference, have nuclear power plants. These days, corporate brand image is becoming more and more important. Therefore, a survey was carried out to study the effect that nuclear power (including comparison with the other type of industry besides electric power) has on the corporate image of an electric power company. Further more, the survey includes a research about the effect on people's attitude change towards nuclear power before and after discovering the merits or benefits of nuclear power. The possibility of enhancing the corporate brand image of electric power companies by providing merit information of nuclear power was studied. (author)

  18. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  19. Safe and green nuclear power

    International Nuclear Information System (INIS)

    Kushwaha, H.S.

    2010-01-01

    Energy development plays an important role in the national economic growth. Presently the per capita consumption of energy in our country is about 750 kWh including captive power generation which is low in comparison to that in the developed countries like USA where it is about 12,000 kWh. As of now the total installed capacity of electricity generation is about 152,148 MW(e) which is drawn from Thermal (65%), Hydel (24%), Nuclear (3%) power plants and Renewables (8%). It is expected that by the end of year 2020, the required installed capacity would be more than 3,00,000 MW(e), if we assume per capita consumption of about 800-1000 kWh for Indian population of well over one billion. To meet the projected power requirement in India, suitable options need to be identified and explored for generation of electricity. For choosing better alternatives various factors such as availability of resources, potential to generate commercial power, economic viability, etc. need to be considered. Besides these factors, an important factor which must be taken into consideration is protection of environment around the operating power stations. This paper attempts to demonstrate that the nuclear power generation is an environmentally benign option for meeting the future requirement of electricity in India. It also discusses the need for creating the public awareness about the safe operations of the nuclear power plants and ionising radiation. (author)

  20. Social contention about safety of nuclear power plant

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1978-01-01

    In Japan, the contentions and arguments on the safety of nuclear power generation have been active since its first introduction, and these are greatly influenced by the nation's experiences of atomic bombs in Hiroshima, Nagasaki, and Bikini. As the result, the attitude of peoples toward the acceptance of nuclear power plants is significantly different from that in other countries. The situation in Japan of social contentions about nuclear power safety is explained in two aspects: acceptance of the safety, by peoples and Japanese pattern of safety contentions. In both upstream and downstream of nuclear power generation, not only the safety but also the right or wrong for nuclear power generation itself is discussed. The problem of nuclear power safety has gone into the region beyond the technological viewpoint. The pattern of safety contentions in Japan is the entanglement of three sectors; i.e. local people, labor unions and political parties, enterprises and administration, and intellectuals. (Mori, K.)

  1. 2010 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    At the end of 2010, 443 nuclear power plants were available for energy supply in 30 countries of the world. This are 6 plants more than at the end of 2009. The aggregate gross power of the plants amounted to approx. 396,118 MWe, the aggregate net power, to 375,947 MWe. This capacity numbers are a little bit more than one year before (gross: 391,551 MWe, net: 371,331 MWe). Six unites were commissioned in 2010; 2 units in China and India each and one unit in the Republic of Korea and Russia each. One unit, the Fast Breeder Pilot Reactor Monju in Japan, was connected to the grid after a long-term shutdown. One nuclear power plant, the Prototype Fast Breeder Reactor Phenix in France, was shut down permanently in 2010. 62 nuclear generating units, i.e. 9 plants more than at the end of 2009, were under construction in late 2010 in 15 countries with an aggregate gross power of approx. 63,998 MWe. Worldwide, some 90 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 120 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2010 achieved another reasonable ranking level of approx. 2,627.5 billion kWh (2009: approx. 2,558 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 63,100 billion kWh, and operating experience has grown to some 14,400 reactor years. (orig.)

  2. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  3. Progress on development of nuclear power in Japan

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Since three Laws on the nuclear power were published 45 years has passed. Now, development on nuclear power in Japan is at an emergent state. In Japan, 51 units of commercial nuclear reactors with 44.917 GW are in operation, occupy about 37% of total electric power generation, and is positioned at an essential basic energy source supporting economical society in Japan. However, an accident occurred at Tokai Works of the JCO Co., Ltd., one of the uranium reconversion company, on September 30, 1999, was the first critical accident in Japan, and became the worst case in history on development of nuclear power in Japan, because of forming three heavy radiation disabled persons (One of them was dead) in its operators. This was a big crisis with relation to existence on development of nuclear power in Japan, by which anxiety and distrust of the Japanese against the nuclear power were amplified rapidly. On the other side, for Japan short in energy sources and of a big energy consumption, in order to intend for a long term to carry out energy security, global environmental conservation, and sustainable maintenance of essential growth, it remains to be one of important optional methods to further promote nuclear power generation and to establish nuclear fuel cycle. Here were described on progress on peaceful applications of nuclear power in Japan, progress on the field of nuclear power in Japan (from 1955 to 1999), progress on Tokai nuclear power station, introduction of nuclear power generation and effort on its domestic production. (G.K.)

  4. Nuclear power plants: 2013 atw compact statistics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-03-15

    At the end of 2013, nuclear power plants were available for energy supply in 31 countries of the world. A total of 437 nuclear power plants were in operation with an aggregate gross power of approx. 393 GWe and an aggregate net power, respectively, of 372 GWe. This means that the number was unchanged compared to the previous year's number on 31 December 2012. The available gross power of nuclear power plants increased by approx. 2 GWe from 2012 to the end of 2013. In total 4 nuclear generating units were commissioned in 2013 in China (+2) and in the Republic Korea (+1). 6 nuclear generating units were decommissioned in 2013. Four units in the U.S.A. (-4) were shut down due to economical reasons. In Canada (-2) the operation status of 2 units was changed from long-term shutdown to permanently shutdown. 70 nuclear generating units with an aggregate gross power of approx. 73 GWe, were under construction in 15 countries end of 2013. New or continued projects are notified from (in brackets: number of new projects) China (+3), Belarus (+1), Rep. of Korea (+1) and the United Arab Emirates (+1). Some 115 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another units are in their preliminary project phases. (orig.)

  5. Nuclear power plants: 2013 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    At the end of 2013, nuclear power plants were available for energy supply in 31 countries of the world. A total of 437 nuclear power plants were in operation with an aggregate gross power of approx. 393 GWe and an aggregate net power, respectively, of 372 GWe. This means that the number was unchanged compared to the previous year's number on 31 December 2012. The available gross power of nuclear power plants increased by approx. 2 GWe from 2012 to the end of 2013. In total 4 nuclear generating units were commissioned in 2013 in China (+2) and in the Republic Korea (+1). 6 nuclear generating units were decommissioned in 2013. Four units in the U.S.A. (-4) were shut down due to economical reasons. In Canada (-2) the operation status of 2 units was changed from long-term shutdown to permanently shutdown. 70 nuclear generating units with an aggregate gross power of approx. 73 GWe, were under construction in 15 countries end of 2013. New or continued projects are notified from (in brackets: number of new projects) China (+3), Belarus (+1), Rep. of Korea (+1) and the United Arab Emirates (+1). Some 115 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another units are in their preliminary project phases. (orig.)

  6. Introduction of Nuclear Power in Ghana

    International Nuclear Information System (INIS)

    Aboh, K.; Dzobo, M

    2010-01-01

    Ghana depends mainly on hydro-systems for electricity generation. In 1984, 1998, 2003 and 2007, there was drastic shortfalls in hydro-generation due to severe droughts. In 2007, the shortfall in generation was compounded by high prices of light crude oil. In May 2007, the government set-up a 7-man Presidential Committee on feasibility of a Nuclear Power Programme. Ghana’s electricity demand was projected to increase at 7.7% p.a. between 2004 and 2030. Per capita electricity demand is expected to increase from 253 kWh in 2004 to 1120 kWh in 2030. Peak electricity demand was expected to increase from 1095 MW in 2004 to 6700 MW in 2030. Ghana received IAEA assistance to undertake a national TCP GHA/0/011: “Evaluating the role of Nuclear Power in Future Generation Mix”. Under the national TCP GHA/0/011, a proposal for establishing NEPIO – (an Inter-ministerial Steering Committee to be chaired by the Minister of Energy) based on IAEA recommendations was submitted to the Minister of Energy. Ghana Atomic Energy Commission in partnership with other stakeholders and support from the IAEA did prepared a draft nuclear bill. The draft Ghana Nuclear Bill also proposed the establishment of an independent Ghana Nuclear Regulatory Authority. The Authority is mandated to license and regulate all nuclear installations including power plants. No potential sites for nuclear power plant and waste disposal had been identified yet for evaluation. Potential sites for nuclear power plants and waste disposal were identified and assessed under the IAEA national TCP GHA/0/011. Ghana Atomic Energy Commission (i.e. GAEC) and the University of Ghana with support from the IAEA have established the Graduate School of Nuclear and Allied Sciences (i.e. SNAS) for training nuclear expert

  7. The Prospective of Nuclear Power in China

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2018-06-01

    Full Text Available From scratch to current stage, China’s nuclear power technology has experienced rapid development, and now China has begun to export nuclear power technology. As a kind of highly efficient and clean energy source, nuclear energy is also a priority option to solve energy crisis, replace traditional fossil fuels and reduce air pollution. By analyzing the short-term and long-term development trend of nuclear power in China, the paper has reached the following conclusions: (1 Under the current situation of excess supply, due to high investment cost of first-kind reactors, the decline of utilization hours and the additional cost of ancillary service obligations, the levelized cost of energy (LCOE of the third generation nuclear power will significantly increase, and the internal rate of return (IRR will significantly fall. In the short term, market competitiveness of nuclear power will be a major problem, which affects investment enthusiasm. (2 With technology learning of third generation technology, the LCOE of nuclear power will be competitive with that of coal power in 2030. (3 The CO2 emissions reduction potential of nuclear power is greater than coal power with CCS and the avoided CO2 costs of nuclear power is much lower. Therefore, nuclear power is an important option for China’s long-term low-carbon energy system transition. The paper proposes to subsidize the technical learning costs of new technology through clean technology fund at the early commercialization stage. When designing power market rules, the technical characteristics of nuclear power should be fully considered to ensure efficient operation of nuclear power.

  8. Common cause failure rate estimates for diesel generators in nuclear power plants

    International Nuclear Information System (INIS)

    Steverson, J.A.; Atwood, C.L.

    1982-01-01

    Common cause fault rates for diesel generators in nuclear power plants are estimated, using Licensee Event Reports for the years 1976 through 1978. The binomial failure rate method, used for obtaining the estimates, is briefly explained. Issues discussed include correct classification of common cause events, grouping of the events into homogeneous data subsets, and dealing with plant-to-plant variation

  9. Annual report on nuclear power station operational management, 1984

    International Nuclear Information System (INIS)

    1985-09-01

    As of the end of fiscal year 1984, 28 nuclear power plants were in operation in Japan, the total power output of which was 20.56 million kW, equivalent to 22.9 % of the total generated electric power in Japan. Now nuclear power generation bears a very important role in the stable supply and cost stabilization of electric power. The result of the capacity factor in fiscal year 1984 was 73.9 %, which showed that the nuclear power generation and safety management technologies in Japan are at the top level in the world. However, in order that nuclear power generation accomplishes the role as main power source sufficiently hereafter by increasing the number of plants, the reliability and economical efficiency must be further improved, and especially the safety management and operational management become important. For the purpose, the operational experience accumulated so far must be effectively utilized. In this book, the outline of the administration on the safety regulation of nuclear power generation, the state of operation of nuclear power plants, the state of accidents and failures, the state of regular inspections and so on are summarized. Also the state of radioactive waste management and the radiation control for workers are reported. (Kako, I.)

  10. A qualitative model construction method of nuclear power plants for effective diagnostic knowledge generation

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji; Endou, Akira; Kitamura, Yoshinobu; Sasajima, Munehiko; Ikeda, Mitsuru; Mizoguchi, Riichiro.

    1994-01-01

    This paper discusses a method to construct a qualitative model of a nuclear power plant, in order to generate effective diagnostic knowledge. The proposed method is to prepare deep knowledge to be provided to a knowledge compiler based upon qualitative reasoning (QR). Necessity of knowledge compilation for nuclear plant diagnosis will be explained first, and conventionally-experienced problems in qualitative reasoning and a proposed method to overcome this problem is shown next, then a sample procedure to build a qualitative nuclear plant model is demonstrated. (author)

  11. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  12. Risks in the operation of hydroelectric power plants and nuclear power in Brazil

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1986-01-01

    A comparison between the utilization of electrical energy generated by hydroelectric power plant and nuclear power plant is made. The risks from nuclear installations and the environmental effects of hydroelectric power plants and nuclear power plants are presented. (E.G.) [pt

  13. The St-Laurent-des-Eaux nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Centre region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of St-Laurent-des-Eaux comprises two production units of 900 MW each (1800 MW as a whole). The facility generated 12.4 billion kWh in 2009, i.e. 2.5% of the French national power generation and 71% of the energy consumed in the Centre region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  14. The Nogent-sur-Seine nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Champagne-Ardenne region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Nogent-sur-Seine comprises two production units of 1300 MW each (2600 MW as a whole). The facility generated 14.35 billion kWh in 2009, i.e. 2.8% of the French national power generation and about 1.5 times the energy consumed in the Champagne-Ardenne region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  15. Operating experience with diesel generators in Belgian nuclear power plants

    International Nuclear Information System (INIS)

    Merny, R.

    1986-01-01

    Various problems have occurred on the diesel generators in the Belgian nuclear power plants, independently of the D.G. manufacturer or from the operating crew. Furthermore no individual part of the D.G. can be incriminated as being the main cause of the incidents. The incidents reported in this paper are chosen because of the importance for the safety or for the long repair period. The unavailability of a D.G. can only be detected by periodic tests and controls. Combined with a good preventive maintenance, the risks of incidents can be reduced. (author)

  16. Operating experience with diesel generators in Belgian nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Merny, R. [Association Vincotte, Avenue du Roi 157, B-1060 Bruxelles/Brussels (Belgium)

    1986-02-15

    Various problems have occurred on the diesel generators in the Belgian nuclear power plants, independently of the D.G. manufacturer or from the operating crew. Furthermore no individual part of the D.G. can be incriminated as being the main cause of the incidents. The incidents reported in this paper are chosen because of the importance for the safety or for the long repair period. The unavailability of a D.G. can only be detected by periodic tests and controls. Combined with a good preventive maintenance, the risks of incidents can be reduced. (author)

  17. Power generation and the environment

    International Nuclear Information System (INIS)

    Robert, L.E.J.; Liss, P.S.; Saunders, P.A.H.

    1990-01-01

    This book reviews environmental aspects of large-scale power generation. It includes historic background of present-generation patterns and a discussion of fossil fuel, nuclear energy, and renewable technologies

  18. TQC works in newly-built nuclear power plant and main electric power system plannings

    International Nuclear Information System (INIS)

    Akiyama, Yoshihisa; Kawakatsu, Tadashi; Hashimoto, Yasuo

    1985-01-01

    In the Kansai Electric Power Co., Inc., TQC has been introduced to solve such major problems in nuclear power generation as the securing of nuclear power reliability, the suppression of rises in the costs, the reduction in long periods of power failure and the promotion in siting of nuclear power plants. It is thus employed as a means of the ''creation of a slim and tough business constitution''. The state of activities in Kansai Electric are described in quality assurance of a newly-built nuclear power plant and in raising the reliability of the main electric power system to distribute the generated nuclear power and further the future prospects are explained. (Mori, K.)

  19. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  20. Attitude of students intending to be teachers toward nuclear power generation and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Shiomi, Tetsuro; Tada, Yasuyuki [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    The ''Period for Integrated study'' will be added to the existing subjects in elementary schools, junior and high schools from 2002. Subjects included in the period are, for example, international understanding, information, environment, etc. To treat the issues about environment, energy and nuclear power generation in the period, it is necessary to study the attitude of the teachers and the students intending to be teachers toward environment, energy, atomic power and integrated study. The results of the present survey show that the teachers studying in under graduate schools and the students intending to be teachers have negative attitude toward nuclear power, have concern about environment and energy, value cooperation with a company in the period. When they deal with the environment, energy and nuclear power in the period, individual ideas and principles are not taught, and teachers gather information from the pros and cons, and motivate the children to judge by themselves. This reflects the basic idea of ''the Period of Integrated Study''. (author)

  1. On present situation of radioactive waste management and exposure of workers in nuclear reactor facilities for commercial power generation in fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The article summarizes the contents of some reports including the Report on Radiation Management in 1988 that were submitted by the operators of nuclear reactor facilities for commercial power generation according to the requirements specified in the Law Concerning Regulation on Nuclear Material, Nuclear Fuel and Nuclear Reactor. According to these reports, the annual radiation release in all nuclear power generation plants was well below the radiation release limits set up in the report 'On Guidelines for Target Dose in Areas around Light Water Reactor Facilities for Power Generation'. Data submitted also show that there are no significant problems with the management of radioactive solid waste. In all nuclear generation plants, the personal exposure of workers is below the permissible exposure dose specified in law. The Agency of Natural Resources and Energy is planned to further promote the development of advanced techniques for automatization and remote control of light water reactors and to provide effective guidance to electrical contractors for positive radiation management. (N.K.)

  2. Estimation of requirements of eolic energy equivalent to the electric generation of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Garcia V, M.A.; Hernandez M, I.A.; Martin del Campo M, C.

    2004-01-01

    The advantages are presented that have the nuclear and eolic energy as for their low environmental impact and to the human health. An exercise is presented in the one that is supposed that the electric power generated by the Laguna Verde Nuclear Power plant (CNLV), with capacity of 1365 M W, it should be produced by eolic energy when in the years 2020 and 2025 the units 1 and 2 of the CNLV reach its useful life and be moved away. It is calculated the number of aero generators that would produce the electric power average yearly of the CNLV, that which is equal to install eolic parks with capacity of 2758 M W, without considering that it will also be invested in systems of back generation to produce electricity when the aero generators stops for lack of wind. (Author)

  3. Benefits and risks of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.

    1977-03-01

    Discussion, in a popular form, of issues of interest for an unemotional information of the public on problems of nuclear power: 1) Energy consumption, its assumed growth, and possible ways of supply; 2) the physical fundamental and technical realisation of power generation by nuclear fission; 3) problems of the fuel cycle and possible solutions; 4) the effects of radioactive radiation; 5) the safety of nuclear power plants and the risks of nuclear power as compared to other technical and natural risks. (orig./HP) [de

  4. Nuclear power: status and outlook

    International Nuclear Information System (INIS)

    Rogner, H.H.; Langlois, L.M.; McDonald, A.

    2001-01-01

    Nuclear power plants worldwide make important contributions to energy production. A total of 439 plants are in operation; with nearly 10 000 years of operating history, they reliably provide some 16 percent of the world's electricity production. The growth rates of nuclear power expansion in the seventies and eighties are no longer achievable now. Growing operating experience and further optimization of plant operation have caused the electricity generation in existing plants to grow overproportionally, corresponding to a calculated equivalent of 28 000 MW of capacity increment in the nineties. The short-term perspectives of nuclear power generation until 2020 as outlined by the International Energy Agency (IEA) indicate a slight decrease of electricity production with a variety of different regional developments. Over the same period of time, there will mainly be further improvements in reliable operation, resulting in higher availability and added safety, as well as measures extending plant life. Studies going beyond the time frame of the IEA Study forecast a major increase in nuclear generating capacity for the period after 2020 up to 2050. The foreseeable long-term developments on the world energy markets, with their limited fossil energy resources, are seen as a reason why nuclear power and renewable energies jointly will be important components in meeting energy requirements and, simultaneously, fulfilling the needs of climate protection. Specific problems of nuclear power, which can be solved, are seen to be the development of innovative plants, a stable cost situation, and the reduction of economic risks because of the long periods of payback of the capital invested. (orig.) [de

  5. Climate change and nuclear power

    International Nuclear Information System (INIS)

    2000-11-01

    Today, the nuclear power industry is an established, experienced industry that generates one sixth of the world's electricity, one fifth of the USA's, and almost one third of Western Europe's. The recent SIRES scenarios highlight that, even in the absence of policies to limit GHG emissions, meeting the energy needs and economic development aspirations of the 21st century will require the full range of energy supply options available including nuclear power. None of the world's available energy supplies should be excluded. Fossil, nuclear, and renewable resources are all large, and the future evolution of the world's energy system is less likely to be determined by resource constraints than by active choices made by governments, the private sector, and individuals. Nuclear power has the potential to fill a substantial part of the gap between where emissions from Annex I countries are now headed, and where they are required to be in 2008-2012 according to the Kyoto Protocol. If the CDM is taken into account, nuclear power's potential approximately doubles. And if the path charted by the Kyoto Protocol is to continue beyond the 2008-2012 commitment window, the potential importance of nuclear power only grows. The best chance for sustainable development - for meeting the needs of the present generation without compromising the ability of future generations to meet their needs - lies in allowing all energy supply options to compete, improve, and contribute on a level playing field directly on the basis of cost-effectiveness, environmental protection, and safety

  6. Alternative institutional arrangements for nuclear power

    International Nuclear Information System (INIS)

    Bussard, D.

    1980-08-01

    This paper investigates how alternative organizations of nuclear power generation would effect the regulatory environment for nuclear power production, how it would effect financial constraints on new construction, and what governmental barriers to such reorganization exist

  7. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1980-01-01

    A few of the essential issues which arise when we consider nuclear power and development together in the context of energy policy are discussed. Ethical concerns must ultimately be expressed through policies and their impact on people. There are ethical issues associated with nuclear power in the developing countries which deserve our attention. Four aspects of the question of nuclear power in developing countries are considered: their energy situation; the characteristics of nuclear power which are relevant to them; whether developing countries will undertake nuclear power programmes; and finally the ethical implications of such programmes. It is concluded that what happens in developing countries will depend more on the ethical nature of major political decisions and actions than on the particular technology they use to generate their electricity. (LL)

  8. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  9. Research and engineering application of coordinated instrumentation control and protection technology between reactor and steam turbine generator on nuclear power plant

    International Nuclear Information System (INIS)

    Sun Xingdong

    2014-01-01

    The coordinated instrumentation control and protection technology between reactor and steam turbine generator (TG) usually is very significant and complicated for a new construction of nuclear power plant, because it carries the safety, economy and availability of nuclear power plant. Based on successful practice of a nuclear power plant, the experience on interface design and hardware architecture of coordinated instrumentation control and protection technology between reactor and steam turbine generator was abstracted and researched. In this paper, the key points and engineering experience were introduced to give the helpful instructions for the new project. (author)

  10. ELECNUC Nuclear power plants in the world - 2013 edition

    International Nuclear Information System (INIS)

    2013-01-01

    This small booklet summarizes in a series of tables the figures relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2012 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2012/01/01; Worldwide status of nuclear power plants (12/31/2012); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2012; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2012; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2012; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2012; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2012; Long term shutdown units at 12/31/2012; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  11. Climate change and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  12. Water releasing electric generating device for nuclear power plant

    International Nuclear Information System (INIS)

    Umehara, Toshihiro; Tomohara, Yasutaka; Usui, Yoshihiko.

    1994-01-01

    Warm sea water discharged after being used for cooling in an equipment of a coastal nuclear powder plant is discharged from a water discharge port to a water discharge pit, and a conduit vessel is disposed in front of the water discharge port for receiving overflown warm sea water. The warm sea water taken to the conduit vessel is converted to a fallen flow and charged to a turbine generator under water, and electric power is generated by the water head energy of the fallen flow before it is discharged to the water discharge pit. The conduit vessel incorporates a foam preventing unit having spiral flow channels therein, so that the warm sea water taken to the conduit vessel is flown into the water discharge pit after consuming the water head energy while partially branched and flown downwardly and gives lateral component to the downwarding flowing direction. Then, warm sea water is made calm when it is flown into the water discharge pit and, accordingly, generation of bubbles on the water surface of the water discharge pit is avoided. (N.H.)

  13. Nuclear power - facts, trends, problems

    International Nuclear Information System (INIS)

    Spickermann, W.

    1981-01-01

    An attempt has been made to describe the state-of-the-art of nuclear power utilization, particularly for energy production. On the basis of information obtained from study tours through the USSR a rather comprehensive review of nuclear power plants and research establishments in the Soviet Union, of desalination reactors, ship propulsion reactors and fast breeder reactors is given, including nuclear facilities of other countries, e.g. France, USA, GDR. Heat generation, radiation-induced chemical processes and aspects associated with nuclear energy uses, such as risks, environmental protection or radioactive wastes, are also considered. Moreover, the author attempts to outline the social relevance of nuclear power

  14. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  15. Nuclear power generation in competition with other sources for base load electricity generation

    International Nuclear Information System (INIS)

    Notari, C.; Rey, F.C.

    1996-01-01

    The latest studies performed by OECD and IAEA on the subject were analyzed in order to clarify the international context. Nuclear, gas and coal are compared. The general conclusion is that nuclear power is competitive for electricity generation considering new plants to be commissioned around year 2000. If the discount rate is 5% per annum it is considered the best option in most of the countries included in the studies. If 10% is chosen the levelized costs favour the gas option. In the Argentine case, the analysis of possible plants for the near future shows a clear advantage for the gas projects. This is mainly due to the low capital costs and low local gas prices. The possible evolution of this situation is considered: gas prices will most probably increase because they should approach the price of fuel oil or diesel oil which are used as substitutes in winter for electricity generation and the export projects to Chile and Brasil will also push prices up. The environmental aspects of the question and its influence on regulations and costs is a matter of speculation. Some countries have already penalized greenhouse gases emissions but it is not clear how and when this trend will affect local prices. (author). 4 refs., 6 tabs

  16. Effectiveness of transmitting safety-measures information in risk communication of nuclear power generation. Evaluation by the receiver of the messages

    International Nuclear Information System (INIS)

    Matsumoto, Takanobu; Shiomi, Tetsuro

    2004-01-01

    Effectiveness of risk communication were previously discussed through both ''risk information'' and ''benefit information'' of its topics. However, in technical facilities facilities such as nuclear power plant where safeness is an important concern, not only these two aspects but also safety-measures information'' are required. There have been previously no such discussions about risk communication that included ''safety-measures information''. In this report, we investigated general public's view of the difference in effectiveness of risk communication between two cases. In the first case, only ''risk'' and ''benefit information'' were given. In the second case, we added ''safety-measures information'' as well as ''risk'' and benefit information''. Measurement of the effect was performed using a questionnaire. We divided the subjects into two groups. Each group was shown one side of two pamphlets which had information concerning two conditions, and asked how it feels about ''reliance on information'', ''reliance on informer'', ''posture considered with informer'' which are factors in the process of the attitude change that is shown in the paradigm of risk communication (Kinoshita and Kikkawa, (1990)). Prior to this investigation, we identified each subject is position on nuclear power generation. Thus we were able to clarify the effectiveness of each risk communication style depending on each subject is position (approval, neutrality, objection). As a result, we reached the following conclusions: First about ''reliance on information'', where asked whether the contents of a pamphlet would be reliable, it was found that the person negative to nuclear power generation evaluated lower the pamphlet which included ''safety-measures information'' than the other. However, it was found that regardless of the difference in the position towards nuclear power generation, people who read the pamphlet including ''safety-measures information'' evaluated higher ''reliance on

  17. IEEE standard for qualifying class IE equipment for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    The Institute of Electrical and Electrical Engineers, Inc. (IEEE) standards for electrical equipment (Class IE) for nuclear power generating stations are given. The standards are to provide guidance for demonstrating and documenting the adequacy of electric equipment used in all Class IE and interface systems. Representative in containment design basis event conditions for the principal reactor types are included in the appendixes for guidance in enviromental simulation

  18. Real issue with nuclear power

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1976-01-01

    The voter referendums on nuclear power planned in some states can affect the energy supply and economic health of the public at large more than it affects the industry that provides nuclear power, the author states. He makes the point that those responsible for energy supplies in the U. S.--the President and all relevant Federal agencies, the majority of Congress, the national utility industry, major laboratories, universities and consulting firms, and other energy industries--all favor nuclear power. The complex U.S. energy situation is reviewed, and the hope of alternative energy sources, practice of energy conservation, and benefits of nuclear power are summarized. Specifically, the California Initiative and its three conditions which it says should dictate the future of nuclear power are reviewed. The author does not believe that the reasons that are usually given in opposing nuclear power are the real reasons. He states that ''it seems clear that the principal philosophy behind the initiatives is one of halting economic growth by striking at the energy source that would make that growth possible.'' Attention is called to the morality of nuclear power by asking where is the morality: in leaving future generations an insufficient amount of energy, limiting their abilities to solve the economic and employment problems; in squandering our finite supply of fossil fuels while ignoring nuclear fuels; in forcing the nation into further dependence on unpredictable foreign nations for its energy supply; in expecting other states to provide California with the energy that it does not want to generate itself; and in allowing an arbitrary limit on growth to be set by groups of political activists

  19. Fields of nuclear power application

    International Nuclear Information System (INIS)

    Laue, H.J.

    1975-01-01

    The paper deals with nuclear power application in fields different from electricity generation, i.e. district heating, sea water desalination, coal gasification and nuclear splitting of water. (RW) [de

  20. Canadian attitudes to nuclear power

    International Nuclear Information System (INIS)

    Davies, J.E.O.

    1977-01-01

    In the past ten years, public interest in nuclear power and its relationship to the environment has grown. Although most Canadians have accepted nuclear power as a means of generating electricity, there is significant opposition to its use. This opposition has effectively forced the Canadian nuclear industry to modify its behaviour to the public in the face of growing concern over the safety of nuclear power and related matters. The paper reviews Canadian experience concerning public acceptance of nuclear power, with special reference to the public information activities of the Canadian nuclear industry. Experience has shown the need for scientific social data that will permit the nuclear industry to involve the public in a rational examination of its concern about nuclear power. The Canadian Nuclear Association sponsored such studies in 1976 and the findings are discussed. They consisted of a national assessment of public attitudes, two regional studies and a study of Canadian policy-makers' views on nuclear energy. The social data obtained were of a base-line nature describing Canadian perceptions of and attitudes to nuclear power at that time. This research established that Canadian levels of knowledge about nuclear power are very low and that there are marked regional differences. Only 56% of the population have the minimum knowledge required to indicate that they know that nuclear power can be used to generate electricity. Nevertheless, 21% of informed Canadians oppose nuclear power primarily on the grounds that it is not safe. Radiation and waste management are seen to be major disadvantages. In perspective, Canadians are more concerned with inflation than with the energy supply. About half of all Canadians see the question of energy supplies as a future problem (within five years), not a present one. A more important aspect of energy is seen by the majority of Canadians to be some form of energy independence. The use of data from these studies is no easy

  1. Studying dynamics of indicators of nuclear power stations exploitation (the case of US nuclear power stations)

    OpenAIRE

    Varshavsky, Leonid

    2013-01-01

    Analysis of external and internal factors influencing significant improvement of economic indicators of US nuclear power stations in the 1990s is carried out. Approaches to modeling dynamics of capacity factors of nuclear power stations are proposed. Comparative analysis of dynamics of capacity factors and occupational radiation exposure for various generations of US nuclear power plants is carried out. Dynamical characteristics of «learning by doing» effects for analyzed indicators are measu...

  2. Nuclear power and the anti-uranium movement

    International Nuclear Information System (INIS)

    Titterton, E.W.

    1979-01-01

    The generation of electricity with nuclear power reactors is the cheapest, safest and cleanest means of power generation yet devised by man. It has been demonstrated to cause no more off-site nuclear radiation problems, and far less environmental damage, than the coal-fired electricity generating industry. With such a favourable situation it is reasonable to ask why, in the Western world, has a campaign been waged against uranium and the nuclear power industry. The author discusses what he believes is a well coordinated, international campaign which has been pursued through the media, and has been high-lighted by all the modern-day avenues open to protesters

  3. Elecnuc - Nuclear power plants in the world - 2009 edition

    International Nuclear Information System (INIS)

    2009-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2008 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2008/01/01, Worldwide status of nuclear power plants (12/31/2008), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2008, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear powe plants by country at the end 2008, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2008, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2008, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2008, Long term shutdown units at 12/31/2008, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  4. Nuclear power programme planning: An integrated approach

    International Nuclear Information System (INIS)

    2001-12-01

    The International Atomic Energy Agency (IAEA) has published material on different policy considerations in the introduction of nuclear power, primarily addressed to top level decision makers in government and industry in Member States. Several Member States and experts recommended to the IAEA to address the aspects of an integrated approach to nuclear power programme planning and to serve as guidance to those countries wishing to embark on a nuclear power programme. As a follow-up, the present publication is primarily intended to serve as guidance for executives and managers in Member States in planning for possible introduction of nuclear power plants in their electricity generating systems. Nuclear power programme planning, as dealt with in this publication, includes all activities that need to be carried out up to a well-founded decision to proceed with a project feasibility study. Project implementation beyond this decision is not in the scope of this publication. Although it is possible to use nuclear energy as a heat source for industrial processes, desalination and other heat applications, it is assumed in this publication that the planning is aimed towards nuclear power for electricity generation. Much of the information given would, however, also be relevant for planning of nuclear reactors for heat production. The publication was prepared within the framework of the IAEA programme on nuclear power planning, implementation and performance as a joint activity of the Nuclear Power Engineering Section and the Planning and Economic Studies Section (Division of Nuclear Power)

  5. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    Rajci, T.

    1986-01-01

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  6. Global Status of Nuclear Power: Prospects and Challenges

    International Nuclear Information System (INIS)

    Tayobeka, B. M.

    2010-01-01

    Global energy requirements and the share of electricity in total energy consumption are increasing rapidly, and the contribution of nuclear power is projected to increase significantly. Out of the 29 countries currently using nuclear power for electricity generation, 22 intend to allow new plants to be built, and, of those, the majority are actively supporting the increased use of nuclear power, some by providing incentives. Most of these countries are expected to build reactors with a generating capacity of over 1000 MW(e). Only three countries continue to have a policy to phase out the use of nuclear energy in the future by not replacing existing operating nuclear power plants and with no consideration of the option of new nuclear plants.In addition, a growing number of countries are expressing interest in introducing nuclear power. Of the more than 60 countries that have expressed such an interest in recent years, over 20 are actively considering nuclear power programmes to meet their energy needs and the others have expressed interest in understanding the issues associated with the introduction of nuclear power.The drivers for rising expectations for nuclear power include: growing energy demand, concern over national energy supply security, the increasingly volatile price of fossil fuels and global environmental concerns. The drivers appear to be the same for countries expanding existing nuclear programmes and those seeking to introduce programmes. The projections made by different international organizations indicate a significant growth in the use of nuclear power. The IAEA projections indicate a world total for nuclear electrical generating capacity of between 445 and 543 GW(e) by 2020 and between 511 and 807 GW(e) by 2030. This paper takes a detailed look into the global status of nuclear power, highlighting challenges and prospects of the technology going into the next century.(author).

  7. Nuclear power in Canada: questions and answers

    International Nuclear Information System (INIS)

    1975-01-01

    To further public understanding of nuclear power generation, the Canadian Nuclear Association commissioned a special task force to coordinate contributions of experts in all parts of the nuclear industry. These contributions have been arranged in a question and answer format and are aimed at the average Canadian reader who is genuinely seeking factual information on nuclear power. Areas covered include electricity demand, comparison of nuclear generation with other forms of thermal electricity production, radiation sources and effects on man and his environment; features of different reactor types, thermal discharges and waste management. (O.T.)

  8. Position of nuclear power generation in the public and further enhancement of safe and stable operation

    International Nuclear Information System (INIS)

    Miyazaki, Yozo

    1996-01-01

    In Japan, the first commercial light water reactor (LWR) started operation in 1970 when the International Exposition was held in Osaka, and now 50 nuclear power plants supply about 30 % of the total electricity and nuclear power plays the important role as a 'major power source'. Meanwhile, with the international transportation of plutonium and return shipment of vitrified HLW reprocessed abroad, nuclear power has closer relationship with the public in these days. We will review the history of nuclear power generation in Japan from the viewpoint of the safety culture and consider the safety culture under the present situation. The team of 'safety Charlotte's fixed its position since the occurrence of Chernobyl accident though the concept existed as expressed in words such as 'safety-first principle' and 'enhancement of morale'. The safety culture is a concept: high level 'safety Culture' cab be expected when 'the management of the organization' and 'individual consciousness concerning safety' are well balanced. The 'safety culture' has experienced various changes along with the development of nuclear power in Japan: at the initial period of the development, the management side invested excellent talents and funds to the nuclear division based on the 'safety-first principle' from the beginning. At the same time, the world of atom filled with dream appealed to those who had enthusiasm as pioneers and they were engaged in the development with enhanced morale

  9. Nuclear power world report 2013

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year's number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units - 2 more than at the end of 2012 - were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. (orig.)

  10. Nuclear power world report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-07-15

    At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year's number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units - 2 more than at the end of 2012 - were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. (orig.)

  11. Economics of nuclear power in Finland

    International Nuclear Information System (INIS)

    Tarjanne, Risto; Luostarinen, Kari

    2002-01-01

    The nuclear power generation fits perfectly with the long duration load profile of the Finnish power system. The good performance of the Finnish nuclear power has yielded benefits also to the consumers through its contribution to decreasing the electricity price. Furthermore, the introduction of nuclear power has resulted in a clear drop in carbon dioxide emissions from electricity generation in the shift of 1970's and 1980's. In the year 2001 the four Finnish nuclear power units at Loviisa and Olkiluoto generated 22.8 TWh electricity, equivalent to 28 per cent of the total consumption. Loviisa power station has a net output capacity of 2 x 488 MW, and Olkiluoto 2 x 840 MW. The capacity factors of the four nuclear units have been above 90 per cent, which are among the highest in the world. The energy-intensive process industries in particular have strong belief in nuclear power. In November 2000, Teollisuuden Voima company (TVO) submitted to the Finnish Government an application for decision in principle concerning the construction of a new nuclear power plant unit. The arguments were among other things to guarantee for the Finnish industry the availability of cheap electric energy and to meet the future growth of electricity consumption in Finland. The carbon-free nuclear power also represents the most efficient means to meet the Greenhouse Gas abatement quota of Finland. Simultaneously, the energy policy of the Government includes intensive R and D and investment support for the renewable energy sources and energy conservation, and the objective is also to replace coal with natural gas as much as reasonably possible. The fifth nuclear unit would be located in one of the existing Finnish nuclear sites, i.e. Olkiluoto or Loviisa. The size of the new nuclear unit would be in the range of 1000 to 1600 MW electric. The ready infrastructure of the existing site could be utilised resulting in lower investment cost for the new unit. The Finnish Government accepted the

  12. Outlook for Global Nuclear Power: Energy, Electricity and Nuclear Power Estimates for the Period up to 2050

    International Nuclear Information System (INIS)

    Gritsevskyi, A.

    2016-01-01

    Nuclear power's global expansion is projected to continue in the coming decades - albeit at a slowing pace - amid challenges including low fossil fuel prices, a sluggish world economy and the legacy of Japan's Fukushima Daiichi accident. Each year, the IAEA publishes projections of the world's nuclear power generating capacity in Energy, Electricity and Nuclear Power Estimates for the Period up to 2050, now in its 35th edition.The latest projections point to slower growth in nuclear power, in keeping with the trend since the 2011 Fukushima Daiichi accident. The world's nuclear power generating capacity is projected to expand by 2.4 percent by 2030, according to the low projections, compared with 7.7 percent estimated in 2014. In the high case, generating capacity is estimated to grow by 68 percent by 2030, versus 88 percent forecast last year. Uncertainty related to energy policy, license renewals, shutdowns and future constructions accounts for the wide range.The estimates also factor in the likely future retirement of many of the world's 438 nuclear reactors currently in operation, more than half of which are over 30 years old. Despite the need to replace scores of retiring reactors, nuclear power is still set to maintain - and possibly increase - its role in the world's low-carbon energy mix. It's important to understand that these projections, while carefully derived, are not predictions.The estimates should be viewed as very general growth trends, whose validity must be constantly subjected to critical review.(author).

  13. Nuclear power in the developing countries

    International Nuclear Information System (INIS)

    Perera, J.

    1984-01-01

    The subject is covered in chapters, entitled: the general energy situation (including nuclear power); the nuclear fuel cycle; the history of nuclear power in the third world; economic considerations; environmental considerations (including general environmental effects of power generation; radiation; normal fuel cycle operation; nuclear waste management; accidents; sabotage; health and safety regulations); political considerations (nuclear weapons proliferation; technology transfer; energy independence and national prestige); the suppliers (mainly USA, France, West Germany, Canada, UK, USSR); Sub-Saharan Africa; the Arab World and Israel; Central Asia; South and East Asia; Latin America; conclusions. (U.K.)

  14. Trends in Japan's power generation costs after the Fukushima Daiichi Nuclear Power Plant accident and their influence on finance of electric utilities

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Yamaguchi, Yuhji; Murakami, Tomoko

    2013-01-01

    Following the Fukushima Daiichi nuclear power plant accident, the nuclear reactors that were suspended for periodic inspections after the Fukushima accident were not permitted to resume operation, and nuclear power generation in Japan continued to decline. In this article, the authors quantitatively evaluated the effects on power generation costs of Japan's situation, using electric utilities financial reports up to FY 2011. We also analyzed the profitability of the Japanese electric industry, using the financial statements included in the reports, and quantitatively evaluated the effects of changes in power generation costs. The total cost of power generation has increased from 7.5 trillion yen in FY 2010 before the Fukushima accident to 9.6 trillion yen in FY 2011 and to 10.6 trillion yen in FY 2012. In particular, the fuel cost for thermal power generation rose sharply from 3.7 trillion yen in FY 2010 to 6.1 trillion yen in FY 2011 and 7.3 trillion yen in FY 2012, almost doubling in the two years from FY 2010 to 2012. The unit cost of power generation rose sharply from 8.6 yen/kWh in FY 2010 to 11.8 yen/kWh in FY 2011 and 13.5 yen/kWh in FY 2012. The unit cost is expected to rise even further in FY 2013 due to the weak yen. As the result not only Tokyo Electric Power Company, but also the other general electric utilities registered huge net losses. Their retained earnings (total of eight utilities) dropped by 2 trillion yen between FY 2010 and 2012. With increased thermal power generation, the risk of rising costs associated with changes in primary energy prices and exchange rates has increased drastically. For the stability of the electricity industry and the development of the Japanese economy, the government should clearly formulate a basic policy regarding the composition of power sources, and an effective plan both at home and abroad, and should develop a system that will be also to handle sudden changes in the composition of power sources. (author)

  15. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  16. IEEE standard criteria for type tests of class 1E modules used in nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Institute of Electrical and Electronics Engineers has generated this document to provide direction for type testing Class 1E modules and obtaining specific type test data. It supplements IEEE Std 323-1974, Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations, which describes the basic requirements for Class 1E equipment qualification. Adherence to this document alone may not suffice for assuring public health and safety because it is the integrated performance of the structures, the fluid systems, the electrical systems, the instrumentation systems of the station, and in particular, the plant protection system of which these modules are a part that prevents accidents or limits the consequences of accidents. Each applicant to the Nuclear Regulatory Commission for a license to operate a nuclear power generating station has the responsibility to assure himself and others that this document, if used, is pertinent to his application and that the integrated performance of his station is adequate

  17. Structural optimization of static power control programs of nuclear power plants with WWER-1000

    International Nuclear Information System (INIS)

    Kokol, E.O.

    2015-01-01

    The question of possibility the power control programs switching for WWER-1000 is considered. The aim of this research is to determine the best program for the power control of nuclear reactor under cyclic diurnal behavior of electrical generation, as well as the switching implementation. The considered problem of finding the best control program refers to the multicriteria optimization class of problems. Operation of the nuclear power generation system simulated using the following power control programs: with constant average temperature of transfer fluid, with constant pressure in the reactor secondary circuit, with constant temperature in input of the nuclear reactor. The target function was proposed. It consists of three normalized criteria: the burn up fraction, the damage level of fuel rod array shells, as well as changes in the power values. When simulation of the nuclear power generation system operation within the life was done, the values of the selected criteria were obtained and inserted in the target function. The minimum of three values of the target function depending on the control program at current time defined the criterion of switching of considered static power control programs for nuclear power generation system

  18. Validation of a methodology for the study of generation cost of electric power for nuclear power plants

    International Nuclear Information System (INIS)

    Ortega C, R.F.; Martin del Campo M, C.

    2004-01-01

    It was developed a model for the calculation of costs of electric generation of nuclear plants. The developed pattern was validated with the one used by the United States Council for Energy Awareness (USCEA) and the Electric Power Research Institute (EPRI), in studies of comparison of alternatives for electric generation of nuclear plants and fossil plants with base of gas and of coal in the United States described in the guides calls Technical Assessment Guides of EPRI. They are mentioned in qualitative form some changes in the technology of nucleo electric generation that could be included in the annual publication of Costs and Parameters of Reference for the Formulation of Projects of Investment in the Electric Sector of the Federal Commission of Electricity. These changes are in relation to the advances in the technology, in the licensing, in the construction and in the operation of the reactors called advanced as the A BWR built recently in Japan. (Author)

  19. Optimization approaches for treating nuclear power plant problems

    International Nuclear Information System (INIS)

    Abdelgoad, A.S.A.

    2012-01-01

    Electricity generation is the process of generating electric energy from other forms of energy. There are many technologies that can be and are used to generate electricity. One of these technologies is the nuclear power. A nuclear power plant (NPP) is a thermal power station in which the heat source is one or more nuclear reactors. As in a conventional thermal power station the heat is used to generate steam which drives a steam turbine connected to a generator which produces electricity. As of February 2nd, 2012, there were 439 nuclear power plants in operation through the world. NPP are usually considered to be base load stations, which are best suited to constant power output. The thesis consists of five chapters: Chapter I presents a survey on some important concepts of the NPP problems. Chapter II introduces the economic future of nuclear power. It presents nuclear energy scenarios beyond 2015, market potential for electricity generation to 2030 and economics of new plant construction. Chapter III presents a reliability centered problem of power plant preventive maintenance scheduling. NPP preventive maintenance scheduling problem with fuzzy parameters in the constraints is solved. A case study is provided to demonstrate the efficiency of proposed model. A comparison study between the deterministic case and fuzzy case for the problem of concern is carried out. Chapter IV introduces a fuzzy approach to the generation expansion planning problem (GEP) in a multiobjective environment. The GEP problem as an integer programming model with fuzzy parameters in the constraints is formulated. A parametric study is carried out for the GEP problem. A case study is provided to demonstrate the efficiency of our proposed model. A comparison study between our approach and the deterministic one is made. Chapter V is concerned with the conclusions arrived in carrying out this thesis and gives some suggestions for further research.

  20. Possibilities of the metallurgical base in the manufacture of tubes for nuclear power plant steam generators

    International Nuclear Information System (INIS)

    Prnka, T.; Walder, V.; Dolenek, J.

    Current possibilities are briefly summarized of metallurgy in the manufacture of high-quality tubes for nuclear power plant steam generators, mainly for fast reactor power plants. Discussed are steel making possibilities, semi-finished product and tube forming with special regard to 2.25Cr1MoNiNb steel problems, heat treatment, finishing, and testing. Necessary equipment and technology for the production of steam generator tubes are less common in the existing practice and are demanding on investment; their introduction, however, is inevitable for securing quality production of steam generator tubes. (Kr)

  1. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    Science.gov (United States)

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  2. Method for controlling a nuclear fueled electric power generating unit and interfacing the same with a load dispatching system

    International Nuclear Information System (INIS)

    Mueller, N.P.; Meyer, C.E.

    1984-01-01

    A pressurized water reactor (PWR) nuclear fueled, electric power generating unit is controlled through the use of on-line calculations of the rapid, step and ramp, power change capabilities of the unit made from measured values of power level, axial offset, coolant temperature and rod position taking into account operator generated, safety and control, and balance of plant limits. The power change capabilities so generated may be fed to an automatic dispatch system which provides closed loop control of a power grid system. (author)

  3. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    In this popular scientific brochure a brief description of construction scheme of Bohunice Nuclear Power Plant is presented. Electricity generation in a nuclear power plant is described. Instrumentation and control system as well as nuclear safety principles applied on the NPP are presented

  4. Lawsuits concerning nuclear power generation in FRG

    International Nuclear Information System (INIS)

    Saito, Osamu

    1980-01-01

    The confirmation of the courts of justice is required for the permission of power stations. This proposition is not in the laws in FRG, but in view of the recent judicatory regulation, it seems to be the norm established experimentally. From the character of German nation, more than 40 specialists and the committees independent of administration take part in the procedure of administrative permission, but considering the temporary procedure, the processes of five classes of courts join in these. Based on the background of such situation, the author outlined the traditional practice in the legislation and administration in the field of nuclear power generation, then investigated into the decisions of Freiburg and Wuerzburg courts of administrative litigation in 1977 and the decision of the federal constitutional court in 1978. Confronting the same technology of light water reactors, the Freiburg court said that the device protecting from the burst of a pressure vessel is necessary, but the Wuerzburg court did not demand it. The confrontations similar to it were seen in the requirements for the utilization of radioactive substances and the final storage of them. The recent decision of the federal constitutional court is concerned with FBRs, and the court discussed the problem of ''residual risks''. The studies on the German decisions are useful for Japan. (Kako, I.)

  5. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  6. Future of nuclear energy for electricity generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: pedro.carajlescov@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  7. Future of nuclear energy for electricity generation in Brazil

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro

    2015-01-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  8. Composite type nuclear power system

    International Nuclear Information System (INIS)

    Nakamoto, Koichiro.

    1993-01-01

    The present invention realizes a high thermal efficiency by heating steams at the exit of a steam generator of a nuclear power plant to high temperature by a thermal super-heating boiler. That is, a thermal superheating boiler is disposed between the steam generator and a turbogenerator to heat steams from the steam generator and supply them to the turbogenerator. In this case, it may be possible that feedwater superheating boiler pipelines to the steam generator are caused to pass through the thermal superheating boiler so that they also have a performance of heating feedwater. If the system of the present invention is used, it is possible to conduct base load operation by nuclear power and a load following operation by controlling the thermal superheating boiler. Further, a hydrogen producing performance is applied to the thermal superheating boiler to produce hydrogen when electric power load is lowered. An internally sustaining type operation method can be conducted of burning hydrogen by the superheating boiler upon increased electric power load. As a result, a power generation system which has an excellent economical property and can easily cope with the load following operation can be attained. (I.S.)

  9. Quality assured technical documentation for nuclear power generation

    International Nuclear Information System (INIS)

    Ault, M.P.

    1992-01-01

    Present day large scale industry in general is made up of highly complex technology subjected to many rigorous external controls and constraints. This is particularly so in the nuclear power industry where it is essential that materials and services provided during the phases of construction, commissioning and operations, conform precisely to requirements as specified. Failure to do this could lead to unit shut-down and loss of income. For over 25 years, a central unit within the Central Electricity Generating Board (CEGB) developed an enviable reputation for the production of high class technical documentation essential during power station commissioning and operations phases. Following privatization of the electricity supply industry in 1991 the unit became a stand-alone organization and since 1989 has been known as Technical Publications Management Services (TPMS). TPMS with its many years of experience now offers its services to industry in general as well as to the electricity supply industry. Work currently being undertaken by TPMS is described here. Recent contracts obtained for work at Sizewell and for Severn Trent Water indicate the continuing and expanding need for specialist documentation services. (author)

  10. Public attitudes toward nuclear power generation. Preliminary study focusing on characteristics of the attitudes of men and women

    International Nuclear Information System (INIS)

    Maruyama, Naoko; Misumi, Jyuji; Yanagihara, Ryozo; Hayashi, Chikio.

    1996-01-01

    The purpose of this study is to approach the public attitudes toward nuclear power generation and related matters by focusing on the viewpoint of differences between men and women. More specifically, it was attempted to determine what types of lifestyles and ways of thinking are associated with persons indicating the respective attitudes, what types of anxiety these people have with respect to nuclear power generation, as well as the nature of the inflexibility of those attitudes. As a result, well-defined characteristics were found to be associated with each attitude. In addition, the types of anxiety with respect to nuclear power generation were able to be broadly classified into emotional anxiety and logical anxiety. Regarding the inflexibility of these attitudes, although men tended to exhibit little change concerning positive attitudes, they tended to easily change in the negative direction as a result of negative information. In the case of women, conversely, although their attitudes tended to change easily toward the affirmative direction when presented with positive information, it was determined that women tend to change very little toward the negative direction. (author)

  11. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    Currently the Swedish nuclear power plants are using diesel generator sets and to some extent gas turbines as their emergency AC power sources and batteries as their emergency DC power sources. In the laws governing Swedish nuclear activity, no specific power sources are prescribed. On the other hand, diversification of safety functions should be considered, as well as simplicity and reliability in the safety systems. So far the choices of emergency power sources have been similar between different power plants, and therefore this project investigated a number of alternative power sources and if they are suitable for use as emergency power on nuclear power plants. The goals of the project were to: - Define the parameters that are essential for rending a power source suitable for use at a nuclear power plant. - Present the characteristics of a number of power sources regarding the defined parameters. - Compile the suitability of the different power sources. - Make implementation suggestions for the less conventional of the investigated power sources. (unconventional in the investigated application) 10 different power sources in total have been investigated and to various degrees deemed suitable Out of the 10 power sources, diesel generators, batteries and to some extent gas turbines are seen as conventional technology at the nuclear power plants. In relation to them the other power sources have been assessed regarding diversification gains, foremost with regards to external events. The power sources with the largest diversification gains are: Internal steam turbine, Hydro power, Thermoelectric generators. The work should first and foremost put focus on the fact that under the right circumstances there are power sources that can complement conventional power sources and yield substantial diversification gains. This paper is a shortened version of the report 'Comparison between different power sources for emergency power supply at nuclear power plants'. The

  12. Public enlightment seminar on nuclear power. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, N

    1998-12-31

    The seminar considered different aspects of nuclear power development, including the following issues: electricity generation, power supply and demand, energy sources, consumption of electricity, energy outlook in Europe, comparative analysis of energy options, safety of modern nuclear power plants, radiation and human health, radioactive waste management, nuclear techniques to promote world food security, public information issues.

  13. Public enlightment seminar on nuclear power. Proceedings

    International Nuclear Information System (INIS)

    Yildirim, N.

    1997-01-01

    The seminar considered different aspects of nuclear power development, including the following issues: electricity generation, power supply and demand, energy sources, consumption of electricity, energy outlook in Europe, comparative analysis of energy options, safety of modern nuclear power plants, radiation and human health, radioactive waste management, nuclear techniques to promote world food security, public information issues

  14. Change in Knowledge of Korean Elementary, Middle, and High School Students in the Fundamental Education on the Nuclear Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaerok; Lee, Seungkoo; Choi, Yoonseok; Han, Eunok [Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2014-05-15

    Nuclear power facilities and policies are based upon their acceptability to local residents and citizens. In Korea, where nuclear power should be consistently used for national energy security and economic growth, it is important to enhance the social acceptability of nuclear power. To do so, it is necessary to relieve the minds of the Korean people and global nuclear power communities regarding safety. However, there is sharp division on the perception of nuclear power safety between the expert group of operators, philosophers, and regulators, and ordinary citizens, local residents, media, and anti-nuclear groups. This study designed an experiment on knowledge change as part of an educational strategy to enhance public understanding and develop extensive bonds of sympathy for nuclear power generation adequate for Korean society. In order to provide fundamental evidence for planning an educational intervention strategy, this study analyzed the knowledge change of elementary, middle, and high school students, who are then expected to impact education of the general population. As a result of conducting a 45 minute-long education on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of objective knowledge (p<0.000) was significantly higher. This indicates that if education for enhancing social acceptance in Korea argued nuclear power should be constantly used, an education effect could be anticipated. Although objective knowledge does not have any direct influence on behavior change, it is an important variable for attitude change, and thus information on objective knowledge should be offered as well. Here, the contents preferred by the education subjects should also be considered.

  15. Change in Knowledge of Korean Elementary, Middle, and High School Students in the Fundamental Education on the Nuclear Power Generation

    International Nuclear Information System (INIS)

    Kim, Jaerok; Lee, Seungkoo; Choi, Yoonseok; Han, Eunok

    2014-01-01

    Nuclear power facilities and policies are based upon their acceptability to local residents and citizens. In Korea, where nuclear power should be consistently used for national energy security and economic growth, it is important to enhance the social acceptability of nuclear power. To do so, it is necessary to relieve the minds of the Korean people and global nuclear power communities regarding safety. However, there is sharp division on the perception of nuclear power safety between the expert group of operators, philosophers, and regulators, and ordinary citizens, local residents, media, and anti-nuclear groups. This study designed an experiment on knowledge change as part of an educational strategy to enhance public understanding and develop extensive bonds of sympathy for nuclear power generation adequate for Korean society. In order to provide fundamental evidence for planning an educational intervention strategy, this study analyzed the knowledge change of elementary, middle, and high school students, who are then expected to impact education of the general population. As a result of conducting a 45 minute-long education on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of objective knowledge (p<0.000) was significantly higher. This indicates that if education for enhancing social acceptance in Korea argued nuclear power should be constantly used, an education effect could be anticipated. Although objective knowledge does not have any direct influence on behavior change, it is an important variable for attitude change, and thus information on objective knowledge should be offered as well. Here, the contents preferred by the education subjects should also be considered

  16. Impact of digital information and control system platform selection on nuclear power generating plant operating costs

    International Nuclear Information System (INIS)

    Bogard, T.; Radomski, S.; Sterdis, B.; Marta, H.; Bond, V.; Richardson, J.; Ramon, G.; Edvinsson, H.

    1998-01-01

    Information is presented on the benefits of a well-planned information and control systems (I and CS) replacement approach for aging nuclear power generating plants' I and CS. Replacement of an aging I and CS is accompanied by increases in plant profitability. Implementing a structured I and CS replacement with current technology allows improved plant electrical production in parallel with reduced I and CS operations and maintenance cost. Qualitative, quantitative, and enterprise management methods for cost benefit justification are shown to justify a comprehensive approach to I and CS replacement. In addition to the advantages of standard I and CS technologies, examples of new I and CS technologies are shown to add substantial cost benefit justification for I and CS replacements. Focus is upon I and CS replacements at nuclear power plants, however the information is applicable to other types of power generating facilities. (author)

  17. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  18. Outline of renovation for Mihama Public Relations (PR) Center on atomic power generation and nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    The Mihama PR Center of Kansai Electric Power Co. on atomic power generation and nuclear applications is now under entire renovation. It was constructed accompanying the construction of No. 1 unit in Mihama Nuclear Power Station, and opened in November, 1967, as the only PR facility of open house system. Since then, more than 1.9 million persons visited there in 15 years. Recently the space has become difficult to provide satisfactorily sophisticated exhibits because the importance of nuclear power generation has increased, and the diversified contents have been required. On the other hand, its building was cramped since many rooms were accommodated in the single round building of total area 815 m/sup 2/. In addition, the building has required drastic looking-over because of its deterioration and damages due to aging. The promotion of the understanding for the early securing of nuclear power plant location has been decided as the principal promotion item. The plan includes the modification of the existing building to the exhibition hall only as well as the completion and re-arrangement of the exhibits. It has been determined to construct a new building connected to the existing building, which accommodates a meeting hall, offices, utility machine room, etc., a total area being increased to 1457 m/sup 2/. The fund required is about 600 million yen. The construction work has started on December 1, 1982, aiming at the opening in July, 1983. The meeting hall is designed to seat about 120 persons and to employ multi-screen image techniques.

  19. Nuclear power production costs

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The economic competitiveness of nuclear power in different highly developed countries is shown, by reviewing various international studies made on the subject. Generation costs (historical values) of Atucha I and Embalse Nuclear Power Plants, which are of the type used in those countries, are also included. The results of an international study on the economic aspects of the back end of the nuclear fuel cycle are also reviewed. This study shows its relatively low incidence in the generation costs. The conclusion is that if in Argentina the same principles of economic racionality were followed, nuclear energy would be economically competitive in the future, as it is today. This is of great importance in view of its almost unavoidable character of alternative source of energy, and specially since we have to expect an important growth in the consumption of electricity, due to its low share in the total consumption of energy, and the low energy consumption per capita in Argentina. (Author) [es

  20. Electricity supplies in a French nuclear power station

    International Nuclear Information System (INIS)

    2011-01-01

    As the operation of a nuclear power station requires a power supply system enabling this operation as well as the installation safety, this document describes how such systems are designed in the different French nuclear power stations to meet the requirements during a normal operation (when the station produces electricity) or when it is stopped, but also to ensure power supply to equipment ensuring safety functions during an incident or an accident occurring on the installation. More precisely, these safety functions are provided by two independent systems in the French nuclear power stations. Their operation is briefly described. Two different types of nuclear reactors are addressed: pressurised water reactors (PWR) of second generation, EPR (or PWR of third generation)

  1. Trend in foreign countries of life extension for nuclear power plants

    International Nuclear Information System (INIS)

    Kusanagi, Hideo

    1992-01-01

    When the nuclear power generation in the world is converted to oil burning thermal power generation, the required quantity of oil is twice as much as the oil production in Saudi Arabia. This represents the size of the role that nuclear power generation plays. More than 30 years have already elapsed since the start of nuclear power generation, and the number of nuclear power plants in operation in the world was 426 as of the end of 1990, and their capacity of about 344 million kW is about 17% of the total generated electric power in the world. Though circumstances are different in respective countries, the construction of new nuclear power plants is not always advancing smoothly, and the possibility of operating existing nuclear power plants as long as possible has been investigated. In USA, the approved term of operation of nuclear power plants is 40 years, and the trend of the research and development of the plant life extension is described. In France, the life of nuclear power plants is not stipulated by the law. In U.K., also it is not stipulated by the law. The trend in these countries is reported. IAEA also has carried out the activities on this problem. (K.I.)

  2. Some problems on cost of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, A [Japan Energy Economic Research Inst., Tokyo

    1975-12-01

    The price of thermal power from oil has risen sharply. On the other hand, the price of atomic energy which has been expected to be favorable as compared with thermal power is rising slowly. In addition, the financial strength of electric utilities if lower, which results in difficulty of financing atomic power development. The course and the motivation of introducing nuclear power generation are briefly summarized. The economy and the usefulness of nuclear power generation and the problem of the financing for developing atomic energy are also examined.

  3. Status and development of nuclear power program in Korea

    International Nuclear Information System (INIS)

    Choi, C.T.

    1991-01-01

    The low availability in Korea of indigenous energy resources in the forms of water power and coal, and the oil squeeze in the seventies, have caused nuclear power to be expanded into the country's main primary energy source. Nine nuclear generating units with a cumulated power of 7616 MWe have been commissioned since 1978 and now contribute 36.2% to the power generating capacity of the country. In 1990, the nine nuclear plants converted 52.9 TWh of nuclear power into electricity, thus covering some 50% of the Korean electricity supply, as already in 1989. In the past three years, the electricity requirement rose by an annual 13.7%. In the light of a forecast continued rise by 5% to 8% annually up until 2006, the nuclear generating capacity then installed would have to be 23 229 MWe, which would be some 40% of the total generating capacity required. Under the long term energy plan of the Korean Energy Ministry, nine new nuclear generating units with an aggregate 8100 MWe will be built by 2001, and another nine units by the year 2006. (orig.) [de

  4. Occupational exposures and practices in nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.

    1989-01-01

    As the first generation of commercial nuclear power comes to a close, it is timely to consider the status of occupational exposure in the power generation industry, that is, the collective occupational radiation doses received by workers in nuclear power plants. The picture is surprising. One might have thought that as newer, larger, and more modern plants came on line, there would be a significant decrease in exposure per unit of electricity generated. There is some indication that this is now happening. One might also have thought that the United States, being a leader in the development of nuclear power, and in the knowledge, experience and technology of nuclear radiation protection, would have the greatest success in controlling exposure. This expectation has not been fulfilled. 32 refs., 4 figs., 5 tabs

  5. Power generation statistics

    International Nuclear Information System (INIS)

    Kangas, H.

    2001-01-01

    The frost in February increased the power demand in Finland significantly. The total power consumption in Finland during January-February 2001 was about 4% higher than a year before. In January 2001 the average temperature in Finland was only about - 4 deg C, which is nearly 2 degrees higher than in 2000 and about 6 degrees higher than long term average. Power demand in January was slightly less than 7.9 TWh, being about 0.5% less than in 2000. The power consumption in Finland during the past 12 months exceeded 79.3 TWh, which is less than 2% higher than during the previous 12 months. In February 2001 the average temperature was - 10 deg C, which was about 5 degrees lower than in February 2000. Because of this the power consumption in February 2001 increased by 5%. Power consumption in February was 7.5 TWh. The maximum hourly output of power plants in Finland was 13310 MW. Power consumption of Finnish households in February 2001 was about 10% higher than in February 2000, and in industry the increase was nearly zero. The utilization rate in forest industry in February 2001 decreased from the value of February 2000 by 5%, being only about 89%. The power consumption of the past 12 months (Feb. 2000 - Feb. 2001) was 79.6 TWh. Generation of hydroelectric power in Finland during January - February 2001 was 10% higher than a year before. The generation of hydroelectric power in Jan. - Feb. 2001 was nearly 2.7 TWh, corresponding to 17% of the power demand in Finland. The output of hydroelectric power in Finland during the past 12 months was 14.7 TWh. The increase from the previous 12 months was 17% corresponding to over 18% of the power demand in Finland. Wind power generation in Jan. - Feb. 2001 was exceeded slightly 10 GWh, while in 2000 the corresponding output was 20 GWh. The degree of utilization of Finnish nuclear power plants in Jan. - Feb. 2001 was high. The output of these plants was 3.8 TWh, being about 1% less than in Jan. - Feb. 2000. The main cause for the

  6. Nuclear power: A competitive option? Annex 3

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2002-01-01

    Because the future development of nuclear power will depend largely on its economic performance compared to alternatives, the OECD Nuclear Energy Agency (NEA) investigates continuously the economic aspects of nuclear power. This paper provides key findings from a series of OECD studies on projected costs of generating electricity and other related NEA activities. It addresses the cost economics necessary for nuclear units to be competitive, and discusses the challenges and opportunities currently faced by nuclear power. (author)

  7. Crucial role for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Dastidar, P R

    1980-01-01

    Generation of electricity by a nuclear reactor is explained. After taking a survey of the hydro-electric potential and coal deposits of India and considering their limitations, the need for nuclear power becomes evident. It is also economically competitive. The strategy for nuclear power development in India is to use natural uranium fuel based heavy water moderated thermal reactors to produce plutonium-239 and to use thorium based fast breeder reactors to breed plutonium-239 and uranium-233, and in turn these radioisotopes will be used to fuel FBR type reactors. This strategy maximises the energy obtainable from natural uranium by a factor of 400. The present state of nuclear power generation in India and the research programmes of the FBR type reactor are outlined. Other benefits from nuclear energy research are mentioned. Some of them are leak detection techniques, radiosterilisation and plant breeding by radiation mutation. The spin-off of the Indian atomic energy programme are: development of radiation detection instruments and other sophisticated electronic instruments, development of methods of preparation of ultra-pure materials, fabrication of components such as seamless tubes, non-destructive testing methods, and reliability evaluation techniques. Other applications of nuclear energy are mentioned.

  8. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  9. The environmental impact of nuclear power

    International Nuclear Information System (INIS)

    Holy, Z.J.

    1975-01-01

    The major environmental hazards associated with nuclear power stations are outlined. The environmental and biological effects of air pollution, thermal pollution, radioactive effluent from power stations and fuel reprocessing plants, and radioactive waste disposal are dealt with, and the safety of nuclear power stations is discussed. In addition, some comparisons are made of the environmental hazards associated with alternative methods of power generation. (author)

  10. Creep-fatigue effects in structural materials used in advanced nuclear power generating systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.

    1980-01-01

    Various aspects of time-dependent fatigue behavior of a number of structural alloys in use or planned for use in advanced nuclear power generating systems are reviewed. Materials included are types 304 and 316 stainless steel, Fe-2 1/4 Cr-1 Mo steel, and alloy 800H. Examples of environmental effects, including both chemical and physical interaction, are presented for a number of environments. The environments discussed are high-purity liquid sodium, high vacuum, air, impure helium, and irradiation damage, including internal helium bubble generation

  11. Simulation of the energy - environment economic system power generation costs in power-stations

    International Nuclear Information System (INIS)

    Weible, H.

    1978-09-01

    The costs of power generation are an important point in the electricity industry. The present report tries to supply a model representation for these problems. The costs of power generation for base load, average and peak load power stations are examined on the basis of fossil energy sources, nuclear power and water power. The methods of calculation where dynamic investment calculation processes are used, are given in the shape of formulae. From the point of view of long term prediction, power generation cost sensitivity studies are added to the technical, economic and energy-political uncertainties. The sensitivity of models for calculations is examined by deterministic and stochastic processes. In the base load and average region, power generation based on nuclear power and water power is economically more favourable than that from fossilfired power stations. Even including subsidies, this cost advantage is not in doubt. In the peak load region, pumped storage power stations are more economic than fossilfired power stations. (orig.) [de

  12. New nuclear power generation in the UK: Cost benefit analysis

    International Nuclear Information System (INIS)

    Kennedy, David

    2007-01-01

    This paper provides an economic analysis of possible nuclear new build in the UK. It compares costs and benefits of nuclear new build against conventional gas-fired generation and low carbon technologies (CCS, wind, etc.). A range of scenarios are considered to allow for uncertainty as regards nuclear and other technology costs, gas prices and carbon prices. In the base case, the analysis suggests that there is a small cost penalty for new nuclear generation relative to conventional gas-fired generation, but that this is offset by environmental and security of supply benefits. More generally nuclear new build has a positive net benefit for a range of plausible nuclear costs, gas prices and carbon prices. This supports the UK policy of developing an enabling framework for nuclear new build in a market-based context. To the extent that assumptions in the analysis are not borne out in reality (e.g. as regards nuclear cost), this is a no regrets policy, given that the market would not invest in nuclear if it is prohibitively costly. (author)

  13. Nuclear electric power safety, operation, and control aspects

    CERN Document Server

    Knowles, J Brian

    2013-01-01

    Assesses the engineering of renewable sources for commercial power generation and discusses the safety, operation, and control aspects of nuclear electric power From an expert who advised the European Commission and UK government in the aftermath of Three Mile Island and Chernobyl comes a book that contains experienced engineering assessments of the options for replacing the existing, aged, fossil-fired power stations with renewable, gas-fired, or nuclear plants. From geothermal, solar, and wind to tidal and hydro generation, Nuclear Electric Power: Safety, Operation, and Control Aspects ass

  14. Load control on nuclear power station

    International Nuclear Information System (INIS)

    Hattori, Takuya; Tsukuda, Yoshiaki.

    1988-01-01

    Power generation control is required for the nuclear power plants to meet electric power demand. In BWRs, power generation control can be achieved by arranging the coolant flow rate and control rod operation. In PWRs, power generation can be regulated by the control rods automatically controled with the steam valves. As a result of the experiments, it is confirmed that the operational function is normal, and safety of reactor components, pressure vessel and fuel elments are assured. (Katagiri, S)

  15. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  16. The collapse of nuclear power

    International Nuclear Information System (INIS)

    Jeffery, J.W.

    1991-01-01

    The decision of the UK government of 9 November 1989, withdrawing all nuclear stations from privatization and cancelling the three PWRs which were to have followed on from Sizewell B, was a shattering blow to the nuclear industry. The reversal (at least temporarily) of decades of government support for nuclear power, and the figures which were becoming available of its relatively high-cost (confirmed by the levy on electricity sales to subsidize nuclear and other non-fossil generation), caused the House of Commons Energy Select Committee to conduct the inquiry culminating in its Report The Cost of Nuclear power. (author)

  17. Main influence factors on the final energy generation cost of a nuclear power plant in comparison with other energy sources

    International Nuclear Information System (INIS)

    Souza, J.A.M. de; Glardon, C.; Schmidt, R.M.

    1981-01-01

    The main factors in the construction and in the operation of nuclear power plants that affect the final energy generation cost are presented. The structure of the energy generation cost, of the nuclear fuel cost and the total investment are studied. (E.G.) [pt

  18. IEEE Std 649-1991: IEEE standard for qualifying Class 1E motor control centers for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The basic principles, requirements, and methods for qualifying Class 1E motor control centers for both harsh and mild environment applications in nuclear power generating stations are described. In addition to defining specific qualification requirements for Class 1E motor control centers and their components in accordance with the more general qualification requirements of IEEE Std 323-1983, this standard is intended to provide guidance in establishing a qualification program for demonstrating the adequacy of Class 1E motor control centers in nuclear power generating station applications

  19. The key for competitive nuclear power, a view from Taiwan

    International Nuclear Information System (INIS)

    Lin, J.

    2000-01-01

    The article mainly deals with the current situation of nuclear power generation in Taiwan. The development of nuclear power has been long and punctilious, whereas the contribution to meet the power demand in the lean resource country is prodigious. This article delineate the structure of power generation costs with coal, petroleum oil, and nuclear reactors in Taiwan in the recent 20 years, which highlights the superiority of nuclear application. However, as we see it from Taiwan, the nuclear power could have been better if we can simplify the design and regulation of the reactor. (author)

  20. Preliminary report on safety aspects on nuclear power generation in Sri Lanka

    International Nuclear Information System (INIS)

    Jayamanne, D.; Fernando, W.L.W.; Ariyadasa

    1988-01-01

    This document is intended as background information on nuclear energy to contribute to Sri Lanka's comparative study of alternative sources of energy. This study has considered the safety and environmental effects of nuclear power reactors. Basic concepts of nuclear physics are introduced and providing and appreciation of safety considerations and safety aspects of nuclear power plants and the personnel. Radioactive waste management, storage and disposal are also discussed. Natural radiation levels in Sri Lanka are provided as well as information on biological effects of radiation especially occupational exposure licensing procedures for nuclear power plants are outlined strategy for public awareness of nuclear power is proposed