WorldWideScience

Sample records for nuclear power applications

  1. Non-power application as an entry point to nuclear power program

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2009-01-01

    Nuclear power is usually viewed as the flagship of nuclear technology. A nuclear power plant complex, visible and prominence, is iconic of the technology. That image makes its presence common knowledge to the extent that nuclear technology is equated almost totally with nuclear power by the general public. The downside of this visibility is that it becomes easy target in public misinformation programs. The non-power applications however are not visible, and devoid of icon. The non-power applications, therefore, can grow quite smoothly, attracting only little attention in the negative and in the positive senses. According to a study conducted in the USA in 2000 and in Japan in 2002, the socio-economic impact of non-power and power applications of nuclear technology are comparable. Involvement in non-power applications can be a good grounding for moving into power applications. This paper discusses the non-power nuclear technology applications and in what manner it can serve to prepare the introduction of nuclear power program. (Author)

  2. Fields of nuclear power application

    International Nuclear Information System (INIS)

    Laue, H.J.

    1975-01-01

    The paper deals with nuclear power application in fields different from electricity generation, i.e. district heating, sea water desalination, coal gasification and nuclear splitting of water. (RW) [de

  3. Application of fieldbus techniques in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xu; Chen Hang; Yu Shuxin; Zhang Xinli

    2012-01-01

    The successful application experience of fieldbus techniques in thermal power plants and nuclear power plants are outlined first. And then, the application of fieldbus techniques in domestic 3rd-generation nuclear power plant (NPP) project is discussed. After that, the solution to the potential problems of fieldbus techniques application in NPP is provided. (authors)

  4. U.S. Forward Operating Base Applications of Nuclear Power

    International Nuclear Information System (INIS)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  5. Development and application of nuclear power operation database

    International Nuclear Information System (INIS)

    Shao Juying; Fang Zhaoxia

    1996-01-01

    The article describes the development of the Nuclear Power Operation Database which include Domestic and Overseas Nuclear Event Scale Database, Overseas Nuclear Power Operation Abnormal Event Database, Overseas Nuclear Power Operation General Reliability Database and Qinshan Nuclear Power Operation Abnormal Event Database. The development includes data collection and analysis, database construction and code design, database management system selection. The application of the database to provide support to the safety analysis of the NPPs which have been in commercial operation is also introduced

  6. Defense nuclear energy systems selection methodology for civil nuclear power applications

    International Nuclear Information System (INIS)

    Scarborough, J.C.

    1986-01-01

    A methodology developed to select a preferred nuclear power system for a US Department of Defense (DOD) application has been used to evaluate preferred nuclear power systems for a remote island community in Southeast Asia. The plant would provide ∼10 MW of electric power, possibly low-temperature process heat for the local community, and would supplement existing island diesel electric capacity. The nuclear power system evaluation procedure was evolved from a disciplined methodology for ranking ten nuclear power designs under joint development by the US Department of Energy (DOE) and DOD. These included six designs proposed by industry for the Secure Military Power Plant Program (now termed Multimegawatt Terrestrial Reactor Program), the SP-100 Program, the North Warning System Program, and the Modular Advanced High-Temperature Gas-Cooled Reactor (HTGR) and Liquid-Metal Reactor (LMR) programs. The 15 evaluation criteria established for the civil application were generally similar to those developed and used for the defense energy systems evaluation, except that the weighting factor applied to each individual criterion differed. The criteria and their weighting (importance) functions for the civil application are described

  7. Fiber optic applications in nuclear power plants

    International Nuclear Information System (INIS)

    Collette, P.; Kwapien, D.

    1984-01-01

    Fiber optic technology possesses many desirable attributes for applications in commercial nuclear power plants. The non-electrical nature of fiber optics is an important factor in an industry governed by federal safety regulations such as Class 1E isolation and separation criteria. Immunity from Electromagnetic Interference (EMI), an increasing industry problem area, is another significant characteristic. Because of the extremely wide bandwidth offered, fiber optics better addresses the data acquistion and communication requirements of the complex processes of a nuclear power plant. Potential for fiber optic sensor applications exists within the nuclear industry because their small size and physical flexibility allows access into normally inaccessible areas. They possess high accuracy and allow environmentally sensitive electronics to be remotely located. The purpose of this paper is to explore current applications for fiber optic technology in modern nuclear plants, document examples of present day usage in C-E plants and suggest possible future application areas

  8. Low-temperature nuclear heat applications: Nuclear power plants for district heating

    International Nuclear Information System (INIS)

    1987-08-01

    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  9. A study on expert system applications for nuclear power plant

    International Nuclear Information System (INIS)

    Huh, Young Hwan; Kim, Yeong Jin; Park, Nam Seog; Dong, In Sook; Choi, In Seon

    1987-12-01

    The application of artificial intelligence techniques to nuclear power plants such as expert systems is rapidly emerging. expert systems can contribute significantly to the availability and the improved operation and safety of nuclear power plants. The objective of the project is to develop an expert system in a selected application area in the nuclear power plants. This project will last for 3 years. The first year's tasks are: - Information collection and literature survey on expert systems. - Analysis of several applicable areas for applying AI technologies to the nuclear power plants. - Conceptual design of a few selected domains. - Selection of hardware and software tools for the development of the expert system

  10. China general nuclear power corporation--The recent research and application of the modular technology in nuclear power engineering

    International Nuclear Information System (INIS)

    Lu Qinwu

    2014-01-01

    Modular design and construction is one of the distinctive features of the 3"r"d generation nuclear power technology. In order to promote the technological innovations in nuclear power engineering design and construction and develop the self-owned modular technology, China General Nuclear Power Corporation (CGN) has carried out the R and D and application of the modular technology based on the CPR1000-type nuclear power plants, and has made the national-level achievements in the establishment of modular design technology system, development of 3D modular design system and application of modular construction of containment steel liner in the demonstration projects. (author)

  11. Applications of neutron radiography for the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Barton, John P.

    2016-11-01

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in this conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.

  12. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2008-07-01

    By August 2007, there were 438 nuclear power plants (NPPs) in operation worldwide, with a total capacity of 371.7 GW(e). Further, 31 units, totaling 24.1 GW(e), were under construction. During 2006 nuclear power produced 2659.7 billion kWh of electricity, which was 15.2% of the world's total. The vast majority of these plants use water-cooled reactors. Based on information provided by its Member States, the IAEA projects that nuclear power will grow significantly, producing between 2760 and 2810 billion kWh annually by 2010, between 3120 and 3840 billion kWh annually by 2020, and between 3325 and 5040 billion kWh annually by 2030. There are several reasons for these rising expectations for nuclear power: - Nuclear power's lengthening experience and good performance: The industry now has more than 12 000 reactor years of experience, and the global average nuclear plant availability during 2006 reached 83%; - Growing energy needs: All forecasts project increases in world energy demand, especially as population and economic productivity grow. The strategies are country dependent, but usually involve a mix of energy sources; - Interest in advanced applications of nuclear energy, such as seawater desalination, steam for heavy oil recovery and heat and electricity for hydrogen production; - Environmental concerns and constraints: The Kyoto Protocol has been in force since February 2005, and for many countries (most OECD countries, the Russian Federation, the Baltics and some countries of the Former Soviet Union and Eastern Europe) greenhouse gas emission limits are imposed; - Security of energy supply is a national priority in essentially every country; and - Nuclear power is economically competitive and provides stability of electricity price. In the near term most new nuclear plants will be evolutionary water cooled reactors (Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs), often pursuing economies of scale. In the longer term, innovative designs that

  13. Proposed advanced satellite applications utilizing space nuclear power systems

    International Nuclear Information System (INIS)

    Bailey, P.G.; Isenberg, L.

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000 kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Safety issues are shown to be identified, and if properly addressed should not pose a hindrance. Applications are summarized for the federal and civilian community. These applications include both low and high altitude satellite surveillance missions, communications satellites, planetary probes, low and high power lunar and planetary base power systems, broad-band global telecommunications, air traffic control, and high-definition television

  14. 78 FR 37324 - Preparation of Environmental Reports for Nuclear Power Plant License Renewal Applications

    Science.gov (United States)

    2013-06-20

    ... Environmental Reports for Nuclear Power Plant License Renewal Applications AGENCY: Nuclear Regulatory Commission... for Nuclear Power Plant License Renewal Applications.'' This regulatory guide provides guidance to... renewal of a nuclear power plant operating license. Applicants should use this regulatory guide when...

  15. The innovation and application of the nuclear power construction management information system MISNPC

    International Nuclear Information System (INIS)

    Wang Kaihua; Tang Zihui; Zhang Baiqi; Sun Guangwei; Zhu Guodong; Qian Fuhua

    2009-01-01

    This paper focuses on introducing the innovation achievements on the management information system of nuclear power construction (MISNPC). The innovation is achieved through summarizing the practice of nuclear power construction in China and drawing on advanced experience of international nuclear power construction. The innovation, including the management standard for nuclear power construction, the standard of construction process, the standard of nuclear-power basic codes and the standard for nuclear power construction and control, can be rapidly copied for application in various nuclear power construction projects. The application of the innovation may play an essential role in ensuring safe construction and operation of nuclear power plants in China and improving economic benefits. (authors)

  16. Wireless Technology Application to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jeong Kweon; Jeong, See Chae; Jeong, Ki Hoon; Oh, Do Young; Kim, Jae Hack

    2009-01-01

    Wireless technologies are getting widely used in various industrial processes for equipment condition monitoring, process measurement and other applications. In case of Nuclear Power Plant (NPP), it is required to review applicability of the wireless technologies for maintaining plant reliability, preventing equipment failure, and reducing operation and maintenance costs. Remote sensors, mobile technology and two-way radio communication may satisfy these needs. The application of the state of the art wireless technologies in NPPs has been restricted because of the vulnerability for the Electromagnetic Interference and Radio Frequency Interference (EMI/RFI) and cyber security. It is expected that the wireless technologies can be applied to the nuclear industry after resolving these issues which most of the developers and vendors are aware of. This paper presents an overview and information on general wireless deployment in nuclear facilities for future application. It also introduces typical wireless plant monitoring system application in the existing NPPs

  17. Application of condition based maintenance to nuclear power plants

    International Nuclear Information System (INIS)

    Sonoda, Yukio; Nakano, Tomohito; Shimizu, Shunichi; Iida, Jun; Atomura, Masakazu; Abe, Masahiro

    2002-01-01

    Device Karte management system which supports application of condition based maintenance to nuclear power plants has been developed. The purpose of this system is to support maintenance personnel in device inspection scheduling based on operating condition monitoring and maintenance histories. There are four functions: field database, degradation estimation, inspection time decision and maintenance planning. The authors have been applying this system to dozens of devices of Onagawa Nuclear Power Station Unit No. 1 for one year. This paper represents the system concept and its application experiences. (author)

  18. Internet applications in nuclear power plant operation management

    International Nuclear Information System (INIS)

    Munoz, M.

    2000-01-01

    The use of the Internet is quickly becoming widespread in practically all areas of business and industry. The nuclear industry should not remain indifferent to this new trend. This paper analyses some of the Internet applications that can be easily adapted to nuclear power plant operation management, including. (Author)

  19. Safety Framework for Nuclear Power Source Applications in Outer Space

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power sources (NPS) for use in outer space have been developed and used in space applications where unique mission requirements and constraints on electrical power and thermal management precluded the use of non-nuclear power sources. Such missions have included interplanetary missions to the outer limits of the Solar System, for which solar panels were not suitable as a source of electrical power because of the long duration of these missions at great distances from the Sun. According to current knowledge and capabilities, space NPS are the only viable energy option to power some space missions and significantly enhance others. Several ongoing and foreseeable missions would not be possible without the use of space NPS. Past, present and foreseeable space NPS applications include radioisotope power systems (for example, radioisotope thermoelectric generators and radioisotope heater units) and nuclear reactor systems for power and propulsion. The presence of radioactive materials or nuclear fuels in space NPS and their consequent potential for harm to people and the environment in Earth's biosphere due to an accident require that safety should always be an inherent part of the design and application of space NPS. NPS applications in outer space have unique safety considerations compared with terrestrial applications. Unlike many terrestrial nuclear applications, space applications tend to be used infrequently and their requirements can vary significantly depending upon the specific mission. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. For some applications, space NPS must operate autonomously at great distances from Earth in harsh environments. Potential accident conditions resulting from launch failures and inadvertent re-entry could expose NPS to extreme physical conditions. These and other unique safety considerations for the use of

  20. Application of reliability centered maintenance for nuclear power station in Japan

    International Nuclear Information System (INIS)

    Kumano, Haruyuki; Honda, Hironobu.

    1990-01-01

    The reliability centered maintenance (RCM) method has been widely used with good results in aviation companies in the U.S. to ensure positive preventive maintenance and management. In addition, the Electric Power Research Institute has been making studies and tests in an effort to apply the RCM method to nuclear power plants. The present report shows and discusses some results of a preliminary study aimed at the introduction of the RCM method to nuclear power plants in Japan. The history of the development and application of RCM is outlined first, and the procedure of its implementation is then described and discussed. The procedure consists of five major steps: collection of data, identification of system components, analysis of the functions of the system, selection of required tasks for preventive management, and packaging. Some actual examples of the application of RCM to nuclear power plants in the U.S. are described. And finally, the report discusses some major problems to be solved to permit the application of RCM to nuclear power plants in Japan. (N.K.)

  1. A sample application of nuclear power human resources model

    International Nuclear Information System (INIS)

    Gurgen, A.; Ergun, S.

    2016-01-01

    One of the most important issues for a new comer country initializing the nuclear power plant projects is to have both quantitative and qualitative models for the human resources development. For the quantitative model of human resources development for Turkey, “Nuclear Power Human Resources (NPHR) Model” developed by the Los Alamos National Laboratory was used to determine the number of people that will be required from different professional or occupational fields in the planning of human resources for Akkuyu, Sinop and the third nuclear power plant projects. The number of people required for different professions for the Nuclear Energy Project Implementation Department, the regulatory authority, project companies, construction, nuclear power plants and the academy were calculated. In this study, a sample application of the human resources model is presented. The results of the first tries to calculate the human resources needs of Turkey were obtained. Keywords: Human Resources Development, New Comer Country, NPHR Model

  2. Risk monitor riskangel for risk-informed applications in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Fang; Wang, Jiaqun; Wang, Jin; Li, Yazhou; Hu, Liqin; Wu, Yican

    2016-01-01

    Highlights: • A general risk monitor riskangel with high-speed cutsets generator engine. • Benchmarks of actual nuclear power plant (NPP) instantaneous risk models. • Applications in daily operation, maintenance plan and component out of service. - Abstract: This paper studied the requirements of risk monitor software and its applications as a plant specific risk monitor, which supports risk-informed configuration risk management for the two CANDU 6 units at the Third Qinshan nuclear power plant (TQNPP) in China. It also describes the regulatory prospective on risk-informed Probabilistic Safety Assessment (PSA) applications and the use of risk monitor at operating nuclear power plants, high level technical and functional requirements for the development of CANDU specific risk monitor software, and future development trends.

  3. Application of Equipment Monitoring Technology in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, H. T.; Lee, J. K.; Lee, K. D.; Jo, S. H.

    2012-01-01

    The major goal of nuclear power industries during the past 10 years is to increase reliability and utility capacity factor. As the capacitor factor, however, crept upward. it became harder to attain next percentage of improvement. Therefore other innovative technologies are required. By the technologies applied to the fossil power plants, equipment health monitoring was performed on equipment to maintain it in operable condition and contributed on improving their reliability a lot. But the equipment monitoring may be limited to the observation of current system states in nuclear power plant. Monitoring of current system states is being augmented with prediction of future operating states and predictive diagnosis of future failure states. Such predictive diagnosis is motivated by the need for nuclear power plants to optimize equipment performance and reduce costs and unscheduled downtime. This paper reviews the application of techniques that focus on improving reliability in nuclear power plant by monitoring and predicting equipment health and suggests how possible to support on-line monitoring

  4. Neutral networks and their application in nuclear power plants

    International Nuclear Information System (INIS)

    Zhao Fuyu; Li Tiejun; Liao Zhongyue

    1994-01-01

    The neutral theory has been applied to various fields and many achievements have been obtained in many aspects, and the theory has also applied to nuclear engineering. In this paper, a few patterns of neutral networks and application in nuclear power plant is surveyed so as to bring the researching direction to nuclear work's attention at home

  5. Development and application of emergency operating procedures for nuclear power plants

    International Nuclear Information System (INIS)

    Lin Chengge

    1990-01-01

    The development and application of emergency operating procedures (EOPs) is an important measure to assure the operational safety for nuclear power plants. Event-oriented, symptom-, function- and state-oriented EOPs with their structures, interfaces, development procedures and practical application are described. The ideas and approach can be available for the preparation of EOPs for nuclear power plants which are going to be in service

  6. The outlook for application of powerful nuclear thermionic reactor -powered space electric jet propulsion engines

    International Nuclear Information System (INIS)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D.

    1997-01-01

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  7. Non-power application of nuclear energy: Bangladesh perspective

    International Nuclear Information System (INIS)

    Naiyyum Choudhury

    2002-01-01

    Radiation technology offers a very wide scope for utilisation and commercial exploitation in various fields. All over the world, this non-power nuclear energy is being favourably considered for different applications like radiation processing of polymeric materials, non-destructive testing, nuclear and nuclear-related analytical techniques, radiation sterilization of medical products and human tissue allografts, preservation of food by controlling the physiological processes for extending shelf-life and eradication of microbial and insect pests, nuclear technology in agriculture and treatment of sewage sludge. Bangladesh Atomic Energy Commission has taken radiation processing programmes in a big way right from its inception. This paper describes the studies carried out by various research groups in Bangladesh Atomic Energy Commission in the planning and development of non-power nuclear technology for peaceful uses in the fields of food, agriculture, medicine, industry and environment. Both food preservation and medical sterilization of medical products are now being commercially carried out in the Gammatech facility as a joint venture company of BAEC and a private entrepreneur. Bangladesh is soon going to establish a full-fledged Tissue Bank to cater the needs of various tissue allografts for surgical replacement. Recently Government of Bangladesh has allocated US$ 1.00 million for strengthening of the Tissue Banking Laboratory. Application of nuclear techniques in agriculture is also quite intensive. BAEC has made quite a good research contribution on vulcanization of natural rubber latex, wood plastic composites, surface coating curing, polymer modification etc. Bangladesh has also made a very good progress in the fields of non-destructive testing, tracer technology, nuclear analytical techniques and nucleonic control. The impact of non-power nuclear energy in selected areas will no doubt be significant in coming years. (Author)

  8. Application perspectives of simulation techniques CFD in nuclear power plants

    International Nuclear Information System (INIS)

    Galindo G, I. F.

    2013-10-01

    The scenarios simulation in nuclear power plants is usually carried out with system codes that are based on concentrated parameters networks. However situations exist in some components where the flow is predominantly 3-D, as they are the natural circulation, mixed and stratification phenomena. The simulation techniques of computational fluid dynamics (CFD) have the potential to simulate these flows numerically. The use of CFD simulations embraces many branches of the engineering and continues growing, however, in relation to its application with respect to the problems related with the safety in nuclear power plants, has a smaller development, although is accelerating quickly and is expected that in the future they play a more emphasized paper in the analyses. A main obstacle to be able to achieve a general acceptance of the CFD is that the simulations should have very complete validation studies, sometimes not available. In this article a general panorama of the state of the methods application CFD in nuclear power plants is presented and the problem associated to its routine application and acceptance, including the view point of the regulatory authorities. Application examples are revised in those that the CFD offers real benefits and are also presented two illustrative study cases of the application of CFD techniques. The case of a water recipient with a heat source in its interior, similar to spent fuel pool of a nuclear power plant is presented firstly; and later the case of the Boron dilution of a water volume that enters to a nuclear reactor is presented. We can conclude that the CFD technology represents a very important opportunity to improve the phenomena understanding with a strong component 3-D and to contribute in the uncertainty reduction. (Author)

  9. Application of ceramic and glass materials in nuclear power plants

    International Nuclear Information System (INIS)

    Hamnabard, Z.

    2008-01-01

    Ceramic and glass are high temperature materials that can be used in many fields of application in nuclear industries. First, it is known that nuclear fuel UO 2 is a ceramic material. Also, ability to absorb neutrons without forming long lived radio-nuclides make the non-oxide ceramics attractive as an absorbent for neutron radiation arising in nuclear power plants. Glass-ceramic materials are a new type of ceramic that produced by the controlled nucleation and crystallization of glass, and have several advantages such as very low or null porosity, uniformity of microstructure, high chemical resistance etc. over conventional powder processed ceramics. These ceramic materials are synthesized in different systems based on their properties and applications. In nuclear industries, those are resistant to leaching and radiation damage for thousands of years, Such as glass-ceramics designed for radioactive waste immobilization and machinable glass-ceramics are used. This article introduces requirements of different glass and ceramic materials used in nuclear power plants and have been focused on developments in properties and application of them

  10. Application of digital control systems in nuclear power plants

    International Nuclear Information System (INIS)

    Keiper, J.T.

    1993-01-01

    This paper describes a sampling of recent digital applications, both safety related and non-safety related, in four nuclear power plants and discusses a few of the unique application experiences. Each application accrues unique benefits, but also poses unique problems. A few of the benefits and problems are discussed

  11. A study on the development and application of expert system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Kim, Seong Bok [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    It is a final report of the research that is a study on the development and application of expert system for nuclear power plants and development of the schemes computing environments and user interfaces for the expert system, which is a systematic and efficient development of expert system for nuclear power plants in the future. This report is consisted of -Development trends of expert system for nuclear power plants. -Classification of expert system applications for nuclear power plants. -Systematic and efficient developments schemes of expert system for nuclear power plants, and -Suitable computing environments and user interfaces for the expert systems. (author). 113 refs., 85 figs.

  12. A study on the development and application of expert system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Kim, Seong Bok [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    It is a final report of the research that is a study on the development and application of expert system for nuclear power plants and development of the schemes computing environments and user interfaces for the expert system, which is a systematic and efficient development of expert system for nuclear power plants in the future. This report is consisted of -Development trends of expert system for nuclear power plants. -Classification of expert system applications for nuclear power plants. -Systematic and efficient developments schemes of expert system for nuclear power plants, and -Suitable computing environments and user interfaces for the expert systems. (author). 113 refs., 85 figs.

  13. The application of plant information system on third Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Liu Wangtian

    2005-01-01

    Plant overall control has been applied in Qinshan Nuclear Power Plant, which enhances the security of plant operation, but it is not enough to improve the technical administration level. In order to integrate the overall information and to improve the technical administration level more. Third Qinshan Nuclear Power Plant applies the plant information system. This thesis introduces the application of plant information system in Third Qinshan Nuclear Power Plant and the effect to the plant after the system is carried into execution, in addition, it does more analysis and exceptions for application of plant information system in the future. (authors)

  14. Development and application of project management computer system in nuclear power station

    International Nuclear Information System (INIS)

    Chen Junpu

    2000-01-01

    According to the experiences in the construction of Daya Bay and Lingao nuclear power plants presents, the necessity to use the computers for management and their application in the nuclear power engineering project are explained

  15. Topics for application of expert systems for nuclear power plants

    International Nuclear Information System (INIS)

    Trovato, S.A.; Aydin, F.

    1992-01-01

    Expert systems are an innovative form of computer software which offer to enhance productivity and improve operations of nuclear power plants. A survey and assessment of opportunities for application of this technology at Consolidated Edison Company of New York, Inc.'s (Con Edison) Indian Point 2 nuclear power plant was conducted. Eleven topics for expert systems are discussed in this paper. 1 ref., 2 figs., 2 tabs

  16. Application of linear scheduling method (LSM) for nuclear power plant (NPP) construction

    International Nuclear Information System (INIS)

    Kim, Woojoong; Ryu, Dongsoo; Jung, Youngsoo

    2014-01-01

    Highlights: • Mixed use of linear scheduling method with traditional CPM is suggested for NPP. • A methodology for selecting promising areas for LSM application is proposed. • A case-study is conducted to validate the proposed LSM selection methodology. • A case-study of reducing NPP construction duration by using LSM is introduced. - Abstract: According to a forecast, global energy demand is expected to increase by 56% from 2010 to 2040 (EIA, 2013). The nuclear power plant construction market is also growing with sharper competition. In nuclear power plant construction, scheduling is one of the most important functions due to its large size and complexity. Therefore, it is crucial to incorporate the ‘distinct characteristics of construction commodities and the complex characteristics of scheduling techniques’ (Jung and Woo, 2004) when selecting appropriate schedule control methods for nuclear power plant construction. However, among various types of construction scheduling techniques, the traditional critical path method (CPM) has been used most frequently in real-world practice. In this context, the purpose of this paper is to examine the viability and effectiveness of linear scheduling method (LSM) applications for specific areas in nuclear power plant construction. In order to identify the criteria for selecting scheduling techniques, the characteristics of CPM and LSM were compared and analyzed first through a literature review. Distinct characteristics of nuclear power plant construction were then explored by using a case project in order to develop a methodology to select effective areas of LSM application to nuclear power plant construction. Finally, promising areas for actual LSM application are suggested based on the proposed evaluation criteria and the case project. Findings and practical implications are discussed for further implementation

  17. Application of linear scheduling method (LSM) for nuclear power plant (NPP) construction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woojoong, E-mail: minidung@nate.com [Central Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Daejeon 305-343 (Korea, Republic of); Ryu, Dongsoo, E-mail: energyboy@khnp.co.kr [Central Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Daejeon 305-343 (Korea, Republic of); Jung, Youngsoo, E-mail: yjung97@mju.ac.kr [College of Architecture, Myongji University, Yongin 449-728 (Korea, Republic of)

    2014-04-01

    Highlights: • Mixed use of linear scheduling method with traditional CPM is suggested for NPP. • A methodology for selecting promising areas for LSM application is proposed. • A case-study is conducted to validate the proposed LSM selection methodology. • A case-study of reducing NPP construction duration by using LSM is introduced. - Abstract: According to a forecast, global energy demand is expected to increase by 56% from 2010 to 2040 (EIA, 2013). The nuclear power plant construction market is also growing with sharper competition. In nuclear power plant construction, scheduling is one of the most important functions due to its large size and complexity. Therefore, it is crucial to incorporate the ‘distinct characteristics of construction commodities and the complex characteristics of scheduling techniques’ (Jung and Woo, 2004) when selecting appropriate schedule control methods for nuclear power plant construction. However, among various types of construction scheduling techniques, the traditional critical path method (CPM) has been used most frequently in real-world practice. In this context, the purpose of this paper is to examine the viability and effectiveness of linear scheduling method (LSM) applications for specific areas in nuclear power plant construction. In order to identify the criteria for selecting scheduling techniques, the characteristics of CPM and LSM were compared and analyzed first through a literature review. Distinct characteristics of nuclear power plant construction were then explored by using a case project in order to develop a methodology to select effective areas of LSM application to nuclear power plant construction. Finally, promising areas for actual LSM application are suggested based on the proposed evaluation criteria and the case project. Findings and practical implications are discussed for further implementation.

  18. Fiber optic sensors for nuclear power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

    2012-05-17

    Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

  19. Non-electric applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2009-01-01

    Today, nuclear power plants contribute about 16% to the world's electricity generation. Because electricity represents less than one third of the primary energy uses, nuclear energy provides only about 6% of total energy consumption in the world. If nuclear energy were used for purposes other than electricity generation, it could play a more significant role in global energy supply. This could have also a significant impact on global goals for reduced greenhouse gas emissions for a cleaner environment. Nuclear power is the only large-scale carbon-free energy source that, in the near and medium term, has the potential to significantly displace limited and uncertain fossil fuels. To do this, however, nuclear power must move beyond its historical role as solely a producer of electricity to other non-electric applications. These applications include seawater desalination, district heating, heat for industrial processes, and electricity and heat for hydrogen production among others. These applications have tremendous potential in ensuring future worldwide energy and water security for sustainable development. In recent years, various agencies involved in nuclear energy development programmes have carried out studies on non-electric applications of nuclear power and useful reports have been published. The IAEA launched a programme on co-generation applications in the 1990's in which a number of Member States have been and continue to be actively involved. This programme, however is primarily concerned with seawater desalination, and district and process heating, utilizing the existing reactors as a source of heat and electricity. In recent years the scope of the Agency's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. OECD/NEA (OECD Nuclear Energy Agency), EURATOM (European Atomic Energy Community) and GIF (Generation IV International Forum) have also evinced

  20. Applications of wavelet transforms for nuclear power plant signal analysis

    International Nuclear Information System (INIS)

    Seker, S.; Turkcan, E.; Upadhyaya, B.R.; Erbay, A.S.

    1998-01-01

    The safety of Nuclear Power Plants (NPPs) may be enhanced by the timely processing of information derived from multiple process signals from NPPs. The most widely used technique in signal analysis applications is the Fourier transform in the frequency domain to generate power spectral densities (PSD). However, the Fourier transform is global in nature and will obscure any non-stationary signal feature. Lately, a powerful technique called the Wavelet Transform, has been developed. This transform uses certain basis functions for representing the data in an effective manner, with capability for sub-band analysis and providing time-frequency localization as needed. This paper presents a brief overview of wavelets applied to the nuclear industry for signal processing and plant monitoring. The basic theory of Wavelets is also summarized. In order to illustrate the application of wavelet transforms data were acquired from the operating nuclear power plant Borssele in the Netherlands. The experimental data consist of various signals in the power plant and are selected from a stationary power operation. Their frequency characteristics and the mutual relations were investigated using MATLAB signal processing and wavelet toolbox for computing their PSDs and coherence functions by multi-resolution analysis. The results indicate that the sub-band PSD matches with the original signal PSD and enhances the estimation of coherence functions. The Wavelet analysis demonstrates the feasibility of application to stationary signals to provide better estimates in the frequency band of interest as compared to the classical FFT approach. (author)

  1. 76 FR 81992 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Science.gov (United States)

    2011-12-29

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...

  2. 76 FR 46330 - NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft...

    Science.gov (United States)

    2011-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0568] NUREG-1934, Nuclear Power Plant Fire Modeling... 1023259), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft Report for...), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft for Comment,'' is...

  3. Hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1985-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply. 5 refs., 2 figs

  4. Environmental aspects of nuclear power applications

    International Nuclear Information System (INIS)

    Penner, S.S.; Howe, J.P.; Icerman, L.

    1976-01-01

    The paper estimates the future dangers from the nuclear industry. Historically, the occurrence of nuclear reactor accidents has not been a hazard to the U.S. population, because of relatively limited reactor deployment and because of relatively safe operation. Some factual inputs were taken from the Rasmussen Report, ''An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants.'' It is noted that data on nuclear power plant accidents follow a curve about four orders of magnitude below that for persons on the ground killed by air crashes. Data show that coal mining produced about ten times as many disabilities as uranium mining and milling per 10 6 MW(e)h of energy recovered, while the number of injuries per 10 6 man-hours of work was roughly comparable for these two types of occupations. Information on the following subjects is then presented: radiation protection standards, radiation exposures; radiation emitted from nuclear reactors under normal operating conditions; accidents involving nuclear fission reactors; fuel reprocessing; nuclear waste disposal; estimates of environmental and safety aspects of fusion power; licensing of nuclear reactors; nuclear safeguards: diversion of nuclear materials, sabotage, and subversion; and nuclear energy and trade deficits in which data are presented estimating a timetable expressing the economic power of OPEC, or the time required for OPEC wealth to purchase the world's major assets

  5. SP-100 nuclear space power systems with application to space commercialization

    International Nuclear Information System (INIS)

    Smith, J.M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power

  6. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2009-01-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  7. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2009-05-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  8. Applications of pattern recognition theory in diagnostics of nuclear power plants

    International Nuclear Information System (INIS)

    Cech, J.

    1982-01-01

    The questions are discussed of the application of the theory of pattern recognition in the diagnostics of nuclear power plants. For the future use of recognition systems in the diagnostics of nuclear power plants it is obvious that like with other complex systems, optimal models will have to be used which will organize the optimal recognition algorithm. The conclusion is presented that for the needs of nuclear power plants special systems will be more suitable for pattern recognition than digital computers which are flexible and adaptible but have a lower decision rate, an insufficient working memory, complicated programs, etc. (Z.M.)

  9. Research on application of knowledge engineering to nuclear power stations

    International Nuclear Information System (INIS)

    Umeda, Takeo; Kiyohashi, Satoshi

    1990-01-01

    Recently, the research on the software and hardware regarding knowledge engineering has been advanced eagerly. Especially the applicability of expert systems is high. When expert systems are introduced into nuclear power stations, it is necessary to make the plan for introduction based on the detailed knowledge on the works in nuclear power stations, and to improve the system repeatedly by adopting the opinion and request of those in charge upon the trial use. Tohoku Electric Power Co. was able to develop the expert system of practically usable scale 'Supporting system for deciding fuel movement procedure'. The survey and analysis of the works in nuclear power stations, the selection of the system to be developed and so on are reported. In No. 1 plant of Onagawa Nuclear Power Station of BWR type, up to 1/3 of the fuel is replaced at the time of the regular inspection. Some fuel must be taken to outside for ensuring the working space. The works of deciding fuel movement procedure, the development of the system and its evaluation are described. (K.I.)

  10. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  11. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory Commission (NRC or the Commission ) a...

  12. The application of project management in operations preparation of nuclear power station

    International Nuclear Information System (INIS)

    Zhang Zhixiong; Tang Zhengrong

    2000-01-01

    The author first presents a brief introduction of the concept, history, characteristics of project management. Analysis is performed on the suitability of application of project management approach in nuclear power station operations preparation. Then the application of project management is detailed in order to present the readers authors' study and practice. Theory and practice indicate that the project management is a useful management tool for operations preparation of nuclear power station to achieve a good performance

  13. Applicability of the proposed evaluation method for social infrastructures to nuclear power plants

    International Nuclear Information System (INIS)

    Ichimura, Tomiyasu

    2015-01-01

    This study proposes an evaluation method for social infrastructures, and verifies the applicability of the proposed evaluation method to social infrastructures by applying it to nuclear power plants, which belong to social infrastructures. In the proposed evaluation method for social infrastructures, the authors chose four evaluation viewpoints and proposed common evaluation standards for the evaluation indexes obtained from each viewpoint. By applying this system to the evaluation of nuclear power plants, the evaluation index examples were obtained from the evaluation viewpoints. Furthermore, when the level of the common evaluation standards of the proposed evaluation method was applied to the evaluation of the activities of nuclear power plants based on the regulations, it was confirmed that these activities are at the highest level. Through this application validation, it was clarified that the proposed evaluation method for social infrastructures had certain effectiveness. The four evaluation viewpoints are 'service,' 'environment,' 'action factor,' and 'operation and management.' Part of the application examples to a nuclear power plant are as follows: (1) in the viewpoint of service: the operation rate of the power plant, and operation costs, and (2) in the viewpoint of environment: external influence related to nuclear waste and radioactivity, and external effect related to cooling water. (A.O.)

  14. STAMP model and its application prospect in DCS safety analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Jie; Liu Zhaohui; Liu Hua; Yu Tonglan

    2013-01-01

    The application of DCS (Digit Control System) is a certain trend for the development of nuclear power. DCS not only improves the control capability of nuclear power system, but also increases the complexity of the system. Traditional safety analysis techniques based on event-chain model are facing challenges. In order to improve the safety performance of nuclear power DCS, the latest research achievement in the field of safety engineering should be focused, studied and applied into nuclear power safety. This paper introduces a new safety analysis model named STAMP (Systems-Theoretic Accident Modeling and Processes) based on the system theory, analyzes its advantages and disadvantages compared with the traditional ones, and explains the basic steps of STPA (STAMP-Based Hazard Analysis) technology. Finally, according to the application status of STAMP at home and abroad, it prospects the development of STAMP in China's nuclear power safety. (authors)

  15. Nuclear alkali metal Rankine power systems for space applications

    International Nuclear Information System (INIS)

    Moyers, J.C.; Holcomb, R.S.

    1986-01-01

    Nuclear power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper

  16. Applications of lasers in nuclear power plants

    International Nuclear Information System (INIS)

    Raj, Rupam; Sanyal, D.N.; Sil, Jaydeb

    2013-01-01

    Applications of lasers in nuclear power plants: Bellow lip cutting and high pressure feeder coupling stud (HPFC) cutting during en-masse coolant channel replacement (EMCCR) campaign at Narora Atomic Power Station Reactor 1 in May 2006; cutting of pressure tubes from Madras Atomic Power Station 1 (MAPS-1) for easy storage in April 2005; In-situ cutting of selected coolant channel S-7 at Kakrapar Atomic Power Station (KAPS-2) (cutting of 12 mm thick end fitting and 4 mm thick liner tube of stainless steel from inside) in January 2005; Development of a miniature cutting mechanism for steam generator tubes (14 mm i.d.) from inside, In-situ bellow repair for secondary shutdown system; LASER welding may be deployed for End shield of MAPS-1 leak repair

  17. Prophetic forecast on the nuclear power applications

    International Nuclear Information System (INIS)

    Lee, Chang-Kun

    1996-01-01

    It was asked to attempt the ''prophetic forecast''. The time required for the doubling of world population continued to shrink, and now it is mere 40 years. The life of a contemporary person is now sustained by some 30,000 different ''daily necessities'', and despite such proliferation of options, the avarice for much more has not diminished. Over the past 35 years, the Korean population has increased by 1.79 times, and the electric power generation by 168.53 fold. Similar mushrooming trends have occurred in water and food consumption, clothing, plastics, paper, iron and steel, aluminum and so forth. The annual minimum temperature in Seoul has sharply jumped up in the last 80 years, and in the last 2-3 years, sea level went up by 10 mm per annum. Nuclear energy will play a crucial role in helping save all forms of life on the earth and keep the biosphere clean and livable, by reducing the discharge of detrimental gases and contaminating effluents. The main cause of various problems is human population burst, but now there may be a reason for some optimism as far as containing unbounded population growth, by the dilution of sperm density in human semen. In order to avoid the crashing of a large planetoid on the earth in 2126, nuclear architects must develop powerful and accurate nuclear weapons to shoot it off course. The prophetic view is that by the active and judicious applications of nuclear power and technology, the continued survival of mankind will be able to be ensured. (K.I.)

  18. Prophetic forecast on the nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Kun [Atomic Energy Commission (Korea, Republic of)

    1996-10-01

    It was asked to attempt the ``prophetic forecast``. The time required for the doubling of world population continued to shrink, and now it is mere 40 years. The life of a contemporary person is now sustained by some 30,000 different ``daily necessities``, and despite such proliferation of options, the avarice for much more has not diminished. Over the past 35 years, the Korean population has increased by 1.79 times, and the electric power generation by 168.53 fold. Similar mushrooming trends have occurred in water and food consumption, clothing, plastics, paper, iron and steel, aluminum and so forth. The annual minimum temperature in Seoul has sharply jumped up in the last 80 years, and in the last 2-3 years, sea level went up by 10 mm per annum. Nuclear energy will play a crucial role in helping save all forms of life on the earth and keep the biosphere clean and livable, by reducing the discharge of detrimental gases and contaminating effluents. The main cause of various problems is human population burst, but now there may be a reason for some optimism as far as containing unbounded population growth, by the dilution of sperm density in human semen. In order to avoid the crashing of a large planetoid on the earth in 2126, nuclear architects must develop powerful and accurate nuclear weapons to shoot it off course. The prophetic view is that by the active and judicious applications of nuclear power and technology, the continued survival of mankind will be able to be ensured. (K.I.)

  19. A hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1982-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply

  20. Assessment of nuclear reactor concepts for low power space applications

    Science.gov (United States)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  1. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    Science.gov (United States)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  2. Application condition of optical communication technique in the nuclear power plants

    International Nuclear Information System (INIS)

    Sakurai, Jun

    1999-01-01

    As the optical communication technique can process rapidly a lot of information and exclude perfectly error action due to noise, it is adopted gradually to commercial and company communications (containing operational managements in large scale facilities) in worldwide scale in stead of conventional communication technique (containing operational controls and measurements). In application to the nuclear power plants, as forming not only change in properties but also deterioration due to radiation damage in many cases of exposure to various types of radiations such as neutron, gamma-ray, and so forth in difference with conventional using environment, its using range is limited at present. In future, development of optical fibers or elements with excellent high temperature and radiation resistances usable stably at reactor core for a long time is essential. The regular application of the optical communication technique at the nuclear power plants begins just now, which is an expected field for future large development. And, for the old nuclear power plant in present operation, substitution to the optical communication technique in accompany with replace of appliances at periodical inspections will also be conducted. Its response is already required rapidly in the Tokyo Electric Power Co., Ltd.. (G.K.)

  3. Neural networks and their application to nuclear power plant diagnosis

    International Nuclear Information System (INIS)

    Reifman, J.

    1997-01-01

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed

  4. Laser peening applications for next generation of nuclear power facilities

    International Nuclear Information System (INIS)

    Rankin, J.; Truong, C.; Walter, M.; Chen, H.-L.; Hackel, L.

    2008-01-01

    Generation of electricity by nuclear power can assist in achieving goals of reduced greenhouse gas emissions. Increased safety and reliability are necessary attributes of any new nuclear power plants. High pressure, hot water and radiation contribute to operating environments where Stress Corrosion Cracking (SCC) and hydrogen embrittlement can lead to potential component failures. Desire for improved steam conversion efficiency pushes the fatigue stress limits of turbine blades and other rotating equipment. For nuclear reactor facilities now being designed and built and for the next generations of designs, laser peening could be incorporated to provide significant performance life to critical subsystems and components making them less susceptible to fatigue, SCC and radiation induced embrittlement. These types of components include steam turbine blades, hubs and bearings as well as reactor components including cladding material, housings, welded assemblies, fittings, pipes, flanges, vessel penetrations, nuclear waste storage canisters. Laser peening has proven to be a commercial success in aerospace applications and has recently been put into use for gas and steam turbine generators and light water reactors. An expanded role for this technology for the broader nuclear power industry would be a beneficial extension. (author)

  5. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  6. IAEA'S study on advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, J.; McDonald, A.; Rao, A.; )

    2008-01-01

    About one-fifth of the world's energy consumption is used for electricity generation, with nuclear power contributing approximately 15.2% of this electricity. However; most of the world's energy consumption is for heat and transportation. Nuclear energy has considerable potential to penetrate these energy sectors now served by fossil fuels that are characterized by price volatility and finite supply. Advanced applications of nuclear energy include seawater desalination, district heating, and heat for industrial processes. Nuclear energy also has potential to provide a near-term, greenhouse gas free, source of energy for transportation. These applications rely on a source of heat and electricity. Nuclear energy from water-cooled reactors, of course, is not unique in this sense. Indeed, higher temperature heat can be produced by burning natural gas and coal, or through the use of other nuclear technologies such as gas-cooled or liquid-metal-cooled reactors. Water-cooled reactors, however; are being deployed today while other reactor types have had considerably less operational and regulatory experience and will take still some time to be widely accepted in the market. Both seawater desalination and district heating with nuclear energy are well proven, and new seawater desalination projects using water-cooled reactors will soon be commissioned. Provision of process heat with nuclear energy can result in less dependence on fossil fuels and contribute to reductions of greenhouse gases. Importantly, because nuclear power produces base-load electricity at stable and predictable prices, it provides a greenhouse gas free source of electricity for transportation systems (trains and subways), and for electric and plug-in hybrid vehicles, and in the longer term nuclear energy could produce hydrogen for fuel cell vehicles, as well as for other components of a hydrogen economy. These advanced applications can play an important role in enhancing public acceptance of nuclear

  7. Expert system verification and validation for nuclear power industry applications

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    The potential for the use of expert systems in the nuclear power industry is widely recognized. The benefits of such systems include consistency of reasoning during off-normal situations when humans are under great stress, the reduction of times required to perform certain functions, the prevention of equipment failures through predictive diagnostics, and the retention of human expertise in performing specialized functions. The increased use of expert systems brings with it concerns about their reliability. Difficulties arising from software problems can affect plant safety, reliability, and availability. A joint project between EPRI and the US Nuclear Regulatory Commission is being initiated to develop a methodology for verification and validation of expert systems for nuclear power applications. This methodology will be tested on existing and developing expert systems. This effort will explore the applicability of conventional verification and validation methodologies to expert systems. The major area of concern will be certification of the knowledge base. This is expected to require new types of verification and validation techniques. A methodology for developing validation scenarios will also be studied

  8. Research on the application of optoelectronics to nuclear power plants

    International Nuclear Information System (INIS)

    Shirosaki, Hidekazu; Mitsuda, Hiromichi; Kurata, Toshikazu; Soramoto, Seiki; Maekawa, Tatsuyuki.

    1995-01-01

    Optoelectronics, which is based on technologies such as laser diodes and optical fibers, is approaching the realm of practical application in the fields of optical fiber communications and compact disks etc,. In addition, laser enrichment, a type of uranium enrichment technique used in the nuclear field, can also be regarded as a product of optoelectronics. Application of optoelectronics in a wide range of fields is likely to continue in the future, and research is being conducted on coherent optical communication, optical integrated circuits, optical computers and other subjects in hopes of attaining practical application of these technologies in the future. On the other hand, digital control equipment and other related devices have been installed and data transfer using optical fibers has been implemented on a partial basis at nuclear power plants, and optoelectronics is anticipated to be applied on an even broader scale in the future, thereby creating the potential for improving plant reliability. In this research, we conducted an investigative study of technologies relating to optoelectronics, and proposed a remote monitoring system for manually operated valves that employs optical switches. Moreover, we conducted theoretical verification tests on the proposed system and carried out a feasibility study relating to application to nuclear power plants. As a result, the proposed system was found to be effective, and confirmed to have the potential of realization as a valve switching monitoring system. (author)

  9. 77 FR 10784 - Calvert Cliffs Nuclear Power Plant, LLC; Notice of Withdrawal of Application for Amendment to...

    Science.gov (United States)

    2012-02-23

    ... Nuclear Power Plant, LLC; Notice of Withdrawal of Application for Amendment to Facility Operating License... Nuclear Power Plant, LLC, the licensee, to withdraw its application dated October 25, 2010, for a proposed amendment to Renewed Facility Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Plant...

  10. Stochastic models and reliability parameter estimation applicable to nuclear power plant safety

    International Nuclear Information System (INIS)

    Mitra, S.P.

    1979-01-01

    A set of stochastic models and related estimation schemes for reliability parameters are developed. The models are applicable for evaluating reliability of nuclear power plant systems. Reliability information is extracted from model parameters which are estimated from the type and nature of failure data that is generally available or could be compiled in nuclear power plants. Principally, two aspects of nuclear power plant reliability have been investigated: (1) The statistical treatment of inplant component and system failure data; (2) The analysis and evaluation of common mode failures. The model inputs are failure data which have been classified as either the time type of failure data or the demand type of failure data. Failures of components and systems in nuclear power plant are, in general, rare events.This gives rise to sparse failure data. Estimation schemes for treating sparse data, whenever necessary, have been considered. The following five problems have been studied: 1) Distribution of sparse failure rate component data. 2) Failure rate inference and reliability prediction from time type of failure data. 3) Analyses of demand type of failure data. 4) Common mode failure model applicable to time type of failure data. 5) Estimation of common mode failures from 'near-miss' demand type of failure data

  11. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  12. Application of artificial intelligence for nuclear power plant surveillance and diagnosis problems

    International Nuclear Information System (INIS)

    Monnier, B.; Ricard, B.; Doutre, J.L.; Martin-Mattei, C.; Fernandes, A.

    1991-01-01

    This paper presents three expert systems in the field of surveillance and diagnosis of nuclear power plants. Each application is described from the point of view of knowledge modeling. Then, a general knowledge model is proposed for a class of diagnosis problems. At the end, the paper shows the future frame of the surveillance of the nuclear power plant main components at EDF in which the greatest part of those expert systems will run

  13. Power generation from nuclear reactors in aerospace applications

    International Nuclear Information System (INIS)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion

  14. Power Generation from Nuclear Reactors in Aerospace Applications

    Science.gov (United States)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  15. The ethical justification of nuclear power

    International Nuclear Information System (INIS)

    Van Wyk, J.H.

    1985-01-01

    This study pamphlet deals with the questions of ethics, nuclear power and the ethical justification of nuclear power. Nuclear power is not only used for warfare but also in a peaceful way. Ethical questions deal with the use of nuclear weapons. Firstly, a broad discussion of the different types of ethics is given. Secondly, the peaceful uses of nuclear power, such as nuclear power plants, are discussed. In the last place the application of nuclear power in warfare and its disadvantages are discussed. The author came to the conclusion that the use of nuclear power in warfare is in contrary with all Christian ethics

  16. Applications of computer based safety systems in Korea nuclear power plants

    International Nuclear Information System (INIS)

    Won Young Yun

    1998-01-01

    With the progress of computer technology, the applications of computer based safety systems in Korea nuclear power plants have increased rapidly in recent decades. The main purpose of this movement is to take advantage of modern computer technology so as to improve the operability and maintainability of the plants. However, in fact there have been a lot of controversies on computer based systems' safety between the regulatory body and nuclear utility in Korea. The Korea Institute of Nuclear Safety (KINS), technical support organization for nuclear plant licensing, is currently confronted with the pressure to set up well defined domestic regulatory requirements from this aspect. This paper presents the current status and the regulatory activities related to the applications of computer based safety systems in Korea. (author)

  17. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  18. Power generation from nuclear reactors in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  19. The application of human error prevention tool in Tianwan nuclear power station

    International Nuclear Information System (INIS)

    Qiao Zhiguo

    2013-01-01

    This paper mainly discusses the application and popularization of human error prevention tool in Tianwan nuclear power station, including the study on project implementation background, main contents and innovation, performance management, innovation practice and development, and performance of innovation application. (authors)

  20. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  1. Study on application of Doppler SODAR as meteorological observation tool at nuclear power plant

    International Nuclear Information System (INIS)

    Katayose, Naoto; Akai, Yukio.

    1993-01-01

    Among the remote sensing devices usable for meteorological observation, which became possible with the advent of modern science and technology, Doppler SODAR was selected for further study aimed at its practical application for nuclear power plants. This device was installed for testing purpose at a Japanese nuclear power and data collection (wind speed and direction) was carried out throughout one year there. The data on the selected SODAR have shown a correlation with those collected by the conventional method which is good enough to justify the SODAR's practical use at nuclear power plants. (author)

  2. Nuclear power newsletter Vol. 4, no. 2, June 2007

    International Nuclear Information System (INIS)

    2007-06-01

    The topics presented in this newsletter are: International Conference on Non-Electric Application of Nuclear Power; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management systems, nuclear power infrastructures and human resources; Technology developments and applications for advanced reactors; New staff in Nuclear Power Division; Current vacancy notice for professional post in Nuclear Power Division; Upcoming meetings; 2nd International Symposium on PLiM; 8th IAEA-FORATOM Joint Workshop

  3. Risk management on nuclear power plant. Application of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Kojima, Shigeo

    2003-01-01

    In U.S.A., nuclear safety regulation is moving to risk-informed regulation (RIR), so necessity of a standard to provide contents of probabilistic risk assessment (PRA) constructing its roots has been discussed for a long time. In 1998, the Committee on Nuclear Risk Management (CNRM) of the American Society of Mechanical Engineers (ASME) began to investigate the standard, of which last edition was published as the Standard for Probabilistic Risk Management for Nuclear Power Plant Applications: RA-S-2002 (PRMA) on April, 2002. As in the Committee, the Nuclear Regulatory Commission (NRC), electric power companies, national institutes, PRA specialists, and so on took parts to carry out many discussions with full energies of participants on risk management in U.S.A., the standard was finished after about four years' efforts. In U.S.A., risk management having already used PRA is successfully practiced, U.S.A. is at a stage with more advancing steps of the risk management than Japan is. Here was described on the standard of PRA and a concrete method of the risk management carried out at nuclear power stations. (G.K.)

  4. Safety considerations for various applications of remote multiplexing in nuclear power plants

    International Nuclear Information System (INIS)

    Leary, J.E.

    1978-01-01

    There is increasing interest in the application of remote multiplexing systems (RMS) for power plant applications. Remote multiplexing can replace the majority of conventional control and instrumentation signal cables. In addition, the RMS can perform control logic functions presently implemented by discrete hardwired circuit elements. The background and trends in the use of RMS and the attendant advantages and concerns are reviewed. Classifications of multiplexed digital systems are presented to show the evolution of this technology in power plant applications. Nuclear safety-related applications of RMS are discussed with emphasis on the impact of selected NRC Regulatory Guides on such applications. (author)

  5. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  6. Laser applications in nuclear power plants

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... Keywords. Nd:YAG laser; fibre-optic beam delivery; laser cutting; laser welding; nuclear reactor. ... Author Affiliations. D N Sanyal1. Remote Tooling Section, Technology Development Group, Nuclear Power Corporation of India Ltd., Mumbai 400 094, India ...

  7. One recommendation of nuclear power export. GDP model application to the countries which expressed nuclear power introduction and consideration

    International Nuclear Information System (INIS)

    Iida, Tekehiko

    2010-01-01

    South Korea has been excited in nuclear business after the success in the contract to build nuclear power plants in UAE. Since more than 60 countries expressed nuclear power introduction and new countries were on the rise with exporting reactor technology accumulated, new era over nuclear renaissance seems to begin. This article at first classified countries, which expressed nuclear power introduction, with an economic level of GDP per capita. Then each classified country's requirements of nuclear power introduction were taken into consideration such as economic development, consumption pattern and technology attitude. As a result recommendation of nuclear power export was proposed. Different approach to each country targeted was suggested as shown in 'nuclear power GDP model'. (T. Tanaka)

  8. Future NASA mission applications of space nuclear power

    International Nuclear Information System (INIS)

    Bennett, G.L.; Mankins, J.; McConnell, D.G.; Reck, G.M.

    1990-01-01

    Recent studies sponsored by NASA show a continuing need for space nuclear power. A recently completed study considered missions such as a Jovian grand tour, a Uranus or Neptune orbiter and probe, and a Pluto flyby that can only be done with nuclear power. There are studies for missions beyond the outer boundaries of the solar system at distances of 100 to 1000 astronomical units. The NASA 90-day study on the space exploration initiative identified a need for nuclear reactors to power lunar surface bases and radioisotope power sources for use in lunar or Martian rovers, as well as considering options for advanced, nuclear propulsion systems for human missions to Mars

  9. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    Science.gov (United States)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  10. Applications of nuclear-powered thermoelectric generators in space

    International Nuclear Information System (INIS)

    Rowe, D.M.

    1991-01-01

    The source of electrical power which enables information to be transmitted from the space crafts Voyager 1 and 2 back to Earth after a time period of more than a decade and at a distance of more than a billion miles is known as an RTG (radioisotope thermoelectric generator). It utilises the Seebeck effect in producing electricity from heat. In essence it consists of a large number of semiconductor thermocouples connected electrically in series and thermally in parallel. A temperature difference is maintained across the thermocouples by providing a heat source, which in the case of an RTG is a radioactive isotope, and the heat sink is space. The combination of an energy-conversion system, free of moving parts and a long-life, high energy-density heat source, provides a supply of electrical power typically in the range of tens to hundred of watts and which operates reliably over extended periods of time. An electric power source, based upon thermoelectric conversion by which utilises a nuclear reactor as a heat source, has also been deployed in space and a 100-kW system is being developed to provide electrical power to a variety of commercial and military projects including SDI. Developments in thermoelectrics that have taken place in the western world during the past 30 years are primarily due to United States interest and involvement in the exploration of space. This paper reviews US applications of nuclear-powered thermoelectric generators in space. (author)

  11. Commercial nuclear power: Assuring safety for the future

    International Nuclear Information System (INIS)

    Ramsey, C.B.; Modarres, M.

    1998-03-01

    This timely book offers insights into the benefits of nuclear power as well as the technological and environmental challenges facing the nuclear industry. Containing the results of worldwide scientific studies and industrial site visits, the book represents a timely focus on the applications of commercial nuclear power, the potential benefits to be gained from contained nuclear use, the environmental risks of nuclear power, and the prevention of nuclear accidents.This timely book offers insights into the benefits of nuclear power as well as the technological and environmental challenges facing the nuclear industry. Containing the results of worldwide scientific studies and industrial site visits, the book represents a timely focus on the applications of commercial nuclear power, the potential benefits to be gained from contained nuclear use, the environmental risks of nuclear power, and the prevention of nuclear accidents

  12. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  13. High power CO2 lasers and their applications in nuclear industry

    International Nuclear Information System (INIS)

    Nath, A.K.

    2002-01-01

    Carbon dioxide laser is one of the most popular lasers in industry for material processing applications. It has very high power capability and high efficiency, can be operated in continuous wave (CW), modulated and pulsed modes, and has relatively low cost. Due to these characteristics high power CO 2 lasers are being used worldwide in different industries for a wide variety of materials processing operations. In nuclear industry, CO 2 laser has made its way in many applications. Some of the tasks performed by multikilowatt CO 2 laser are cutting operations necessary to remove unprocessible hardware from reactor fuel assemblies, sealing/fixing/removing radioactive contaminations onto/from concrete surfaces and surface modification of engineering components for improved surface mechanical and metallurgical characteristics. We have developed various models of CW CO 2 lasers of power up to 12 kW and a high repetitive rate TEA (Transversely Excited Atmospheric pressure) CO 2 laser of 500 W average power operating at 500 Hz repetition rates. We have carried many materials processing applications of direct relevance to DAE. Recent work includes laser welding of end plug PFBR fuel tubes, martensitic stainless steel and titanium alloy, surface cladding of turbine blades made of Ni-super alloy with stellite 694, fabrication on graded material of stainless steel and stellite, and laser scabbling, drilling and cutting of concrete which have potential application in decontamination and decommissioning of nuclear facilities. A brief overview of these indigenous developments will be presented. (author)

  14. Nuclear power in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V A

    1981-04-01

    This article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950s, their contribution had grown to 6% of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast-breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow. The status of nuclear power stations at 20 locations is summarized in a table.

  15. Application on electrochemistry measurement of high temperature high pressure condition in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Li Yuchun; Xiao Zhongliang; Jiang Ya; Yu Xiaowei; Pang Feifei; Deng Fenfang; Gao Fan; Zhou Nianguang

    2011-01-01

    High temperature high pressure electrochemistry testing system was comprehensively analyzed in this paper, according to actual status for supervision in primary and secondary circuits of PWR nuclear power plants. Three research methods were reviewed and discussed for in-situ monitor system. By combination with ECP realtime measurement it was executed for evaluation and water chemistry optimization in nuclear power plants. It is pointed out that in-situ electrochemistry measurement has great potential application for water chemistry evaluation in PWR nuclear power plants. (authors)

  16. Analysis of Defective Pipings in Nuclear Power Plants and Applications of Guided Ultrasonic Wave Techniques

    International Nuclear Information System (INIS)

    Koo, Dae Seo; Cheong, Yong Moo; Jung, Hyun Kyu; Park, Chi Seung; Park, Jae Suck; Choi, H. R.; Jung, S. S.

    2006-07-01

    In order to apply the guided ultrasonic techniques to the pipes in nuclear power plants, the cases of defective pipes of nuclear power plants, were investigated. It was confirmed that geometric factors of pipes, such as location, shape, and allowable space were impertinent for the application of guided ultrasonic techniques to pipes of nuclear power plants. The quality of pipes, supports, signals analysis of weldment/defects, acquisition of accurate defects signals also make difficult to apply the guided ultrasonic techniques to pipes of nuclear power plants. Thus, a piping mock-up representing the pipes in the nuclear power plants were designed and fabricated. The artificial flaws will be fabricated on the piping mock-up. The signals of guided ultrasonic waves from the artificial flaws will be analyzed. The guided ultrasonic techniques will be applied to the inspection of pipes of nuclear power plants according to the basis of signals analysis of artificial flaws in the piping mock-up

  17. Information to be submitted in support of licensing applications for nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It supplements the Agency's Safety Series No.50-C-G, entitled ''Governmental Organization for the Regulation of Nuclear Power Plants: A Code of Practice''. It is concerned with the content of documents which should be submitted to the regulatory body by the applicant/licensee in support of licensing applications, with a possible method of classifying these documents and with the scheduling of their submission to the regulatory body at each major stage of the licensing process

  18. Survey of past base isolation applications in nuclear power plants and challenges to industry/regulatory acceptance

    International Nuclear Information System (INIS)

    Malushte, S.R.; Whittaker, A.S.

    2005-01-01

    Seismic base isolation provides many benefits that can facilitate the standardization of future nuclear power plant structures and equipment while reducing the initial/life-cycle cost and construction schedule. This paper presents a survey of past seismic base isolation applications and studies related to nuclear applications and provides a discussion of the challenges that need to be overcome to gain industry and regulatory acceptance for deployment in future US nuclear power plants. Issues related to design, codes/standards/regulations, procurement, and construction, have been identified. (authors)

  19. Application of RFID to High-Reliability Nuclear Power Plant Construction

    International Nuclear Information System (INIS)

    Kenji Akagi; Masayuki Ishiwata; Kenji Araki; Jun-ichi Kawahata

    2006-01-01

    In nuclear power plant construction, countless variety of parts, products, and jigs more than one million are treated under construction. Furthermore, strict traceability to the history of material, manufacturing, and installation is required for all products from the start to finish of the construction, which enforce much workforce and many costs at every project. In an addition, the operational efficiency improvement is absolutely essential for the effective construction to reduce the initial investment for construction. As one solution, RFID (Radio Frequent Identification) application technology, one of the fundamental technologies to realize a ubiquitous society, currently expands its functionality and general versatility at an accelerating pace in mass-production industry. Hitachi believes RFID technology can be useful of one of the key solutions for the issues in non-mass production industry as well. Under this situation, Hitachi initiated the development of next generation plant concept (ubiquitous plant construction technology) which utilizes information and RFID technologies. In this paper, our application plans of RFID technology to nuclear power is described. (authors)

  20. Application of RFID to High-Reliability Nuclear Power Plant Construction

    Energy Technology Data Exchange (ETDEWEB)

    Akagi, Kenji; Ishiwata, Masayuki; Araki, Kenji; Kawahata, Jun-ichi [Hitachi, Ltd. (Japan)

    2006-07-01

    In nuclear power plant construction, countless variety of parts, products, and jigs more than one million are treated under construction. Furthermore, strict traceability to the history of material, manufacturing, and installation is required for all products from the start to finish of the construction, which enforce much workforce and many costs at every project. In an addition, the operational efficiency improvement is absolutely essential for the effective construction to reduce the initial investment for construction. As one solution, RFID (Radio Frequent Identification) application technology, one of the fundamental technologies to realize a ubiquitous society, currently expands its functionality and general versatility at an accelerating pace in mass-production industry. Hitachi believes RFID technology can be useful of one of the key solutions for the issues in non-mass production industry as well. Under this situation, Hitachi initiated the development of next generation plant concept (ubiquitous plant construction technology) which utilizes information and RFID technologies. In this paper, our application plans of RFID technology to nuclear power is described. (authors)

  1. Non-nuclear power application of nuclear technology in Nigeria

    International Nuclear Information System (INIS)

    Funtua, I.I.

    2008-01-01

    Nuclear Technology applications are found in Food and Agriculture, Human Health, Water Resources, Industry, Environment, Education and Research.There are more potentials for the deployment of nuclear technology in more aspects of our life with needed economic development in Nigeria.Nuclear Technology plays and would continue to play vital role in Agriculture, Human health, Water resources and industry in Nigeria.Nuclear technologies have been useful in developmental efforts worldwide and for these to take hold, capacity building programmes must be expanded and the general public must have informed opinions about the benefits and risk associated with the technologies.This presentation gives an overview of nuclear technology applications in Nigeria in the following areas: Food and Agriculture, Human Health, Water Resources, Industry, Education and Research

  2. Application of NASA Kennedy Space Center system assurance analysis methodology to nuclear power plant systems designs

    International Nuclear Information System (INIS)

    Page, D.W.

    1985-01-01

    The Kennedy Space Center (KSC) entered into an agreement with the Nuclear Regulatory Commission (NRC) to conduct a study to demonstrate the feasibility and practicality of applying the KSC System Assurance Analysis (SAA) methodology to nuclear power plant systems designs. In joint meetings of KSC and Duke Power personnel, an agreement was made to select to CATAWBA systems, the Containment Spray System and the Residual Heat Removal System, for the analyses. Duke Power provided KSC with a full set a Final Safety Analysis Reports as well as schematics for the two systems. During Phase I of the study the reliability analyses of the SAA were performed. During Phase II the hazard analyses were performed. The final product of Phase II is a handbook for implementing the SAA methodology into nuclear power plant systems designs. The purpose of this paper is to describe the SAA methodology as it applies to nuclear power plant systems designs and to discuss the feasibility of its application. The conclusion is drawn that nuclear power plant systems and aerospace ground support systems are similar in complexity and design and share common safety and reliability goals. The SAA methodology is readily adaptable to nuclear power plant designs because of it's practical application of existing and well known safety and reliability analytical techniques tied to an effective management information system

  3. Application and development of peer review in China's nuclear power industry

    International Nuclear Information System (INIS)

    Huang Ping

    2014-01-01

    Peer review is one of the scientific methods and tools in management, which plays an active role in promoting and improving the performance of safe operation and management level of nuclear power plants. Peer review of nuclear power is not only comprehensively popularized and applied in China, but it is also innovated and developed in industry at all levels in recent years. In this paper, with the CNNC's relevant practice as main line, a variety of accepted peer review methods both at home and abroad were compared and analyzed, and the current application and development of peer review in China's nuclear power industry were described, as well as some suggestions for improvement were put forward to share with our craft brothers. (author)

  4. Nuclear power: obstacles and solutions

    International Nuclear Information System (INIS)

    Hart, R.S.

    2002-01-01

    Nuclear power has a history extending over more than 50 years; it has been pursued both for military power applications (primarily aircraft carrier and submarine propulsion) and for commercial power applications. Nuclear power has benefited from many hundreds of billions of dollars in research, development, design, construction, and operations expenditures, and has received substantial attention and support world-wide, having being implemented by most developed countries, including all of the G-7 countries, and several developing countries (for example, India, China, and Republic of Korea). In spite of this long history, massive development effort, and unprecedented financial commitment, nuclear power has failed to achieve commercial success, having captured less than 5% of the world's primary energy supply market. There are many factors contributing to the stagnation/decline of the commercial nuclear power business. These factors include: non competitive economics, lengthy construction schedules, large and demanding human resource requirements, safety concerns, proliferation concerns, waste management concerns, the high degree of government financial and political involvement necessary, and the incompatibility of the available nuclear power plant designs with most process heat applications due to their temperature limitations and/or large heat output. An examination of the obstacles to deployment of nuclear power plants of current design suggest a set of requirements for new nuclear power plants, which may overcome or circumvent these obstacles. These requirements include: inherent characteristics that will achieve reactor shutdown under any postulated accident condition; the removal of decay heat by natural and passive means; no safety dependence on operator actions and tolerant to operator error, and malicious or incompetent operator action; and, economic viability in relatively small unit sizes. Many innovative reactor technologies and concepts are under

  5. Nuclear power: obstacles and solutions

    International Nuclear Information System (INIS)

    Hart, R.S.

    2001-01-01

    Nuclear power has a history extending over more than 50 years; it has been pursued both for military power applications (primarily aircraft carrier and submarine propulsion) and for commercial power applications. Nuclear power has benefited from many hundreds of billions of dollars in research, development, design, construction, and operations expenditures, and has received substantial attention and support world-wide, having being implemented by most developed countries, including all of the G-7 countries, and several developing countries (for example, India, China, and Republic of Korea). In spite of this long history, massive development effort, and unprecedented financial commitment, nuclear power has failed to achieve commercial success, having captured less than 5% of the world's primary energy supply market. There are many factors contributing to the stagnation/decline of the commercial nuclear power business. These factors include: non competitive economics, lengthy construction schedules, large and demanding human resource requirements, safety concerns, proliferation concerns, waste management concerns, the high degree of government financial and political involvement necessary, and the incompatibility of the available nuclear power plant designs with most process heat applications due to their temperature limitations and/or large heat output. An examination of the obstacles to deployment of nuclear power plants of current design suggest a set of requirements for new nuclear power plants, which may overcome or circumvent these obstacles. These requirements include: inherent characteristics that will achieve reactor shutdown under any postulated accident condition; the removal of decay heat by natural and passive means; no safety dependence on operator actions and tolerant to operator error, and malicious or incompetent operator action; and, economic viability in relatively small unit sizes. Many innovative reactor technologies and concepts are under

  6. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    Currently the Swedish nuclear power plants are using diesel generator sets and to some extent gas turbines as their emergency AC power sources and batteries as their emergency DC power sources. In the laws governing Swedish nuclear activity, no specific power sources are prescribed. On the other hand, diversification of safety functions should be considered, as well as simplicity and reliability in the safety systems. So far the choices of emergency power sources have been similar between different power plants, and therefore this project investigated a number of alternative power sources and if they are suitable for use as emergency power on nuclear power plants. The goals of the project were to: - Define the parameters that are essential for rending a power source suitable for use at a nuclear power plant. - Present the characteristics of a number of power sources regarding the defined parameters. - Compile the suitability of the different power sources. - Make implementation suggestions for the less conventional of the investigated power sources. (unconventional in the investigated application) 10 different power sources in total have been investigated and to various degrees deemed suitable Out of the 10 power sources, diesel generators, batteries and to some extent gas turbines are seen as conventional technology at the nuclear power plants. In relation to them the other power sources have been assessed regarding diversification gains, foremost with regards to external events. The power sources with the largest diversification gains are: Internal steam turbine, Hydro power, Thermoelectric generators. The work should first and foremost put focus on the fact that under the right circumstances there are power sources that can complement conventional power sources and yield substantial diversification gains. This paper is a shortened version of the report 'Comparison between different power sources for emergency power supply at nuclear power plants'. The

  7. Application of integrated computer-aided engineering for design, construction and operation of nuclear power plant

    International Nuclear Information System (INIS)

    Kyung-shick Min; Byung-hun Lee

    1987-01-01

    Computer-aided-engineering (CAE) is an essential tool for modern nuclear power plant engineering. It greatly varies in definition, application, and technology from project to project and company to company. Despite the fast growing technologies and applications of CAE, its complexty and variety have thrown aonther puzzle to management of a nuclear project. Without due consideration of an integrated CAE system in early planning stage, the overall efficiency of a nuclear project would slow down due to the inefficiency in data flow. In this paper, practices and perspectives of CAE appliation are discussed under the Korea Power Engineering Company (KOPEC) philosophy in CAE approach. (author)

  8. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  9. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the development of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.

  10. The Application of Supercritical CO{sub 2} Power Cycle to Various Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The main reason why the S-CO{sub 2} Brayton cycle has these advantages is that the compressor operates near the critical point of CO{sub 2} (30.98 .deg. C, 7.38MPa) to reduce the compression work significantly compared to the other Brayton cycles. In this paper, various applications of supercritical CO{sub 2} power cycle to nuclear systems will be presented and summarized. The S-CO{sub 2} cycle can achieve relatively high efficiency within the mild turbine inlet temperature range (450 - 850 .deg. C) compared with other power conversion systems. The main benefit of the S-CO{sub 2} cycle is the small size of the overall system and its application includes not only the next generation nuclear reactors but also conventional water-cooled reactors too. Various layouts were compared and the recompression cycle shows the best efficiency. The layout is suitable for application to advanced nuclear reactor systems. To evaluate the S-CO{sub 2} cycle performance, various countries constructed and demonstrated S-CO{sub 2} integral system test loops and similar research works are ongoing in Korea as well. However, to evaluate the commercial S-CO{sub 2} power systems, development of a large scale (> 10 MW) prototype S-CO{sub 2} system is necessary.

  11. Base isolation for nuclear power and nuclear material facilities

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Kircher, C.A.; Vaidya, N.; Constantinou, M.; Kelly, J.M.; Seidensticker, R.; Tajirian, F.F.; Ovadia, D.

    1989-01-01

    This report serves to document the status of the practice for the use of base isolation systems in the design and construction of nuclear power and nuclear material facilities. The report first describes past and current (1989) applications of base isolation in nuclear facilities. The report then provides a brief discussion of non-nuclear applications. Finally, the report summarizes the status of known base-isolation codes and standards

  12. Development of the methodology for application of revised source term to operating nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Kang, M.S.; Kang, P.; Kang, C.S.; Moon, J.H.

    2004-01-01

    Considering the current trend in applying the revised source term proposed by NUREG-1465 to the nuclear power plants in the U.S., it is expected that the revised source term will be applied to the Korean operating nuclear power plants in the near future, even though the exact time can not be estimated. To meet the future technical demands, it is necessary to prepare the technical system including the related regulatory requirements in advance. In this research, therefore, it is intended to develop the methodology to apply the revised source term to operating nuclear power plants in Korea. Several principles were established to develop the application methodologies. First, it is not necessary to modify the existing regulations about source term (i.e., any back-fitting to operating nuclear plants is not necessary). Second, if the pertinent margin of safety is guaranteed, the revised source term suggested by NUREG-1465 may be useful to full application. Finally, a part of revised source term could be selected to application based on the technical feasibility. As the results of this research, several methodologies to apply the revised source term to the Korean operating nuclear power plants have been developed, which include: 1) the selective (or limited) application to use only some of all the characteristics of the revised source term, such as release timing of fission products and chemical form of radio-iodine and 2) the full application to use all the characteristics of the revised source term. The developed methodologies are actually applied to Ulchin 9 and 4 units and their application feasibilities are reviewed. The results of this research are used as either a manual in establishing the plan and the procedure for applying the revised source term to the domestic nuclear plant from the utility's viewpoint; or a technical basis of revising the related regulations from the regulatory body's viewpoint. The application of revised source term to operating nuclear

  13. Potential applications of neural networks to nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1991-01-01

    Application of neural networks to the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: diagnosing specific abnormal conditions, detection of the change of mode of operation, signal validation, monitoring of check valves, plant-wide monitoring using autoassociative neural networks, modeling of the plant thermodynamics, emulation of core reload calculations, monitoring of plant parameters, and analysis of plant vibrations. Each of these projects and its status are described briefly in this article. The objective of each of these projects is to enhance the safety and performance of nuclear plants through the use of neural networks

  14. Nuclear power newsletter. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    2004-09-01

    This first issue of newsletter describes the Nuclear Power Division of the Department of Nuclear Energy responsible for implementation of the IAEA programme on Nuclear Power. The mission of the Division is to increase the capability of interested Member States to implement and maintain competitive and sustainable nuclear power programmes and to develop and apply advanced nuclear technologies. The topics covered in this publication are: Engineering and Management Support for Competitive Nuclear Power; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; The International Conference on 'Fifty Years of Nuclear Power - the Next Fifty Years'. A list of documents published recently by the Nuclear Power Division in enclosed

  15. Research on artificial neural network applications for nuclear power plants

    International Nuclear Information System (INIS)

    Chang, Soon-Heung; Cheon, Se-Woo

    1992-01-01

    Artificial neural networks (ANNs) are an emerging computational technology which can significantly enhance a number of applications. These consist of many interconnected processing elements that exhibit human-like performance, i.e., learning, pattern recognition and associative memory skills. Several application studies on ANNs devoted to nuclear power plants have been carried out at the Korea Advanced Institute of Science and Technology since 1989. These studies include the feasibility of using ANNs for the following tasks: (1) thermal power prediction, (2) transient identification, (3) multiple alarm processing and diagnosis, (4) core thermal margin prediction, and (5) prediction of core parameters for fuel reloading. This paper introduces the back-propagation network (BPN) model which is the most commonly used algorithm, and summarizes each of the studies briefly. (author)

  16. Design and application of the HTR-100 industrial nuclear power plant

    International Nuclear Information System (INIS)

    Brandes, S.; Kohl, W.

    1988-01-01

    The small HTR-100 high temperature reactor combines the reactor concept of the AVR reactor, which has been proven for 20 years, with the latest component technology of the THTR power plant which has been in operation since 1985. The nuclear heat supply system is conceived so as to be applicable for the generation of electric power, district heat and process steam according to the customer's demand. The HTR-100 reactor has a thermal power of 258 MW and offers steam parameters of 190 bar/530 0 C. To cover a higher power demand HTR-100 reactors can be combined forming a larger power plant. Economic analyses have shown competitiveness with fossil power plants. (orig.)

  17. Application of ESER computers to operation management of nuclear power plants

    International Nuclear Information System (INIS)

    Kuhne, E.; Poetter, K.F.; Suschok, G.

    1990-01-01

    Operation management of nuclear reactors is essentially support by calculational studies in which large computers have to be employed. A system of programs is presented that support the solution of those tasks which are related to refuelling and stationary operation of WWER-440 type reactors. Application of this system is made in the Greifswald nuclear power plant 'Bruno Leuschner' using access to the ESER computers at the Neubrandenburg Data Processing Centre in the teleprocessing mode. System solution and hardware used are described. (author)

  18. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jiang, Jin; Bari, Ataul; Chen, Dongyi; Hashemian, Hash M.

    2014-01-01

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs

  19. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jin; Bari, Ataul [University of Western Ontario, Ontario (Canada); Chen, Dongyi [University of Electronic Science and Technology of China, Chengdu (China); Hashemian, Hash M. [AMS Technology Center, Knoxville (United States)

    2014-08-15

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs.

  20. Discounting and nuclear power

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1984-01-01

    The paper describes the practice of discounting and its applicability to nuclear power, and the choice of discount rates. Opportunity cost of capital; risk; social time preference; intergenerational equity; non-monetary aspects; and discounting and nuclear energy; are all discussed. (U.K.)

  1. The application of gamma-spectrometry to nuclear power plant (NPP) and environment

    International Nuclear Information System (INIS)

    Asgharizadeh, Farid.

    1995-01-01

    One of measuring systems is nuclear spectrometry, particularly Gamma-Ray Spectrometry, to measure and determine the radionuclide concentration within plant materials and environmental samples. There are four major applied techniques related to Nuclear Power Plant operation and environmental monitoring aspects. Some details about gamma ray spectrometry technique is discussed in chapter 2. The main emphasis is on the calculation of gamma-ray detector efficiency for different geometries, the minimum detectable activity concepts and dead-time correction. Also,some formula and relations are introduced. In chapter 3, the major applications of gamma-ray spectrometry for analysis of nuclear power plant and environmental samples are discussed. These applications are divided into four topics: Nuclear Fuel survey; based on the activity of fission products concentration in reactor coolant, two other applications are introduced: Fuel Burnup calculation and the calculation of rated activity of natural radionuclides in construction of materials which is the last and most important application: Measurement and determination of radionuclides activity concentr[[[[n in environmental samples is described through section 3.3 Sampling and measuring methods for research and monitoring aspects is evaluated. Some data about sample preparation methods such as pretreatment and solubilization procedures are presented. Quantitative chemical separations of trace constituents from complex sample materials invariably require meticulous work by an analytical chemist. The radiochemical separation deals with this subject. Instrumental aspects, relate to gamma-ray spectrometry, quality assurance, presentation and reporting of results are described. In the experimental part, determination of radionuclides concentration in sediment sample is presented

  2. Nuclear power newsletter Vol. 4, no. 1, March 2007

    International Nuclear Information System (INIS)

    2007-03-01

    The topics presented in this newsletter are: Workshop on Issues for the Introduction of Nuclear Power; Message from the Director of the Division of Nuclear Power: The Nuclear Energy Series documents: Structure and the process; Nuclear power plant operation; Strengthening nuclear power infrastructures; Technology developments and applications for advanced reactors; New staff in Nuclear Power Division; Current vacancy notice for professional posts in Nuclear Power Division; Meetings in 2007

  3. Application of nuclear power station design criteria to non-nuclear installations

    International Nuclear Information System (INIS)

    Regan, J.D.; Hughes, D.J.

    1989-01-01

    The nuclear industry is multi faceted, in that it includes large and complex chemical plants, a large number of different types of nuclear power stations, and on shore ship maintenance facilities, each with its own unique problems. Since the early days the industry has been aware of the additional problem which is superimposed on what may be classed as traditional fire risks, that is, the risk of an uncontrolled release of radioactivity. This has led to the development of sophisticated fire prevention and control techniques which are applied to new plants, and to the backfitting of older plants. The techniques of analysis, design and operation can be applied to both nuclear and non-nuclear installations. Passive protection is preferred backed up by active techniques. Segregation of essential plant to increase the probability of sufficient surviving to ensure safety systems operate and the provision of smoke free, protected escape routes are important aspects of layout and design. Reliability assessments, venting of smoke and hot gases, fire severity analysis, application of mathematical models contribute to the final design to protect against fires. Experiences built up in the fire fighting profession is integrated into the numerical approach by frequent involvement of the local Fire Officers at each stage of the design and layout of installations. (author)

  4. Nuclear power in the USSR

    International Nuclear Information System (INIS)

    Vasiliev, V.A.

    1982-01-01

    This Article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950s, their contribution had grown to 6% of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow. (author)

  5. Nuclear power in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V A [AN SSSR, Moscow. Akusticheskij Inst.

    1982-04-01

    This Article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950s, their contribution had grown to 6% of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow.

  6. Nuclear power in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V A [State Committee for Science and Technology, Moscow, USSR

    1981-04-01

    This article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950's, their contribution had grown to six per cent of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow.

  7. Nuclear power plants in the world - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2009 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2010/01/01, Worldwide status of nuclear power plants (12/31/2009), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2009, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear power plants by country at the end 2009, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2009, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2009, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2009, Long term shutdown units at 12/31/2009, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  8. Tokai earthquakes and Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Komura, Hiroo

    1981-01-01

    Kanto district and Shizuoka Prefecture are designated as ''Observation strengthening districts'', where the possibility of earthquake occurrence is high. Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., is at the center of this district. Nuclear power stations are vulnerable to earthquakes, and if damages are caused by earthquakes in nuclear power plants, the most dreadful accidents may occur. The Chubu Electric Power Co. underestimates the possibility and scale of earthquakes and the estimate of damages, and has kept on talking that the rock bed of the power station site is strong, and there is not the fear of accidents. However the actual situation is totally different from this. The description about earthquakes and the rock bed in the application of the installation of No.3 plant was totally rewritten after two years safety examination, and the Ministry of International Trade and Industry approved the application in less than two weeks thereafter. The rock bed is geologically evaluated in this paper, and many doubtful points in the application are pointed out. In addition, there are eight active faults near the power station site. The aseismatic design of the Hamaoka Nuclear Power Station assumes the acceleration up to 400 gal, but it may not be enough. The Hamaoka Nuclear Power Station is intentionally neglected in the estimate of damages in Shizuoka Prefecture. (Kako, I.)

  9. The application of PSA techniques to the vital area identification of nuclear power plants

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Jung, Woo Sik; Park, Chang Kue

    2005-01-01

    This paper presents a Vital Area Identification (VAI) method based on the current Fault Tree Analysis (FTA) and Probabilistic Safety Assessment (PSA) techniques for the physical protection of nuclear power plants. A structured framework of a Top Event Prevention set Analysis (TEPA) application to the VAI of nuclear power plants is also delineated. One of the important processes for physical protection in a nuclear power plant is VIA that is a process for identifying areas containing nuclear materials, Structures, Systems or Components (SSCs) to be protected from sabotage, which could directly or indirectly lead to core damage and unacceptable radiological consequences. A software VIP (Vital area Identification Package based on the PSA method) is being developed by KAERI for the VAI of nuclear power plants. Furthermore, the KAERI fault tree solver FTREX (Fault Tree Reliability Evaluation eXpert) is specialized for the VIP to generate the candidates of the vital areas. FTREX can generate numerous MCSs for a huge fault tree with the lowest truncation limit and all possible prevention sets

  10. Nuclear reactors for electric power generation

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1987-01-01

    In this article the operation of a nuclear power plant, the status quo about the application of nuclear energy in the world are explained, the subjects of discussion between supporters and adversaries nowadays and the prospects for prolonged usage of nuclear power are summarized, viewed from the actual technical possibilities. 2 refs.; 7 figs.; 2 tabs

  11. China's nuclear energy demand and CGNPC's nuclear power development

    International Nuclear Information System (INIS)

    Rugang, Sh.

    2007-01-01

    By importation, assimilation and innovation from French nuclear power technology and experience, the China Guangdong Nuclear Power Plant Holding Company (CGNPC) has developed the capabilities of indigenous construction and operation of 1000 MW-class nuclear power plants. Through the industrial development over the past 20 years, four 1000 MW-class reactors have been built and put into commercial operation in China. CGNPC is negotiating with AREVA on the transfer of the EPR technology and the application of this technology for the Yangjang nuclear power plant depends on the negotiation results. Since China became a member of the 4. Generation International Forum, CGNPC as a large state-owned enterprise, will take an active part in the 4. generation nuclear power technology developments under the leadership of China Atomic Energy Authority, particularly it will contribute to the research work on the high-temperature gas-cooled reactor and on the super-critical water reactor

  12. Status report on the application of process noise technique in nuclear power plants

    International Nuclear Information System (INIS)

    Espefaelt, R.; Aakerhielm, F.

    1979-09-01

    The report gives a survey of applications of noise technique reported for nuclear power plants. The scope has been limited to areas of interest for BWR and PWR plants of the types found in Sweden and with an emphasis on cases where the practical applicability has been clearly demonstrated. (author)

  13. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  14. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  15. Construction work management for nuclear power stations

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1982-01-01

    Nuclear power generation is positioned as the nucleus of petroleum substitution. In the Kansai Electric Power Co., efforts have been made constantly to operate its nuclear power plants in high stability and safety. At present, Kansai Electric Power Co. is constructing Units 3 and 4 in the Takahama Nuclear Power Station in Fukui Prefecture. Under the application of the management of construction works described here, both the nuclear power plants will start operation in 1985. The activities of Kansai Electric Power Co. in the area of this management are described: an outline of the construction works for nuclear power stations, the management of the construction works in nuclear power stations (the stages of design, manufacturing, installation and test operation, respectively), quality assurance activities for the construction works of nuclear power plants, important points in the construction work management (including the aspects of quality control). (J.P.N.)

  16. Future developments in nuclear power

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1978-12-01

    To date, the peaceful application of nuclear energy has been largely restricted to the generation of electricity. Even with such an application there is potential for wider use of the nuclear energy generated in providing heat for dwellings, control of climate for the production of vegetables and providing warm water for fish and lobster farming. It is possible to envisage specific applications of nuclear power reactors to process industries requiring large blocks of energy. These and other future developments are reviewed in this report. (author)

  17. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  18. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  19. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  20. Application status and performance analysis of robot in nuclear power plants

    International Nuclear Information System (INIS)

    Liu Chengze; Yan Zhi; Deng Jingshan

    2012-01-01

    Application status of robot in nuclear power plants in some countries is summarized. The related robots include accident response robot, dismantling and cleaning robot, in-service inspection robot, special-purpose robot and so on. Finally, some key technologies such as the radiation-tolerance and reliability of the robot systems are analyzed in details. (authors)

  1. Interplanetary and lunar surface SP-100 nuclear power applications

    International Nuclear Information System (INIS)

    Josloff, A.T.; Shepard, N.F.; Smith, M.; Stephen, J.D.

    1992-01-01

    This paper describes how the SP-100 Space Reactor Power System (SRPS) can be tailored to meet the specific requirements for a lunar surface power system to meet the needs of the consolidation and utilization phases outlined in the 90-day NASA SEI study report. This same basic power system can also be configured to obtain the low specific masses needed to enable robotic interplanetary science missions employing Nuclear Electric Propulsion (NEP). In both cases it is shown that the SP-100 SRPS can meet the specific requirements. For interplanetary NEP missions, performance upgrades currently being developed in the area of light weight radiators and improved thermoelectric material are assumed to be technology ready in the year 2000 time frame. For lunar applications, some system rearrangement and enclosure of critical components are necessary modifications to the present baseline design

  2. Application of integrated computer-aided engineering for design, construction and operation of nuclear power plant: practice and prospects

    International Nuclear Information System (INIS)

    Min, K.S.; Lee, B.H.

    1988-01-01

    Computer-aided-engineering (CAE) is an essential tool for modern nuclear power plant engineering. It greatly varies in definition, application, and technology from project to project and company to company. Despite the fast growing technologies and applications of CAE, its complexity and variety have thrown another puzzle to management of a nuclear project. Without due consideration of an integrated CAE system in early planning stage, the overall efficiency of a nuclear project would slow down due to the inefficiency in data flow. In this application are discussed under the Korea Power engineering Company philosophy in CAE approach

  3. Application of balanced score card in the development of performance indicator system in nuclear power plant

    International Nuclear Information System (INIS)

    Shen Shuguang; Huang Fang; Fang Zhaoxia

    2013-01-01

    Performance indicator, which is one of ten performance monitoring tools recommended by WANO performance improvement model, has become an effective tool for performance improvement of nuclear power plant. At present, performance indicator system has been built in nuclear power plant. However, how to establish the performance indicator system that is reasonable and applicable for plant is still a question to be discussed. Performance indictor is closely tied to the strategic direction of a corporation by a balanced score card, and the performance indicator system is established from the point of performance management and strategic development. The performance indicator system of nuclear power plant is developed by introducing the balanced score card, and can be as a reference for other domestic nuclear power plants. (authors)

  4. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Science.gov (United States)

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services...

  5. JAERI 10kW High Power ERL-FEL and Its Applications in Nuclear Energy Industries

    CERN Document Server

    Minehara, E J; Iijima, H; Kikuzawa, N; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    The JAERI high power ERL-FEL has been extended to the more powerful and efficient free-electron laser (FEL) than 10kW for nuclear energy industries, and other heavy industries like defense, shipbuilding, chemical industries, environmental sciences, space-debris, and power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand-alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the ERL-FEL will cover the current status of the 10kW upgrading and its applications of non-thermal peeling, cutting, and drilling to decommission the nuclear power plants, and to demonstrate successfully the proof of principle prevention of cold-worked stress-corrosion cracking failures in nuclear power reactors under routine operation using small cubic low-Carbon stainless steel samples.

  6. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  7. Catastrophe theory with application in nuclear technology

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin

    2002-01-01

    The monograph is structured on the following seven chapters: 1. Correlation of risk, catastrophe and chaos at the level of polyfunctional systems with nuclear injection; 1.1 Approaching the risk at the level of power systems; 1.2 Modelling the chaos-catastrophe-risk correlation in the structure of integrated classical and nuclear processes; 2. Catastrophe theory applied in ecosystems models and applications; 2.1 Posing the problems in catastrophe theory; 2.2 Application of catastrophe theory in the engineering of the power ecosystems with nuclear injection; 4.. Decision of abatement of the catastrophic risk based on minimal costs; 4.1 The nuclear power systems sensitive to risk-catastrophe-chaos in the structure of minimal costs; 4.2 Evaluating the market structure on the basis of power minimal costs; 4.3 Decisions in power systems built on minimal costs; 5. Models of computing the minimal costs in classical and nuclear power systems; 5.1 Calculation methodologies of power minimal cost; 5.2 Calculation methods of minimal costs in nuclear power sector; 6. Expert and neuro expert systems for supervising the risk-catastrophe-chaos correlation; 6.1 The structure of expert systems; 6.2 Application of the neuro expert program; 7. Conclusions and operational proposals; 7.1 A synthesis of the problems presented in this work; 7.2 Highlighting the novel aspects applicable in the power systems with nuclear injection

  8. Practical application of computer graphics in nuclear power plant engineering

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Kawamura, Hirobumi; Sasaki, Norio

    1992-01-01

    A nuclear power plant is composed of a vast amount of equipment, piping, and so on, and six or seven years are required to complete the design and engineering from the initial planning stage to the time of commercial operation. Furthermore, operating plants must be continually maintained and improved for a long period. Computer graphics were first applied to the composite arrangement design of nuclear power plants in the form of 3-dimensional CAD. Subsequently, as the introduction of CAE has progressed, a huge assortment of information has been accumulated in database, and measures have been sought that would permit the convenient utilization of this information. Using computer graphics technologies, improvement of the interface between the user and such databases has recently been accomplished. In response to the growth in environmental consciousness, photo-realistic simulations for artistic design of the interior and overviews showing harmony with the surroundings have been achieved through the application of computer graphics. (author)

  9. The establish and application of equipment reliability database in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zheng Wei; Li He

    2006-03-01

    Take the case of Daya Bay Nuclear Power Plant, the collecting and handling of equipment reliability data, the calculation method of reliability parameters and the establish and application of reliability databases, etc. are discussed. The data source involved the design information of the equipment, the operation information, the maintenance information and periodically test record, etc. Equipment reliability database built on a base of the operation experience. It provided the valid tool for thoroughly and objectively recording the operation history and the present condition of various equipment of the plant; supervising the appearance of the equipment, especially the safety-related equipment, provided the very practical worth information for enhancing the safety and availability management of the equipment and insuring the safety and economic operation of the plant; and provided the essential data for the research and applications in safety management, reliability analysis, probabilistic safety assessment, reliability centered maintenance and economic management in nuclear power plant. (authors)

  10. Indicators for Nuclear Power Development

    International Nuclear Information System (INIS)

    2015-01-01

    Considering the scale of nuclear power aspirations, the number of planned nuclear new builds and the prospects of a number of countries constructing their first nuclear power plants, there is a need to assess the broader context of nuclear energy programmes in areas of macro-and socioeconomic conditions, energy systems and nuclear power, and the environment. It is important to assess the degree to which introduction or expansion of nuclear power is beneficial under these specific circumstances. This publication provides a set of indicators for nuclear power development that can serve as a tool to help explore these issues. The indicators are meant to provide a first order assessment of the situation and identify the issues that present the benefits and challenges in a balanced and objective manner and thereby help guide more detailed evaluations in the next stage of planning and preparations. Methodology sheets are provided to help users in data collection, quantification and interpretation of the indicators. The application of the indicators set is flexible. Users can select a subset of indicators that are most relevant for the questions they wish to explore in a given study or decision making process

  11. Internet applications in nuclear power plant operation management; Aplicaciones de internet en la gestion de la explotacion de centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, M. [Empresarios Agrupados, A. I. E. Madrid (Spain)

    2000-07-01

    The use of the Internet is quickly becoming widespread in practically all areas of business and industry. The nuclear industry should not remain indifferent to this new trend. This paper analyses some of the Internet applications that can be easily adapted to nuclear power plant operation management, including. (Author)

  12. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  13. The main pump motor remote visual check in the application of the domestic nuclear power plants

    International Nuclear Information System (INIS)

    Ge Lianwei; Yu Tao; Fang Jiang; Zhang Ting; Zhang Xingtian; Ding Youyuan

    2014-01-01

    In this paper, the Qinshan nuclear power station the first main pump motor to the successful implementation of remote visual inspection the main pump motor remote visual inspection applications. Qinshan Nuclear Power Plant Units 1 and 2 of the main pump motor inspection results show that the key components of the Qinshan Nuclear Power Plant Units 1 and 2 of the main pump rotor, stator end coils good condition, its problems for 10 years in the motor does not affect the normal use of the motor state disintegration overhaul problems tracking disintegration overhaul in 10 years. (authors)

  14. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  15. Applications of noise analysis to nuclear safety

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2000-01-01

    Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in

  16. Possible uses and applications of drones in a nuclear power plant

    International Nuclear Information System (INIS)

    Celis del A, L.; Palacios, J.; Rivero, T.; Valero, D.

    2016-09-01

    The versatility of drones is one of the strengths that have led to the rapid development of this technology, as they adapt relatively easily to new applications, presenting considerable advantages such as greater energy efficiency, longer life and a significant lower operation cost than manned systems. The current applications of the drones, in addition to the military, are very wide and varied. The nuclear industry represents an important area of opportunity for drones, mainly in response to radiological emergencies, since in this case there is a latent risk of the general population being exposed to high radiation doses. Drones can be used in environments with high chemical and radiological toxicity without endangering human lives. Some of the possible applications of the drones in a nuclear power plant are: perimeter surveillance in physical security, where equipped with a high definition camera can be used as support to physical security systems in general; visual inspection at sites, structures, equipment and pipelines, etc., as part of preventive maintenance in order to avoid the loss of material due to corrosion, oxidation, cracking, subsidence; the visual inspection through thermo-graphic images to be able to detect hot spots in some critical element; measurement and radiological mapping on surfaces to maintain monitoring of radiological safety at nuclear power plant facilities; the monitoring of environmental parameters and the Environmental Impact Assessment to obtain important information to determine the environmental impact of a given area; and accident support by providing information that allows staff to size the magnitude of the damage. (Author)

  17. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  18. Power quality considerations for nuclear spectroscopy applications: Grounding

    Science.gov (United States)

    García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.

    2013-11-01

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.

  19. Nuclear Power Infrastructure Development Program: Korean Education Program

    International Nuclear Information System (INIS)

    Choi, Sung Yeol; Hwang, Il Soon; Kim, Si Hwan

    2009-01-01

    Many countries have decided nuclear power for next energy resources as one of the long-term energy supply options. IAEA projected nuclear power expansion up to 2030 reaching between 447 GWe and 691 GWe compared to 370 GWe and 2660 TWh at the end of 2006. Both low and high projection is accompanied with new nuclear power plant constructions respectively 178 and 357, about 11 units per year, and most new construction is in North America, the Far East, Eastern Europe, the Middle East, and Southeast Asia. During the last forty years, thirty three countries have established commercial nuclear power programs but only some of them have developed comprehensive and large scale peaceful nuclear power infrastructure. Although various cooperation and guidance program of nuclear power infrastructure, developing appropriate environment and infrastructure of nuclear power plant is still challenging problems for developing countries launching nuclear power program. With increasing the demand of safety and safeguard from international society, creating appropriate infrastructure becomes essential requirements in national nuclear power program. In the viewpoint of developing countries, without sufficient explanation and proper guidance, infrastructure could be seen only as another barrier in its nuclear power program. The importance of infrastructure development would be obscured by ostensible business and infrastructure program can result in increasing entering barriers to peaceful nuclear power application field without benefits to developing countries and international community. To avoid this situation by providing enough explanation and realistic case example and cooperate with the countries wanting to establish comprehensive nuclear power infrastructure in the peaceful applications, we are creating the education program of infrastructure development with basic guidelines of the IAEA infrastructure series and Korean experiences from least developed country to advanced country

  20. Development of Nuclear R and D Man-power Genealogy DB and preparation of Guiding Principle in Assets Application for Nuclear R and D Fund

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Song, Seung Hyun; Kim, Hak Jun; Chung, Chul Eun

    2007-08-15

    Information search for nuclear professional man-power, technology genealogy search, project participation history etc. is serviced, and present limits to KAERI additionally, but constructed Site-Based DB that service is embodied as well as subject responsible person's pedigree. Information of professional man-power include origin school, last degree, distinction of sex, age etc. and technology genealogy consist of NuTRM classification, national science technology classification, and technology tree system classified in KAERI. Technology possession present condition for professional man-power of only KAERI is included within DB. Hereafter, professional manpower of the other nuclear energy company should be strengthened on the basis of DB structure that is developed. Technology tree system classified in KAERI also required to be strengthened on the man-power DB that has effectiveness for long-term as that embody by technology tree system which can represent nuclear energy through the verification of the other nuclear energy company. By applying readying guiding principle in assets application for nuclear R and D fund, secure lucency of assets application.

  1. Development of Nuclear R and D Man-power Genealogy DB and preparation of Guiding Principle in Assets Application for Nuclear R and D Fund

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Song, Seung Hyun; Kim, Hak Jun; Chung, Chul Eun

    2007-08-01

    Information search for nuclear professional man-power, technology genealogy search, project participation history etc. is serviced, and present limits to KAERI additionally, but constructed Site-Based DB that service is embodied as well as subject responsible person's pedigree. Information of professional man-power include origin school, last degree, distinction of sex, age etc. and technology genealogy consist of NuTRM classification, national science technology classification, and technology tree system classified in KAERI. Technology possession present condition for professional man-power of only KAERI is included within DB. Hereafter, professional manpower of the other nuclear energy company should be strengthened on the basis of DB structure that is developed. Technology tree system classified in KAERI also required to be strengthened on the man-power DB that has effectiveness for long-term as that embody by technology tree system which can represent nuclear energy through the verification of the other nuclear energy company. By applying readying guiding principle in assets application for nuclear R and D fund, secure lucency of assets application

  2. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  3. Attributes of Full Scope Level 1 Probabilistic Safety Assessment (PSA) for Applications in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-10-01

    This publication supersedes IAEA-TECDOC-1511, Determining the Quality of Probabilistic Safety Assessment (PSA) for Applications in Nuclear Power Plants (published in 2006), which provided detailed information on technical features of a restricted scope PSA aimed at analysing only internal initiating events caused by random component failures and human errors, and accident sequences that may lead to reactor core damage during operation. The present publication extends the scope of the PSA to cover a broader range of internal and external hazards, and low power and shutdown modes of nuclear power plant operation. In addition, some PSA aspects relevant to lessons learned from the accident at the Fukushima Daiichi nuclear power plant are also considered

  4. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  5. Nuclear Technology applications

    International Nuclear Information System (INIS)

    Cibils Machado, W. E- mail: wrcibils@adinet.com.uy

    2002-01-01

    The present work tries on the applications of the nuclear technology in the life daily, such as agriculture and feeding, human health, industry, non destructive essays, isotopic hydrology, and the nuclear power stations for electricity production and radioisotopes production

  6. ELECNUC Nuclear power plants in the world - 2013 edition

    International Nuclear Information System (INIS)

    2013-01-01

    This small booklet summarizes in a series of tables the figures relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2012 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2012/01/01; Worldwide status of nuclear power plants (12/31/2012); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2012; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2012; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2012; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2012; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2012; Long term shutdown units at 12/31/2012; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  7. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  8. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Nuclear power newsletter Vol. 2, no. 4, December 2005

    International Nuclear Information System (INIS)

    2005-12-01

    The topics presented in this newsletter are: Small and medium sized reactors for developing countries and remote applications; Message from the Director of the Division of Nuclear Power; International workshop on external flooding hazards at nuclear power plant sites; Nuclear power plant operating performance and life cycle management; Improving human performance, Quality and technical infrastructure; Technology developments and applications for advanced reactors; Recent publications; Planned meetings in 2006; WebSite link

  10. Applicable approach of the wireless technology for Korean nuclear power plants

    International Nuclear Information System (INIS)

    Ko, Do Young; Lee, Soo Ill

    2013-01-01

    Highlights: • To apply wireless technology for Korean NPPs, several stipulations are proposed. • WLAN is proposed as the most appropriate wireless technology for Korean NPPs. • WLAN can be applied to the specific fields except in the control system. • An attitude survey on wireless showed that 94.7% agree with the necessity of wireless. - Abstract: Recently, many nuclear power plants (NPPs) over the world use various types of wireless systems for the advantages. Unfortunately, wireless technologies are not currently installed in any Korean NPPs because it is difficult to solve the negative impact of unexpected outcomes or failures from the influence of the wireless technologies, which is electromagnetic interference and radio-frequency interference (EMI/RFI). Moreover, a lack of desire on the part of Korean nuclear industry to implement it leads to give up benefit from the wireless technologies. To install the wireless technologies with maximum benefit and minimum risk, a systematic approach, which quantify the negative impact and prevent the influence, is essential; therefore, this paper describes an applicable research result on the wireless technology for Korean NPPs based on regulatory guides and current wireless hardware and software technologies. Also, survey on the needs for the wireless technology for Korean nuclear power plants was conducted, because the level of awareness of workers in NPPs regarding wireless technologies is very important issue. In this paper, we propose an applicable system to enhance the applicability for the wireless technology for Korean NPPs. The result based on proposed applicable system shows that wireless local area network (WLAN) is the representative candidate for Korean NPPs, which can be applied to the specific fields of radiation monitoring, voice and data communication, component monitoring and instrumentation, and wireless cameras

  11. Applicable approach of the wireless technology for Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Young, E-mail: kodoyoung@khnp.co.kr; Lee, Soo Ill

    2013-12-15

    Highlights: • To apply wireless technology for Korean NPPs, several stipulations are proposed. • WLAN is proposed as the most appropriate wireless technology for Korean NPPs. • WLAN can be applied to the specific fields except in the control system. • An attitude survey on wireless showed that 94.7% agree with the necessity of wireless. - Abstract: Recently, many nuclear power plants (NPPs) over the world use various types of wireless systems for the advantages. Unfortunately, wireless technologies are not currently installed in any Korean NPPs because it is difficult to solve the negative impact of unexpected outcomes or failures from the influence of the wireless technologies, which is electromagnetic interference and radio-frequency interference (EMI/RFI). Moreover, a lack of desire on the part of Korean nuclear industry to implement it leads to give up benefit from the wireless technologies. To install the wireless technologies with maximum benefit and minimum risk, a systematic approach, which quantify the negative impact and prevent the influence, is essential; therefore, this paper describes an applicable research result on the wireless technology for Korean NPPs based on regulatory guides and current wireless hardware and software technologies. Also, survey on the needs for the wireless technology for Korean nuclear power plants was conducted, because the level of awareness of workers in NPPs regarding wireless technologies is very important issue. In this paper, we propose an applicable system to enhance the applicability for the wireless technology for Korean NPPs. The result based on proposed applicable system shows that wireless local area network (WLAN) is the representative candidate for Korean NPPs, which can be applied to the specific fields of radiation monitoring, voice and data communication, component monitoring and instrumentation, and wireless cameras.

  12. Cardinal principle and application practice of 3D digital model design for nuclear power plant

    International Nuclear Information System (INIS)

    Wang Ruobing; Wu Yan

    2005-01-01

    The practical application of 3D digital model design at nuclear power plants was introduced in detail in the paper. The whole process for system choice, program constitution, model design and project practice were also summarized. By demonstrating the cardinal principal and application practice of 3D digital model design as an important sub-project of CGNPC Digital Plant, the paper validates the rationality and validity of the major architecture system and program configuration of the digital plant, carries out beneficial attempt and study in the overall power plant life engineering management and site practice, and has achieved significant engineering and social benefits. The success of practices in the project accelerates the extended and extensive application of Digital Plant in the operation and maintenance simulation of Daya Bay and Ling'ao Nuclear Power Plants, and the engineering design management for Ling'ao II and III of CGNPC on a consolidated basis. (authors)

  13. Applicability of trends in nuclear safety analysis to space nuclear power systems

    International Nuclear Information System (INIS)

    Bari, R.A.

    1992-01-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication

  14. Economics of nuclear power in Finland

    International Nuclear Information System (INIS)

    Tarjanne, Risto; Luostarinen, Kari

    2002-01-01

    The nuclear power generation fits perfectly with the long duration load profile of the Finnish power system. The good performance of the Finnish nuclear power has yielded benefits also to the consumers through its contribution to decreasing the electricity price. Furthermore, the introduction of nuclear power has resulted in a clear drop in carbon dioxide emissions from electricity generation in the shift of 1970's and 1980's. In the year 2001 the four Finnish nuclear power units at Loviisa and Olkiluoto generated 22.8 TWh electricity, equivalent to 28 per cent of the total consumption. Loviisa power station has a net output capacity of 2 x 488 MW, and Olkiluoto 2 x 840 MW. The capacity factors of the four nuclear units have been above 90 per cent, which are among the highest in the world. The energy-intensive process industries in particular have strong belief in nuclear power. In November 2000, Teollisuuden Voima company (TVO) submitted to the Finnish Government an application for decision in principle concerning the construction of a new nuclear power plant unit. The arguments were among other things to guarantee for the Finnish industry the availability of cheap electric energy and to meet the future growth of electricity consumption in Finland. The carbon-free nuclear power also represents the most efficient means to meet the Greenhouse Gas abatement quota of Finland. Simultaneously, the energy policy of the Government includes intensive R and D and investment support for the renewable energy sources and energy conservation, and the objective is also to replace coal with natural gas as much as reasonably possible. The fifth nuclear unit would be located in one of the existing Finnish nuclear sites, i.e. Olkiluoto or Loviisa. The size of the new nuclear unit would be in the range of 1000 to 1600 MW electric. The ready infrastructure of the existing site could be utilised resulting in lower investment cost for the new unit. The Finnish Government accepted the

  15. Elecnuc - Nuclear power plants in the world - 2009 edition

    International Nuclear Information System (INIS)

    2009-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2008 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2008/01/01, Worldwide status of nuclear power plants (12/31/2008), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2008, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear powe plants by country at the end 2008, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2008, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2008, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2008, Long term shutdown units at 12/31/2008, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  16. Management of difference in a nuclear power project

    International Nuclear Information System (INIS)

    Guo Ruiting

    2012-01-01

    The Thesis dissertate the application of Management of Difference in a Nuclear Power Project from nuclear safety regulation requirement, selection of a nuclear power plant site, engineering and procurement, construction, operation and maintenance, quality management, schedule management and experience feedback aspects. (author)

  17. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  18. Public acceptance of nuclear power in Taiwan

    International Nuclear Information System (INIS)

    Liao, T.T.L.

    1992-01-01

    It is necessary to reach the public acceptance for nuclear power development program. During the process of the application for the approval from the government to implement the Fourth Nuclear Power Plant program in Taiwan, we initialized a series of communication program in the last two years and are expecting to convince the public that to develops nuclear power is essential to the country from a viewpoint of energy diversified. The basic strategies of the communication program not only emphasized the new nuclear power project, but also for the long term public acceptance on nuclear power. The strategies include: (1) Preview and implement the promotion program for the performance of the existing nuclear power plants. (2) Designate and communicate with the major communication target groups: elected delegates, journalists, local residents, scholars and experts. (3) Edit and incorporate the basic nuclear knowledge into the preliminary school educational materials. (4) Subsidize the adjacent communities of nuclear power plants for the public well-being construction. In order to implement the mentioned strategies, Taipower has reorganized the public service department and the existing nuclear power plants, setup the nuclear exhibition center, conducted fullscale emergency drill biannually for each of nuclear power plant, and prepared the seminars for the teacher

  19. The application of availability analysis to nuclear power plants

    International Nuclear Information System (INIS)

    Brooks, A.C.

    1984-01-01

    The use of probabilistic risk analysis (PRA) to assess the risks from nuclear power plants is now well established. Considerably less attention has been given so far to the use of availability analysis techniques. The economics of power generation are now such that with nuclear power currently supplying a substantial fraction of power in many countries, increasing attention is being paid to improving plant availability. This paper presents a technique for systematically identifying the areas in which measures to improve plant availability will be most effective. (author)

  20. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  1. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  2. Application of improved topsis method to accident emergency decision-making at nuclear power station

    International Nuclear Information System (INIS)

    Zhang Jin; Cai Qi; Zhang Fan; Chang Ling

    2009-01-01

    Given the complexity in multi-attribute decision-making on nuclear accident emergency, and by integrating subjective weight and impersonal weight of each evaluating index, a decision-making model for emergency plan at nuclear power stations is established with the application of improved TOPSIS model. The testing results indicated that the improved TOPSIS-based multi-attribute decision-making has a better assessment results. (authors)

  3. Basic safety principles for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1989-01-01

    To ensure the safety operation of nuclear power plant, one should strictly adhere to the implelmentation of safety codes and the establishment of nuclear safety code system, as well as the applicable basic safety principles of nuclear power plants. This article briefly introduce the importance of nuclear codes and its economic benefits and the implementation of basic safety principles to be accumulated in practice for many years by various countries

  4. Digital nuclear instrumentation application to nuclear power plant

    International Nuclear Information System (INIS)

    Burel, J.-P.; Fanet, H.

    1993-01-01

    The use of digital techniques for the control of nuclear reactors offers an interesting prospect in the improvement of the operation and safety of reactors. Thanks to close collaboration between Merlin Gerin and the French Atomic Energy Commission, a new piece of technology for nuclear instrumentation systems has been developed in order to meet the needs of different types of reactors. The principles of measurement are presented and the technology used is described. Other interesting points of this technology in addition to installation, operation and safety are examined. The digital neutron measurements are already operating in research reactors in France and will be installed in a different configuration in the new 1400 MW nuclear power plant. Integration into different designs is easily attainable by adapting the information transmission mode according to the technology present in the protection system and the treatment and visualization systems. (author)

  5. Research on applicability of optical and digital technologies to nuclear power stations

    International Nuclear Information System (INIS)

    Emoto, Motonori

    1990-01-01

    Recently, the development of electronic technology represented by optical multiple transmission technology and digital technology is remarkable, and it is expected that this tendency advances further hereafter. The improvement of the reliability, operational performance and maintainability of nuclear power stations by applying these most advanced technologies to them has been desired. In this research, it was found that by the application of optical multiple transmission and digital technology to nuclear power stations, their operation by a small number of operators, the automation of work management and so on can be realized. Besides, it was found that as the major technologies of hereafter, the advance of artificial intelligence technology, rapid and large capacity information processing, the network of the computers of different types and others is necessary. Further, if these technologies are completed, the clarification of the requirement when those are actually applied to nuclear power stations is necessary, and it was found also that as the matters to be considered at that time, the extent of improvement of reliability, the reduction of risk at the time of the troubles of equipment and other fundamental matters must be clarified hereafter. (K.I.)

  6. Nuclear power supply (Japan Nuclear Safety Institute)

    International Nuclear Information System (INIS)

    Kameyama, Masashi

    2013-01-01

    After experienced nuclear disaster occurred on March 11, 2011, role of nuclear power in future energy share in Japan became uncertain because most public seemed to prefer nuclear power phase out to energy security or costs. Whether nuclear power plants were safe shutdown or operational, technologies were requisite for maintaining their equipment by refurbishment, partly replacement or pressure proof function recovery works, all of which were basically performed by welding. Nuclear power plants consisted of tanks, piping and pumps, and considered as giant welded structures welding was mostly used. Reactor pressure vessel subject to high temperature and high pressure was around 200mm thick and made of low-alloy steels (A533B), stainless steels (308, 316) and nickel base alloys (Alloy 600, 690). Kinds of welding at site were mostly shielded-metal arc welding and TIG welding, and sometimes laser welding. Radiation effects on welding of materials were limited although radiation protection was needed for welding works under radiation environment. New welding technologies had been applied after their technical validation by experiments applicable to required regulation standards. Latest developed welding technologies were seal welding to prevent SCC propagation and temper-bead welding for cladding after removal of cracks. Detailed procedures of repair welding of Alloy 600 at the reactor outlet pipe at Oi Nuclear Power Plants unit 3 due to PWSCC were described as an example of crack removal and water jet peening, and then overlay by temper-bead welding using Alloy 600 and clad welding using Alloy 690. (T. Tanaka)

  7. Optimized Application of MSR and Steam Turbine Retrofits in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, Robert; McCoach, John [ALSTOM Power, Willans Works, Newbold Road, Rugby, Warwickshire CV21 2NH (United Kingdom); Gagelin, Jean-Philippe [ALSTOM Power Heat Exchange, 19-21 avenue Morane-Saulnier, BP 65, 78143 Velizy Cedex (France)

    2004-07-01

    The benefit to a nuclear power plant from a steam turbine retrofit has often been clearly demonstrated in recent years but, for light water nuclear plants, the Moisture Separator Reheaters (MSRs) are also of prime importance. This paper describes how refurbishment of these crucial components can only provide full potential performance benefit when made in conjunction with a steam turbine retrofit (although in practice these activities are frequently separated). Examples are given to show how combined application is best handled within a single organization to ensure optimized integration into the thermal cycle. (authors)

  8. Optimized Application of MSR and Steam Turbine Retrofits in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Crossland, Robert; McCoach, John; Gagelin, Jean-Philippe

    2004-01-01

    The benefit to a nuclear power plant from a steam turbine retrofit has often been clearly demonstrated in recent years but, for light water nuclear plants, the Moisture Separator Reheaters (MSRs) are also of prime importance. This paper describes how refurbishment of these crucial components can only provide full potential performance benefit when made in conjunction with a steam turbine retrofit (although in practice these activities are frequently separated). Examples are given to show how combined application is best handled within a single organization to ensure optimized integration into the thermal cycle. (authors)

  9. Development of human factors engineering guide for nuclear power project

    International Nuclear Information System (INIS)

    Wu Dangshi; Sheng Jufang

    1997-01-01

    'THE PRACTICAL GUIDE FOR APPLICATION OF HUMAN FACTORS ENGINEERING TO NUCLEAR POWER PROJECT (First Draft, in Chinese)', which was developed under a research program sponsored by National Nuclear Safety Administration (NNSA) is described briefly. It is hoped that more conscious, more systematical and more comprehensive application of Human Factors Engineering to the nuclear power projects from the preliminary feasibility studies up to the commercial operation will benefit the safe, efficient and economical operations of nuclear power plants in China

  10. Applications of neural networks to monitoring and decision making in the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1990-01-01

    Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of ''noise'' data from TVA's Sequoyah Nuclear Power Plant, and (5) examination of the NRC's database of ''Letter Event Reports'' for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants

  11. Design of the system of maintenance operations occupational safety and health database application of nuclear power station

    International Nuclear Information System (INIS)

    Wang Xuehong; Li Xiangyang; Ye Yongjun

    2011-01-01

    Based on the KKS code of building equipment in nuclear power station, this paper introduces the method of establishing the system of maintenance operation occupational safety and health database application. Through the application system of maintenance occupational safety and health database, it can summarize systematically all kinds of maintenance operation dangerous factor of nuclear power station, and make a convenience for staff to learn the maintenance operation dangerous factors and the prevention measures, so that it can achieve the management concept of 'precaution crucial, continuous improvement' that advocated by OSHMS. (authors)

  12. Nuclear power newsletter Vol. 3, no. 1, April 2006

    International Nuclear Information System (INIS)

    2006-04-01

    The topics presented in this newsletter are: Nuclear power technology and operations databases; Message from the Director of the Division of Nuclear Power; Announcement of Mr. Atam Rao, the new Head of Nuclear Power Technology Development Section; Nuclear power plant operating performance and life cycle management; Improving human performance, quality and technical infrastructure; Technology developments and applications for advanced reactors; Recent publications; Planned meetings in 2006; Division of Nuclear Power Web site links; The 7th IAEA - FORATOM Joint Workshop on Successful Management of Organizational Change

  13. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  14. Nuclear power technologies for application in developing countries

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.

    2000-01-01

    The tremendous social and political changes which have occurred during the recent decade in the former USSR made it possible to launch the process of commercialization of defense-related technologies in Russia. The so-called dual-use technologies are meant to be initially developed by the state for defense needs, but having a high commercial potential as well. To date, the process of such technology transfer from the state sector to a private one has been limited primarily by insufficient progress of the national private sector. Essentially, the main economic problem still remains the attraction of private capital for the promotion of dual-use technologies to the point at where they acquire commercially viable. A large number of advanced technologies are waiting to be commercialized. The report presented considers the prospects of civil use of some technologies related to the nuclear power area: space nuclear power systems, nuclear powered submarines and rector-pumped lasers. (author)

  15. Applicability of JIS SPV 50 steel to primary containment vessels of nuclear power stations

    International Nuclear Information System (INIS)

    Iida, K.; Ishikawa, K.; Satoh, M.; Soya, I.

    1980-01-01

    The fracture toughness of JIS SPV 50 steel and its weldment has been examined in order to verify the applicability of these materials to primary containment vessels of nuclear power stations. Test results were evaluated using elastic plastic fracture mechanics through the COD and the J integral concepts for non ductile fracture initiation characteristics. Linear fracture mechanics was employed for propagation arrest characteristics. Results showed that the materials tested here have a sufficient fracture toughness to prevent nonductile fracture and that this steel is a suitable material for use in construction of primary containment vessels of nuclear power stations. (author)

  16. The selective application of quality assurance activities to nuclear power plant items and services

    International Nuclear Information System (INIS)

    Anderson, J.W.

    1982-01-01

    The definition of quality assurance and the criteria for a quality assurance programme that are contained in both national and international codes and standards provide the principle of selective application of quality assurance activities for cost-effective results. The effective implementation of this principle requires a systematic and disciplined methodology that should be established by or for the owner at the beginning of a nuclear power plant project. The methodology that has proven to be successful generally includes a uniform method of classifying plant items and services at their lowest level of unit assembly and using that classification in the selection of applicable quality assurance activities and the specification of appropriate requirements for those activities. The applicable quality assurance activities are those to be implemented by the organizations designing, manufacturing, installing and operating plant items or performing support services. The methods and techniques provided illustrate the methodology and are one way by which a nuclear power plant project may translate the principle into application in order to achieve the desired results. (author)

  17. Application of PSA to Assess the Safety Level of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Berg, H. P.; Goertz, R.

    2000-01-01

    This paper reviews the application of PSA in German nuclear power plant regulation. From a fundamental point of view, it has to be mentioned that as stipulated in the corresponding requirements, regulatory decision making in Germany is primarily based on deterministic analyses and evaluations. Therefore, PSA is not used as a stand alone but as a supplementary basis. In this context PSA has developed a valuable tool with continuously growing importance. Level 1+ PSAs are now elaborated for all German nuclear power plants in operation, most of them are already reviewed by the competent supervisory authority and its experts. Current research activities on the federal level primarily concentrate on the further development of the methodology in the areas human factor, common cause failures, accident management measures and reduction of uncertainties in methods and data. (author)

  18. Technical analysis of magneto-inductive crane cables in nuclear power plants. Application crane Cofrentes Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gavilan Moreno, C. J.

    2010-01-01

    In 2009, the Cofrentes Nuclear Power Plant made a study about crane inspection techniques available on the market and other industries. The result was the location of the magneto-inductive technique inspection. Its use provides an objective assessment of the resistant section and; through these data; it could be made calculations as the maximum voltage allowed. Therefore, the technique is proven and available to all nuclear power plants.

  19. Application of environmentally-corrected fatigue curves to nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1996-01-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four US nuclear steam supply system vendors. For each facility, six locations were studied including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This paper discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  20. Trade secrets protection mode of nuclear power plant

    International Nuclear Information System (INIS)

    Zeng Bin

    2015-01-01

    The paper analyzes the legal environment in which nuclear power enterprises are stayed, and mainly discusses the business secret protection modes of China's nuclear power enterprises. It is expected to provide a revelation and help for these enterprises to protect their business secrets. Firstly, the paper briefly expounds the legal basis of business secret protection and China's legalization status in this regard. Then it mainly puts forward the business secret management framework and postulations for nuclear power enterprises, and key points in application and protection of nuclear power business secret. (author)

  1. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  2. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  3. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  4. Application of NASA Kennedy Space Center System Assurance Analysis methodology to nuclear power plant systems designs

    International Nuclear Information System (INIS)

    Page, D.W.

    1985-01-01

    In May of 1982, the Kennedy Space Center (KSC) entered into an agreement with the NRC to conduct a study to demonstrate the feasibility and practicality of applying the KSC System Assurance Analysis (SAA) methodology to nuclear power plant systems designs. North Carolina's Duke Power Company expressed an interest in the study and proposed the nuclear power facility at CATAWBA for the basis of the study. In joint meetings of KSC and Duke Power personnel, an agreement was made to select two CATAWBA systems, the Containment Spray System and the Residual Heat Removal System, for the analyses. Duke Power provided KSC with a full set of Final Safety Analysis Reports (FSAR) as well as schematics for the two systems. During Phase I of the study the reliability analyses of the SAA were performed. During Phase II the hazard analyses were performed. The final product of Phase II is a handbook for implementing the SAA methodology into nuclear power plant systems designs. The purpose of this paper is to describe the SAA methodology as it applies to nuclear power plant systems designs and to discuss the feasibility of its application. (orig./HP)

  5. Nuclear power and the electronics revolution

    International Nuclear Information System (INIS)

    Konstantinov, L.; Joosten, J.; Neboyan, V.

    1985-01-01

    This article mentions a number of innovations and electronic tools, which are influencing nuclear plant operations. Examples are: The incorporation of digital computer devices in safety systems; The application of noise analysis techniques to serveillance systems of nuclear power plants; The use of nuclear power plant training simulators; The attention period to the man-machine interface; The developments in the field of robot uses and remote systems in nuclear power plants. A recommendation is made to all countries to make the best use of the IAEA policy to promote international cooperation and exchange of experience in this field. Reference is made to the international conference on ''Man-Machine Interface in the Nuclear Industry; Control and Instrumentation, Robot Uses and Artificial Intelligence'' that IAEA is planning to hold in 1987

  6. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  7. Laser applications in nuclear power plants

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... we have used laser techniques to cut stainless steel sheets up to 14 mm thickness and stainless steel weld up to ... radioactive environment, reasons being easiness in tool handling, flexibility, non-contact nature ... in nuclear power plants of NPCIL, India, by invoking different innovative techniques. Figure 1.

  8. Nuclear power newsletter Vol. 3, no. 4, December 2006

    International Nuclear Information System (INIS)

    2006-12-01

    The topics presented in this newsletter are: The 1st Joint IAEA-EPRI Workshop on Modernization of Instrumentation and Control Systems in Nuclear Power Plants; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management system, infrastructure and training; International Project on Innovative Nuclear Reactors and Fuel Cycles; Technology developments and applications for advanced reactors; Planned meetings in 2007

  9. 2009 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the end of 2009, 437 nuclear power plants were available for energy supply in 30 countries of the world. This is 1 plant less than at the end of 2008. The aggregate gross power of the plants amounted to approx. 391.5 GWe, the aggregate net power, to 371.3 GWe. This capacity numbers are a little bit less than one year before (gross: 392.6 GWe, net: 372.2 GWe). Two units were commissioned in 2009; 1 unit in India (Rajasthan 5) and 1 unit in Japan (Tomari 3). Three nuclear power plant were shut down permanently in 2009 in Japan (Hamaoka 1 and Hamaoka 2) and in Lithuania (Ignalina 2). 52 nuclear generating units, i.e. 9 plants more than at the end of 2008, were under construction in late 2009 in 14 countries with an aggregate gross power of approx. 51.2 GWe. Worldwide, some 80 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 130 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2009 achieved another reasonable ranking level of approx. 2,558 billion kWh (2008: approx. 2,628 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 60,500 billion kWh, and operating experience has grown to some 13,950 reactor years. (orig.)

  10. Quality assurance during operation of nuclear power plants

    International Nuclear Information System (INIS)

    1994-01-01

    The general requirements applicable to the quality assurance of the Finnish nuclear power plants are presented in the Council of State Decision (395/91) and in the guide YVL 1.4. This guide specifies the quality assurance requirements to be applied during the operation of the nuclear power plants as well as of the other nuclear facilities. Quality assurance applies to all the activities and organizations with a bearing on the safe operation of the nuclear power plants. (5 refs.)

  11. Nuclear power programme planning: An integrated approach

    International Nuclear Information System (INIS)

    2001-12-01

    The International Atomic Energy Agency (IAEA) has published material on different policy considerations in the introduction of nuclear power, primarily addressed to top level decision makers in government and industry in Member States. Several Member States and experts recommended to the IAEA to address the aspects of an integrated approach to nuclear power programme planning and to serve as guidance to those countries wishing to embark on a nuclear power programme. As a follow-up, the present publication is primarily intended to serve as guidance for executives and managers in Member States in planning for possible introduction of nuclear power plants in their electricity generating systems. Nuclear power programme planning, as dealt with in this publication, includes all activities that need to be carried out up to a well-founded decision to proceed with a project feasibility study. Project implementation beyond this decision is not in the scope of this publication. Although it is possible to use nuclear energy as a heat source for industrial processes, desalination and other heat applications, it is assumed in this publication that the planning is aimed towards nuclear power for electricity generation. Much of the information given would, however, also be relevant for planning of nuclear reactors for heat production. The publication was prepared within the framework of the IAEA programme on nuclear power planning, implementation and performance as a joint activity of the Nuclear Power Engineering Section and the Planning and Economic Studies Section (Division of Nuclear Power)

  12. Special conditions for the application of coating materials in nuclear power plants

    International Nuclear Information System (INIS)

    Boetius, I.

    1980-01-01

    Proceeding from the special conditions for the application of coating materials in nuclear power plants the following factors influencing the decontamination of surface coatings are discussed from the point of view of radiation protection: abrasion resistance, waterproofness, mechanical and adhesion strength, and permeability. For practical use it is recommended to test the surface tightness of coatings with radiation-exposed specimens

  13. Application and issues of online maintenance for equipment of nuclear power plants

    International Nuclear Information System (INIS)

    Higasa, Hisakazu

    2011-01-01

    The maintenance systems for long-term safety and repair costs reduction of equipment of nuclear power plants are stated. Planned maintenance contained the breakdown maintenance (BM) and the preventive maintenance, which consists of the time based maintenance (MBM) and the condition based maintenance (CBM). Explained are the characteristics of equipments, maintenance methods, maintenance solutions and the self-evaluation maintenance power, damage mechanism and solutions, and monitoring tools and application. Stated are the maintenance system and application of monitoring technology, periodical maintenance, application of diagnosis, vibration monitoring techniques, decision of vibration monitoring, and application of monitoring techniques for improvement of maintenance. Illustrated are realization of planned maintenance by reorganization of maintenance, a trend of maintenance of equipments, table of classified maintenance systems, change of maintenance program, maintenance data and investigation of damage mechanism, examples of self-evaluation maintenance power, examples of analysis of damage of parts of equipments, evaluation of rotating machines by vibration method, examples of results of diagnosis of bearing of rotating machines, online maintenance system of Asahi Kasei Engineering Corporation, degradation pattern of pomp, estimation of lifetime by total vibration and vibration on acceleration, and improvement of equipments. (S.Y.)

  14. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  15. Rough set theory and its application in fault diagnosis in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chen Zhihui; Nuclear Power Inst. of China, Chengdu; Xia Hong; Huang Wei

    2006-01-01

    Rough Set theory is the mathematic theory that can express and deal with vague and uncertain data. There is complicated and uncertain data in the fault feature of Nuclear Power Plant, so that Rough Set theory can be introduced to analyze and process the historical data to find out the rule of fault diagnosis of Nuclear Power Plant. This paper introduces the Rough Set theory and Knowledge Acquisition briefly, and describes the reduction algorithm based on discernibility matrix and its application in the fault diagnosis to generate rules of diagnosis. Using these rules, three kinds of model faults have been diagnosed correctly. The conclusion can be drawn that this method can reduce the redundancy of the fault feature, simplify and optimize the rule of diagnosis. (authors)

  16. Basic plan for nuclear power development and utilization in 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents specific measures to be carried out in 1987 to promote research, development and application of nuclear power. The first part deals with the strengthening of safety measures, centering on the improvement in regulation and administration for nuclear power safety; promotion of safety studies; improvement and strengthening of disaster prevention measures; improvement and strengthening of environmental activity surveys; improvement in exposure control measures for nuclear power operation workers; and establishment of the nuclear fuel cycle and safety in such activities as development of new reactors. The second part of the report addresses the promotion of nuclear power generation. Measures for this will be focused on the promotion of location of nuclear power plants and the development of advanced technology for light water reactors. The third part describes measures for establishing the nuclear fuel cycle, which cover the procurement of uranium resources; enrichment of uranium; reprocessing of spent fuel and utilization of plutonium and recovered uranium; and disposal of radioactive waste. Other parts presents measures to be carried out for the development of new power reactors; research on nuclear fusion; development of nuclear powered vessels; application of radiations; improvement in the infrastructure for nuclear power development and utilization; etc. (Nogami, K.)

  17. Fitting of power generated by nuclear power plants into the Hungarian electricity system

    International Nuclear Information System (INIS)

    Lengyel, Gyula; Potecz, Bela

    1984-01-01

    The moderate increase of electrical energy demands (3% at present) can only be met by the parallel application of fossil and nuclear power plants and by electric power import via the transmission lines of the CMEA countries. The changes in the electrical energy and fuel demands and the development of the available capacities during the last 35 years are reviewed. The major purpose of Hungarian power economy is to save hydrocarbon fuels by taking advantages of power import opportunities by operating nuclear power plants at maximum capacity and the coal fired power stations at high capacity. The basic principles, the algorithm applied to optimize the load distribution of the electrical power system are discussed in detail with special attention to the role of nuclear power. The planned availability of nuclear power plants and the amount of electricity generated by nuclear plants should also be optimized. (V.N.)

  18. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  19. Axial power deviation control strategy and computer simulation for Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Liao Yehong; Zhou Xiaoling, Xiao Min

    2004-01-01

    Daya Bay Nuclear Power Station has very tight operation diagram especially at its right side. Therefore the successful control of axial power deviation for PWR is crucial to nuclear safety. After analyzing various core characters' effect on axial power distribution, several axial power deviation control strategies has been proposed to comply with different power varying operation scenario. Application and computer simulation of the strategies has shown that our prediction of axial power deviation evolution are comparable to the measurement values, and that our control strategies are effective. Engineering experience shows that the application of our methodology can predict accurately the transient of axial power deviation, and therefore has become a useful tool for reactor operation and safety control. This paper presents the axial power control characteristics, reactor operation strategy research, computer simulation, and comparison to measurement results in Daya Bay Nuclear Power Station. (author)

  20. Potential refractory alloy requirements for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.

    1984-01-01

    In reviewing design requirements for refractory alloys for space nuclear applications, several key points are identified. First, the successful utilization of refractory alloys is considered an enabling requirement for the successful deployment of high efficiency, lightweight, and small space nuclear systems. Second, the recapture of refractory alloy nuclear technology developed in the 1960s and early 1970s appears to be a pacing activity in the successful utilization of refractory alloys. Third, the successful application of refractory alloys for space nuclear applications will present a significant challenge to both the materials and the systems design communities

  1. Commercialization of nuclear power plant decommissioning technology

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    The commercialization of nuclear power plant decommissioning is presented as a step in the commercialization of nuclear energy. Opportunities for technology application advances are identified. Utility planning needs are presented

  2. Safety and regulatory requirements of nuclear power plants

    International Nuclear Information System (INIS)

    Kumar, S.V.; Bhardwaj, S.A.

    2000-01-01

    A pre-requisite for a nuclear power program in any country is well established national safety and regulatory requirements. These have evolved for nuclear power plants in India with participation of the regulatory body, utility, research and development (R and D) organizations and educational institutions. Prevailing international practices provided a useful base to develop those applicable to specific system designs for nuclear power plants in India. Their effectiveness has been demonstrated in planned activities of building up the nuclear power program as well as with unplanned activities, like those due to safety related incidents etc. (author)

  3. Application of the neutron noise analysis technique in nuclear power plants

    International Nuclear Information System (INIS)

    Lescano, Victor H.; Wentzeis, Luis M.

    1999-01-01

    Using the neutron noise analysis in nuclear power plants, and without producing any perturbation in the normal operation of the plant, information of the vibration state of the reactor internals and the behavior of the operating conditions of the reactor primary circuit can be obtained. In Argentina, the neutron noise analysis technique is applied in customary way in the nuclear power plants Atucha I and Embalse. A database was constructed and vibration frequencies corresponding to different reactor internals were characterized. Reactor internals with particular mechanical vibrations have been detected and localized. In the framing of a cooperation project between Argentina and Germany, we participated in the measurements, analysis and modelisation, using the neutron noise technique, in the Obrigheim and Gundremmingen nuclear power plants. In the nuclear power plant Obrigheim (PWR, 350 M We), correlations between the signals measured from self-power neutron detectors and accelerometers located inside the reactor core, were made. In the nuclear power plant Gundremmingen (BWR, 1200 M We) we participated in the study of a particular mechanical vibration detected in one of the instrumentation tube. (author)

  4. Application of ABWR construction database to nuclear power plant project

    International Nuclear Information System (INIS)

    Takashima, Atsushi; Katsube, Yasuhiko

    1999-01-01

    Tokyo Electric Power Company (TEPCO) completed the construction of Kashiwazaki-Kariwa Nuclear Power Station Unit No. 6 and No. 7 (K-6/7) as the first advanced boiling water reactors (ABWR) in the world successfully. K-6 and K-7 started their commercial operations in November, 1996 and in July, 1997 respectively. We consider ABWR as a standard BWR in the world as well as in Japan because ABWR is highly reputed. However, because the interval of our nuclear power plant construction is going to be longer, our engineering level on plant construction will be declining. Hence it is necessary for us to maintain our engineering level. In addition to this circumstance, we are planning to wide application of separated purchase orders for further cost reduction. Also there is an expectation for our contribution to ABWR plant constructions overseas. As facing these circumstances, we have developed a construction database based on our experience for ABWR construction. As the first step of developing the database for these use, we analyzed our own activities in the previous ABWR construction. Through this analysis, we could define activity units of which the project consists. As the second step, we clarified the data which are treated in each activity unit and the interface among them. By taking these steps, we could develop our database efficiently. (author)

  5. Fuzzy logic control of nuclear power plant

    International Nuclear Information System (INIS)

    Yao Liangzhong; Guo Renjun; Ma Changwen

    1996-01-01

    The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed

  6. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    International Nuclear Information System (INIS)

    O'Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act

  7. Human factors guidelines for nuclear power plant applications

    International Nuclear Information System (INIS)

    Ketchel, J.

    1993-01-01

    In 1989, Waters et al. reported to the Human Factors Society on developing human factors criteria for a new reactor plant. They correctly indicated that much of the guidance documentation in human factors engineering has derived from MIL-STD-1472 and its antecedents. Guidelines for human-computer interface have sprung primarily from the Smith and Mosier compendium and its source documents. NUREG-0700, which is currently being updated, was developed by the US Nuclear Regulatory Commission (NRC) as a general evaluation guide for inspecting control rooms. In addition, the Electric Power Research Institute, Institute of Nuclear Power Operations, US Department of Energy, the NRC, and others have published a number of specialized documents on a range of subjects. The number of guidelines and standards has grown in the past few years to an impressive number, including those published by international organizations and professional societies. This paper provides an update on current efforts to provide appropriate guidance for the power industry and, perhaps more importantly, offers a perspective on how users should think about using the available materials and what else is needed. The Electric Power Research Institute (EPRI) continues to be one of the principal participants in providing guidance to the utilities. Human factors guidelines is indeed a timely topic, currently of great interest to EPRI's constituents and to designers of new and upgraded nuclear power plants (NPMs) in the Advanced Light Water Reactor and the Instrumentation and Control Upgrade Initiative programs

  8. Design engineer perceptions and attitudes regarding human factors application to nuclear power plant design

    International Nuclear Information System (INIS)

    Ma, R.; Jones, J. M.

    2006-01-01

    With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE in NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)

  9. International safety standards and regulatory practices and their application to Brazilian nuclear power plants - a realistic view

    International Nuclear Information System (INIS)

    Almeida, Claudio; Camargo, Claudio

    1999-01-01

    An international nuclear safety regime is being established through a series of binding safety conventions, voluntarily adopted international safety standards and an accompanying peer review process. The basis for the evaluation of each country performance within this international regime should be the international practices. However, local conditions should be taken into account to avoid undue stress of the limited resources available to countries with a limited nuclear power programme. This work reviews the current international nuclear safety and discusses the application of some international practices to the Brazilian situation, considering the peculiarities of the national nuclear power programme and the limitations of the available financial and human resources. (author)

  10. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  11. Feasibility analysis of nuclear power development in Sichuan province

    International Nuclear Information System (INIS)

    Yang Qi; Li Jie

    2003-01-01

    Sichuan province should take this opportunity to develop nuclear power actively since the application of nuclear power has been enhanced worldwide. It is accepted that nuclear power is one kind of safe and clean energy, and the economic has been improved greatly. Considering the electricity demands and structure conflict in near 20 years, nuclear power could solve the problem of electricity shortness in Sichuan, optimize the electricity structure and meliorate the environment, and thus maintain the sustainable development of the economy in Sichuan Province

  12. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  13. Technical requirements for the ASME PRA standard for nuclear power plant applications

    International Nuclear Information System (INIS)

    Fleming, Karl N.; Bernsen, Sidney A.; Simard, Ronald L.

    2000-01-01

    In 1998 the American Society of Mechanical Engineers (ASME) formed the Committee on Nuclear Risk Management (CNRM) and a Project Team to develop a standard on PRAs for use in risk informed applications. This ASME standard is being developed to help provide an adequate level of quality in PRAs that are being used to support ASME initiatives to risk informed in-service inspection (ISI) and in-service testing (IST) of nuclear power plant components. A related need supported by the industry and the U.S. Nuclear Regulatory Commission is to reduce the level of effort that is being expended in pilot applications of risk informed initiatives to address questions about the sufficiency of quality in the supporting PRA models. The purpose of this paper is to discuss the authors' views on some of the technical issues that were encountered in the effort to develop the ASME PRA standard. Draft 12 of this standard has been issued for comment, and is currently being finalized with the aim of releasing the standard in early 2001. (author)

  14. Crucial role for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Dastidar, P R

    1980-01-01

    Generation of electricity by a nuclear reactor is explained. After taking a survey of the hydro-electric potential and coal deposits of India and considering their limitations, the need for nuclear power becomes evident. It is also economically competitive. The strategy for nuclear power development in India is to use natural uranium fuel based heavy water moderated thermal reactors to produce plutonium-239 and to use thorium based fast breeder reactors to breed plutonium-239 and uranium-233, and in turn these radioisotopes will be used to fuel FBR type reactors. This strategy maximises the energy obtainable from natural uranium by a factor of 400. The present state of nuclear power generation in India and the research programmes of the FBR type reactor are outlined. Other benefits from nuclear energy research are mentioned. Some of them are leak detection techniques, radiosterilisation and plant breeding by radiation mutation. The spin-off of the Indian atomic energy programme are: development of radiation detection instruments and other sophisticated electronic instruments, development of methods of preparation of ultra-pure materials, fabrication of components such as seamless tubes, non-destructive testing methods, and reliability evaluation techniques. Other applications of nuclear energy are mentioned.

  15. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Felicia Angelica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.; Waymire, Russell L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  16. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-01-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  17. Neural networks and their potential application to nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1991-01-01

    A network of artificial neurons, usually called an artificial neural network is a data processing system consisting of a number of highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks exhibit characteristics and capabilities not provided by any other technology. Neural networks may be designed so as to classify an input pattern as one of several predefined types or to create, as needed, categories or classes of system states which can be interpreted by a human operator. Neural networks have the ability to recognize patterns, even when the information comprising these patterns is noisy, sparse, or incomplete. Thus, systems of artificial neural networks show great promise for use in environments in which robust, fault-tolerant pattern recognition is necessary in a real-time mode, and in which the incoming data may be distorted or noisy. The application of neural networks, a rapidly evolving technology used extensively in defense applications, alone or in conjunction with other advanced technologies, to some of the problems of operating nuclear power plants has the potential to enhance the safety, reliability and operability of nuclear power plants. The potential applications of neural networking include, but are not limited to diagnosing specific abnormal conditions, identification of nonlinear dynamics and transients, detection of the change of mode of operation, control of temperature and pressure during start-up, signal validation, plant-wide monitoring using autoassociative neural networks, monitoring of check valves, modeling of the plant thermodynamics, emulation of core reload calculations, analysis of temporal sequences in NRC's ''licensee event reports,'' and monitoring of plant parameters

  18. The key for competitive nuclear power, a view from Taiwan

    International Nuclear Information System (INIS)

    Lin, J.

    2000-01-01

    The article mainly deals with the current situation of nuclear power generation in Taiwan. The development of nuclear power has been long and punctilious, whereas the contribution to meet the power demand in the lean resource country is prodigious. This article delineate the structure of power generation costs with coal, petroleum oil, and nuclear reactors in Taiwan in the recent 20 years, which highlights the superiority of nuclear application. However, as we see it from Taiwan, the nuclear power could have been better if we can simplify the design and regulation of the reactor. (author)

  19. Applications of modern control systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, H [Brown, Boveri und Cie A.G., Mannheim (Germany, F.R.). Abt. GK/TE

    1980-10-01

    A new generation of automation and control systems are currently becoming commercially available in the power plant market which, because of their incorporation of microprocessors and bus data transmission systems, represent a major step forward in innovation. The application of these systems meets today's requirements and solutions, for the number of measurements to be performed has increased five or sixfold in the past few years, and the number of drive systems to be controlled has doubled or even tripled. Requirements to be met by process management systems have become vastly more complicated: peak load operation, short startup times, improved communication, and rising safety and reliability requirements, especially in nuclear power plants. Control concepts have been developed for the area relevant to reactor safety and for the whole of the plant, which make full use of the possibilities offered by plant systems. More stringent demands must be met especially in the areas of handling, communication, testing capability, improved function, and flexibility and modular design in the safety sector.

  20. UPVAPOR: computer application for the analysis of the results of Cofrentes Nuclear Power Plant production

    International Nuclear Information System (INIS)

    Palomo, M. J.; Baraza Peregrin, A.; Bucho Piqueras, L.; Vaquer Perez, J. I.; Lopez Lopez, B.

    2010-01-01

    UPVapor is a software developed for the Cofrentes Nuclear Power Plant Group of Results. This application presents a graphical environment for analysis in which the user has available many variables registered to configure the graphics. This application saves a lot of time at work because it allows other users to do their own analysis without resorting to analysts.

  1. Modular robotic applications in nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Glass, S.W.; Ranson, C.C.; Reinholtz, C.F.; Calkins, J.M.

    1996-01-01

    General-purpose factory automation robots have experienced limited use in nuclear maintenance and hazardous-environment work spaces due to demanding requirements on size, weight, mobility and adaptability. Robotic systems in nuclear power plants are frequently custom designed to meet specific space and performance requirements. Examples of these custom configurations include Framatome Technologies COBRA trademark Steam Generator Manipulator and URSULA trademark Reactor Vessel Inspection Manipulator. The use of custom robots in nuclear plants has been limited because of the lead time and expense associated with custom design. Developments in modular robotics and advanced robot control software coupled with more powerful low-cost computers, however, are helping to reduce the cost and schedule for deploying custom robots. A modular robotic system allows custom robot configurations to be implemented using standard (modular) joints and adaptable controllers. This paper discusses Framatome Technologies (FTI) current and planned developments in the area of modular robot system design

  2. Efficient power generation from large 7500C heat sources. Application to coal-fired and nuclear power station

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Pierre, B.

    1980-03-01

    Considering the future concern about a more efficient, rational use of heat sources, and also about a greater location flexibility of power plants owing to dry cooling possibility, closed gas cycles can offer new solutions for fossil or nuclear energy. An efficient heat conversion into power is obtained by the combination of a main non-intercooled helium cycle with a flexible, superheated, low pressure bottoming steam cycle. Emphasis is placed on the matching of the two cycle; for that, a recuperator by-pass arrangement is used. The operation of the main gas turbocompressor does not depend upon the operation of the small steam cycle. Results are given for a conservative turbine inlet temperature of 750 0 C. Applications are made to a coal-fired power plant and to a gas turbine, gas-cooled nuclear reactor. Overall net plant efficiencies of 39 per cent and 46 per cent respectively are reached. For a cycle top temperature equal to 850 0 C, corresponding net efficiencies would be 42 and 49 per cent

  3. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Kendall, J.; Kupitz, J.; Rogner, H. H.

    2000-01-01

    Nuclear power is a proven technology which currently makes a large contribution to the electricity supply in a number of countries and, to a much less extent, to heat supply in some countries. Nuclear power is economically competitive with fossil fuels for base load electricity generation in many countries, and is one of the commercially proven energy supply options that could be expanded in the future to reduce environmental burdens, especially greenhouse gas emissions, from the electricity sector. Over the past five decades, nearly ten thousand reactor-years of operating experience have been accumulated with current nuclear power plants. Building upon this background of success and applying lessons learned from the experience of operating plants, new generations of nuclear power plants have been, or are being developed. Improvements incorporated into these advance designs include features that will allow operators more time to perform equipment protection and safety actions in response to equipment failures and other off normal operating conditions, and that will reduce and simplify the actions required. Great attention is also paid to making new plants simpler to operate, inspect, maintain and repair, thus increasing their overall cost efficiency and their compatibility with the infrastructure of developing countries. The paper provides a discussion of future world energy supply and demand projections, current status and prospects for nuclear power, a short summary of advanced reactor concepts and non-electrical applications of nuclear energy for developing countries, and a review of the role of the IAEA. (author)

  4. Proceeding of the 7. Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Hastowo, Hudi; Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Jujuratisbela, Uju; Aziz, Ferhat; Su'ud, Zaki; Suprawhardana, M. Salman

    2002-02-01

    The seventh proceedings of seminar safety and technology of nuclear power plant and nuclear facilities, held by National Nuclear Energy Agency. The Aims of seminar is to exchange and disseminate information about safety and nuclear Power Plant Technology and Nuclear Facilities consist of technology; high temperature reactor and application for national development sustain able and high technology. This seminar level all aspects technology, Power Reactor research reactor, high temperature reactor and nuclear facilities. The article is separated by index

  5. Nuclear power: status, outlook, guarantees of sustainable development

    International Nuclear Information System (INIS)

    Cherkasov, A.S.

    2004-01-01

    Full text: The principal advantages of nuclear power - almost unlimited fuel resources, its high energy capacity, ecological compatibility with a possibility of high wastes concentration - determine the large-scale nuclear power development. The signs of large-scale power - a large rate (dozens of percent) in electricity production, diverse areas (electricity, heat supply, technologies, transport) and media of application (land, ocean, space), extension of number of user countries, diversified power systems (centralized, autonomous), obligatory reproduction and reuse of produced fuel - create various requirements to nuclear power installations of the future. Economic efficiency and competitiveness, safety (of reactors and fuel cycle with waste), proper characteristics of nuclear fuel reproduction, guarantees of nuclear arm's non-proliferation and, particularly, public acceptance are the conditions of such nuclear power development. The up-to-date situation is the following: the 441 nuclear power-generation units with total installed power of 377.36 GW el. (in 31 countries) supply by 1/6 part of the world electric-power consumptions. The 32 units are in stage of the construction. To the present mid-century the level of the nuclear power production, as supposed, must be increased 4-5 times at the following scenario of a regional distribution of nuclear electric powers, GW: USA, Europe and developed countries of Eastern Asia - 1000, FSU-countries - 100 and developing countries - 400

  6. Six sigma management and its application in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Weihua; Tong Lili

    2007-01-01

    Six sigma management mode is presented. The feasibility, necessity and the steps to extend six sigma in nuclear power plant are addressed. Nuclear power plant can eliminate or decrease human errors through importing six management concept, the 'zero disfigurement' quality and operation can achieved, decreasing accident risk and realizing safety operation. (authors)

  7. Nuclear Engineering Education in Support of Thailand’s Nuclear Power Programme

    International Nuclear Information System (INIS)

    Chanyotha, S.; Pengvanich, P.; Nilsuwankosit, S.

    2015-01-01

    This paper aims to introduce the nuclear engineering education at the Department of Nuclear Engineering, Chulalongkon University, Bangkok Thailand. The department has been offering curriculum in nuclear engineering to support the national nuclear power programme since 1970s. It is the oldest established nuclear engineering educational programme in the South East Asia region. Nevertheless, since the nuclear power programme has been postponed several times due to various reasons, the educational programme at the department has been continuously adapted to meet the nation’s needs. Several areas of study have been introduced, including nuclear power engineering, industrial applications of radioisotope, nuclear instrumentation, radioisotope production, radiation processing, environment and safety, nuclear materials, as well as the newly created nuclear security and non-proliferation. With the renewed interest in using nuclear power in Thailand in 2007, the department has been actively assisting both the government and the electric utility in preparing human resources to support the nuclear power programme through various educational and training modules. Realizing the importance of establishing and balancing all 3 aspects of the nuclear 3S (safety, security and safeguard) in Thailand and in the Southeast Asian region. The new curriculum of nuclear security and safeguard programme has been offered since 2013. Since the establishment, the department has produced hundreds of graduates (Diploma, Master’s, and Ph.D. levels) to feed the continuously expanding Thai nuclear industry. The full paper will provide detailed information of the curriculum, the challenges and obstacles that the department has encountered, as well as the national and international linkages which have been established over the years. (author)

  8. Innovative applications of technology for nuclear power plant productivity improvements

    International Nuclear Information System (INIS)

    Naser, J. A.

    2012-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  9. Nuclear power newsletter Vol. 3, no. 3, special issue, September 2006

    International Nuclear Information System (INIS)

    2006-09-01

    The topics presented in this newsletter are: IAEA's Contribution to Peaceful Use of Nuclear Power by Mr. Sinha; IAEA's Contribution to Peaceful Use of Nuclear Power by Mr. Tipping; Message from the Director of the Division of Nuclear Power; Nuclear power plant operating performance and life cycle management; Improving organizational performance; Coordination of INPRO; Technology development for advanced reactors; Support for non-electric applications of nuclear power; Planned meetings in 2006 and 2007; Division of Nuclear Power Web site link. The first two topics have been indexed separately

  10. Application of fatigue monitoring system in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Piao Lei

    2014-01-01

    Fatigue failure is one form of equipment failure of nuclear power plant, influencing equipment lifetime and lifetime extension. Fatigue monitoring system can track real thermal transient at fatigue sensitive components, establish a basis for fatigue analyses based on realistic operating loads, identify unexpected operational transients, optimize the plant behavior by improved operating modes, provide supporting data for lifetime management, enhance security of plant and reduce economical loss. Fatigue monitoring system has been applied in many plants and is required to be applied in Generation-III nuclear power plant. It is necessary to develop the fatigue monitoring system with independent intellectual property rights and improve the competitiveness of domestic Generation-III nuclear power technology. (author)

  11. Application of microearthquake surveys in nuclear power plant siting

    International Nuclear Information System (INIS)

    1985-06-01

    Earthquakes of magnitude less than 3 are generally referred to as microearthquakes. After an overview of the use of microearthquake survey in decisions related to the siting of nuclear power plants, the main aspects of a microearthquake survey network are discussed. The use of microearthquake surveys in investigating problems related to near-field (floating) earthquakes is also discussed. The discussion is centered on the practical application of such a survey leading from objectives and limitations over to planning, instrumentation, operation, maintenance, processing of the data, and interpretation and reporting of the results. An appendix entitled Earthquake Magnitude gives useful background information for definitions of different types of magnitude and their calculation using the records from microearthquake surveys

  12. 2010 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    At the end of 2010, 443 nuclear power plants were available for energy supply in 30 countries of the world. This are 6 plants more than at the end of 2009. The aggregate gross power of the plants amounted to approx. 396,118 MWe, the aggregate net power, to 375,947 MWe. This capacity numbers are a little bit more than one year before (gross: 391,551 MWe, net: 371,331 MWe). Six unites were commissioned in 2010; 2 units in China and India each and one unit in the Republic of Korea and Russia each. One unit, the Fast Breeder Pilot Reactor Monju in Japan, was connected to the grid after a long-term shutdown. One nuclear power plant, the Prototype Fast Breeder Reactor Phenix in France, was shut down permanently in 2010. 62 nuclear generating units, i.e. 9 plants more than at the end of 2009, were under construction in late 2010 in 15 countries with an aggregate gross power of approx. 63,998 MWe. Worldwide, some 90 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 120 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2010 achieved another reasonable ranking level of approx. 2,627.5 billion kWh (2009: approx. 2,558 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 63,100 billion kWh, and operating experience has grown to some 14,400 reactor years. (orig.)

  13. TEPCO plans to construct Higashidori Nuclear Power Station

    International Nuclear Information System (INIS)

    Tsuruta, Atsushi

    2008-01-01

    In 2006, TEPCO submitted to the government plans for the construction of Higashidori Nuclear Power Station. The application was filed 41 years after the project approved by the Higashidori Village Assembly. This nuclear power station will be the first new nuclear power plant constructed by TEPCO since the construction of Units No.6 and 7 at the Kashiwazaki Kariwa Nuclear Power Station 18 years ago. Higashidori Nuclear Power Station is to be constructed at a completely new site, which will become the fourth TEPCO nuclear power station. Higashidori Nuclear Power Station Unit No.1 will be TEPCO's 18th nuclear reactor. Unit No.1 will be an advanced boiling water reactor (ABWR), a reactor-type with a proven track record. It will be TEPCO's third ABWR. Alongside incorporating the latest technology, in Higashidori Nuclear Power Station Unit No.1, the most important requirement is for TEPCO to reflect in the new unit information and experience acquired from the operation of other reactors (information and experience acquired through the experience of operating TEPCO's 17 units at Fukushima Daiichi Nuclear Power Station, Fukushima Daini Nuclear Power Station and Kashiwazaki Kashiwa Nuclear Power Station in addition to information on non-conformities at nuclear power stations in Japan and around the world). Higashidori Nuclear Power Station is located in Higashidori-Village (Aomori Prefecture) and the selected site includes a rich natural environment. From an environmental perspective, we will implement the construction with due consideration for the land and sea environment, aiming to ensure that the plant can co-exist with its natural surroundings. The construction plans are currently being reviewed by the Nuclear and Industrial Safety Agency. We are committed to making progress in the project for the start of construction and subsequent commercial operation. (author)

  14. Survey of heat-pipe application under nuclear environment

    International Nuclear Information System (INIS)

    Tsuyuzaki, Noriyoshi; Saito, Takashi; Okamoto, Yoshizo; Hishida, Makoto; Negishi, Kanji.

    1986-11-01

    Heat pipes today are employed in a wide variety of special heat transfer applications including nuclear reactor. In this nuclear technology area in Japan, A headway speed of the heat pipe application technique is not so high because of safety confirmation and investigation under each developing step. Especially, the outline of space craft is a tendency to increase the size. Therefore, the power supply is also tendency to increase the outlet power and keep the long life. Under SP-100 project, the development of nuclear power supply system which power is 1400 - 1600 KW thermal and 100 KW electric power is steadily in progress. Many heat pipes are adopted for thermionic conversion and coolant system in order to construct more safety and light weight system for the project. This paper describes the survey of the heat pipe applications under the present and future condition for nuclear environment. (author)

  15. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  16. The application of manipulator robot for nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Fujita, Jun; Onishi, Ken

    2009-01-01

    In the maintenance works at nuclear power plant, robots are used because of high radiation, narrow space and underwater work. In light of manufacture period, cost and reliability, various maintenance works are requested to be done by one robot. As one of the solutions, we developed manipulator robots for the access of specialized tools. This study shows manipulator robots developed by MHI, application example to maintenance works and effectiveness of manipulator robots. When robotization of maintenance works are considered, manipulator technology is very effective solution means. The manipulator technologies in this study are able to apply to robotization needed under radiation environment. (author)

  17. Progress on development of nuclear power in Japan

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Since three Laws on the nuclear power were published 45 years has passed. Now, development on nuclear power in Japan is at an emergent state. In Japan, 51 units of commercial nuclear reactors with 44.917 GW are in operation, occupy about 37% of total electric power generation, and is positioned at an essential basic energy source supporting economical society in Japan. However, an accident occurred at Tokai Works of the JCO Co., Ltd., one of the uranium reconversion company, on September 30, 1999, was the first critical accident in Japan, and became the worst case in history on development of nuclear power in Japan, because of forming three heavy radiation disabled persons (One of them was dead) in its operators. This was a big crisis with relation to existence on development of nuclear power in Japan, by which anxiety and distrust of the Japanese against the nuclear power were amplified rapidly. On the other side, for Japan short in energy sources and of a big energy consumption, in order to intend for a long term to carry out energy security, global environmental conservation, and sustainable maintenance of essential growth, it remains to be one of important optional methods to further promote nuclear power generation and to establish nuclear fuel cycle. Here were described on progress on peaceful applications of nuclear power in Japan, progress on the field of nuclear power in Japan (from 1955 to 1999), progress on Tokai nuclear power station, introduction of nuclear power generation and effort on its domestic production. (G.K.)

  18. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  19. Technical management of difference in CEPR nuclear power project

    International Nuclear Information System (INIS)

    Guo Ruiting

    2014-01-01

    The Thesis dissertate the application of technical management of difference in CEPR Nuclear Power Project from EPR technical bases, condition of a nuclear power plant site, engineering and procurement, construction, quality management, schedule management and experience feedback aspects. (author)

  20. Nuclear power in Russia: status, problems, prospects

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoy, N.

    1992-01-01

    To solve the problem of atomic bomb, a powerful nuclear industrial complex has been established in the Soviet Union. This complex has developed a high scientific and engineering potential and enlisted the best science and engineering experts. Strict administration, rigid discipline in execution and operation, to secrecy limiting both internal and external interactions were typical of the complex which presented a state within the state with the inside divide by rigid barriers and protected from the outside by iron curtain. When the atomic bomb was designed and tested the search for a field of application for the nuclear potential available was started: nuclear power plants, nuclear power facilities for submarines and ships, nuclear aircraft and rocket engines, space nuclear facilities. Such were the conditions of forming the nuclear power in USSR. But this nuclear military complex has failed to prevent the Chelyabinsk accident which involved considerable radiological effects. The national industry could not adopt quickly the work style established in a nuclear complex and relative high technologies because of low educational and technical level and poor technological discipline. The results are known: the Chernobyl accident coincided in time with the beginning of the reconstruction of the System, the result of which was this accident. This paper describes the current status of the nuclear park, shows the problems of safety, maintenance, retrofitting, reconstruction or decommissioning. Statistical data on nuclear power in the power production program are also given

  1. Nuclear based diagnostics in high-power laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc; Sonnabend, Kerstin; Harres, Knut; Otten, Anke; Roth, Markus [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Vogt, Karsten; Bagnoud, Vincent [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2010-07-01

    High-power lasers allow focused intensities of >10{sup 18} W/cm{sup 2}. During the laser-solid interaction, an intense relativistic electron current is injected from the plasma into the target. One challenge is to characterize the electron dynamic close to the interaction region. Moreover, next generation high-power laser proton acceleration leads to high proton fluxes, which require novel, nuclear diagnostic techniques. We present an activation-based nuclear pyrometry for the investigation of electrons generated in relativistic laser-solid interactions. We use novel activation targets consisting of several isotopes with different photo-neutron disintegration thresholds. The electrons are decelerated inside the target via bremsstrahlung processes. The high-energy bremsstrahlung induces photo-nuclear reactions. In this energy range no disturbing low energy effects are important. Via the pyrometry the Reconstruction of the absolute yield, spectral and spatial distribution of the electrons is possible. For the characterization of proton beams we present a nuclear activation imaging spectroscopy (NAIS). The diagnostic is based on proton-neutron disintegration reactions of copper stacked in consecutive layers. An autoradiography of copper layers leads to spectrally and spatially reconstruction of the beam profile.

  2. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    ElBaradei, Mohamed

    2004-01-01

    The past two years have found the IAEA often in the spotlight - primarily because of our role as the world's 'nuclear watchdog', as we are sometimes referred to on the evening news. The most visible, and often controversial, peaceful nuclear application is the generation of electricity, the focus of this article largely from a European perspective. At the end of last year there were 440 nuclear power units operating worldwide. Together, they supply about 16% of the world's electricity. That percentage has remained relatively steady for almost 20 years. Expansion and growth prospects for nuclear power are centred in Asia. Of the 31 units under construction worldwide, 18 are located in India, Japan, South Korea and China, including Taiwan. Twenty of the last 29 reactors to be connected to the grid are also in the Far East and South Asia. That is probably more active construction than most Europeans would guess, given how little recent growth has occurred in the West. For Western Europe and North America, nuclear construction has been a frozen playing field - the last plant to be completed being Civaux-2 in France in 1999. That should raise a question: with little to no new construction, how has nuclear power been able to keep up with other energy sources, to maintain its share of electricity generation? Interestingly enough, the answer is tied directly to efforts to improve safety performance. The accident at Chernobyl in 1986 prompted the creation of the World Association of Nuclear Operators (WANO), and revolutionized the IAEA approach to nuclear power plant safety. Some analysts believe the case for new nuclear construction in Europe is gaining new ground, for a number of reasons: efforts to limit greenhouse gas emissions and reduce the risk of climate change; security of energy supply; Comparative Public Health Risk; different set of variables when choosing Each country's and region energy strategy. Looking to the future, certain key challenges are, of direct

  3. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  4. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  5. The safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Do nuclear power plants present an unjustifiable risk Can there be confidence in their safety The Uranium Institute invited a group of senior safety experts from eight different Western countries operating different types of reactors to provide an authoritative explanation for non-specialists of the basic principles of reactor safety, their application and their implications. The report presents the group's opinion on the level of safety achieved in the Western nuclear power plants with which the authors are directly familiar. Although many of the points made may well also be true for non-Western reactors, the report does not cover them except where specifically stated. It does describe and discuss the causes of the Chernobyl disaster. It does not compare nuclear power with other fuels, nor does it deal with its benefits, since however great the benefits from the peaceful use of nuclear power, and its own advantages over other fuels, they could not compensate for lack of safety. The conclusion reached is that the risk associated with electricity production at nuclear power plants can be kept very low. Proper use of the extensive knowledge available today can guarantee operation of nuclear power plants at very high safety levels, carrying very low risks, both to health and of contamination of the environment: risks that are continually lowered by upgrading existing plants and their operation, and by the design of future power plants. (author).

  6. Nuclear power newsletter Vol. 3, no. 2, June 2006

    International Nuclear Information System (INIS)

    2006-06-01

    The topics presented in this newsletter are: The 7th IAEA - FORATOM Joint Workshop on Successful Management of Organizational Change; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management system, infrastructure and training; International Project on Innovative Nuclear Reactors and Fuel Cycles; Technology developments and applications for advanced reactors

  7. Improvement of nuclear power plant monitor and control equipment. Computer application backfitting

    International Nuclear Information System (INIS)

    Hayakawa, H.; Kawamura, A.; Suto, O.; Kinoshita, Y.; Toda, Y.

    1985-01-01

    This paper describes the application of advanced computer technology to existing Japanese Boiling Water Reactor (BWR) nuclear power plants for backfitting. First we review the background of the backfitting and the objectives of backfitting. A feature of backfitting such as restrictions and constraints imposed by the existing equipment are discussed and how to overcome these restrictions by introduction of new technology such as highly efficient data transmission using multiplexing, and compact space saving computer systems are described. Role of the computer system in reliable NPS are described with a wide spectrum of TOSHIBA backfitting computer system application experiences. (author)

  8. Application of the weld in maintenance mechanics at the Nuclear Power Station Atucha I

    International Nuclear Information System (INIS)

    Cosentino, R.E.

    1988-01-01

    The application of the 'weld procedures', in the field of activity of nuclear power is an special chapter of weld. The so called 'Nuclear Installations' are actually under control from their contruction up to their life extension operation to special control programs and quality assurance. This situation obliges the implementation of procedures to assure the fulfilment of the programs for the need to make the reparations or mechanics construction. This paper describes the considerations that has been taken into account to repare some components of the plant. The works carried out constitute applications to the TIG weld procedure. The 'lip weld' is a mechanic component required in pressurized systems subject to air pressure. (Author)

  9. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  10. Nuclear Power in Space.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…

  11. WWER type reactors used as multipurpose nuclear power sources

    International Nuclear Information System (INIS)

    Fiala, J.; Mulak, J.

    1976-01-01

    Safety aspects are assessed of the siting of nuclear power installations in the vicinity of large housing estates and in areas with a high population density, mainly the aspect of the liquidation of the consequences of the maximum credible accident, i.e., the transversal rupture of the primary coolant circuit. The application of WWER type reactors as multipurpose nuclear power sources in Czechoslovakia is justified. It is shown that such a multipurpose nuclear power source differs from a purely condensation nuclear power plant mainly in the design of the secondary stage. The possibilities of such projects are indicated with a view to power and heat operation. (F.M.)

  12. Application of an estimation model to predict future transients at US nuclear power plants

    International Nuclear Information System (INIS)

    Hallbert, B.P.; Blackman, H.S.

    1987-01-01

    A model developed by R.A. Fisher was applied to a set of Licensee Event Reports (LERs) summarizing transient initiating events at US commercial nuclear power plants. The empirical Bayes model was examined to study the feasibility of estimating the number of categories of transients which have not yet occurred at nuclear power plants. An examination of the model's predictive ability using an existing sample of data provided support for use of the model to estimate future transients. The estimate indicates that an approximate fifteen percent increase in the number of categories of transient initiating events may be expected during the period 1983--1993, assuming a stable process of transients. Limitations of the model and other possible applications are discussed. 10 refs., 1 fig., 3 tabs

  13. A note on the application of probabilistic structural reliability methodology to nuclear power plants

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1978-01-01

    The interest shown in the general prospects of primary energy in European countries prompted description of the actual European situation. Explanation of the needs for installation of nuclear power plants in most contries of the European Communities are given. Activities of the Commission of the European Communities to initiate a progressive harmonization of already existing European criteria, codes and complementary requirements in order to improve the structural reliability of components and systems of nuclear power plants are summarized. Finally, the applicability of a probabilistic safety analysis to facilitate decision-making as to safety by defining acceptable target and limit values, coupled with a subjective estimate as it is applied in the safety analyses performed in most European countries, is demonstrated. (Auth.)

  14. 77 FR 34093 - License Renewal for Calvert Cliffs Nuclear Power Plant, LLC's

    Science.gov (United States)

    2012-06-08

    ... Nuclear Power Plant, LLC's AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... Spent Fuel Storage Installation (ISFSI) at the Calvert Cliffs Nuclear Power Plant site near Lusby... Cliffs Nuclear Power Plant, LLC (CCNPP) submitted an application to the NRC to renew NRC License SNM-2505...

  15. Power conversion for a microreactor: a nuclear space application

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine N.F.; Camillo, Giannino P.; Nascimento, Jamil A.; Borges, Eduardo M.; Placco, Guilherme M.

    2009-01-01

    Generating nuclear power in space is of fundamental importance if it is desired to realize some aggressive type of exploration. Basically, at Earth orbit (either LEO or GEO) most applications tend to use solar panels, which are just fine, in spite of problems such as vibration, non optimal light incidence angle and non electricity generation due to Earth's shadow. For deep space exploration the nuclear power is been considered as a strong candidate and maybe the only one. The Institute for Advanced Studies is conducting the TERRA project that tracks the developments in the area and, also, intends to develop the key technologies that will allow such a machine to be build with indigenous technology. TERRA stands for TEcnologia de Reatores Rapidos Avancados. This project, at its first stage aims at the specification of the microreactor fuel element with its possible geometrical arrangements. Also for this stage a gas Brayton closed cycle is being considered as a heat conversion to electricity and/or propulsion effect. The basic idea is to adapt an open loop aeronautic gas turbine to operate as a closed loop gas Turbine. This arrangement will use heat pipes as a cold source, or a heat rejection passive system. Up to this point a lot has been done in terms of numerical and graphical development. It is expected that some built up will be happening during this year. An account of this work will be presented at the conference. (author)

  16. Conference/debate on nuclear power. Press file

    International Nuclear Information System (INIS)

    1998-01-01

    This press dossier presents in a digest way the advantages of nuclear power with respect to other energy sources. After a presentation of the worldwide energy resources (electric power demand, fossil-fuel reserves, renewable energies, environmental constraints), the dossier describes the functioning principle of a PWR reactor as a presentation of the French nuclear program (historical aspects, policy, organization of activities, trade, EPR project). In the last part, the sociological aspects of nuclear power are approached: environmental aspects (natural radioactivity, reactors safety, radioactive wastes, environment protection, carbon dioxide and energy production), and public health aspects (principles of radioactivity, dose effects, industrial and scientific applications of radionuclides, nuclear controversy, reactor accidents, legal aspects of radioprotection, safety standards and controls). (J.S.)

  17. Crucial role for nuclear power

    International Nuclear Information System (INIS)

    Dastidar, P.R.

    1980-01-01

    Generation of electricity by a nuclear reactor is explained. After taking a survey of the hydro-electric potential and coal deposits of India and considering their limitations, the need for nuclear power becomes evident. It is also economically competitive. The strategy for nuclear power development in India is to use natural uranium fuel based heavy water moderated thermal reactors to produce plutonium-239 and to use thorium based fast breeder reactors to breed plutonium-239 and uranium-233, and in turn these radioisotopes will be used to fuel FBR type reactors. This strategy maximises the energy obtainable from natural uranium by a factor of 400. The present state of nuclear power generation in India and the research programmes of the FBR type reactor are outlined. Other benefits from nuclear energy research are mentioned. Some of them are leak detection techniques, radiosterilisation and plant breeding by radiation mutation. The spin-off of the Indian atomic energy programme are : development of radiation detection instruments and other sophisticated electronic instruments, development of methods of preparation of ultra-pure materials, fabrication of components such as seamless tubes, non-destructive testing methods, and reliability evaluation techniques. Other applications of nuclear energy are mentioned. (M.G.B.)

  18. Nuclear power newsletter Vol. 1, no. 2

    International Nuclear Information System (INIS)

    2004-12-01

    The newsletter provides information on: Nuclear Power Plant Operating Performance and Life Cycle Management; Improving Human Performance, Quality and Technical Infrastructure Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors

  19. Power systems with nuclear-electric generators - Modelling methods

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin

    2002-01-01

    This is a vast analysis on the issue of sustainable nuclear power development with direct conclusions regarding the Nuclear Programme of Romania. The work is targeting specialists and decision making boards. Specific to the nuclear power development is its public implication, the public being most often misinformed by non-professional media. The following problems are debated thoroughly: - safety, nuclear risk, respectively, is treated in chapter 1 and 7 aiming at highlighting the quality of nuclear power and consequently paving the way to public acceptance; - the environment considered both as resource of raw materials and medium essential for life continuation, which should be appropriately protected to ensure healthy and sustainable development of human society; its analysis is also presented in chapter 1 and 7, where the problem of safe management of radioactive waste is addressed too; - investigation methods based on information science of nuclear systems, applied in carrying out the nuclear strategy and planning are widely analyzed in the chapter 2, 3 and 6; - optimizing the processes by following up the structure of investment and operation costs, and, generally, the management of nuclear units is treated in the chapter 5 and 7; - nuclear weapon proliferation as a possible consequence of nuclear power generation is treated as a legal issue. The development of Romanian NPP at Cernavoda, practically, the core of the National Nuclear Programme, is described in chapter 8. Actually, the originality of the present work consists in the selection and adaptation from a multitude of mathematical models applicable to the local and specific conditions of nuclear power plant at Cernavoda. The Romanian economy development and power development oriented towards reduction of fossil fuel consumption and protection of environment, most reliably ensured by the nuclear power, is discussed in the frame of the world trends of the energy production. Various scenarios are

  20. Nuclear power planning study for Saudi Arabia

    International Nuclear Information System (INIS)

    Kutbi, I.I.; Matin, Abdul.

    1984-05-01

    The prospects of application of nuclear energy for production of electricity and desalinated water in the Kingdom are evaluated. General economic development of the country and data on reserves, production and consumption of oil and natural gas are reviewed. Electrical power system is described with data on production and consumption. Estimates of future power demand are made using Aoki method. Costs of production of electricity from 600 MW, 900 MW and 1200 MW nuclear and oil-fired power plants are calculated along with the costs of production of desalinated water from dual purpose nuclear and oil-fired plants. The economic analysis indicates that the cost of production of electricity and desalinated water are in general cheaper from the nuclear power plants. Suggests consideration of the use of nuclear energy for production of both electricity and desalinated water from 1415 H. Further detailed studies and prepartory organizational steps in this direction are outlined. 38 Ref

  1. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  2. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  3. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Pack, R.W.

    1978-01-01

    The Electric Power Research Institute has started research in human factors in nuclear power plants. One project, completed in March 1977, reviewed human factors problems in operating power plants and produced a report evaluating those problems. A second project developed computer programs for evaluating operator performance on training simulators. A third project is developing and evaluating control-room design approaches. A fourth project is reviewing human factors problems associated with power-plant maintainability and instrumentation and control technician activities. Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The Electric Power Research Institute (EPRI) has undertaken four projects studying the application of human factors engineering principles to nuclear power plants. (author)

  4. Nuclear power: benefits for the future

    International Nuclear Information System (INIS)

    Vultur, G.; Vultur, C.

    2000-01-01

    This paper explains how nuclear power was implemented in Romania, why Romania chose nuclear energy, and what the impact of building a power plant is on the industry and environment of Romania. In the 1960's, Romania started discussions with different partners to cooperate in the development and application of atomic energy for a peaceful purpose. In 1977, the Romanian Government decided that the Candu-600 would be the basic unit for its nuclear program. The contract between Romania and Canada was for 5 units. In 1979, the construction of the first Candu unit started in Cernavoda, on the Danube 160 km east of Bucharest. (authors)

  5. Application of robotic systems to nuclear power plant maintenance tasks

    International Nuclear Information System (INIS)

    Kok, K.D.; Bartilson, B.M.; Rosen, K.L.; Renner, G.F.; Law, T.M.

    1984-01-01

    Robotics technology has developed to where it can provide consistent performance of well-defined tasks. Although nuclear power plant maintenance tasks are characteristically unique, there are some common subtasks which have the consistency required for robots. Several maintenance activities were selected for further study. Concepts for robotic devices and rough scenarios for their use were developed and analyzed for their effect on maintenance costs. The results of the analysis, which was performed using a 10-year life and conservative estimates and procedures, indicate cost savings ranging from $100,000 to $1.5 M in net present value per robot. Projected purchase prices for the robots were less than $200,000. Although the robot concepts used commercially available technology, they are unlike any products either in use or widely required. Robot manufacturers are concentrating on mainstream applications in production, and are unlikely to develop such specialized products. The potential for cost savings indicates that developments should be funded by the nuclear industry

  6. Fuzzy logic and artificial neural networks for nuclear power plant applications

    International Nuclear Information System (INIS)

    Berkan, R.C.; Eryurek, E.; Upadhyaya, B.R.

    1992-01-01

    This paper discusses the feasibility of applying fuzzy logic and neural networks to plant-wide monitoring, diagnostics, and control problems. Different data sets are gathered from several sources including two commercial Pressurized Water Reactors (PWR), the Experimental Breeder Reactor-II (EBR-II), and the conceptual design of Modular Liquid-Metal Reactor (PRISM). These data sets are used to illustrate applications to operating processes, and to PRISM design. The results show that the artificial intelligence approach to a number of operational tasks can considerably improve the safety and availability of nuclear power generation

  7. Appliance of software engineering in development of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Y. W.; Kim, H. C.; Yun, C. [Chungnam National Univ., Taejon (Korea, Republic of); Kim, B. R. [KINS, Taejon (Korea, Republic of)

    1999-10-01

    Application of computer technology in nuclear power plant is also a necessary transformation as in other industry fields. But until now, application of software technology was not wide-spread because of its potential effect to safety in nuclear field. It is an urgent theme to develop evaluation guide and regulation techniques to guarantee safety, reliability and quality assurance. To meet these changes, techniques for development and operation should be enhanced to ensure the quality of software systems. In this study, we show the difference between waterfall model and software life-cycle needed in development of nuclear power plant and propose the consistent framework needed in development of instrumentation and control system of nuclear power plant.

  8. Appliance of software engineering in development of nuclear power plant

    International Nuclear Information System (INIS)

    Baek, Y. W.; Kim, H. C.; Yun, C.; Kim, B. R.

    1999-01-01

    Application of computer technology in nuclear power plant is also a necessary transformation as in other industry fields. But until now, application of software technology was not wide-spread because of its potential effect to safety in nuclear field. It is an urgent theme to develop evaluation guide and regulation techniques to guarantee safety, reliability and quality assurance. To meet these changes, techniques for development and operation should be enhanced to ensure the quality of software systems. In this study, we show the difference between waterfall model and software life-cycle needed in development of nuclear power plant and propose the consistent framework needed in development of instrumentation and control system of nuclear power plant

  9. Ion exchange in the nuclear power industry

    International Nuclear Information System (INIS)

    Lehto, J.

    1993-01-01

    Ion exchangers are used in many fields in the nuclear power industry. At nuclear power plants, organic ion exchange resins are mainly used for the removal of ionic and particulate contaminants from the primary circuit, condensate and fuel storage pond waters. Ion exchange resins are used for the solidification of low- and medium-active nuclear waste solutions. The number of applications of zeolites, and other inorganic ion exchangers, in the separation of radionuclides from nuclear waste solutions has been increasing since the 1980s. In nuclear fuel reprocessing plants, ion exchange is used for the solidification of low- and medium-active waste solutions, as well as for the partitioning of radioactive elements for further use. (Author)

  10. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  11. A nuclear power plant system engineering workstation

    International Nuclear Information System (INIS)

    Mason, J.H.; Crosby, J.W.

    1989-01-01

    System engineers offer an approach for effective technical support for operation and maintenance of nuclear power plants. System engineer groups are being set up by most utilities in the United States. Institute of Nuclear Power operations (INPO) and U.S. Nuclear Regulatory Commission (NRC) have endorsed the concept. The INPO Good Practice and a survey of system engineer programs in the southeastern United States provide descriptions of system engineering programs. The purpose of this paper is to describe a process for developing a design for a department-level information network of workstations for system engineering groups. The process includes the following: (1) application of a formal information engineering methodology, (2) analysis of system engineer functions and activities; (3) use of Electric Power Research Institute (EPRI) Plant Information Network (PIN) data; (4) application of the Information Engineering Workbench. The resulting design for this system engineer workstation can provide a reference for design of plant-specific systems

  12. Small and medium-sized nuclear power plants

    International Nuclear Information System (INIS)

    Schmidt, R.

    1986-01-01

    Small and medium-sized nuclear power plants have long been under discussion as possible applications of nuclear power in countries with small transmission grid systems, in threshold countries and developing countries, and under special local supply conditions. IAEA has condensed and promoted this interest and tried to establish the demand, and possibilities of meeting it, in special events and campaigns. In recent years, considerable interest was registered even in industrialized countries, but here specially for heating and process heat generation applications and for special purposes and, in medium-sized units, also for combined supplies of electricity and heat. This corresponds to special reactor and plant concepts, some of which have already been developed to a stage at which construction work could begin. The analysis presented deals with necessary preconditions on the sides of the users and the vendors, with problems of economy, infrastructure and financing and with the market prospects of small nuclear power plants. (orig./HP) [de

  13. Application of the minicomputer at Genkai Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, H [Kyushu Electric Power Co., Inc., Fukuoka (Japan)

    1977-03-01

    Genkai Nuclear Power Station introduced a minicomputer system for the data control purpose in addition to a process control computer introduced in the same manner as other PWR nuclear power stations. This system employs two computers; the one for on-line data aquisition, and another for data processing. The control system introduced includes four systems amoung various data control businesses in the nuclear power station. The language used is mainly an assembler language. The first is the meteorological control system which collects, edits and transmits the weather data sent from the observation instruments around the power station. The second is the personal radiation exposure control system which is designed to realize the labor-saving in book-keeping, the speed-up and the improvement of accuracy in the preparation of the reports to the authorities and the head office and the data for exposure control, and the unification of data processing. The third is the waste control system composed of three subsystems of gas, liquid and solid waste control. The fourth is the maintenance and repair control system which gives inputs to the computer according to the classification written in the slips for maintenance and repair, and prepares a number of statistical tables for maintenance control.

  14. Use of expert systems in nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs

  15. Nuclear power world report 2013

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year's number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units - 2 more than at the end of 2012 - were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. (orig.)

  16. Nuclear power world report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-07-15

    At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year's number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units - 2 more than at the end of 2012 - were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. (orig.)

  17. Nuclear power newsletter Vol. 2, no. 1

    International Nuclear Information System (INIS)

    2005-03-01

    This newsletter presents information on the following topics: 7th meeting of the INPRO Steering Committee; Nuclear Power Plant Operating Performance and Life Cycle Management; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; 1st European Nuclear Assembly

  18. Proceedings of the 9. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santoso; Lasman, As Natio

    2003-08-01

    The ninth proceedings of seminar safety and technology of nuclear power plant and nuclear facilities held by National Nuclear Energy Agency and PLN-JTK. The aims of seminar is to exchange and disseminate information about Safety and Nuclear Power Plant Technology and Nuclear Facilities consist of Technology High Temperature Reactor and Application for National Development Sustainable and High Technology. This seminar cover all aspects Technology, Power Reactor, Research Reactor High Temperature Reactor and Nuclear Facilities. There are 20 articles have separated index

  19. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  20. Applications of modern control systems in nuclear power plants

    International Nuclear Information System (INIS)

    Wilhelm, H.

    1980-01-01

    A new generation of automation and control systems are currently becoming commercially available in the power plant market which, because of their incorporation of microprocessors and bus data transmission systems, represent a major step forward in innovation. The application of these systems meets today's requirements and solutions, for the number of measurements to be performed has increased five or sixfold in the past few years, and the number of drive systems to be controlled has doubled or even tripled. Requirements to be met by process management systems have become vastly more complicated: peak load operation, short startup times, improved communication, and rising safety and reliability requirements, especially in nuclear power plants. Control concepts have been developed for the area relevant to reactor safety and for the whole of the plant, which make full use of the possibilities offered by plant systems. More stringent demands must be met especially in the areas of handling, communication, testing capability, improved function, and flexibility and modular design in the safety sector. (orig.) [de

  1. Information Technology for Nuclear Power Plant Configuration Management

    International Nuclear Information System (INIS)

    2010-07-01

    Configuration management (CM) is an essential component of nuclear power plant design, construction and operation. The application of information technology (IT) offers a method to automate and ensure the timely and effective capture, processing and distribution of key nuclear power plant information to support CM principles and practical processes and procedures for implementation of CM at nuclear power plants. This publication reviews some of the principles established in IAEA-TECDOC-1335, 'Configuration Management in Nuclear Power Plants.' It also recaps tenets laid out in IAEA- TECDOC-1284, 'Information Technology Impact on Nuclear Power Plant Documentation' that supports CM programmes. This publication has been developed in conjunction with and designed to support these other two publications. These three publications combined provide a comprehensive discussion on configuration management, information technology and the relationship between them. An extensive discussion is also provided in this publication on the role of the design basis of the facility and its control through the CM process throughout the facility's lifetime. While this report was developed specifically for nuclear power plants, the principles discussed can be usefully applied to any high hazard nuclear facility

  2. Man--machine interface issues for space nuclear power systems

    International Nuclear Information System (INIS)

    Nelson, W.R.; Haugset, K.

    1991-01-01

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man--machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented

  3. The japan a nuclear power?

    International Nuclear Information System (INIS)

    Cumin, D.; Joubert, J.P.

    2003-01-01

    This work analyzes the Japan nuclear policy, in the frame of its foreign and safety policy in Pacific Asia, since the end of the cold war, especially the relations with the Usa and China. The Japan is a civil power because it has submitted the military institution to juridical restrictions and because it does not rely on the armed force to promote its national interests. The anti nuclear speech is joined with the acknowledgement of the dissuasion necessity, of the control of industrial processes and energy channels susceptible of military applications. Cultivating the ambiguity, the Japanese government can send a dissuasive message, perfectly legible, kind of communication of latent intimidation constituted by the virtual nuclear power of a state that takes part to the non proliferation treaty. (N.C.)

  4. Improvement of nuclear power plants within the perspective of applications of lean manufacturing practices

    Science.gov (United States)

    Malek, A. K.; Muhammad, H. I.; Rosmaini, A.; Alaa, A. S.; Falah, A. M.

    2017-09-01

    Development and improvement process are essential to the companies and factories of various kinds and this necessity is related aspects of cost, time and risk that can be avoided, these aspects are available at the nuclear power stations essential demands cannot be ignored. The lean management technique is one of the recent trends in the management system. Where the lean management is stated as the system increases the customer value and reduces the wastage process in an industry or in a power plants. Therefore, there is an urgent necessity to ensure the development and improvement in nuclear power plants in the pre-established in process of being established and stage of the management and production. All of these stages according to the study are closely related to the necessity operationalize and apply lean manufacturing practices that these applications are ineffective and clear contribution to reduce costs and control of production processes and the process of reducing future risks that could be exposed to the station.

  5. Nuclear power in societal flux. The renewal of nuclear power in Finland in the context of global concern over energy security

    International Nuclear Information System (INIS)

    Litmanen, Tapio

    2010-01-01

    This paper will address nuclear power's relationship with societal flux. The history of nuclear power indicates that this type of technology is unusually to societal flux. Instability in nuclear power's societal status is created by the ambiguous nature of the technology itself, changing public opinion, the fluidity of political judgments, the flow of cultural meanings attaching to nuclear power and the unpredictability of media processing. Even though the risks of nuclear technology are highly regulated by the companies themselves and by the state and public administration, it remains capable of inflaming political debate and igniting controversy. One public opinion survey after another reveals how divisive nuclear power is. Unlike most other industrial activities nuclear power decision-making involves extraordinary levels of political consideration, societal processing and cultural valuation by stakeholders and the media. In order to illustrate the idea of societal flux, the paper will deal with major shifts in Finnish nuclear power policy since the 1950s, focusing particularly, however, on changes between 1986-2010. The recent changes in the country's nuclear power policy prove interesting having proceeded from a phase of rejection during the period 1986-1993, to a revival between 1994-2002 and renewal between 2002-2009. The rejection period ended in 1993 during which time the Parliament of Finland had rejected the further construction of nuclear power plants in the wake of the Chernobyl accident. In less than a decade, however, nuclear power policy changed. The revival period ended in 2001 as Parliament ratified a Decision in Principle for the final disposal of spent nuclear fuel and in 2002 for the construction of a new nuclear power plant unit, Olkiluoto 3. Characteristic of the ongoing renewal period is that in 2008-2009 the nuclear industry submitted three further applications for the construction of new NPP units. Thus Finland today has acquired a

  6. Reliability of dc power supplies in nuclear power plant application

    International Nuclear Information System (INIS)

    Eisenhut, D.G.

    1978-01-01

    In June 1977 the reliability of dc power supplies at nuclear power facilities was questioned. It was postulated that a sudden gross failure of the redundant dc power supplies might occur during normal plant operation, and that this could lead to insufficient shutdown cooling of the reactor core. It was further suggested that this potential for insufficient cooling is great enough to warrant consideration of prompt remedies. The work described herein was part of the NRC staff's efforts aimed towards putting the performance of dc power supplies in proper perspective and was mainly directed towards the particular concern raised at that time. While the staff did not attempt to perform a systematic study of overall dc power supply reliability including all possible failure modes for such supplies, the work summarized herein describes how a probabilistic approach was used to supplement our more usual deterministic approach to reactor safety. Our evaluation concluded that the likelihood of dc power supply failures leading to insufficient shutdown cooling of the reactor core is sufficiently small as to not require any immediate action

  7. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  8. The Philippine nuclear power project, its past, present and future

    International Nuclear Information System (INIS)

    Jovellanos, J.U.

    1993-01-01

    The article discussed the historical background of the nuclear power plants; how it operates; the government opinion on the operation of the nuclear power plant; the application of power resources to industry; the implementation of PNPP-1 particularly the economic aspects of energy in the near future. (IMA)

  9. Studies on environment safety and application of advanced reactor for inland nuclear power plants

    International Nuclear Information System (INIS)

    Wei, L.; Jie, L.

    2014-01-01

    To study environment safety assessment of inland nuclear power plants (NPPs), the impact of environment safety under the normal operation was researched and the environment risk of serious accidents was analyzed. Moreover, the requirements and relevant provisions of site selection between international nuclear power plant and China's are comparatively studied. The conclusion was that the environment safety assessment of inland and coastal nuclear power plant have no essential difference; the advanced reactor can meet with high criteria of environment safety of inland nuclear power plants. In this way, China is safe and feasible to develop inland nuclear power plant. China's inland nuclear power plants will be as big market for advanced reactor. (author)

  10. Preliminary regulatory assessment of nuclear power plants vulnerabilities

    International Nuclear Information System (INIS)

    Kostadinov, V.; Petelin, S.

    2004-01-01

    Preliminary attempts to develop models for nuclear regulatory vulnerability assessment of nuclear power plants are presented. Development of the philosophy and computer tools could be new and important insight for management of nuclear operators and nuclear regulatory bodies who face difficult questions about how to assess the vulnerability of nuclear power plants and other nuclear facilities to external and internal threats. In the situation where different and hidden threat sources are dispersed throughout the world, the assessment of security and safe operation of nuclear power plants is very important. Capability to evaluate plant vulnerability to different kinds of threats, like human and natural occurrences and terrorist attacks and preparation of emergency response plans and estimation of costs are of vital importance for assurance of national security. On the basis of such vital insights, nuclear operators and nuclear regulatory bodies could plan and optimise changes in oversight procedures, organisations, equipment, hardware and software to reduce risks taking into account security and safety of nuclear power plants operation, budget, manpower, and other limitations. Initial qualitative estimations of adapted assessments for nuclear applications are shortly presented. (author)

  11. Nuclear power: Questions and answers

    International Nuclear Information System (INIS)

    1988-01-01

    In 1988, the Uranium Institute, a London-based international association of industrial enterprises in the nuclear industry, published a report entitled The Safety of Nuclear Power Plants. Based on an assessment by an international group of senior nuclear experts from eight countries, the report provides an authoritative explanation, for non-specialists of the basic principles of reactor safety, their application, and their implications. Some questions and answers are selected from that report; they address only a few of the subjects that the report itself examines in greater detail

  12. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  13. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  14. Nuclear power systems for Lunar and Mars exploration

    International Nuclear Information System (INIS)

    Sovie, R.J.; Bozek, J.M.

    1994-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications

  15. Climate Change and Nuclear Power 2015

    International Nuclear Information System (INIS)

    2015-09-01

    substantially revised relative to the 2014 report. Most sections have been completely rewritten to account for new scientific information, new analyses, and technical reports and other publications that have become available in 2015. Sections addressing issues on which the available information has not substantially changed over the past year have been omitted and will be updated if necessary in future editions. Short summaries of these sections are provided in the Appendix. Interested readers are referred to the 2013 and 2014 editions for more detailed information on nuclear energy applications beyond the power sector, the thorium option, fast reactors, fusion, competition with shale gas, new developments in small modular reactors and the implications of lifetime extensions. New sections explore emerging issues that will affect the relationship between climate change and nuclear power in the coming decades

  16. Climate Change and Nuclear Power 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-10-15

    energy markets and technological developments are also presented. This edition has been substantially amended since the 2013 report. Most sections have been completely revised on the basis of new scientific information, new analyses, and technical reports and other publications that have become available in 2014. Sections on topics where the available information has not substantially changed within the past year have been omitted and will be updated if necessary in future editions. Short summaries of these sections are provided in the Appendix, but interested readers are referred to the 2013 edition for information on nuclear energy applications beyond the power sector, the thorium option, fast reactors and fusion. New sections explore emerging issues that will affect the relationship between climate change and nuclear power in the coming decades.

  17. Climate Change and Nuclear Power 2016

    International Nuclear Information System (INIS)

    2016-09-01

    . This edition substantially revises the 2015 edition. Most sections have been completely rewritten to account for new scientific information, analyses, technical reports and other publications that have become available since the last edition. Sections addressing issues on which the available information has not substantially changed over the past year have been omitted and are summarized in the Appendix. Interested readers are referred to the 2013, 2014 and 2015 editions for more detailed information on the impact of climate change on nuclear power, smart grids, nuclear energy applications beyond the power sector, the thorium option, fast reactors, fusion, competition with shale gas, new developments in small modular reactors and the implications of lifetime extensions

  18. Climate Change and Nuclear Power 2014

    International Nuclear Information System (INIS)

    2014-10-01

    energy markets and technological developments are also presented. This edition has been substantially amended since the 2013 report. Most sections have been completely revised on the basis of new scientific information, new analyses, and technical reports and other publications that have become available in 2014. Sections on topics where the available information has not substantially changed within the past year have been omitted and will be updated if necessary in future editions. Short summaries of these sections are provided in the Appendix, but interested readers are referred to the 2013 edition for information on nuclear energy applications beyond the power sector, the thorium option, fast reactors and fusion. New sections explore emerging issues that will affect the relationship between climate change and nuclear power in the coming decades

  19. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  20. Review of nuclear power plant systems

    International Nuclear Information System (INIS)

    Doehler

    1980-01-01

    This presentation starts with a brief description of the Technischer Ueberwachungs-Verein (TUeV) and its main activities in the field of technical assessments. The TUeV-organisation is in general the assessor who performs the review if nuclear power plant systems, structures and equipment. All aspects relating to the safe operation of nuclear power plants are assessed by the TUeV. This paper stresses the review of the design of nuclear power plant systems and structures. It gives an outline on the procedure of an assessment, starting with the regulatory requirements, going into the papers of the applicant and finally ending with the TUeV-appraisal. This procedure is shown using settlement measuring requirements as an example. The review of the design of mechanical structures such as pipes, valves, pump and vessels is shown in detail. (RW)

  1. Europe takes lead in nuclear power

    International Nuclear Information System (INIS)

    Starr, B.

    1985-01-01

    Nuclear power has helped the Common Market countries reduce their dependence on imported oil from 62% of energy consumption in 1973 to 32% in 1983. The European Community now has 95 reactors providing 52 gigawatts, and has plans for 128 reactors with a capacity of 98 gigawatts within the next five years. European utilities are avoiding the financial and regulatory agonies that haunt nuclear power in the US. This is partly due to the coordination of nuclear power policy on a national level, which helps to keep regulatory delays and costs under control. Cost recovery for new plants is faster, making a better economic environment. Recommendations to the US industry are to spread the risks by using joint ventures and sharing risks with suppliers. The federal government should approve standard design and approve sites in advance of applications for construction

  2. GIS Application in Atucha I Nuclear Power Plant Exercise Argentina, 2007

    International Nuclear Information System (INIS)

    Sadaniowski, I.V.; Telleria, D.M.; Jordan, O.D.; Boutet, L.I.; Kunst, J.J.; Bruno, H.A.; Hernandez, D.G.; Rodriguez, M.; Cateriano, M.A.; Rey, H.L.

    2011-01-01

    Geographic Information Systems (GIS) are tools applied to assist in the assessment and solution of many geographical related issues. Recently, their applications have been extended to the areas of disasters and environmental emergencies. GIS not only could be used as a diagnostic tool. Combined with adequate information and other tools capable to predict the transfer of pollutants in the environment and the associated impacts to the public, GIS could be used to support emergency planning and response. The Nuclear Regulatory Authority (NRA) of Argentina has incorporated in 2003 the GIS technology like an innovative resource for its preparation and response activities in emergencies. For this, the NRA acquired the necessary technology (hardware and software) and the technical specialist who were joined to expert's team in the nuclear and radiological emergencies field. The GIS stays operative as support tool in the Emergencies Control Center of NRA. In this paper, the use of GIS as a tool for analysis and advice is presented. The GIS is being used for preparation and development of nuclear emergencies trials and exercises, carried out on-site and off-site at the Nuclear Power Plant Atucha I Buenos Aires, Argentina, in cooperation with civil defense, national and state security and army forces and intensive public involvement. The databases were conformed with information from different sources, including the result of interviews to different actors, as well as other local and national government agencies and forces. Also, educational institutions, local medical centers, etc., were consulted. The information was enriched with outings to field in the surroundings of nuclear power plant. The scope and the detail of the information for this exercise covers 30 kilometers surroundings the nuclear power plant, with a range of significantly different geographical and population conditions. When loading the information in the GIS, a classification scheme is applied and

  3. GIS application in Atucha I nuclear power plant exercise Argentina, 2007

    International Nuclear Information System (INIS)

    Sadaniowski, Ivana; Jordan, Osvaldo; Boutet, Luis; Kunst, Juan; Bruno, Hector; Hernandez, Daniel; Rodriguez, Monica; Cateriano, Miguel; Rey, Hugo; Telleria, Diego

    2008-01-01

    Full text: Geographic Information Systems (GIS) are tools applied to assist in the assessment and solution of many geographical related issues. Recently, their applications have been extended to the areas of disasters and environmental emergencies. GIS not only could be used as a diagnostic tool. Combined with adequate information and other tools capable to predict the transfer of pollutants in the environment and the associated impacts to the public, GIS could be used to support emergency planning and response. The Nuclear Regulatory Authority (NRA) of Argentina has incorporated in 2003 the GIS technology like an innovative resource for its preparation and response activities in emergencies. For this, the NRA acquired the necessary technology (hardware and software) and the technical specialist who were joined to expert's team in the nuclear and radiological emergencies field. The GIS stays operative as support tool in the Emergencies Control Center of NRA. In this paper, the use of GIS as a tool for analysis and advice is presented. The GIS is being used for preparation and development of nuclear emergencies trials and exercises, carried out on-site and off-site at the Nuclear Power Plant Atucha I Buenos Aires, Argentina, in cooperation with civil defense, national and state security and army forces and intensive public involvement. The databases were conformed with information from different sources, including the result of interviews to different actors, as well as other local and national government agencies and forces. Also, educational institutions, local medical centers, etc., were consulted. The information was enriched with outings to field in the surroundings of nuclear power plant. The scope and the detail of the information for this exercise covers 30 kilometers surroundings the nuclear power plant, with a range of significantly different geographical and population conditions. When loading the information in the GIS, a classification scheme is applied

  4. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  5. Status of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Laue, H.J.

    1982-01-01

    In the context of the world-wide energy situation and the key position energy plays and will play for the economic and social development of any country, the energy demand situation up to the year 2000 is analysed. As a result, the world-wide energy demand will continue to increase, however, mainly in the developing world. Nuclear power is one of the important component in the energy mix of today and in the future. Status of nuclear power application in developing countries up to the end of the century. Any further growth of the peaceful use of nuclear power in developing countries is closely linked with the following requirements: - qualified manpower, - industrial infrastructure, - energy demand and supply assessments, - high investments, - assurance of supply of nuclear fuel and fuel cycle services, - availability of small and medium power reactors. The possible role of the IAEA in developing countries and international measures to remove some of the limitations for the peaceful use of nuclear energy in developing countries are discussed. (orig.)

  6. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  7. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  8. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  9. Micro-structured nuclear fuel and novel nuclear reactor concepts for advanced power production

    International Nuclear Information System (INIS)

    Popa-Simil, Liviu

    2008-01-01

    Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages - possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools. (author)

  10. Recent control and instrumentation systems for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Fujii, Hiroaki; Higashikawa, Yuichi; Sato, Hideyuki

    1990-01-01

    For the needs of the more stable operation of nuclear power stations, the upgrading of the measurement and control system for BWRs has been promoted by positively introducing remarkably advancing electronic technology. Further, it is aimed at to construct the synthetic digitized measurement and control system for nuclear power stations to heighten the operation reliability in ABWRs. As the first step of the development in the synthetic digitization, the monitoring and control system for radioactive waste treatment was put in practical use for No.5 plant of Kashiwazaki, Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. Hitachi Ltd. has promoted the development and the application to actual plants of the measurement and control system for BWRs, in which digital control technology, optical information transmission technology and the operation-supporting technology using a computer were utilized. Hereafter, it is intended to expand the application of digital measurement and control aiming at improving the reliability, operation performance and maintainability. The nuclear power plant control complex with advanced man-machine interface-90 (NUCAMM-90) was developed, and its application to actual plants is planned. (K.I.)

  11. Quality assurance organization for nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    This Safety Guide provides requirements, recommendations and illustrative examples for structuring, staffing and documenting the organizations that perform activities affecting quality of a nuclear power plant. It also provides guidance on control of organization interfaces, and establishment of lines for direction, communication and co-ordination. The provisions of this Guide are applicable to all organizations participating in any of the constituent areas of activities affecting quality of a nuclear power plant, such as design, manufacture, construction, commissioning and operation

  12. Very small HTGR nuclear power plant concepts for special terrestrial applications

    International Nuclear Information System (INIS)

    McDonald, C.F.; Goodjohn, A.J.

    1983-01-01

    The role of the very small nuclear power plant, of a few megawatts capacity, is perceived to be for special applications where an energy source as required but the following prevail: 1) no indigenous fossil fuel source, in long transport distances that add substantially to the cost of oil, coal in gas, and 3) secure long-term power production for defense applications with freedom from fuel supply lines. A small High Temperature Gas-Cooled reactor (HTGR) plant could provide the total energy needs for 1) a military installation, 2) an island base of strategic significance, 3) an industrial community or 4) an urban area. The small HTGR is regarded as a fixed-base installation (as opposed to a mobile system). All of the major components would be factory fabricated and transported to the site where emphasis would be placed on minimizing the construction time. The very small HTGR plant, currently in an early stage of design definition, has the potential for meeting the unique needs of the small energy user in both the military and private sectors. The plant may find acceptance for specialized applications in the industrialized nations and to meet the energy needs of developing nations. Emphasis in the design has been placed on safety, simplicity and compactness

  13. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  14. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  15. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  16. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  17. A Study on Guidelines for the Utilization of Unproven MMIS Technology In Nuclear Power Plant Application

    International Nuclear Information System (INIS)

    Kang, Sung Kon; Shin, Yeong Cheol; Bae, Byoung Hwan

    2007-01-01

    New MMIS (Man Machine Interface System) technology is rapidly advanced as digital technology provides opportunity for more functionality and better cost effectiveness and NPP (Nuclear Power Plant) operators are inclined to use the new technology for the construction of new plant and for the upgrade of existing plants. However, this new technology poses risks to the NPP operators at the same time. These risks are mainly due to the poor reliability of newly developed technology. KHNP's past experiences with the new MMIS equipment shows many cases of reliability problem. And their consequences include unintended plant trips, lowered acceptance of the new digital technology by the plant I and C maintenance crew, and increased licensing burden in answering for questions from the nuclear regulatory body. Considering the fact that the risk of these failures in the nuclear plant operation is far greater than those in other industry, utilities require proven technology for the MMIS in nuclear power plants. So that new MMIS technology might be testified as proven technology, guidelines for the utilization of unproven MMIS technology in nuclear power plant application is required for applying new advanced MMIS technology which is apparently needed to obtain a definite gain in simplicity or performance

  18. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    2012-05-01

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  19. Application of Nuclear Power Plant Simulator for High School Student Training

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chi Dong; Choi, Soo Young; Park, Min Young; Lee, Duck Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    In this context, two lectures on nuclear power plant simulator and practical training were provided to high school students in 2014. The education contents were composed of two parts: the micro-physics simulator and the macro-physics simulator. The micro-physics simulator treats only in-core phenomena, whereas the macro-physics simulator describes whole system of a nuclear power plant but it considers a reactor core as a point. The high school students showed strong interests caused by the fact that they operated the simulation by themselves. This abstract reports the training detail and evaluation of the effectiveness of the training. Lectures on nuclear power plant simulator and practical exercises were performed at Ulsan Energy High School and Ulsan Meister High School. Two simulators were used: the macro- and micro-physics simulator. Using the macro-physics simulator, the following five simulations were performed: reactor power increase/decrease, reactor trip, single reactor coolant pump trip, large break loss of coolant accident, and station black-out with D.C. power loss. Using the micro-physics simulator, the following three analyses were performed: the transient analysis, fuel rod performance analysis, and thermal-hydraulics analysis. The students at both high schools showed interest and strong support for the simulator-based training. After the training, the students showed passionate responses that the education was of help for them to get interest in a nuclear power plant.

  20. Application of Nuclear Power Plant Simulator for High School Student Training

    International Nuclear Information System (INIS)

    Kong, Chi Dong; Choi, Soo Young; Park, Min Young; Lee, Duck Jung

    2014-01-01

    In this context, two lectures on nuclear power plant simulator and practical training were provided to high school students in 2014. The education contents were composed of two parts: the micro-physics simulator and the macro-physics simulator. The micro-physics simulator treats only in-core phenomena, whereas the macro-physics simulator describes whole system of a nuclear power plant but it considers a reactor core as a point. The high school students showed strong interests caused by the fact that they operated the simulation by themselves. This abstract reports the training detail and evaluation of the effectiveness of the training. Lectures on nuclear power plant simulator and practical exercises were performed at Ulsan Energy High School and Ulsan Meister High School. Two simulators were used: the macro- and micro-physics simulator. Using the macro-physics simulator, the following five simulations were performed: reactor power increase/decrease, reactor trip, single reactor coolant pump trip, large break loss of coolant accident, and station black-out with D.C. power loss. Using the micro-physics simulator, the following three analyses were performed: the transient analysis, fuel rod performance analysis, and thermal-hydraulics analysis. The students at both high schools showed interest and strong support for the simulator-based training. After the training, the students showed passionate responses that the education was of help for them to get interest in a nuclear power plant

  1. Procedure for the qualification of a manufacturer of ingot iron pieces for application in nuclear power plant components

    International Nuclear Information System (INIS)

    Rahn, K.M.M.; Jusevicius, E.; Michael, H.

    1981-01-01

    The process for the qualification of 'Sao Caetano do Sul (Acos Villares S/A)' Plant as manufacturers of ingot iron pieces for application in components of Angra 2 and Angra 3 Nuclear Power Plants, is presented. The qualification was executed by IBQN - Instituto Brasileiro de Qualidade Nuclear - the organ officially in charge of the execution of qualification of suppliers of materials for the nuclear industry. (E.G.) [pt

  2. The politics of nuclear power

    International Nuclear Information System (INIS)

    Elliott, D.

    1978-01-01

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  3. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    plant or nuclear power plant manufacture. Newly hired graduates or technical personnel working in industry undergo further training. Those working for the NPP manufactures undergo training in designs, manufacturing and construction while those working with the power companies undertake plant operation training using simulator, plant maintenance, safety culture and design specification. A survey of newly hired BS and MS graduates in engineering by power companies for nuclear power sector in Japan showed that 221 graduates were hired in 1997 and the number dropped to 134 in 1999 and maintained this level up to 2001. These engineering graduates majored in electronics, nuclear, chemistry, mechanics and others. Meanwhile, 30% of the engineering graduates hired by 3 major NPP manufactures for their NPP division are nuclear engineers while the other 70% consists of engineers majoring in mechanics, electronics, materials and other majors. The number of staff for NPP division will have to be increased in future to meet increased demand in Japan and overseas. The human resource development for nuclear energy is faced with the dilemma because the young generation is losing interest in science and technology and many experienced nuclear engineers are retiring and there is a decreasing number of new construction of NPPs till 2030. Possible solutions are to improve public perception on nuclear power, ensure effective succession of nuclear knowledge and experience to young engineers and technicians, strengthen R and D on generationIV NPP and Fast Breeder Reactors (FBR), and strengthen nuclear education and training. In support of this human resource development, the Japanese government provided funding of US$3.4 million in 2007. Within the framework of the Forum for Nuclear Cooperation in Asia (FNCA), the Asian Nuclear Training and Education Program (ANTEP) has the following objectives: (1) to train and educate nuclear engineers and scientists and specialists of radiation applications

  4. The reality of nuclear power

    International Nuclear Information System (INIS)

    Murphy, D.

    1979-01-01

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  5. Proceedings of the 8. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y.; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santosa; Umar, Faraz H.; Teguh Bambang; Hafnan, M.; Mustafa, Bustani; Rosfian, H.

    2002-10-01

    The eight proceeding of National Seminar on Technology and Safety of Nuclear Power Plant and Nuclear Facilities held by National Atomic Energy Agency and University of Trisakti. The aims of Seminar is to exchange and disseminate information about safety and nuclear Power Plant Temperature Reactor and Application for National Development sustain able and High Technology. This Seminar covers all aspect Technology, Power Reactor : Research Reactor; High Temperature Reactor and Nuclear Facilities. There are 33 articles have separated index

  6. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    Wang Yingrong

    2011-01-01

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  7. Application of robust fuzzy control in power control of nuclear reactor

    International Nuclear Information System (INIS)

    Liu Lei; Luan Xiuchun; Jin Guangyuan; Yu Tao; Rao Su

    2013-01-01

    Robust-fuzzy controller based on T-S fuzzy model was designed for real-time controlling of nuclear reactor power and adapting to the load changing of power grid. Local controller was designed by means of state feedback technique, and the global controller was designed by parallel distributed compensation (PDC) method. The result of solving linear matrix inequalities (LMI) proves that this controller is stable. The simulation shows that the nuclear power can be well controlled in three typical conditions by this controller. (authors)

  8. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  9. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  10. Review of the total system related to operation of nuclear-powered ship

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Miyashita, Kunio

    2000-01-01

    It is essential to establish a marine reactor having excellent safety and reliability, which is capable of competing economically with conventional ships, and which can be accepted by international society, in order to be prepared for practical application of future nuclear-powered ships. For this purpose, it is important not only to demonstrate a marine reactor using a model or test device to simulate actual operation, but also to establish the environmental requirements for operation of a nuclear-powered ship, such as safety standards that are operationally and internationally common for ships, and to establish a repair base for nuclear-powered ships. Systems research for the practical application of nuclear-powered ships was conducted for five years, fiscal years 1992 through 1996, by a group in the Japan Atomic Energy Research Institute (JAERI), under the project title 'Review of the total system related to operation of nuclear-powered ships.' The project sought to summarize requirements for the practical application of nuclear-powered ships from the standpoint of the need side, e.g., what nuclear-powered ships will be requested, and what functions will be provided under the expected future social environment; to show a complete system concept for the operation of nuclear-powered ships; and to clarify the situations creating demand for nuclear-powered ships, as well as the system and environmental conditions to be established for operation of practical nuclear-powered ships. Study considerations included the size of the operation system for a nuclear-powered ship, a scenario for introducing a nuclear-powered container ship, and economic evolution from the effects on the whole shipping system, based on container ships, of introducing a nuclear-powered ship. The results of these considerations were made the framework for constructing an entire system and evaluating its economy. The treatment and disposal of radioactive waste from a nuclear-powered ship, and the

  11. Extension of life of nuclear power stations

    International Nuclear Information System (INIS)

    Takahashi, Hideaki

    1991-01-01

    At the time of designing nuclear power stations, as their service life, generally 40 years are taken, and the basic design specifications of machinery and equipment are determined. In USA where atomic energy has been developed, the new construction of nuclear power stations is cased for a while, however, if this situation continues as it is, since old power stations reach the service life of 40 years and are retired in near future, it is feared that the circumstance of the total amount of power generation becoming short will occur. As one of the countermeasures to this, the research on the extension of life of nuclear power stations has been carried out in many fields in USA, and it is expected that the application for extending the life for the power stations constructed in the initial period of development is submitted in 1991. The researches that have been carried out for solving the technical problems in this extension of life and the situation in Japan are reported. The NEC of USA decided that the operation period of nuclear power stations in USA, which is considered to be 40 years so far, can be extended up to the limit of 20 years. The background and circumstances of this problem in USA, Nuclear Plant Aging Research Program, Plant Life Extension Program and so on are reported. (K.I.)

  12. Usage of industrial robots in nuclear power industry

    International Nuclear Information System (INIS)

    Matsuo, Yoshio; Hamada, Kenjiro

    1982-01-01

    Japan is now at the top level in the world in robot technology.Its application to nuclear power field is one of the most expected. However, their usage spreads over various types of nuclear power plants, their manufacture and operation, and other areas such as fuel reprocessing plants and reactor plant decommissioning. The robots as used for the operation of BWR nuclear power plants, already developed and under development, are described: features in the nuclear-power usage of robots, the robots used currently for automatic fuel exchange, the replacement of control rod drives and in-service inspection; the robots under development for travelling inspection device and the inspection of main steam-relief safety valves, future development of robots. By robot usage, necessary personnel, work period and radiation exposure can be greatly reduced, and safety and reliability are also raised. (Mori, K.)

  13. Building and application of the performance diagnosis system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.; Kanbara, K.; Sugawara, Y.

    2010-01-01

    To achieve a low-carbon society, we promote utilization of nuclear energy, which plays a zero-emission power generation. Therefore the nuclear power plants have been imposed a stable supply of electricity. The condition based maintenance (CBM) is effective in order to maintain a stable operation of the nuclear power plants. We built the performance diagnosis system based on the heat and mass balance calculation as one of supporting tools for the CBM. Moreover we note that the performance diagnosis system is built for steam turbine cycle operating with saturated steam conditions. (author)

  14. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  15. Non power applications of nuclear technology: The case of Belgium

    International Nuclear Information System (INIS)

    Jaumotte, A.L.

    1998-01-01

    The historical review and oversight of Belgium activities in applications of nuclear technologies has been presented. Especially attention have been paid on industrial applications as sterilization of surgical tools, medical supplies, drugs, food; radiation induced polymerization and composite materials production; nondestructive testing and application of sealed sources in industry. The detailed review has been done on nuclear medicine development in Belgium covering the range of therapeutic applications as well as diagnostic techniques

  16. Application of extreme value distribution function in the determination of standard meteorological parameters for nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Haimei; Liu Xinjian; Qiu Lin; Li Fengju

    2014-01-01

    Based on the meteorological data from weather stations around several domestic nuclear power plants, the statistical results of extreme minimum temperatures, minimum. central pressures of tropical cyclones and some other parameters are calculated using extreme value I distribution function (EV- I), generalized extreme value distribution function (GEV) and generalized Pareto distribution function (GP), respectively. The influence of different distribution functions and parameter solution methods on the statistical results of extreme values is investigated. Results indicate that generalized extreme value function has better applicability than the other two distribution functions in the determination of standard meteorological parameters for nuclear power plants. (authors)

  17. 10 CFR 50.120 - Training and qualification of nuclear power plant personnel.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training and qualification of nuclear power plant... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this... each holder of a combined license issued under part 52 of this chapter for a nuclear power plant of the...

  18. Application of gamma-field measurement to computer-assisted management of pressurized water nuclear power plant operation

    International Nuclear Information System (INIS)

    Hampel, R.; Schwedusch, F.

    1990-01-01

    The high requirements on NPP operation to be nuclear safe and optimal with regard to electricity production need high redundancy and diversity in the instrumentation being implemented. As a contribution of the Zittau Technical University to development of alternative measuring techniques for primary coolant circuit monitoring, application of gamma-field measurement for determination of reactor power and power distribution is described. Theoretical foundation and conclusions herefrom derived are explained. (author)

  19. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  20. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  1. Nuclear power newsletter. Vol. 7, no. 1, March 2010

    International Nuclear Information System (INIS)

    2010-03-01

    Among many other activities of the NENP, supporting the Member States with operating nuclear power plants (NPPs) for safe and effective operation is very important since a lot of the operating NPPs are over 20 years and they are getting old every year. This is also important to the Member States considering the introduction of the first NPP for better public acceptance on nuclear power. The NENP, in coordination with other departments in the Agency, will try its best to support existing fleet for the safe and improved performance as was done in previous years. The NENP will keep focusing on the development of advanced/innovative nuclear power technologies for the preparation of the future needs for sustainable development. The NENP will continue focusing on the timely sharing of scientific and technical information related to advances in nuclear power technology and its various applications including non electric applications such as seawater desalination, hydrogen production and other industrial applications. Major activities in 2010 will focus on the issues for the near term technologies of various types and sizes of nuclear reactors with major focus on water cooled reactors. There will be a series of meeting/ workshops and CRP's, to address the issues for the development and applications of water cooled reactors through the 21st century including economics and sustainability. Similarly, the Agency will continue to play a major role in the technology sharing and development related to fast reactors through CRP's and meetings related to both the startup and shut down of major fast reactor projects globally

  2. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kisner, Roger A.; Wilgen, John B.; Ewing, Paul D.; Korsah, Kofi; Antonescu, Christina E.

    2006-01-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  3. Code on the safety of nuclear power plants: Design

    International Nuclear Information System (INIS)

    1988-01-01

    This Code is a compilation of nuclear safety principles aimed at defining the essential requirements necessary to ensure nuclear safety. These requirements are applicable to structures, systems and components, and procedures important to safety in nuclear power plants embodying thermal neutron reactors, with emphasis on what safety requirements shall be met rather than on specifying how these requirements can be met. It forms part of the Agency's programme for establishing Codes and Safety Guides relating to land based stationary thermal neutron power plants. The document should be used by organizations designing, manufacturing, constructing and operating nuclear power plants as well as by regulatory bodies

  4. Institute of nuclear power operations perspectives on PSA applications

    International Nuclear Information System (INIS)

    Webster, W.E.; Miller, W.J. Jr.

    1996-01-01

    The investment to develop a PSA is very substantial, and therefore, there is motivation to recover this investment through further use of the techniques used to develop it. It is not surprising that nuclear power plant staff are beginning to use PSA to make operational decisions. The Institute of Nuclear Power Operations is interested in those factors that impact the conduct of plant operations and therefore is actively monitoring the increased usage of PSA techniques. The purpose of this paper is to provide some thoughts and perspectives on the use of PSA as a factor in operational decision making, including decision making in activities performed by engineering, maintenance and operation personnel. (author)

  5. Assessing and improving the safety culture of non-power nuclear installations

    International Nuclear Information System (INIS)

    Bastin, S.J.; Cameron, R.F.; McDonald, N.R.; Adams, A.; Williamson, A.

    2000-01-01

    The development and application of safety culture principles has understandably focused on nuclear power plant and fuel cycle facilities and has been based on studies in Europe, North America, Japan and Korea. However, most radiation injuries and deaths have resulted from the mishandling of radioactive sources, inadvertent over-exposure to X-rays and critically incidents, unrelated to nuclear power plant. Within the Forum on Nuclear Cooperation in Asia (FNCA), Australia has been promoting initiatives to apply safety culture principles across all nuclear and radiation application activities and in a manner that is culturally appropriate for Asian countries. ANSTO initiated a Safety Culture Project in 1996 to develop methods for assessing and improving safety culture at nuclear and radiation installations other than power reactors and to trial these at ANSTO and in the Asian region. The project has sensibly drawn on experience from the nuclear power industry, particularly in Japan and Korea. There has been a positive response in the participating countries to addressing safety culture issues in non-power nuclear facilities. This paper reports on the main achievements of the project. Further goals of the project are also identified. (author)

  6. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  7. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  8. Medical applications in a nuclear research centre

    International Nuclear Information System (INIS)

    Vanhavere, F.; Eggermont, G.

    2001-01-01

    In these days of public aversion to nuclear power, it can be important to point at the medical applications of ionising radiation. Not only the general public, but also the authorities and research centres have to be aware of these medical applications, which are not without risk for public health. Now that funding for nuclear research is declining, an opening to the medical world can give new opportunities to a nuclear research centre. A lot of research could be done where the tools developed for the nuclear power world are very useful. Even new applications for the research reactors like BNCT (boron neutron capture therapy) can be envisaged for the near future. In this contribution an overview will be given of the different techniques used in the medical world with ionising radiation. The specific example of the Belgian Nuclear Research Centre will be given where the mission statement was changed to include a certain number of medical research topics. (authors)

  9. Neural networks and their potential application in nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1991-01-01

    A neural network is a data processing system consisting of a number of simple, highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks have emerged in the past few years as an area of unusual opportunity for research, development and application to a variety of real world problems. Indeed, neural networks exhibit characteristics and capabilities not provided by any other technology. Examples include reading Japanese Kanji characters and human handwriting, reading a typewritten manuscript aloud, compensating for alignment errors in robots, interpreting very noise signals (e.g., electroencephalograms), modeling complex systems that cannot be modeled mathematically, and predicting whether proposed loans will be good or fail. This paper presents a brief tutorial on neural networks and describes research on the potential applications to nuclear power plants

  10. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  11. A Physicist's Journey In The Nuclear Power World

    Science.gov (United States)

    Starr, Chauncey

    2000-03-01

    As a participant in the development of civilian nuclear power plants for the past half century, the author presents some of his insights to its history that may be of interest to today's applied physicists. Nuclear power development has involved a mixture of creative vision, science, engineering, and unusual technical, economic, and social obstacles. Nuclear power programs were initiated during the euphoric era of public support for new science immediately following World War II -- a support that lasted almost two decades. Subsequently, nuclear power has had to face a complex mix of public concerns and criticism. The author's involvment in some of these circumstances will be anecdotally described. Although the physics of fission and its byproducts remains at the heart of all nuclear reactor designs, its embodiment in practical energy sources has been shaped by the limitations of engineering primarily and economics secondarily. Very influential has been the continuing interplay with the military's weapons and propulsion programs, and the government's political policies. In this respect, nuclear power's history provides a learning experience that may be applicable to some of the large scale demonstration projects that physicists pursue today.

  12. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  13. Application perspectives of simulation techniques CFD in nuclear power plants; Perspectivas de aplicacion de tecnicas de modelado CFD en plantas nucleoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Galindo G, I. F., E-mail: igalindo@iie.org.mx [Instituto de Investigaciones Electricas, Reforma No. 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2013-10-15

    The scenarios simulation in nuclear power plants is usually carried out with system codes that are based on concentrated parameters networks. However situations exist in some components where the flow is predominantly 3-D, as they are the natural circulation, mixed and stratification phenomena. The simulation techniques of computational fluid dynamics (CFD) have the potential to simulate these flows numerically. The use of CFD simulations embraces many branches of the engineering and continues growing, however, in relation to its application with respect to the problems related with the safety in nuclear power plants, has a smaller development, although is accelerating quickly and is expected that in the future they play a more emphasized paper in the analyses. A main obstacle to be able to achieve a general acceptance of the CFD is that the simulations should have very complete validation studies, sometimes not available. In this article a general panorama of the state of the methods application CFD in nuclear power plants is presented and the problem associated to its routine application and acceptance, including the view point of the regulatory authorities. Application examples are revised in those that the CFD offers real benefits and are also presented two illustrative study cases of the application of CFD techniques. The case of a water recipient with a heat source in its interior, similar to spent fuel pool of a nuclear power plant is presented firstly; and later the case of the Boron dilution of a water volume that enters to a nuclear reactor is presented. We can conclude that the CFD technology represents a very important opportunity to improve the phenomena understanding with a strong component 3-D and to contribute in the uncertainty reduction. (Author)

  14. Analysis of Pending Problems for a Technology Demand of Domestic Operational Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Park, Won Seok; Wi, Myung Hwan; Ha, Jae Joo

    2008-01-15

    Eleven technology fields were chosen, which have a relation with the solution of the pending problems of domestic operational nuclear power plants to manage an efficient operation and safe regulation for domestic nuclear power plants. The progressive background, requirements, and performance on the pending problems, 34, of an operation and regulation for domestic nuclear power plants were analyzed with regard to a risk information application, severe accident, PSR of structural materials, underwater monitoring, operation inspection and a fire protection, an instrument aging, metal integrity and steam generator, human technology and a digital I and C, quality assurance, secondary system and a user reliance and mass communications. KAERI's role is to provide a solution to these pending problems of domestic nuclear power plants. KAERI's technology is to be applicable to the pending problems for domestic nuclear power plants to raise an operational efficiency and an application frequency of nuclear power plants. In the future, a technology treaty between KAERI and KHNP is to be established to solve the pending problems for domestic nuclear power plants. Operation rate of nuclear power plants will also be raised and contribute to the supply of national energy due to this technology treaty.

  15. Nuclear data applications in developing countries

    International Nuclear Information System (INIS)

    Mehta, M.K.; Schmidt, J.J.

    1985-01-01

    The peaceful applications of nuclear science and technology currently receive an increasing attention in many developing countries. More than 15 developing countries operate, construct or plan nuclear power reactors, 70 developing countries are using or planning to use nuclear techniques in medicine, agriculture, industry, and for other vital purposes. The generation, application and computer processing of nuclear data constitute important elements of the nuclear infrastructure needed for the successful implementation of nuclear science and technology. Developing countries become increasingly aware of this need, and, with the help and cooperation of the IAEA Nuclear Data Section, are steadily gaining in experience in this field. The paper illustrates this development in typical examples. (orig.)

  16. On the development of small nuclear power stations

    International Nuclear Information System (INIS)

    Goetzmann, C.A.

    1989-01-01

    There are weighty reasons for and against the building of small nuclear power stations. Factors such as specific investment costs, opportunities for and areas of application, geographical conditions as well as those relating to infrastructure, security and availability play an important role in the planning, construction and running of a nuclear power station. For the usual large power stations, the comparatively low specific investment costs and a proven technology are favorable factors which minimize the investment risk. The article presents an overview of reasons for using small power stations and also considers the difficulties which would arise in practice. (orig.) [de

  17. Accelerating nuclear power standards development and promoting sound nuclear power development in China

    International Nuclear Information System (INIS)

    Yang Changli

    2008-01-01

    The paper expounds the importance of quickening establishment and perfection of nuclear power standard system in China, analyzes achievements made and problems existed during the development of nuclear power standards, put forward proposals to actively promote the work in this regard, and indicates that CNNC will further strengthen the standardization work, enhance coordination with those trades related to nuclear power standards, and jointly promote the development of nuclear power standards. (authors)

  18. Nuclear power: the question of public acceptance

    International Nuclear Information System (INIS)

    Otway, H.J.; Maurer, D.; Thomas, K.

    1978-01-01

    Technologists have been surprised - in view of the persuasive technical arguments - at the strength of public opposition to nuclear power. But their assumption that information and argument can, by their rational force, change public opinion on sensitive issues, rests on oversimplified theories about attitude formation. When the grounds for opposition to or approval of a controversial programme are investigated - as the authors of this article have done, on the issue of nuclear power - it becomes apparent that attitude formation is not, in the technologists' sense, a 'rational' process. Here the authors describe an attitude model, and present the results of its application to the question of public attitudes to nuclear power - including the discovery of the relatively minor role that technical and environmental questions play in determining those attitudes. (author)

  19. The application of CFD to hydrogen risk analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hui; Han Xu; Chang Meng; Wang Xiaofeng; Wang Shuguo; Lu Xinhua; Wu Lin

    2013-01-01

    Status of the hydrogen risk analysis method is systemically summarized in this paper and the advantages and limits of CFD (Computational Fluid Dynamic) in hydrogen risk analysis is discussed. The international experimental programs on the CFD hydrogen risk analysis are introduced in this paper. The application of CFD to nuclear power plant (NPP) hydrogen risk analysis is introduced in detail by taking EPR and Ling'ao NPP for example. In these bases, the CFD development prospect of hydrogen risk analysis is also summarized in this paper. (authors)

  20. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  1. Evaluation of a seafloor nuclear power supply and its potential applications. Final report

    International Nuclear Information System (INIS)

    1977-01-01

    The seafloor nuclear power supply (SNPS) concept has been proposed by Atomics International (AI) and Lockheed Petroleum Services, Ltd. (LPS) as a source of electrical energy for subsea pumping of petroleum products. It consists of a small nuclear reactor, moderated by zirconium hydride (ZrH) and cooled by liquid metal (NaK), which drives a 3-MW turbine/generator system using toluene as the working fluid. Arthur D. Little, Inc., was selected to assess the technical and economic feasibility of a SNPS, and to determine if potential applications for a SNPS might exist in offshore-oil-field development schemes where conventional power supplies could not be used. It was determined that the concept is technically feasible, with regard to the nuclear, marine, electrical, and petroleum engineering aspects. However, its initial cost of $14 million and operating expenses of $900,000 per year are considerably more in each case than the costs of conventional alternative power supplies. For the type of field development proposed as an example by LPS, a combination of gas turbines and dc cables would cost about $8 million. Fuel in the form of gas from the wells would be available at near-zero cost in almost all cases of field development, so that operating expenses would be minimal. Other power supply and cable systems were investigated, up to lengths of 200 miles. Alternating-current systems are preferred at distances less than 20 miles; direct current is more economical at greater distances. No set of circumstances was found in which oil field development is likely to occur and for which the SNPS offers uniquely attractive capabilities

  2. A Study on Nonconformance and Construction Method Improvement for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Jong Yeob; Roh, Myung Sub

    2014-01-01

    Advanced power reactor was developed by domestic technology, and finally exported to abroad. In order to place the current nuclear power industrial base, construction has played a big role. Without magnificent construction technology, it would have been impossible to get a safe nuclear power plant on time and in budget. Construction industry occupies very large portion of the economy in South Korea and it has been a core of South Korea's economic growth. With a competitive construction industry and advanced nuclear power plant construction know-how, South Korea could provide safe and reliable nuclear power plants in domestic and world. However there are many repairs and number of corrective actions are in actual construction. Thus, this paper suggested the result of nonconformance and construction method improvement for nuclear power plant. Constructional engineering is a kind of science that has a variety of disciplines including structure, geology, mechanical equipment and other fields. Thus, the development of constructional engineering is closely associated with experience from failure and application advanced construction method. The recent experience in nuclear power plants construction has shown that those improved methods are fully applicable and can help shorten the construction schedule. The future of nuclear power plant construction seems to be more encouraged, even though it has many obstacles

  3. Bayes' theorem and its application to nuclear power plant safety

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2013-01-01

    Bayes' theorem has been paid in much attention for its application to Probabilistic Safety Assessment (PSA). In this lecture, the basis for understanding Bayes' theorem is first explained and how to interpret the Bayes' equation with respect to the pair of conjugate distributions between prior distribution and likelihood. Then for the application to PSA, component failure data are evaluated by Bayes' theorem by using the examples of demand probability of the start of diesel generator and failure of pressure sensor. Frequencies of nuclear power plant accidents are also evaluated by Bayes' theorem for the example case of frequency of 'fires in reactor compartment' and 'core melt' frequency with the experience of Fukushima dai-ichi accidents. Lastly, several contrasting arguments are introduced briefly between favorable and critical peoples regarding the Bayes' methods. (author)

  4. Status of NDE research and applications for life management of nuclear power plants in india

    Energy Technology Data Exchange (ETDEWEB)

    Raj, B.; Shyamsunder, M.T.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    1999-08-01

    The development and application of various nondestructive evaluation techniques and methodologies for the life management of nuclear power plants in India are described. The indigenous development carried out to meet the stringent quality requirements in evaluation of fabricated components and innovative methodologies using multidisciplinary approaches and advances for assessment of inservice performance of plants are highlighted. (orig.)

  5. Status of NDE research and applications for life management of nuclear power plants in india

    International Nuclear Information System (INIS)

    Raj, B.; Shyamsunder, M.T.; Jayakumar, T.

    1999-01-01

    The development and application of various nondestructive evaluation techniques and methodologies for the life management of nuclear power plants in India are described. The indigenous development carried out to meet the stringent quality requirements in evaluation of fabricated components and innovative methodologies using multidisciplinary approaches and advances for assessment of inservice performance of plants are highlighted. (orig.)

  6. Application of Advanced Technology to Improve Plant Performance in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Advances in computer technologies, signal processing, analytical modeling, and the advent of wireless sensors have provided the nuclear industry with ample means to automate and optimize maintenance activities and improve safety, efficiency, and availability, while reducing costs and radiation exposure to maintenance personnel. This paper provides a review of these developments and presents examples of their use in the nuclear power industry and the financial and safety benefits that they have produced. As the current generation of nuclear power plants have passed their mid-life, increased monitoring of their health is critical to their safe operation. This is especially true now that license renewal of nuclear power plants has accelerated, allowing some plants to operate up to 60 years or more. Furthermore, many utilities are maximizing their power output through uprating projects and retrofits. This puts additional demand and more stress on the plant equipment such as the instrumentation and control (I and C) systems and the reactor internal components making them more vulnerable to the effects of aging, degradation, and failure. In the meantime, the nuclear power industry is working to reduce generation costs by adopting condition-based maintenance strategies and automation of testing activities. These developments have stimulated great interest in on-line monitoring (OLM) technologies and new diagnostic and prognostic methods to anticipate, identify, and resolve equipment and process problems and ensure plant safety, efficiency, and immunity to accidents. The foundation for much of the required technologies has already been established through 40 years of research and development (R and D) efforts performed by numerous organizations, scientists, and engineers around the world including the author. This paper provides examples of these technologies and demonstrates how the gap between some of the more important R and D efforts and end users have been filled

  7. Application of powder metallurgy in production of nuclear fuels for research and power reactors

    International Nuclear Information System (INIS)

    Fukuda, Kosaku

    2000-01-01

    Powder metallurgy has been applied in many of the processes of nuclear fuel fabrication, which has contributed, to a great progress of the nuclear technology to date. Evolution of nuclear fuels still continues to meet various emerging demands in terms of enhanced safety, economical effectiveness, non-proliferation and environmental mitigation. This paper reviews recent progress of nuclear fuels of research and power reactors, in particular, focusing on the powder metallurgy application. First, the review is made on plate type fuels for research reactors, inter alia, silicide fuel which is prevailing worldwide from the viewpoint of non-proliferation. The relation between fabrication and irradiation behavior is also discussed. Next, oxide fuels including MOX are reviewed. Recent interests of UO 2 are directed toward large grain pellets and burnable absorber pellets, both of which arise from requirement of extended burnup. Finally, the MOX fuel for thermal reactors is reviewed. (author)

  8. Engineering management at feasibility study stage of nuclear power plant under EPC mode

    International Nuclear Information System (INIS)

    Wang Zhiqiang

    2015-01-01

    After the investment reform by the State Council in 2004, NDRC carries out approval system for enterprises to invest in nuclear power plants. Feasibility study stage is a critical stage on the mainline of nuclear power project approval, which intersects with the license application, and engineering design. The owners of nuclear power plants are required stringently in engineering management. From the owners' management point of view under EPC mode, this paper sorts the preliminary project process for nuclear power plants, focusing on the management in the feasibility study stage. License application and engineering design management in the feasibility study stage are also discussed. (author)

  9. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  10. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  11. Development of supplier evaluation model applying in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Yonggang; Fang Chunfa

    2006-01-01

    It is essential for the safe and stable operations of Nuclear Power Plants that various resources in the supply chain are effectively managed. Supplier is a significant resource of nuclear entities serving as an extension of the operation process. Scientific and radiation evaluation of the performance of suppliers is of vital importance to an effective and high quality supply chain. This paper establishes an advance and practical supplier evaluation system that is applicable for the operational nuclear power plants, based on the analysis of the current operation status of Daya Bay Nuclear Power Station against its targeted objectives, the acquisition of relevant practices home and abroad and the benchmarking with advanced peers, in order to enhance the core competence of nuclear power plant. (authors)

  12. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor... the design, construction, and operation of nuclear power reactors indicates that compliance with the...

  13. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  14. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  15. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  16. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  17. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  18. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  19. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  20. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1977-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. The author briefly examines the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants. (Auth.)

  1. Nuclear's second wind: innovative 'fast' nuclear power plants may be a strategic imperative

    International Nuclear Information System (INIS)

    Adamov, Evgeny

    2004-01-01

    Nuclear power needed 50 years to gain the same position in global energy production as the one achieved by hydropower over hundreds of years. All those years, proposals for new reactor concepts would come up every now and then alongside mainstream reactor technologies. In the nuclear-friendly 1960s and 1970s, some of those 'innovative' concepts even led to demonstration or pilot projects. Yet for all the diversity of new ideas, nuclear power entered the new century still moving in a rut of older mainstream technologies. Most were devised at the dawn of nuclear engineering, when reactors for production of weapon-grade isotopes and reactors for nuclear submarines propelled development. Unless we understand the reasons why innovative technologies failed to make any appreciable progress way back then, it is impossible to answer the question of whether there is a need for them now or in the foreseeable future. Few people, perhaps, may remember that nuclear power was not brought into existence by energy deficiency. Its advent was caused by the Second World War and the associated pressing necessity for increasing the power of weapons. Once the war ended, nuclear plans were fuelled by the intentions of both weapons designers (e.g., Russia's I. Kurchatov who initiated construction of the world's first nuclear power plant in Obninsk and US politicians led by President Dwight Eisenhower's 'Atoms for Peace' Initiative in 1953) to counterbalance the military effort by encouraging peaceful nuclear applications

  2. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  3. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  4. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  5. GERB viscous dampers in application for pipelines and other components in nuclear power plants

    International Nuclear Information System (INIS)

    Masopust, R.; Podrouzek, J.; Zach, J.

    1993-01-01

    VISCODAMPERS from GERB, Germany, are now widely used as reliable shock restraints against earthquake and other shock effects for the most important safety-related pipelines and components in several Czech and Slovak nuclear power plants. Having many technical advantages they are, at the same time, relatively inexpensive in comparison to conventionally used snubbers. Their properties are briefly described and several practical applications are explained in this paper. (author)

  6. A nuclear powered pulsed inductive plasma accelerator as a viable propulsion concept for advanced OTV space applications

    International Nuclear Information System (INIS)

    Tapper, M.L.

    1982-01-01

    An electric propulsion concept suitable for delivering heavy payloads from low earth orbit (LEO) to high energy earth orbit is proposed. The system consists of a number of pulsed inductive plasma thrusters powered by a 100 kWe space nuclear power system. The pulsed plasma thruster is a relatively simple electrodeless device. It also exhibits adequate conversion to thrust power in the desired I sub sp regime of 1500 to 3000 seconds for optimal payload transfer from low earth to high earth orbit. Because of these features and the fact that the nuclear power unit will be capable of delivering sustained high power levels throughout the duration of any given mission, the system presented appears to be a very promising propulsion candidate for advanced orbital transfer vehicle (OTV) applications. An OTV, which makes use of this propulsion system and which has been designed to lift a 9000-lb payload into geosynchronous earth orbit, (GEO) is also examined

  7. Technology Efficiency Study on Nuclear Power and Coal Power in Guangdong Province Based on DEA

    International Nuclear Information System (INIS)

    Yinong Li; Dong Wang

    2006-01-01

    Guangdong Province has taken the lead in embarking on nuclear power development to resolve its dire lack of primary resources. With the deepening of the on-going structural reform in the electric power sector in China, the market competition scheme is putting electricity generation enterprises under severe strain. Consequently, it is incumbent upon the nuclear power producers to steadily upgrade management, enhance technical capabilities, reduce cost and improve efficiency. At present, gradual application of such efficiency evaluation methodology has already commenced in some sectors in China including the electric power industry. The purpose of this paper is to use the Data Envelopment Analysis (DEA), which is a cutting-edge approach in the efficiency evaluation field - to study the technological efficiency between nuclear power and coal power in Guangdong Province. The DEA results demonstrate that, as far as Guangdong Province is concerned, the technological efficiency of nuclear power is higher than that of coal power in terms of Technological Efficiency (TE), Pure Technology Efficiency (PTE) and Scale Efficiency (SE). The reason is that nuclear power technology is advanced with a much higher equipment availability factor. Under the same scale, the generation output of nuclear power is far higher than that of equivalent coal power generation. With the environmental protection and sustainable development requirements taken into full account, nuclear power constitutes a clean, safe and highly-efficient energy form which should be extensively harnessed in Guangdong Province to fuel its future continuing economic growth. (authors)

  8. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  9. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2007 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2007/01/01; Worldwide status of nuclear power plants (12/31/2007); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2007; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2007; Performance indicator of French PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2007; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2007; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2007; Long term shutdown units at 12/31/2007; COL (combined licences) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary.

  10. Application of Nuclear Application Programs to APR1400 Simulator

    International Nuclear Information System (INIS)

    Hwang, Do Hyun; Lee, Myeong Soo; Hong, Jin Hyuk

    2012-01-01

    Advanced Power Reactor 1400MWe (APR1400) simulator has been developed and installed at Kori Training Center for operators of ShinKori no.3, 4 nuclear power plant by Korea Hydro and Nuclear Power,s Central Research Institute (KHNP CRI). NAPS (Nuclear Application Programs) is a computerbased system which provides operators with past and real-time information for monitoring and controlling NSSS (Nuclear Steam Supply System), BOP (Balance Of Plant) and Electric system. NAPS consists of several programs such as COLSS (Core Operating Limit Supervisory System), SPADES+ (Safety Parameter Display and Evaluation System), CEA (Control Element Assembly) Application Program, and so on. Each program makes calculations based on its own algorithm and provides information available for operation. In order to use NAPS programs with a simulator even though they are being used in a real plant, they should be modified to add several simulation functions such as reset, snap, run/freeze and backtrack required by ANSI/ANS-3.5 to the original NAPS functionality. On top of that, interfacing programs should be developed for the data communication between respective NAPS programs and simulator sever. The purpose of this paper is to provide the overall architecture of the communication system between NAPS and simulator model, and to describe the method to apply NAPS to APR1400 simulator

  11. Application of NUREG/CR-5999 interim fatigue curves to selected nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1995-03-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four U.S. nuclear steam supply system vendors. For each facility, six locations were studied, including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This report discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  12. Qualitative knowledge engineering for nuclear applications

    International Nuclear Information System (INIS)

    Kim, Jae H.; Kim, Ko R.; Lee, Jae C.

    1996-01-01

    After the TMI nuclear power plant accident, the two topics of plant safety and operational efficiency became more important areas of artificial intelligence, which have difference characteristics. Qualitative deep model is the recently prospective technology of AI, that can overcome several handicaps of the existing expert systems such as lack of common sense reasoning. The application of AI to the large and complex system like nuclear power plants is typically and effectively done through a module-based hierarchical system. As each module has to be built with suitable AI system. Through the experiences of hierarchical system construction, we aimed to develop basic AI application schemes for the power plant safety and operational efficiency as well as basic technologies for autonomous power plants. The goal of the research is to develop qualitative reasoning technologies for nuclear power plants. For this purpose, the development of qualitative modeling technologies and qualitative behaviour prediction technologies of the power plant are accomplished. In addition, the feasibility of application of typical qualitative reasoning technologies to power plants is studied . The goal of the application is to develop intelligent control technologies of power plants, support technologies. For these purposes, we analyzed the operation of power plants according to its operation purpose: power generation operation, shut-down and start-up operation. As a result, qualitative model of basic components were sketched, including pipes, valves, pumps and heat exchangers. Finally, plant behaviour prediction technologies through qualitative plant heat transfer model and design support technologies through 2nd-order differential equation were developed. For the construction of AI system of power plants, we have studied on the mixed module based hierarchical software. As a testbed, we have considered the spent fuel system and the feedwater system. We also studied the integration

  13. Outline of renovation for Mihama Public Relations (PR) Center on atomic power generation and nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    The Mihama PR Center of Kansai Electric Power Co. on atomic power generation and nuclear applications is now under entire renovation. It was constructed accompanying the construction of No. 1 unit in Mihama Nuclear Power Station, and opened in November, 1967, as the only PR facility of open house system. Since then, more than 1.9 million persons visited there in 15 years. Recently the space has become difficult to provide satisfactorily sophisticated exhibits because the importance of nuclear power generation has increased, and the diversified contents have been required. On the other hand, its building was cramped since many rooms were accommodated in the single round building of total area 815 m/sup 2/. In addition, the building has required drastic looking-over because of its deterioration and damages due to aging. The promotion of the understanding for the early securing of nuclear power plant location has been decided as the principal promotion item. The plan includes the modification of the existing building to the exhibition hall only as well as the completion and re-arrangement of the exhibits. It has been determined to construct a new building connected to the existing building, which accommodates a meeting hall, offices, utility machine room, etc., a total area being increased to 1457 m/sup 2/. The fund required is about 600 million yen. The construction work has started on December 1, 1982, aiming at the opening in July, 1983. The meeting hall is designed to seat about 120 persons and to employ multi-screen image techniques.

  14. Probabilistic safety assessment technology for commercial nuclear power plant security evaluation

    International Nuclear Information System (INIS)

    Liming, J.K.; Johnson, D.H.; Dykes, A.A.

    2004-01-01

    Commercial nuclear power plant physical security has received much more intensive treatment and regulatory attention since September 11, 2001. In light of advancements made by the nuclear power industry in the field of probabilistic safety assessment (PSA) for its power plants over that last 30 years, and given the many examples of successful applications of risk-informed regulation at U. S. nuclear power plants during recent years, it may well be advisable to apply a 'risk-informed' approach to security management at nuclear power plants from now into the future. In fact, plant PSAs developed in response to NRC Generic Letter 88-20 and related requirements are used to help define target sets of critical plant safety equipment in our current security exercises for the industry. With reasonable refinements, plant PSAs can be used to identify, analyze, and evaluate reasonable and prudent approaches to address security issues and associated defensive strategies at nuclear power plants. PSA is the ultimate scenario-based approach to risk assessment, and thus provides a most powerful tool in identifying and evaluating potential risk management decisions. This paper provides a summary of observations of factors that are influencing or could influence cost-effective or 'cost-reasonable' security management decision-making in the current political environment, and provides recommendations for the application of PSA tools and techniques to the nuclear power plant operational safety response exercise process. The paper presents a proposed framework for nuclear power plant probabilistic terrorist risk assessment that applies these tools and techniques. (authors)

  15. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  16. Extending nuclear energy to non-electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Houghton, Z. [NuScale Power, LLC, Corvallis, Oregon (United States); Bromm, R. [Fluor Corp., Greenville, SC (United States); Desportes, C. [Aquatech International, Canonsburg, PA (United States); McKellar, M.; Boardman, R. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-07-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these nontraditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers. (author)

  17. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  18. Country nuclear power profiles. 2001 ed

    International Nuclear Information System (INIS)

    2002-03-01

    this publication is self-standing and contains information officially provided by the respective national authorities. It is planned to update the publication biannually and to expand its scope of coverage. In the past 20 years, new safety goals and requirements have generally been established for nuclear power plants, with little clear consideration of economic costs and benefits, or of alternative and perhaps more cost effective ways of achieving desired safety goals. This approach was encouraged by the fact that most nuclear plants operated in monopoly markets where costs were not necessarily a primary concern. But times and markets have changed, and regulatory approaches must also change, to permit a clear definition of when a plant is safe enough, and some degree of flexibility in achieving these goals. Of course, arguing for some consideration of economic consequences, for financial analysis of proposed safety requirements, and for background analysis of costs and benefits in the safety field does not in any way constitute a judgment about what is appropriate in terms of safety. There is also a need for the application of financial analysis and liability management for decommissioning and waste disposal, particularly in the face of increasingly stringent regulatory and political requirements. Economic common sense, efficient cost management, a degree of flexibility in meeting standards and an appreciation of the costs of uncertainty and of political and regulatory change must all be cultivated. Nuclear energy - worldwide - is able and ready to compete with other energy sources in an open, deregulated electricity market. Existing nuclear power plants are extremely well positioned to compete in deregulated markets, on the basis of their largely amortized capital costs and relatively low variable costs. Nuclear power offers considerable environmental advantages compared to alternative mainstream energy sources, and is the only energy source that has already

  19. Technical Guidance from the International Safety Framework for Nuclear Power Source Applications in Outer Space for Design and Development Phases

    Science.gov (United States)

    Summerer, Leopold

    2014-08-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.

  20. Problems of nuclear power creation in the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Makhanov, Y.M.

    2006-01-01

    rehabilitation of nuclear power in the public opinion; (d) creation of scientific, technological and staff potential; (e) providing of non-proliferation of fission materials.Moreover, main requirements to reactors which will be under construction in Kazakhstan are formulated in the report. Accounting for the richest stocks of uranium raw material in Kazakhstan, problems of its full application to provide power independence and economic prosperity of the people of Kazakhstan for some generations are discussed in the report. These problems are connected with becoming tougher requirements for providing of non-proliferation and possible global restrictions in creation and development of some components of a nuclear fuel cycle for application in nuclear power, such as application of fast reactors (an example: closing and decommission still an efficient fast reactor BN-350 in Kazakhstan from political reasons), enrichment of uranium (a problem with Iran), processing of the worked fuel (restrictive measures are under discussion), etc. Introduction of global restrictions can compel Kazakhstan to sell the richest stocks of uranium in the cheapest way - only as natural raw material. Absence of the decision of the specified problem of restrictions in the international plan and absence of the accepted regulating international documents on creation and application of the above-mentioned components of a nuclear fuel cycle complicates development of optimum long-term reactor strategy and nuclear power in the countries with rich natural stocks of uranium like Kazakhstan. Thus different ways of the development of a nuclear fuel cycle in Kazakhstan are considered

  1. Safety targets for nuclear power plants

    International Nuclear Information System (INIS)

    Herttrich, P.M.

    1985-01-01

    By taking as an example the safety targets of the American nuclear energy authority US-NRC, this paper explains what is meant by global, quantitative safety targets for nuclear power plants and what expectations are associated with the selecton of such safety targets. It is shown how probabilistic methods can be an appropriate completion of proven deterministic methods and what are the sectors where their application may become important in future. (orig./HP) [de

  2. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  3. Reviewing nuclear power

    International Nuclear Information System (INIS)

    Robinson, Colin

    1990-01-01

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  4. Evaluation of seismic stability of nuclear power plants on weathered soft rocks

    International Nuclear Information System (INIS)

    Ogata, Nobuhide; Nishi, Koichi; Honsho, Shizumitsu

    1991-01-01

    Soft rocks such as weathered rocks or low cemented sedimentary rocks spread all over the country. If it is possible to construct nuclear power plants on such soft rocks, there will be more available sites for nuclear power plants. The investigation on the following research items was carried out. (1) Geological survey and the application of test methods on soft rocks. (2) Methods and application of laboratory and in-situ tests on soft rocks. (3) Response analysis of a reactor building and foundation ground during earthquake. (4) Stability analysis of soft rock ground as the foundation of a nuclear power plant regarding both earthquake and long-term settlement. From the results of the investigation, it became evident that the seismic stability of a nuclear power plant on weathered soft rocks can be assured enough. (author)

  5. Nuclear power and modern society

    International Nuclear Information System (INIS)

    Komarek, A.

    1999-01-01

    A treatise consisting of the following sections: Development of modern society (Origin of modern society; Industrial society; The year 1968; Post-industrial society; Worldwide civic society); Historic breaks in the development of the stationary power sector (Stationary thermal power; Historic breaks in the development of nuclear power); Czech nuclear power engineering in the globalization era (Major causes of success of Czech nuclear power engineering; Future of Czech nuclear power engineering). (P.A.)

  6. ELECNUC. Nuclear power plants in the world - 2012 edition, Status on 2011-12-31

    International Nuclear Information System (INIS)

    2012-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2011 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2011/01/01; Worldwide status of nuclear power plants (12/31/2011); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2011; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear powe plants by country at the end 2011; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2011; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2011; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2011; Long term shutdown units at 12/31/2011; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  7. Loviisa nuclear power plant analyzer

    International Nuclear Information System (INIS)

    Porkholm, K.; Nurmilaukas, P.; Tiihonen, O.; Haenninen, M.; Puska, E.

    1992-12-01

    The APROS Simulation Environment has been developed since 1986 by Imatran Voima Oy (IVO) and the Technical Research Centre of Finland (VTT). It provides tools, solution algorithms and process components for use in different simulation systems for design, analysis and training purposes. One of its main nuclear applications is the Loviisa Nuclear Power Plant Analyzer (LPA). The Loviisa Plant Analyzer includes all the important plant components both in the primary and in the secondary circuits. In addition, all the main control systems, the protection system and the high voltage electrical systems are included. (orig.)

  8. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1983-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. In this chapter the authors briefly examine the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants

  9. Study on application of operating experience to new nuclear power plant

    International Nuclear Information System (INIS)

    Hong, Nam Pyo

    1991-01-01

    From the standpoint of designing the nuclear power plant, nine operating units have been designed and constructed as turn-key base by foreign Nuclear Steam Supply System (NSSS) Suppliers or as component base by foreign Architect/Engineer companies. In case of the component base project, the owner of electric company generally has merits that owner's operational experiences can be effectively incorporated from the beginning stage of design by A/E. Even though six nuclear units, Kori Units 3 and 4, Yonggwang Units 1 and 2, and Ulchin Units 1 and 2, were designed as component base by foreign A/E's, operational experience feedback from Kori Unit 1, such as design improvement and system upgrade, could not be reflected, because the design process of the following units started well ahead before Kori Unit 1 operating experience is obtained enough to reflect on future nuclear power plant design. It can be stated that foreign A/E's used their experience in designing nuclear projects on very limited basis

  10. Presenting a model of repair and preventing maintenance of Bushehr nuclear power plants analyzing the data of similar nuclear power plants

    International Nuclear Information System (INIS)

    Parikhan, Hammidreza

    1997-01-01

    Due to the increase application of nuclear energy for producing electricity, special attention must be paid to their maintenance activities in general and preventive maintenance in particular. It has been shown that a well established preventive maintenance programme will enhance the reliability and availability of nuclear power plants. A model of preventive maintenance for Buhehr nuclear power plant which is due to be completed by 2001 is developed. The prescribed model is based on past experiences of VVER nuclear power plants around the world. The utilized data is provided by International Atomic Energy Agency (IAEA) in Vienna, Austria. The data and past experiences reveal such important information as availability, energy loss, types of failures, duration of failure, etc. A strategy for designing a database is established. These data are then analyzed by statistical methods such as Pareto analysis, t-test, K-S test, analysis of variance, etc. The results of our analysis reveal important information in regard to establishment of a well-defined preventive maintenance programme in Buhshehr nuclear power plant. The results show that certain equipment such turbo-generator and control-rods play an important role in the maintenance of a VVER nuclear power plant. Other findings are discussed in great detail

  11. Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Choong-Koo Chang

    2016-02-01

    Full Text Available Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV high resistance grounding (HRG system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

  12. The Fundamentals and Status of Nuclear Power

    Science.gov (United States)

    Matzie, Regis A.

    2011-11-01

    Nuclear power has enormous potential to provide clean, safe base-load electricity to the world's growing population. Harnessing this potential in an economic and responsible manner is not without challenges. Safety remains the principal tenet of our operating fleet, which currently provides ˜20% of U.S. electricity generated. The performance of this fleet from economic and safety standpoints has improved dramatically over the past several decades. This nuclear generation also represents greater than 70% of the emission free electricity with hydroelectric power providing the majority of the remainder. There have been many lessons learned from the more than 50 years of experience with nuclear power and these have been factored into the new designs now being constructed worldwide. These new designs, which have enhanced safety compared to the operating fleet, have been simplified by employing passive safety systems and modular construction. There are applications for licenses of more than 20 new reactors under review by the U.S. Nuclear Regulatory Commission; the first of these licenses will be completed in early 2012, and the first new U.S. reactor will start operating in 2016. Yet there are still more improvements that can be made and these are being pursued to achieve an even greater deployment of nuclear power technology.

  13. Use of artificial intelligence in nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1990-01-01

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of non-operating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which artificial intelligence can increase the efficiency and effectiveness of overall plant and corporate operations. This paper reviews the state-of-the-art of artificial intelligence techniques, specifically, expert systems and neural networks, to nuclear power plants. This paper has reviewed the state-of-the-art of artificial intelligence, specifically expert systems and neural networks that are applied to problems in nuclear power plants

  14. The prospects of improving nuclear power station's safety based on nanotechnology

    International Nuclear Information System (INIS)

    Klyuchnikov, A.A.; Sharaevskij, I.G.; Fialko, N.M.; Zimin, L.B.

    2012-01-01

    The article describes the main areas of application of modern high-tech developments in nanothermophysics to improve the safety of nuclear power plants. Performed an analysis of the possibilities of practical applications of efficient nanotechnology for nuclear energy.The article describes the complex issues of concern with the use of nanofluids as a coolant for the most critical equipment of nuclear power plants. It's examined among these equipment the first line of water-cooled nuclear reactor, as well as its emergency cooling system. Performed an analysis of the main issues that relate to the definition of the critical heat flux at boiling liquid on the work surface. From these positions, evaluated the known results on the data og the critical heat flux using nanofluids. In this article was given the main tasks of advanced research in nano-thermal physics for increase nuclear power plant safety in Ukraine

  15. An AI-based layout design system for nuclear power plants

    International Nuclear Information System (INIS)

    Fujita, Kikuo; Akagi, Shinsuke; Nakatogawa, Tetsundo; Tanaka, Kazuo; Takeuchi, Makoto.

    1991-01-01

    An AI-based layout design system for nuclear power plants has been developed. The design of the layout of nuclear power plants is a time-consuming task requiring expertise, in which a lot of machinery and equipment must be arranged in a plant building considering various kinds of design constraints, i.e. spatial, functional, economical etc. Computer aided layout design systems have been widely expected and the application of AI technology is expected as a promising approach for the synthesis phase of this task. In this paper, we present an approach to the layout design of nuclear power plants based on a constraint-directed search; one of the AI techniques. In addition, we show how it was implemented with an object-oriented programming technique and give an example of its application. (author)

  16. Application of virtual reality to simulation in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Pengfei; Yang Yanhua; Yang Yongmu; Duan Dongdong; Luo Jie

    2008-01-01

    Based on detailed analysis of the structure and key techniques of a virtual reality system, the applications of virtual reality to simulation in nuclear power plant (NPP) were developed. In order to meet the requirement of simulation in NPP, motion simulation of control rod drive system, walking system inside the containment and virtual main control room were presented. A simulator of NPP was connected to interchange dynamic data between virtual main control room and the simulator. The simulating results show that the technique of virtual reality can be applied well to the simulation inside containment, which is filled with activity material, and the simulation of virtual main control room, where human factors must be considered. It also can be used well to design virtual education and training system of NPP. (authors)

  17. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  18. Assessment of environmental impacts of nuclear power plants

    International Nuclear Information System (INIS)

    Horacek, P.

    1990-01-01

    The effects of normal operation and of accidents are analyzed. It is pointed out that the public is insufficiently informed, which bears anxiety and prejudice. The effective dose equivalents for the population and for the individual, measured during operation of the Bohunice nuclear power plants are listed and compared with those from natural background and from medical applications. The possible radioactive contamination of a large area of agricultural soil is the highest specific risk of nuclear power plant operation. Problems are growing related to spent fuel disposal and eventually to the decommissioning of the power plant itself. (M.D.). 1 tab., 8 refs

  19. Nuclear power newsletter. Vol. 6, no. 4, December 2009

    International Nuclear Information System (INIS)

    2009-12-01

    Rising expectations of the role of nuclear power to respond to the increased number of newcomers and global environmental considerations over fossil fuel have led the IAEA to continue to provide support to Member States in all required areas such as support to operating nuclear power plants, nuclear infrastructure building for newcomers, and assessment of different technology options of reactor designs, innovative technologies and their applications. The theme of the International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century, which was held in Vienna on October 2009, was on the future of nuclear power and the role of water cooled reactors will play in this future. As the world moves into the 21st Century and faces new challenges, including the growth in world energy demand or the threat of global climate change, nuclear energy is seen as one of the sources that could substantially and sustainably contribute to powering the world

  20. Public acceptance of nuclear power among Malaysian students

    Science.gov (United States)

    Muhamad Pauzi, Anas; Saad, Juniza Md; Arif Abu Bakar, Asyraf; Hannan Damahuri, Abdul; Syukri, Nur Syamim Mohd

    2018-01-01

    Malaysian government’s aim to include nuclear energy for electricity generation has triggered various reactions from all especially the public. The objective of this study is to have a better understanding on the knowledge, sources of information of nuclear power and sources of energy chosen by Malaysian in 20 years’ time. Besides that, we want to examine the level of acceptance and perception of Malaysian towards nuclear energy and we want to identify the correlation between public perceptions with the acceptance towards nuclear power in Malaysia, and also to study the differences between perception and acceptance of nuclear power with gender and educational level. For this research methodology, the research questions are given orally or through paper-pencil and also social networking site such as Facebook or through electronic media application such as WhatsApp and Google docs. The data were analysed using a SPSS version 22.0 (Statistical Package for the Social Sciences). Results showed that more than 50% of the respondents have the knowledge of nuclear energy. A part of from that, only 39 % are confident government can afford to build NPP in Malaysia and 41 % disagree nuclear energy is the best option for future energy. From analysis using SPSS 22 we estimate negative perception will give a negative acceptance in term of support towards the use of nuclear energy in power generation in Malaysia. There are also slight correlation that the higher the level of education of Malaysian, the more negative the perception of Malaysian in accepting nuclear energy as source of power in Malaysia. Therefore in shaping a positive acceptance of NPP in Malaysia, the authorities need to educate the people with the knowledge of nuclear in order to overcome the negative perception towards nuclear power.

  1. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  2. On-line monitoring applications at nuclear power plants. A risk informed approach to calibration reduction

    International Nuclear Information System (INIS)

    Shankar, Ramesh; Hussey, Aaron; Davis, Eddie

    2003-01-01

    On-line monitoring of instrument channels provides increased information about the condition of monitored channels through accurate, more frequent evaluation of each cannel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. EPRI's strategic role in on-line monitoring is to facilitate its implementation and cost-effective use in numerous applications at power plants. To this end, EPRI has sponsored an on-line monitoring implementation project at multiple nuclear plants specifically intended to install and use on-line monitoring technology. The selected on-line monitoring method is based on the Multivariate State Estimation Technique. The project has a planned three-year life; seven plants are participating in the project. The goal is to apply on-line monitoring to all types of power plant applications and document all aspects of the implementation process in a series of EPRI reports. These deliverables cover installation, modeling, optimization, and proven cost-benefit. This paper discusses the actual implementation of on-line monitoring to various nuclear plant instrument systems. Examples of detected instrument drift are provided. (author)

  3. Role of nuclear power

    International Nuclear Information System (INIS)

    Eklund, S.

    1982-01-01

    A survey of world nuclear installations, the operating experiences of power reactors, and estimates of future nuclear growth leads to the conclusion that nuclear power's share of world electric power supply will grow slowly, but steadily during this decade. This growth will lead advanced countries to use the commercial breeder by the end of the century. Nuclear power is economically viable for most industrialized and many developing countries if public acceptance problems can be resolved. A restructuring of operational safety and regulations must occur first, as well as a resolution of the safeguards and technology transfer issue. 7 figures, 7 tables

  4. I and C upgrading at nuclear power plants

    International Nuclear Information System (INIS)

    Tamiri, A.

    2003-01-01

    Continuing the operation of existing nuclear power plants will help reduce the number of new base-load nuclear and fossil power plants that need to be built. Old nuclear power plants in Canada are operating with analog instrumentation and control systems. For a number of reasons, such as changes and improvements in the applicable standards and design, maintenance problems due to the lack of spares, technical obsolescence, the need to increase power production, availability, reliability and safety, and in order to reduce operation and maintenance costs, instrumentation and control upgrading at nuclear power plants in a cost effective manner should be considered the greatest priority. Failures of instrumentation and control (I and C) due to aging and obsolescence issues may have an immediate negative impact on plant reliability and availability and also affect long-term plant performance and safety. In today's competitive marketplace, power plants are under pressure to cut spending on maintenance while reducing the risk of equipment failure that could cause unplanned outage. To improve plant safety and availability, old nuclear power plants will require investment in new technologies that can improve the performance and reduce the costs of generation by addressing the long term reliability of systems by up-grading to modem digital instrumentation and control and optimization opportunities. Boiler drum level control at nuclear power plants is critical for both plant protection and equipment safety and applies equality to high and low levels of water within the boiler drum. Plant outage studies at Pickering Nuclear have identified boiler drum level control and feed water control systems as major contributors to plant unavailability. Ways to improve transient and steady state response, upgrading existing poor analog control systems for boiler level and feed-water control systems at Pickering Nuclear, with enhanced and robust controller will be discussed in this paper

  5. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  6. Basic study for development of nuclear heat application systems

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Yoshitomo; Fumizawa, Motoo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1996-05-01

    We need to intensely investigate real possibilities of nuclear heat application systems which exploit high potential of nuclear energy as a promising candidate of the future energy resource in the world. In this report, special interest was placed on coal reforming systems because we thought a compact heat source of nuclear power with a very high energy density might compensate the environmental problem caused by burning a great amount of coal. First, we reviewed state-of-the-art technologies for coal reforming technology with a special attention on coal gasification technologies. Based on these basic data, we proposed several nuclear coal reforming systems and discussed advantages and disadvantages of the systems. We also explored a model with which we could analyze nuclear heat application systems all together. In addition, we investigated possibility and effects of nuclear heat utilization systems producing chemical materials from carbon dioxide in flue gas of fossil fuel power plant. As a result, we showed nuclear heat application systems were useful. (author).

  7. Banning nuclear power at sea

    International Nuclear Information System (INIS)

    Handler, J.

    1993-01-01

    This article argues that now that the East-West conflict is over, nuclear-powered vessels should be retired. Nuclear-powered ships and submarines lack military missions, are expensive to build and operate, generate large amounts of long-lived deadly nuclear waste from their normal operations and when they are decommissioned, and are subject to accidents or deliberate attack which can result in the sinking of nuclear reactors and the release of radiation. With the costs of nuclear-powered vessels mounting, the time has come to ban nuclear power at sea. (author)

  8. The need for nuclear power

    International Nuclear Information System (INIS)

    1977-12-01

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  9. Advance in study of intelligent diagnostic method for nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Gang; Yang Li

    2008-01-01

    The advance of research on the application of three types of intelligent diagnostic approach based on neural network (ANN), fuzzy logic and expert system to the operation status monitoring and fault diagnosis of nuclear power plant (NPP) was reviewed. The research status and characters on status monitoring and fault diagnosis approaches based on neural network, fuzzy logic and expert system for nuclear power plant were analyzed. The development trend of applied research on intelligent diagnostic approaches for nuclear power plant was explored. The analysis results show that the research achievements on intelligent diagnostic approaches based on fuzzy logic and expert system for nuclear power plant are not much relatively. The research of intelligent diagnostic approaches for nuclear power plant concentrate on the aspect of operation status monitoring and fault diagnosis based on neural networks for nuclear power plant. The advancing tendency of intelligent diagnostic approaches for nuclear power plant is the combination of various intelligent diagnostic approaches, the combination of neural network diagnostic approaches and other diagnostic approaches as well as multiple neural network diagnostic approaches. (authors)

  10. 75 FR 5355 - Notice of Extension of Comment Period for NUREG-1934, Nuclear Power Plant Fire Modeling...

    Science.gov (United States)

    2010-02-02

    ..., Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment AGENCY... 1019195), Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment... exists in both the general fire protection and the nuclear power plant (NPP) fire protection communities...

  11. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  12. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  13. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  14. Experience in safeguarding nuclear material at the Rheinsberg nuclear power station

    International Nuclear Information System (INIS)

    Winkler, R.

    1976-01-01

    The three years' experience that has been gained in application of the Safeguards Agreement shows that the carrying out of inspections at the nuclear power plant has virtually no effect on operating conditions. In future it will be possible to reduce this effect even further and still maintain the operational reliability of the station. Verification of the transfer of nuclear material and detection of possible violations have proved relatively simple. The labour requirement of each unit at the station for the performance of inspections is not more that thirty man-days. Constructive collaboration between power station staff and inspectors is of great importance in improving the safeguards procedures. (author)

  15. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  16. Application of flow-controllable accumulator and performance analysis in Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jung, Byung-Ryul; Lee, Un-Chul

    1997-01-01

    The Korean Yonggwang Nuclear Power Plants 3 ampersand 4(YGN 3 ampersand 4) are the two-loop pressurized water reactor (PWR) nuclear steam supply systems, rated at 2,815 MW(thermal). They incorporate the safety injection system (SIS) consisting of the two high pressure (HPSI) pumps, two low pressure safety injection (LPSI) pumps, and four accumulators. The SIS is two headered arrangements, each to four cold legs injection (CLI) type which provides cooling to the core in the highly unlikely event of a loss-of-coolant accident (LOCA). In the current SIS, the LPSI pumps automatically start during a LOCA, and also provide the residual heat removal capability during the shutdown cooling. This paper presents the feasibility of the removal of the LPSI from the existing SIS with minor system changes, including the increase up to four in the HPSI pumps, direct vessel injection(DVI), and the flow-controllable accumulators. A double-ended rupture of one of the four cold legs in the YGN 3 ampersand 4 was simulated using RELAP5/MOD3.1 to determine the feasibility of the application of this new SIS design to the current nuclear power plants. As a result, the calculated reflooding peak cladding surface temperature(PCT) was comparable to that of original base calculation, and the downcomer and the core collapsed liquid level during reflooding were also comparable to those in the current safety system design. This large break, cold-leg LOCA analysis addresses the reflooding capability without credit for a LPSI pump system and the applicability of the new flow-controllable accumulator. Also this analysis confirms that the combination of new flow-controllable accumulators, DVI and the increased HPSI pumps maintain the peak cladding temperature below the prescribed limits. 14 refs., 4 figs., 3 tabs

  17. Italian nuclear power industry after nuclear power moratorium: Current state and future prospects

    International Nuclear Information System (INIS)

    Adinolfi, R.; Previti, G.

    1992-01-01

    Following Italy's nuclear power referendum results and their interpretation, all construction and operation activities in the field of nuclear power were suspended by a political decision with consequent heavy impacts on Italian industry. Nevertheless, a 'nuclear presidium' has been maintained, thanks to the fundamental contribution of activities abroad, succeeding in retaining national know-how and developing the new technologies called for the new generation of nuclear power plants equipped with intrinsic and/or passive reactor safety systems

  18. Application of Field Programmable Gate Arrays in Instrumentation and Control Systems of Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-01-01

    Field programmable gate arrays (FPGAs) are gaining increased attention worldwide for application in nuclear power plant (NPP) instrumentation and control (I&C) systems, particularly for safety and safety related applications, but also for non-safety ones. NPP operators and equipment suppliers see potential advantages of FPGA based digital I&C systems as compared to microprocessor based applications. This is because FPGA based systems can be made simpler, more testable and less reliant on complex software (e.g. operating systems), and are easier to qualify for safety and safety related applications. This publication results from IAEA consultancy meetings covering the various aspects, including design, qualification, implementation, licensing, and operation, of FPGA based I&C systems in NPPs

  19. Nuclear power in Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, Z.H.; Qureshi, I.H.

    2005-01-01

    Pakistan started its nuclear power program by installing a 137 M We Canadian Deuterium Reactor (Candu) at Karachi in 1971 which became operational in 1972. The post-contract technical support for the Karachi Nuclear Power Plant (KANUPP) was withdrawn by Canada in 196 as a consequence of Indian nuclear device test in 1974. In spite of various difficulties PAEC resolved to continue to operate KANUPP and started a process for the indigenous fabrication of spare parts and nuclear fuel. The first fuel bundle fabricated in Pakistan was loaded in the core in 1980. Since then KANUPP has been operating on the indigenously fabricated fuel. The plant computer systems and the most critical instrumentation and Control system were also replaced with up-to date technology. In 2002 KANUPP completed its original design life of 30 year. A program for the life extension of the plant had already been started. The second nuclear power plant of 300 M We pressurized water reactor purchased from China was installed in Chashma in 1997, which started commercial operations in 2001. Another unit of 300 M We will be installed at Chashma in near future. These nuclear power plants have been operating under IAEA safeguards agreements. PAEC through the long-term performance of the two power plants has demonstrated its competence to safely and successfully operate and maintain nuclear power plants. Pakistan foresees an increasingly important and significant share of nuclear power in the energy sector. The Government has recently allocated a share of 8000 MWe for nuclear energy in the total energy scenario of Pakistan by the year 2025. (author)

  20. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  1. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  2. French nuclear power plants for heat generation

    International Nuclear Information System (INIS)

    Girard, Y.

    1984-01-01

    The considerable importance that France attributes to nuclear energy is well known even though as a result of the economic crisis and the energy savings it is possible to observe a certain downward trend in the rate at which new power plants are being started up. In July 1983, a symbolic turning-point was reached - at more than 10 thousand million kW.h nuclear power accounted, for the first time, for more than 50% of the total amount of electricity generated, or approx. 80% of the total electricity output of thermal origin. On the other hand, the direct contribution - excluding the use of electricity - of nuclear energy to the heat market in France remains virtually nil. The first part of this paper discusses the prospects and realities of the application, at low and intermediate temperatures, of nuclear heat in France, while the second part describes the French nuclear projects best suited to the heat market (excluding high temperatures). (author)

  3. Economic evaluation of bids for nuclear power plants

    International Nuclear Information System (INIS)

    1976-01-01

    The purpose of the guidebook is to assist an organisation responsible for a nuclear power project in evaluating and establishing an economic order of merit among competing bids. An approximate overall time schedule for a first nuclear power plant project is provided. A schematic outline of technical bid evaluation is given. The basic procedure of economic bid evaluation is outlined, e.g. evaluation of the present worth of all cost items of plant capital investment, of the nuclear cycle, of O and M costs (operation and maintenance costs), and of economic corrections. All these cost items are evaluated for the economic life of the plant and corrected for escalation where applicable

  4. Nuclear power: benefits for the future in Romania

    International Nuclear Information System (INIS)

    Vultur, C.

    2001-01-01

    This paper explains how nuclear power was implemented in Romania, why Romania chose nuclear energy and what the impact of building a power plant is on the industry and environment of Romania. In the 1960's, Romania started discussions with different partners to cooperate in the development and application of atomic energy for peaceful purpose. In 1977 Romanian Government decided that the Candu-600 to be the basic unit for its nuclear program. The contract between Romania and Canada was for 5 units. In 1979, the construction of the first Candu - 600 unit started in Cernavoda, on the right side of Danube River, about 160 km east of Bucharest. (author)

  5. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  6. Heat recovery from nuclear power plants

    International Nuclear Information System (INIS)

    Safa, H.

    2012-01-01

    The thermodynamic efficiency of a standard Nuclear Power Plant (NPP) is around 33%. Therefore, about two third of the heat generated by the nuclear fuel is literally wasted in the environment. Given the fact that the steam coming out from the high pressure turbine is superheated, it could be advantageously used for non electrical applications, particularly for district heating. Considering the technological improvements achieved these last years in heat piping insulation, it is now perfectly feasible to envisage heat transport over quite long distances, exceeding 200 km, with affordable losses. Therefore, it could be energetically wise to revise the modifications required on present reactors to perform heat extraction without impeding the NPP operation. In this paper, the case of a French reactor is studied showing that a large fraction of the wasted nuclear heat can be actually recovered and transported to be injected in the heat distribution network of a large city. Some technical and economical aspects of nuclear district heating application are also discussed. (author)

  7. SEISMIC DESIGN CRITERIA FOR NUCLEAR POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R. A.

    1963-10-15

    The nature of nuclear power reactors demands an exceptionally high degree of seismic integrity. Considerations involved in defining earthquake resistance requirements are discussed. Examples of seismic design criteria and applications of the spectrum technique are described. (auth)

  8. Applications of power beaming from space-based nuclear power stations

    International Nuclear Information System (INIS)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000 0 K and a liquid drop radiator to reject heat at temperatures of approx. 500 0 K. Higher RBR coolant temperatures (up to approx. 3000 0 K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel

  9. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, P.O.

    1992-05-01

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  10. Nuclear dilemma: power, proliferation, and development

    International Nuclear Information System (INIS)

    Miller, M.

    1979-01-01

    Debate over President Carter's nuclear energy policy centers on how to develop nuclear power for civilian use and prevent the proliferation of nuclear materials for weapons. Both supporters and opponents of nuclear energy have been critical of Carter's policies because each side fails to see the linkage between the two concerns as codified in the 1978 Non-Proliferation Act. The author uses a dialogue format to illustrate the arguments for resisting proliferation and recognizing nuclear energy as an appropriate technology. The consequences of a nuclear moratorium are explored along with implications for foreign policy. U.S. leadership in developing energy technologies that can meet a broad range of appropriate applications, combined with leadership in building appropriate political frameworks, is needed if nuclear energy is to make a positive contribution toward world peace and acceptable living standards. 8 references

  11. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  12. LXII International conference NUCLEUS 2012. Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies (LXII Meeting on nuclear spectroscopy and nuclear structure). Book of abstracts

    International Nuclear Information System (INIS)

    Vlasnikov, A.K.

    2012-01-01

    The scientific program of the conference covers almost all problems in nuclear physics and its applications. The recent results of experimental investigations of atomic nuclei properties and nuclear reaction mechanisms are presented. The theoretical problems of atomic nuclei and fundamental interactions as well as nuclear reactions are discussed. The new techniques and methods of nuclear physical experiments are considered. The particular attention is given to fundamental problems of nuclear power and qualitative training of russian and foreign specialist in field of nuclear physics and atomic power engineering [ru

  13. A pilot application of risk-based methods to establish in-service inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station

    International Nuclear Information System (INIS)

    Vo, T.; Gore, B.; Simonen, F.; Doctor, S.

    1994-08-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest Laboratory is developing a method that uses risk-based approaches to establish in-service inspection plans for nuclear power plant components. This method uses probabilistic risk assessment (PRA) results and Failure Modes and Effects Analysis (FEMA) techniques to identify and prioritize the most risk-important systems and components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot applications of this method. The specific systems addressed in this report are the reactor pressure vessel, the reactor coolant, the low-pressure injection, and the auxiliary feedwater. The results provide a risk-based ranking of components within these systems and relate the target risk to target failure probability values for individual components. These results will be used to guide the development of improved inspection plans for nuclear power plants. To develop inspection plans, the acceptable level of risk from structural failure for important systems and components will be apportioned as a small fraction (i.e., 5%) of the total PRA-estimated risk for core damage. This process will determine target (acceptable) risk and target failure probability values for individual components. Inspection requirements will be set at levels to assure that acceptable failure probabilistics are maintained

  14. Quality assurance program manual for nuclear power plants. Volume I. Policies

    International Nuclear Information System (INIS)

    1976-01-01

    The Consumers Power Company Quality Assurance Program Manual for Nuclear Power Plants consists of policies and procedures which comply with current NRC regulatory requirements and industry codes and standards in effect during the design, procurement, construction, testing, operation, refueling, maintenance, repair and modification activities associated with nuclear power plants. Specific NRC and industry documents that contain the requirements, including the issue dates in effect, are identified in each nuclear power plant's Safety Analysis Report. The requirements established by these documents form the basis for the Consumer Power Quality Assurance Program, which is implemented to control those structures, systems, components and operational safety actions listed in each nuclear power plant's Quality List (Q-List). As additional and revised requirements are issued by the NRC and professional organizations involved in nuclear activities, they will be reviewed for their impact on this manual, and changes will be made where considered necessary. CP Co 1--Consumers Power Company QA Program Topical Report is Volume I of this manual and contains Quality Assurance Program Policies applicable during all phases of nuclear power plant design, construction and operation

  15. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  16. A Study on Soft Computing Applications in I and C Systems of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kang, H. T.; Chung, H. Y.

    2006-01-01

    In the paper, the application of the soft computing based nuclear power plant(NPP) is discussed. Soft computing such as neural network(NN), fuzzy logic controller(FLC), and genetic algorithm(GA) and/or their hybrid will be a new frontier for the development of instrument and control(I and C) systems in NPP. The application includes several fields, for example, the diagnostics of system transient, optimal data selection in NN, and intelligent control etc. Two or more combining structure, hybrid system, is more efficient. The concept of FLC, NN, and GA is presented in Section 2. The applications of soft computing used in NPP are presented in Section 3

  17. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  18. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  19. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  20. Nuclear power 2005: European report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In 2005, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 204 power reactors with a gross power of 181,030 MWe and a net power of 171,8479 MWe were in operation at the end of the year. In 2005, no nuclear power plant was commissioned. Two nuclear power plants were decommissioned in Europe in the course of 2005. In Germany the Obrigheim NPP and in Sweden the Barsebaeck 2 NPP have been permanently shut down due to political decisions. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.6 GW. In late 2005, five nuclear generating units were under construction in Finland (1), Romania (1), and Russia (3). 148 nuclear power plants were operated in thirteen states of the European Union (EU-25). They had an aggregate gross power of 137,023 MWe and a net power of 130,415 MWe, generating approx. 970 billion gross kWh of electricity in 2005, thus again contributing some 31% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in France (80%), followed by 72% in Lithuania, 55% in the Slovak Republic, 55% in Belgium, and 51% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as a result of electricity imports. (All statistical data in the country report apply to 2004 unless indicated otherwise. This is the year for which sound preliminary data are currently available for the states listed.) (orig.)

  1. Global development of advanced nuclear power plants, and related IAEA activities

    International Nuclear Information System (INIS)

    2006-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is underlining the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies deployable in the near term as well as in the longer term. For applications in the medium to longer term, with rising expectations for the role of nuclear energy in the future, technological innovation has become a strong focus of nuclear power technology developments by many Member States. To meet Member States' needs, the IAEA conducts activities to foster information exchange and collaborative research and development in the area of advanced nuclear reactor technologies. These activities include coordination of collaborative research, organization of international information exchange, and analyses of globally available technical data and results, with a focus on reducing nuclear power plant capital costs and construction periods while further improving performance, safety and proliferation resistance. In other activities, evolutionary and innovative advances are catalyzed for all reactor lines such as advanced water cooled reactors, high temperature gas cooled reactors, liquid metal cooled reactors and accelerator driven systems, including small and medium sized reactors. In addition, there are activities related to other applications of nuclear energy such as seawater desalination, hydrogen production, and other process heat applications. This brochure summarizes the worldwide status and the activities related to advanced nuclear power technology development and related IAEA activities. It includes a list of the collaborative research and development projects conducted by the IAEA, as well as of the status reports and other publications produced

  2. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  3. Nuclear power experience

    International Nuclear Information System (INIS)

    Daglish, J.

    1982-01-01

    A report is given of a recent international conference convened by the IAEA to consider the technical and economic experience acquired by the nuclear industry during the past 30 years. Quotations are given from a number of contributors. Most authors shared the opinion that nuclear power should play a major role in meeting future energy needs and it was considered that the conference had contributed to make nuclear power more viable. (U.K.)

  4. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  5. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  6. Application of expert system to nuclear power plant operation and guidance system

    International Nuclear Information System (INIS)

    Goto, M.; Takada, Y.

    1990-01-01

    For a nuclear power plant, it is important that an expert system supplies useful information to the operator to meet the increasing demand for high-level plant operation. It is difficult to build a user-friendly expert system that supplies useful information in real time using existing general-purpose expert system shells. Therefore a domain-specific expert system shell with a useful knowledge representation for problem-solving in nuclear power plant operation was selected. The Plant Table (P/T) representation format was developed for description of a production system for nuclear power plant operation knowledge. The P/T consists of plant condition representation designed to process multiple inputs and single output. A large number of operation inputs for several plant conditions are divided into 'timing conditions', 'preconditions' and 'completion conditions' to facilitate knowledge-base build-up. An expert system for a Nuclear Power Plant Operation and Guidance System utilizing the P/T was developed to assist automatic plant operation and surveillance test operation. In these systems, automatic plant operation signals to the plant equipment and operation guidance messages to the operators are both output based on the processing and assessment of plant operation conditions by the P/T. A surveillance test procedure guide for major safety-related systems, such as those for emergency core cooling systems, is displayed on a CRT (Cathode Ray Tube) and test results are printed out. The expert system for a Nuclear Power Plant Operation and Guidance System has already been successfully applied to Japanese BWR plants

  7. The problem of nuclear power

    International Nuclear Information System (INIS)

    Heimbrecht, J.; Kade, G.; Krusewitz, K.; Moldenhauer, B.; Steinhaus, K.; Weish, P.

    1977-01-01

    The battle over the problems of nuclear power has gone on in the Federal Republic for several years. The Buergerinitiativen, which used to be small and largely unpolitical, have become a major social force during this time. Subjects: 1) Dangers of nuclear power - can the risk be justified; 2)The necessity of nuclear power; 3) The enforcement of nuclear power - political and economic background; 4) Limits of power generation - limits of growth or limits of the system. (orig./HP) [de

  8. Survey of networked control systems and their potential applications in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kadri, A. [Univ. of Western Ontario, Dept. of Electrical and Computer Engineering, London, Ontario (Canada)]. E-mail: akadri@uwo.ca

    2006-07-01

    This paper provides an overview of networked control systems (NCSs) and their industrial applications. Most widely used NCSs based on fieldbus technologies; namely, ControlNet, Profibus (DP/PA), and Foundation Fieldbus have been discussed. The objectives and benefits of using such networks are presented and factors influencing their design and implementation are examined. Then, some of the special requirements in controlling nuclear power plant (NPP) have been considered. The potential of applying networked control systems in such installations has been discussed. Finally, the concept of wireless networked control systems is also described. (author)

  9. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  10. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  11. Prospects of nuclear power in fossil fuel saving

    International Nuclear Information System (INIS)

    Chernavskij, S.Ya.

    1984-01-01

    Economic aspects of the World energy situation are considered. The growth in the world prices for energy and energy resources has demanded to reconstruct the structure of both consumers and primary energy resources. The nuclear power development is one of the most important aspects of this reconstruction. In connection with its development the acceptability of nuclear power technology and possible spheres of its application in different fields of power engineering are considered. When discussing these problems one pays the main attention to the psychological effect and potential measures for its compensation. A forecast estimate is given of specific capital investments in and expenditures on electric energy production for NPPs and conventional power stations for the considered period of 30 years. The estimates are differentiated for the European and Asian parts of the country. The problems of developing nuclear central heating-and-power plants and nuclear thermal stations are discussed. It is pointed out that presently no sufficient experience has been gained in their commerical operation to discuss for sure the prospects of their wide-scale utilization. Results of calculations are presented showing that in the range of high-temperature processes the use of electric energy based on the nuclear power development is more efficient than direct combustion of fossil fuel as estimated with respect to its export at the world market prices

  12. Development of advanced RFID application system for nuclear power plant

    International Nuclear Information System (INIS)

    Onda, Kimiharu; Wakabayashi, Eisuke; Arai, Ryota; Shigemi, Ryosuke; Muro, Keiro; Yuda, Shinya

    2008-01-01

    In late years there comes to be close request for traceability of the information such as production control, construction and maintenance record and work history of nuclear power plants. On the other hand, the Radio-frequency identification (RFID) technology that can specify a product and personnel by an electric wave has raised the functionality and versatility as the base technology that can support ubiquitous information society around the mass production industry. In such a background, this article described the developed system, which applied the RFID to nuclear power plants in the areas of production control of the piping manufacture, the construction management and condition monitoring for maintenance works in order to improve their quality and reliability. (T. Tanaka)

  13. Research on psychological evaluation method for nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; He Xuhong; Zhao Bingquan

    2007-01-01

    The qualitative and quantitative psychology evaluation methods to the nuclear power plant operators were analyzed and discussed in the paper. The comparison analysis to the scope and result of application was carried out between method of outline figure fitted and method of fuzzy synthetic evaluation. The research results can be referenced to the evaluation of nuclear power plant operators. (authors)

  14. Nuclear power. Volume 2: nuclear power project management

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The following topics are discussed: review of nuclear power plants; licensing procedures; safety analysis; project professional services; quality assurance and project organization; construction, scheduling and operation; construction, scheduling and operation; nuclear fuel handling and fuel management; and plant cost management. 116 references, 115 figures, 33 tables

  15. Aseismic Design Licensings and guidelines for nuclear power plant in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Kazumi [Agency of Natural Resources and Energy, Tokyo (Japan)

    1997-03-01

    This paper describes Aseismic Design Licensing for Japanese Nuclear Power Plants which includes system, procedures and brief contents concerned application, permit and inspection, and the `Examination Guide for Aseismic Design of the Nuclear Power Reactor Facilities` which focused principals of seismic design loads, load combinations, and allowable limits. (J.P.N.)

  16. Aseismic Design Licensings and guidelines for nuclear power plant in Japan

    International Nuclear Information System (INIS)

    Yoshizawa, Kazumi

    1997-01-01

    This paper describes Aseismic Design Licensing for Japanese Nuclear Power Plants which includes system, procedures and brief contents concerned application, permit and inspection, and the 'Examination Guide for Aseismic Design of the Nuclear Power Reactor Facilities' which focused principals of seismic design loads, load combinations, and allowable limits. (J.P.N.)

  17. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    Rajci, T.

    1986-01-01

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  18. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1976-01-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input to each of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steelmaking, for some time to come. (author)

  19. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1975-10-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steel-making, for some time to come. (author)

  20. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation