WorldWideScience

Sample records for nuclear plant evaluation

  1. Economic evaluation of bids for nuclear power plants

    International Nuclear Information System (INIS)

    1976-01-01

    The purpose of the guidebook is to assist an organisation responsible for a nuclear power project in evaluating and establishing an economic order of merit among competing bids. An approximate overall time schedule for a first nuclear power plant project is provided. A schematic outline of technical bid evaluation is given. The basic procedure of economic bid evaluation is outlined, e.g. evaluation of the present worth of all cost items of plant capital investment, of the nuclear cycle, of O and M costs (operation and maintenance costs), and of economic corrections. All these cost items are evaluated for the economic life of the plant and corrected for escalation where applicable

  2. Problems of nuclear power plant safety evaluation

    International Nuclear Information System (INIS)

    Suchomel, J.

    1977-01-01

    Nuclear power plant safety is discussed with regard to external effects on the containment and to the human factor. As for external effects, attention is focused on shock waves which may be due to explosions or accidents in flammable material transport and storage, to missiles, and to earthquake effects. The criteria for evaluating nuclear power plant safety in different countries are shown. Factors are discussed affecting the reliability of man with regard to his behaviour in a loss-of-coolant accident in the power plant. Different types of PWR containments and their functions are analyzed, mainly in case of accident. Views are discussed on the role of destructive accidents in the overall evaluation of fast reactor safety. Experiences are summed up gained with the operation of WWER reactors with respect to the environmental impact of the nuclear power plants. (Z.M.)

  3. Method of safety evaluation in nuclear power plants

    International Nuclear Information System (INIS)

    Kuraszkiewicz, P.; Zahn, P.

    1988-01-01

    A novel quantitative technique for evaluating safety of subsystems of nuclear power plants based on expert estimations is presented. It includes methods of mathematical psychology recognizing the effect of subjective factors in the expert estimates and, consequently, contributes to further objectification of evaluation. It may be applied to complementing probabilistic safety assessment. As a result of such evaluations a characteristic 'safety of nuclear power plants' is obtained. (author)

  4. Chemistry evaluation in French EDF Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jacquier, Hervé

    2014-01-01

    The Nuclear Production Division of EDF is comprised of 19 power stations (58 PWR reactors) and 2 national engineering organisations. Nuclear Inspection (IN) is an internal assessment unit of the EDF Nuclear Production Directorate. At the request of the Directorate, it carries out periodic evaluations of all the units of the division. The evaluation of the nuclear sites (EGE: Overall Excellence Assessment) is carried out every 4 years, an intermediate evaluation is also carried out between each EGE. These evaluations are independent of the WANO and IAEA evaluations. Exchanges are carried out between Nuclear Inspection and the other international operators (for example, USA (INPO), England, China...) to share site evaluation methods. These evaluations are carried out by a team of 30 inspectors, reinforced during each evaluation by 10 peers who come from the various French nuclear sites. Nuclear Inspection produces a performance standards document for each FUNCTIONAL AREA, which is based on the requirements of the company. On the whole, 13 areas are evaluated during each inspection, in particular: Management, Operations, Maintenance, Engineering and Chemistry. The area of reactor plant chemistry has been evaluated since 2009. The Chemistry performance standards document is written from the EDF internal requirements and international references. During site evaluations, all the performance standards are assessed for compliance. The Chemistry performance standards document is comprised of 3 topics: Management of plant chemistry, The respect of the chemical and radiochemical specifications, The condition of the laboratories and the sampling lines, measuring equipment, and chemical products. The evaluations carried out make it possible to define strengths and weaknesses which the sites must address. After each evaluation, the assessment is presented to the site management and to the director of EDF Nuclear Production. For 4 years these evaluations have allowed progress to

  5. Technical evaluation of bids for nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    In continuation of its efforts to provide comprehensive and impartial guidance to Member States facing the need to introduce nuclear power, the International Atomic Energy Agency is issuing this guidebook as part of a series of guidebooks and codes of practice and, in particular, as a necessary supplement to 'Economic Evaluation of Bids for Nuclear Power Plants: A Guidebook', published by the IAEA in 1976 as Technical Reports Series No.175. The present publication is intended for project managers and senior engineers of electric utilities who are concerned with the evaluation of bids for a nuclear power project. It assumes that the reader has a good knowledge of the technical characteristics of nuclear power plants and of nuclear power project implementation. Its purpose is to provide the information necessary to organize, guide and supervise the technical evaluation of bids for a nuclear power project. It goes without saying that the technical staff carrying out the evaluation must have prior technical experience which cannot be provided by a guidebook

  6. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  7. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  8. Water hammer in USA nuclear power plants and it's evaluation

    International Nuclear Information System (INIS)

    Liu Shuqian.

    1987-01-01

    The results of evaluations about the water hammer events in USA nuclear power plants in recent years are summarily reported. The evaluations included underlying causes and frequency of water hammer events, damages incurred and systems affected. Through the evaluations about water hammer events and on the basis of past operation experiences in nuclear power plants, the design and operational modifications to prevent or mitigate water hammer events were presented. The NRC's current opinions relating to the water hammer problems are summarized, the importance of water hammer events for nuclear power plants construction in China is indicated

  9. Research on psychological evaluation method for nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; He Xuhong; Zhao Bingquan

    2007-01-01

    The qualitative and quantitative psychology evaluation methods to the nuclear power plant operators were analyzed and discussed in the paper. The comparison analysis to the scope and result of application was carried out between method of outline figure fitted and method of fuzzy synthetic evaluation. The research results can be referenced to the evaluation of nuclear power plant operators. (authors)

  10. Development of supplier evaluation model applying in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Yonggang; Fang Chunfa

    2006-01-01

    It is essential for the safe and stable operations of Nuclear Power Plants that various resources in the supply chain are effectively managed. Supplier is a significant resource of nuclear entities serving as an extension of the operation process. Scientific and radiation evaluation of the performance of suppliers is of vital importance to an effective and high quality supply chain. This paper establishes an advance and practical supplier evaluation system that is applicable for the operational nuclear power plants, based on the analysis of the current operation status of Daya Bay Nuclear Power Station against its targeted objectives, the acquisition of relevant practices home and abroad and the benchmarking with advanced peers, in order to enhance the core competence of nuclear power plant. (authors)

  11. Bid Preparation and Evaluation for Nuclear Power Plant Project Management

    International Nuclear Information System (INIS)

    Mohd Idris Taib, Mohd Khairulezwan Abdul Manan and Nur Farizan Amadzun

    2011-01-01

    Bid preparation and evaluation is one of the main activities in Nuclear Power Plant Project management. International Atomic Energy Agency guide and Korean experience was studied for Malaysian requirement in realization of first Nuclear Power Plant. Several aspects shall be taken into consideration such as political scenario, financial capabilities, sitting, human resource, technologies, fuel supplies and decommissioning for long term exceeded hundred years. Bidding process and activities is proposed for our country requirement. The main activities included but unlimited to Bid Invitation Specification, Bid Evaluation Process, Technical Evaluation, Economic Bid Evaluation and Contracting. On the end of day, Malaysia need safe and reliable Nuclear Power Plant. Malaysian Economic Transformation Programme also get benefit from spin-off localization products and services as well as Technology Transfer Programme. (author)

  12. A methodology for nuclear power plant operational events evaluation

    International Nuclear Information System (INIS)

    Araujo, Jeferson

    2015-01-01

    Operational events are normal occurrences in industrial plants and in nuclear power plants. The evaluation of operational events gains importance when it comes specifically to nuclear power plants due to the proportions that the impact and the consequences of these events may cause to the installation itself, their workers, the external area of the nuclear installation, the environment and to the public in general. These consequences, for the operation of these facilities can range from very little, until the consequences that lead to accidents and can cause significant impacts. Operational events may be associated or have influence in many fields of knowledge, such as operation, maintenance, engineering, Radiological Protection, physical protection, chemistry, Human or Organizational Factors and external events, among others. The accident at the Fukushima Daichi nuclear power plant, shows the importance of exhausting all the studies concerning operational events in order to improve the operational safety of nuclear plants, considering all the causes and possible consequences. In this context, the evaluation of operational events discipline emerges as an important and relevant tool to contribute to the maintenance and/or improvement of the operational safety of nuclear installations. Not without reason the nuclear industry actively participates in programs of exchange of operational experience, where relevant events are thoroughly evaluated and discussed in specific forums, such as power plant operators, regulators and/or joint technical meetings, always with the purpose to prevent, minimize or mitigate its consequences. Any evaluation of operational events passes necessarily by an in-depth study of the circumstances of the event, culminating with the identification of your cause and proposition of corrective actions to prevent recurrence of similar events. Additionally, the events should not be studied individually, but evaluated within a temporal context in order

  13. A methodology for nuclear power plant operational events evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jeferson, E-mail: jeferson@cnen.gov.br [Comissao Nacional de Energia Nuclear (CGRC/CNEN), Rio de janeiro, RJ (Brazil). Coordenacao Geral de Reatores e do Ciclo de Combustivel; Costa, Sergio Dias, E-mail: sergiodiascosta@hotmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Operational events are normal occurrences in industrial plants and in nuclear power plants. The evaluation of operational events gains importance when it comes specifically to nuclear power plants due to the proportions that the impact and the consequences of these events may cause to the installation itself, their workers, the external area of the nuclear installation, the environment and to the public in general. These consequences, for the operation of these facilities can range from very little, until the consequences that lead to accidents and can cause significant impacts. Operational events may be associated or have influence in many fields of knowledge, such as operation, maintenance, engineering, Radiological Protection, physical protection, chemistry, Human or Organizational Factors and external events, among others. The accident at the Fukushima Daichi nuclear power plant, shows the importance of exhausting all the studies concerning operational events in order to improve the operational safety of nuclear plants, considering all the causes and possible consequences. In this context, the evaluation of operational events discipline emerges as an important and relevant tool to contribute to the maintenance and/or improvement of the operational safety of nuclear installations. Not without reason the nuclear industry actively participates in programs of exchange of operational experience, where relevant events are thoroughly evaluated and discussed in specific forums, such as power plant operators, regulators and/or joint technical meetings, always with the purpose to prevent, minimize or mitigate its consequences. Any evaluation of operational events passes necessarily by an in-depth study of the circumstances of the event, culminating with the identification of your cause and proposition of corrective actions to prevent recurrence of similar events. Additionally, the events should not be studied individually, but evaluated within a temporal context in order

  14. Evaluation of Visual and Landscape Impacts of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Algohary, S.A.

    2007-01-01

    The nuclear power plant is a huge structure, and in terms of both size and function may result in an unacceptable visual conflict in both local and wider environment. Also, it has major implications in terms of physical, social, economic, environmental and impact on people. The environmental impacts include the visual and landscape aspects of these plants. This paper outlines the main general ideas of the architecture aspects of nuclear power plants, nuclear reactors. Also, it discusses the site selection considerations: Finally, it introduces an approach for the evaluation of visual and landscape impacts of nuclear power plants

  15. Evaluation of nuclear power plant operator's ability

    International Nuclear Information System (INIS)

    Wei Li; He Xuhong; Zhao Bingquan

    2004-01-01

    Based on the quantitative research on nuclear power plant (NPP) operator's psychological characteristics and performance, the Borda's method of fuzzy mathematics combined with the character of operator's task is used to evaluate their abilities. The result provides the reference for operator's reliability research and psychological evaluation. (author)

  16. Introducing PCTRAN as an evaluation tool for nuclear power plant emergency responses

    International Nuclear Information System (INIS)

    Cheng, Yi-Hsiang; Shih, Chunkuan; Chiang, Show-Chyuan; Weng, Tung-Li

    2012-01-01

    Highlights: ► PCTRAN is integrated with an atmospheric dispersion algorithm. ► The improved PCTRAN acts as an accident/incident simulator and a data exchange system. ► The software helps the responsible organizations decide the rescue and protective actions. ► The evaluation results show the nuclear power plant accident and its off-site dose consequences. ► The software can be used for nuclear power plant emergency responses. - Abstract: Protecting the public from radiation exposure is important if a nuclear power plant (NPP) accident occurs. Deciding appropriate protective actions in a timely and effective manner can be fulfilled by using an effective accident evaluation tool. In our earlier work, we have integrated PCTRAN (Personal Computer Transient Analyzer) with the off-site dose calculation model. In this study, we introduce PCTRAN as an evaluation tool for nuclear power plant emergency responses. If abnormal conditions in the plant are monitored or observed, the plant staffs can distinguish accident/incident initiation events. Thus, the responsible personnel can immediately operate PCTRAN and set up those accident/incident initiation events to simulate the nuclear power plant transient or accident in conjunction with off-site dose distributions. The evaluation results consequently help the responsible organizations decide the rescue and protective actions. In this study, we explain and demonstrate the capabilities of PCTRAN for nuclear emergency responses, through applying it to simulate the postulated nuclear power plant accident scenarios.

  17. Study on Economic Evaluation of Nuclear Power Plant's SSC

    International Nuclear Information System (INIS)

    Yun, Eun-Sub; Park, Young-Sheop

    2007-01-01

    As the operating year of nuclear power plant increases, more improvement plans on degraded SSCs(Structure, System, and Component) are suggested. Because of safety concern, the maintenance and replacing cost of nuclear power plant's SSCs are usually high and it can be a burden to financial control. To satisfy both safety and economic problems, systematic and efficient plans are needed. For this reason, KHNP is now developing the LTAM (Long Term Asset Management) program to establish the long term improvement plans for SSCs, from safety and economic point of views. Actually LTAM program is one of the steps of INPO ER (Equipment Reliability) process. In USA, EPRI (Electric Power Research Institute) has developed the LCM (Life Cycle Management) program and it was applied to some nuclear power plants. In this program, several alternatives are candidated. Then, economic evaluation is applied to each alternative. The result of economic evaluation affects to the final alternative decision. In this study, EPRI's economic evaluation method is reviewed

  18. Economic evaluation of nuclear plant project

    International Nuclear Information System (INIS)

    Tolba, Adel.

    1988-01-01

    The present work is an attempt to prepare a ''fair price'' estimate to serve as bench mark in the course of economic evaluation of bids to construct nuclear power plants. The methodology of determining the present value of all capital investment is used. Running costs of nuclear fuel, operation, and maintenance are also determined. As a result, levelized energy cost is calculated. Sensitivity analysis for different parameters has been conducted, and the results of which are included in this paper

  19. Nuclear power plant simulation facility evaluation methodology

    International Nuclear Information System (INIS)

    Haas, P.M.; Carter, R.J.; Laughery, K.R. Jr.

    1985-01-01

    A methodology for evaluation of nuclear power plant simulation facilities with regard to their acceptability for use in the US Nuclear Regulatory Commission (NRC) operator licensing exam is described. The evaluation is based primarily on simulator fidelity, but incorporates some aspects of direct operator/trainee performance measurement. The panel presentation and paper discuss data requirements, data collection, data analysis and criteria for conclusions regarding the fidelity evaluation, and summarize the proposed use of direct performance measurment. While field testing and refinement of the methodology are recommended, this initial effort provides a firm basis for NRC to fully develop the necessary methodology

  20. Systematic safety evaluation of old nuclear power plants

    International Nuclear Information System (INIS)

    Dredemis, G.; Fourest, B.

    1984-01-01

    The French safety authorities have undertaken a systematic evaluation of the safety of old nuclear power plants. Apart from a complete revision of safety documents (safety analysis report, general operating rules, incident and accident procedures, internal emergency plan, quality organisation manual), this examination consisted of analysing the operating experience of systems frequently challenged and a systematic examination of the safety-related systems. This paper is based on an exercise at the Ardennes Nuclear Power Plant which has been in operation for 15 years. This paper also summarizes the main surveys and modifications relating to this power plant. (orig.)

  1. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  2. Dynamic testing of nuclear power plant structures: an evaluation

    International Nuclear Information System (INIS)

    Weaver, H.J.

    1980-02-01

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants

  3. Evaluation of seismic hazards for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The main objective of this Safety Guide is to provide recommendations on how to determine the ground motion hazards for a plant at a particular site and the potential for surface faulting, which could affect the feasibility of construction and safe operation of a plant at that site. The guidelines and procedures presented in this Safety Guide can appropriately be used in evaluations of site suitability and seismic hazards for nuclear power plants in any seismotectonic environment. The probabilistic seismic hazard analysis recommended in this Safety Guide also addresses the needs for seismic hazard analysis of external event PSAs conducted for nuclear power plants. Many of the methods and processes described may also be applicable to nuclear facilities other than power plants. Other phenomena of permanent ground displacement (liquefaction, slope instability, subsidence and collapse) as well as the topic of seismically induced flooding are treated in Safety Guides relating to foundation safety and coastal flooding. Recommendations of a general nature are given in Section 2. Section 3 discusses the acquisition of a database containing the information needed to evaluate and address all hazards associated with earthquakes. Section 4 covers the use of this database for construction of a seismotectonic model. Sections 5 and 6 review ground motion hazards and evaluations of the potential for surface faulting, respectively. Section 7 addresses quality assurance in the evaluation of seismic hazards for nuclear power plants

  4. Applicability of the proposed evaluation method for social infrastructures to nuclear power plants

    International Nuclear Information System (INIS)

    Ichimura, Tomiyasu

    2015-01-01

    This study proposes an evaluation method for social infrastructures, and verifies the applicability of the proposed evaluation method to social infrastructures by applying it to nuclear power plants, which belong to social infrastructures. In the proposed evaluation method for social infrastructures, the authors chose four evaluation viewpoints and proposed common evaluation standards for the evaluation indexes obtained from each viewpoint. By applying this system to the evaluation of nuclear power plants, the evaluation index examples were obtained from the evaluation viewpoints. Furthermore, when the level of the common evaluation standards of the proposed evaluation method was applied to the evaluation of the activities of nuclear power plants based on the regulations, it was confirmed that these activities are at the highest level. Through this application validation, it was clarified that the proposed evaluation method for social infrastructures had certain effectiveness. The four evaluation viewpoints are 'service,' 'environment,' 'action factor,' and 'operation and management.' Part of the application examples to a nuclear power plant are as follows: (1) in the viewpoint of service: the operation rate of the power plant, and operation costs, and (2) in the viewpoint of environment: external influence related to nuclear waste and radioactivity, and external effect related to cooling water. (A.O.)

  5. Emergy Evaluation of a Swedish Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kindberg, Anna

    2007-03-01

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems

  6. Emergy Evaluation of a Swedish Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kindberg, Anna

    2007-03-15

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems.

  7. Probabilistic safety assessment technology for commercial nuclear power plant security evaluation

    International Nuclear Information System (INIS)

    Liming, J.K.; Johnson, D.H.; Dykes, A.A.

    2004-01-01

    Commercial nuclear power plant physical security has received much more intensive treatment and regulatory attention since September 11, 2001. In light of advancements made by the nuclear power industry in the field of probabilistic safety assessment (PSA) for its power plants over that last 30 years, and given the many examples of successful applications of risk-informed regulation at U. S. nuclear power plants during recent years, it may well be advisable to apply a 'risk-informed' approach to security management at nuclear power plants from now into the future. In fact, plant PSAs developed in response to NRC Generic Letter 88-20 and related requirements are used to help define target sets of critical plant safety equipment in our current security exercises for the industry. With reasonable refinements, plant PSAs can be used to identify, analyze, and evaluate reasonable and prudent approaches to address security issues and associated defensive strategies at nuclear power plants. PSA is the ultimate scenario-based approach to risk assessment, and thus provides a most powerful tool in identifying and evaluating potential risk management decisions. This paper provides a summary of observations of factors that are influencing or could influence cost-effective or 'cost-reasonable' security management decision-making in the current political environment, and provides recommendations for the application of PSA tools and techniques to the nuclear power plant operational safety response exercise process. The paper presents a proposed framework for nuclear power plant probabilistic terrorist risk assessment that applies these tools and techniques. (authors)

  8. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kwon, J. D. [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kang, K. J. [Chonnam National Univ., Gwangju (Korea, Republic of)] (and others)

    2001-03-15

    This research focuses on development of reliable life evaluation technology for nuclear power plant (NPP) components, and is divided into two parts, development of life evaluation systems for pressurized components and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered: development of expert systems for integrity assessment of pressurized components, development of integrity evaluation systems of steam generator tubes, prediction of failure probability for NPP components based on probabilistic fracture mechanics, development of fatigue damage evaluation technique for plant life extension, domestic round robin analysis for pressurized thermal shock of reactor vessels, domestic round robin analysis of constructing P--T limit curves for reactor vessels, and development of data base for integrity assessment. For evaluation of applicability of emerging technology to operating plants, on the other hand, the following eight topics are covered: applicability of the Leak-Before-Break analysis to Cast S/S piping, collection of aged material tensile and toughness data for aged Cast S/S piping, finite element analyses for load carrying capacity of corroded pipes, development of Risk-based ISI methodology for nuclear piping, collection of toughness data for integrity assessment of bi-metallic joints, applicability of the Master curve concept to reactor vessel integrity assessment, measurement of dynamic fracture toughness, and provision of information related to regulation and plant life extension issues.

  9. The evaluation of environmental effects of nuclear power plants

    International Nuclear Information System (INIS)

    Oezyurt, M.; Iyit, L.; Seyitogullari, S.

    2006-01-01

    Energy is today one of the most significant topics in the world. Humans are investigating alternative energy resources due to the fossil energy sources to be exhausted in future. As known, the life of energy resources such as coal and oil is limited. Natural gas will cover the need just for a limited period. On the other hand, developing population will increase the need of energy for the next generation. Therefore, alternative energy has gained much significance in recent years. Nuclear energy is the most criticized energy in public opinion. About 17 pct. of the electric need in the world is being covered by nuclear power plants . This ratio is over 30 pct. in European Union and over 78.2 pct. in France. The most significant risk as regard with environmental pollution is radioactive wastes for these plants. The opposite sides towards nuclear energy claim about the accidents of nuclear power plants and deaths in short and long terms. As long as the security rules are applied, nuclear power plants affect neither human nor environmental health in a detrimental way. The radiation emission scattered by nuclear power plants is very low. In this work, first of all nuclear energy was evaluated from a standpoint of environmental pollution and both positive and negative effects were investigated. As a result, the humanity will have to benefit from all the alternative energy resources , the nuclear energy as well, in order not to live in a dark world. Every technology has its own risks. It seems that if nuclear energy power plants are operated in high technology conditions it will be un given up for humanity

  10. Tsunami hazard assessment on nuclear power plant site evaluation accordance on DS 417

    International Nuclear Information System (INIS)

    Akhmad Khusyairi

    2011-01-01

    Nuclear power plant site evaluation should conduct the hazard evaluation on tsunami. Global climate changes and particularly extreme meteorology and hydrology phenomena have an impact on the structure, systems and important components related to safety. Therefore, IAEA makes efforts to revise the IAEA Safety Standard Series NS-G 3.4, Meteorological Events in Site Evaluation for Nuclear Power Plants and IAEA safety standard series NS-G 3.5 Flood Hazard For Nuclear Power Plants On Coastal And River Sites, in order to provide protection against the public and the environment safety due to operation of nuclear power plants. There are two methods used in assessing tsunami hazard, probabilistic and deterministic methods. In the tsunami hazard assessment, some necessary information and data should be obtained to determine the basic design of tsunami hazard during designing nuclear power plants, especially the cooling system design. Flooding caused tsunami must be evaluated to determine the site protection system. Furthermore, There must be an evaluation on either coincident event or meteorological simultaneously tsunami event that caused the worst effect on the site. Therefore, the protection of the site from extreme tsunami can be planned. (author)

  11. Integrated software system for seismic evaluation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.L.

    1993-01-01

    The computer software CARES (Computer Analysis for Rapid Evaluation of Structures) was developed by the Brookhaven National Laboratory for the U.S. Nuclear Regulatory Commission. It represents an effort to utilize established numerical methodologies commonly employed by industry for structural safety evaluations of nuclear power plant facilities and incorporates them into an integrated computer software package operated on personal computers. CARES was developed with the objective of including all aspects of seismic performance evaluation of nuclear power structures. It can be used to evaluate the validity and accuracy of analysis methodologies used for structural safety evaluations of nuclear power plants by various utilities. CARES has a modular format, each module performing a specific type of analysis. The seismic module integrates all the steps of a complete seismic analysis into a single package with many user-friendly features such as interactiveness and quick turnaround. Linear structural theory and pseudo-linear convolution theory are utilized as the bases for the development with a special emphasis on the nuclear regulatory requirements for structural safety of nuclear plants. The organization of the seismic module is arranged in eight options, each performing a specific step of the analysis with most of input/output interfacing processed by the general manager. Finally, CARES provides comprehensive post-processing capability for displaying results graphically or in tabular form so that direct comparisons can be easily made. (author)

  12. Technical specifications review of nuclear power plants: a risk-informed evaluation

    International Nuclear Information System (INIS)

    Saldanha, Pedro Luiz da Cruz; Sousa, Anna Leticia; Frutuoso e Melo, Paulo Fernando Ferreira; Duarte, Juliana Pacheco

    2012-01-01

    The use of risk information by a regulatory body as part of an integrated decision making process addresses the way in which risk information is being used as part of an integrated process in making decisions about safety issues at nuclear plants – commonly referred to as risk-informed decision making. The risk-informed approach aims to integrate in a systematic manner quantitative and qualitative, deterministic and probabilistic safety considerations to obtain a balanced decision. Probabilistic Safety Assessment (PSA) is a methodology that can be applied to provide a structured analysis process to evaluate the frequency and consequences of accidents scenarios in nuclear power plants. Technical Specifications (TS) are specifications regarding the characteristics of nuclear power plants (variables, systems or components) of overriding importance to nuclear safety and radiation protection, which is an integral part of plant operation authorization. Limiting Conditions of Operation (LCO) are the minimum levels of performance or capacity or operating system components required for the safe operation of nuclear plants, as defined in technical specifications. The Maintenance Rule (MR) is a requirement established by the U. S. Nuclear Regulatory Commission (NRC) to check the effectiveness of maintenance carried out in nuclear plants, and plant configuration control. The control of plant configuration is necessary to verify the impact of the maintenance of a safety device out of service on plant safety. The Electric Power Research Institute (EPRI) has assessed the role of probabilistic safety analysis in the regulation of nuclear power plants with the following objectives: a) to provide utilities with an approach for developing and implementing nuclear power station risk-managed technical specification programs; and b) to complement and supplement existing successful configuration risk management applications such as MR. This paper focuses on the evaluation of EPRI

  13. On the network protocol performance evaluation for large scale communication system of nuclear plant

    International Nuclear Information System (INIS)

    Song, K. S.; Lee, T. H.; Kim, H. R.; Kim, D. H.; Ku, I. S.

    1998-01-01

    Computer technology has been dramatically advanced and it is now natural to apply digital network technology into nuclear plants. Communication architecture for nuclear plant defines the coordination of safety reactor control, balance of plant, subsystem utilities, and plant monitoring functions, and how they are connected and their user interface to guarantee plant performance and guarantee safety requirements. Therefore, to implement a digital network for control and monitoring systems of advanced nuclear plant needs systematic design and evaluation procedures because of responsive and hard real-time process characteristics of nuclear plant. In this paper, we evaluate several digital network protocols in terms of network delay, link failure effects to hard real-time requirements with full scale traffic

  14. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    Science.gov (United States)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  15. Method discussion of the performance evaluation on nuclear plant cable

    International Nuclear Information System (INIS)

    Lu Yongfang; Zhong Weixia; Sun Jiansheng; Liu Jingping

    2014-01-01

    A stock cable, which is same as the nuclear plant cable in service, was treated by thermal aging. After that, the mechanical property, the flame retardant property, the anti-oxidation were measured, and relationships between them due to the thermal aging were established. By those analysis, evaluating the in-service cable performance in nuclear plant and calculating its remaining life. Furthermore, the feasibility of this method was disscussed. (authors)

  16. Seismic evaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    The IAEA nuclear safety standards publications address the site evaluation and the design of new nuclear power plants (NPPs), including seismic hazard assessment and safe seismic design, at the level of the Safety Requirements as well as at the level of dedicated Safety Guides. It rapidly became apparent that the existing nuclear safety standards documents were not adequate for handling specific issues in the seismic evaluation of existing NPPs, and that a dedicated document was necessary. This is the purpose of this Safety Report, which is written in the spirit of the nuclear safety standards and can be regarded as guidance for the interpretation of their intent. Worldwide experience shows that an assessment of the seismic capacity of an existing operating facility can be prompted for the following: (a) Evidence of a greater seismic hazard at the site than expected before, owing to new or additional data and/or to new methods; (b) Regulatory requirements, such as periodic safety reviews, to ensure that the plant has adequate margins for seismic loads; (c) Lack of anti-seismic design or poor anti-seismic design; (d) New technical finding such as vulnerability of some structures (masonry walls) or equipment (relays), other feedback and new experience from real earthquakes. Post-construction evaluation programmes evaluate the current capability of the plant to withstand the seismic concern and identify any necessary upgrades or changes in operating procedures. Seismic qualification is distinguished from seismic evaluation primarily in that seismic qualification is intended to be performed at the design stage of a plant, whereas seismic evaluation is intended to be applied after a plant has been constructed. Although some guidelines do exist for the evaluation of existing NPPs, these are not established at the level of a regulatory guide or its equivalent. Nevertheless, a number of existing NPPs throughout the world have been and are being subjected to review of their

  17. Operating experience review for nuclear power plants in the Systematic Evaluation Program

    International Nuclear Information System (INIS)

    Mays, G.T.; Harrington, K.H.

    1982-01-01

    The Systematic Evaluation Program Branch (SEPB) of the Nuclear Regulatory Commission (NRC) is conducting the Systematic Evaluation Program (SEP) whose purpose is to determine the safety margins of the design and operation of the eleven oldest operating commercial nuclear power plants in the United States. This paper describes the methodology and results of the operational experience review portion of the SEP evaluation. SEPB will combine the results from these operational reviews with other safety topic evaluations to perform an integrated assessment of the SEP plants

  18. Meteorological events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide provides recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. It is of interest to safety assessors and regulators involved in the licensing process as well as to designers of nuclear power plants. This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It supplements the IAEA Safety Requirements publication on Site Evaluation for Nuclear Facilities which is to supersede the Code on the Safety of Nuclear Power Plants: Siting, Safety Series No. 50-C-S (Rev. 1), IAEA, Vienna (1988). The present Safety Guide supersedes two earlier Safety Guides: Safety Series No. 50-SG-S11A (1981) on Extreme Meteorological Events in Nuclear Power Plant Siting, Excluding Tropical Cyclones and Safety Series No. 50-SG-S11B (1984) on Design Basis Tropical Cyclone for Nuclear Power Plants. The purpose of this Safety Guide is to provide recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. This Safety Guide provides interpretation of the Safety Requirements publication on Site Evaluation for Nuclear Facilities and guidance on how to fulfil these requirements. It is aimed at safety assessors or regulators involved in the licensing process as well as designers of nuclear power plants, and provides them with guidance on the methods and procedures for analyses that support the assessment of the hazards associated with extreme and rare meteorological events. This Safety Guide discusses the extreme values of meteorological variables and rare meteorological phenomena, as well as their rates of occurrence, according to the following definitions: (a) Extreme values of meteorological variables such as air temperature and wind speed characterize the meteorological or climatological environment. And (b) Rare meteorological phenomena

  19. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L [ed.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  20. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Abbott, L.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures

  1. Evaluation of Watts Bar Nuclear Plant Unit 1 Technical Specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-08-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Watts Bar Nuclear Plant Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumption of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Watts Bar T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Watts Bar Nuclear Plant Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  2. Evaluation of regulatory processes affecting nuclear power plant early site approval and standardization

    International Nuclear Information System (INIS)

    1983-12-01

    This report presents the results of a survey and evaluation of existing federal, state and local regulatory considerations affecting siting approval of power plants in the United States. Those factors that may impede early site approval of nuclear power plants are identified, and findings related to the removal of these impediments and the general improvement of the approval process are presented. A brief evaluation of standardization of nuclear plant design is also presented

  3. Plant-specific evaluations of Transamerica Delaval diesel engines for nuclear service

    International Nuclear Information System (INIS)

    Dingee, D.A.; Laity, W.W.; Nesbitt, J.F.

    1985-03-01

    This paper discusses the approach taken to evlauate the readiness of Transamerica Delaval, Inc. (TDI) diesel generators for nuclear service at five power plants: Catawba, Comanche Peak, Grand Gulf, San Onofre, and Shoreham. TDI engines in these and other nuclear power plants have been the subject of a coordinated effort by 13 nuclear utilities to address reliability and quality issues. The utilities formed the TDI Diesel Generator Owners' Group and prepared a comprehensive plan for requalifying the engines as emergency power sources. Prior to full implementation of the plan by the Owners' Group and final review of the findings by the US Nuclear Regulatory Commission, several member plants became candidates for operating licenses. The TDI engines in those plants, including the five listed above, were evaluated on a case-by-case basis, taking into consideration the factors discussed in this paper. 2 refs

  4. Operational safety performance and economical efficiency evaluation for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang

    2012-01-01

    The economical efficiency of nuclear power includes a series of environmental parameters, for example, cleanliness. Nuclear security is the precondition and guarantee for its economy, and both are the direct embodiment of the social benefits of nuclear power. Through analyzing the supervision and management system on the effective operation of nuclear power plants, which has been put forward by the International Atomic Energy Agency (IAEA), the World Association of Nuclear Operators (WANO), the U.S. Nuclear Regulatory Commission (NRC), and other organizations, a set of indexs on the safety performance and economical efficiency of nuclear power are explored and established; Based on data envelopment analysis, a DEA approach is employed to evaluate the efficiency of the operation performance of several nuclear power plants, Some primary conclusion are achieved on the basis of analyzing the threshold parameter's sensitivity and relativity which affected operational performance. To address the conflicts between certain security and economical indicators, a multi-objective programming model is established, where top priority is given to nuclear safety, and the investment behavior of nuclear power plant is thereby optimized. (authors)

  5. Seismic re-evaluation of French nuclear power plants

    International Nuclear Information System (INIS)

    Andrieu, R.

    1995-01-01

    After a presentation of the seismic inputs which have been taken into account in the design of the French Nuclear Power Plants, the re-assessed values of these inputs are shown. Some considerations about the specificity of the French PWR program with regard to the standardisation of plants are given together with the present objectives of seismic re-evaluations. Finally the main results of the seismic re-analysis being performed for the Phenix Fast Reactor are considered. (author)

  6. Evaluation of Perry Nuclear Power Plant Unit 1 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-11-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Perry Nuclear Power Plant Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Perry T/S. Several discrepancies were identified and subsequently resolved through telephone conversations with the staff reviewer and the utility representative. Pending completion of the resolutions noted in Parts 3 and 4 of this report, the Perry Nuclear Power Plant Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  7. Evaluation issues on real-time operating system in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S. [Regulatory Research Div., Korea Inst. of Nuclear Safety (Korea, Republic of)

    2006-07-01

    In the recent few years, using the hard real-time operating system (RTOS) of safety-critical applications has gained increased acceptance in the nuclear safety system. Failure of this software could cause catastrophic consequences for human life. The digital I and C systems of nuclear power plants also have used hard RTOSs which are executing a required mission completely within its deadline. Because the nuclear power plants have to maintain a very high level of safety, the hard RTOS software should be reliable and safe. The RTOS used in safety-critical I and C systems is the base software used for the purpose of satisfying the real-time constraints, So, careful evaluation of its safety and functionality is very important, So far, the nuclear power plants of Korea have adopted commercial off-the-shelf (COTS) RTOS software. But, these days the RTOS embedded in safety grade PLC has been developed by KNICS project controlled by Ministry of Commerce, Industry and Energy of Korea. Whether COTS RTOS or newly developed RTOS, it must be evaluated its safety and reliability. (authors)

  8. Evaluation issues on real-time operating system in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S.

    2006-01-01

    In the recent few years, using the hard real-time operating system (RTOS) of safety-critical applications has gained increased acceptance in the nuclear safety system. Failure of this software could cause catastrophic consequences for human life. The digital I and C systems of nuclear power plants also have used hard RTOSs which are executing a required mission completely within its deadline. Because the nuclear power plants have to maintain a very high level of safety, the hard RTOS software should be reliable and safe. The RTOS used in safety-critical I and C systems is the base software used for the purpose of satisfying the real-time constraints, So, careful evaluation of its safety and functionality is very important, So far, the nuclear power plants of Korea have adopted commercial off-the-shelf (COTS) RTOS software. But, these days the RTOS embedded in safety grade PLC has been developed by KNICS project controlled by Ministry of Commerce, Industry and Energy of Korea. Whether COTS RTOS or newly developed RTOS, it must be evaluated its safety and reliability. (authors)

  9. Evaluation of human error estimation for nuclear power plants

    International Nuclear Information System (INIS)

    Haney, L.N.; Blackman, H.S.

    1987-01-01

    The dominant risk for severe accident occurrence in nuclear power plants (NPPs) is human error. The US Nuclear Regulatory Commission (NRC) sponsored an evaluation of Human Reliability Analysis (HRA) techniques for estimation of human error in NPPs. Twenty HRA techniques identified by a literature search were evaluated with criteria sets designed for that purpose and categorized. Data were collected at a commercial NPP with operators responding in walkthroughs of four severe accident scenarios and full scope simulator runs. Results suggest a need for refinement and validation of the techniques. 19 refs

  10. Study on integrity evaluation of structures associated with nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The 3.11 Tohoku District -off the Pacific Ocean Earthquake and tsunami made us observations of tsunami height in large exceedance of the design, and besides it gave the most damages to several nuclear power plants facing the Pacific Ocean at source area of the earthquake. Particularly, at Fukushima-Daiichi Nuclear Power Plant, the great tsunami caused the simultaneous failure on several plant's equipment and components, which escalated into the core damage. Considering these background, the objective of this research is to enhance fundamental technology relative to integrity evaluation of SSC's (System, Structure, components) targeting external events such as earthquakes and tsunamis. Specifically, it is performed to develop structure evaluation methods against tsunami, to develop seismic isolation system, and to enhance non-liner analysis methods for building and so on. In viewpoint of the other external events except earthquake and tsunami, it was performed to develop impact analysis methods on building and outdoor structure against swept things caused by tornadoes. After that on the basis of these developments, it is performed to draw up guidelines such as the base isolation structure review guide, and the structure design and risk evaluation guide against tsunami, which are to be used in cross-check analysis targeting integrity evaluation of nuclear power plant's structures against external events such as earthquakes and tsunamis. (author)

  11. Study on integrity evaluation of structures associated with nuclear power plants

    International Nuclear Information System (INIS)

    2013-01-01

    The 3.11 Tohoku District -off the Pacific Ocean Earthquake and tsunami made us observations of tsunami height in large exceedance of the design, and besides it gave the most damages to several nuclear power plants facing the Pacific Ocean at source area of the earthquake. Particularly, at Fukushima-Daiichi Nuclear Power Plant, the great tsunami caused the simultaneous failure on several plant's equipment and components, which escalated into the core damage. Considering these background, the objective of this research is to enhance fundamental technology relative to integrity evaluation of SSC's (System, Structure, components) targeting external events such as earthquakes and tsunamis. Specifically, it is performed to develop structure evaluation methods against tsunami, to develop seismic isolation system, and to enhance non-liner analysis methods for building and so on. In viewpoint of the other external events except earthquake and tsunami, it was performed to develop impact analysis methods on building and outdoor structure against swept things caused by tornadoes. After that on the basis of these developments, it is performed to draw up guidelines such as the base isolation structure review guide, and the structure design and risk evaluation guide against tsunami, which are to be used in cross-check analysis targeting integrity evaluation of nuclear power plant's structures against external events such as earthquakes and tsunamis. (author)

  12. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  13. Evaluating decommissioning costs for nuclear power plants

    International Nuclear Information System (INIS)

    MacDonald, R.R.

    1980-01-01

    An overview is presented of the economic aspects of decommissioning of large nuclear power plants in an attempt to put the subject in proper perspective. This is accomplished by first surveying the work that has been done to date in evaluating the requirements for decommissioning. A review is presented of the current concepts of decommissioning and a discussion of a few of the uncertainties involved. This study identifies the key factors to be considered in the econmic evaluation of decommissioning alternatives and highlights areas in which further study appears to be desirable. 12 refs

  14. Flood control design requirements and flood evaluation methods of inland nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Ailing; Wang Ping; Zhu Jingxing

    2011-01-01

    Effect of flooding is one of the key safety factors and environmental factors in inland nuclear power plant sitting. Up to now, the rule of law and standard systems are established for the selection of nuclear power plant location and flood control requirements in China. In this paper flood control standards of China and other countries are introduced. Several inland nuclear power plants are taken as examples to thoroughly discuss the related flood evaluation methods. The suggestions are also put forward in the paper. (authors)

  15. Guidelines for the technical evaluation of replacement items in nuclear power plants (NCIG-11)

    International Nuclear Information System (INIS)

    Craig, W.E.; Fakhar, A.A.; Shulman, M.N.

    1989-12-01

    This document presents guidelines and supporting information for the technical evaluation of replacement items in nuclear power plants. These guidelines contain six major sections which provide the practical knowledge and a programmatic approach to determine the technical and quality requirements necessary to generate purchase documents to procure the proper replacement items. The technical evaluation methodology includes the following steps. (1) Identification of the need for a technical evaluation. (2) Component/part functional classification procedures. (3) Performance of a Failure Modes and Effects Analysis. (4) Selection of Critical Characteristics for Design Determination. (5) Performance of a ''Like-For-Like'' or ''Alternate'' item Evaluation. (6) Preparation of the Technical and Quality Requirements Specification. Work on this document was initiated in response to the increased emphasis by the utilities owning nuclear power plants and nuclear industry on procurement of replacement items for use in safety related applications at nuclear power plants. 20 refs., 9 figs., 14 tabs

  16. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1991-01-01

    In the process of review and evaluation of licensing issues related to nuclear power plants, it is essential to understand the behavior of seismic loading, foundation and structural properties and their impact on the overall structural response. In most cases, such knowledge could be obtained by using simplified engineering models which, when properly implemented, can capture the essential parameters describing the physics of the problem. Such models do not require execution on large computer systems and could be implemented through a personal computer (PC) based capability. Recognizing the need for a PC software package that can perform structural response computations required for typical licensing reviews, the US Nuclear Regulatory Commission sponsored the development of a PC operated computer software package CARES (Computer Analysis for Rapid Evaluation of Structures) system. This development was undertaken by Brookhaven National Laboratory (BNL) during FY's 1988 and 1989. A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to operate on a PC, have user friendly input/output interface, and have quick turnaround. This paper describes the various features which have been implemented into the seismic module of CARES version 1.0

  17. EMI Evaluation on Wireless Computer Devices in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jae Ki; JI Yeong Hwa; Sung, Chan Ho

    2011-01-01

    Wireless computer devices, for example, mice and keyboards are widely used in various industries. However, I and C (instrumentation and control) equipment in nuclear power plants are very susceptible to the EMI (Electro-magnetic interference) and there are concerns regarding EMI induced transient caused by wireless computer devices which emit electromagnetic waves for communication. In this paper, industrial practices and nuclear related international standards are investigated to verify requirements of wireless devices. In addition, actual measurement and evaluation for the intensity of EMI of some commercially available wireless devices is performed to verify their compatibility in terms of EMI. Finally we suggest an appropriate method of using wireless computer devices in nuclear power plant control rooms for better office circumstances of operators

  18. Analysis of difficulties accounting and evaluating nuclear material of PWR fuel plant

    International Nuclear Information System (INIS)

    Zhang Min; Jue Ji; Liu Tianshu

    2013-01-01

    Background: Nuclear materials accountancy must be developed for nuclear facilities, which is required by regulatory in China. Currently, there are some unresolved problems for nuclear materials accountancy of bulk nuclear facilities. Purpose: The retention values and measurement errors are analyzed in nuclear materials accountancy of Power Water Reactor (PWR) fuel plant to meet the regulatory requirements. Methods: On the basis of nuclear material accounting and evaluation data of PWR fuel plant, a deep analysis research including ratio among random error variance, long-term systematic error variance, short-term systematic error variance and total error involving Material Unaccounted For (MUF) evaluation is developed by the retention value measure in equipment and pipeline. Results: In the equipment pipeline, the holdup estimation error and its total proportion are not more than 5% and 1.5%, respectively. And the holdup estimation can be regraded as a constant in the PWR nuclear material accountancy. Random error variance, long-term systematic error variance, short-term systematic error variance of overall measurement, and analytical and sampling methods are also obtained. A valuable reference is provided for nuclear material accountancy. Conclusion: In nuclear material accountancy, the retention value can be considered as a constant. The long-term systematic error is a main factor in all errors, especially in overall measurement error and sampling error: The long-term systematic errors of overall measurement and sampling are considered important in the PWR nuclear material accountancy. The proposals and measures are applied to the nuclear materials accountancy of PWR fuel plant, and the capacity of nuclear materials accountancy is improved. (authors)

  19. A plan for safety evaluation of tsunamis at the Uljin nuclear power plant site

    International Nuclear Information System (INIS)

    Lee, H. K.; Lee, D. S.

    1999-01-01

    The sites of many nuclear and thermal power plants are located along the coast line to obtain necessary cooling water. Therefore, they are vulnerable to coastal disasters like tsunamis. The safety evaluation on tsunamis of the site of Uljin nuclear power plants was performed with the maximum potential earthquake magnitude and related fault parameters in 1986. But according to the results of recent research, the possibility was suggested that the earthquake which has bigger magnitude than was expected is likely to happen in the seismic gaps near Akita, Japan. Therefore, a plan for safety evaluation of tsunamis at the Uljin nuclear power plants was laid out

  20. Developments of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2003-03-15

    The objective of this research is to develop an efficient evaluation technology and to investigate applicability of newly-developed technology, such as internet-based cyber platform, to operating power plants. Development of efficient evaluation systems for Nuclear Power Plant components, based on structural integrity assessment techniques, are increasingly demanded for safe operation with the increasing operating period of Nuclear Power Plants. The following five topics are covered in this project: development of assessment method for wall-thinned nuclear piping based on pipe test; development of structural integrity program for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for mam components of NPP; development of internet-based cyber platform and integrity program for primary components of NPP; effect of aging on strength of dissimilar welds.

  1. Integrated Plant Safety Assessment, Systematic Evaluation Program: Yankee Nuclear Power Station (Docket No. 50-29)

    International Nuclear Information System (INIS)

    1987-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0825), under the scope of the Systematic Evaluation Program (SEP), for Yankee Atomic Electric Company's Yankee Nuclear Power Station located in Rowe, Massachusetts. The SEP was initiated by the NRC to review the design of older operating nuclear power plants to reconfirm and document their safety. This report documents the review completed under the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations after the Final IPSAR for the Yankee plant was issued. The review has provided for (1) an assessment of the significance of differences between current technical positions on selected safety issues and those that existed when Yankee was licensed, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. 2 tabs

  2. Development of a web-based fatigue life evaluation system for primary components in a nuclear power plant

    International Nuclear Information System (INIS)

    Seo, Hyong Won; Lee, Sang Min; Choi, Jae Boong; Kim, Young Jin; Choi, Sung Nam; Jang, Ki Sang; Hong, Sung Yull

    2004-01-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including regular in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage the integrity issues on a nuclear power plant. In this paper, a web-based fatigue life evaluation system for primary components in nuclear power plant is proposed. This system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant

  3. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  4. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  5. Evaluation of masonry wall design at nuclear power plants

    International Nuclear Information System (INIS)

    Con, V.N.; Subramonian, N.; Chokshi, N.

    1983-01-01

    The structural integrity of safety-related masonry walls in operating nuclear power plants may not be maintained when subjected to certain loads and load combinations. The paper presents some findings based upon the review of the design and analysis procedures used by the licensees in the reevaluation of safety-related masonry walls. The design criteria developed by the Structural Engineering Branch (SEB) of the United States Nuclear Regulatory Commission (NRC) along with other standard codes such as the Uniform Building Code, ACI 531-79, ATC 3-06, and NCMA were used as guidance in evaluating the design criteria developed by the licensees. The paper deals with the following subject areas: loads and load combinations, allowable stresses, analytical procedures, and modification methods. The paper concludes that, in general, the masonry walls in nuclear power plants comply with the working stress design requirements. In some cases, certain nonlinear analysis methods were used. The applicability of these methods is discussed. (orig.)

  6. An economic evaluation of nuclear power plant externalities, using the hedonic price approach

    OpenAIRE

    Kato, Hirotaka; Ueta, Kazuhiro

    2012-01-01

    This study evaluates the external costs of nuclear power plants in Japan. Using the hedonic price approach, we analyze changes in land price in Fukui Prefecture before and after the Fukushima nuclear accident. The land in question is located far from the Fukushima accident area and was not directly impacted by the accident itself. The results of this study reveal that the area affected by the nuclear power plant's negative externalities expanded following the accident, and that the intensity ...

  7. Safety-specific benefit of the probabilistic evaluation of older nuclear power plants

    International Nuclear Information System (INIS)

    Hoertner, H.; Koeberlein, K.

    1991-01-01

    The report summarizes the experience of the GRS obtained within the framework of a probabilistic evaluation of older nuclear power plants and the German risk study. The applied methodology and the problems involved are explained first. After a brief summary of probabilistic analyses carried out for German nuclear power plants, reliability analyses for older systems are discussed in detail. The findings from the probabilistic safety analyses and the conclusions drawn are presented. (orig.) [de

  8. Development of resilience evaluation method for nuclear power plant. Part 1. Proposal of resilience index for assessment of safety of nuclear power plant under severe accident

    International Nuclear Information System (INIS)

    Demachi, Kazuyuki; Suzuki, Masaaki; Itoi, Tatsuya

    2016-01-01

    In this research, a new index 'The Resilience Index' was proposed to evaluate the capability of nuclear power plant to recover from the situation of safety function lost. Three elements assumed to evaluate the resilience index are the achievement rate, necessary time, and probability of success of each accident management activity. The resilience index is expected to visualize the improvement of safety of each nuclear power plant against severe accidents. (author)

  9. Geographical evaluation of the impact of nuclear power plants on settlement structures

    International Nuclear Information System (INIS)

    Divinsky, B.

    1992-01-01

    The effects of nuclear power plants are classed with respect to their character (one-sided or many-sided), order (primary or secondary), quality (positive or adverse), duration (temporary or permanent), and space (microregional or macroregional). The following topics must be included in the methodology of evaluation of the impacts of a nuclear power plant on the region: characteristics of the present settlement network, relationships within the settlement system, spatial transformation of settlements, development of urbanization, population density, town and village sizes, functional types of settlements, migration, age and social structure of the population, economic activity, town and village facilities, technical infrastructure, transport and traffic, psycho-social impacts of the occurrence of the nuclear power plant, microecology (microenvironment). (M.D.). 5 refs

  10. Virtual reality applied in the ergonomic evaluation of nuclear power plant control room

    International Nuclear Information System (INIS)

    Gatto, Leandro Barbosa da Silveira

    2012-01-01

    A nuclear power plant control room is a complex system that controls a nuclear and thermodynamic process used to produce electrical energy. The operators interact with the control room through interfaces that have significant implications to nuclear power plant safety and influence the operator activity. The operator activity presents complexity features and shows a series of mechanisms absents from the human factors guidelines, important to the evaluation and update of control rooms. The ergonomics approach considers the operation strategies, the interaction between the operators, the operator-system interaction, and interaction between operators and support groups. The main objective of this paper is propose the modeling of a nuclear control room, with the support of a game engine core. This tool will be used in the ergonomic evaluation of nuclear control room, generating information and data that will make possible the adequacy of control rooms features to the legal requirements of the regulating agency, assisting the nuclear licensing. (author)

  11. Development of web-based integrity evaluation system for primary components in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.M.; Kim, J.C.; Choi, J.B.; Kim, Y.J. [SAFE Research Center, Sungkyunkwan Univ., Suwon (Korea); Choi, S.N.; Jang, K.S.; Hong, S.Y. [Korea Electronic Power Research Inst., Daejeon (Korea)

    2004-07-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including periodical in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage integrity issues on a nuclear power plant. In this paper, a web-based integrity evaluation system for primary components in a nuclear power plant is proposed. The proposed system, which is named as WEBIES (web-based integrity evaluation system), has been developed in the form of 3-tier system architecture. The system consists of three servers; application program server, user interface program server and data warehouse server. The application program server includes the defect acceptance analysis module and the fracture mechanics analysis module which are programmed on the basis of ASME sec. XI, appendix A. The data warehouse server provides data for the integrity evaluation including material properties, geometry information, inspection data and stress data. The user interface program server provides information to all co- workers in the field of integrity evaluation. The developed system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant. (orig.)

  12. Development of web-based integrity evaluation system for primary components in a nuclear power plant

    International Nuclear Information System (INIS)

    Lee, S.M.; Kim, J.C.; Choi, J.B.; Kim, Y.J.; Choi, S.N.; Jang, K.S.; Hong, S.Y.

    2004-01-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including periodical in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage integrity issues on a nuclear power plant. In this paper, a web-based integrity evaluation system for primary components in a nuclear power plant is proposed. The proposed system, which is named as WEBIES (web-based integrity evaluation system), has been developed in the form of 3-tier system architecture. The system consists of three servers; application program server, user interface program server and data warehouse server. The application program server includes the defect acceptance analysis module and the fracture mechanics analysis module which are programmed on the basis of ASME sec. XI, appendix A. The data warehouse server provides data for the integrity evaluation including material properties, geometry information, inspection data and stress data. The user interface program server provides information to all co- workers in the field of integrity evaluation. The developed system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant. (orig.)

  13. Nuclear plant scram reduction

    International Nuclear Information System (INIS)

    Wiegle, H.R.

    1986-01-01

    The Nuclear Utility Management and Human Resources Committee (NUMARC) is a confederation of all 55 utilities with nuclear plants either in operation or under construction. NUMARC was formed in April 1984 by senior nuclear executives with hundreds of man-years of plant experience to improve (plant) performance and resolve NRC concerns. NUMARC has adopted 10 commitments in the areas of management, training, staffing and performance. One of these commitments is to strive to reduce automatic trips to 3 per year per unit for calendar year 1985 for plants in commercial operation greater than 3 years (with greater than 25% capacity factor). This goal applies to any unplanned automatic protection system trips at any time when the reactor is critical. Each utility has committed to develop methods to thoroughly evaluate all unplanned automatic trips to identify the root causes and formulate plans to correct the root causes thus reducing future unplanned scrams. As part of this program, the Institute of Nuclear Power Operations (INPO) collects and evaluates information on automatic reactor trips. It publishes the results of these evaluations to aid the industry to identify root causes and corrective actions

  14. Evaluation and assessment of nuclear power plant seismic methodology

    International Nuclear Information System (INIS)

    Bernreuter, D.; Tokarz, F.; Wight, L.; Smith, P.; Wells, J.; Barlow, R.

    1977-01-01

    The major emphasis of this study is to develop a methodology that can be used to assess the current methods used for assuring the seismic safety of nuclear power plants. The proposed methodology makes use of system-analysis techniques and Monte Carlo schemes. Also, in this study, we evaluate previous assessments of the current seismic-design methodology

  15. Evaluation and assessment of nuclear power plant seismic methodology

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.; Tokarz, F.; Wight, L.; Smith, P.; Wells, J.; Barlow, R.

    1977-03-01

    The major emphasis of this study is to develop a methodology that can be used to assess the current methods used for assuring the seismic safety of nuclear power plants. The proposed methodology makes use of system-analysis techniques and Monte Carlo schemes. Also, in this study, we evaluate previous assessments of the current seismic-design methodology.

  16. Digitized operator evaluation system for main control room of nuclear power plant

    International Nuclear Information System (INIS)

    Chen Yu; Yan Shengyuan; Chen Wenlong

    2014-01-01

    In order to evaluate the human-machine system matching relation of main control room in nuclear power plant accurately and efficiently, the expression and parameters of operator human body model were analyzed, and the evaluation required function of digital operator was determined. Based on the secondary development technology, the digital operator evaluation body model was developed. It could choose generation, gender, operation posture, single/eyes horizon, and left/right hand up to the domain according to the needs of specific evaluation, it was used to evaluate whether display information can be visible and equipment can be touch, and it also has key evaluation functions such as workspace and character visibility at the same time. The examples show that this method can complete the evaluation work of human-machine matching relation for main control room of nuclear power plant accurately, efficiently and quickly, and achieve the most optimal human-machine coordination relationship. (authors)

  17. Evaluation of the feasibility, economic impact, and effectiveness of underground nuclear power plants. Final technical report

    International Nuclear Information System (INIS)

    1978-05-01

    Information on underground nuclear power plants is presented concerning underground nuclear power plant concepts; public health impacts; technical feasibility of underground concepts; economic impacts of underground construction; and evaluation of related issues

  18. Higher operational safety of nuclear power plants by evaluating the behaviour of operating personnel

    International Nuclear Information System (INIS)

    Mertins, M.; Glasner, P.

    1990-01-01

    In the GDR power reactors have been operated since 1966. Since that time operational experiences of 73 cumulative reactor years have been collected. The behaviour of operating personnel is an essential factor to guarantee the safety of operation of the nuclear power plant. Therefore a continuous analysis of the behaviour of operating personnel has been introduced at the GDR nuclear power plants. In the paper the overall system of the selection, preparation and control of the behaviour of nuclear power plant operating personnel is presented. The methods concerned are based on recording all errors of operating personnel and on analyzing them in order to find out the reasons. The aim of the analysis of reasons is to reduce the number of errors. By a feedback of experiences the nuclear safety of the nuclear power plant can be increased. All data necessary for the evaluation of errors are recorded and evaluated by a computer program. This method is explained thoroughly in the paper. Selected results of error analysis are presented. It is explained how the activities of the personnel are made safer by means of this analysis. Comparisons with other methods are made. (author). 3 refs, 4 figs

  19. Geotechnical aspects of site evaluation and foundations for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    This publication is a revision of the former safety standards of IAEA Safety Series No. 50-SG-S8. The scope has been extended to cover not only foundations but also design questions related to geotechnical science and engineering, such as the bearing capacity of foundations, design of earth structures and design of buried structures. Seismic aspects also play an important role in this field, and consequently the Safety Guide on Evaluation of Seismic Hazards for Nuclear Power Plants, Safety Standards Series No. NS-G-3.3, which discusses the determination of seismic input motion, is referenced on several occasions. The present Safety Guide provides an interpretation of the Safety Requirements on Site Evaluation for Nuclear Installations and guidance on how to implement them. It is intended for the use of safety assessors or regulators involved in the licensing process as well as the designers of nuclear power plants, and it provides them with guidance on the methods and procedures for analyses to support the assessment of the geotechnical aspects of the safety of nuclear power plants

  20. Geotechnical aspects of site evaluation and foundations for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    This publication is a revision of the former safety standards of IAEA Safety Series No. 50-SG-S8. The scope has been extended to cover not only foundations but also design questions related to geotechnical science and engineering, such as the bearing capacity of foundations, design of earth structures and design of buried structures Seismic aspects also play an important role in this field, and consequently the Safety Guide on Evaluation of Seismic Hazards for Nuclear Power Plants, Safety Standards Series No. NS-G-3.3, which discusses the determination of seismic input motion, is referenced on several occasions. The present Safety Guide provides an interpretation of the Safety Requirements on Site Evaluation for Nuclear Installations and guidance on how to implement them. It is intended for the use of safety assessors or regulators involved in the licensing process as well as the designers of nuclear power plants, and it provides them with guidance on the methods and procedures for analyses to support the assessment of the geotechnical aspects of the safety of nuclear power plants

  1. Increasing reliability of nuclear energy equipment and at nuclear power plants

    International Nuclear Information System (INIS)

    Ochrana, L.

    1997-01-01

    The Institute of Nuclear Energy at the Technical University in Brno cooperates with nuclear power plants in increasing their reliability. The teaching programme is briefly described. The scientific research programme of the Department of Heat and Nuclear Power Energy Equipment in the field of reliability is based on a complex systematic concept securing a high level of reliability. In 1996 the Department prepared a study dealing with the evaluation of the maintenance system in a nuclear power plant. The proposed techniques make it possible to evaluate the reliability and maintenance characteristics of any individual component in a nuclear power plant, and to monitor, record and evaluate data at any given time intervals. (M.D.)

  2. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    International Nuclear Information System (INIS)

    Lee, Jin Woo

    2016-01-01

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant

  3. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo [KEPCo, Gimcheon (Korea, Republic of)

    2016-05-15

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant.

  4. Evaluation of methods for seismic analysis of nuclear fuel reprocessing plants, part 1

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Murray, R.C.; Arthur, D.F.; Feng, W.W.; Wight, L.H.; Zaslawsky, M.

    1975-01-01

    Currently, no guidelines exist for choosing methods of structural analysis to evaluate the seismic hazard of nuclear fuel reprocessing plants. This study examines available methods and their applicability to fuel reprocessing plant structures. The results of this study should provide a basis for establishing guidelines recommending methods of seismic analysis for evaluating future fuel reprocessing plants. The approach taken is: (1) to identify critical plant structures and place them in four categories (structures at or near grade; deeply embedded structures; fully buried structures; equipment/vessels/attachments/piping), (2) to select a representative structure in each of the first three categories and perform static and dynamic analysis on each, and (3) to evaluate and recommend method(s) of analysis for structures within each category. The Barnwell Nuclear Fuel Plant is selected as representative of future commercial reprocessing plants. The effect of site characteristics on the structural response is also examined. The response spectra method of analysis combined with the finite element model for each category is recommended. For structures founded near or at grade, the lumped mass model could also be used. If a time history response is required, a time-history analysis is necessary. (U.S.)

  5. Manual on quality assurance for the survey, evaluation and confirmation of nuclear power plant sites

    International Nuclear Information System (INIS)

    1987-04-01

    The present Manual on Quality Assurance for the Survey, Evaluation and Confirmation of Nuclear Power Plant Sites contains supporting material and illustrates examples for implementing the requirements contained in the Code of Practice on Quality Assurance for Safety in Nuclear Power Plants to the activities of survey, evaluation and confirmation of nuclear power plant sites. At the same time the Code of Practice for Safety in Nuclear Power Plant Siting, and Safety Guides in the siting series contain requirements and recommendations to implement a quality assurance programme in selected activities of the siting process. This manual is intended to provide guidance and illustrate examples on this implementation. During preparation and reviews of this Manual it was found out that the methodology of implementation of the quality assurance programme in siting activities is still under development. For these reasons it was considered appropriate to publish this Manual as a temporary publication for trial use

  6. A regulatory view of the seismic re-evaluation of existing nuclear power plants in the United Kingdom

    International Nuclear Information System (INIS)

    Inkester, J.E.; Bradford, P.M.

    1995-01-01

    The paper describes the background to the seismic re-evaluation of existing nuclear power plants in the United Kingdom. Nuclear installations in this country were not designed specifically to resist earthquakes until the nineteen-seventies, although older plants were robustly constructed. The seismic capability of these older installations is now being evaluated as part of the periodic safety reviews which nuclear licensees are required to carry out. The regulatory requirements which set the framework for these studies are explained and the approaches being adopted by the licensees for their assessment of the seismic capability of existing plants are outlined. The process of hazard appraisal is reported together with a general overview of UK seismicity. The paper then discusses the methodologies used to evaluate the response of plant to the hazard. Various other types of nuclear installation besides power plants are subject to licensing in the UK and the application of seismic evaluation to some of these is briefly described. Finally the paper provides some comments on future initiatives and possible areas of development. (author)

  7. The evaluation of site characteristics for Guangdong nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Ruming; Wu Dizhong; Yan Zhongmin

    1987-01-01

    This paper gives an account of the features of the site of Guangdong Nuclear Power Plant (GNPP) in general and in particular evaluates the outstanding site characteristics related to nuclear safety and public health. It is composed of two parts: the first part describes the seismo-geologic conditions of the site and the other treats the atmospheric dispersion conditions. It also contains the discussion why the possibility of inhabitancy within 5 km from the exclusion ares boundary would not be affected. (author)

  8. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  9. Evaluation of hazards from industrial activities near nuclear power plants

    International Nuclear Information System (INIS)

    Lannoy, A.; Gobert, T.

    1980-01-01

    Among the potential hazards which could arise from industrial activity near nuclear power plants, fires and explosions of dangerous products are of particular concern. Indeed, thermal radiation from an adjacent fire could endanger the resistance of a plant's structures. Likewise, an accident explosion would induce an overpressure wave which could affect buildings' integrity. This paper presents the methodology developed by Electricite de France to evaluate the consequences of accidents affecting: - Industrial facilities: refineries, chemical and petrochemical plants, storage areas, pipelines of gaseous, liquid and liquefied materials. - Transportation routes (roads, railways, inland waterways) used to carry dangerous substances (solid explosives, liquid, gaseous or liquefied hydrocarbons). Probabilistic methods have been developed by analysis of actual accident statistics (e.g. risks induced by transportation routes) and realistic and representative accident scenarios have been set up. Five sequences have been identified: Formation of a fluid jet at a breach. Evaporation and possible formation of a liquid layer. Atmospheric dispersion and drift of a gaseous cloud. Heat radiation from fire. Unconfined explosion of a gaseous cloud. This paper gives an overview of the methods and the main assumptions used to deal with each sequence. Those methods, presently applied by Electricite de France, provide a coherent and realistic approach for the evaluation of the risks at nuclear power plants induced by industrial activity. (orig.)

  10. Integrated-plant-safety assessment Systematic Evaluation program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245

    International Nuclear Information System (INIS)

    1982-11-01

    The Systematic Evaluation Program was initiated in February 1977 to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  11. Development of an integrated database management system to evaluate integrity of flawed components of nuclear power plant

    International Nuclear Information System (INIS)

    Mun, H. L.; Choi, S. N.; Jang, K. S.; Hong, S. Y.; Choi, J. B.; Kim, Y. J.

    2001-01-01

    The object of this paper is to develop an NPP-IDBMS(Integrated DataBase Management System for Nuclear Power Plants) for evaluating the integrity of components of nuclear power plant using relational data model. This paper describes the relational data model, structure and development strategy for the proposed NPP-IDBMS. The NPP-IDBMS consists of database, database management system and interface part. The database part consists of plant, shape, operating condition, material properties and stress database, which are required for the integrity evaluation of each component in nuclear power plants. For the development of stress database, an extensive finite element analysis was performed for various components considering operational transients. The developed NPP-IDBMS will provide efficient and accurate way to evaluate the integrity of flawed components

  12. Quantitative evaluation of physical protection system in nuclear power plant

    International Nuclear Information System (INIS)

    Sun Yahua; Li Bin; Li Shiju

    2009-01-01

    Based on the prompt detection analysis, this paper introduced one analysis model of intrusion path in nuclear power plant by means of morphology analysis and developed the evaluation software for path model analysis of physical protection system. Quantitative analysis on three elements (detection, delay, and response) of physical protection system was presented with an imaginary intrusion event example in Mac Arthur nuclear center. The results indicated that the path prompt detection analysis worked effectively to find the weak point of the physical protection system in NPP, and meantime we can also get the high cost-effectiveness improved measures. It is an effective approach to evaluate the overall performance of the system. (authors)

  13. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    International Nuclear Information System (INIS)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C.

    2011-01-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  14. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C. [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  15. Cooling water recipients for nuclear power plants

    International Nuclear Information System (INIS)

    Dahl, F.-E.; Saetre, H.J.

    1971-10-01

    The hydrographical and hydrological conditions at 17 prospective nuclear power plant sites in the Oslofjord district are evaluated with respect to their suitability as recipients for thermal discharges from nuclear power plants. No comparative evaluations are made. (JIW)

  16. Contribution to evaluating nuclear power plant accidents

    International Nuclear Information System (INIS)

    Razga, J.; Horacek, P.

    1990-01-01

    Large-scale accidents pose the highest risk in the use of nuclear power. They are the major factor that has to be taken into account when assessing the effect of nuclear power plants on human health and on the environment. In Czechoslovak conditions, the effectiveness of provisions made to reduce the hazard of large-scale nuclear power plant accidents must be considered from the following aspects: effect on human health, consequences of long-term disabling of the infrastructure, potential of human and material reserves in coping with the accident, consequences of power failure for the electricity system, effect on agricultural production and catering, risk of ground and surface water contamination in the Labe or Danube river basin, and international political aspects. (Z.M.). 3 tabs., 18 refs

  17. An evaluation method of fault-tolerance for digital plant protection system in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Jun Seok; Kim, Man Cheol; Seong, Poong Hyun; Kang, Hyun Gook; Jang, Seung Cheol

    2005-01-01

    In recent years, analog based nuclear power plant (NPP) safety related instrumentation and control (I and C) systems have been replaced to modern digital based I and C systems. NPP safety related I and C systems require very high design reliability compare to the conventional digital systems so that reliability assessment is very important. In the reliability assessment of the digital system, fault tolerance evaluation is one of the crucial factors. However, the evaluation is very difficult because the digital system in NPP is very complex. In this paper, the simulation based fault injection technique on simplified processor is used to evaluate the fault-tolerance of the digital plant protection system (DPPS) with high efficiency with low cost

  18. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  19. Aging Evaluation of Nuclear Power Plant Concrete Structures

    International Nuclear Information System (INIS)

    Kitsutaka, Y.; Takesue, N.; Tsukagoshi, M.

    2012-01-01

    In this paper, method on the aging evaluation in nuclear power plant concrete structures was investigated. Problems on the durability evaluation of reinforced concrete structures were pointed out and an evaluation framework was considered. In view of the importance of evaluating the degree of deterioration of reinforced concrete structures, relationships should be formulated among the number of years elapsed, t, the amount of action of a deteriorative factor, F, the degree of material deterioration, D, and the performance of the structure, P. Evaluation by PDFt diagrams combining these relationships may be effective. A detailed procedure of durability evaluation for a reinforced concrete structure using PDFt concept is presented for the deterioration factors of thermal effect, irradiation, neutralization and penetration of salinity by referring to the recent papers. And the evaluation framework of the deteriorated material constitutive model which can be used for the numerical analysis of the integrity evaluation for the concrete structure was proposed. (author)

  20. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    This paper reports on four fault-tolerant architectures that were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant, both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault-tolerant systems. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failure modes that may be important in nuclear power plants

  1. Evaluation of vibratory ground motion at nuclear power plant sites

    International Nuclear Information System (INIS)

    Hofmann, R.B.; Greeves, J.T.

    1978-01-01

    The evaluation of vibratory ground motion at nuclear power plant sites requires the cooperative effort of scientists and engineers in several disciplines. These include seismology, geology, geotechnical engineering and structural engineering. The Geosciences Branch of the NRC Division of Site Safety and Environmental Analysis includes two sections, the Geology/Seismology Section and the Geotechnical Engineering Section

  2. Evaluation of fire hazard analyses for nuclear power plants. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1995-01-01

    The present publication has been developed with the help of experts from regulatory, operating and engineering organizations, all with practical experience in the field of fire safety of nuclear power plants. The publication supplements the broad concepts of Safety Series No. 50-SG-D2 (Rev.1), Fire Protection in Nuclear Power Plants, by providing a detailed list of the issues, and some of the limitations, to be considered when evaluating the adequacy and effectiveness of the fire hazard analysis of a nuclear power plant. The publication is intended for assessors of fire hazard analyses, including regulators, independent assessors or plant assessors, and gives a broad description of the methodology to be used by operators in preparing a fire hazard analysis for their own plant. 1 fig

  3. Integrated plant safety assessment systematic evaluation program. R.E. Ginna Nuclear Power Plant, Rochester Gas and Electric Corporation, Docket No. 50-244

    International Nuclear Information System (INIS)

    1982-05-01

    The Systematic Evaluation Program was initiated in February 1978 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the R.E. Ginna Nuclear Power Plant (located in Wayne County near Rochester, NY), one of ten plants reviewed under Phase II of this program, and indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  4. Risk-benefit evaluation of nuclear power plant siting

    International Nuclear Information System (INIS)

    Miettinen, J.; Savolainen, I.; Silvennoinen, P.

    1976-01-01

    An assessment scheme is described for the risk-benefit analyses of nuclear power versus conventional alternatives. Given the siting parameters for the proposed nuclear plant an economic comparison is made with the most advantageous competitive conventional production scenario. The economic benefit is determined from the differential discounted annual energy procurement cost as a function of the real interest rate and amortization time. The risk analysis encompasses the following factors: radiation risks in normal operation, reactor accident hazards and economic risks, atmospheric pollutants from the conventional power plants, and fuel transportation. The hazards are first considered in terms of probabilistic dose distributions. In the second stage risk components are converted to a compatible form where excess mortality is used as the risk indicator. Practical calculations are performed for the power production alternatives of Helsinki where district heat would be extracted from the nuclear power plant. At the real interest rate of 10% and amortization time of 20 yr the 1000 MW(e) nuclear option is found to be Pound9.1 m per yr more economic than the optimal conventional scenario. Simultaneously the nuclear alternative is estimated to reduce excess mortality by 2 to 5 fatal injuries annually. (author)

  5. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  6. Regulatory evaluation of nuclear power plant on-the-job training programmes

    International Nuclear Information System (INIS)

    Wilkinson, J.

    1996-01-01

    It is now well recognized internationally in the nuclear industry that a Systematic Approach to Training (SAT), as described in IAEA-TECDOC-525, represents the currently most effective method of providing effective, efficient training to Nuclear Power Plant (NPP) personnel. For this reason the Canadian regulator, the Atomic Energy Control Board (AECB), has made SAT a requirement for the training of NPP personnel whose job activities could affect plant or public safety. In this respect the AECB recognizes that the SAT process will dictate on-the-job-training (OJT) and the prudent use of Job Performance Measures (JPMs) as the most effective method of providing parts of the required training to some work groups. The AECB has adopted a process of training program evaluation for NPP operations personnel which comprises methods to evaluate all types of training including OJT. This paper describes some variations which have been identified in the conduct of OJT at Canadian utilities. It then presents the three step process established by the AECB to effectively evaluate training programs expertise is required. The concept of utility self-evaluations is introduced. Finally, the importance of consistency on the part of the regulator in following a systematic approach to evaluation through the application of a viable standard is addressed. (author). 2 figs

  7. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  8. Site selection and evaluation for nuclear power plants with respect to population distribution

    International Nuclear Information System (INIS)

    1980-01-01

    This safety guide, relating population distribution to site selection and evaluation, for nuclear power plants, forms part of the IAEA's programme, referred to as the NUSS programme (Nuclear Safety Standards). The guide presents population distribution data, requirements, examples of site screening methods, and an overview of radiological impact assessment with respect to population distribution

  9. Methods of assessing nuclear power plant risks

    International Nuclear Information System (INIS)

    Skvarka, P.; Kovacz, Z.

    1985-01-01

    The concept of safety evalution is based on safety criteria -standards or set qualitative values of parameters and indices used in designing nuclear power plants, incorporating demands on the quality of equipment and operation of the plant, its siting and technical means for achieving nuclear safety. The concepts are presented of basic and optimal risk values. Factors are summed up indispensable for the evaluation of the nuclear power plant risk and the present world trend of evaluation based on probability is discussed. (J.C.)

  10. Study on comprehensive evaluation model for nuclear power plant control room layout

    International Nuclear Information System (INIS)

    Zhu Yiming; Liu Yuan; Fan Huixian

    2010-01-01

    A comprehensive evaluation model for layout of the main control room of nuclear power plants was proposed. Firstly the design scope and principle for the layout of the main control room were defined based on the standards, and then the index system for the comprehensive evaluation was established. Finally, comprehensive evaluation was carried out for the layout design by applying the fuzzy comprehensive evaluation method in the index system. (authors)

  11. Development of resilience evaluation method for nuclear power plants. Part 3. Study of evaluation method and applicability of resilience index

    International Nuclear Information System (INIS)

    Suzuki, Masaaki; Demachi, Kazuyuki; Miyano, Hiroshi

    2017-01-01

    We have developed a new index, called the resilience index, that evaluates the dynamic stability of the system safety of a nuclear power plant during a severe accident by considering the ability to recover system safety functions that have become lost in the situation. In this paper, a detailed evaluation procedure for the resilience index is described. The system safety of a pressurized water reactor plant during a severe accident is then assessed according to the resilience index in order to discuss the applicability of the index. We find that the resilience index successfully represents management capability and, therefore, the resilience capability of a nuclear power plant. (author)

  12. Development of resilience evaluation method for nuclear power plants. Part 3. Study on evaluation method and applicability of resilience index

    International Nuclear Information System (INIS)

    Suzuki, Masaaki; Demachi, Kazuyuki; Murakami, Kenta

    2016-01-01

    We have developed a new index, called the resilience index, that evaluates the dynamic stability of the system safety of a nuclear power plant during a severe accident by considering the ability to recover system safety functions that have become lost in the situation. In this paper, a detailed evaluation procedure for the resilience index is described. The system safety of a PWR plant during a severe accident is then assessed according to the resilience index in order to discuss the applicability of the index. We find that the resilience index successfully represents management capability and, therefore, the resilience capability of a nuclear power plant. (author)

  13. Evaluation of depreciation costs in replacement investments of nuclear power plants

    International Nuclear Information System (INIS)

    Nakada, Shoji; Takashima, Ryuta; Nagano, Koji; Kimura, Hiroshi; Madarame, Haruki

    2010-01-01

    Replacement of nuclear power plants has the possibility of affecting the management of electric power suppliers. Therefore, in the nuclear policy, a depreciation method as an equalization method, which means that part of the investment cost is accumulated as an allowance, and after the start of operation, the depreciation cost in the replacement project is equalized, has been introduced in Japan. In this paper, we evaluate the replacement of nuclear power plants by taking into account the uncertainty of operating costs and the depreciation cost in order to examine the effect of the depreciation method on the decision criteria of the replacement.We found that the equalization method is elective for inducing the acceleration of the replacement. Furthermore, we show the relationship between the uncertainty and the depreciation method. It turns out that as uncertainty increases, the difference in investment threshold between the equalization method and the existing depreciation method decreases, and that in option value increases. (author)

  14. A Study on Evaluation Issues of Real-Time Operating System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S.

    2006-01-01

    Control applications such as aircraft, robotics and nuclear power plant have to maintain a very high level of safety, typically defined as the avoidance of unplanned events resulting in hazard. These applications usually operate with hard real-time operating system (RTOS). In this case, hard RTOS software should be reliable and safe. RTOS used in safety-critical I and C system is the base software for the purpose of satisfying the real-time constraints. So, careful evaluation of its safety and functionality is very important. In this paper, we present the case study for RTOSs used in real nuclear power plants (NPP), and suggest the evaluation approach for the RTOS

  15. A Study on Evaluation Issues of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2006-07-01

    Control applications such as aircraft, robotics and nuclear power plant have to maintain a very high level of safety, typically defined as the avoidance of unplanned events resulting in hazard. These applications usually operate with hard real-time operating system (RTOS). In this case, hard RTOS software should be reliable and safe. RTOS used in safety-critical I and C system is the base software for the purpose of satisfying the real-time constraints. So, careful evaluation of its safety and functionality is very important. In this paper, we present the case study for RTOSs used in real nuclear power plants (NPP), and suggest the evaluation approach for the RTOS.

  16. Striving for excellence in nuclear plant safety and reliability

    International Nuclear Information System (INIS)

    Beard, P.M.

    1985-01-01

    The Institute of Nuclear Power Operations, or INPO, promotes excellence in the construction and operation of nuclear power plants. All US nuclear utilities are INPO members. Additionally, INPO has an active international programme that includes utility participants from 13 countries and a supplier programme composed of 13 firms that provide construction, design or manufacturing services for nuclear utilities. INPO's activities revolve around four programme categories: (1) evaluating US nuclear plant construction projects and operating nuclear power plants; (2) assisting utilities in developing and maintaining performance-based training programmes and accrediting US nuclear plant training programmes; (3) analysing and sharing information on operating experience from plants around the world; (4) providing technical assistance to members and participants. INPO periodically evaluates all US operating nuclear power plants. Additionally, INPO uses the evaluations to observe good practices that can be shared with nuclear utilities world wide. The Significant Event Evaluation and Information Network (SEE-IN) programme provides a system for collecting, analysing and sharing information on plant operating experience throughout the world. SEE-IN provides the industry with information on events that could lead to serious consequences and provides recommendations on how these events can be prevented or their effects mitigated. INPO's international programme promotes information exchange among members and participants. The international programme centres on three activities: (1) collecting, analysing and sharing information on international nuclear plant operating experience; (2) establishing a forum for nuclear utilities world-wide to exchange technical data with each other; (3) providing technical assistance to participants on a variety of concerns

  17. The operation of nuclear power plants

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The duties to be performed in managing the operation of a nuclear power plant are highly diverse, as will be explained in this contribution by the examples of the Grafenrheinfeld Nuclear Power Station. The excellent safety record and the high availabilities of German nuclear power plants demonstrate that their operators have adopted the right approaches. Systematic evaluation of the operating experience accumulated inhouse and in other plants is of great significance in removing weak spots and improving operation. The manifold and complex activities in the structure of organization and of activities in a nuclear power plant require a high degree of division of labor. (orig.) [de

  18. Fatigue evaluation of socket welded piping in nuclear power plant

    International Nuclear Information System (INIS)

    Vecchio, R.S.

    1996-01-01

    Fatigue failures in piping systems occur, almost without exception, at the welded connections. In nuclear power plant systems, such failures occur predominantly at the socket welds of small diameter piping ad fillet attachment welds under high-cycle vibratory conditions. Nearly all socket weld fatigue failures are identified by leaks which, though not high in volume, generally are costly due to attendant radiological contamination. Such fatigue cracking was recently identified in the 3/4 in. diameter recirculation and relief piping socket welds from the reactor coolant system (RCS) charging pumps at a nuclear power plant. Consequently, a fatigue evaluation was performed to determine the cause of cracking and provide an acceptable repair. Socket weld fatigue life was evaluated using S-N type fatigue life curves for welded structures developed by AASHTO and the assessment of an effective cyclic stress range adjacent to each socket weld. Based on the calculated effective tress ranges and assignment of the socket weld details to the appropriate AASHTO S-N curves, the socket weld fatigue lives were calculated and found to be in excellent agreement with the accumulated cyclic life to-date

  19. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il

    2008-01-01

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS

  20. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-10-15

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS.

  1. Seismic design of nuclear power plants - an assessment

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Smith, C.B.

    1976-01-01

    This paper presents a review and evaluation of the design standards and the analytical and experimental methods used in the seismic design of nuclear power plants with emphasis on United States practice. Three major areas were investigated: (a) soils, siting, and seismic ground motion specification; (b) soil-structure interaction; and (c) the response of major nuclear power plant structures and components. The purpose of this review and evaluation program was to prepare an independent assessment of the state-of-the-art of the seismic design of nuclear power plants and to identify seismic analysis and design research areas meriting support by the various organizations comprising the 'nuclear power industry'. Criteria used for evaluating the relative importance of alternative research areas included the potential research impact on nuclear power plant siting, design, construction, cost, safety, licensing, and regulation. (Auth.)

  2. The regulatory evaluation of radiation protection training programmes at Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Legare, M.; Tennant, D.

    1996-01-01

    The responsibility for providing the necessary assurance that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment is vested with the Atomic Energy Control Board (AECB). This responsibility has led the Operator Certification Division of the AECB to develop methods to obtain assurance that nuclear power plant operations personnel are well trained and adequately competent to perform their duties. The features of the AECB approach to evaluation of training programmes based on a systematic approach to training is described. An overview of the Canadian nuclear power plants' radiation protection qualification levels is given. The developing evaluation process is contributing to the improvement of licensee radiation protection training programmes. This is making possible the transfer of part of the responsibility for licensed personnel radiation protection qualification assessment to the licensees, thus enabling a reduction in the operator certification division formal qualification activities. (author)

  3. Economic evaluation of bids for nuclear power plants. 1999 edition

    International Nuclear Information System (INIS)

    2000-01-01

    The introduction of a nuclear power plant (NPP) in a country is a major undertaking for all entities involved. The necessary planning work and co-ordination of the different fields of interest, from the point of view of governments, authorities, industries, universities and of the general public, must be done on a long term basis. This IAEA report may help support the work of the utility in the bidding process, especially in the economic bid evaluation. The different methods, aspects and parameters described should be regarded as a guide. The report's target criterion of lowest levelised discounted electricity generation costs (LDEGC) is a very useful and practical way of ranking bids. In view of the huge investment needed, the owner's country must be fully committed to a nuclear programme. A nuclear programme also requires a guarantee of long term financing, which implies the provision of local and foreign contributions. The necessary staff for all of the various areas of a nuclear programme must be recruited and trained. Within the planning phase, the bid invitation specification (BIS) has to be prepared and sent out in order to receive bids for the scope of supply and services desired by the owner. The evaluation of the bids received from the suppliers in response to the BIS is a huge and long-term task. The evaluation process should lead to the selection of the best bidder and at least to the final decision on the partners constructing the NPP. The responsibility for the entire bidding process lies with the plant owner. For technology transfer, two requirements need to be satisfied: the owner needs a well established and experienced engineering capability, and the supplier must be ready to transfer the agreed technology in such a way as to support the project goals. During the bid evaluation process, all aspects of the technical, financial and contractual approaches must be considered. Nowadays, political, socioeconomic and public acceptance aspects play a

  4. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  5. A personal computer code for seismic evaluations of nuclear power plants facilities

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Graves, H.

    1990-01-01

    The program CARES (Computer Analysis for Rapid Evaluation of Structures) is an integrated computational system being developed by Brookhaven National Laboratory (BNL) for the U.S. Nuclear Regulatory Commission. It is specifically designed to be a personal computer (PC) operated package which may be used to determine the validity and accuracy of analysis methodologies used for structural safety evaluations of nuclear power plants. CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the various features which have been implemented into the Seismic Module of CARES

  6. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1990-01-01

    A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to: operate on a PC, have user friendly input/output interface, and have quick turnaround. The CARES program is structured in a modular format. Each module performs a specific type of analysis. The basic modules of the system are associated with capabilities for static, seismic and nonlinear analyses. This paper describes the various features which have been implemented into the Seismic Module of CARES version 1.0. In Section 2 a description of the Seismic Module is provided. The methodologies and computational procedures thus far implemented into the Seismic Module are described in Section 3. Finally, a complete demonstration of the computational capability of CARES in a typical soil-structure interaction analysis is given in Section 4 and conclusions are presented in Section 5. 5 refs., 4 figs

  7. Comparison of methods applicable to evaluation of nuclear power plant technical specifications

    International Nuclear Information System (INIS)

    Cho, N.Z.; Bozoki, G.E.; Youngblood, R.W.

    1986-01-01

    This study compares three probabilistic methods based on the static fault tree analysis, time-dependent unavailability analysis, and Markov analysis, which can be used to evaluate technical specifications in nuclear power plants. They are tested on a sample problem which was devised to closely represent the important and essential characteristics that should be addressed in determination and evaluation of the technical specifications

  8. Interim reliability evaluation program: analysis of the Arkansas Nuclear One. Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kolb, G.J.; Kunsman, D.M.; Bell, B.J.

    1982-06-01

    This report represents the results of the analysis of Arkansas Nuclear One (ANO) Unit 1 nuclear power plant which was performed as part of the Interim Reliability Evaluation Program (IREP). The IREP has several objectives, two of which are achieved by the analysis presented in this report. These objectives are: (1) the identification, in a preliminary way, of those accident sequences which are expected to dominate the public health and safety risks; and (2) the development of state-of-the-art plant system models which can be used as a foundation for subsequent, more intensive applications of probabilistic risk assessment. The primary methodological tools used in the analysis were event trees and fault trees. These tools were used to study core melt accidents initiated by loss of coolant accidents (LOCAs) of six different break size ranges and eight different types of transients

  9. Reliability evaluation of emergency AC power systems based on operating experience at U.S. nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Baranowsky, P. W. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    1986-02-15

    The reliability of emergency AC power Systems has been under study at the U.S. Nuclear Regulatory Commission and by its contractors for several years. This paper provides the results of work recently performed to evaluate past U.S. nuclear power plant emergency AC power System reliability performance using system level data. Operating experience involving multiple diesel generator failures, unavailabilities, and simultaneous occurrences of failures and out of service diesel generators were used to evaluate reliability performance at individual nuclear power plants covering a 9 year period from 1976 through 1984. The number and nature of failures and distributions of reliability evaluation results are provided. The results show that plant specific performance varied considerably during the period with a large number achieving high reliability performance and a smaller number accounting for lower levels of reliability performance. (author)

  10. Safety evaluation of nuclear power plant against the virtual tsunami

    International Nuclear Information System (INIS)

    Chin, S. B.; Imamura, Fumihiko

    2004-01-01

    The main scope of this study is the numerical analysis of virtual tsunami event near the Ulchin Nuclear Power Plants. In the numerical analysis, the maximum run-up height and draw-down are estimated at the Ulchin Nuclear Power Plants. The computer program developed in this study describes the propagation and associated run-up process of tsunamis by solving linear and nonlinear shallow-water equations with finite difference methods. It can be used to check the safety of a nuclear power plant against tsunami attacks. The program can also be used to calculate run-up height of wave and provide proper design criteria for coastal facilities and structures. A maximum inundation zone along the coastline can be developed by using the moving boundary condition. As a result, it is predicted that the Ulchin Nuclear Power Plants might be safe against the virtual tsunami event. Although the Ulchin Nuclear Power Plants are safe against the virtual tsunami event, the occurrence of a huge tsunami in the seismic gap should be investigated in detail. Furthermore, the possibility of nearshore tsunamis around the Korean Peninsula should also be studied and monitored continuously

  11. Evaluation of Haddam Neck (Connecticut Yankee) Nuclear Power Plant, environmental impact prediction, based on monitoring programs

    International Nuclear Information System (INIS)

    Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Mahaffey, J.A.; Waton, D.G.

    1976-12-01

    A study was undertaken by the U.S. Nuclear Regulatory Commission (NRC) to evaluate the nonradiological environmental data obtained from three nuclear power plants operating for a period of one year or longer. The document presented reports the second of three nuclear power plants to be evaluated in detail by Battelle, Pacific Northwest Laboratories. Haddam Neck (Connecticut Yankee) Nuclear Power Plant nonradiological monitoring data were assessed to determine their effectiveness in the measurement of environmental impacts. Efforts were made to determine if: (1) monitoring programs, as designed, can detect environmental impacts, (2) appropriate statistical analyses were performed and if they were sensitive enough to detect impacts, (3) predicted impacts could be verified by monitoring programs, and (4) monitoring programs satisfied the requirements of the Environmental Technical Specifications. Both preoperational and operational monitoring data were examined to test the usefulness of baseline information in evaluating impacts. This included an examination of the methods used to measure ecological, chemical, and physical parameters, and an assessment of sampling periodicity and sensitivity where appropriate data sets were available. From this type of analysis, deficiencies in both preoperational and operational monitoring programs may be identified and provide a basis for suggested improvement

  12. Fatigue assessments in operating nuclear power plants

    International Nuclear Information System (INIS)

    Gosselin, S.R.; Deardorff, A.F.; Peltola, D.W.

    1994-01-01

    In November 1991, the ASME Section XI Task Group on Operating Plant Fatigue Assessment was formed to develop criteria and evaluation methodology for evaluating the effects of cyclic operation in operating nuclear power plants. The objective was to develop guidelines for inclusion in Section XI that could be used by plant operators in evaluating fatigue concerns and their impact on serviceability. This paper discusses the work performed by the Task Group. It explores the concept of ''Fatigue Design Basis'' versus ''Fatigue Operating Basis'' by examining the roles of ASME Section III and ASME Section XI in the design and operation of the nuclear power plants. Guidelines are summarized that may help plant operators perform effective design transient cycle evaluations and optimize cycle counting and fatigue usage tracking. The alternative fatigue evaluation approach using flaw tolerance is also introduced

  13. Economic evaluation of heat extraction from nuclear power plants - a criterion for deciding their building order

    International Nuclear Information System (INIS)

    Navratil, J.

    1987-01-01

    Heat extraction from nuclear power plants is an important element in the current concept of supplying the population and industries with heat. Economic evaluation of the extraction is one of the factors of the total economic assessment of potential sites for nuclear power plant construction which can contribute to decision making on the priorities of construction. The methodological approach to the assessment of economic contribution of heat extraction from 2x1000 MW nuclear power plant is exemplified using three such sites on the Czechoslovak territory, viz., Opatovice (eastern Bohemia), Blahutovice (northern Moravia), and Kecerovce (eastern Slovakia). The so-called annual converted cost was used as a suitable quantity completely reflecting all significant economic effects of heat extraction. It is shown that the fuel component of the power plant costs is the decisive factor for the amount of the annual converted cost in respect to heat supply and thus also the economic priority of the construction sites of nuclear power plants. (Z.M.). 3 tabs., 3 refs

  14. Safety indicators as a tool for operational safety evaluation of nuclear power plants

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges; Melo, Paulo Fernando Ferreira Frutuoso e; Schirru, Roberto

    2009-01-01

    Performance indicators have found a wide use in the conventional and nuclear industries. For the conventional industry, the goal is to optimize production, reducing loss of time with accidents, human error and equipment downtimes. In the nuclear industry, nuclear safety is an additional goal. This paper presents a general methodology to the establishment, selection and use of safety indicators for a two loop PWR plant, as Angra 1. The use of performance indicators is not new. The NRC has its own methodology and the IAEA presents methodology suggestions, but there is no detailed documentation about indicators selection, criteria and bases used. Additionally, only the NRC methodology performs a limited integrated evaluation. The study performed identifies areas considered critical for the plant operational safety. For each of these areas, strategic sub-areas are defined. For each strategic sub-area, specific safety indicators are defined. These proposed Safety Indicators are based on the contribution to risk considering a quantitative risk analysis. For each safety indicator, a goal, a bounded interval and proper bases are developed, to allow for a clear and comprehensive individual behavior evaluation. On the establishment of the intervals and boundaries, a probabilistic safety study, operational experience, international and national standards and technical specifications were used. Additionally, an integrated evaluation of the indicators, using expert systems, was done to obtain an overview of the plant general safety. This evaluation uses well-defined and clear rules and weights for each indicator to be considered. These rules were implemented by means of a computational language, on a friendly interface, so that it is possible to obtain a quick response about operational safety. This methodology can be used to identify situations where the plant safety is challenged, by giving a general overview of the plant operational condition. Additionally, this study can

  15. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Pack, R.W.

    1978-01-01

    The Electric Power Research Institute has started research in human factors in nuclear power plants. One project, completed in March 1977, reviewed human factors problems in operating power plants and produced a report evaluating those problems. A second project developed computer programs for evaluating operator performance on training simulators. A third project is developing and evaluating control-room design approaches. A fourth project is reviewing human factors problems associated with power-plant maintainability and instrumentation and control technician activities. Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The Electric Power Research Institute (EPRI) has undertaken four projects studying the application of human factors engineering principles to nuclear power plants. (author)

  16. Evaluation of mental workload on digital maintenance systems in nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, S. L.; Huang, F. H.; Lin, J. C.; Liang, G. F.; Yenn, T. C.; Hsu, C. C.

    2006-01-01

    The purpose of this study is to evaluate operators' mental workload dealing with digital maintenance systems in Nuclear Power Plants. First of all, according to the factors affected the mental workload, a questionnaire was designed to evaluate the mental workload of maintenance operators at the second Nuclear Power (NPP) in Taiwan. Then, sixteen maintenance engineers of the Second NPP participated in the questionnaire survey. The results indicated that the mental workload was lower in digital systems than that in analog systems. Finally, a mental workload model based on Neural Network technique was developed to predict the workload of maintenance operators in digital maintenance systems. (authors)

  17. Integrated plant safety assessment, Systematic Evaluation Program: Dresden Nuclear Power Station, Unit 2 (Docket No. 50-237)

    International Nuclear Information System (INIS)

    1989-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0823), under the scope of the Systematic Evaluation Program (SEP), for the Commonwealth Edison Company (CECo) Dresden Nuclear Power Station, Unit 2 located in Grundy County, Illinois. The NRC initiated the SEP to provide the framework for reviewing the design of older operating nuclear reactor plants to reconfirm and document their safety. This report documents the review completed by means of the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations subsequent to issuing the final IPSAR for Dresden Unit 2. The review was provided for (1) an assessment of the significance of differences between current technical positions on selected issues and those that existed when Dresden Unit 2 was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The final IPSAR and this supplement forms part of the bases for considering the conversion of the existing provisional operating license to a full-term operating license. 83 refs., 9 tabs

  18. An application of risk-informed evaluation on MOVs and AOVs for Taiwan BWR-type nuclear power plants

    International Nuclear Information System (INIS)

    Ting, K.; Chen, K.T.; Li, Y.C.; Hwang, S.H.; Chien, F.T.; Kang, J.C.

    2008-01-01

    Implementing a risk-informed inservice testing (RI-IST) program provides a good aspect to the nuclear power plant licensee as an alternating program in the current ASME Section XI and 10 CFR 50.55a relevant testing programs. RI-IST concentrates testing resources on highly significant components, reduces excess testing burden, increases plant's availability, decreases dose rate on the plant's staff and also reduces cost on plant's operation and maintenance under nuclear safety expectations. Furthermore, RI-IST also gives a feature on prospective licensing change basis to a nuclear power plant's licensee. This study will focus on safety-related and PRA-molded motor-operated valves (MOVs) and air-operated valves (AOVs) under the inservice testing program in boiling water reactor (BWR)-type nuclear power plant. As MOVs and AOVs have crucial safety functions throughout the nuclear power plant's safety systems, the steady operation and performance of MOVs and AOVs will definitely ensure that the nuclear power plant operates under safety expectations; therefore, this is the key reason to implement risk-informed evaluation for MOVs and AOVs in this study and being able to provide the safety significance classification for MOVs and AOVs under the current IST program to the plant's management. As a pilot study of RI-IST, the methodology of qualitative assessment will incorporate with probabilistic risk assessment (PRA) analyzing MOVs' and AOVs' safety significance within the current PRA model. The evaluating result will then classify its safety significance into a high-safety significant component (HSSC) and a low-safety significant component (LSSC) for MOVs and AOVs based on relevant regulatory criteria. With this initiating achievement, it can provide a cornerstone for further studies on the other types of valves and pumps in RI-IST program and also provide a valuable reference as proposing license change to the licensee

  19. IAEA effort on the evaluation and management of safety aspects of nuclear power plant ageing

    International Nuclear Information System (INIS)

    Pachner, J.; Yaremy, E.M.

    1991-01-01

    The questions attached to nuclear power plant (NPP) ageing and the need for monitoring and assessment of plant condition will grow in importance as more NPPs approach and pass the end of their nominal design lives. Ageing in nuclear plants must be effectively managed to ensure plant safety during their entire service life. This paper provides an overview of the IAEA programme and its results on the evaluation and management of safety aspects of NPP ageing. Under this programme, three generic guidance documents have been prepared on: data collection and record keeping; ageing management methodology; and the use of probabilistic safety assessment in plant life extension considerations. A two pronged strategy involving both technical and regulatory aspects has been adopted for the current and future work. (author)

  20. Evaluating and improving nuclear power plant operating performance

    International Nuclear Information System (INIS)

    1999-07-01

    This report aims to provide the basis for improvements in the understanding of nuclear power plants operation and ideas for improving future productivity. The purpose of the project was to identify good practices of operating performance at a few of the world's most productive plants. This report was prepared through a series of consultants meetings, a specialists meeting and an Advisory Group meeting with participation of experts from 23 Member States. The report is based on self-assessment of half a dozen plants that have been chosen as representatives of different reactor types in as many different countries, and the views and assessment of the participants on good practices influencing plant performance. Three main areas that influence nuclear power plant availability and reliability were identified in the discussions: (1) management practices, (2) personnel characteristics, and (3) working practices. These areas cover causes influencing plant performance under plant management control. In each area the report describes factors or good practices that positively influence plant availability. The case studies, presented in annexes, contain the plant self-assessment of areas that influence their availability and reliability. Six plants are represented in the case studies: (1) Dukovany (WWER, 1760 MW) in the Czech Republic; (2) Blayais (PWR, 3640 MW) in France; (3) Paks (WWER, 1840 MW) in Hungary; (4) Wolsong 1 (PHWR, 600 MW) in the Republic of Korea; (5) Trillo 1 (PWR, 1066 MW) in Spain; and (6) Limerick (BWR, 2220 MW) in the United States of America

  1. Summary of nuclear power plant construction

    International Nuclear Information System (INIS)

    Tamura, Saburo

    1973-01-01

    Various conditions for the construction of nuclear power plants in Japan without natural resources were investigated. Expansion of the sites of plants, change of reactor vessels, standardization of nuclear power plants, possiblity of the reduction of construction period, approaching of nuclear power plants to consuming cities, and group construction were studied. Evaluation points were safety and economy. Previous sites of nuclear power plants were mostly on plane ground or cut and enlarge sites. Proposals for underground or offshore plants have been made. The underground plants were made at several places in Europe, and the ocean plant is now approved in U.S.A. as a plant on a man-made island. Vessels for containing nuclear reactors are the last barriers to the leakage of radioactive substance. At the initial period, the vessels were made of steel, which were surrounded by shielding material. Those were dry well type containers. Then, vessel type changed to pressure-suppression type wet containers. Now, it tends to concrete (PC or RC) type containers. There is the policy on the standardization of nuclear power plants by U.S.A.E.C. in recent remarkable activity. The merit and effect of the standardization were studied, and are presented in this paper. Cost of the construction of nuclear power plants is expensive, and interest of money is large. Then, the reduction of construction period is an important problem. The situations of plants approaching to consuming cities in various countries were studied. Idea of group construction is described. (Kato, T.)

  2. Evaluation of environmental data relating to selected nuclear power plant sites. Prairie Island Nuclear Generating Plant site

    International Nuclear Information System (INIS)

    Murarka, I.P.

    1976-11-01

    Environmental monitoring data for 1973 through 1975 pertaining to the Prairie Island Nuclear Generating Station (which began commercial operation in December 1973) were analyzed by the most practical qualitative and quantitative methods. Evaluations of aquatic and terrestrial biotic data are presented in this report. The data indicate no significant immediate deleterious effects on the biota from plant operation, thus confirming preoperational predictions. Although the station has not operated long enough to reveal long-term deleterious effects, present indications do not lead to a concerned prediction that any are developing. Recommendations are suggested for improving monitoring techniques

  3. Preliminary evaluation of the profitability indexes of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Villanueva M, C.

    2010-10-01

    The Laguna Verde nuclear power plant of the Federal Commission of Electricity has an installed capacity of 1,350 MW and unit 1 started commercial operation in 1990 and unit 2 in 1995. This paper is a synthesis of the results of a preliminary evaluation of the expected profitability indexes of the power plant during an economic lifetime of 40 years. The following data was used as input to the evaluation model prescribed by the Finance and Public Credit Secretary for public investment projects. Unit investment cost: 3,500 US D/k W; Fixed operation and maintenance cost: 54. 45 US D/year-k W; Variable operation and maintenance cost: 0. 38 US D/M Wh; Nuclear fuel cycle cost: 10. 28 US D/M Wh; Lifetime capacity factor: 85%; Discount rate: 12.0% per year; Sale price of electricity to the interconnected electric system: 80. 75 US D/M Wh. The output of the evaluation model is the following: Cost of electricity generated: 60. 2 1 US D/M Wh; fixed cost 49. 55 US D/M Wh; variable cost 10. 66 US D/M Wh; Internal rate of return (Irr): 18.0%; Benefit to cost quotient (B/C): 1.341. A very systematic sensitivity analysis was done, that shows that the cost is very sensitive to the capacity factor and to the investment cost, but is very insensitive to the fixed operation and maintenance cost and to the nuclear fuel cost. Finally, a comparison was made to the evaluation of the profitability indexes of a natural gas fired combined cycle power plant. (Author)

  4. Guideline for the seismic technical evaluation of replacement items for nuclear power plants

    International Nuclear Information System (INIS)

    Harris, S.P.; Cushing, R.W.; Johnson, H.W.; Abeles, J.M.

    1993-02-01

    Seismic qualification for equipment originally installed in nuclear power plants was typically performed by the original equipment suppliers or manufactures (OES/OEM). Many of the OES/OEM no longer maintain quality assurance programs with adequate controls for supplying nuclear equipment. Utilities themselves must provide reasonable assurance in the continued seismic adequacy of such replacement items. This guideline provides practical, cost-effective techniques which can be used to provide reasonable assurance that replacement items will meet seismic performance requirements necessary to maintain the seismic design basis of commercial nuclear power plants. It also provides a method for determining when a seismic technical evaluation of replacement items (STERI) is required as part of the procurement process for spare and replacement items. Guidance on supplier program requirements necessary to maintain continued seismic adequacy and on documentation of maintaining required seismic adequacy is also included

  5. Economical aspects of a nuclear power plant project

    International Nuclear Information System (INIS)

    Meldonian, N.L.; Santos, E.M. dos

    1992-01-01

    This work describes different aspects and parameters that should be regarded as guidelines for economic evaluation of small and medium power plant projects. The main objective of an economic evaluation is to establish the plant's unitary cost and its economic figure of merit. To achieve that, a number of studies must be undertaken to compare the global competitiveness of a nuclear power plant with other energetic alternatives. These studies involve macro economy, energy generation, electricity transmission and global feasibility of the enterprise. It is concluded that the economic evaluation of a nuclear power plant should be considered as the culmination of a long process of planning at a national level. The main reasons are the investments involved, the technological developments required and political implications of the utilization of nuclear power energy. (author)

  6. Non destructive evaluation of containment nuclear plants structures

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, V. [Aix Marseille Univ., Aix en Provence (France). LMA, CNRS UPR 7051, IUT; Verdier, J. [Toulouse Univ. (France). UPS, INSA, LMDC; Sbartai, Z.M. [Bordeaux Univ., Talence (France). I2M; and others

    2015-07-01

    French Projects of Investment for the Future, called ''Research for Nuclear Safety and Radiation Protection'' have been initiated to further research on the causes, the management, the impact of the observed nuclear accidents and to propose and validate solutions to limit the risk and the consequences. In this context the ''Non Destructive Evaluation of nuclear plants containment'' project (ENDE) with eight partners (six research institutes and two industrials) supported by the ''National Agency of Research'', proposes a methodology for the Non Destructive Evaluation of the containment capacity to fulfil its two major functions: strength and leak tightness. The NDE measurements will be performed under conditions representing the specific solicitations of a decennial inspection, and after or during a reference accident. The project aims to develop NDEs, to combine them by data fusion and to select the most efficient combinations with quantitative criteria. The work is based on: - Structuring the knowledge and developing an experimental plan. - Evaluating the material in representative conditions of accidental solicitations (water saturation, porosity, strength, elastic modulus, stress) and the diffuse thermal damage (micro cracks) - Monitoring the transition from diffuse to continuous damage (cracks) and monitoring a crack under stress (opening and width). - Implementing ND Techniques on-site. The ND techniques retained after selection will be implemented on a containment mock-up on the 1/3 scale. This mock-up developed by EDF (Electricite de France) will be available in 2016. It will be comparable to those of real size containment regarding pressure and temperature conditions. The measures deduced from the NDEs will be introduced in another project (Macena) that aims to simulate the water and heat transfers as well as creep occurring in a reference accident. We will present the methodology and the results

  7. Method on the aging evaluation in nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori; Tsukagoshi, Masayuki

    2014-01-01

    In this paper, method on the durability evaluation in nuclear power plant concrete structures was investigated. In view of the importance of evaluating the degree of deterioration of reinforced concrete structures, relationships should be formulated among the number of years elapsed, t, the amount of action of a deteriorative factor, F, the degree of material deterioration, D, and the performance of the structure, P. Evaluation by PDFt diagrams combining these relationships may be effective. A detailed procedure of durability evaluation for a reinforced concrete structure using PDFt concept is presented for the deterioration factors of thermal effect, irradiation, neutralization and penetration of salinity by referring to the recent papers

  8. Evaluating and improving nuclear power plant operating performance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report aims to provide the basis for improvements in the understanding of nuclear power plants operation and ideas for improving future productivity. The purpose of the project was to identify good practices of operating performance at a few of the world`s most productive plants. This report was prepared through a series of consultants meetings, a specialists meeting and an Advisory Group meeting with participation of experts from 23 Member States. The report is based on self-assessment of half a dozen plants that have been chosen as representatives of different reactor types in as many different countries, and the views and assessment of the participants on good practices influencing plant performance. Three main areas that influence nuclear power plant availability and reliability were identified in the discussions: (1) management practices, (2) personnel characteristics, and (3) working practices. These areas cover causes influencing plant performance under plant management control. In each area the report describes factors or good practices that positively influence plant availability. The case studies, presented in annexes, contain the plant self-assessment of areas that influence their availability and reliability. Six plants are represented in the case studies: (1) Dukovany (WWER, 1760 MW) in the Czech Republic; (2) Blayais (PWR, 3640 MW) in France; (3) Paks (WWER, 1840 MW) in Hungary; (4) Wolsong 1 (PHWR, 600 MW) in the Republic of Korea; (5) Trillo 1 (PWR, 1066 MW) in Spain; and (6) Limerick (BWR, 2220 MW) in the United States of America Figs, tabs

  9. Air toxics evaluation for a nuclear power plant

    International Nuclear Information System (INIS)

    Lokey, D.; Orr, W.

    1994-01-01

    An emission inventory of nonradiological hazardous air pollutants (HAP) was prepared for TVA's Browns Ferry Nuclear Plant (BFN). The purpose of this effort was to determine whether BFN is a major HAP emission source. About 40 specific HAP were identified in products used at FBN. HAP emission totals from BFN were estimated at 6 T/Y, well below the major-source cutoff. Off-site waste disposal reduced gross emission estimates by about 8 percent. HAP emission evaluation by product categories showed the largest portion due to paints and coatings, followed by cleaning compounds. HAP emission breakdown by chemical species showed xylene to be the predominate HAP emitted, followed by methyl ethyl ketone

  10. Mutual perceptions between nuclear plant employees and general public on nuclear policy communication applying the Co-orientation analysis model

    International Nuclear Information System (INIS)

    Kim, Bong Chul; Kim, Ji Hyun; Chung, Woon Kwan

    2015-01-01

    This study examines mutual perceptions between general public and nuclear plant employees on understanding nuclear policy communication applying the co-orientation model. The total of 414 responses were analyzed including 211 of the general public and 203 of plant employees. Results indicate that agreement between general public and plant employees is relatively high, in that general public tends to have negative evaluation to nuclear policy communication, but plant employees tends to have positive one. In terms of congruence, general public perceive that plant employees might have more positive evaluation than themselves, and nuclear plant employees perceive that general public might have more negative evaluation than themselves. Finally, in terms of accuracy, general public accurately estimate how nuclear plant employees perceive on policy communication, whereas nuclear plant employees unaccurately estimate how general public perceive on policy communication

  11. Mutual perceptions between nuclear plant employees and general public on nuclear policy communication applying the Co-orientation analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Chul; Kim, Ji Hyun; Chung, Woon Kwan [Chosun University, Gwangju (Korea, Republic of)

    2015-02-15

    This study examines mutual perceptions between general public and nuclear plant employees on understanding nuclear policy communication applying the co-orientation model. The total of 414 responses were analyzed including 211 of the general public and 203 of plant employees. Results indicate that agreement between general public and plant employees is relatively high, in that general public tends to have negative evaluation to nuclear policy communication, but plant employees tends to have positive one. In terms of congruence, general public perceive that plant employees might have more positive evaluation than themselves, and nuclear plant employees perceive that general public might have more negative evaluation than themselves. Finally, in terms of accuracy, general public accurately estimate how nuclear plant employees perceive on policy communication, whereas nuclear plant employees unaccurately estimate how general public perceive on policy communication.

  12. A framework of risk-informed seismic safety evaluation of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Kondo, S.; Sakagami, M.; Hirano, M.; Shiba, M.

    2001-01-01

    A framework of risk-informed seismic design and safety evaluation of nuclear power plants is under consideration in Japan so as to utilize the progress in the seismic probabilistic safety assessment methodology. Issues resolved to introduce this framework are discussed after the concept, evaluation process and characteristics of the framework are described. (author)

  13. Review of operating history at the Palisades Nuclear Plant

    International Nuclear Information System (INIS)

    Mays, G.T.; Harrington, K.H.

    1982-01-01

    the Systematic Evaluation Program Branch (SEPB) of the Nuclear Regulatory Commission (NRC) is conducting the Systematic Evaluation Program whose purpose is to determine the safety margins of the design and operation of the eleven oldest operating commercial nuclear power plants in the United States. A portion of the SEP includes the compilation and interpretation of operational occurrences at these plants. This summary describes the methodology and results of the operational experience review of Palisades Nuclear Plant. The review includes a detailed examination of the operating experience in two segments - plant shutdowns and power reductions, and reportable events

  14. Actions concerning nuclear power plant life evaluation

    International Nuclear Information System (INIS)

    Chocron, M.; Fabbri, S.; Mizrahi, R.; Savino, E.J.; Versaci, R.A.

    1998-01-01

    One of the main activities to be undertaken by CNEA will be to provide technological assistance to NASA in problems concerning NPP operation. Works on life extensions of NPP are included in these activities. To fulfill these requirements the Atomic Energy National Commission (CNEA) has constituted a technical committee for Nuclear Power Plants Support (CAPCEN). CAPCEN should be the knowledge reservoir of those issues concerning the performance, safety and life extension of Nuclear Power Plants. One of CAPCEN's most important activities is to promote research work connected with such issues. The main technical areas are: Pressure Vessel and Piping, Heat Exchanges and Fuel Channels and Reactor Inner Components. Efforts are focused on the identification of the main components susceptible of ageing, the study of their ageing mechanisms, the follow-up of their behaviour during operation, and the measures taken to extend their life. (author)

  15. Nuclear plant-aging research on reactor protection systems

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed

  16. Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.

    1993-01-01

    This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested

  17. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  18. Study of evaluation techniques of software safety and reliability in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Cheong; Baek, Y. W.; Kim, H. C.; Park, N. J.; Shin, C. Y. [Chungnam National Univ., Taejon (Korea, Republic of)

    1999-04-15

    Software system development process and software quality assurance activities are examined in this study. Especially software safety and reliability requirements in nuclear power plant are investigated. For this purpose methodologies and tools which can be applied to software analysis, design, implementation, testing, maintenance step are evaluated. Necessary tasks for each step are investigated. Duty, input, and detailed activity for each task are defined to establish development process of high quality software system. This means applying basic concepts of software engineering and principles of system development. This study establish a guideline that can assure software safety and reliability requirements in digitalized nuclear plant systems and can be used as a guidebook of software development process to assure software quality many software development organization.

  19. Destructiveness criteria for seismic risk evaluation of nuclear power plant

    International Nuclear Information System (INIS)

    Saragoni, G.R.

    1995-01-01

    Two criteria of destructiveness for seismic risk evaluation of nuclear power plant are presented. The first one is a simple linear criterion that allows to compute average response spectra in terms of earthquake accelerogram characteristics. The second defines the destructiveness potential factor P D which measures the capacity of earthquake to produce nonlinear damage. This second criterion that shows large differences of destructiveness capacity for earthquake accelerograms of different seismic environment, specially between subductive and transcursive, is strongly recommended. (author). 8 refs., 1 fig. 1 tab

  20. Design and evaluation of warning systems: application to nuclear power plants

    International Nuclear Information System (INIS)

    Pe Benito-Claudio, C.

    1986-01-01

    This study starts by defining and explaining key concepts about warning, both as a process and a system. Thereafter, it presents a quantitative, probabilistic, and decision-oriented methodology for designing and evaluating a warning system. It illustrates the methodology for the case of rare, controllable, and potentially disastrous technological events, such as accidents in nuclear power plants. The methodology covers and links the three principal components of a warning system - signal (which is mainly technical), warning dissemination, and warning response (which are mainly social) - thereby allowing the relative evaluation of technological and social measures for reducing risks. Analytical principles and techniques of risk and decision analyses are applied. It defines a probabilistic performance measure to characterize each component of a warning system, and a value measure to assess the overall effectiveness of the system. An important aspect of this work is the integration, into one analytical model, of the results of engineering studies, such as probabilistic risk assessments of nuclear power plants, and of empirical findings on human response to warning in sociological research. The models, calculations, and sensitivity analyses are done with influence diagrams that are both intuitive and mathematical. This work puts particular emphasis on the study of behavioral response of individuals to warning

  1. Evaluation of barriers and resilience to improve organizational performance in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P. F.; Martin del Campo, C., E-mail: pnelson_007@yahoo.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec 62550, Morelos (Mexico)

    2014-10-15

    In this study, several models are built from the information contained in the Condition Reports from the Corrective Action Program ar a nuclear power plant. Condition Reports are seen as indications of organizational stress levels with consequential Condition Reports being further evidence of organizational resilience being exceeded. Also contained in this paper is an examination of methods used to assess organizational resilience thresholds to preclude consequential events, based on examination of the number and severity of the Condition Reports. In combination with PSA risk insights, it is possible to identify risk significant procedures and their corresponding risk significant steps. Leading indicators can be used to identify the need for installing a barrier or defense to reduce human errors in a nuclear power plant. These indicators are developed from the Corrective Action Program data by detecting increases in events. Organizational barriers can then be identified to improve performance. The resulting identified barriers are evaluated to rank the value of each possible barrier, and determine the best barrier(s) to implement. The tool described in this paper is designed to provide a systematic approach to identify areas where improvements in organizational effectiveness best reduce the likelihood of consequential events. Due to the uncertainty of many of the factors that influence the performance of humans in nuclear power plant activities, we propose using Bayesian networks to identify sources of organizational errors leading to consequential events. This study, using actual nuclear power plant data, includes a method for data processing and highlights some potential uses of Bayesian networks for improving organizational effectiveness in the nuclear power industry. (Author)

  2. Evaluation of barriers and resilience to improve organizational performance in nuclear power plants

    International Nuclear Information System (INIS)

    Nelson, P. F.; Martin del Campo, C.

    2014-10-01

    In this study, several models are built from the information contained in the Condition Reports from the Corrective Action Program ar a nuclear power plant. Condition Reports are seen as indications of organizational stress levels with consequential Condition Reports being further evidence of organizational resilience being exceeded. Also contained in this paper is an examination of methods used to assess organizational resilience thresholds to preclude consequential events, based on examination of the number and severity of the Condition Reports. In combination with PSA risk insights, it is possible to identify risk significant procedures and their corresponding risk significant steps. Leading indicators can be used to identify the need for installing a barrier or defense to reduce human errors in a nuclear power plant. These indicators are developed from the Corrective Action Program data by detecting increases in events. Organizational barriers can then be identified to improve performance. The resulting identified barriers are evaluated to rank the value of each possible barrier, and determine the best barrier(s) to implement. The tool described in this paper is designed to provide a systematic approach to identify areas where improvements in organizational effectiveness best reduce the likelihood of consequential events. Due to the uncertainty of many of the factors that influence the performance of humans in nuclear power plant activities, we propose using Bayesian networks to identify sources of organizational errors leading to consequential events. This study, using actual nuclear power plant data, includes a method for data processing and highlights some potential uses of Bayesian networks for improving organizational effectiveness in the nuclear power industry. (Author)

  3. Human performance evaluation: The procedures of ultimate response guideline for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kang-Hung, E-mail: alvinks@iner.gov.tw [Institute of Nuclear Energy Research, Atomic Engery Council, No. 1000, Whenhua Road, Jiaan Village, Longtan Township, Taoyuan County, Taiwan (China); Hwang, Sheue-Ling, E-mail: slhwang@ie.nthu.edu.tw [Department of Industrial Engineering and Engineering Management, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, Taiwan (China)

    2014-07-01

    Highlights: • This study adopts SPAR-H to evaluate HEPs in the URG procedures. • The involvement of URG procedures could reduce CDF significantly. • Upgrading the training level of staff will enhance the reliability effectively. • Aiding the plant manager in making URG decision will enhance the reliability. - Abstract: In the nuclear accident which occurred in Japan on March 11, 2011, several units of Fukushima conventional BWR experienced a total loss of power and water supply triggered by a heavy earthquake and subsequent Tsunami which were outside design models. In the past, when an accident occurred, operators in nuclear power plants (NPP) followed emergency operating procedures (EOPs) or severe accident management guidance (SAMG). However, EOP and SAMG are symptom-based procedures to cope with severe transients and accidents, depending on real-time operational parameters. Ultimate response guidelines (URG), a plant specific interim remedy action plan, was developed to manage accidents caused by compound disasters which exceed design models. The URG guides the plant operators’ conduct of reactor depressurization, core cooling water injection, and containment venting. This study adopts NUREG/CR-6883 (Standardized Plant Analysis Risk Human Reliability Analysis, SPAR-H) to evaluate human error probabilities (HEPs) of action and diagnosis in the current URG procedures. We found the human reliability of URG procedures analyzed by SPAR-H is about 85% (depending on different decision makers). Upgrading the training level of staff or enhancing plant managers ability to decide whether to execute URG will enhance the human reliability of URG procedures.

  4. Fire scenarios in nuclear power plant

    International Nuclear Information System (INIS)

    Asp, I.B.; MacDougall, E.A.; Hall, R.E.

    1978-01-01

    This report defines a Design Base Fire and looks at 3 major areas of a hypothetical model for a Nuclear Power Plant. In each of these areas a Design Base Fire was developed and explained. In addition, guidance is given for comparing fire conditions of a given Nuclear Power Plant with the model plant described. Since there is such a wide variation in nuclear plant layouts, model areas were chosen for simplicity. The areas were not patterned after any existing plant area; rather several plant layouts were reviewed and a simplified model developed. The developed models considered several types of fires. The fire selected was considered to be the dominant one for the case in point. In general, the dominant fire selected is time dependent and starts at a specific location. After these models were developed, a comparison was drawn between the model and an operating plant for items such as area, cable numbers and weight, tray sizes and lengths. The heat loads of the model plant are summarized by area and compared with those of an actual operating plant. This document is intended to be used as a guide in the evaluation of fire hazards in nuclear power stations and a summarization of one acceptable analytical methodology to accomplish this

  5. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators

    International Nuclear Information System (INIS)

    Matthes, Felix C.

    2009-10-01

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  6. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  7. History of nuclear power plants safety in France (1945-2000) - Engineer techniques, expert evaluation, topical issue

    International Nuclear Information System (INIS)

    Foasso, Cyrille

    2003-01-01

    This doctoral dissertation relates the history of the mastery of risks in civil nuclear plants in France. Since 1960, it's known as the 'surete nucleaire'. Over a fifty-year period separating the discovery or the atomic fission and its industrial application on a large scale this PhD shows which technical means were used over the years by engineers to handle this risk which is said to be huge. It also studies the various processes in expert evaluation and in decision making elaborated to evaluate if the risk was acceptable or not. Beyond the conflicts between nuclear advocates and opponents, this thesis shows how ever among nuclear engineer the growing distinction between roles (promoters, experts and controlling authorities) and the various jobs (designers, builders and plant operators) triggered different estimations as far as the methods to obtain a satisfactory safety. Thanks to the progress of knowledge through research programs, thanks to the lessons drawn from the functioning or dysfunction of nuclear plants, thanks to the reinforcement of regulations (which more or less reflects the public's opinion concerning this industry) the safety has progressively improved. Thus, this historical study is multiple: a technical history of technology, a history of scientific, industrial and administrative organization, a social history and finally an international and comparative history since the nuclear energy history quickly developed beyond national boundaries. (author) [fr

  8. Evaluating the effectiveness of warning systems for nuclear power plant emergencies: criteria and application

    International Nuclear Information System (INIS)

    Sorensen, J.H.

    1984-01-01

    The accident at Three Mile Island Nuclear Power Plant in 1979 was an emergency management disaster. Chief among the problems was ineffective public warning and communications. While it is difficult to assign blame for that condition to any given party or determine if it was due to unique situational factors, the failure led to fairly significant regulatory changes in the arena of public warning and notification. These changes are intended to avoid the problems that arose during the TMI accident. This chapter reviews these regulations and suggests an alternative set of criteria for evaluating warning systems. The criteria are used to assess the effectiveness of the warning system at the Ft. St. Vrain nuclear power plant in Colorado. The paper concludes with some discussion of the lessons learned from the TMI experience as they apply to warning systems for all nuclear generating stations

  9. Integrated plant safety assessment: systematic evaluation program. Oyster Creek nuclear generating station. GPU Nuclear Corporation and Jersey Central Power and Light Company. Docket No. 50-219

    International Nuclear Information System (INIS)

    1982-09-01

    The Systematic Evaluation Program was initiated in February 1978 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Oyster Creek Nuclear Generating Station (located in Ocean County, New Jersey), one of ten plants reviewed under Phase II of this program, and indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  10. Computation code TEP 1 for automated evaluation of technical and economic parameters of operation of WWER-440 nuclear power plant units

    International Nuclear Information System (INIS)

    Zadrazil, J.; Cvan, M.; Strimelsky, V.

    1987-01-01

    The TEP 1 program is used for automated evaluation of the technical and economic parameters of nuclear power plant units with WWER-440 reactors. This is an application program developed by the Research Institute for Nuclear Power Plants in Jaslovske Bohunice for the KOMPLEX-URAN 2M information system, delivered by the USSR to the V-2 nuclear power plants in Jaslovske Bohunice and in Dukovany. The TEP 1 program is written in FORTRAN IV and its operation has two parts. First the evaluation of technical and economic parameters of operation for a calculation interval of 10 mins and second, the control of the calculation procedure, follow-up on input data, determination of technical and economic parameters for a lengthy time interval, and data printout and storage. The TEP 1 program was tested at the first unit of the V-2 power plant and no serious faults appeared in the process of the evaluation of technical and economic parameters. A modification of the TEP 1 programme for the Dukovany nuclear power plant is now being tested on the first unit of the plant. (Z.M.)

  11. Study of evaluation techniques of software testing and V and V in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Cheong; Baek, Y. W.; Kim, H. C.; Shin, C. Y.; Park, N. J. [Chungnam Nationl Univ., Taejon (Korea, Republic of)

    2000-03-15

    The study of activities to solve software safety and quality must be executed in base of establishing software development process for digitalized nuclear plant. Especially study of software testing and verification and validation must executed. For this purpose methodologies and tools which can improve software qualities are evaluated and software testing and V and V which can be applied to software life cycle are investigated. This study establish a guideline that can assure software safety and reliability requirements in digitalized nuclear plant systems and can be used as a guidebook of software development process to assure software quality many software development organization.

  12. Performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance. Performance evaluation examples

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Society of Civil Engineers has updated performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance in June 2005. Based on experimental and analytical considerations, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been incorporated in new recommendations. This document shows outdoor civil structures earthquake resistance and endurance performance evaluation examples based on revised recommendations. (T. Tanaka)

  13. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    Four fault tolerant architectures were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant (TMR), both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault tolerant systems. An advantage of fault-tolerant controllers over those not fault tolerant, is that fault-tolerant controllers continue to function after the occurrence of most single hardware faults. However, most fault-tolerant controllers have single hardware components that will cause system failure, almost all controllers have single points of failure in software, and all are subject to common cause failures. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failures modes that may be important in nuclear power plants. 7 refs., 4 tabs

  14. Summary of plant life management evaluation for Onagawa Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    Nodate, Kazumi

    2014-01-01

    The Onagawa Nuclear Power Station Unit-1 (Onagawa NPS-1) began commercial operation on June 1, 1984, and has reached 30-year from starting of operation on June of 2014. To that end, we implemented the Plant Life Management (PLM) evaluation for Onagawa NPS-1 as our first experience. We decided on a Long-term Maintenance Management Policy from result of the evaluation, and then applied the Safety-Regulations change approval application on November 6, 2013 and its correcting application on April 16, 2014. Our application was approved on May 21, 2014 through investigation by the Nuclear Regulatory Agency. Also at implementation of the PLM evaluation, we considered effects of the Great East Japan Earthquake that occurred on March 11, 2011 against ageing phenomena. In this paper, we introduce summary of PLM evaluation for Onagawa NPS-1 and the evaluation that considered effects of the Great East Japan Earthquake. (author)

  15. Evaluation of nuclear power plant concrete to maintain continued service

    International Nuclear Information System (INIS)

    McColm, E.J.; Mukherjee, P.K.; Sato, J.A.

    1997-01-01

    Nuclear power plant concrete structures in addition to satisfying structural requirements are a major part of the safety and containment systems. As a result, the structures are required to operate satisfactorily for the life of the plant and until well after decommissioning. Successful life management requires an understanding of potential degradation mechanisms that can impact on the performance of these structures, regular well planned inspection programs and the use of specialized repair and maintenance programs. These aspects of nuclear life management are discussed with an example of inspection and repair conducted at one of Ontario Hydro's nuclear generating stations. The example is discussed in terms of the performance requirements of the containment concrete. The plant referred to has been in operation for over 20 years, making it currently the oldest operating commercial nuclear power plant in Ontario, Canada. The information on the concrete containment structures included baseline construction data on the concrete material properties and the results of periodic scheduled and other interim specialized inspections. Also available were the results of laboratory testing of concrete cores obtained from the structures. The data from these inspections and laboratory testing were used to monitor the aging characteristics of the structures and to plan appropriate repair activities. (author)

  16. Study on the safety evaluation method development for D and D of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sin, S. W.; Kang, G. D.; Kim, H. S.; Son, J. G.; Choi, Y. J.; Lee, K. J.; Koh, E. O.; Kim, K. D.; Ha, J. H. [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2004-02-15

    The final goal of decommissioning of Nuclear Power Plant is to remove or to isolate the radioactivity existing at the nuclear facilities which are confronted with termination of operation. The regulatory guidance and technologies of decommissioning have been developed strategically in some advanced countries. They have already stepped into the application stage from the research and development stage. The contents and the scope of this study is as follows, preparation of standard evaluation plan and establishment of standard safety evaluation system for D and D.

  17. Study on the safety evaluation method development for D and D of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sin, S. W.; Kang, G. D.; Kim, H. S.; Son, J. G.; Choi, Y. J.; Lee, K. J.; Koh, E. O.; Kim, K. D.; Ha, J. H.

    2004-02-01

    The final goal of decommissioning of Nuclear Power Plant is to remove or to isolate the radioactivity existing at the nuclear facilities which are confronted with termination of operation. The regulatory guidance and technologies of decommissioning have been developed strategically in some advanced countries. They have already stepped into the application stage from the research and development stage. The contents and the scope of this study is as follows, preparation of standard evaluation plan and establishment of standard safety evaluation system for D and D

  18. Preliminary regulatory assessment of nuclear power plants vulnerabilities

    International Nuclear Information System (INIS)

    Kostadinov, V.; Petelin, S.

    2004-01-01

    Preliminary attempts to develop models for nuclear regulatory vulnerability assessment of nuclear power plants are presented. Development of the philosophy and computer tools could be new and important insight for management of nuclear operators and nuclear regulatory bodies who face difficult questions about how to assess the vulnerability of nuclear power plants and other nuclear facilities to external and internal threats. In the situation where different and hidden threat sources are dispersed throughout the world, the assessment of security and safe operation of nuclear power plants is very important. Capability to evaluate plant vulnerability to different kinds of threats, like human and natural occurrences and terrorist attacks and preparation of emergency response plans and estimation of costs are of vital importance for assurance of national security. On the basis of such vital insights, nuclear operators and nuclear regulatory bodies could plan and optimise changes in oversight procedures, organisations, equipment, hardware and software to reduce risks taking into account security and safety of nuclear power plants operation, budget, manpower, and other limitations. Initial qualitative estimations of adapted assessments for nuclear applications are shortly presented. (author)

  19. Evaluation of nuclear power plant environmental impact prediction, based on monitoring programs. Summary and recommendations

    International Nuclear Information System (INIS)

    Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Watson, D.G.

    1977-02-01

    An evaluation of the effectivenss of non-radiological environmental monitoring programs is presented. The monitoring programs for Monticello, Haddam Neck, and Millstone Nuclear Generating Plants are discussed. Recommendations for improvements in monitoring programs are presented

  20. Comparison of economic evaluation methodology for the nuclear plant lifetime extension

    International Nuclear Information System (INIS)

    Song, T. H.; Jung, I. S.

    2003-01-01

    In connection with economic evaluation of NPP lifetime management, there are lots of methodologies such as present worth calculation, Levelized Unit Energy Cost (LUEC) calculation, and market benefit comparison methodology. In this paper, economic evaluation of NPP lifetime management was carried out by using these three methodologies, and the results of each was compared with the other methodologies. With these three methodologies, break even points of investment cost related to life extension of nuclear power plant were calculated. It was turned out to be as a analysis result that LUEC is more conservative than present worth calculation and that benefit comparison is more conservative than LUEC, which means that Market Benefit Comparison is the most conservative methodology, and which means base load demand of the future would be far more important than any other factors such as capacity factor, investment cost of life extension, and performance of replacing power plant

  1. Integrated Plant Safety Assessment: Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    The Systematic Evaluation program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  2. Integrated Plant Safety Assessment, Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Draft report

    International Nuclear Information System (INIS)

    1983-02-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  3. Development of overall evaluation system for nuclear plant life extension, (3)

    International Nuclear Information System (INIS)

    Soneda, Naoki; Takao, Takeshi

    1990-01-01

    Life and integrity assessment of structural components is essential for the nuclear plant life evaluation. Many works have been done on the life and integrity assessment methods up to date. However, there are few methods for the reliability evaluation of analysis results obtained by those methods. This report presents a reliability evaluation method of analysis results based on knowledge base and its application to the integrity assessment of PWR reactor pressure vessel against PTS event. Probabilistic fracture mechanics method is used to obtain the sensitivity of failure probability to analysis inputs. Knowledge base of fuzzy rules is constructed using the sensitivity analysis results. This method makes it possible to set reasonable safety margins to the analysis results. (author)

  4. Evaluation of nuclear power plant operating procedures classifications and interfaces: Problems and techniques for improvement

    International Nuclear Information System (INIS)

    Barnes, V.E.; Radford, L.R.

    1987-02-01

    This report presents activities and findings of a project designed to evaluate current practices and problems related to procedure classification schemes and procedure interfaces in commercial nuclear power plants. The phrase ''procedure classification scheme'' refers to how plant operating procedures are categorized and indexed (e.g., normal, abnormal, emergency operating procedures). The term ''procedure interface'' refers to how reactor operators are instructed to transition within and between procedures. The project consisted of four key tasks, including (1) a survey of literature regarding problems associated with procedure classifications and interfaces, as well as techniques for overcoming them; (2) interviews with experts in the nuclear industry to discuss the appropriate scope of different classes of operating procedures and techniques for managing interfaces between them; (3) a reanalysis of data gathered about nuclear power plant normal operating and off-normal operating procedures in a related project, ''Program Plan for Assessing and Upgrading Operating Procedures for Nuclear Power Plants''; and (4) solicitation of the comments and expert opinions of a peer review group on the draft project report and on proposed techniques for resolving classification and interface issues. In addition to describing these activities and their results, recommendations for NRC and utility actions to address procedure classification and interface problems are offered

  5. Operation reports of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    The requirements aiming to standardize the program of nuclear power plant operation report, required by Brazilian Energy Commission - CNEN - to evaluate the activities related to the nuclear technical safety and to the radiation protection during the units operational phase, are showed. (E.G.) [pt

  6. Nuclear security - New challenge to the safety of nuclear power plants

    International Nuclear Information System (INIS)

    Li Ganjie

    2008-01-01

    preparation and drills of emergency preparedness of nuclear facilities and carried out actively the preparation of anti terrorism in nuclear sector. Although the international community has been working on the nuclear security with a series of measures, according to the author there is a need author to discuss the following key perspectives. (1) It is essential to determine the definition of the nuclear security for power plants and come to a common understanding in the nuclear sector as soon as possible. (2) An international unified design basis threat to nuclear security of nuclear power plants should be developed to apply to the design of the nuclear security system of newly-built nuclear power plants and to evaluate the existing nuclear security system in the operating nuclear power plants so as to take improved measures. (3) The dividing of responsibilities between national government and nuclear power plants should be redefined in the new regime of nuclear security of nuclear power plants. (4) The relationship between the requirements of nuclear security and of the economy of nuclear power development should be balanced. (5) The technical standard system that suitable for new regime of nuclear security of nuclear power plants should be developed and improved to accelerate the enhancing of capability in nuclear security of nuclear power plants. It was concluded that nuclear terrorism is the common enemy to all the human beings. To strengthen the capacity of nuclear security of power plants, to ensure nuclear safety, are in the common interest and the responsibility of the entire international society. Recognizing the significance of strengthening the international cooperation on nuclear security, it is expected that the international society should closely cooperate together to establish the regime for nuclear security, share information and crack down nuclear terrorism. It was stated that China, as a responsible member of the international community, will continue to

  7. Safety goals for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Roe, J.W.

    1988-01-01

    In its official policy statement on safety goals for the operation of nuclear power plants, the Nuclear Regulatory Commission (NRC) set two qualitative goals, supported by two quantitative objectives. These goals are that (1) individual members of the public should be provided a level of protection from the consequences of nuclear power plant operation such that individuals bear no significant additional risk to life and health; and (2) societal risks to life and health from nuclear power plant operation should be comparable to or less than the risks of generating electricity by viable competing technologies and should not be a significant addition to other societal risks. As an alternative, this study proposes four quantitative safety goals for nuclear power plants. It begins with an analysis of the NRC's safety-goal development process, a key portion of which was devoted to delineating criteria for evaluating goal-development methods. Based on this analysis, recommendations for revision of the NRC's basic benchmarks for goal development are proposed. Using the revised criteria, NRC safety goals are evaluated, and the alternative safety goals are proposed. To further support these recommendations, both the NRC's goals and the proposed goals are compared with the results of three major probabilistic risk assessment studies. Finally, the potential impact of these recommendations on nuclear safety is described

  8. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.R.

    1987-01-01

    The new Fuel Handling Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both Magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for active commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  9. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.

    1987-01-01

    The new Fuel Handing Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for ''active'' commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  10. Evaluation of seismic stability of nuclear power plants on weathered soft rocks

    International Nuclear Information System (INIS)

    Ogata, Nobuhide; Nishi, Koichi; Honsho, Shizumitsu

    1991-01-01

    Soft rocks such as weathered rocks or low cemented sedimentary rocks spread all over the country. If it is possible to construct nuclear power plants on such soft rocks, there will be more available sites for nuclear power plants. The investigation on the following research items was carried out. (1) Geological survey and the application of test methods on soft rocks. (2) Methods and application of laboratory and in-situ tests on soft rocks. (3) Response analysis of a reactor building and foundation ground during earthquake. (4) Stability analysis of soft rock ground as the foundation of a nuclear power plant regarding both earthquake and long-term settlement. From the results of the investigation, it became evident that the seismic stability of a nuclear power plant on weathered soft rocks can be assured enough. (author)

  11. Development of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    International Nuclear Information System (INIS)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun

    2004-02-01

    The objective of this research is to develop on efficient integrity evaluation technology and to investigate the applicability of the newly-developed technology such as internet-based cyber platform etc. to Nuclear Power Plant(NPP) components. The development of an efficient structural integrity evaluation system is necessary for safe operation of NPP as the increase of operating periods. Moreover, material test data as well as emerging structural integrity assessment technology are also needed for the evaluation of aged components. The following five topics are covered in this project: development of the wall-thinning evaluation program for nuclear piping; development of structural integrity evaluation criteria for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for major components of NPP; ingegration of internet-based cyber platform and integrity evaluation program for primary components of NPP; effects of aging on strength of dissimilar welds

  12. Development of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2004-02-15

    The objective of this research is to develop on efficient integrity evaluation technology and to investigate the applicability of the newly-developed technology such as internet-based cyber platform etc. to Nuclear Power Plant(NPP) components. The development of an efficient structural integrity evaluation system is necessary for safe operation of NPP as the increase of operating periods. Moreover, material test data as well as emerging structural integrity assessment technology are also needed for the evaluation of aged components. The following five topics are covered in this project: development of the wall-thinning evaluation program for nuclear piping; development of structural integrity evaluation criteria for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for major components of NPP; ingegration of internet-based cyber platform and integrity evaluation program for primary components of NPP; effects of aging on strength of dissimilar welds.

  13. Stress corrosion evaluation on stainless steel 304 pipes in Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    1996-01-01

    Inside the frame of the project IAEA/MEX-41044 'Stress corrosion as a starting event of accidents in nuclear plants', and of the institutional project IA-252 under the same name, it was required from the Laguna Verde Nuclear Plant, material equivalent to the one employed in the piping of the primary recycling system. Laguna Verde Nuclear Plant granted two tracks of tubes, that could be used to substitute the ones that are in operation, as is the tube SA-358TP304 CL-QC with transversal welding, designated as ER-316-LQA. According to the report entitles 'Revision of the operational experience related to corrosion in the nuclear plants' it was found that the stress corrosion is the principal mechanism of corrosion present in the nuclear plants. Previous records indicate that sensitized stainless steels are resistant to stress corrosion in testings of constant loading in sea water (3.5% of chlorides approximately) to 80 Centigrade and to 80% of the limit of conveyance and that a solution of 22% of NaCl to 90 Centigrade, produces cracking due to stress corrosion in highly sensitized steels, in tests of speed of slow extension (SSRT), to a speed of 1x10 -6 s -1 . Daniels reports that there is a direct relation between the speed limit of detection of the SSRT test and the concentration of chlorides, for stainless steels tested to 100 Centigrade. The minimum detection speed of susceptibility to stress corrosion for solution to 20% of NaCl, is of 1x10 -7 s -1 . Taking into account these considerations, the employment of a solution with 22% of NaCl to 90 Centigrade to a speed of 1x10 -6 s -1 seems a good choice for the evaluation of stainless steel. (Author)

  14. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1996-01-01

    Research is being conducted by Oak Ridge National Laboratory under US nuclear regulatory commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a structural materials information center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of non-destructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (orig.)

  15. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1994-01-01

    Research is being conducted by Oak Ridge National Laboratory under U.S. Nuclear Regulatory Commission sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the US-NRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (author). 29 refs., 2 figs

  16. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1994-01-01

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants

  17. Comparison and evaluation of nuclear power plant options for geosynchronous power stations

    International Nuclear Information System (INIS)

    Williams, J.R.

    1975-01-01

    A solution to the safety, safeguards, and radwaste disposal problems of nuclear power is to locate the breeder reactor power plants far out in geosynchronous orbit and beam the power to earth with microwaves. The generation of nuclear power in space is technologically feasible and has already been demonstrated on a small scale. It has also been shown that high efficiency microwave transmission of power from synchronous orbit to earth is feasible and is not hazardous. The reactor safety problem would be virtually eliminated because of the remoteness of the satellite power station in geosynchronous orbit. The worst possible accident at such a plant would have negligible effect on the earth, certainly less than the high altitude nuclear explosions which have been conducted in the past. Accidental re-entry from geosynchronous orbit could not occur because of the very large velocity change required. The safeguards problem can be virtually eliminated by adopting the following procedures: 1) The plant is initially started up using U-235 fuel or bred plutonium or U-233 from another geosynchronous power plant, 2) Once the plant is operating, only nonhazardous fertile materials (thorium or depleted uranium) are shipped up from earth, 3) The fissile fuel is bred and used in space, and none of this highly toxic fissile material is ever returned to earth. The radioactive waste could be concentrated and ejected in canisters into deep space away from the earth. The geosynchronous nuclear power plant offers unlimited nuclear power without nuclear hazards or nuclear pollution, but at somewhat higher cost. Whether or not society will be willing to pay these higher costs of nuclear power from space, or whether new energy resources such as nuclear fusion or solar power become feasible, remains to be seen. A prudent course to follow would be to give careful consideration to all future options for large scale energy generation, including the option of nuclear power from space

  18. Preliminary evaluation of aircraft impact on a near term nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Frano, R. Lo, E-mail: rosa.lofrano@ing.unipi.it [Department of Mechanical, Nuclear and Production Engineering, University of PISA, L.go L. Lazzarino 2, via Diotisalvi, no. 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of PISA, L.go L. Lazzarino 2, via Diotisalvi, no. 2-56126 Pisa (Italy)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The effects of military/civilian airplanes crash in a NPP were evaluated. Black-Right-Pointing-Pointer We adequately simulated the global response and safety margin of an SMR reactor. Black-Right-Pointing-Pointer The analyses allowed to represent the progressive failure/damaging processes. Black-Right-Pointing-Pointer The outer containment seemed to suffer some localized penetration and spalling. Black-Right-Pointing-Pointer The results highlighted the plant integrity is ensured despite the impact damages. - Abstract: For the assessment of the safety and durability of a nuclear power plant (NPP), the containment building behaviour shall be evaluated, under various service and extreme conditions, both natural or produced by natural accident or vicious man activities, like September 2001 jet aircraft crashes. The aim of this paper is to preliminary evaluate the effects and consequences of the energy transmitted to the outer containment walls (according to the international safety and design code guidelines, as NRC or IAEA ones) due to a military or civil aircraft impact into a nuclear plant, considered as a 'beyond design basis' event. To perform reliable analysis of such a large-scale structure and determine the structural effects of the propagation of this types of impulsive loads (response of containment structure), a realistic but still feasible numerical model with suitable materials characteristics were used by means of which relevant physical phenomena are reflected. Moreover a sensitivity analysis has also been carried out considering the effects of different containment wall thickness and reinforced/prestressed concrete features. The obtained results were analysed to check the NPP containment strength margins.

  19. Reliability methods in nuclear power plant ageing management

    International Nuclear Information System (INIS)

    Simola, K.

    1999-01-01

    The aim of nuclear power plant ageing management is to maintain an adequate safety level throughout the lifetime of the plant. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time-dependent degradation. The phases of ageing analyses are generally the identification of critical components, identification and evaluation of ageing effects, and development of mitigation methods. This thesis focuses on the use of reliability methods and analyses of plant- specific operating experience in nuclear power plant ageing studies. The presented applications and method development have been related to nuclear power plants, but many of the approaches can also be applied outside the nuclear industry. The thesis consists of a summary and seven publications. The summary provides an overview of ageing management and discusses the role of reliability methods in ageing analyses. In the publications, practical applications and method development are described in more detail. The application areas at component and system level are motor-operated valves and protection automation systems, for which experience-based ageing analyses have been demonstrated. Furthermore, Bayesian ageing models for repairable components have been developed, and the management of ageing by improving maintenance practices is discussed. Recommendations for improvement of plant information management in order to facilitate ageing analyses are also given. The evaluation and mitigation of ageing effects on structural components is addressed by promoting the use of probabilistic modelling of crack growth, and developing models for evaluation of the reliability of inspection results. (orig.)

  20. Reliability methods in nuclear power plant ageing management

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K. [VTT Automation, Espoo (Finland). Industrial Automation

    1999-07-01

    The aim of nuclear power plant ageing management is to maintain an adequate safety level throughout the lifetime of the plant. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time-dependent degradation. The phases of ageing analyses are generally the identification of critical components, identification and evaluation of ageing effects, and development of mitigation methods. This thesis focuses on the use of reliability methods and analyses of plant- specific operating experience in nuclear power plant ageing studies. The presented applications and method development have been related to nuclear power plants, but many of the approaches can also be applied outside the nuclear industry. The thesis consists of a summary and seven publications. The summary provides an overview of ageing management and discusses the role of reliability methods in ageing analyses. In the publications, practical applications and method development are described in more detail. The application areas at component and system level are motor-operated valves and protection automation systems, for which experience-based ageing analyses have been demonstrated. Furthermore, Bayesian ageing models for repairable components have been developed, and the management of ageing by improving maintenance practices is discussed. Recommendations for improvement of plant information management in order to facilitate ageing analyses are also given. The evaluation and mitigation of ageing effects on structural components is addressed by promoting the use of probabilistic modelling of crack growth, and developing models for evaluation of the reliability of inspection results. (orig.)

  1. Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping—Part 1: Quantification of Thickness Measurement Deviation

    Directory of Open Access Journals (Sweden)

    Hun Yun

    2016-06-01

    Full Text Available Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs. Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

  2. Molecular Fingerprinting Approach in Plant Species Evaluation for a Nuclear Power Programme

    International Nuclear Information System (INIS)

    Azhar Mohamed

    2011-01-01

    Deoxyribonucleic acid (DNA) as a tool for marker technology is found to be remarkable, advanced and exciting in recent years. DNA markers are valuable tools and important in various plant breeding analyses for identification, gene mapping, marker systems and mutagenesis response. As gene expression is related to concurrent cellular activities and is mobilised in the adaptation of plants to adverse environmental conditions, changes at the DNA levels can be detected simultaneously. The changes also reflect response onto plant traits in which selection for better quality plant materials can be made and/or used as bio-indicator response in tracking any environmental change. The objective of the present study is to show Inter Simple Sequence Repeat (ISSR) markers as an important technique in differentiating plant DNA genomic in various species for the evaluation of their diversity and radiation effects in population. The technique has been found to be rapid, simple, reliable and robust in generating molecular fingerprinting database in bio surveillance for a nuclear power programme. (author)

  3. Seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.

    2001-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  4. Study on advanced nuclear power plants expert evaluation system in China

    International Nuclear Information System (INIS)

    Zhang Qi; Yoshikawa, Hidekazu; Shimoda, Hiroshi; Zhou Zhiwei; Zhu Shutang; Ren Junsheng; Yang Mengjia; Gu Junyang

    2005-01-01

    Based on current status and developing trend of nuclear power plant technology, an evaluation software system is developed to assess advanced NPPs systematically according to a set of pre-established evaluation indices. The selection and classification of the indices, the determination of their weighting factors in applying AHP (analytic hierarchy process) method are discussed. The Fuzzy Comprehensive method and the Fuzzy Borda Number method are studied in detail. The original input data required by the evaluation system are deduced from the expert survey sheets Evaluation results with common significance of public attraction are discussed and analyzed according to the opinions of different experts grouped by age, profession and working expertise etc. The evaluation system is computer network based with high flexible and user friendly human-machine interface on which it is easy to manipulate and update the evaluation system, and to display evaluation results as well. (author)

  5. A Study on the Evaluation Technology of Welds Integrity in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chang, Hyun Young; Kim, Jong Sung; Jin, Tae Eun

    2007-01-01

    The final goal of this study is to develop the core technologies applicable to the design, operation and maintenance of welds in nuclear structures. This study includes predicting microstructure changes and residual stress for welded parts of nuclear power plant components. Furthermore, researches are performed on evaluating fatigue, corrosion, and hydrogen induced cracking and finally constructs systematically integrated evaluation system for structural integrity of nuclear welded structures. In this study, metallurgical and mechanical approaches have been effectively coordinated considering real welding phenomena in the fields of welds properties such as microstructure, composition and residual stress, and in the fields of damage evaluations such as fatigue, corrosion, fatigue crack propagation, and stress corrosion cracking. Evaluation techniques tried in this study can be much economical and effective in that it uses theoretical/semi-empirical but includes many additional parameters that can be introduced in real phenomena such as phase transformation, strength mismatch and residual stress. It is clear that residual stress makes great contribution to fatigue and stress corrosion cracking. Therefore the mitigation techniques have been approached by reducing the residual stress of selected parts resulting in successful conclusions

  6. Nuclear power and heating plants in the electric power system. Part I

    International Nuclear Information System (INIS)

    Kalincik, L.

    1975-01-01

    Procedures used and results obtained in the following works are described: Incorporation of the nuclear power plants in the power system in the long term perspective; physical limitations on the WWER 440 reactor power changes during fuel campaigns; evaluation of the consumption and start-up characteristics of WWER type nuclear power plants (2x440 MWe); evaluation of refuelling campaigns distribution of nuclear power plant units with regard to comprehensive control properties of nuclear power plants; the possibilities are investigated of the utilization of the WWER type reactor for heat supply in Czechoslovakia. (author)

  7. Economic Evaluation of Decommissioning Cost of Nuclear Power Plant in the National Electricity Plan in Korea

    International Nuclear Information System (INIS)

    Lee, Man Ki; Nam, Ji Hee

    2008-01-01

    Decommissioning cost of a nuclear power plant includes the costs related with dismantling a nuclear power plant, disposal of a spent fuel and of a low/medium radioactive waste. The decommissioning cost is different from the other expenditures in that it is occurred after the reactor finishes its commercial operation. In this respect, the electricity act was enforced to secure provisions for decommissioning a nuclear power plant during its commercial operation. The purpose of this study is to provide economic evaluation and economic cost for a decommissioning when the cost of a decommissioning is provided as one of input to the national electricity plan. Therefore, this study does not deal with whether the estimated amount of a decommissioning cost is just or not. This study focuses how to transfer the estimated decommissioning cost given in the electricity act to the economic cost, which can be used in the national electricity plan

  8. Financial analysis of large versus small nuclear power plants

    International Nuclear Information System (INIS)

    Louh, R.F.; Becker, M.; Wicks, F.

    1986-01-01

    There have been no new orders for nuclear plants and many nuclear plants under construction have been cancelled in recent years in the United States. Financing problems have been a major factor in this slow down of new nuclear plant activity. Meanwhile, the nuclear plants that have been completed have been operating cost effectively and yielding fossil fuel conservation and air quality benefits. Smaller plants have been designed in the past for the purpose of penetrating markets in developing countries and countries with relatively small utility systems. This paper examines the question of whether these smaller plants would be a viable option to large nuclear plants in the United States. Although the smaller plants are estimated to have a somewhat higher capital cost on a $/k W basis, they have the potential advantage of a lower total financial committment. The computational tools required for this evaluation are optimal generation planning and financial simulation programs and the corresponding generation and financial data bases for a variety of systems

  9. Evaluation and Numerical Simulation of Tsunami for Coastal Nuclear Power Plants of India

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Singh, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-01-01

    Recent tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunami-genic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on different analytical/numerical approaches with shallow water wave theory. (authors)

  10. Performance-based evaluation of graphic displays for nuclear-power-plant control rooms

    International Nuclear Information System (INIS)

    Petersen, R.J.; Banks, W.W.; Gertman, D.I.

    1982-01-01

    This paper reports several methodologies for evaluating the perceptual and perceptual/decision making aspects of displays used in the control rooms of nuclear power plants. This NRC funded study focuses upon the Safety Parameter Display System (SPDS) and relates the utility of the display to objective performance and preference measures obtained in experimental conditions. The first condition is a traditional laboratory setting where classical experimental methodologies can be employed. The second condition is an interactive control room simulation where the operator's performance is assessed while he/she operates the simulator. The third condition is a rating scale designed to assess operator preferences and opinions regarding a variety of display formats. The goal of this study is the development of a cost-efficient display evaluation methodology which correlates highly with the operator's ability to control a plant

  11. Verification of practicability of quantitative reliability evaluation method (De-BDA) in nuclear power plants

    International Nuclear Information System (INIS)

    Takahashi, Kinshiro; Yukimachi, Takeo.

    1988-01-01

    A variety of methods have been applied to study of reliability analysis in which human factors are included in order to enhance the safety and availability of nuclear power plants. De-BDA (Detailed Block Diagram Analysis) is one of such mehtods developed with the objective of creating a more comprehensive and understandable tool for quantitative analysis of reliability associated with plant operations. The practicability of this method has been verified by applying it to reliability analysis of various phases of plant operation as well as evaluation of enhanced man-machine interface in the central control room. (author)

  12. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  13. Non-destructive evaluation of containment walls in nuclear power plants

    Science.gov (United States)

    Garnier, V.; Payan, C.; Lott, M.; Ranaivomanana, N.; Balayssac, J. P.; Verdier, J.; Larose, E.; Zhang, Y.; Saliba, J.; Boniface, A.; Sbartai, Z. M.; Piwakowski, B.; Ciccarone, C.; Hafid, H.; Henault, J. M.; Buffet, F. Ouvrier

    2017-02-01

    Two functions are regularly tested on containment walls in order to anticipate a possible accident. The first is mechanical to resist a possible internal over-pressure and the second is to prevent leakage. The AAPR reference accident is the rupture of a pipe in the primary circuit of a nuclear plant. In this case, the pressure and temperature can reach 5 bar and 180°C in 20 seconds. The national project `Non-destructive testing of the containment structures of nuclear plants' aims at studying the non-destructive techniques capable to evaluate the concrete properties and its damaging and cracks. This 4-year-project is segmented into two parts. The first consists in developing and selecting the most relevant NDEs in the laboratory to reach these goals. These evaluations are developed in conditions representing the real conditions of the stresses generated during ten-yearly visits of the plants or those related to an accident. The second part consists in applying the selected techniques to two containment structures under pressure. The first structure is proposed by ONERA and the second is a mockup of a containment wall on a 1/3 scale made by EDF within the VeRCoRs project. Communication is focused on the part of the project that concerns the damage and crack process characterization by means of NDT. The tests are done in 3 or 4 points bending in order to study the cracks' generation, their propagation, as well as their opening and closing. The main ultrasonic techniques developed concern linear or non-linear acoustic: acoustic emission [1], Locadiff [2], energy diffusion, surface wave's velocity and attenuation, DAET [3]. The recorded data contribute to providing the mapping of the investigated parameters, either in volume, in surface or globally. Digital image correlation is an important additional asset to validate the coherence of the data. The spatial normalization of the data in the specimen space allows proposing algorithms on the combination of the

  14. Mathematical model use for evaluation of radioactivity spreading in nuclear power plant

    International Nuclear Information System (INIS)

    Kubik, I.; Gladki, Eh.; Yanchik, O.

    1976-01-01

    On the basis of knowledges of radioactive products behaviour and their spreading in nuclear power plant under normal and accident conditions a KOMPLEX program is developed in the FORTRAN 4 language, permitting to calculate the activity in separate parts of the nuclear power plant with WWR type reactor. The COMPLEX program includes the following subprograms: AZ - PRIM - for estimating active products in fuel, coolant, on the surfaces of fuel element cans and the primary circuit. The subprogram permits to estimate the coolant activity at the expense of fission fragments for 4 different leakage mechanisms: due to diffusion, considerable fuel element damage, contamination of fuel element can surface and fuel washout by coolant; KOR - the program for estimating active corrosion products; ACT - the program for estimating the activity of activation products; CONT - the program for estimating the activity in the nuclear power plant premises (protection envelop) and ventilating pipe. The desciption of the above subprograms is given. For testing of the mathematical model applicability and the possibilities of the corresponding programs the checking calculations for operating parameters of nuclear power plant with WWR type reactor were carried out. The calculation results obtained have shown the applicability of the model suggested and the corresponding programes for nuclear power plant under normal operation and accident conditions [ru

  15. Containment nuclear plant structures evaluation by non destructive testing: strategy and results

    OpenAIRE

    GARNIER, Vincent; HENAULT, Jean-Marie; HAFID, Hamid; VERDIER, Jérôme; CHAIX, Jean François; ABRAHAM, Odile; SBARTAÏ, Zoubir Medhi; BALAYSSAC, Jean Pierre; PIWAKOWSKI, Bogdan; VILLAIN, Géraldine; DEROBERT, Xavier; PAYAN, Cédric; RAKOTONARIVO, Sandrine; LAROSE, Eric; SOGBOSSI, Hognon

    2016-01-01

    Containment nuclear plants structures are an ultimate barrier in the event of an accident. Mechanical resistance and tightness are the two functions that they are expected to provide. To evaluate their capacity to perform them, destructive testing cannot be used to characterize the material. Non-Destructive Tests then represent a relevant solution to test concrete and the struc- ture. The article positions NDT within the context of containment structures supervision and maintenance, and prese...

  16. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  17. A methodology for evaluating ''new'' technologies in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-01-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing

  18. Cost benefit justification of nuclear plant reliability improvement

    International Nuclear Information System (INIS)

    El-Sayed, M.A.H.; Abdelmonem, N.M.

    1985-01-01

    The design of the secondary steam loop of the nuclear power plant has a significant effect on the reliability of the plant. Moreover, the necessity to cool a reactor safely has increased the reliability demanded from the system. The rapidly rising construction costs and fuel prices in recent years have stimulated a great deal in optimizing the productivity of a nuclear power plant through reliability improvement of the secondary steamloop and the reactor cooling system. A method for evaluating the reliability of steam loop and cooling system of a nuclear power plant is presented. The method utilizes the cut-set technique. The developed method can be easily used to show to what extent the overall reliability of the nuclear plant is affected by the possible failures in the steam and cooling subsystem. A model for calculating the increase in the nuclear plant productivity resulting from a proposed improvement in the two subsystems reliability is discussed. The model takes into account the capital cost of spare parts for several components, replacement energy, operating and maintenance costs

  19. Construct ability Improvement for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Soo; Lee, Jong Rim; Kim, Jong Ku [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The purpose of this study was to identify methods for improving the construct ability of nuclear power plants. This study reviewed several references of current construction practices of domestic and overseas nuclear plants in order to identify potential methods for improving construct ability. The identified methods for improving construct ability were then evaluated based on the applicability to domestic nuclear plant construction. The selected methods are expected to reduce the construction period, improve the quality of construction, cost, safety, and productivity. Selection of which methods should be implemented will require further evaluation of construction modifications, design changes, contract revisions. Among construction methods studied, platform construction methods can be applied through construction sequence modification without significant design changes, and Over the Top construction method of the NSSS, automatic welding of RCL pipes, CLP modularization, etc., are considered to be applied after design modification and adjustment of material lead time. (author). 49 refs., figs., tabs.

  20. Study of a simplified method of evaluating the economic maintenance importance of components in nuclear power plant system

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Takagi, Toshiyuki; Kodama, Noriko

    2014-01-01

    Safety risk importance of components in nuclear power plants has been evaluated based on the probabilistic risk assessment and used for the decisions in various plant managements. But economic risk importance of the components has not been discussed very much. Therefore, this paper discusses risk importance of the components from the viewpoint of plant economic efficiency and proposes a simplified evaluation method of the economic risk importance (or economic maintenance importance). As a result of consideration, the followings were obtained. (1) A unit cost of power generation is selected as a performance indicator and can be related to a failure rate of components in nuclear power plant which is a result of maintenance. (2) The economic maintenance importance has to major factors, i.e. repair cost at component failure and production loss associated with plant outage due to component failure. (3) The developed method enables easy understanding of economic impacts of plant shutdown or power reduction due to component failures on the plane which adopts the repair cost in vertical axis and the production loss in horizontal axis. (author)

  1. Measurement and evaluation of human factor training in nuclear power plants

    International Nuclear Information System (INIS)

    Hamasaki, Kenichi

    2006-01-01

    The purpose of this study is to measure and evaluate the effectiveness of human factor training aimed at awareness and behavioral changes, conducted by electric power company for the nuclear power plant staff. As the first step, the researcher investigated recent trends in training measurement and evaluation methods in the United States. It was found that many instances of training measurement/evaluation had been reported, and that the ROI model was the mainstream method for such measurement and evaluation. However, there had been no instances reported in which the effectiveness of human factor training for plant staff had been measured. The researcher therefore developed a new questionnaire-type of effectiveness measurement/evaluation method, based on the framework of the ROI model. Two-years of research was then conducted, in which the effectiveness of a human factor training program was measured using the newly developed method. This research revealed that participants' overall satisfaction and knowledge/skill acquisition levels were high. The percentage of participants who demonstrated awareness/behavioral change after returning to the workplace increased from 50% at first measurement to 81% at second measurement. It can therefore be concluded that the effectiveness of the second training is greater than that of the first training. Use of the new effectiveness measurement/evaluation method will enable quantification of human factor training effectiveness and help improve training quality. (author)

  2. Evaluation Of The Exclusion And Low Population Areas Around A Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tawfik, F.S.

    2011-01-01

    Being adjacent to the nuclear power plant (NPP) the exclusion area (EA) is the area of greatest importance. It essentially defines a buffer zone where the public has no access. It helps to define the fenced plant area, the site area and the public area. Also, the low population area is the area immediately surrounding the exclusion area near a licensed reactor in terms of public safety and the ability of residents to get away from the plant in an emergency. This study clarifies their significance and reviews the international approach on them. Assuming the nuclear power plant site at the north coast of Egypt, the exclusion area and low population area are determined according to CFR (2002). In this method, a maximum possible amount of radioactivity release (called a source term) should be assumed. The boiling water reactor (BWR) with a power 1000 MW was used to carry the calculation and assuming a severe loss of coolant accident with meltdown of reactor. The site specific data have been collected, investigated and processed. The effect of the degree of atmospheric stability and building width of the plant were examined. The proceeding factors that control the determination of exclusion area and low population area should be taken into consideration in the site evaluation stage and design basis of NPP to set a minimum distances for them

  3. Probabilistic methods in nuclear power plant component ageing analysis

    International Nuclear Information System (INIS)

    Simola, K.

    1992-03-01

    The nuclear power plant ageing research is aimed to ensure that the plant safety and reliability are maintained at a desired level through the designed, and possibly extended lifetime. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time- dependent decrease in reliability. The results of analyses can be used in the evaluation of the remaining lifetime of components and in the development of preventive maintenance, testing and replacement programmes. The report discusses the use of probabilistic models in the evaluations of the ageing of nuclear power plant components. The principles of nuclear power plant ageing studies are described and examples of ageing management programmes in foreign countries are given. The use of time-dependent probabilistic models to evaluate the ageing of various components and structures is described and the application of models is demonstrated with two case studies. In the case study of motor- operated closing valves the analysis are based on failure data obtained from a power plant. In the second example, the environmentally assisted crack growth is modelled with a computer code developed in United States, and the applicability of the model is evaluated on the basis of operating experience

  4. Integrated Nuclear Recycle Plant

    International Nuclear Information System (INIS)

    Patodi, Anuj; Parashar, Abhishek; Samadhiya, Akshay K.; Ray, Saheli; Dey, Mitun; Singh, K.K.

    2017-01-01

    Nuclear Recycle Board (NRB), Tarapur proposes to set up an 'Integrated Nuclear Recycle Plant' at Tarapur. This will be located in the premises of BARC facilities. The project location is at coastal town of Tarapur, 130 Km north of Mumbai. Project area cover of INRP is around 80 hectares. The plant will be designed to process spent fuel received from Pressurized Heavy Water Reactors (PHWRs). This is the first large scale integrated plant of the country. INRP will process spent fuel obtained from indigenous nuclear power plants and perform left over nuclear waste disposal

  5. SECURE nuclear district heating plant

    International Nuclear Information System (INIS)

    Nilsson; Hannus, M.

    1978-01-01

    The role foreseen for the SECURE (Safe Environmentally Clean Urban REactor) nuclear district heating plant is to provide the baseload heating needs of primarily the larger and medium size urban centers that are outside the range of waste heat supply from conventional nuclear power stations. The rationale of the SECURE concept is that the simplicity in design and the inherent safety advantages due to the use of low temperatures and pressures should make such reactors economically feasible in much smaller unit sizes than nuclear power reactors and should make their urban location possible. It is felt that the present design should be safe enough to make urban underground location possible without restriction according to any criteria based on actual risk evaluation. From the environmental point of view, this is a municipal heat supply plant with negligible pollution. Waste heat is negligible, gaseous radioactivity release is negligible, and there is no liquid radwaste release. Economic comparisons show that the SECURE plant is competitive with current fossil-fueled alternatives. Expected future increase in energy raw material prices will lead to additional energy cost advantages to the SECURE plant

  6. Hand-calculation technique for the evaluation of public risk from a severe accident at a nuclear power plant

    International Nuclear Information System (INIS)

    Linn, M.A.; Schmoyer, R.E.

    1993-01-01

    The Nuclear Regulatory Commission (NRC) is in the process of promulgating a proposed rule 10 CFR Part 54, ''Requirements for Renewal of Operating Licensees for Nuclear Power Plants,'' which will allow licenses to renew the operating licenses on their nuclear power plants for an additional 20 years beyond the original 40-year limit. A Generic Environmental Impact Statement (GEIS) prepared by the Oak Ridge National Laboratory (ORNL) in conjunction with and for the Nuclear Regulatory Commission to assess the environmental issues associated with this proposed rule. The evaluation of the environmental impact from postulated severe accidents was included in the GEIS. During this evaluation of postulated severe accidents, a method was developed to estimate the public health consequences of atmospheric releases from severe accidents that is much simpler to use than existing consequence computer codes. From the results of this work, it is concluded that the simplified methodology does provide reasonable and conservative estimates of public risk from atmospheric releases from severe accidents

  7. Nuclear plant owners move closer to life extension

    International Nuclear Information System (INIS)

    Smith, D.J.

    1991-01-01

    A major debate is now underway about the safety of 40-year-old nuclear power plants. Under the Atomic Energy Act of 1954 a nuclear power plant's license is limited to a maximum of 40 years. Although the act permits the renewal of an operating license, it does not outline any standards or procedures for determining when or under what conditions a plant's operating license should be renewed. This paper reports that the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) are co-sponsors of a program to demonstrate the license renewal process for two nuclear power plants - Yankee Atomic Electric's 175-MW Yankee PWR plant and Northern States Power's 536-MW Monticello BWR plant. The demonstration is known as the lead plant project. Yankee Atomic has already analyzed the plant's condition and evaluated aging using computer-based expert systems and the plant's operating experience. During these tests Yankee Atomic found embrittlement of the reactor vessel

  8. Evaluation of external hazards to nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Kimura, C.Y.; Budnitz, R.J.

    1987-12-01

    The Lawrence Livermore National Laboratory (LLNL) has performed a study of the risk of core damage to nuclear power plants in the United States due to externally initiated events. The broad objective has been to gain an understanding of whether or not each external initiator is among the major potential accident initiators that may pose a threat of severe reactor core damage or of large radioactive release to the environment from the reactor. Four external hazards were investigated in this report. These external hazards are internal fires, high winds/tornadoes, external floods, and transportation accidents. Analysis was based on two figures-of-merit, one based on core damage frequency and the other based on the frequency of large radioactive releases. Using these two figures-of-merit as evaluation criteria, it has been feasible to ascertain whether the risk from externally initiated accidents is, or is not, an important contributor to overall risk for the US nuclear power plants studied. This has been accomplished for each initiator separately. 208 refs., 17 figs., 45 tabs

  9. Integrated-plant-safety assessment Systematic Evaluation Program. Dresden Nuclear Power Station, Unit 2, Commonwealth Edison Company, Docket No. 50-237

    International Nuclear Information System (INIS)

    1982-10-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues; (2) a basis for deciding on how these differences should be resolved in an integrated plant review; and (3) a documented evaluation of plant safety. This report documents the review of Dresden Nuclear Generating Station, Unit 2 owned and operated by the Commonwealth Edison Company and located in Grundy County, Illinois. Dresden Unit 2 is one of ten plants reviewed under Phase II of this program, which indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  10. A safety evaluation of fire and explosion in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji; Miyata, Teijirou

    1996-01-01

    The demonstration test was performed in JAERI to prove the adequacy of a safety evaluation for an air-ventilation system in the case of solvent fire and red-oil explosion in a nuclear fuel reprocessing plant. The test objectives were to obtain data of the safety evaluation on a thermofluid behavior and a confinement effect of radioactive materials during fire and explosion while the system is operating in a cell. The computer code was developed to evaluate the safety of associated network in the ventilation system and to estimate the confinement of radioactive materials in the system. The code was verified by comparison of code calculations with results of the demonstration test. (author)

  11. Non-destructive electrochemical techniques applied to the corrosion evaluation of the liner structures in nuclear power plants

    International Nuclear Information System (INIS)

    Martinez, I.; Castillo, A.; Andrade, C.

    2008-01-01

    The liner structure in nuclear power plants provides containment for the operation and therefore the study of its durability and integrity during its service life is an important issue. There are several causes for the deterioration of the liner, which in general involve corrosion due to its metallic nature. The present paper is aimed at describing the assessment of corrosion problems of two liners from two different nuclear power plants, which were evaluated using non-destructive electrochemical techniques. In spite of the testing difficulties arisen, from the results extracted it can be concluded that the electrochemical techniques applied are adequate for the corrosion evaluation. They provide important information about the integrity of the structure and allow for its evolution with time to be assessed

  12. Overall quality assurance program requirements for nuclear power plants

    International Nuclear Information System (INIS)

    1992-09-01

    This standard contains the requirements for the owner's overall quality assurance program for a nuclear power plant. This program encompasses all phases of a nuclear power plant life cycle, including site evaluation, design, procurement, manufacturing, construction and installation, commissioning, operation, and decommissioning. It covers the activities associated with specifying, directing, and administering the work to be done during these phases, and the evaluation and integrated of the activities and programs of participants

  13. Cyber Security Evaluation of the Wireless Communication for the Mobile Safeguard Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.; Kim, Y.S.; Ye, S.H.

    2015-01-01

    This paper introduces cyber security evaluation results and a design of the wireless communication technology to apply to safeguard systems in nuclear power plants. While wireless communication technologies can generally make mobility and efficiency on plant operation, those have seldom been installed on the nuclear I&C systems due to the negative concern of unexpected outcomes that stem from electromagnetic interference and cyber attack. New design of advanced digital safeguard and I&C systems uses computer-based systems for the safeguard and safety functions. On the other hand, those are being exposed to various types of new and existing cyber threats, vulnerabilities and risks which significantly increase the likelihood that those could be compromised. In order to employ the wireless communication technology in safeguard function, licencees assess and manage the potential for adverse effects on safeguard and safety functions so as to provide high assurance that critical functions are properly protected cyber attack. It is expected that the safeguard function, specifically on the area of real-time monitoring, logging, can be enhanced by employing the mobile safeguard devices (: smart phone, laptop, smart pad, etc). In this paper, we deal with the cyber security evaluation, which consists of threat analysis, vulnerability test, establishment of security plan, and design solutions for the wireless communication on the basis of IEEE 802.11(Wi-Fi) protocol. Proposed evaluation and design solution could be a basis for the design of wireless communication and mobile safeguard systems in nuclear power plants. (author)

  14. Nuclear plant simulation using the Nuclear Plant Analyzer

    International Nuclear Information System (INIS)

    Beelman, R.J.; Laats, E.T.; Wagner, R.J.

    1984-01-01

    The Nuclear Plant Analyzer (NPA), a state-of-the-art computerized safety analysis and engineering tool, was employed to simulate nuclear plant response to an abnormal transient during a training exercise at the US Nuclear Regulatory Commission (USNRC) in Washington, DC. Information relative to plant status was taken from a computer animated color graphics display depicting the course of the transient and was transmitted to the NRC Operations Center in a manner identical to that employed during an actual event. Recommendations from the Operations Center were implemented during on-line, interactive execution of the RELAP5 reactor systems code through the NPA allowing a degree of flexibility in training exercises not realized previously. When the debriefing was conducted, the RELAP5 calculations were replayed by way of the color graphics display, adding a new dimension to the debriefing and greatly enhancing the critique of the exercise

  15. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Friske, A.; Thiele, D.

    1988-01-01

    The IAEA classification of decommissioning stages is outlined. The international development hitherto observed in decommissioning of nuclear reactors and nuclear power stations is presented. The dismantling, cutting and decontamination methods used in the decommissioning process are mentioned. The radioactive wastes from decommissioning are characterized, the state of the art of their treatment and disposal is given. The radiation burdens and the decommissioning cost in a decommissioning process are estimated. Finally, some evaluation of the trends in the decommissioning process of nuclear power plants is given. 54 refs. (author)

  16. Projecting labor demand and worker immigration at nuclear power plant construction sites: an evaluation of methodology

    International Nuclear Information System (INIS)

    Herzog, H.W. Jr; Schlottmann, A.M.; Schriver, W.R.

    1981-12-01

    The study evaluates methodology employed for the projection of labor demand at, and worker migration to, nuclear power plant construction sites. In addition, suggestions are offered as to how this projection methodology might be improved. The study focuses on projection methodologies which forecast either construction worker migration or labor requirements of alternative types of construction activity. Suggested methodological improvements relate both to institutional factors within the nuclear power plant construction industry, and to a better use of craft-specific data on construction worker demand/supply. In addition, the timeliness and availability of the regional occupational data required to support, or implement these suggestions are examined

  17. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  18. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-02-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intended to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  19. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-01-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative–intended to catalog final products–rather than formative–intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  20. Integrated plant safety assessment: Systematic Evaluation Program, San Onofre Nuclear Generating Station, Unit 1 (Docket No. 50-206): Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues; (2) a basis for deciding on how these differences should be resolved in an integrated plant review; and (3) a documented evaluation of plant safety. This report documents the review of San Onofre Nuclear Generating Station, Unit 1, operated by Southern California Edison Company. The San Onofre plant is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. This report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license. This report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the draft report issued in April 1985

  1. Nuclear plant analyzer desktop workstation

    International Nuclear Information System (INIS)

    Beelman, R.J.

    1990-01-01

    In 1983 the U.S. Nuclear Regulatory Commission (USNRC) commissioned the Idaho National Engineering Laboratory (INEL) to develop a Nuclear Plant Analyzer (NPA). The NPA was envisioned as a graphical aid to assist reactor safety analysts in comprehending the results of thermal-hydraulic code calculations. The development was to proceed in three distinct phases culminating in a desktop reactor safety workstation. The desktop NPA is now complete. The desktop NPA is a microcomputer based reactor transient simulation, visualization and analysis tool developed at INEL to assist an analyst in evaluating the transient behavior of nuclear power plants by means of graphic displays. The NPA desktop workstation integrates advanced reactor simulation codes with online computer graphics allowing reactor plant transient simulation and graphical presentation of results. The graphics software, written exclusively in ANSI standard C and FORTRAN 77 and implemented over the UNIX/X-windows operating environment, is modular and is designed to interface to the NRC's suite of advanced thermal-hydraulic codes to the extent allowed by that code. Currently, full, interactive, desktop NPA capabilities are realized only with RELAP5

  2. Consideration of Evaluation of Communication using Work Domain Analysis (WDA) in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jang, In Seok; Seong, Poong Hyun; Park, Jin Kyun

    2009-01-01

    The nature of work has changed, this corresponding to a trend toward to computerization. In this phase, the role of people began to evolve from one of manual laborer, requiring primarily perception-motor skill, to intellectual worker, thereby requiring more conceptual knowledge and cognitive skills which means system such as nuclear power plant are getting more complicated and complex. Thus, the evolution of work has led to a greater demand for communication, collaboration, problem solving thereby increasing the discretion, and therefore the variability, in worker action. Because of these reasons, traditional approaches, normative method and descriptive method, have not been proper anymore. Naikar points out that by focusing on constraints, rather than on particular ways of working, it is possible to support workers in adapting their behavior online and in real time in a variety of situation, including unanticipated events. For these complex domain such as communication in nuclear power plant control room, an approach is required that models the conditions framing formative behavior, allowing the examination of emergent, unanticipated, unpredicted actions. In this study, it could be helpful to introduce the method that is proper to apply in complex and unanticipated like nuclear power plants. Thus, Abstraction Decomposition Space (ADS) which is the tool of Work Domain Analysis(WDA) is presented as an approach that is particularly amenable for this domain. The aim is to address ADS as a beginning of modeling the structure of what need to be analyzed can be used to support the analysis of communication in nuclear power plants. If the model that is made by ADS is correct, quantitative evaluation of communication could be done

  3. Nuclear power plant personnel training process management system

    International Nuclear Information System (INIS)

    Arjona Vazquez, Orison; Venegas Bernal, Maria del Carmen; Armeteros Lopez, Ana L.

    1996-01-01

    The system in charge the management of the training process personnel from a nuclear power plant was designed taking into account all the requirements stated in the training guide for nuclear power plant personnel and their evaluation, which were prepared by the IAEA in 1995 in order to implement the SAT in the training programs for nuclear plant personnel. In the preparations of formats and elements that shape the system, account has been taken of the views expressed in such a guide, in some other bibliography that was consulted, and in the authors own opinion mainly with regard to those issues which the guide does not go deeper into

  4. Means of evaluating and improving the effectiveness of training of nuclear power plant personnel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In 1996 the IAEA published a guidebook on Nuclear Power Plant Personnel Training and its Evaluation, which constitutes the recommendations of the IAEA with respect to development, implementation and evaluation of training programmes. The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that an additional publication be prepared to provide further details concerning the effectiveness of NPP personnel training. As the nuclear power industry continues to be challenged by increasing safety requirements, a high level of competition and decreasing budgets, it becomes more important than ever to have some methodology of ensuring that training contributes a value to the organization. The actual determination of training effectiveness is not an easy task because of the many variables associated with personnel performance. For example, for training to make a difference in job performance, line management should be involved prior to training delivery to identify what performance is desired, but not being achieved. Then, training is developed to meet desired performance, which is followed by practice and continued management reinforcement. Because of these other variables, it is very difficult to prove that training had a sole contribution to performance improvement, but rather one of many contributors needed for performance improvement. The difficulty to isolate training as a sole contributor has been documented in a number of research studies over the recent years. Due to these limitations, a base assumption must be made in order to use any methodology for training effectiveness evaluation. That assumption is that there are some basic principles for developing training and if training programmes are developed and maintained using these principles, then the training provided should be an effective tool to improve the line organization performance. By monitoring various types of training effectiveness indications

  5. Means of evaluating and improving the effectiveness of training of nuclear power plant personnel

    International Nuclear Information System (INIS)

    2003-07-01

    In 1996 the IAEA published a guidebook on Nuclear Power Plant Personnel Training and its Evaluation, which constitutes the recommendations of the IAEA with respect to development, implementation and evaluation of training programmes. The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that an additional publication be prepared to provide further details concerning the effectiveness of NPP personnel training. As the nuclear power industry continues to be challenged by increasing safety requirements, a high level of competition and decreasing budgets, it becomes more important than ever to have some methodology of ensuring that training contributes a value to the organization. The actual determination of training effectiveness is not an easy task because of the many variables associated with personnel performance. For example, for training to make a difference in job performance, line management should be involved prior to training delivery to identify what performance is desired, but not being achieved. Then, training is developed to meet desired performance, which is followed by practice and continued management reinforcement. Because of these other variables, it is very difficult to prove that training had a sole contribution to performance improvement, but rather one of many contributors needed for performance improvement. The difficulty to isolate training as a sole contributor has been documented in a number of research studies over the recent years. Due to these limitations, a base assumption must be made in order to use any methodology for training effectiveness evaluation. That assumption is that there are some basic principles for developing training and if training programmes are developed and maintained using these principles, then the training provided should be an effective tool to improve the line organization performance. By monitoring various types of training effectiveness indications

  6. Harmonization of nuclear and radiation safety regulations for nuclear power plants with reference levels of Western European Nuclear Regulators Association (WENRA)

    International Nuclear Information System (INIS)

    Bojchuk, V.S.; Mikolajchuk, O.A.; Gromov, G.V.; Dibach, O.M.; Godovanyuk, G.M.; Nosovs'kij, A.V.

    2014-01-01

    Self-evaluation of the Ukrainian regulations on nuclear and radiation safety that apply to nuclear power plants for compliance with the reference levels of the Western European Nuclear Regulators Association (WENRA) is presented. Proposals on improvement of the regulations upon self-evaluation are provided

  7. Estimation of reliability on digital plant protection system in nuclear power plants using fault simulation with self-checking

    International Nuclear Information System (INIS)

    Lee, Jun Seok; Kim, Suk Joon; Seong, Poong Hyun

    2004-01-01

    Safety-critical digital systems in nuclear power plants require high design reliability. Reliable software design and accurate prediction methods for the system reliability are important problems. In the reliability analysis, the error detection coverage of the system is one of the crucial factors, however, it is difficult to evaluate the error detection coverage of digital instrumentation and control system in nuclear power plants due to complexity of the system. To evaluate the error detection coverage for high efficiency and low cost, the simulation based fault injections with self checking are needed for digital instrumentation and control system in nuclear power plants. The target system is local coincidence logic in digital plant protection system and a simplified software modeling for this target system is used in this work. C++ based hardware description of micro computer simulator system is used to evaluate the error detection coverage of the system. From the simulation result, it is possible to estimate the error detection coverage of digital plant protection system in nuclear power plants using simulation based fault injection method with self checking. (author)

  8. Scientific-technical cooperation with foreign (esp. Europe and INSC partner countries) nuclear regulatory authorities and their technical support organizations in the fields of nuclear safety of operating nuclear power plants and on the concept evaluation of generation 3+ plants. Final report

    International Nuclear Information System (INIS)

    Wolff, Holger

    2016-09-01

    The BMUB/BfS-Project 3614I01512 forms the frame of the GRS for the scientific-technical cooperation with Technical Support Organisations and Nuclear Regulatory Authorities in the field of nuclear safety in operating NPPs and for the concept evaluation of generation 3 + plants in Europe and INSC Partner Countries. In the present final project report results are described which were gained within the project duration 15.10.2014 up to the 30.09.2016 in the following working packages: Investigations following the catastrophe of Fukushima Daiichi, Evaluation of selected National Action Plans, DBA and severe accident analyses for NPP with PWR (WWER-440, WWER-1000), cooperation with INSC partner countries on DBA, BDBA and severe accident analyses for WWER plants of generation 3 + and building NRA and safety evaluation capacities and decommissioning of nuclear facilities and disposal of radioactive waste. The results are preceded by an outline on the activities related to the project management and to the planning of the bilateral work.

  9. Nuclear power plants: a unique challenge to fire safety

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1992-01-01

    The evaluation of fire safety in a nuclear power plant must include the consideration of the impact of a fire on the operability of plant safety equipment and systems. This issue is not typical of the life safety and property protection issues which dominate traditional fire safety concerns. This paper provides a general discussion of the issue of nuclear power plant fire safety as it currently exists in the USA. Included is a discussion of the past history of nuclear power plant fire events, the development of nuclear industry specific fire safety guidelines, the adverse experience associated with the inadvertent operation of fire suppression systems, and the anticipated direction of fire safety requirements for future reactor designs in the USA. (Author)

  10. Decision no. 2011-DC-0222 of the French nuclear safety authority from May 5, 2011, ordering the Comurhex company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to Comurhex company, operator of the Tricastin uranium conversion plant (France). (J.S.)

  11. Decision no. 2011-DC-0219 of the French nuclear safety authority from May 5, 2011, ordering the SOCATRI company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the SOCATRI company, operator of the nuclear dismantling and waste processing plants of the Tricastin site (France). (J.S.)

  12. Evaluation of the degradation of the service water system in nuclear plants

    International Nuclear Information System (INIS)

    Salaices A, E.

    2003-01-01

    The service water system, the circulation water system, the cooling water system and the protection against fires system so much in nuclear plants as in fossils plants they are being degraded by a wide variety of mechanisms. These mechanisms include microbiologically influenced corrosion, cavitation, erosion-corrosion, erosion by solid particles, corrosion in cracks, stings, general corrosion, galvanic corrosion, sedimentation and obstructions and incrustations in the heat exchangers. In the last years were developed predictive models for the more common degradation forms and were installed in a new application of the CHECWORKS TM code called Cooling Water Application (CWA). This application of the code provides a new technology that so much nuclear facilities as fossil ones can use to modelling specific systems and to carry out corrosion predictions in each one of its components. Presently work the results of the employment of the CHECWORKS CWA code are described to carry out predictions of 12 different corrosion mechanisms that affect to the service water system of a nuclear plant, as well as the recommendations and options that the plant can to consider to reduce indexes of damages. This work can be used for to optimize inspections to the service water system and it gives the bases for similar changes in other nuclear plants. (Author)

  13. INPO's role in the improvement of nuclear plant safety and reliability

    International Nuclear Information System (INIS)

    Pate, Z.T.

    1985-01-01

    The Institute of Nuclear Power Operations (INPO) is a nonprofit, nongovernment corporation dedicated to promoting safe and reliable operation and quality construction of nuclear power plants. The institute is supported by the US nuclear utility industry. All US utilities building or operating nuclear power plants are INPO members. INPO's many activities fall within four major program areas: (1) Evaluations: INPO conducts detailed evaluations of all US operating plants, utility corporate support of nuclear programs, and nuclear projects under active construction. Events analysis and information exchange: INPO reviews plant reports of abnormal or unusual events and reports the lessons learned to the industry. INPO also fosters improved industry communications through a worldwide telecommunications network. (3) Training and accreditation: INPO assists utilities, including international participants, in developing quality training programs; and (4) Assistance: the Institute provides various forms of assistance to members and participants. INPO places emphasis on visits to facilities to aid members and participants in various program or operational areas

  14. Man as a protective barrier in nuclear power plants

    International Nuclear Information System (INIS)

    Fechner, J.B.

    1980-01-01

    Evaluation of nuclear power plant incidents frequently reveals man as a major element of risk. Yet, in a nuclear power plant man has the function of an important protective barrier, either by maintaining the plant, by detecting and limiting faults or incidents, or by taking proper measures in accidents. This is true despite, or perhaps because of, the high degree of plant automation. For this reason, it is indispensable that a high level of engineered plant safeguards be accompanied by a minimum of faults contributed by human action. This implies that the staff and their working conditions must meet the same stringent safety requirements as the nuclear power plant proper. Reactor manufacturers, nuclear power plant operators and the responsible authorities try to optimize this human contribution. The Federal Ministry of the Interior, through its Special Technical Guidelines and its continuation training measures, occupies an important position in this respect. Further measures and ordinances are being prepared by that Ministry. (orig.) [de

  15. Surveillance robot for nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Harvey, H.W.; Satterlee, P.E. Jr.

    1985-01-01

    A demonstration project to determine the feasibility and cost-effectiveness of mobile surveillance robots in nuclear power plants is being conducted by the Remote Technology Corporation (REMOTEC) for the US Nuclear Regulatory Commission. Phase I of the project was completed in March 1984 and included a survey of currently used robotic equipment and the development of a robotics application methodology. Three Tennessee Valley Authority plants were analyzed to identify specific plant areas with a high potential for surveillance robotics. Based on these results, a number of robotic system applications were prepared and evaluated for cost-effectiveness. The system with the highest potential, a mobile surveillance robot, was selected for fabrication and in-plant demonstration testing in a phase II effort. The design, fabrication, and assembly of SURBOT has been completed and cold testing is in process. It will be installed at the Browns Ferry Nuclear Plant early in 1986 for demonstration testing. Current projections are that SURBOT can be used in approx.40 rooms within the auxiliary building and will have annual savings of over 100 person-rem exposure, 1000 sets of C-zone clothing, and 1000 person-hours of labor

  16. A quantitative and comparative evaluation of the risks from nuclear power plants

    International Nuclear Information System (INIS)

    Vignes, S.; Bertin, M.; Nenot, J.C.

    1980-01-01

    All the significant data for the assessment of risks from the operation of nuclear power plants was collected and these risks were compared with all the risks of modern life. The scientific bases for the evaluation of individual risks and detriment were defined by UNSCEAR (1977) and by ICRP 26 (1978). In different industries, the risk of death from long term occupational illness is about 130 to 14,000 per million workers. For accidental deaths, the risk is estimated at about 16 to 1,600. The risk for the nuclear industry is lower than 100 per million workers. Comparisons are made with different causes of lethality: deaths from atmospheric pollution (sulfur compounds and dusts) related to fossile fuel combustion; iatrogenic accidents attributed to some drugs used in medicine or to other kind of treatment; calculated mortality for workers exposed to asestosis. The nuclear industr of the safest. The only risk to be considered is the major accident, the probability of which is very low. (H.K.)

  17. Improving motor reliability in nuclear power plants: Volume 1, Performance evaluation and maintenance practices

    International Nuclear Information System (INIS)

    Subudhi, M.; Gunther, W.E.; Taylor, J.H.; Sugarman, A.C.; Sheets, M.W.

    1987-11-01

    This report constitutes the first of the three volumes under this NUREG. The report presents recommendations for developing a cost-effective program for performance evaluation and maintenance of electric motors in nuclear power plants. These recommendations are based on current industry practices, available techniques for monitoring degradation in motor components, manufacturer's recommendations, operating experience, and results from two laboratory tests on aged motors. Two laboratory test reports on a small and a large motor are presented in separate volumes of this NUREG. These provide the basis for the various functional indicators recommended for maintenance programs in this report. The overall preventive maintenance program is separated into two broad areas of activity aimed at mitigating the potential effects of equipment aging: Performance Evaluation and Equipment Maintenance. The latter involves actually maintaining the condition of the equipment while the former involves those activities undertaken to monitor degradation due to aging. These monitoring methods are further categorized into periodic testing, surveillance testing, continuous monitoring and inspections. This study focuses on the methods and procedures for performing the above activities to maintain the motors operationally ready in a nuclear facility. This includes an assessment of various functional indicators to determine their suitability for trending to monitor motor component condition. The intrusiveness of test methods and the present state-of-the-art for using the test equipment in a plant environment are discussed. In conclusion, implementation of the information provided in this report, will improve motor reliability in nuclear power plants. The study indicates the kinds of tests to conduct, how and when to conduct them, and to which motors the tests should be applied. 44 refs., 12 figs., 13 tabs

  18. Aging of safety class 1E transformers in safety systems of nuclear power plants

    International Nuclear Information System (INIS)

    Roberts, E.W.; Edson, J.L.; Udy, A.C.

    1996-02-01

    This report discusses aging effects on safety-related power transformers in nuclear power plants. It also evaluates maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission's (NRC's) Nuclear Plant-Aging Research approach. It investigates the materials used in transformer construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes transformer failure events reported in various databases, and evaluates maintenance practices. Databases maintained by the nuclear industry were analyzed to evaluate the effects of aging on the operation of nuclear power plants

  19. An improved basis for evaluating continued service of Category I concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Mori, Y.; Arndt, E.G.

    1992-01-01

    The Structural Aging (SAG) Program has the overall objective of preparing technical bases for regulatory criteria which will provide the NRC with potential structural safety issues and acceptance criteria for use in nuclear power plant evaluations for continued service. In meeting this objective three primary activities are underway: (1) development of a structural materials information center containing data and information on the variation of concrete and concrete-related material properties over time; (2) establishment of procedures to make quantitative evaluations of the presence, magnitude, and significance of environmental stressors or aging factors that can impact critical component performance, as well as techniques which can be used for repair of degraded concrete structures; and (3) formulation of a quantitative methodology for performing current condition assessments and making reliability-based life predictions of critical concrete structures in nuclear power plants. Accomplishments to date under each of these tasks are presented

  20. 3D visualization based customer experiences of nuclear plant control room

    International Nuclear Information System (INIS)

    Sun Tienlung; Chou Chinmei; Hung Tamin; Cheng Tsungchieh; Yang Chihwei; Yang Lichen

    2011-01-01

    This paper employs virtual reality (VR) technology to develop an interactive virtual nuclear plant control room in which the general public could easily walk into the 'red zone' and play with the control buttons. The VR-based approach allows deeper and richer customer experiences that the real nuclear plant control room could not offer. When people know more about the serious process control procedures enforced in the nuclear plant control room, they will appropriate more about the safety efforts imposed by the nuclear plant and become more comfortable about the nuclear plant. The virtual nuclear plant control room is built using a 3D game development tool called Unity3D. The 3D scene is connected to a nuclear plant simulation system through Windows API programs. To evaluate the usability of the virtual control room, an experiment will be conducted to see how much 'immersion' the users could feel when they played with the virtual control room. (author)

  1. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  2. Evaluation of the contribution of license renewal of nuclear power plants to fault reduction in the U.S

    International Nuclear Information System (INIS)

    Chiba, Goro

    2008-01-01

    Although nuclear power plants in the U.S. were originally permitted to operate for 40 years, operating periods of many plants have been extended by license renewal for another 20 years. On the other hand, plant life management of nuclear power plants in Japan is carried out assuming long-term operation, and the licensee submits aging technology assessment reports before the plant has been operating commercially for 30 years, and then every ten years thereafter, and receives an evaluation by the authorities. In this paper, trend analysis using the INSS database on faults at nuclear power plants overseas, state of implementation of relevant aging management programs, and the effects of license renewal on preservation activities are examined. It is shown that the aging management program identified that many of the cases of fatigue, FAC, and a closed cycle cooling system have been addressed. As a result of analyzing the fault number for each unit, the number of aging faults trends to decrease after applying for license renewal. Therefore, the U.S. license renewal system is considered to be effective for plant life management, and hence the plant life management in Japan, which is substantially equivalent to the U.S. system, is valid. (author)

  3. System approach for evaluation of air pollution toxic compounds in the 30-km area of nuclear power plants

    International Nuclear Information System (INIS)

    Shevtsova, O.V.; Zhigunova, L.N.; Makovskaya, N.A.; Pavlovich, E.L.

    2012-01-01

    The article shows the importance of a systematic approach to address environmental problems that arise during the construction of nuclear power plants, and identified the need to consider the transformation and biotransformation of primary pollutants and monitoring secondary pollutants. The basic pathways of pollutants in the air a 30-km zone of nuclear power plants established. The content of primary and secondary air pollutants identified. The evaluation of general toxic risk from primary pollutant and the calculation of the carcinogenic risk of secondary pollutants entering the body by inhalation are carried out. (authors)

  4. Development of a methodology for the evaluation of radiation protection performance and management in nuclear power plants

    International Nuclear Information System (INIS)

    Schieber, Caroline; Bataille, Celine; Cordier, Gerard; Delabre, Herve; Jeannin, Bernard

    2008-01-01

    This paper describes a specific methodology adopted by Electricite de France to perform the evaluation of radiation protection performance and management within its 19 nuclear power plants. The results obtained in 2007 are summed up. (author)

  5. Fatigue damage evaluation of stainless steel pipes in nuclear power plants using positron annihilation lineshape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Yasuhiro [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Nakamura, Noriko; Yusa, Satoru [Ishikawajima-Harima Heavy Industries Co., Tokyo (Japan)

    2002-09-01

    Since positron annihilation lineshape analysis can evaluate the degree of fatigue damage by detecting defects such as dislocations in metals, we applied this method to evaluate that in a type 316 stainless steel pipe which was used in the primary system of a nuclear power plant. Using {sup 68}Ge as a positron source, an energy spread of annihilation gamma ray peak from the material was measured and expressed as the S-parameter. Actual plant material cut from a surge line pipe of a pressurizer in a pressurized water reactor type nuclear power plant was measured by positron annihilation lineshape analysis and the S-parameter was obtained. Comparing the S-parameter with a relationship between the S-parameter and fatigue life ratio of the type 316 stainless steel, we evaluated the degree of fatigue damage of the actual material. Furthermore, to verify the evaluation, microstructures of the actual material were investigated with TEM (transmission electron microscope) to observe dislocation densities. As a result, a change in the S-parameter of the actual material from standard as-received material (type 316 stainless steel) was in the range from -0.0013 to 0.0014, while variations in the S-parameter of the standard as-received material were about {+-}0.002, and hence the differences between the actual material and the as-received material were negligible. Moreover, the dislocation density of the actual plant material observed with TEM was almost the same as that of the as-received one. In conclusion, we could confirm the applicability of the positron annihilation lineshape analysis to fatigue damage evaluation of stainless steel. (author)

  6. Safety evaluation of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Delgado G, J.L.

    1991-01-01

    The present work describe the licensing process for the first nuclear power plant built in Mexico, it presents the difficulties found during the several years of construction and tests until the phrase a level of safety equivalent to that of the country of origin of the nuclear steam supply system could be applicable to Laguna Verde, at least from the point of view of the mexican regulatory body, and also that this statement could be signed for the inspectors of international organizations. (author)

  7. Decision no. 2011-DC-0223 of the French nuclear safety authority from May 5, 2011, ordering the MELOX SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to MELOX SA company, operator of the Melox MOX fuel fabrication plant of Marcoule (France). (J.S.)

  8. Decision no. 2011-DC-0218 of the French nuclear safety authority from May 5, 2011, ordering the EURODIF SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the EURODIF SA company, operator of the George Besse I uranium enrichment plant of the Tricastin site (France). (J.S.)

  9. Nuclear power plant training simulator fidelity assessment

    International Nuclear Information System (INIS)

    Carter, R.J.; Laughery, K.R.

    1985-01-01

    The fidelity assessment portion of a methodology for evaluating nuclear power plant simulation facilities in regard to their appropriateness for conducting the Nuclear Regulatory Commission's operating test was described. The need for fidelity assessment, data sources, and fidelity data to be collected are addressed. Fidelity data recording, collection, and analysis are discussed. The processes for drawing conclusions from the fidelity assessment and evaluating the adequacy of the simulator control-room layout were presented. 3 refs

  10. Decision no. 2011-DC-0215 of the French nuclear safety authority from May 5, 2011, ordering ITER Organization to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the ITER Organization, operator of the ITER tokamak facility of Cadarache (France). (J.S.)

  11. Japan's policy on the nuclear power plant life management, life management for nuclear power plants and measures to cope with aging

    International Nuclear Information System (INIS)

    Takuma, Masao

    2002-01-01

    Full text: Nuclear Plant is born after a lengthy, multi-year construction period, and ends its life decades later, having generated a vast amount of electricity. Its period of operation is, far longer than its period of construction. 'Construction' is the process of 'creating something of value', a new nuclear plant, using technology. 'Operation' is the process of 'raising the child with care' so that its potential can be realized to the fullest over the course of its life. From the view point of plant life management, it is appropriate to divide the life of a power plant into three stages, 'fostering, mature and aging', from the start of operation to the end of its operation. It is important to manage a plant accordingly. It is recently become important to the Utility companies under the competitive power market to manage aging plants effectively, in order to extend its life with sustained high level of performances, with plant safety in the first place. Whether this is, in fact, possible or not, depends upon how the plant was operated in the prior stages, that means, depends upon how it was 'brought up'. This report briefly shows what are important points of management in these 3 stages, and also describes general significances of plant maintenance and inspection, with the practices applied to the plants in Japan. Currently 52 plants Light Water Reactor Nuclear Plants are in operation in Japan, and 13 plants within next 5 years and 23 plants within 10 years are regarded as aged plants. So the contents of periodic inspections by the government and maintenance requirements on the Utilities will be modified to keep and enhance safe and stable operations of the aged plants. In the year 1994, Japanese Government released the report 'Basic Concepts on the Nuclear Power Plant Aging', the objectives of which was the evaluation of the soundness of major equipment and to establish the concepts of aging measures, assuming the plant to be operated 60 years. Utilities, in

  12. Evaluation of safety implications of control systems in LWR nuclear power plants

    International Nuclear Information System (INIS)

    Szukiewicz, A.J.

    1989-06-01

    An in-depth evaluation was performed on non-safety-related control systems (see Section 1) that are typically used during normal plant operation on four nuclear steam supply system plants: a General Electric Company boiling-water reactor, a Westinghouse 3-loop pressurized-water reactor (PWR), a Babcock ampersand Wilcox Co. (B ampersand W) once-through steam generator PWR, and a Combustion Engineering PWR design. A study was also conducted to determine the generic applicability of the results to the class of plants represented by the specific plants analyzed. Generic conclusions were then developed. Steam generator and reactor vessel overfill events and reactor vessel overcooling events were identified as major classes of events having the potential to be more severe than previously analyzed. Specific substasks of this issue were to study these events to determine the need for preventive and/or mitigating design measures. This report describes the technical studies performed by the laboratories, the NRC staff assessment of the results, the generic applicability of the evaluations, and the technical findings resulting from these studies. This final report contains the staff's responses to, and resolution of, the public comments that were solicited and received before September 16,1988, in response to the draft reports issued for public comment on May 27, 1988. 39 refs, 1 fig., 7 tabs

  13. Performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance. Technical documentation

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Society of Civil Engineers has updated performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance in June 2005. Experimental and analytical considerations on the seismic effects evaluation criteria, such as analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings, were shown in this document and incorporated in new recommendations. (T. Tanaka)

  14. Concept of underground nuclear power plant

    International Nuclear Information System (INIS)

    Onishi, Sotoaki

    1976-01-01

    The concept of constructing nuclear power plants on the sea or underground as the future sitting is based on moving the present power plants on the ground with actual results to the sea or underground without changing the design. The underground nuclear power plants have many similar points to underground hydro-electric power stations with many achievements in the construction viewpoint, though they have their proper difficult problems. Of course, it requires to excavate larger underground caves than the case of underground hydro-electric power plants. The maximum dimensions of the caves have been determined through experience in practice. Therefore the developments of design theory and construction technique are desirable in this field. In discussing underground construction, two evaluating methods are considered for the shielding effect of base rocks. The minimum vertical distance up to ground surface from the center of the cave differs depending upon the in-cave pressure, and the conditions of base rock, soil and underground water in case of the accident assumed in the design, and is approximately 60m, if the cave is assumed to be an indefinite cylindrical shape, by the safer side calculation in the above two evaluations. (Wakatsuki, Y.)

  15. Hazards to nuclear plants from surface traffic accidents

    International Nuclear Information System (INIS)

    Hornyik, K.

    1975-01-01

    Analytic models have been developed for evaluating hazards to nuclear plants from hazardous-materials accidents in the vicinity of the plant. In particular, these models permit the evaluation of hazards from such accidents occurring on surface traffic routes near the plant. The analysis uses statistical information on accident rates, traffic frequency, and cargo-size distribution along with parameters describing properties of the hazardous cargo, plant design, and atmospheric conditions, to arrive at a conservative estimate of the annual probability of a catastrophic event. Two of the major effects associated with hazardous-materials accidents, explosion and release of toxic vapors, are treated by a common formalism which can be readily applied to any given case by means of a graphic procedure. As an example, for a typical case it is found that railroad shipments of chlorine in 55-ton tank cars constitute a greater hazard to a nearby nuclear plant than equally frequent rail shipments of explosives in amounts of 10 tons. 11 references. (U.S.)

  16. Aging of safety class 1E transformers in safety systems of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, E.W.; Edson, J.L.; Udy, A.C. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-02-01

    This report discusses aging effects on safety-related power transformers in nuclear power plants. It also evaluates maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission`s (NRC`s) Nuclear Plant-Aging Research approach. It investigates the materials used in transformer construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes transformer failure events reported in various databases, and evaluates maintenance practices. Databases maintained by the nuclear industry were analyzed to evaluate the effects of aging on the operation of nuclear power plants.

  17. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  18. ETGAR - Information system for abnormal occurrences in nuclear power plants

    International Nuclear Information System (INIS)

    Baram, J.; Nagar, M.; Pultorak, G.

    1975-01-01

    The need for extensive information on systems and components arises early in the planning stage of a nuclear power plant. This information is equally necessary during the building of the plant and during the licensing process. Another type of information helps preventive maintenance during the operating life of the plant. In the case of abnormal occurrences additional information on their possible consequences and on possible ways of handling them, is essential. To cover these four needs, the ETGAR system, which at present covers mostly PWR and BWR type nuclear power plants, collects and evaluates information on abnormal occurrences in nuclear power plants. The information is coded, using a three-level coding scheme for systems and components, and put on magnetic tape. A search program enables the retrieval of any pertinent information from the data base. The sources for the ETGAR data base are reports on abnormal occurrences in nuclear power plants. Most of them are USAEC dockets, originated at U.S.A. power plants. The relevant documents are accessible through a standard query run for ETGAR in the INIS data base which is maintained by the INIS centre in Israel. This query retrieves every two weeks all the documents which come under the ETGAR scope and these are handed as microfiches to the ETGAR evaluators after each INIS run. The evaluation and coding of the documents, the ETGAR coding scheme and the computer programs are described. (B.G.)

  19. National conference on radiation safety of nuclear power plants and their environmental impacts

    International Nuclear Information System (INIS)

    Moravek, J.

    1989-01-01

    The first national conference on radiation safety of nuclear power plants and their environmental impacts was held in Tale (CS), 12 to 15 October, 1987 with the participation of 201 Czechoslovak specialists representing central authorities, research institutes, institutions of higher education, power plants in operation and under construction, water management and hygiene inspection and some production sectors, specialists from Hungary, Poland and the GDR. The participants heard 110 papers. The conference agenda comprised keynote papers presented in plenary session and five specialist sessions: 1. Radiation control of discharges and their surroundings. 2. Monitoring and evaluation of the radiation situation in nuclear power plants. 3. Equipment for monitoring the nuclear power plant and its environs. 4. Mathematical modelling and assessment of the nuclear power plant radiation environmental impact. 5. Evaluation of sources and of the transport of radioactive materials inside the power plant and the minimization of the nuclear power plant's environmental impact. (Z.M.)

  20. Technical evaluation of RETS-required reports for Kewaunee Nuclear Power Plant for 1983

    International Nuclear Information System (INIS)

    Magleby, E.H.; Young, T.E.

    1985-01-01

    A review of the reports required by Federal regulations and the plant-specific Radiological Effluent Technical Specifications (RETS) for operations conducted at the Kewaunee Nuclear Power Plant during 1983 was performed. The periodic reports reviewed were the two Semiannual Effluent Release Reports for 1983 and the annual Kewaunee Environmental Radioactivity Survey. The principal review guidelines were the plant's specific RETS and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines

  1. Development of a web-based aging monitoring system for an integrity evaluation of the major components in a nuclear power plant

    International Nuclear Information System (INIS)

    Choi, Jae-Boong; Yeum, Seung-Won; Ko, Han-Ok; Kim, Young-Jin; Kim, Hong-Key; Choi, Young-Hwan; Park, Youn-Won

    2010-01-01

    Structural and mechanical components in a nuclear power plant are designed to operate for its entire service life. Recently, a number of nuclear power plants are being operated beyond their design life to produce more electricity without shutting down. The critical issue in extending a lifetime is to maintain the level of safety during the extended operation period while satisfying the international regulatory standards. However, only a small portion of these components are of great importance for a significant aging degradation which would deeply affect the long-term safety and reliability of the related facilities. Therefore, it is beneficial to build a monitoring system to measure an aging status. While a number of integrity evaluation systems have been developed for NPPs, a real-time aging monitoring system has not been proposed yet . This paper proposes an expert system for the integrity evaluation of nuclear power plants based on a Web-based Reality Environment (WRE). The proposed system provides the integrity assessment for the major mechanical components of a nuclear power plant under concurrent working environments. In the WRE, it is possible for users to understand a mechanical system such as its size, geometry, coupling condition etc. In conclusion, it is anticipated that the proposed system can be used for a more efficient integrity evaluation of the major components subjected to an aging degradation.

  2. Development of a web-based aging monitoring system for an integrity evaluation of the major components in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Boong, E-mail: boong33@skku.ed [SAFE Research Centre, School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Kyonggi-do 440-746 (Korea, Republic of); Yeum, Seung-Won; Ko, Han-Ok; Kim, Young-Jin [SAFE Research Centre, School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Kyonggi-do 440-746 (Korea, Republic of); Kim, Hong-Key; Choi, Young-Hwan; Park, Youn-Won [Korea Institute of Nuclear Safety, 34 Gwahak-ro, Yusong-ku, Teajon 305-338 (Korea, Republic of)

    2010-01-15

    Structural and mechanical components in a nuclear power plant are designed to operate for its entire service life. Recently, a number of nuclear power plants are being operated beyond their design life to produce more electricity without shutting down. The critical issue in extending a lifetime is to maintain the level of safety during the extended operation period while satisfying the international regulatory standards. However, only a small portion of these components are of great importance for a significant aging degradation which would deeply affect the long-term safety and reliability of the related facilities. Therefore, it is beneficial to build a monitoring system to measure an aging status. While a number of integrity evaluation systems have been developed for NPPs, a real-time aging monitoring system has not been proposed yet . This paper proposes an expert system for the integrity evaluation of nuclear power plants based on a Web-based Reality Environment (WRE). The proposed system provides the integrity assessment for the major mechanical components of a nuclear power plant under concurrent working environments. In the WRE, it is possible for users to understand a mechanical system such as its size, geometry, coupling condition etc. In conclusion, it is anticipated that the proposed system can be used for a more efficient integrity evaluation of the major components subjected to an aging degradation.

  3. Nuclear regulation. License renewal questions for nuclear plants need to be resolved

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Kruslicky, Mary Ann; McDowell, William D. Jr.; Coleman, Robert L.

    1989-04-01

    A December 1986 pipe rupture at Virginia Power's Surry unit 2 nuclear power plant injured eight workers; four later died. As a result of this accident, Representative Edward J. Markey requested GAO to examine the Surry accident and assess the problems confronting aging nuclear plants. In March 1988 we reported our findings concerning the accident and a July 1987 incident at the Trojan nuclear plant in Oregon. This report addresses problems confronting aging nuclear plants by examining the Nuclear Regulatory Commission's (NRC) program to develop a license renewal policy and accompanying regulations, and the initiatives underway by the Department of Energy (DOE) and the electric utility industry to extend the operating lives of these plants. Nuclear power has become second only to coal as the largest producer of electricity in the United States. The 110 nuclear plants currently in service are operated by 54 utilities, provide about 20 percent of the nation's electricity, and represent a capital investment of over $200 billion. The Atomic Energy Act authorizes NRC to issue nuclear plant operating licenses for up to 40 years and provides for license extensions beyond the initial operating period. The act does not, however, stipulate the criteria for evaluating a utility request to operate a nuclear plant longer than 40 years. The oldest operating license currently in effect will expire in the year 2000. According to NRC, about one-half of the existing operating licenses will terminate by the year 2015, and most licenses will expire by about 2030. Many utilities will have to decide in the early 1990s whether to continue operating older nuclear plants or to construct new generating capacity. A clear understanding of the terms and conditions governing the license renewal process will be a key element in deciding how to meet future electricity demand. Although NRC has developed 3 possible license renewal policy options and identified 15 areas of regulatory uncertainty that

  4. Evaluation of Millstone Nuclear Power Plant, Environmental Impact prediction, based on monitoring programs

    International Nuclear Information System (INIS)

    Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Watson, D.G.

    1977-02-01

    This report evaluates the nonradiological monitoring program at Millstone Nuclear Power Plant. Both operational as well as preoperational monitoring programs were analyzed to produce long-term (5 yr or longer) data sets, where possible. In order to determine the effectiveness of these monitoring programs, the appropriate data sets have to be analyzed by the appropriate statistical analysis. Thus, both open literature and current statistical analysis being developed at Pacific Northwest Laboratories (PNL) were employed in data analysis

  5. Evaluation of Millstone Nuclear Power Plant, Environmental Impact prediction, based on monitoring programs

    Energy Technology Data Exchange (ETDEWEB)

    Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Watson, D.G.

    1977-02-01

    This report evaluates the nonradiological monitoring program at Millstone Nuclear Power Plant. Both operational as well as preoperational monitoring programs were analyzed to produce long-term (5 yr or longer) data sets, where possible. In order to determine the effectiveness of these monitoring programs, the appropriate data sets have to be analyzed by the appropriate statistical analysis. Thus, both open literature and current statistical analysis being developed at Pacific Northwest Laboratories (PNL) were employed in data analysis.

  6. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-10-01

    The Nuclear Plant Analyzer (NPA) is being developed as the US Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  7. U.S. National and regional impacts nuclear plant life extension

    International Nuclear Information System (INIS)

    Makovick, L.; Fletcher, T.; Harrison, D.L.

    1987-01-01

    The purpose of this study was to evaluate the economic impacts of nuclear plant life extension on a national and regional level. Nuclear generating capacity is expected to reach 104 Gigawatts (119 units) in the 1994-1995 period. Nuclear units of the 1970 to 1980 vintage are expected to account for 96% of nuclear capacity. As operating licenses expire, a precipitous decline in nuclear capacity results, with an average of 5 gigawatts of capacity lost each year from 2010 to 2030. Without life extension, 95% of all nuclear capacity is retired between the years 2010 and 2030. Even with historically slow growth in electric demand and extensive fossil plant life extension, the need for new generating capacity in the 2010-2030 time period is eight times greater than installed nuclear capacity. Nuclear plant life extension costs and benefits were quantified under numerous scenarios using the DRI Electricity Market Model. Under a wide range of economic assumptions and investment requirements, nuclear plant life extension resulted in a net benefit to electricity consumers. The major source of net benefits from nuclear plant life extension results from the displacement of fossil-fired generating sources. In the most likely case, nuclear plant life extension provides a dollar 200 billion net savings through the year 2030. Regions with a large nuclear capacity share, newer nuclear units and relatively higher costs of alternative fuels benefit the most from life extension. This paper also discusses the importance of regulatory policies on nuclear plant life extension

  8. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology

    International Nuclear Information System (INIS)

    Hajek, B.K.; Miller, D.W.

    1989-01-01

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V ampersand V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility

  9. A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kang, Suk Chull; Goo, Cheol Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Jin Ho; Park, Jae Seok; Joo, Geum Jong; Park, Chi Seung [KAITEC, Seoul (Korea, Republic of)

    2004-08-15

    Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed

  10. Promoting excellence in nuclear power plant training in the United States

    International Nuclear Information System (INIS)

    Mangin, A.M.

    1983-01-01

    The Institute of Nuclear Power Operations (INPO) was formed in late 1979 by U.S. nuclear utilities to enhance the operational safety and reliability of their nuclear plants. One of INPO's major functions is to promote excellence in industry training and qualification programs. To accomplish this objective, INPO develops and uses guidelines and evaluation criteria to assist utilities in developing and implementing high quality training and education programs. The training guidelines permit utilities to develop performance-based programs which meet their specific need with minimal duplication of effort. INPO regularly evaluates each utility's training programs and practices in the plant evaluation and accreditation processes using criteria based on the training guidelines. In the accreditation process, INPO examines training programs and training organizations to determine whether they have the potential to produce individuals qualified to perform assigned tasks. During plant evaluations, INPO examines the implementation of the programs and their effectiveness in producing qualified individuals. After each accreditation review and plant evaluation, INPO recommends improvements and follows up to ensure they are made. (author)

  11. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2009-01-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  12. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2009-05-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  13. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  14. Dose Evaluation of Neutron within Containment Building of a CE type Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Wook; Han, Jae Mun; Kim, Kyung Doek; Yun, Cheol Whan; Suh, Jang Soo; Kim, Young Jae [Nuclear Environment Technology Institute, Daejeon (Korea, Republic of)

    2005-03-15

    From measured results of the neutron fields at some principal places within the containment building in a CE type nuclear power plant in operation, the radiation exposure of a worker to the neutron at there was evaluated and the equivalent dose reflecting new recommendation (ICRP 60) was compared with that doing the old one (ICRP 26). The measured neutron field was also compared with calibration neutron field. From the analysis, the following conclusion was obtained: the average neutron radiation weighting factor according to new recommendation is 2.41 to 2.71 times higher than the old one. The average neutron radiation weighting factor at the measured place was similar to that at calibration neutron field. The average neutron energy at measured place was between 42 and 158 keV and higher than that of calibration field of 500 keV. So, the measured equivalent dose in nuclear power plant could be overestimated compared to the real equivalent dose.

  15. Performance evaluation recommendations and manuals of nuclear power plants outdoor significant civil structures earthquake resistance

    International Nuclear Information System (INIS)

    2005-06-01

    Performance evaluation recommendations and manuals of nuclear power plants outdoor significant civil structures earthquake resistance have been updated in June 2005 by the Japan Society of Civil Engineers. Based on experimental and analytical considerations on the recommendations of May 2002, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been evaluated and incorporated in new recommendations. (T. Tanaka)

  16. Current approaches to nuclear power plant life management in Japan

    International Nuclear Information System (INIS)

    Noda, T.; Tajima, K.; Ishikawa, M.; Koyama, M.

    2002-01-01

    Full text: Some of Japan's commercial light water reactors (LWRs) have been operating for more than 30 years. The more progress in ageing, the more increasing concerns of the public will grow about such nuclear power plants. In order to develop basic policies regarding countermeasures against ageing on nuclear power plants, in 1996, the Ministry of International Trade and Industry (MITI) summarized a report entitled 'Basic Policy on Aged Nuclear Power Plants'. The MITI also indicated that following 30 years' commercial operation of these plants, the electric utility companies should conduct technical evaluations for the ageing of all the components in the plants and to prepare detailed maintenance plans for the future. The Nuclear Safety Commission (NSC) accepted the MITI's report as appropriate in November 1998. The Commission also recommended the addition of effective countermeasures against ageing to the Periodical Safety Review and the evaluation of activities in response to ageing in order to implement such activities regularly and systematically in the future. The MITI reviewed the ageing countermeasures conducted by the electric utility companies and issued the second report entitled 'Evaluation of Countermeasures for ageing Conducted by Electric Utility Companies and Future Plans to cope with ageing'. The evaluation was made for Tsuruga Power Station Unit 1, Mihama Power Station Unit 1, and Fukushima Daiichi Nuclear Power Station Unit 1. At the same time, the MITI determined to incorporate the technical evaluations of ageing and the preparation of long-term maintenance plans into the periodical safety review in the future. The Kansai Electric Power Co., Inc., and Tokyo Electric Power Co. conducted the technical evaluations in their periodical safety reviews concerning the ageing phenomena of all their safety-related components/structures of Mihama Power Station Unit 2 and Fukushima Daiichi Nuclear Power Station Unit 2. Also, concerning ageing, they

  17. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    Science.gov (United States)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic

  18. Fatigue evaluation for the socket weld in nuclear power plants

    International Nuclear Information System (INIS)

    Choi, Young Hwan; Choi, Sun Yeong; Huh, Nam Soo

    2004-01-01

    The operating experience showed that the fatigue is one of the major piping failure mechanisms in nuclear power plants (NPPs). The pressure and/or temperature loading transients, the vibration, and the mechanical cyclic loading during the plant operation may induce the fatigue failure in the nuclear piping. Recently, many fatigue piping failure occurred at the socket weld area have been widely reported. Many failure cases showed that the gap requirement between the pipe and fitting in the socket weld was not satisfied though the ASME Code Sec. Requires 1/16 inch gap in the socket weld. The ASME Code OM also limits the vibration level of the piping system, but some failure cases showed the limitation was not satisfied during the plant operation. In this paper, the fatigue behavior of the socket weld in the nuclear piping was estimated by using the three dimensional finite element method. The results are as follows. The socket weld is susceptible to the vibration if the vibration levels exceed the requirement in the ASME Code OM. The effect of the pressure or temperature transient load on the socket weld in NPPs is not significant because of the very low frequency of the transient during the plant lifetime operation. 'No gap' is very risky to the socket weld integrity for the specific systems having the vibration condition to exceed the requirement in the ASME OM Code and/or the transient loading condition. The reduction of the weld leg size from 1.09 * t 1 to 0.75 * t 1 can affect severely on the socket weld integrity

  19. Study on optimization of normal plant outage work plan for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Kodama, Noriko; Takase, Kentaro; Miya, Kenzo

    2011-01-01

    This paper discusses maintenance optimization in maintenance implementation stage following maintenance planning stage in nuclear power plants and proposes a methodology to get an optimum maintenance work plan. As a result of consideration, the followings were obtained. (1) The quantitative evaluation methodology for optimizing maintenance work plan in nuclear power plants was developed. (2) Utilizing the above methodology, a simulation analysis of maintenance work planning for BWR's PLR and RHR systems in a normal plant outage was performed. Maintenance cost calculation in several cases was carried out on the condition of smoothening man loading over the plant outage schedule as much as possible. (3) As a result of the simulation, the economical work plans having a flat man loading over the plant outage schedule were obtained. (author)

  20. 3. General principles of assessing seismic resistance of technological equipment of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    The evaluation of the seismic resistance of technological equipment is performed by computation, experimental trial, possibly by combining both methods. Existing and prepared standards in the field of seismic resistance of nuclear power plants are mentioned. Accelerograms and response spectra of design-basis earhtquake and maximum credible earthquake serve as the basic data for evaluating seismic resistance. The nuclear power plant in Mochovce will be the first Czechoslovak nuclear power plant with so-called partially seismic design. The problem of dynamic interaction of technological equipment and nuclear power plant systems with a bearing structure is discussed. (E.F.)

  1. Understanding and managing corrosion in nuclear power plants

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Jarrell, D.B.; Sinha, U.P.; Shah, V.N.

    1991-03-01

    The main theme of this paper is a concept: understanding and managing corrosion in nuclear power plants. The concept is not new--in various forms the concept has been applied throughout the development and maturing of nuclear technology. However, the concept has frequently not been well conceived and applied. Too often, understanding corrosion has been based on reaction rather than on anticipation. Regulatory and utility industry initiatives are creating a climate and framework for more effective application of the concept. This paper characterizes the framework and provides some illustrations of how the concept is being applied, drawing from work conducted under the Nuclear Plant Aging Research (NPAR) Program, sponsored by the Nuclear Regulatory Commission's (NRCs) Office of Research. Nuclear plants are becoming an increasingly important factor in the national electrical grid. Initiatives are currently underway to extend the operating licenses beyond the current 40-year period and to evaluate advanced reactor designs the feature higher safety factors. Corrosion has not caused a major nuclear accident, but numerous corrosion mechanisms, have degraded nuclear systems and components. New corrosion phenomena continue to appear, and occasionally corrosion phenomena cause reactor shutdowns. Effective application of understanding and managing corrosion is important to safe and economic operation of the nuclear plants and also to public perception of a soundly operated technology. 53 refs., 11 figs., 5 tabs

  2. Dispersion of radioactive material in air and water and consideration of population distribution in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The IAEA issues Safety Requirements and Safety Guides pertaining to nuclear power plants and activities in the field of nuclear energy, on the basis of its Safety Fundamentals publication on The Safety of Nuclear Installations. The present Safety Guide, which supplements the Code on the Safety of Nuclear Power Plants: Siting, concerns the effects of a nuclear power plant on the surrounding region and the consideration of population distribution in the siting of a plant. This Safety Guide makes recommendations on how to meet the requirements of the Code on the Safety of Nuclear Power Plants: Siting, on the basis of knowledge of the mechanisms for the dispersion of effluents discharged into the atmosphere and into surface water and groundwater. Relevant site characteristics and safety considerations are discussed. Population distribution, the projected population growth rate, particular geographical features, the capabilities of local transport networks and communications networks, industry and agriculture in the region, and recreational and institutional activities in the region should be considered in assessing the feasibility of developing an emergency response plan. In the selection of a site for a facility using radioactive material, such as a nuclear power plant, account should be taken of any local features that might be affected by the facility and of the feasibility of off-site intervention, including emergency response and protective actions. This is in addition to the evaluation of any features of the site itself that might affect the safety of the facility. This Safety Guide recommends methods for the assessment of regional and local characteristics. This Safety Guide supersedes four earlier IAEA Safety Guides, namely: Atmospheric Dispersion in Nuclear Power Plant Siting (Safety Series No. 50-SG-S3 (1980)). Site Selection and Evaluation for Nuclear Power Plants with Respect to Population Distribution (Safety Series No. 50-SG-S4 (1980)). Hydrological

  3. Dispersion of radioactive material in air and water and consideration of population distribution in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA issues Safety Requirements and Safety Guides pertaining to nuclear power plants and activities in the field of nuclear energy, on the basis of its Safety Fundamentals publication on The Safety of Nuclear Installations. The present Safety Guide, which supplements the Code on the Safety of Nuclear Power Plants: Siting, concerns the effects of a nuclear power plant on the surrounding region and the consideration of population distribution in the siting of a plant. This Safety Guide makes recommendations on how to meet the requirements of the Code on the Safety of Nuclear Power Plants: Siting, on the basis of knowledge of the mechanisms for the dispersion of effluents discharged into the atmosphere and into surface water and groundwater. Relevant site characteristics and safety considerations are discussed. Population distribution, the projected population growth rate, particular geographical features, the capabilities of local transport networks and communications networks, industry and agriculture in the region, and recreational and institutional activities in the region should be considered in assessing the feasibility of developing an emergency response plan. In the selection of a site for a facility using radioactive material, such as a nuclear power plant, account should be taken of any local features that might be affected by the facility and of the feasibility of off-site intervention, including emergency response and protective actions. This is in addition to the evaluation of any features of the site itself that might affect the safety of the facility. This Safety Guide recommends methods for the assessment of regional and local characteristics. This Safety Guide supersedes four earlier IAEA Safety Guides, namely: Atmospheric Dispersion in Nuclear Power Plant Siting (Safety Series No. 50-SG-S3 (1980)); Site Selection and Evaluation for Nuclear Power Plants with Respect to Population Distribution (Safety Series No. 50-SG-S4 (1980)); Hydrological

  4. Modelling operator cognitive interactions in nuclear power plant safety evaluation

    International Nuclear Information System (INIS)

    Senders, J.W.; Moray, N.; Smiley, A.; Sellen, A.

    1985-08-01

    The overall objectives of the study were to review methods which are applicable to the analysis of control room operator cognitive interactions in nuclear plant safety evaluations and to indicate where future research effort in this area should be directed. This report is based on an exhaustive search and review of the literature on NPP (Nuclear Power Plant) operator error, human error, human cognitive function, and on human performance. A number of methods which have been proposed for the estimation of data for probabilistic risk analysis have been examined and have been found wanting. None addresses the problem of diagnosis error per se. Virtually all are concerned with the more easily detected and identified errors of action. None addresses underlying cause and mechanism. It is these mechanisms which must be understood if diagnosis errors and other cognitive errors are to be controlled and predicted. We have attempted to overcome the deficiencies of earlier work and have constructed a model/taxonomy, EXHUME, which we consider to be exhaustive. This construct has proved to be fruitful in organizing our thinking about the kinds of error that can occur and the nature of self-correcting mechanisms, and has guided our thinking in suggesting a research program which can provide the data needed for quantification of cognitive error rates and of the effects of mitigating efforts. In addition a preliminary outline of EMBED, a causal model of error, is given based on general behavioural research into perception, attention, memory, and decision making. 184 refs

  5. Evaluation of seismic input for nuclear power plants; Evaluacion del input sismico para plantas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Saragoni, G. R.

    2012-07-01

    The accident that affected the Fukushima Daiichi nuclear power plant on March 11th 2011 was the result of the Tohoku earthquake (Japan), the fifth largest ever registered in the world. The characteristics of the event will be a subject for study by the nuclear and seismology communities for many years to come. (Author)

  6. Protection of nuclear power plants against external events

    International Nuclear Information System (INIS)

    Kinet, P.; Roch, R.

    1978-01-01

    The paper describes the methodology of the safety design of nuclear power plants against external events with particular emphasis of the Belgian Plants. The site analysis and potential hazards evaluation are explained. The different designs incorporating various combinations of reinforced structures and dedicated systems are analysed. The particular lay-out and systems of the Belgian Plants are explained. (author)

  7. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots enhance a safety and operations in nuclear plants. E.I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligence, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  8. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots will enhance safety and operations in nuclear plants. E. I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligent, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  9. Evaluation of safety issues on newly regulated nuclear power plant by tsunami-level 1 PRA

    International Nuclear Information System (INIS)

    Tsuji, Yutaro; Miwa, Shuichiro; Mori, Michitsugu

    2014-01-01

    The tsunami caused by the Great East Japan Earthquake triggered severe accidents involving the units 1 to 4 at the Fukushima Dai-ichi nuclear power station (NPS). In order to re-operate existing nuclear power plants it should be necessary to reduce the core damage frequency on risk by tsunami. In this work, effects of the off-site power supply installation on resuming operation of nuclear power plants were investigated by utilizing the Tsunami-Level 1 Probability Risk Assessment (PRA). Unit 2 of the Onagawa nuclear power station, which resembled units 2 and 3 of Fukushima Dai-ichi, was selected for PRA. First, event-tree was created for the units of the Onagawa nuclear power station with the safety systems such as Emergency Core Cooling System (ECCS), investigating the plant situation at the time of the earthquake and tsunami occurrences. It was assumed that the magnitude of the tsunami was equivalent to the Great East Japan Earthquake. The accident-analytical progression-time was 36 hours, determined from the core-damage occurrence of the unit 3 of Fukushima Dai-ichi nuclear power station. Failure probabilities were calculated by the fault tree, which was created from the elements listed in the event tree. For the calculation, failure rates reported by the NUCIA (NUClear Information Archives) were primarily utilized. Then, obtained failure probabilities were embedded to the event tree. Core damage probabilities were evaluated by calculating success and failure rates for each accidental progression and scenarios. Restoration of the failed equipment and machineries was not considered in the analysis. Installation of the power supply vehicles at the nuclear power plant site reduced the core damage probability from 2.58×10 -6 to 8.56×10 -7 . However, continued addition of the power supply vehicles could not lower the core damage probability further more. In the case of Unit 2 of Onagawa nuclear power station, there could be a limit to lower the core damage

  10. Life management plants at nuclear power plants PWR

    International Nuclear Information System (INIS)

    Esteban, G.

    2014-01-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  11. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  12. Safety-related incidents at the Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Lehtinen, P.

    1986-03-01

    This report contains detailed descriptions of operating incidents and other safety-related matters at the Finnish nuclear power plants regarded as significant by the regulatory authority, the Finnish Centre for Radiation and Nuclear Safety. In this connection, an account is given of the practical actions caused by the incidents, and their significance to reactor safety is evaluated. The main features of the incidents are also described in the general Quartely Reports, Operation of Finnish Nuclear Power Plants, which are supplemented by this report intended for experts. (author)

  13. Safety-related incidents at the Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Lehtinen, P.

    1985-01-01

    This report contains detailed descriptions of operating incidents and other safety-related matters at the Finnish nuclear power plants regarded as significant by the regulatory authority, the Finnish Centre for Radiation and Nuclear Safety. In this connection, an account is given of the practical actions caused by the incidents, and their significance to reactor safety is evaluated. The main features of the incidents are also described in the general Quartely Reports, Operation of Finnish Nuclear Power Plants, which are supplemented by this report intended for experts. (author)

  14. Generic nuclear power plant component failure data bank

    International Nuclear Information System (INIS)

    Araujo Goes, A.G. de; Gibelli, S.M.O.

    1988-11-01

    This report consist in the development of a generic nuclear power plant component failure data bank. This data bank was implemented in a PC-XT microcomputer, IBM compatible, using the Open Access II program. Generic failure data tables for Westinghouse nuclear power plants and for general PWR power plants are presented. They are the final product of a research which included a preselection and a selection of data collected from the available sources in the library of CNEN (National Nuclear Energy Commission) and from the CIN/CNEN (Neclear Information Center). Futhermore, a proposal of evaluating models of average failure rates of pumps and valves are also presented. Through the electronic data bank one can easily have a generic view of failure rate ranges as well as failure models foe a certain component. It is very importante to develop procedures to collect and store generic failure data that can be quickly accessed, in order to update the Probabilistic Safety Study of Angra-1 and to used in studies which may have component failures of nuclear power plant safety systems. In the future, data specialization can be achieved by means of statistical calculations involving specific data collected from the operational experience of Angra-1 nuclear power plant and the generic data bank. (author) [pt

  15. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    control and that the modified configuration conforms to the approved basis for granting a nuclear power plant operating licence. The main purpose of the recommendations concerning changes of management is to give general guidance on performing those changes in such a way that the safety of the plant is not compromised. This Safety Guide deals with the intended modification of structures, systems and components, operational limits and conditions, procedures and software, and the management systems and tools for the operation of a nuclear power plant. The recommendations made cover the whole modification process, from conception to completion. The justification for undertaking modifications is outside the scope of this Safety Guide. The modification and/or refurbishment of nuclear power plants for the purpose of extending the design lifetime could necessitate many major design modifications and special re-evaluation of plant safety (see Ref. [2]), and is therefore outside the scope of this publication. Section 2 gives guidance on general methods for modifications that could be implemented at nuclear power plants. Section 3 identifies the roles and responsibilities of various organizations involved in the modification process. Sections 4 and 5 give guidance on the different types of modification and their assessment in respect of safety aspects, and Section 4 provides guidelines on subsequent categorization. Section 6 deals with aspects of temporary modifications. Sections 7 and 8 give guidance on implementation of different types of modifications. Sections 9, 10 and 11 give basic recommendations on quality assurance, training and management of documentation. Comprehensive guidance on these matters can be found in the appropriate Safety Guides

  16. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    control and that the modified configuration conforms to the approved basis for granting a nuclear power plant operating licence. The main purpose of the recommendations concerning changes of management is to give general guidance on performing those changes in such a way that the safety of the plant is not compromised. This Safety Guide deals with the intended modification of structures, systems and components, operational limits and conditions, procedures and software, and the management systems and tools for the operation of a nuclear power plant. The recommendations made cover the whole modification process, from conception to completion. The justification for undertaking modifications is outside the scope of this Safety Guide. The modification and/or refurbishment of nuclear power plants for the purpose of extending the design lifetime could necessitate many major design modifications and special re-evaluation of plant safety, and is therefore outside the scope of this publication. Section 2 gives guidance on general methods for modifications that could be implemented at nuclear power plants. Section 3 identifies the roles and responsibilities of various organizations involved in the modification process. Sections 4 and 5 give guidance on the different types of modification and their assessment in respect of safety aspects, and Section 4 provides guidelines on subsequent categorization. Section 6 deals with aspects of temporary modifications. Sections 7 and 8 give guidance on implementation of different types of modifications. Sections 9, 10 and 11 give basic recommendations on quality assurance, training and management of documentation. Comprehensive guidance on these matters can be found in the appropriate Safety Guides

  17. An evaluation of water hammer in nuclear power plants

    International Nuclear Information System (INIS)

    Serkiz, A.

    1983-01-01

    Water hammer can occur as a result of to steam-void collapse, steam-driven slugs of water, pump startup into voided lines, and inadverdent closures of valves; the result is large hydraulic pressure loads. Since 1968, about 150 water hammer events have been reported in U.S. nuclear power plants; damage has been confined to pipe hangers and snubbers. The increase in reported water hammer events in the 1970s led to the designation of water hammer as Unresolved Safety Issue A-1 in 1979. Since the mid-1970s reported occurrences and their underlying phenomena have been studied, and corrective design and operational measures have been implemented. This paper presents the results of generic evaluations of water hammer occurrence and reported damage and sets forth technical findings. These findings indicate that good design practices and operational procedures can minimize the occurrence of water hammer

  18. Fracture toughness requirements of reactor vessel material in evaluation of the safety analysis report of nuclear power plants

    International Nuclear Information System (INIS)

    Widia Lastana Istanto

    2011-01-01

    Fracture toughness requirements of reactor vessel material that must be met by applicants for nuclear power plants construction permit has been investigated in this paper. The fracture toughness should be described in the Safety Analysis Reports (SARs) document that will be evaluated by the Nuclear Energy Regulatory Agency (BAPETEN). Because BAPETEN does not have a regulations or standards/codes regarding the material used for the reactor vessel, especially in the fracture toughness requirements, then the acceptance criteria that applied to evaluate the fracture toughness of reactor vessel material refers to the regulations/provisions from the countries that have been experienced in the operation of nuclear power plants, such as from the United States, Japan and Korea. Regulations and standards used are 10 CFR Part 50, ASME and ASTM. Fracture toughness of reactor vessel materials are evaluated to ensure compliance of the requirements and provisions of the Regulatory Body and the applicable standards, such as ASME or ASTM, in order to assure a reliability and integrity of the reactor vessels as well as providing an adequate safety margin during the operation, testing, maintenance, and postulated accident conditions over the reactor vessel lifetime. (author)

  19. Preliminary Study on Effect of Aviation Fuel in the Safety Evaluation of Nuclear Power Plant Crashed by Aircraft

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Jeon, Se Jin; Lee, Yun Seok; Kim, Young Jin

    2011-01-01

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments are actively in progress. The large civil aircraft are being operated with a large amount of fuel and the fuel can be assumed to contribute to the impact loads at the impact. The fuel, i.e., the internal liquid can be considered as added masses classically in the evaluation of the impact load. According to the recent experimental research, it has been shown that the impact load of high speed impacting body with internal liquid is much higher than that of the mass-equivalent impacting body. In this study, the impact loads according to the existence of the internal liquid are computed by numerical methods and the safety assessment of nuclear power plant crashed by large civil aircraft are performed as an application

  20. Estimation of environmental external costs between coal fired power plant and nuclear power plant

    International Nuclear Information System (INIS)

    Moon, G. H.; Kim, S. S.

    2000-01-01

    First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power pant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environment impact into monetary values. To do this, AIRPACTS and Impacts of Atmospheric Release model developed by IAEA were used. The environmental external cost of Samcheonpo coal power plant was estimated about 25 times as much as that of Younggwang nuclear power plant. This result implies that nuclear power plant is a clean technology compared with coal power plant. This study suggests that the external cost should be reflected in the electric system expansion plan in order to allocate energy resources efficiently and to reduce economic impact stemming from the environmental regulation emerged recently on a global level

  1. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  2. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1991-06-01

    A comprehensive Nuclear Plant Aging Research (NPAR) Program was implemented by the US NRC office of Nuclear Regulatory Research in 1985 to identify and resolve technical safety issues related to the aging of systems, structures, and components in operating nuclear power plants. This is Revision 2 to the Nuclear Plant Aging Research Program Plant. This planes defines the goals of the program the current status of research, and summarizes utilization of the research results in the regulatory process. The plan also describes major milestones and schedules for coordinating research within the agency and with organizations and institutions outside the agency, both domestic and foreign. Currently the NPAR Program comprises seven major areas: (1) hardware-oriented engineering research involving components and structures; (2) system-oriented aging interaction studies; (3) development of technical bases for license renewal rulemaking; (4) determining risk significance of aging phenomena; (5) development of technical bases for resolving generic safety issues; (6) recommendations for field inspection and maintenance addressing aging concerns; (7) and residual lifetime evaluations of major LWR components and structures. The NPAR technical database comprises approximately 100 NUREG/CR reports by June 1991, plus numerous published papers and proceedings that offer regulators and industry important insights to aging characteristics and aging management of safety-related equipment. Regulatory applications include revisions to and development of regulatory guides and technical specifications; support to resolve generic safety issues; development of codes and standards; evaluation of diagnostic techniques; (e.g., for cables and valves); and technical support for development of the license renewal rule. 80 refs., 25 figs., 10 tabs

  3. Decision no. 2011-DC-0214 of the French nuclear safety authority from May 5, 2011, ordering CIS bio international company to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to CIS bio international company, operator of the radiopharmaceuticals fabrication facility (INB 29) of Saclay (France). (J.S.)

  4. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  5. Anti-earthquake design guideline and safety of nuclear power plants

    International Nuclear Information System (INIS)

    Shibata, Heki

    2004-01-01

    This paper deals with the evaluation of regulatory codes for anti-earthquake design of industrial facilities including a nuclear power plant. There are several ways to describe the anti-earthquake design, in general, and the case for a nuclear power plant is one of the extreme. The comparison of various codes was made briefly also. (author)

  6. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  7. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  8. Handbook for the planning, co-ordination and evaluation of emergency exercises in nuclear power plants

    International Nuclear Information System (INIS)

    Schmidtborn, I.; Bath, N.

    1999-01-01

    The efficiency of the on-site emergency organization in German nuclear power plants is tested regularly through emergency exercises. To achieve federal harmonization on a high level of quality a handbook for the planning, co-ordination and evaluation of such exercises has been developed in the frame of the regulatory investigation programme. In this handbook requirements are set out for emergency training. Key elements are a modular structure, rules to be observed and guidance for post-exercise evaluation. (orig.) [de

  9. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  10. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  11. An estimate and evaluation of design error effects on nuclear power plant design adequacy

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1984-01-01

    An area of considerable concern in evaluating Design Control Quality Assurance procedures applied to design and analysis of nuclear power plant is the level of design error expected or encountered. There is very little published data 1 on the level of error typically found in nuclear power plant design calculations and even less on the impact such errors would be expected to have on overall design adequacy of the plant. This paper is concerned with design error associated with civil and mechanical structural design and analysis found in calculations which form part of the Design or Stress reports. These reports are meant to document the design basis and adequacy of the plant. The estimates contained in this paper are based on the personal experiences of the author. In Table 1 is a partial listing of the design docummentation review performed by the author on which the observations contained in this paper are based. In the preparation of any design calculations, it is a utopian dream to presume such calculations can be made error free. The intent of this paper is to define error levels which might be expected in a competent engineering organizations employing currently technically qualified engineers and accepted methods of Design Control. In addition, the effects of these errors on the probability of failure to meet applicable design code requirements also are estimated

  12. High degree utilization of computers for design of nuclear power plants

    International Nuclear Information System (INIS)

    Masui, Takao; Sawada, Takashi

    1992-01-01

    Nuclear power plants are the huge technology in which various technologies are compounded, and the high safety is demanded. Therefore, in the design of nuclear power plants, it is necessary to carry out the design by sufficiently grasping the behavior of the plants, and to confirm the safety by carrying out the accurate design evaluation supposing the various operational conditions, and as the indispensable tool for these analysis and evaluation, the most advanced computers in that age have been utilized. As to the utilization for the design, there are the fields of design, analysis and evaluation and another fields of the application to the support of design. Also in the field of the application to operation control, computers are utilized. The utilization of computers for the core design, hydrothermal design, core structure design, safety analysis and structural analysis of PWR plants, and for the nuclear design, safety analysis and heat flow analysis of FBR plants, the application to the support of design and the application to operation control are explained. (K.I.)

  13. Nuclear versus fossil power plants: evolution of economic evaluation techniques

    International Nuclear Information System (INIS)

    Thuesen, G.J.

    1975-01-01

    The purpose of this presentation is to document the evolution of methods used by an electric utility for comparing the economic attractiveness of nuclear versus fossil electric power generation. This process of change is examined as it took place within the Georgia Power Company (GPC), a company spending in the neighborhood of half a billion dollars annually for capital improvements. This study provides a look at the variety of richness of information that can be made available through the application of different methods of economic analysis. In addition, the varied presentations used to disclose relationships between alternatives furnish evidence as to the effectiveness of providing pertinent information in a simple, meaningful manner. It had been generally accepted throughout GPC that nuclear power was economically desirable as an alternative for the production of base-load power. With inflation increasing, its advantage over fossil power appeared to be significantly increasing as the large operating costs of fossil generation seemed to be more vulnerable to inflation than the costs of operating a nuclear facility. An early indication that the company should reevaluate this position was the experience gained with the installation of their first nuclear plant. Here, actual total costs were exceeding their original construction estimates by a factor of two. Thus the question arose ''Does the high capital cost of nuclear generation offset its operating advantages when compared to similar-sized coal-burning plants.'' To answer this question, additional analyses were undertaken

  14. Current USAEC seismic requirements for nuclear power plants

    International Nuclear Information System (INIS)

    Mehta, D.S.

    1975-01-01

    The principal seismic and geologic considerations which guide the USAEC in its evaluation of the suitability of proposed sites for nuclear power plants and plant design bases are set forth as design criteria in the AEC regulatory guides. The basic requirements of seismic design and analysis for seismic Category I structures, components, and systems important to public safety have been established in the USAEC regulatory guides and Code of Federal Regulations. It is pointed out that the current state-of-art techniques, best available technology, and additional studies in the field of earthquake engineering can be utilized to resolve seismic concerns. The seismic design requirements for nuclear plants to withstand postulated earthquakes can be standardized and this will be a significant milestone in the continuation of the Nuclear Standardization Program. (author)

  15. Safety-related occurrences at the Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Reponen, H.; Viitasaari, O.

    1985-04-01

    This report contains detailed descriptions of operating incidents and other safety-related matters at the Finnish nuclear power plants regarded as significant by the regulatory authority, the Finnish Centre for Radiation and Nuclear Safety. In this connection, an account is given of the practical actions caused by the incidents, and their significance to reactor safety is evaluated. The main features of the incidents are also described in the general Quartely Report for this period, Operation of Finnish Nuclear Power Plants (STUK-B-YTO 7), which is supplemented by this report intended for experts. (author)

  16. A re-evaluation of nuclear plant offsite power supplies

    International Nuclear Information System (INIS)

    William E Berger; Robert E Henry

    2005-01-01

    Full text of publication follows: De-regulation of the electric power industry has resulted in separate ownership of the transmission and power generation facilities as well as a revised format for operating the transmission facilities. Currently we see the transfer of large blocks of bulk power between markets which can impact the voltage regulation at the offsite power supply. Where Nuclear Plant operations once knew with a large degree of certainty the operating range of the system supplying the offsite power supply, this may no longer be the case and more challenges to the safety systems could result. These challenges may manifest themselves as either a loss of offsite power or voltage levels approaching the degraded level setpoints. In this paper we will first explore what challenges are caused by deregulation and how they impact offsite power supply operations. Next we will incorporate the knowledge grained regarding accidents and consequences from the Individual Plant Evaluations (IPE's) to see how the offsite power supply could be operated to mitigate the challenges and extend the capacity of the auxiliary power system. Various scenarios will be examined using the Modular Accident Analysis Program (MAAP) as an integral plant model. MAAP simulations that include both the plant thermal hydraulic responses and corresponding electric power demand are presented to demonstrate the impact of alternate approaches to offsite power system operation. The original design phase of the offsite and onsite power distribution system was based on a criterion relating to the starting of all safety loads if a safety injection signal was present independent of the accident or its progression. The IPE and risk informed insights that are readily available today will be applied in the re-analyses of the offsite distribution system response. (authors)

  17. Aging of concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Pland, C.B.; Arndt, E.G.

    1991-01-01

    The Structural Aging (SAG) Program, sponsored by the US Nuclear Regulatory Commission (USNRC) and conducted by the Oak Ridge National Laboratory (ORNL), had the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant structures for continued service. The program consists of three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued service determinations. Major accomplishments under the SAG Program during the first two years of its planned five-year duration have included: development of a Structural Materials Information Center and formulation of a Structural Aging Assessment Methodology for Concrete Structures in Nuclear Power Plants. 9 refs

  18. A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Seong, Poong-Hyun

    2009-01-01

    Operators in nuclear power plants have to acquire information from human system interfaces (HSIs) and the environment in order to create, update, and confirm their understanding of a plant state, as failures of situation assessment may cause wrong decisions for process control and finally errors of commission in nuclear power plants. A few computational models that can be used to predict and quantify the situation awareness of operators have been suggested. However, these models do not sufficiently consider human characteristics for nuclear power plant operators. In this paper, we propose a computational model for situation assessment of nuclear power plant operators using a Bayesian network. This model incorporates human factors significantly affecting operators' situation assessment, such as attention, working memory decay, and mental model. As this proposed model provides quantitative results of situation assessment and diagnostic performance, we expect that this model can be used in the design and evaluation of human system interfaces as well as the prediction of situation awareness errors in the human reliability analysis.

  19. A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Chul [Instrumentation and Control/Human Factors Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: leehc@kaeri.re.kr; Seong, Poong-Hyun [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2009-11-15

    Operators in nuclear power plants have to acquire information from human system interfaces (HSIs) and the environment in order to create, update, and confirm their understanding of a plant state, as failures of situation assessment may cause wrong decisions for process control and finally errors of commission in nuclear power plants. A few computational models that can be used to predict and quantify the situation awareness of operators have been suggested. However, these models do not sufficiently consider human characteristics for nuclear power plant operators. In this paper, we propose a computational model for situation assessment of nuclear power plant operators using a Bayesian network. This model incorporates human factors significantly affecting operators' situation assessment, such as attention, working memory decay, and mental model. As this proposed model provides quantitative results of situation assessment and diagnostic performance, we expect that this model can be used in the design and evaluation of human system interfaces as well as the prediction of situation awareness errors in the human reliability analysis.

  20. Appliance of software engineering in development of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Y. W.; Kim, H. C.; Yun, C. [Chungnam National Univ., Taejon (Korea, Republic of); Kim, B. R. [KINS, Taejon (Korea, Republic of)

    1999-10-01

    Application of computer technology in nuclear power plant is also a necessary transformation as in other industry fields. But until now, application of software technology was not wide-spread because of its potential effect to safety in nuclear field. It is an urgent theme to develop evaluation guide and regulation techniques to guarantee safety, reliability and quality assurance. To meet these changes, techniques for development and operation should be enhanced to ensure the quality of software systems. In this study, we show the difference between waterfall model and software life-cycle needed in development of nuclear power plant and propose the consistent framework needed in development of instrumentation and control system of nuclear power plant.

  1. Appliance of software engineering in development of nuclear power plant

    International Nuclear Information System (INIS)

    Baek, Y. W.; Kim, H. C.; Yun, C.; Kim, B. R.

    1999-01-01

    Application of computer technology in nuclear power plant is also a necessary transformation as in other industry fields. But until now, application of software technology was not wide-spread because of its potential effect to safety in nuclear field. It is an urgent theme to develop evaluation guide and regulation techniques to guarantee safety, reliability and quality assurance. To meet these changes, techniques for development and operation should be enhanced to ensure the quality of software systems. In this study, we show the difference between waterfall model and software life-cycle needed in development of nuclear power plant and propose the consistent framework needed in development of instrumentation and control system of nuclear power plant

  2. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  3. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Ulrich; Ronald Boring; William Phoenix; Emily Dehority; Tim Whiting; Jonathan Morrell; Rhett Backstrom

    2012-08-01

    The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolves around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities

  4. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  5. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  6. Evaluation of the safety of the operating nuclear power plants built to earlier standards

    International Nuclear Information System (INIS)

    Menteseoglu, S.

    2001-01-01

    The objective of this paper is to provide practical assistance on judging the safety of a nuclear power plant, on the basis of a comparison with current safety standards and operational practices. For nuclear power plants built to earlier standards for which there are questions about the adequacy of the maintenance of the plant design and operational practices, a safety review against current standards and practices can be considered a high priority. The objective of reviewing nuclear power plants built to earlier standards against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The safety significance of the issues identified should be judged according to their implications for plant design and operation in terms of basic safety concepts such as defence in depth and safety culture. In addition, this paper provides assistance on the prioritization of corrective measures and their implementation so as to approach an acceptable level of safety

  7. Safety in nuclear power plant siting. A code of practice

    International Nuclear Information System (INIS)

    1978-01-01

    This publication is brought out within the framework of establishing Codes of Practice and Safety Guides for nuclear power plants: NUSS programme. The scope of the document encompasses site and site-plant interaction factors related to operational states and accident conditions. The purpose of the Code is to give criteria and procedures to be applied as appropriate to operational states and accident conditions, including those which could lead to emergency situations. This Code is mainly concerned with severe events of low probability which relate to the siting of nuclear power plants and have to be considered in designing a particular nuclear power plant. Annex: Examples of natural and man-made events relevant for design basis evaluation

  8. Establishment of the technical basis for applying viscous dampers to nuclear power plants

    International Nuclear Information System (INIS)

    Narahara, Yukiko; Higuchi, Tomokazu; Katayama, Hiroshi; Ito, Ryo; Hattori, Kiyoshi; Nakajima, Jun

    2017-01-01

    For the purpose of introducing viscous dampers to nuclear power plants, the damping characteristic of the viscous damper under specific conditions in nuclear power plants was examined. In particular the seismic response analysis method, the design evaluation method, and the maintenance and management guideline were studied. In the viscous dampers characteristic test, the damping characteristics under earthquake motion and the environmental condition of nuclear power plants have been examined. From the test results, if the parameters such as vibration amplitude, vibration frequency, repeated load, temperature, and radiation are considered, there is a possibility of viscous damper application to components in nuclear power plants. In order to evaluate the applicability of the complex modal analysis method using response spectrum, comparison with the time history response analysis result was performed using a PWR steam generator analysis model. The evaluation result from the complex modal analysis method was in good agreement with the time history response analysis result, and the availability of this method was confirmed. From the test results, considerations in design and maintenance in the case of applying viscous dampers to nuclear power plants were selected. The bases of the design evaluation method and the maintenance and management guideline were developed. (author)

  9. The Evaluation and Application Plan Report for the Development of Nuclear Power Plant DCS Using CASE Tools

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.Y.; Moon, H.J.; Yoon, M.H.; Lee, Y.K. [Korea Electric Power Research Institute, Taejon (Korea)

    2000-06-01

    This report contains the evaluation and application plan report for the development of nuclear power plant DCS using CASE tools. In this report, the necessity of using CASE tools is considered and a available CASE environment is suggested. And, also according to the IEEE Std 1209 Recommended Practice for Evaluation and Selection of CASE Tools, their functional and economical evaluation about available commercial CASE tools is performed and described. (author). 6 figs., 3 tabs.

  10. Barnwell Nuclear Fuels Plant applicability study. Executive summary

    International Nuclear Information System (INIS)

    1978-04-01

    A study was conducted of the Barnwell Nuclear Fuels Plant in South Carolina to determine if that facility can be utilized in support of the nonproliferation objectives of the United States; and for activities contributing to the International Nuclear Fuel Cycle Evaluation to be carried out under contract at the Barnwell plant. One of the conclusions of this study is that there is nothing to support modification of the Presidential decision that the BNFP receive neither Federal encouragement nor funding for its completion on a reprocessing facility

  11. A study for the establishment of regulatory requirement and evaluation guide for station blackout in nuclear power plants

    International Nuclear Information System (INIS)

    Lim, J. H.; Koo, C. S.; Joo, W. P.; Oh, S. H.; Shin, W. K.

    1999-01-01

    The consequence of SBO event could be a severe accident unless AC power was restored within a proper time, because many safety systems depend upon AC power. Based on the severity, the SBO has been extensively studied since it was identified as Unresolved Safety Issue at USNRC. The resolution of those studies is a rule-making such as 10 CFR 50.63 and Regulatory Guide 1.155. But there is no regulatory requirements of SBO for an operating domestic nuclear power plant up to the present time. This tudy has established SBO rule(regulatory requirements and evaluation guides) for an operating PWR type of the operating nuclear power plants in Korea

  12. Plant life management and maintenance technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Ikegami, Tsukasa; Aoki, Masataka; Shimura, Takao; Kaimori, Kimihiro; Koike, Masahiro

    2001-01-01

    Nuclear power generation occupying an important position for energy source in Japan and supplying about one third of total electric power usage is now required for further upgrading of its economics under regulation relaxation of electric power business. And, under execution retardation of its new planning plant, it becomes important to operate the already established plants for longer term and to secure their stability. Therefore, technical development in response to the plant life elongation is promoted under cooperation of the Ministry of Economics and Industries, electric power companies, literate, and plant manufacturers. Under such conditions, the Hitachi, Ltd. has progressed some technical developments on check inspection, repairs and maintenance for succession of the already established nuclear power plants for longer term under securing of their safety and reliability. And in future, by proposing the check inspection and maintenance program combined with these technologies, it is planned to exert promotion of maintenance program with minimum total cost from a viewpoint of its plant life. Here were described on technologies exerted in the Hitachi, Ltd. such as construction of plant maintenance program in response to plant life elongation agreeing with actual condition of each plant, yearly change mechanism grasping, life evaluation on instruments and materials necessary for maintenance, adequate check inspection, repairs and exchange, and so forth. (G.K.)

  13. Flood hazards for nuclear power plants

    International Nuclear Information System (INIS)

    Yen, B.C.

    1988-01-01

    Flooding hazards for nuclear power plants may be caused by various external geophysical events. In this paper the hydrologic hazards from flash floods, river floods and heavy rain at the plant site are considered. Depending on the mode of analysis, two types of hazard evaluation are identified: 1) design hazard which is the probability of flooding over an expected service period, and 2) operational hazard which deals with real-time forecasting of the probability of flooding of an incoming event. Hazard evaluation techniques using flood frequency analysis can only be used for type 1) design hazard. Evaluation techniques using rainfall-runoff simulation or multi-station correlation can be used for both types of hazard prediction. (orig.)

  14. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented

  15. Relativity evaluation of reliability on operation in nuclear power plant

    International Nuclear Information System (INIS)

    Inata, Takashi

    1987-01-01

    The report presents a quantitative method for evaluating the reliability of operations conducted in nuclear power plants. The quantitative reliability evaluation method is based on the 'detailed block diagram analysis (De-BDA)'. All units of a series of operations are separately displayed for each block and combined sequentially. Then, calculation is performed to evaluate the reliability. Basically, De-BDA calculation is made for pairs of operation labels, which are connected in parallel or in series at different subordination levels. The applicability of the De-BDA method is demonstrated by carrying out calculation for three model cases: operations in the event of malfunction of the control valve in the main water supply system for PWR, switching from an electrically-operated water supply pump to a turbin-operated water supply pump, and isolation and water removal operation for a low-pressure condensate pump. It is shown that the relative importance of each unit of a series of operations can be evaluated, making it possible to extract those units of greater importance, and that the priority among the factors which affect the reliability of operations can be determined. Results of the De-BDA calculation can serve to find important points to be considered in developing an operation manual, conducting education and training, and improving facilities. (Nogami, K.)

  16. Evaluation of a Kalman filter based power pressurizer instrument failure detection system implemented on a nuclear power plant training simulator

    International Nuclear Information System (INIS)

    Seegmiller, D.S.

    1984-01-01

    The usefulness of a nuclear power plant training simulator for developing and testing modern estimation and control applications for nuclear power plants is demonstrated. A Kalman filter based instrument failure detection technique for a pressurized water reactor pressurizer is implemented on the Department of Energy N Reactor Training Simulator. This real-time failure detection method computes the first two moments (mean and variance) of each element of a normalized filter innovations vector. Failed pressurizer instrumentation can be detected by comparing these moments to the known statistical properties of the steady state, linear Kalman fitler innovations sequence. The capabilities of the detection system are evaluated using simulated plant transients and instrument failures

  17. Development and validation of a heuristic model for evaluation of the team performance of operators in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Sa Kil; Byun, Seong Nam; Lee, Dhong Hoon

    2011-01-01

    Highlights: → We develop an estimation model for evaluation of the team performance of MCR. → To build the model, we extract team performance factors through reviewing literatures and identifying behavior markers. → We validate that the model is adaptable to the advanced MCR of nuclear power plants. → As a result, we find that the model is a systematic and objective to measure team performance. - Abstract: The global concerns about safety in the digital technology of the main control room (MCR) are growing as domestic and foreign nuclear power plants are developed with computerized control facilities and human-system interfaces. In a narrow space, the digital technology contributes to a control room environment, which can facilitate the acquisition of all the information needed for operation. Thus, although an individual performance of the advanced MCR can be further improved; there is a limit in expecting an improvement in team performance. The team performance depends on organic coherence as a whole team rather than on the knowledge and skill of an individual operator. Moreover, a good team performance improves communication between and within teams in an efficient manner, and then it can be conducive to addressing unsafe conditions. Respecting this, it is important and necessary to develop methodological technology for the evaluation of operators' teamwork or collaboration, thus enhancing operational performance in nuclear power plant at the MCR. The objectives of this research are twofold: to develop a systematic methodology for evaluation of the team performance of MCR operators in consideration of advanced MCR characteristics, and to validate that the methodology is adaptable to the advanced MCR of nuclear power plants. In order to achieve these two objectives, first, team performance factors were extracted through literature reviews and methodological study concerning team performance theories. Second, the team performance factors were identified and

  18. Safety evaluation report related to operation of Sequoyah Nuclear Plant, Units 1 and 2, Docket nos. 50-327 and 50-328, Tennessee Valley Authority

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    A safety evaluation of the Tennessee Valley Authority's application for a license to operate its Sequoyah Nuclear Plant, Units 1 and 2, located in Hamilton County, Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. It consists of a technical review and staff evaluation of applicant information on: (1) population density, land use, and physical characteristics of the site area; (2) design, fabrication, construction, testing criteria, and performance characteristics of plant structures, systems, and components important to safety; (3) expected response of the facility to anticipated operating transients, and to postulated design basis accidents; (4) applicant engineering and construction organization, and plans for the conduct of plant operations; and (5) design criteria for a system to control the plant's radiological effluents. The staff has concluded that the plant can be operated by the Tennessee Valley Authority without endangering the health and safety of the public provided that the outstanding matters discussed in the report are favorably resolved. (author)

  19. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  20. Improvement of the nuclear plant analyzer for Korean Standard Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Sung Soo; Han, Byoung Sub; Suh, Jae Seung; Son, Dae Seong

    2005-04-01

    Accurate analysis of the operating characteristics of Nuclear Power Plants provides valuable information for both norman and abnormal operation. The information can be used for the enhancement of plant performance and safety. Usually, such analysis is performed using computer codes used for plant design or simulators. However, their usages are limited because special expertise is required to use the computer codes and simulators are not portable. Therefore, it deemed necessary to develop an NPA which minimizes those limitations and can be used for the analysis and simulation of Nuclear Power Plants. The purpose of this study is to develop a real-time best-estimate NPA for the Korean Nuclear Power Plants(KSNP). The NPA is an interactive, high fidelity engineering simulator. NPA combines the process model simulating the plant behavior with the latest computer technology such as Graphical User Interface(GUI) and simulation executive for enhanced user interface. The process model includes models for a three-dimensional reactor core, the NSSS, secondary system including turbine and feedtrain, safety auxiliary systems, and various control systems. Through the verification and validation of the NPA, it was demonstrated that the NPA can realistically simulate the plant behaviors during transient and accident conditions

  1. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  2. Public regulation of nuclear plants

    International Nuclear Information System (INIS)

    Burtheret, M.; Cormis, de

    1980-01-01

    The construction and operation of nuclear plants are subject to a complex system of governmental administration. The authors list the various governmental authorisations and rules applicable to these plants. In the first part, they describe the national regulations which relate specifically to nuclear plants, and emphasize the provisions which are intended to ensure the safety of the installations and the protection of the public against ionizing radiation. However, while the safety of nuclear plants is a major concern of the authorities, other interests are also protected. This is accomplished by various laws or regulations which apply to nuclear plants as well as other industrial installations. The duties which these texts, and the administrative practice based thereon, impose on Electricite de France are covered in the second part [fr

  3. Complex nuclear safety evaluation of the Bohunice V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Kriz, Z.

    1991-01-01

    The safety concept of V-230 type reactor units dates back to the late 1960s. The units fail to be sufficiently dimensioned for emergency cooling of the reactor core and are fitted with no containment. So far, operating experience is good. The availability factor is 71.5% for unit 1 and 77.8% for unit 2. There occur 1 to 3 unscheduled shutdowns annually. The quality of steam generator tubes is very good. A complex safety assessment of the plant was accomplished in 1990. It concerned the concept and criteria of safety assessment, the earthquake situation, the condition of the primary coolant circuit equipment, the control system, the effect of the human factor, and preparedness of emergency plans. OSART and ASSET missions were accomplished at the plant. Based on the results of the missions as well as of inspections by the State Surveillance over Nuclear Safety, the decision has been adopted to operate the plant not longer than till 1995; the further fate of the plant will be decided on according to a future technical and economic analysis. (M.D.)

  4. The economics of new nuclear power plants in liberalized electricity markets

    International Nuclear Information System (INIS)

    Linares, Pedro; Conchado, Adela

    2013-01-01

    Even after Fukushima, the nuclear debate is strong in many countries, with the discussion of its economics being a significant part of it. However, most of the estimates are based on a levelized-cost methodology, which presents several shortcomings, particularly when applied to liberalized electricity markets. Our paper provides results based on a different methodology, by which we determine the break-even investment cost for nuclear power plants to be competitive with other electricity generation technologies. Our results show that the cost competitiveness of nuclear power plants is questionable, and that public support of some sort would be needed if new nuclear power plants are to be built in liberalized markets. - Highlights: • We propose an alternative more realistic than LEC for the evaluation of the economics of nuclear electricity. • Our results show that the cost competitiveness of nuclear power plants is questionable. • Building nuclear power plants will require public support, particularly regarding risk management. • These results are less optimistic than previous, LEC-based, estimates

  5. Application of Advanced Technology to Improve Plant Performance in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    providing the nuclear industry with the means to meet regulatory requirements, comply with technical specification provisions, or resolve operational and maintenance issues. Although OLM provides substantial benefits to the safety and economy of nuclear power plants, it is not widely used in the nuclear industry at this time for a number of reasons; the most important of which is regulatory constraints. In particular, the regulators must allow OLM to replace the conventional techniques for maintenance of safety-related equipment to make it worthwhile for utilities to retrofit their plants with OLM technologies. To this end, the U.S. Nuclear Regulatory Commission (NRC) issued a Safety Evaluation Report (SER) in the year 2000 accepting the OLM concept for condition-based calibration of safety-related pressure transmitters in nuclear power plants. However, according to the SER, each plant must still apply to the NRC and receive approval for OLM implementation if it is to be used in lieu of traditional calibration of safety-related equipment. This is, of course, a hindrance for OLM and has slowed its widespread use in the nuclear industry. As such, in the fall of 2008, representatives of the U.S. nuclear industry initiated an effort to obtain generic NRC licensing for the use of OLM in nuclear power plants. If approved, generic licensing will allow nuclear power plants to implement OLM without having to apply for an individual license for each plant. There is no doubt that this will incentivize the industry to proceed with OLM implementation at an accelerated rate. (author)

  6. CANDU 9 nuclear power plant simulator

    International Nuclear Information System (INIS)

    Kattan, M.; MacBeth, M.J.; Lam, K.

    1995-01-01

    Simulators are playing, an important role in the design and operations of CANDU reactors. They are used to analyze operating procedures under standard and upset conditions. The CANDU 9 nuclear power plant simulator is a low fidelity, near full scope capability simulator. It is designed to play an integral part in the design and verification of the control centre mock-up located in the AECL design office. It will also provide CANDU plant process dynamic data to the plant display system (PDS), distributed control system (DCS) and to the mock-up panel devices. The simulator model employs dynamic mathematical models of the various process and control components that make up a nuclear power plant. It provides the flexibility to add, remove or update user supplied component models. A block oriented process input is provided with the simulator. Individual blocks which represent independent algorithms of the model are linked together to generate the required overall plant model. As a design tool the simulator will be used for control strategy development, human factors studies (information access, readability, graphical display design, operability), analysis of overall plant control performance, tuning estimates for major control loops and commissioning strategy development. As a design evaluation tool, the simulator will be used to perform routine and non-routine procedures, practice 'what if' scenarios for operational strategy development, practice malfunction recovery procedures and verify human factors activities. This paper will describe the CANDU 9 plant simulator and demonstrate its implementation and proposed utility as a tool in the control system and control centre design of a CANDU 9 nuclear power plant. (author). 2 figs

  7. Proceedings of the topical meeting on nuclear power plant life extension

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book contains the proceedings of the topical meeting on nuclear power plant life extension. The sessions are organized under the following headings: Perspectives on nuclear power plant life extension, the potential for additional years of power production, NRC and industry life extension initiatives, concrete and structures degradation and evaluation of useful remaining life, plant life extension programs, Reactor pressure vessel and intervals degradation and evaluation of useful remaining life, life extension decision making issues and institutions, systems degradation and evaluation of remaining life, monitoring and repair, design records and maintenance activities for life extension, Mechanical and electrical component degradation and evaluation of remaining life, expert systems and other techniques for enhanced and continued operation, life extension aspect of codes, standards, and related technologies, piping and valve degradation and evaluation of useful remaining life

  8. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  9. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young Hwan; Shin, Hyun Jae [Sungkwunkwan Univ., Seoul (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Chung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul National University of Technology, Seoul (Korea, Republic of)

    2001-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of nuclear power plant. In order to Improve reliabilities of ultrasonic testing and eddy current testing, the following five subjects were carried out in this study: development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field and evaluation of statistical reliability of PD-RR test of ultrasonic testing. As results, BEM analysis of eddy current signal, intelligent analysis of eddy current signal using neural network, and FEM analysis of remote field eddy current testing have been developed for the inspection of SG tubes. FEM analysis of ultrasonic waves in 2-dimensional media and evaluation of statistical reliability of ultrasonic testing with PD-RR test also have been carried out for the inspection of weldments. Those results can be used to Improve reliability of nondestructive testing.

  10. Development of life evaluation technology for nuclear power plant components

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young Hwan; Shin, Hyun Jae; Lee, Hyang Beom; Shin, Young Kil; Chung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2001-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of nuclear power plant. In order to Improve reliabilities of ultrasonic testing and eddy current testing, the following five subjects were carried out in this study: development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field and evaluation of statistical reliability of PD-RR test of ultrasonic testing. As results, BEM analysis of eddy current signal, intelligent analysis of eddy current signal using neural network, and FEM analysis of remote field eddy current testing have been developed for the inspection of SG tubes. FEM analysis of ultrasonic waves in 2-dimensional media and evaluation of statistical reliability of ultrasonic testing with PD-RR test also have been carried out for the inspection of weldments. Those results can be used to Improve reliability of nondestructive testing

  11. Safety evaluation of the nuclear power plant at Cattenom

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This is a systematic compilation of the material which was dealt with at the level of the German-French Commission (on questions of the safety of nuclear installations) in this discussions about the nuclear power plant at Cattenom. As a supplement to the report published already in 1982, the Commission has officially released its deliberation results on the subjects constructive safety measures, radiological effects, and precautions in case of an emergency. The allegations according to which the installation is wanting in safety are countered by the joint statement of the chairmen of GPR (Permanent Group on Reactors) and RSK (German Commission on Reactor Safety) of August 29, 1986. (HSCH) [de

  12. Review of operational aids for nuclear plant operators

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1983-01-01

    Many approaches are being explored to improve the safety of nuclear plant operations. One approach is to supply high-quality, relevant information by means of computer-based diagnostic systems to assist plant operators in performing their operational and safety-related roles. The evaluation of operational aids to ensure safe plant operations is a necessary function of NRC. This work has two purposes: to collect limited data on a diversity of operational aids, and to provide a method for evaluating the safety implications of the functions of proposed operational aids. After a discussion of the method evaluation now under study, this paper outlines this data collection to date

  13. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  14. External human induced events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of the present Safety Guide is to provide recommendations and guidance for the examination of the region considered for site evaluation for a plant in order to identity hazardous phenomena associated with human induced events initiated by sources external to the plant. In some cases it also presents preliminary guidance for deriving values of relevant parameters for the design basis. This Safety Guide is also applicable for periodic site evaluation and site evaluation following a major human induced event, and for the design and operation of the site's environmental monitoring system. Site evaluation includes site characterization. Consideration of external events that could lead to a degradation of the safety features of the plant and cause a release of radioactive material from the plant and/or affect the dispersion of such material in the environment. And consideration of population issues and access issues significant to safety (such as the feasibility of evacuation, the population distribution and the location of resources). The process of site evaluation continues throughout the lifetime of the facility, from siting to design, construction, operation and decommissioning. The external human induced events considered in this Safety Guide are all of accidental origin. Considerations relating to the physical protection of the plant against wilful actions by third parties are outside its scope. However, the methods described herein may also have some application for the purposes of such physical protection. The present Safety Guide may also be used for events that may originate within the boundaries of the site, but from sources which are not directly involved in the operational states of the nuclear power plant units, such as fuel depots or areas for the storage of hazardous materials for the construction of other facilities at the same site. Special consideration should be given to the hazardous material handled during the construction, operation and

  15. Structural experiences at the Kewaunee Nuclear Power Plant

    International Nuclear Information System (INIS)

    Setlur, A.V.

    1983-01-01

    This paper discusses the original structural and geotechnical design and subsequent structural experience at the Kewaunee Nuclear Power Plant. The original design of the 535 MWe Westinghouse two loop PWR nuclear plant operated by Wisconsin Public Service Corporation, was started in 1967 and was completed in 1974 when the unit was put into commercial operation. Since 1974 a number of changes in the regulations and additional requirements have been imposed on operating reactors. The paper traces the influence of the original plant criteria on the backfit evaluations and the minimal physical changes required in the plant's structures and components to comply with the new requirements. In addition, the unique design features and construction challenges of the original design are discussed. Kewaunee Nuclear Power Plant has had one of the best operating performance records in the world. Also, the exposure to radiation for plant personnel and radioactive waste generation has been significantly lower than the average. This has been achieved by a conscientious team effort of all parties involved. Some of the more significant structural design features contributing to the excellent performance is detailed in this paper. (orig.)

  16. Assessment of defence in depth for nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    Defence in depth is a comprehensive approach to safety that has been developed by nuclear power experts to ensure with high confidence that the public and the environment are protected from any hazards posed by the use of nuclear power for the generation of electricity. The concepts of defence in depth and safety culture have served the nuclear power industry well as a basic philosophy for the safe design and operation of nuclear power plants. Properly applied, defence in depth ensures that no single human error or equipment failure at one level of defence, nor even a combination of failures at more than one level of defence, propagates to jeopardize defence in depth at the subsequent level or leads to harm to the public or the environment. The importance of the concept of defence in depth is underlined in IAEA Safety Standards, in particular in the requirements set forth in the Safety Standards: Safety of Nuclear Power Plants: Design (NS-R-1) and Safety Assessment and Verification for Nuclear Power Plants (NS-G-1.2). A specific report, Defence in Depth in Nuclear Safety (INSAG-10), describes the objectives, strategy, implementation and future development in the area of defence in depth in nuclear and radiation safety. In the report Basic Safety Principles for Nuclear Power Plants (INSAG-12), defence in depth is recognized as one of the fundamental safety principles that underlie the safety of nuclear power plants. In consonance with those high level publications, this Safety Report provides more specific technical information on the implementation of this concept in the siting, design, construction and operation of nuclear power plants. It describes a method for comprehensive and balanced review of the provisions required for implementing defence in depth in existing plants. This publication is intended to provide guidance primarily for the self-assessment by plant operators of the comprehensiveness and quality of defence in depth provisions. It can be used

  17. Safety-related occurrences at the Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Viitasaari, O.; Rantavaara, A.

    1984-03-01

    This report contains detailed descriptions of operating incidents and other safety-related matters at the Finnish nuclear power plants regarded as significant by the regulatory authority, the Finnish Centre for Radiation and Nuclear Safety. In this connection, an account is given of the practical actions caused by the incidents, and their significance to reactor safety is evaluated. The main features of the incidents are also described in the general Quartely Report for this period, Operation of Finnish Nuclear Power Plants (STL-B-RTO-83/7), which is supplemented by this report intended principally for experts. (author)

  18. An Evaluation System for Checking the Status of I and C Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    JinWoo, Hyun; Hak-Yeong, Chung; ChanHo, Sung

    2006-01-01

    I and C upgrade has been hot issue around the world as progresses of degradation, aging and obsolescence have been getting worse with the continual I and C system operation, it is very difficult to develop I and C evaluation system for the real application to nuclear power plants due to complexity or reliability aspects of the methodology. Thus, to improve these problems related to evaluation and application of I and C systems, we have been developing an evaluation system which embarks an objective evaluation methodology and works on internet for convenience. This Evaluation system has been established based on the evaluation factors including system importance, performance, maintenance, aging, economic efficiency and the continuance of equipment supply, and each evaluation factor has some questionnaires which are composed of questions requiring quantitative and qualitative answers. The applied evaluation algorithm consists of scoring process among evaluation factors and weighting factor allocation process. The Evaluation system has a structure based on web environment. With this system, staffs from plant sites can directly conduct the evaluation of each I and C system status of the plant, survey of results, survey of upgrade information, and upgrade/maintenance plan. Also head office utilizes this system for the survey of the evaluation results, upgrade or maintenance plan of each site and especially acquires some useful information for making finance plans. (authors)

  19. Seismic evaluation of non-seismically designed existing Magnox nuclear power plants

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1984-01-01

    The philosophy and method adopted for the seismic assessment of three existing Magnox nuclear stations in the United Kingdom are presented in this paper. The plants were not seismically designed. The particular procedures that were applied were tailored to suit the difficulties of lack of data which is somewhat inevitable for plants designed and built about 25 to 30 years ago. Special procedures included on-site testing with a portable shake table, low vibration testing using a structural dynamics analyser, and on-site inspections. The low vibration testing was most invaluable in detecting differences between 'as-built' conditions and the engineering drawings. From the point of view of economics, this was more effective than conducting full structural surveys to determine the as-built conditions. The testing results also provided confidence in the answers from numerical models. The philosophy adopted for the Magnox reactors in the seismic assessment was to determine what peak ground accelerations the sites can sustain and then evaluate the chances of exceeding the ground accelerations over the remaining lifetime of the plants. The peak ground acceleration for each site was determined on the basis of the criteria of safe shutdown and prevention of significant off-site radiological exposure

  20. Safety goals for nuclear power plant operation

    International Nuclear Information System (INIS)

    1983-05-01

    This report presents and discusses the Nuclear Regulatory Commission's, Policy Statement on Safety Goals for the Operation of Nuclear Power Plants. The safety goals have been formulated in terms of qualitative goals and quantitative design objectives. The qualitative goals state that the risk to any individual member of the public from nuclear power plant operation should not be a significant contributor to that individual's risk of accidental death or injury and that the societal risks should be comparable to or less than those of viable competing technologies. The quantitative design objectives state that the average risks to individual and the societal risks of nuclear power plant operation should not exceed 0.1% of certain other risks to which members of the US population are exposed. A subsidiary quantitative design objective is established for the frequency of large-scale core melt. The significance of the goals and objectives, their bases and rationale, and the plan to evaluate the goals are provided. In addition, public comments on the 1982 proposed policy statement and responses to a series of questions that accompanied the 1982 statement are summarized

  1. Sabotage at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  2. Sabotage at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Purvis, James W.

    1999-01-01

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented

  3. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  4. Backfitting of Nuclear Power Plant Bohunice V1 in Slovakia

    International Nuclear Information System (INIS)

    Ferenc, M.

    1999-01-01

    Nuclear power plants in the Slovak Republic generate almost 55 % of electricity. The operating organization and the Nuclear Regulatory Authority of the Slovak Republic pay a great attention to safe and reliable operation of four units with VVER 440 reactors at Bohunices site and one in Mochovce side. Engineering and design organizations in cooperation with well known international companies prepare evaluation of safety conditions, safety analyses and projects for the implementation of modifications to upgrade the nuclear safety of the units in operation. A gradual safety upgrading (reconstruction) of the V-1 Bohunice plant has been in progress, a modernization of the V-2 Bohunice plant is being prepared. Simultaneously the commissioning of Unit 2 at the Mochovce plant is being implemented.(author)

  5. KWU Nuclear Plant Analyzer

    International Nuclear Information System (INIS)

    Bennewitz, F.; Hummel, R.; Oelmann, K.

    1986-01-01

    The KWU Nuclear Plant Analyzer is a real time engineering simulator based on the KWU computer programs used in plant transient analysis and licensing. The primary goal is to promote the understanding of the technical and physical processes of a nuclear power plant at an on-site training facility. Thus the KWU Nuclear Plant Analyzer is available with comparable low costs right at the time when technical questions or training needs arise. This has been achieved by (1) application of the transient code NLOOP; (2) unrestricted operator interaction including all simulator functions; (3) using the mainframe computer Control Data Cyber 176 in the KWU computing center; (4) four color graphic displays controlled by a dedicated graphic computer, no control room equipment; and (5) coupling of computers by telecommunication via telephone

  6. Status of the Monticello nuclear generating plant lead plant license renewal program

    International Nuclear Information System (INIS)

    Pickens, T.A.

    1992-01-01

    In 1988, the Monticello nuclear generating plant was chosen by the US Department of Energy through Sandia National Laboratories and the Electric Power Research Institute to serve as the lead boiling water reactor in the lead plant license renewal program. The purpose of the lead plant license renewal program is to provide insights during the development of and to demonstrate the license renewal regulatory process with the US Nuclear Regulatory Commission (NRC). The work being performed in three phases: (1) preparation of the technical basis for license renewal; (2) development of the technical basis into a formal license renewal application; and (3) review of the application by the NRC. This paper discusses the systems and structures identified as important to license renewal in accordance with 10CFR54 as well as the plant documents and programs that were used in going through the identification process. The systems and structures important to license renewal will then provide insights into how structures and components were identified that are required to be evaluated for aging, the elements of the aging evaluations, and the effective programs used to manage potentially significant aging

  7. Seasonal Variations in the Structure of Phytoplankton Communities near Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.-K.; Choi, H.-C.; Moon, H.-T.

    2015-01-01

    To investigate effects of thermal discharge effluent from nuclear power plants on the surrounding marine environment, especially on the phytoplankton community, environmental data gained by seasonal survey around Hanbit and Hanul nuclear power plants during the periods of 11 years from 1999 to 2009 were analysed. The data used were from environmental survey and assessment around Hanbit and Hanul nuclear power plants of Korea during the period of 11 years from 1999 to 2009. The purposes of this study are (1) to evaluate the effect of operation of nuclear power plants on phytoplankton community, (2) to find out whether the thermal discharge affected negatively phytoplankton community, and (3) to evaluate the difference of thermal discharge influence on phytoplankton community between West and East coastal area, Korea. Through this study, (1) quantitative evaluation of the effect of thermal discharge effluent on marine ecology, especially on abundance and biomass of phytoplankton were performed, (2) found that depending on the season, the effect of thermal discharge effluent from nuclear power plant on the marine environment is not always negative (i.e. warm water may increase or prevent decline of abundance in seasons with low temperature such as winter in Hanbit area), and (3) found that same thermal discharge effluent rate to different marine environments, such as west and east coast of Korea, does not result in same effect on the marine ecosystem. (author)

  8. Seismic analysis and structure capacity evaluation of the Belene nuclear power plant

    International Nuclear Information System (INIS)

    Johnson, J.J.; Hashimoto, P.S.; Campbell, R.D.; Baltus, R.S.

    1993-01-01

    The seismic analysis and structure capacity evaluation of the Belene Nuclear Power Plant, a two-unit WWER 1000, was performed. The principal objective of the study was to review the major aspects of the seismic design including ground motion specification, foundation concept and materials, and the Unit I main reactor building structure response and capacity. The main reactor building structure /foundation/soil were modeled and analyzed by a substructure approach to soil-structure interaction (SSI) analysis. The elements of the substructure approach, implemented in the family of computer programs CLASSI, are: Specification of the free-field ground motion; Modeling the soil profile; SSI parameters; Modeling the structure; SSI-response analyses. Each of these aspects is discussed. The Belene Unit 1 main reactor building structure was evaluated to verify the seismic design with respect to current western criteria. The structural capacity evaluation included criteria development, element load distribution analysis, structural element selection, and structural element capacity evaluation. Equipment and commodity design criteria were similarly reviewed and evaluated. Methodology results and recommendations are presented. (author)

  9. Configuration management of plant modifications for nuclear power plants

    International Nuclear Information System (INIS)

    Ritsch, W.J.

    1987-01-01

    Due to the increasing complexity of nuclear power plant operation, regulatory pressure, and the large numbers of people required to operate and support the stations, the control of plant modifications at these plants needs to be expanded and improved. The aerospace and defense industries, as well as the owners or operators of large energy projects have established configuration management programs (CMPs) to control plant design changes. These programs are composed of well-defined functions for identifying, evaluating, recording, tracking, issuing, and documenting the established baseline conditions, as well as required changes to these baseline conditions. The purpose of this paper is to describe a recommended CMP for plant modifications consisting of a computerized data base installed on the utility's computer to provide a central storage of plant design and operations data necessary to control the following activities as they are affected by plant design changes: training; record management; operations; maintenance; health physics; planning/scheduling; procurement/inventory control; outage management (including modifications); and emergency response

  10. Two-phase water hammer in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, J.H.

    1987-01-01

    Water hammer events keep recurring in nuclear power plants. In the mid-1970s, water hammer was designated to be an unresolved safety issue (USI A-1) due to its high frequency of occurrence and the severity of the attendant damages. Between 1969 and 1981, a significant number of water hammer incidents (more than 12 events per year) involving BWRs and PWRs have been reported and evaluated. After intensive evaluations of the events, in late 1983, the U.S. Nuclear Regulatory Commission staff concluded that water hammer was not a serious contributor to the degradation of plant safety and it has been taken off the list of the unresolved safety issues. The frequency decreased to around 11 events per year between 1981 and 1985. Nevertheless, 11 events per year are still unacceptable high, especially in light of the financial losses caused by most events. Some events are not required to be reported. The number of the unreported events are estimated to be five to ten times as many as the reported events. The implication is that water hammer in nuclear power plants still needs attention and is a problem that has not been fundamentally resolved

  11. Seismic fragilities for nuclear power plant risk studies

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Ravindra, M.K.

    1983-01-01

    Seismic fragilities of critical structures and equipment are developed as families of conditional failure frequency curves plotted against peak ground acceleration. The procedure is based on available data combined with judicious extrapolation of design information on plant structures and equipment. Representative values of fragility parameters for typical modern nuclear power plants are provided. Based on the fragility evaluation for about a dozen nuclear power plants, it is proposed that unnecessary conservatism existing in current seismic design practice could be removed by properly accounting for inelastic energy absorption capabilities of structures. The paper discusses the key contributors to seismic risk and the significance of possible correlation between component failures and potential design and construction errors

  12. Fuzzy MCDM framework for locating a nuclear power plant in Turkey

    International Nuclear Information System (INIS)

    Erol, İsmail; Sencer, Safiye; Özmen, Aslı; Searcy, Cory

    2014-01-01

    Turkey has recently initiated a project to revise its nuclear policy. The revised nuclear energy policy considers searching for possible alternative locations for future nuclear power plants in Turkey. At the most basic level, the public cannot accurately evaluate whether it is willing to support nuclear energy unless it has an idea about where the power plants are likely to be located. It is argued that the selection of a facility location is a multi-criteria decision-making problem including both quantitative and qualitative criteria. In this research, given the multi-criteria nature of the nuclear facility location selection problem, a new decision tool is proposed to rank the alternative nuclear power plant sites in Turkey. The proposed tool is based on fuzzy Entropy and t norm based fuzzy compromise programming to deal with the vagueness of human judgments. Finally, a discussion and some concluding remarks are provided. - Highlights: • Fuzzy MCDM approach is developed to select nuclear power plant location in Turkey. • The proposed framework employs fuzzy entropy and fuzzy compromise programming. • A criterion set was developed using a map by The Turkish Atomic Energy Authority. • Cilingoz is found to be the best with the index values 0.6584 and 0.0838. • The proposed tool can be considered a tool to evaluate the alternative sites

  13. Field vibration test of principal equipment of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shiraki, Kazuhiro; Fujita, Katsuhisa; Kajimura, Motohiko; Ikegami, Yasuhiko; Hanzawa, Katsumi; Sakai, Yoshiyuki; Kokubo, Eiji; Igarashi, Shigeru

    1984-09-01

    Japan is one of the most earthquake-stricken countries in the world, and demands for aseismic design have become severer recently. In a nuclear power plant in particular, consisting of a reactor vessel and other facilities dealing with a radioactive substance in some form or other, it is essential from the standpoint of safety to eliminate any possibility of radioactive hazards for the local public, and the employees at the plant as well, if these facilities are struck by an earthquake. This paper is related to the reactor vessel, reactor primary cooling equipment and piping system and important general piping as examples of important facilities of a nuclear power plant, and discusses vibration tests of an actual plant in the field from the standpoint of enhancing the aseismic safety of the Mitsubishi PWR nuclear power plant. Especially concerning vibration test technology, the effects in the evaluation of aseismic safety and its limits are studied to prove how it contributes to the enhancement of the reliability of aseismic design of nuclear power plants.

  14. Nuclear accidents and safety measures of domestic nuclear power plants

    International Nuclear Information System (INIS)

    Song Zurong; Che Shuwei; Pan Xiang

    2012-01-01

    Based on the design standards for the safety of nuclear and radiation in nuclear power plants, the three accidents in the history of nuclear power are analyzed. And the main factors for these accidents are found out, that is, human factors and unpredicted natural calamity. By combining the design and operation parameters of domestic nuclear plants, the same accidents are studied and some necessary preventive schemes are put forward. In the security operation technology of domestic nuclear power plants nowadays, accidents caused by human factors can by prevented completely. But the safety standards have to be reconsidered for the unpredicted neutral disasters. How to reduce the hazard of nuclear radiation and leakage to the level that can be accepted by the government and public when accidents occur under extreme conditions during construction and operation of nuclear power plants must be considered adequately. (authors)

  15. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  16. Nuclear power plant ageing management programmes in foreign countries

    International Nuclear Information System (INIS)

    Simola, K.; Laakso, K.; Pekkonen, A.

    1992-09-01

    The report describes ageing studies of nuclear power plants and research programmes on plant life extension in foreign countries. Ageing studies are aimed to ascertain that the availability and safety of components and structures can be maintained throughout the plant lifetime. In life extension programmes the purpose is to evaluate the technical and economical possibilities to extend the plant lifetime beyond the originally planned operation period, without reducing the plant safety. The main emphasis of the report is put on the ageing and life extension programmes in the United States. Besides the U.S. studies, research on plant life extension possibilities conducted in France and Japan are also described. Examples of studies performed in other nuclear energy producing countries are given. These examples are mainly related to the development of maintenance programmes and techniques

  17. Evaluation of reliability assurance approaches to operational nuclear safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1984-01-01

    This report discusses the results of research to evaluate existing and/or recommended safety/reliability assurance activities among nuclear and other high technology industries for potential nuclear industry implementation. Since the Three Mile Island (TMI) accident, there has been increased interest in the use of reliability programs (RP) to assure the performance of nuclear safety systems throughout the plant's lifetime. Recently, several Nuclear Regulatory Commission (NRC) task forces or safety issue review groups have recommended RPs for assuring the continuing safety of nuclear reactor plants. 18 references

  18. Off-shore nuclear power plant

    International Nuclear Information System (INIS)

    Nakanishi, T.

    1980-01-01

    In order to avoid losses of energy and seawater pollution an off-shore nuclear power plant is coupled with a power plant which utilizes the temperature difference between seawater and hot reactor cooling water. According to the invention the power plant has a working media loop which is separated from the nuclear power plant. The apparative equipment and the operational characteristics of the power plant are the subject of the patent. (UWI) [de

  19. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  20. Analysis of adverse events occurred at overseas nuclear power plants in 2003

    International Nuclear Information System (INIS)

    Miyazaki, Takamasa; Sato, Masahiro; Takagawa, Kenichi; Fushimi, Yasuyuki; Shimada, Hiroki; Shimada, Yoshio

    2004-01-01

    The adverse events that have occurred in the overseas nuclear power plants can be studied to provide an indication of how to improve the safety and the reliability of nuclear power plants in Japan. The Institute of Nuclear Safety Systems (INSS) obtains information related to overseas adverse events and incidents, and by evaluating them proposes improvements to prevent similar occurrences in Japanese PWR plants. In 2003, INSS obtained approximately 2800 pieces of information and, by evaluating them, proposed nine recommendations to Japanese utilities. This report shows a summary of the evaluation activity and of the tendency analysis based on individual event analyzed in 2003. The tendency analysis was undertaken on about 1600 analyzed events, from the view point of Mechanics, Electrics, Instruments and Controls and Operations, about the causes, countermeasures, troubled equipments and the possible of lessons learnt from overseas events. This report is to show the whole tendency of overseas events and incidents for the improvement of the safety and reliability of domestic PWR plants. (author)

  1. Identification and Evaluation of Human Factors Issues Associated with Emerging Nuclear Plant Technology

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Higgins, J.; Brown, William S.

    2009-01-01

    This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

  2. Geomorphologic specificities of selected sites for nuclear power plants in Czechoslovakia

    International Nuclear Information System (INIS)

    Kalvoda, J.; Demek, J.

    1991-01-01

    The contribution of geomorphology to the complex evaluation of properties of sites for the construction and operation of nuclear facilities is demonstrated. The unique manifestation of the present geodynamics at the Jaslovske Bohunice nuclear power plant locality and the spatial correlations of annals of the specific morphotectonic development of georeliefs of that nuclear power plant with the location of the epicentral earthquake zones are shown. The results of the geomorphological survey in the surroundings of the Temelin nuclear power plant construction site are described and a drawing is reproduced showing how the georelief of this locality divides into areas with different categories of occurrence of morpho-structural formations. For the Tetov locality, where the construction of a nuclear power plant is planned, the changes in the course of the Labe (Elbe) river which occurred in the Pleistocene are of importance in the assessment of the intensity of geodynamic processes. The geomorphological and geotectonic complexity of the planned Blahutovice nuclear power plant construction site is demonstrated. A drawing shows the morphotectonic situation in the surroundings of that construction site. (Z.S.). 4 figs

  3. Performance Evaluation of Fabry-Perot Temperature Sensors in Nuclear Power Plant Measurements

    International Nuclear Information System (INIS)

    Liu Hanying; Miller, Don W.; Talnagi, Joseph W.

    2003-01-01

    The Fiso Fabry-Perot fiber-optic temperature sensor was selected for performance evaluation and for potential application in nuclear power plants because of its unique interferometric sensing mechanism and data-processing technique, and its commercial availability. It employs a Fizeau interferometer and a charge-coupled device array to locate the position of the maximum interference fringe intensity, which is directly related to the environmental temperature. Consequently, the basic sensing mechanism is independent of the absolute transmitted light intensity, which is the most likely parameter to be affected by external harsh environments such as nuclear irradiation, high pressure/temperature, and cyclical vibration.This paper reports research on the performance of two Fiso Fabry-Perot temperature sensors in environmental conditions expected in nuclear power plants during both normal and abnormal (i.e., accident) conditions. The environmental conditions simulated in this paper include gamma-only ( 60 Co) irradiation, pressure/temperature environmental transient, and mixed neutron/gamma field, respectively.The first sensor exhibited no failure or degradation in performance during and following gamma-only irradiation in which a total dose of 15 kGy was delivered at a dose rate of 2.5 kGy/h. Following gamma irradiation, this sensor was then tested for 10.75 days in a thermohydraulic environment prescribed by the Institute of Electrical and Electronics Engineers IEEE323-1983. Intermittent behavior was observed throughout the latter portions of this test, and degradation in performance occurred after the test. Visual evaluation after opening the sensor head indicated that the internal welding methodology was the primary contributor to the observed behavior during this test. Further consultation with the vendor shows that the robustness and reliability of Fiso sensors can be substantially improved by modifying the internal welding methods.The second Fiso temperature

  4. Building of nuclear power plant

    International Nuclear Information System (INIS)

    Saito, Takashi.

    1997-01-01

    A first nuclear plant and a second nuclear power plant are disposed in adjacent with each other in a building for a nuclear reactor. A reactor container is disposed in each of the plants, and each reactor container is surrounded by a second containing facility. A repairing chamber capable of communicating with the secondary containing facilities for both of the secondary containing facilities is disposed being in contact with the second containing facility of each plant for repairing control rod driving mechanisms or reactor incorporated-type recycling pumps. Namely, the repairing chamber is in adjacent with the reactor containers of both plants, and situated between both of the plants as a repairing chamber to be used in common for both plants. Air tight inlet/exit doors are formed to the inlets/exits of both plants of the repairing chamber. Space for the repairing chamber can be reduced to about one half compared with a case where the repairing chamber is formed independently on each plant. (I.N.)

  5. Summary of operating experience at Swedish nuclear power plants in 1984

    International Nuclear Information System (INIS)

    1985-01-01

    The four owners on nuclear power plants in Sweden - The Swedish State Power Board, Forsmarks Kraftgrupp AB, Sydkraft AB and OKG AKTIEBOLAG - formed in 1980 the Nuclear Safety Board of the Swedish Utilities as a joint body for collaboration in safety matters. The Board participates in coordination of the safety work of the utilities and conducts its own safety projects, whereever this is more efficient than the utilities' working independently. The work of the Board shall contribute to optimizing safety in the operation of the Swedish nuclear power plants. The most important function of the Board is to collect, process and evaluate information on operational disturbances and incidents at Swedish and foreign nuclear power plants and then use the knowledge thus gained to improve the safety of the operation of the Swedish nuclear power plants (experience feedback). The work with Experience Feedback proceeds in three stages: Event follow-up, Fault analysis and Feedback of results. The Board runs a system for experience feedback (ERF). ERF is a computer-based information and communication system. ERF provides the Board with a daily update of operating experience in both Swedish and foreign nuclear power plants. Each Swedish nuclear power station supplies the ERF system with data on, among other things, operation and operational distrubances. Important experiences are thereby fed back to plant operation. Experience from foreign nuclear power stations can be of interest to the Swedish nuclear power plants. This information comes to RKS and is reviewed daily. The information that is considered relevant to Swedish plants is fed after analysis into the ERF system. Conversely, foreign nuclear power stations can obtain information from the operation of the Swedish plants. (author)

  6. Analysis of the LaSalle Unit 2 Nuclear Power Plant: Risk Methods Integration and Evaluation Program (RMIEP)

    International Nuclear Information System (INIS)

    Payne, A.C. Jr.; Eide, S.A.; LaChance, J.C.; Whitehead, D.W.

    1992-10-01

    This volume presents the results of the initiating event and accident sequence delineation analyses of the LaSalle Unit II nuclear power plant performed as part of the Level III PRA being performed by Sandia National Laboratories for the Nuclear Regulatory Commission. The initiating event identification included a thorough review of extant data and a detailed plant specific search for special initiators. For the LaSalle analysis, the following initiating events were defined: eight general transients, ten special initiators, four LOCAs inside containment, one LOCA outside containment, and two interfacing LOCAs. Three accident sequence event trees were constructed: LOCA, transient, and ATWS. These trees were general in nature so that a tree represented all initiators of a particular type (i.e., the LOCA tree was constructed for evaluating small, medium, and large LOCAs simultaneously). The effects of the specific initiators on the systems and the different success criteria were handled by including the initiating events directly in the system fault trees. The accident sequence event trees were extended to include the evaluation of containment vulnerable sequences. These internal event accident sequence event trees were also used for the evaluation of the seismic, fire, and flood analyses

  7. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  8. Report on countermeasure to plant life management of the nuclear power plants at three electric power companies

    International Nuclear Information System (INIS)

    1999-01-01

    Three nuclear power reactors of the Fukushima-1 nuclear power plant, the Mihama-1 power plant and the Tsuruga-1 power plant were investigated according to the estimation plan shown in the Fundamental Concept on Plant Life Management of Agency of Natural Resources and Energy, Ministry of International Trade and Industry on April, 1996. Their reports contained the technical evaluation against, the responsive items to and the future examinations of the plant life management. In special, in the responsive items, some items to be added to the present maintenance process and some technical developmental problems are described in details and concretely. (G.K.)

  9. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  10. Electromagnetic compatibility of nuclear power plants

    International Nuclear Information System (INIS)

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants

  11. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  12. Nuclear power plant in the Oslofjord district

    International Nuclear Information System (INIS)

    Audunson, T.; Aure, J.; Billfalk, L.; Rye, H.; Thundrup, A.

    1976-01-01

    The hydrophysical investigations made in order to evaluate the suitability of the waters adjacent to two prospective nuclear power plant sites in the Outer Oslofjord district are summarised. The evaluation of the diffusion and dilution of releases of 200 and 100 m 3 /s heated by 10 0 Cin this area is also presented. The effects of an intake in the Haaoeyfjord basin is also considered. The conclusions are presented in a collective report for all prospective sites 'Thermal power plants in the Oslofjord district, recipient evaluations' (Termiske kraftverk i Oslofjordomraadet, resipientvurderinger) published by Fiskeridirektoratets Havforskningsinstitutt, Norsk Institutt for Vannforskning and Vassdrags- og Havnelaboratoriet, dated November 1975. (JIW)

  13. Methods and benefits of experimental seismic evaluation of nuclear power plants. Final report

    International Nuclear Information System (INIS)

    1979-07-01

    This study reviews experimental techniques, instrumentation requirements, safety considerations, and benefits of performing vibration tests on nuclear power plant containments and internal components. The emphasis is on testing to improve seismic structural models. Techniques for identification of resonant frequencies, damping, and mode shapes, are discussed. The benefits of testing with regard to increased damping and more accurate computer models are oulined. A test plan, schedule and budget are presented for a typical PWR nuclear power plant

  14. Methods and benefits of experimental seismic evaluation of nuclear power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This study reviews experimental techniques, instrumentation requirements, safety considerations, and benefits of performing vibration tests on nuclear power plant containments and internal components. The emphasis is on testing to improve seismic structural models. Techniques for identification of resonant frequencies, damping, and mode shapes, are discussed. The benefits of testing with regard to increased damping and more accurate computer models are oulined. A test plan, schedule and budget are presented for a typical PWR nuclear power plant.

  15. Advanced chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Kobayashi, Yasuhiro; Nagasawa, Katsumi

    2000-01-01

    Chemistry control in a boiling water reactor (BWR) plant has a close relationship with radiation field buildup, fuel reliability, integrity of plant components and materials, performance of the water treatment systems and radioactive waste generation. Chemistry management in BWR plants has become more important in order to maintain and enhance plant reliability. Adequate chemistry control and management are also essential to establish, maintain, and enhance plant availability. For these reasons, we have developed the advanced chemistry management system for nuclear power plants in order to effectively collect and evaluate a large number of plant operating and chemistry data. (author)

  16. Siting and early-stage project management of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Kai; Li Guojin

    2013-01-01

    In this paper, difficulties and challenges facing in siting of nuclear power plant after Fukushima nuclear accident is introduced. The key points for siting are analyzed. The site characteristics related to nuclear safety and the evaluated methods are discussed. From project management perspective, main procedures and key points for the early-stage of a nuclear power project are described. (authors)

  17. Seismic safety of nuclear power plants in Eastern Europe

    International Nuclear Information System (INIS)

    Gurpinar, A.; Godoy, A.

    1995-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in WWER type nuclear power plants during the past five years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on B enchmark study for the seismic analysis and testing of WWER type nuclear power plants . These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  18. United States Department of Energy's reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    International Nuclear Information System (INIS)

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage

  19. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  20. Nuclear power plants in the world - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2009 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2010/01/01, Worldwide status of nuclear power plants (12/31/2009), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2009, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear power plants by country at the end 2009, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2009, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2009, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2009, Long term shutdown units at 12/31/2009, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  1. Video camera use at nuclear power plants

    International Nuclear Information System (INIS)

    Estabrook, M.L.; Langan, M.O.; Owen, D.E.

    1990-08-01

    A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs

  2. Siting studies for new nuclear power plants in Argentina

    International Nuclear Information System (INIS)

    Barbaran, Gustavo A.

    2008-01-01

    This paper is a summary of the thesis prepared by the Group of Prospective and Energy Planning of the National Atomic Energy Commission for the 'Specialization on Applications of Nuclear Technology Course' of the Instituto Balseiro in 2007. It describes the evolution of siting studies through time and the main focus worldwide in this type of studies. Then, it makes a brief review of previous siting studies of nuclear power plants conducted in Argentina. It carries out a description of the methodology to conduct a site evaluation for nuclear power plants according to actual international criteria. Finally, it describes the licensing process that follows every site study. (author) [es

  3. Nuclear plant life - A business decision

    International Nuclear Information System (INIS)

    Joosten, J.K.

    1995-01-01

    Regarding the future of the nuclear power option, many scenarios have been put forth over the years. The most commonly accepted projections for installed nuclear capacity show it growing at a rate of about 2% per year throughout the next few decades. These projections appear modes on the surface. However, underlying the projections are critical assumptions and sometimes misconceptions about the lifetimes of existing reactors and how they are determined. The notion of a 40 year plant life is very common. Consequently, many projections start either with the assumption that no plants will be retired in the near terms or with the assumption that each retired plant will be replaced by another nuclear plant after 40 years. Effectively, these assumptions yield future projections for installed capacity that might be characterized as low growth, medium growth and high growth scenarios - or grow, grow, grow. The question remains as to whether or not these assumptions accurately model the driving forces and constraints to nuclear development. After all, there is no scientific basis for believing that all plants, PWRs BWRs, RBMKs, etc., should have the same 40 year life. Most power plant owners purchase the plant for the main reason of supplying electrical power to their consumer. For these owners, electricity production is a day to day commercial activity with various alternatives on how to achieve the prime objective. The decision of which electricity generation alternative to select (gas, coal, nuclear or renewable energy) and how long to operate the plant before replacing it with a new one is essentially a business decision. The paper discusses ageing, the nuclear plant life decision process, the factors which influence the decision and their ramifications regarding the near term growth of nuclear power capacity. The modelling of nuclear plant lifetimes is also discussed. (author). 5 refs, 10 figs, 1 tab

  4. Application on electrochemistry measurement of high temperature high pressure condition in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Li Yuchun; Xiao Zhongliang; Jiang Ya; Yu Xiaowei; Pang Feifei; Deng Fenfang; Gao Fan; Zhou Nianguang

    2011-01-01

    High temperature high pressure electrochemistry testing system was comprehensively analyzed in this paper, according to actual status for supervision in primary and secondary circuits of PWR nuclear power plants. Three research methods were reviewed and discussed for in-situ monitor system. By combination with ECP realtime measurement it was executed for evaluation and water chemistry optimization in nuclear power plants. It is pointed out that in-situ electrochemistry measurement has great potential application for water chemistry evaluation in PWR nuclear power plants. (authors)

  5. Evaluation of utility monitoring and preoperational hydrothermal modeling at three nuclear power plant sites

    International Nuclear Information System (INIS)

    Marmer, G.J.; Policastro, A.J.

    1977-01-01

    This paper evaluates the preoperational hydrothermal modeling and operational monitoring carried out by utilities as three nuclear-power-plant sites using once-through cooling. Our work was part of a larger study to assess the environmental impact of operating plants for the Nuclear Regulatory Commission (NRC) and the suitability of the NRC Environmental Technical Specifications (Tech Specs) as set up for these plants. The study revealed that the plume mappings at the Kewaunee, Zion, and Quad Cities sites were generally satisfactory in terms of delineating plume size and other characteristics. Unfortunately, monitoring was not carried out during the most critical periods when largest plume size would be expected. At Kewaunee and Zion, preoperational predictions using analytical models were found to be rather poor. At Kewaunee (surface discharge), the Pritchard Model underestimated plume size in the near field, but grossly overestimated the plume's far-field extent. Moreover, lake-level variations affected plume dispersion, yet were not considered in preoperational predictions. At Zion (submerged discharge) the Pritchard Model was successful only in special, simple cases (single-unit operation, no stratification, no reversing currents, no recirculation). Due to neglect of the above-mentioned phenomena, the model underpredicted plume size. At Quad Cities (submerged discharge), the undistorted laboratory model predicted plume dispersion for low river flows. These low flow predictions appear to be reasonable extrapolations of the field data acquired at higher flows

  6. Owners of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  7. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  8. Nuclear Plant Modification in a Risk-Informed Environment

    International Nuclear Information System (INIS)

    Gallucci, Raymond H.V.

    2002-01-01

    This paper examines a specific nuclear power plant modification performed in a risk-informed regulatory environment. It quantifies both the permanent and temporary effects of the modification, and performs a cost-benefit evaluation. (authors)

  9. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.

    1993-01-01

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation

  10. Advanced plant design recommendations from Cook Nuclear Plant experience

    International Nuclear Information System (INIS)

    Zimmerman, W.L.

    1993-01-01

    A project in the American Electric Power Service Corporation to review operating and maintenance experience at Cook Nuclear Plant to identify recommendations for advanced nuclear plant design is described. Recommendations so gathered in the areas of plant fluid systems, instrument and control, testing and surveillance provisions, plant layout of equipment, provisions to enhance effective maintenance, ventilation systems, radiological protection, and construction, are presented accordingly. An example for a design review checklist for effective plant operations and maintenance is suggested

  11. Development of instructors for nuclear power plant personnel training

    International Nuclear Information System (INIS)

    2004-06-01

    In 1996 the IAEA published Technical Reports Series No. 380, Nuclear Power Plant Personnel Training and its Evaluation, A Guidebook, which provides guidance with respect to development, implementation and evaluation of training programmes. The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that an additional publication be prepared to provide further details concerning the development of instructors for NPP personnel training. The quality of nuclear power plant personnel training is strongly dependent on the availability of competent instructors. Instructors must have a comprehensive practical as well as theoretical understanding of all aspects of the subjects being taught and the relationship of the subject to nuclear plant operation. Instructors should have the appropriate knowledge, skills and attitudes (KSAs) in their assigned areas of responsibility. They should thoroughly understand all aspects of the contents of the training programmes and the relationship between these contents and overall plant operation. This means that they should be technically competent and show credibility with the trainees and other plant personnel. In addition, the instructors should be familiar with the basics of adult learning and a systematic approach to training, and should have adequate instructional and assessment skills. This TECDOC provides practical guidance on various aspects of instructor selection, development and deployment, by quoting actual examples from different countries. It highlights the importance of having an appropriate training policy, especially considering the various organisational arrangements that exist in different utilities/countries. This should result in: plant performance improvement, improved human performance, meeting goals and objectives of the business (quality, safety, productivity), and improving training programs. This publication is available in two formats - as a conventional printed

  12. Evaluation technology of radiation resistant materials in nuclear power plant and satellite

    International Nuclear Information System (INIS)

    Kang, P. H.; Kim, K. Y.; Lee, C.; Jeong, S. H.; Kim, J. A.

    2007-06-01

    The developed evaluation method using dielectric relaxation characteristic is measuring the increment of dipoles and mobile ions inside PEEK with deterioration, and calculate the dielectric relaxation intensity. Dielectric relaxation intensity were evaluated using Cole-Cole's circular arcs from the multi-frequencies measurements around glass transition temperature. The other proposed method using mechanical relaxation characteristic is measuring the brittleness of the deteriorated PEEK, non-destructively. The values of dielectric relaxation intensity showed the deterioration levels of each aged PEEK. Similarly, mechanical relaxation intensity showed decreasing tendency as increasing ageing time, but it did not show a certain tendency for the multi-aged PEEK. The novel developed evaluation method using dielectric relaxation characteristic will be applicable to classification of EQ, and contribute to the reliability of the lifetime extension in the NPP. These results establish a test method for both TID (Total Ionizing Dose) and SEEs through the evaluation, test, design technology. The results turned out to be quite successful, and these can be applied for parts localization for the nuclear power plant and the satellite

  13. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  14. Report on aging of nuclear power plant reinforced concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs

  15. Report on aging of nuclear power plant reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  16. Basic Safety Considerations for Nuclear Power Plant Dealing with External Human Induced Events

    Energy Technology Data Exchange (ETDEWEB)

    Salem, W., E-mail: wafaasalem21@yahoo.com [Nuclear and Radiological Regulatory Authority (Egypt)

    2014-10-15

    Facilities and human activities in the region in which a nuclear power plant is located may under some conditions affect its safety. The potential sources of human induced events external to the plant should be identified and the severity of the possible resulting hazard phenomena should be evaluated to derive the appropriate design bases for the plant. They should also be monitored and periodically assessed over the lifetime of the plant to ensure that consistency with the design assumptions is maintained. External human induced events that could affect safety should be investigated in the site evaluation stage for every nuclear power plant site. The region is required to be examined for facilities and human activities that have the potential, under certain conditions, to endanger the nuclear power plant over its entire lifetime. Each relevant potential source is required to be identified and assessed to determine the potential interactions with personnel and plant items important to safety. (author)

  17. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-02-01

    During the third quarter of 1990 the Finnish nuclear power plant units Loviisa 1 and 2 and TVO I and II were in commercial operation for most of the time. The annual maintenance outages of the Loviisa plant units were held during the report period. All events during this quarter are classified as Level hero (Below Scale) on the International Nuclear Event Scale. Occupational radiation doses and external releases of radioactivity were below authorised limits. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  18. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-08-01

    In the Quarterly Reports on the operation of the Finnish nuclear power plants such events and observations are described relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Also other events of general interest are reported. The report also includes a summary of the radiation safety of the plants' workers and the environment, as well as tabulated data on the production and load factors of the plants. The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in commercial operation during the whole first quarter of 1991. The load factor average was 99.1 %. Failures have been detected in the uppermost spacing lattices of nuclear fuel bundles removed from the Loviisa nuclear reactors. Further investigations into the significance of the failures have been initiated. In this quarter, renewed cooling systems for the instrumentation area were introduced at Loviisa 1. The modifications made in the systems serve to ensure reliable cooling of the area even during the hottest summer months when the possibility exists that the temperature of the automation equipment could rise too high causing malfunctions which could endanger plant safety. Occupational radiation doses and external releases of radioactivity were below prescribed limits in this quarter. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  19. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  20. Evaluation of robotic inspection systems at nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Eversole, R.E.; Farnstrom, K.A.; Harvey, H.W.; Martin, H.L.

    1984-03-01

    This report presents and demonstrates a cost-effective approach for robotics application (CARA) to surveillance and inspection work in existing nuclear power plants. The CARA was developed by the Remote Technology Corporation to systematically determine the specific surveillance/inspection tasks, worker hazards, and access or equipment placement restraints in each of the many individual rooms or areas at a power plant. Guidelines for designing inspection robotics are included and are based upon the modular arrangement of commercially-available sensors and other components. Techniques for maximizing the cost effectiveness of robotics are emphasized in the report including: selection of low-cost robotic components, minimal installation work in plant areas, portable systems for common use in different areas, and standardized robotic modules. Factors considered as benefits are reduced radiation exposure, lower man-hours, shorter power outage, less waste material, and improved worker safety concerns. A partial demonstration of the CARA methodology to the Sequoyah (PWR) and Browns Ferry (BWR) Plants is provided in the report along with specific examples of robotic installations in high potential areas

  1. PA activity by using nuclear power plant safety demonstration and analysis

    International Nuclear Information System (INIS)

    Tsuchiya, Mitsuo; Kamimae, Rie

    1999-01-01

    INS/NUPEC presents one of Public acceptance (PA) methods for nuclear power in Japan, 'PA activity by using Nuclear Power Plant Safety Demonstration and Analysis', by using one of videos which is explained and analyzed accident events (Loss of Coolant Accident). Safety regulations of The National Government are strictly implemented in licensing at each of basic design and detailed design. To support safety regulation activities conducted by the National Government, INS/NLTPEC continuously implement Safety demonstration and analysis. With safety demonstration and analysis, made by assuming some abnormal conditions, what impacts could be produced by the assumed conditions are forecast based on specific design data on a given nuclear power plants. When analysis results compared with relevant decision criteria, the safety of nuclear power plants is confirmed. The decision criteria are designed to help judge if or not safety design of nuclear power plants is properly made. The decision criteria are set in the safety examination guidelines by taking sufficient safety allowance based on the latest technical knowledge obtained from a wide range of tests and safety studies. Safety demonstration and analysis is made by taking the procedure which are summarized in this presentation. In Japan, various PA (Public Acceptance) pamphlets and videos on nuclear energy have been published. But many of them focused on such topics as necessity or importance of nuclear energy, basic principles of nuclear power generation, etc., and a few described safety evaluation particularly of abnormal and accident events in accordance with the regulatory requirements. In this background, INS/NUPEC has been making efforts to prepare PA pamphlets and videos to explain the safety of nuclear power plants, to be simple and concrete enough, using various analytical computations for abnormal and accident events. In results, PA activity of INS/NUPEC is evaluated highly by the people

  2. Nuclear power plant operation experience - a feedback programme

    International Nuclear Information System (INIS)

    Banica, I.; Sociu, F.; Margaritescu, C.

    1994-01-01

    An effective high quality maintenance programme is required for the safe reliable operation of a nuclear power plant. To achieve the objectives of such a programme, both plant management and staff must be highly dedicated and motivated to perform high quality work at all levels. Operating and maintenance experience data collections and analysis are necessary in order to enhance the safety of the plant and reliability of the structures systems and components throughout their operating life. Significant events, but also minor incident, may reveal important deficiencies or negative trends adverse to safety. Therefore, a computer processing system for collecting, classifying and evaluating abnormal events or findings concerning operating-maintenance and for feeding back the results of the lessons learned from experience into the design and the operation of our nuclear power plant is considered to be of paramount importance. (Author)

  3. Turbines for nuclear power plants. 2.ed.

    International Nuclear Information System (INIS)

    Troyanovskij, B.M.

    1978-01-01

    In the second edition of the book considered are practically all the main problems of calculation and operation of turbines and turbine installations of nuclear power plants. As compared to the first edition, essentially addes is the reproduction of the problem on combined generation of heat and electric energy. Also represented is detailed material on methods of preliminary evaluation of turbine effectiveness. Considered are peculiarities of turbine operation on wet steam and the basis of their thermal calculation. Much attention is payed to the problem of wet stream current in the turbine elements and wetness effect on their characteristics. Problems of wetness separation and moving blade erosion as well as other turbine elements are extracted in a special section. Given are structural schemes of different methods of innerchannel and periphery wet removal as well as experimental materials on their effectiveness. Given are descriptions and critical analysis of a great number of typical constructions of nuclear power plant steam turbines, produced by native plants as well as by the main foreign firms. Considered also are constructions of outside separators and steam superheaters. Separately given is the problem of rotation frequency choise of nuclear power plant wet steam turbines. Represented are materials on turbine installation tests, considered are the problems of turbine starting and manoeuvrability, analyzed are their typical jailures and damages. One of the sections of the book is devoted to gas turbine installations of nuclear power plants. Different material on this theme scattered before in various sources is summarized in the book

  4. Operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.

    1987-01-01

    This textbook gives a systematic introduction into the operational and maintenance activities in nuclear power plants with pressurized water reactors. Subjects: (1) Setup and operational behaviour of power reactors, (2) setup of nuclear power plants, (3) radiation protection and nuclear safety, (4) nuclear fuel, (5) constructional layout of nuclear power plants, (6) management, and (7) maintenance. 158 figs., 56 tabs

  5. Practical standard for nuclear power plant life management programs: 2007

    International Nuclear Information System (INIS)

    2006-03-01

    The standard specifies the method of implementing nuclear power plant life management programs. The plant life management programs evaluate the integrity of the plant structures, systems and components, assessing if appropriate measures are taken against existing aging phenomena, if there are possibilities of occurrence and development of aging phenomena and if a sufficient level of margin is maintained to assure the integrity throughout the future operating period. The programs also assess the validity of the current maintenance activities, such as trend monitoring, walkdowns, periodic tests and inspections, repair and replacement work for the purpose of preventive maintenance, and utilization of lessons learned from past trouble experience, in order to newly identify maintenance measures. The technical evaluation on aging phenomena is conducted to establish the 10 year maintenance program for nuclear power plants until the plant reaches 30 years of service. The standard was established and issued by the Atomic Energy Society of Japan (AESJ) through the discussion of experts in the associated fields. (T. Tanaka)

  6. East-Asia nuclear/fossil power plant competitiveness

    International Nuclear Information System (INIS)

    Braun, Ch.

    1996-01-01

    The competitiveness of a new nuclear plant vs. a new oil or gas fired combined cycle plant or a coal fired plant in East-Asia, is reviewed in the paper. Both the nuclear and the fossil fired plants are evaluated as either utility financed or independent power producer (IPP) financed. Two types of advanced light water reactors (ALWRs) are considered in this paper, namely evolutionary ALWRs (1200 MWe size) and passive ALWRs (600 MWe class). A range of capital and total generation costs for each plant type is reported here. The comparison centers on three elements of overall competitiveness: generation costs, hard currency requirements, and employment requirements. Each of these aspects is considered perspective. Year-by-Year generation cost history over the plant lifetime is shown in some cases. It is found here that a utility financed evolutionary and passive ALWRs are broadly competitive with an IPP financed gas fired combined cycle plant and are more economic than oil fired combined cycle or a coal fired plant. A single unit evolutionary ALWR may have a 12 - 15 % capital cost advantage over a single passive ALWR then adjusted on a per KWe basis. Front-end hard currency requirements of a passive ALWR are 2.5 times higher than for a combined plant and evolutionary ALWRs requires 3.6 times higher up-front cost. However, on a lifetime basis, passive ALWR net hard currency requirements are two times lower than for a combined cycle plant. Evolutionary ALWR net hard currency requirements are three times over than those of a combined cycle plant. The effects of domestic vs. world price of fossil fuels on relative nuclear competitiveness are reviewed in this nuclear competitiveness paper. Employment requirements in an ALWR during both the construction period and lifetime operation, exceed the requirements for oil or gas fired plants by a factor of five. While contributing to overall plant cost, employment requirements can also be viewed as opportunity to increase national

  7. Aging management of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Maeda, Noriyoshi

    2003-01-01

    The Resource and Energy Agency of the Ministry of Trade and Industry (at present, the Nuclear and Industrial Safety Agency of the Ministry of Economy and Industry) carried out technical and present state conservation evaluations on soundness on a case of supposing operation of main apparatuses important for safety for sixty years, on three nuclear power plants constructed at initial period, on April, 1996, to open her basic concept on their aging management. The electricity companies also carried out their technical evaluation to investigate aging management measures for apparatuses important for safety and succession of operation, to summarize some essential measures for its long-term conservation plan. And, long-term and steady efforts such as technical development, preparation on national technical codes and private standards, data accumulation on materials and apparatuses are also required, to successively act them under adequate role-sharing and cooperation among government, universities and industries. Here were described periodical safety review, containing aging management technical evaluation, preparations of standards on apparatus maintenance standard, and so on, promotion of technical development, and Nuclear Power Plant Life Engineering Center (PLEC). (G.K.)

  8. Corrective maintenance support system for nuclear power plants

    International Nuclear Information System (INIS)

    Kakiuchi, Tetsuo

    1996-01-01

    With increase of share of nuclear power generation in electric power supply in Japan, requirement for further safe operation and improvement of economics for the nuclear power plants is promoting. The pressed water type (PWR) nuclear power plant in operation in Japan reaches to 22 sets, application rate of the instruments is 74% as mean value for 7 years since 1989 and in high level, which is due to a result of preventive maintenance in ordinary and periodical inspections. The present state of maintenance at the nuclear power plant is mainly preventive maintenance, which is mainly conducted in a shape of time planning maintenance but partially in a shape of state monitoring maintenance for partial rotating appliances. Concretely speaking, the periodical inspection was planned on a base of daily inspection and a long term program on maintenance, and executed on a base of feedback function to think of the long term program again by evaluating the periodical inspection results. Here were introduced on the monitoring diagnosis and periodical inspection regionalization equipment, fatigue monitoring system, automatic supersonic wave damage inspection equipment for reactor, steam evaporator heat conductive tube inspection equipment, automatic testing equipment for measuring controller, air working valve property testing equipment, as maintaining support system in the PW generation plant. (G.K.)

  9. Investment issues in nuclear plant license renewal

    International Nuclear Information System (INIS)

    Eynon, R.T.

    1999-01-01

    A method that determines the operating lives for existing nuclear power plants is discussed. These assumptions are the basis for projections of electricity supply through 2020 reported in the Energy Information Administration's (EIA's) Annual Energy Outlook 1999. To determine if plants will seek license renewal, one must first determine if they will be operating to the end of their current licenses. This determination is based on an economic test that assumes an investment of $150/kW will be required after 30 yr of operation for plants with older designs. This expenditure is intended to be equivalent to the cost that would be associated with any of several needs such as a one0time investment to replace aging equipment (steam generators), a series of investments to fix age-related degradation, increases in operating costs, or costs associated with decreased performance. This investment is compared with the cost of building and operating the lowest-cost new plant over the same 10-yr period. If a plant fails this test, it is assumed to be retired after 30 yr of service. All other plants are then considered candidates for license renewal. The method used to determine if it is economic to apply for license renewal and operate plants for an additional 20 yr is to assume that plants face an investment of $250 million after 40 yr of operation to refurbish aging components. This investment is compared with the lowest-cost new plant alternative evaluated over the same 20 yr that the nuclear plant would operate. If the nuclear plant is the lowest cost option, it is projected to continue to operate. EIA projects that it would be economic to extend the operating licenses for 3.7 GW of capacity (6 units)

  10. Fundamental assessment of tasks of the shift leader in nuclear power plants

    International Nuclear Information System (INIS)

    Mansfeld, G.; Birkhofer, A.

    1981-01-01

    Since the revised version of the regulation governing the qualification of nuclear power plant personnel has been in force - now for two and a half year - the study on hand attempts to give an objective evaluation of the requirements to be made on the level of training and skill of shift supervisors, and to evaluate arguments often brought forward in discussions on shift supervisor qualifications. Since, as the characteristics of training and work differ with every plant operator, the points made in the study cannot be related directly to the individual nuclear power plants. (orig./HSCH) [de

  11. Evaluation of corrective action data for reportable events at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Mays, G.T.

    1991-01-01

    805The Nuclear Regulatory Commission (NRC) approved the adoption of cause codes for reportable events as a new performance indicator (PI) in March 1989. Corrective action data associated with the causes of events were to be compiled also. The corrective action data was considered as supplemental information but not identified formally as a performance indicator. In support of NRC, the Nuclear Operations Analysis Center (NOAC) at the Oak Ridge National Laboratory (ORNL) has been routinely evaluating licensee event reports (LERs) for cause code and corrective action data since 1989. The compilation of corrective action data by NOAC represents the first systematic and comprehensive compilation of this type data. The thrust of analyzing the corrective action data was to identify areas where licensees allocated resources to solve problems and prevent the recurrence of personnel errors and equipment failures. The predominant areas of corrective action reported by licensees are to be evaluated by NRC to compare with NRC programs designed to improve plant performance. The set of corrective action codes used to correlate with individual cause codes and included in the analyses were: training, procedural modification, corrective discipline, management change, design modification, equipment replacement/adjustment, other, and unknown. 1 fig

  12. Evaluation of the status of national nuclear infrastructure development

    International Nuclear Information System (INIS)

    2008-01-01

    An appropriate infrastructure is essential for the safe, reliable and peaceful use of nuclear power. The IAEA was encouraged to assess ways to meet infrastructure needs and to provide guidance to Member States considering the introduction of nuclear power. All of these countries face the challenge of building the necessary nuclear infrastructure for the first nuclear power plant. The IAEA is responding to this demand through increased technical assistance, missions and workshops, and with new and updated technical publications. A holistic view of the infrastructure for nuclear power was published in Considerations to Launch a Nuclear Power Programme (GOV/INF/2007), targeted mainly at policy makers. Milestones in the Development of a National Infrastructure for Nuclear Power, an IAEA Nuclear Energy Series publication (No. NG-G-3.1) issued in 2007, provided more detailed guidance on the three phases of development outlined in Considerations to Launch a Nuclear Power Programme. It describes the sequential development through the three phases for each of 19 infrastructure issues, ranging from a government's national position on nuclear power to the procurement of items and services for the first nuclear power plant. Member States requested additional guidance on determining how to assess the progress of their infrastructure development for nuclear power programmes. This report was prepared in response to their request. It provides an evaluation approach for the status of national nuclear infrastructure development based upon the guidance presented in the Milestones publication mentioned above. The evaluation approach provides a comprehensive means to determine the status of the infrastructure conditions covering all of the 19 issues identified in the Milestones publication. This approach can be used by any interested Member State for self-evaluation in order to establish what additional work needs to be completed to develop the appropriate national infrastructure. In

  13. Effects of nuclear electromagnetic pulse (EMP) on nuclear power plants

    International Nuclear Information System (INIS)

    Barnes, P.R.; Manweiler, R.W.; Davis, R.R.

    1977-09-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation consists of a transient pulse of high intensity electromagnetic fields. These intense fields induce current and voltage transients in electrical conductors. Although most nuclear power plant cables are not directly exposed to these fields, the attenuated EMP fields that propagate into the plant will couple some EMP energy to these cables. The report predicts the probable effects of the EMP transients that could be induced in critical circuits of safety-related systems. It was found that the most likely consequence of EMP for nuclear plants is an unscheduled shutdown. EMP could prolong the shutdown period by the unnecessary actuation of certain safety systems. In general, EMP could be a nuisance to nuclear power plants, but it is not considered a serious threat to plant safety

  14. Analysis of events occurred at overseas nuclear power plants in 2004

    International Nuclear Information System (INIS)

    Miyazaki, Takamasa; Nishioka, Hiromasa; Sato, Masahiro; Chiba, Gorou; Takagawa, Kenichi; Shimada, Hiroki

    2005-01-01

    The Institute of Nuclear Safety Systems (INSS) investigates the information related to events and incidents occurred at overseas nuclear power plants, and proposes recommendations for the improvement of the safety and reliability of domestic PWR plants by evaluating them. Succeeding to the 2003 report, this report shows the summary of the evaluation activity and of the tendency analysis based on about 2800 information obtained in 2004. The tendency analysis was undertaken on about 1700 analyzed events, from the view point of mechanics, electrics and operations, about the causes, troubled equipments and so on. (author)

  15. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-09-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear safety and radiation protection which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Safety-enhancing modifications at the nuclear power plants and issues relating to the use of nuclear energy which are of general interest are also reported. The reports include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the first quarter of 1993, a primary feedwater system pipe break occurred at Loviisa 2, in a section of piping after a feedwater pump. The break was erosion-corrosion induced. Repairs and inspections interrupted power generation for seven days. On the International Nuclear Event Scale the event is classified as a level 2 incident. Other events in the first quarter of 1993 had no bearing on nuclear safety and radiation protection

  16. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-12-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO 1 and II were in operation for almost the whole second quarter of 1991. The load factor average was 87.4 %. In consequence of a fire, which broke out in the switchgear building, connections to both external grids were lost and TVO II relied on power supplied by four back-up diesels for 7.5 hrs. The event is classified as Level 2 on the International Nuclear Event Scale. The process of examining the non-leaking fuel bundles removed from the Loviisa nuclear reactors has continued. The examinations have revealed, so far, that the uppermost spacing lattices of the bundles exhibit deformations similar to those detected in the leaking fuel bundles removed from the reactors. This event is classified as Level 1 on the International Nuclear Event Scale. Other events in this quarter which are classified according to the International Nuclear Event Scale are Level Zero (Below Scale) on the Scale. The Finnish Centre for Radiation and Nuclear Safety has assessed the safety of the Loviisa and Olkiluoto nuclear power plants based on the new regulations issued on 14.2.1991 by the Council of State. The safety regulations are much more stringent than those in force when the Loviisa and Olkiluoto nuclear power plants were built. The assessment indicated that the TVO nuclear power plant meets these safety regulations. The Loviisa nuclear power plant meets the requirements with the exception of certain requirements related to the ensuring of safety functions and provision for accidents. At the Loviisa nuclear power plant there are several projects under consideration to enhance safety

  17. Nuclear power plants maintenance

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Nuclear power plants maintenance now appears as an important factor contributing to the competitivity of nuclea energy. The articles published in this issue describe the way maintenance has been organized in France and how it led to an actual industrial activity developing and providing products and services. An information note about Georges Besse uranium enrichment plant (Eurodif) recalls that maintenance has become a main data not only for power plants but for all nuclear industry installations. (The second part of this dossier will be published in the next issue: vol. 1 January-February 1989) [fr

  18. Cooling towers of nuclear power plants

    International Nuclear Information System (INIS)

    Mikyska, L.

    1986-01-01

    The specifications are given of cooling towers of foreign nuclear power plants and a comparison is made with specifications of cooling towers with natural draught in Czechoslovak nuclear power plants. Shortcomings are pointed out in the design of cooling towers of Czechoslovak nuclear power plants which have been derived from conventional power plant design. The main differences are in the adjustment of the towers for winter operation and in the designed spray intensity. The comparison of selected parameters is expressed graphically. (J.B.)

  19. Seismic effects on technological equipment and systems of nuclear power plants

    International Nuclear Information System (INIS)

    Masopust, R.; Pecinka, L.; Podrouzek, J.

    1983-01-01

    A survey is given of problems related to the construction of nuclear power plants with regard to seismic resistance. Sei--smic resistance of technological equipment is evaluated by experimental trials, calculation or the combination of both. Existing and future standards are given for the given field. The Czechoslovak situation is discussed as related to the construction of the Mochovce nuclear power plant. Procedures for testing seismic resistance, types of tests and methods of simulating seismic excitation are described. Antiseismic measures together with structural elements for limiting the seismic effects on technological equipment and nuclear power plant systems are summed up on the basis of foreign experience. (E.F.)

  20. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  1. Preparation and practice for nuclear power plant operation

    International Nuclear Information System (INIS)

    Wu Xuesong; Lu Tiezhong

    2015-01-01

    The operational preparation of the nuclear power plant is an important work in nuclear power plant production preparation. Due to the construction period of nuclear power plant from starting construction to production is as long as five years, the professional requirements of nuclear power operation are very strict, and the requirements for nuclear safety are also extremely high. Especially after the Fukushima accident, higher requirements for the safe operation of nuclear power plant are posed by competent authorities of the national level, regulatory authorities and each nuclear power groups. Based on the characteristics of the construction phase of nuclear power plant and in combination with engineering practice, this paper expounds the system established in the field of nuclear power plant operation and generally analyses the related management innovation. (authors)

  2. Evaluation Of Electricity Production Cost Of Commercial Nuclear Power Plant Models

    OpenAIRE

    DÖNER, Nimeti

    2017-01-01

    The level of the development of countries is being measured by thecountry’s quantity of production and consumption energy. Concerning Turkey,according to an energy report of The World Energy Council Turkish NationalCommittee in order to meet the electricity needs of the country in 2010, there should befounded a 2000 MW(e) capacity nuclear power plant. For the nuclear electric powerplant considered to be founded in Turkey, three types of commercial reactor models,that are Pressiued Water React...

  3. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-06-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear and radiation safety, which the Finnish Centre for Radiation and Nuclear Safety considers significant. Also other events of general interest are reported. The reports also include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the plants' production and load factors

  4. Nuclear plant life extension

    International Nuclear Information System (INIS)

    Negin, C.A.

    1989-01-01

    The nuclear power industry's addressing of life extension is a natural trend in the maturation of this technology after 20 years of commercial operation. With increasing emphasis on how plants are operated, and less on how to build them, attention is turning on to maximizing the use of these substantial investments. The first studies of life extension were conducted in the period from 1978 and 1982. These were motivated by the initiation, by the Nuclear Regulatory Commission (NRC), of studies to support decommissioning rulemaking. The basic conclusions of those early studies that life extension is feasible and worth pursuing have not been changed by the much more extensive investigations that have since been conducted. From an engineering perspective, life extension for nuclear plants is fundamentally the same as for fossil plants

  5. Underground siting of nuclear power plants: potential benefits and penalties

    International Nuclear Information System (INIS)

    Allensworth, J.A.; Finger, J.T.; Milloy, J.A.; Murfin, W.B.; Rodeman, R.; Vandevender, S.G.

    1977-08-01

    The potential for improving nuclear power safety is analyzed by siting plants underground in mined cavities or by covering plants with fill earth after construction in an excavated cut. Potential benefits and penalties of underground plants are referenced to analogous plants located on the surface. Three representative regional sites having requisite underground geology were used to evaluate underground siting. The major factors which were evaluated for all three sites were: (1) containment of radioactive materials, (2) transport of groundwater contamination, and (3) seismic vulnerability. External protection, plant security, feasibility, operational considerations, and cost were evaluated on a generic basis. Additionally, the national availability of sites having the requisite geology for both underground siting concepts was determined

  6. Nuclear power plant of Fessenheim: evaluation of the seismic risk; Centrale Nucleaire de Fessenheim: appreciation du risque sismique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The seismic risk taken into account during the sizing of the nuclear power plant of Fessenheim seems to have been under evaluated at this time. The revaluation of the seismic risk, as proposed, until this day by EDF in order to the third ten-year visit of the power plant, planned for 2009, leads to a significant under evaluation of the risk and then is not acceptable. The present expertise details point by point the weaknesses of these revaluation. The power plant has been sized in an elastic manner that is generally strongly for the safety side. It is imperative to proceed the most quickly as possible to a deep control of the seismic resistance of the power plant of Fessenheim and then after having proceeded to a revision of the seismic risk in taking into account the actual knowledge in this field. (N.C.)

  7. NUCLEAR POWER PLANT

    Science.gov (United States)

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  8. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  9. Post-installed concrete anchors in nuclear power plants: Performance and qualification

    International Nuclear Information System (INIS)

    Mahrenholtz, Philipp; Eligehausen, Rolf

    2015-01-01

    Graphical abstract: - Highlights: • Review of qualification and design regulations for anchors in nuclear power plants. • First complete set of nuclear anchor load–displacement data and its evaluation ever. • Demonstration of robust test behavior of a qualified post-installed anchor product. - Abstract: In nuclear power plants (NPPs), post-installed anchors are widely used for structural and non-structural connections to concrete. In many countries, anchor products employed for safety relevant applications have to be approved by the authorities. For the high safety standards in force for NPPs, special requirements have to be met to allow for extreme design situations. This paper presents an experimental test program conducted to evaluate the performance of anchors according to the German Guideline for Anchorages in Nuclear Power Plants and Nuclear Technology Installations (DIBt KKW Leitfaden, 2010). After a brief introduction to anchor behavior and the regulative context, the results of tension and shear tests carried out on undercut anchors are discussed. Robust load capacities and relatively small displacements determined for demanding load and crack cycling tests demonstrated the suitability of anchors qualified according to a state-of-the-art qualification guideline

  10. Review of underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    1974-01-01

    A review of the potential for the underground siting of nuclear power generating plants has been undertaken. The review comprised a survey and assessment of relevant published documents currently available, together with discussions with Government sponsored agencies and other bodies, to evaluate the current status of technology related to the design and construction of underground nuclear power plants. It includes a review of previous work related to the underground siting of power plants and other facilities; a preliminary evaluation of the relative merits of the various concepts of undergrounding which have been proposed or constructed; a review of current technology as it relates to the requirements for the design, construction and operation of underground nuclear power plants; an examination of the safety and environmental aspects; and the identification of areas of further study which will be required if the underground is to be established as a fully viable alternative to surface siting. No attempt has been made to draw final conclusions at this stage. Nothing has been found to suggest that the underground siting concept could not provide a viable alternative to the surface concept. It is also apparent that no major technological developments are required. It is not clear, however, whether the improvements in safety and containment postulated for the underground can be realized at an economic cost; or even whether any additional cost is in fact involved. The problem is essentially site dependent and requires further study for which recommendations are made. (auth)

  11. Guidelines for nuclear plant response to an earthquake

    International Nuclear Information System (INIS)

    1989-12-01

    Guidelines have been developed to assist nuclear plant personnel in the preparation of earthquake response procedures for nuclear power plants. The objectives of the earthquake response procedures are to determine (1) the immediate effects of an earthquake on the physical condition of the nuclear power plant, (2) if shutdown of the plant is appropriate based on the observed damage to the plant or because the OBE has been exceeded, and (3) the readiness of the plant to resume operation following shutdown due to an earthquake. Readiness of a nuclear power plant to restart is determined on the basis of visual inspections of nuclear plant equipment and structures, and the successful completion of surveillance tests which demonstrate that the limiting conditions for operation as defined in the plant Technical Specifications are met. The guidelines are based on information obtained from a review of earthquake response procedures from numerous US and foreign nuclear power plants, interviews with nuclear plant operations personnel, and a review of reports of damage to industrial equipment and structures in actual earthquakes. 7 refs., 4 figs., 4 tabs

  12. Medium-size nuclear plants

    International Nuclear Information System (INIS)

    Vogelweith, L.; Lavergne, J.C.; Martinot, G.; Weiss, A.

    1977-01-01

    CEA (TECHNICATOME) has developed a range of pressurized water reactors of the type ''CAS compact'' which are adapted to civil ship propulsion, or to electric power production, combined possibly with heat production, up to outputs equivalent to 125 MWe. Nuclear plants equipped with these reactors are suitable to medium-size electric networks. Among the possible realizations, two types of plants are mentioned as examples: 1) Floating electron-nuclear plants; and 2) Combined electric power and desalting plants. The report describes the design characteristics of the different parts of a 125 MWe unit floating electro-nuclear plant: nuclear steam system CAS 3 G, power generating plant, floating platform for the whole plant. The report gives attention to the different possibilities according to site conditions (the plant can be kept floating, in a natural or artificial basin, it can be put aground, ...) and to safety and environment factors. Such unit can be used in places where there is a growing demand in electric power and fresh water. The report describes how the reactor, the power generating plant and multiflash distillation units of an electric power-desalting plant can be combined: choice of the ratio water output/electric power output, thermal cycle combination, choice of the gain ratio, according to economic considerations, and to desired goal of water output. The report analyses also some technical options, such as: choice of the extraction point of steam used as heat supply of the desalting station (bleeding a condensation turbine, or recovering steam at the exhaust of a backpressure turbine), design making the system safe. Lastly, economic considerations are dealt with: combining the production of fresh water and electric power provides usually a much better energy balance and a lower cost for both products. Examples are given of some types of installations which combine medium-size reactors with fresh water stations yielding from 10000 to 120000 m 3 per day

  13. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    International Nuclear Information System (INIS)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode

  14. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  15. Radiation protection in the Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Singer, J.; Koc, J.; Hynek, J.; Trousil, J.

    1987-01-01

    The radiation monitoring by means of the central information system and of autonomous, portable and laboratory devices as well as a brief characteristic of the nuclear power plant radiation fields are described. The new personal dosimetric film and thermoluminescent badges and the method (including the block diagram) for personal dose evaluation are also introduced. Internal contamination monitoring is performed by means of a whole-body counter and excreta sample analysis. Monitoring the influence of effluents from nuclear power plants on environment in Czechoslovakia is based on significant radionuclide measurements in ventilation stacks and in the environment, also by means of the telemetric system, all in connection with mathematical models. (author)

  16. Analysis of color environment in nuclear power plants

    International Nuclear Information System (INIS)

    Natori, Kazuyuki; Akagi, Ichiro; Souma, Ichiro; Hiraki, Tadao; Sakurai, Yukihiro.

    1996-01-01

    This article reports the results of color and psychological analysis of the outlook of nuclear power plants and the visual environments inside of the plants. Study one was the color measurements of the outlook of nuclear plants and the visual environment inside of the plants. Study two was a survey of the impressions on the visual environments of nuclear plants obtained from observers and interviews of the workers. Through these analysis, we have identified the present state of, and the problems of the color environments of the nuclear plants. In the next step, we have designed the color environments of inside and outside of the nuclear plants which we would recommend (inside designs were about fuel handling room, operation floor of turbine building, observers' pathways, central control room, rest room for the operators). Study three was the survey about impressions on our design inside and outside of the nuclear plants. Nuclear plant observers, residents in Osaka city, residents near the nuclear plants, the operators, employees of subsidiary company and the PR center guides rated their impressions on the designs. Study four was the survey about the design of the rest room for the operators controlling the plants. From the results of four studies, we have proposed some guidelines and problems about the future planning about the visual environments of nuclear power plants. (author)

  17. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-03-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear and radiation safety, which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Also other events of general interest are reported. The reports also include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the plants' production and load factors

  18. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1990-12-01

    During the second quarter of 1990 the Finnish nuclear plant units Loviisa 1 and 2 and TVO and II were in commercial operation for most of the time. The feedwater pipe rupture at Loviisa 1 and the resulting inspections and repairs at both Loviisa plant units brought about an outage the overall duration of which was 32 days. The annual maintenance outages of the TVO plant units were arranged during the report period and their combined duration was 31.5 days. Nuclear electricity accounted for 35.3% of the total Finnish electricity production during this quarter. The load factor average of the nuclear power plant units was 83.0%. Three events occurred during the report period which are classified as Level 1 on the International Nuclear Event Scale: feedwater pipe rupture at Loviisa 1, control rod withdrawal at TVO I in a test during an outage when the hydraulic scram system was rendered inoperable and erroneous fuel bundle transfers during control rod drives maintenance at TVO II. Other events during this quarter are classified as Level Zero (Below Scale) on the International Nuclear Event Scale. Occupational radiation doses and external releases of radioactivity were considerably below authorised limits. Only small amounts of nuclides originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  19. Risk-based inspection in the context of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Wellington A.; Vasconcelos, Vanderley de; Rabello, Emerson G., E-mail: soaresw@cdtn.br, E-mail: vasconv@cdtn.br, E-mail: egr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Nuclear power plant owners have to consider several aspects like safety, availability, costs and radiation exposure during operation of nuclear power plants. They also need to demonstrate to regulatory bodies that risk assessment and inspection planning processes are being implemented in effective and appropriate manner. Risk-Based Inspection (RBI) is a methodology that, unlike time-based inspection, involves a quantitative assessment of both failure probability and consequence associated with each safety-related item. A correctly implemented RBI program classifies individual equipment by its risks and prioritizes inspection efforts based on this classification. While in traditional deterministic approach, the inspection frequencies are constant, in the RBI approach the inspection interval for each item depends on the risk level. Regularly, inspection intervals from RBI result in risk levels lower or equal than deterministic inspection intervals. According to the literature, RBI solutions improve integrity and reduce costs through a more effective inspection. Risk-Informed In-service Inspection (RI-ISI) is the equivalent term used in the nuclear area. Its use in nuclear power plants around world is briefly reviewed in this paper. Identification of practice methodologies for performing risk-based analyses presented in this paper can help both Brazilian nuclear power plant operator and regulatory body in evaluating the RI-ISI technique feasibility as a tool for optimizing inspections within nuclear plants. (author)

  20. Risk-based inspection in the context of nuclear power plants

    International Nuclear Information System (INIS)

    Soares, Wellington A.; Vasconcelos, Vanderley de; Rabello, Emerson G.

    2015-01-01

    Nuclear power plant owners have to consider several aspects like safety, availability, costs and radiation exposure during operation of nuclear power plants. They also need to demonstrate to regulatory bodies that risk assessment and inspection planning processes are being implemented in effective and appropriate manner. Risk-Based Inspection (RBI) is a methodology that, unlike time-based inspection, involves a quantitative assessment of both failure probability and consequence associated with each safety-related item. A correctly implemented RBI program classifies individual equipment by its risks and prioritizes inspection efforts based on this classification. While in traditional deterministic approach, the inspection frequencies are constant, in the RBI approach the inspection interval for each item depends on the risk level. Regularly, inspection intervals from RBI result in risk levels lower or equal than deterministic inspection intervals. According to the literature, RBI solutions improve integrity and reduce costs through a more effective inspection. Risk-Informed In-service Inspection (RI-ISI) is the equivalent term used in the nuclear area. Its use in nuclear power plants around world is briefly reviewed in this paper. Identification of practice methodologies for performing risk-based analyses presented in this paper can help both Brazilian nuclear power plant operator and regulatory body in evaluating the RI-ISI technique feasibility as a tool for optimizing inspections within nuclear plants. (author)

  1. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Managing aging in nuclear power plants: Insights from NRC's maintenance team inspection reports

    International Nuclear Information System (INIS)

    Fresco, A.; Subudhi, M.

    1994-01-01

    Age-related degradation is managed through the maintenance program of a nuclear plant. From 1988 to 1991, the Nuclear Regulatory Commission (NRC) evaluated the maintenance program of every nuclear power plant in the United States. The authors reviewed 44 out of a total of 67 of the reports issued by the NRC on these in-depth team inspections. The reports were reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant structures, systems, and components. The authors' conclusions are presented. 6 refs

  3. Evaluation of uncertainties in benefit-cost studies of electrical power plants. II. Development and application of a procedure for quantifying environmental uncertainties of a nuclear power plant. Final report

    International Nuclear Information System (INIS)

    Sullivan, W.G.

    1977-07-01

    Steam-electric generation plants are evaluated on a benefit-cost basis. Non-economic factors in the development and application of a procedure for quantifying environmental uncertainties of a nuclear power plant are discussed. By comparing monetary costs of a particular power plant assessed in Part 1 with non-monetary values arrived at in Part 2 and using an evaluation procedure developed in this study, a proposed power plant can be selected as a preferred alternative. This procedure enables policymakers to identify the incremental advantages and disadvantages of different power plants in view of their geographic locations. The report presents the evaluation procedure on a task by task basis and shows how it can be applied to a particular power plant. Because of the lack of objective data, it draws heavily on subjectively-derived inputs of individuals who are knowledgeable about the plant being investigated. An abbreviated study at another power plant demonstrated the transferability of the general evaluation procedure. Included in the appendices are techniques for developing scoring functions and a user's manual for the Fortran IV Program

  4. A framework for evaluating distributed control systems in nuclear power plants

    International Nuclear Information System (INIS)

    O'Donell, C.; Jiang, J.

    2004-01-01

    A framework for evaluating the use of distributed control systems (DCS) in nuclear power plants (NPP) is proposed in this paper. The framework consists of advanced communication, control, hardware and software technology. This paper presents the results of an experiment using the framework test-bench, and elaborates on a variety of other research possibilities. Using a hardware in the loop system (HIL) a DeltaV M3 controller from Emerson Process is connected to a desktop NPP simulator. The industry standard communication protocol, Modbus, has been selected in this study. A simplified boiler pressure control (BPC) module is created on the NPP simulator. The test-bench provides an interface between the controller and the simulator. Through software monitoring the performance of the DCS can be evaluated. Controller access and response times over the Modbus network are observed and compared with theoretical values. The controller accomplishes its task under the specifications set out for the BPC. This novel framework allows a performance metric to be applied against different industrial controllers. (author)

  5. Technical evaluation of the alternate to the keylock control to the bypass valves for the Davis-Besse nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Ibarra, J.G.

    1979-09-01

    This report documents the technical evaluation of the alternate to the keylock control to the bypass valves for the Davis-Besse nuclear power plant, Unit 1. The review criteria are inferred from the NRC Reactor Safety Study (WASH-1400) and the Safety Evaluation Report for Davis-Besse. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Program being conducted for the US Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  6. Safety and security analysis for distributed control system in nuclear power plants

    International Nuclear Information System (INIS)

    Lu Zhigang; Liu Baoxu

    2011-01-01

    The Digital Distributed Control System (DCS) is the core that manages all monitoring and operation tasks in a Nuclear Power Plant (NPP). So, Digital Distributed Control System in Nuclear Power Plant has strict requirements for control and automation device safety and security due to many factors. In this article, factors of safety are analyzed firstly, while placing top priority on reliability, quality of supply and stability have also been carefully considered. In particular, advanced digital and electronic technologies are adopted to maintain sufficient reliability and supervisory capabilities in nuclear power plants. Then, security of networking and information technology have been remarked, several design methodologies considering the security characteristics are suggested. Methods and technologies of this article are being used in testing and evaluation for a real implement of a nuclear power plant in China. (author)

  7. Application of environmentally-corrected fatigue curves to nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1996-01-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four US nuclear steam supply system vendors. For each facility, six locations were studied including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This paper discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  8. World nuclear power plant capacity

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides the background information for statistics and analysis developed by NUKEM in its monthly Market Report on the Nuclear Fuel Cycle. The assessments in this Special Report are based on the continuous review of individual nuclear power plant projects. This Special Report begins with tables summarizing a variety of nuclear power generating capacity statistics for 1990. It continues with a brief review of the year's major events regarding each country's nuclear power program. The standard NUKEM Market Report tables on nuclear plant capacity are given on pages 24 and 25. Owing to space limitations, the first year shown is 1988. Please refer to previous Special Reports for data covering earlier years. Detailed tables for each country list all existing plants as well as those expected by NUKEM to be in commercial operation by the end of 2005. An Appendix containing a list of abbreviations can be found starting on page 56. Only nuclear power plants intended for civilian use are included in this Special Report. Reactor lifetimes are assumed to be 35 years for all light water reactors and 30 years for all other reactor types, unless other data or definite decommissioning dates have been published by the operators. (orig./UA) [de

  9. Decision no. 2011-DC-0216 of the French nuclear safety authority from May 5, 2011, ordering the Laue Langevin Institute to proceed to a complementary safety evaluation of its basic nuclear facility (high flux reactor - INB no. 67) in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the Laue Langevin Institute, operator of the high flux research reactor (RHF) of Grenoble (France). (J.S.)

  10. Development of nuclear power plant Risk Monitor

    International Nuclear Information System (INIS)

    Yang Xiaoming; Sun Jinlong; Ma Chao; Wang Lin; Gu Xiaohui; Bao Zhenli; Qu Yong; Zheng Hao

    2014-01-01

    Risk Monitor is a tool to monitor the real-time risk of a nuclear power plant for risk management and comprehensive decision-making, which has been widely used all over the world. The nuclear power plant Risk Monitor applies the real-time risk model with low-complicacy that could reflect the plant's actual configuration, automatically reads the plant's configuration information from the engineering system through the developed interface, and efficiently analyzes the plant's risk Dy the intelligent parallel-computing method in order to provide the risk basement for the safety management of nuclear power plant. This paper generally introduces the background, architecture, functions and key technical features of a nuclear power plant Risk Monitor, and validates the risk result, which could well reflect the plant's risk information and has a significant practical value. (authors)

  11. A Study of Automation for Examination Analysis of Inservice Inspection for Nuclear Power Plant (I)

    International Nuclear Information System (INIS)

    Kim, W.

    1985-01-01

    The developing country, KOREA where does not possess the natural resources for traditional energy such as oil and gas, so. The nuclear energy is the most single reliable source available for closing the energy gap. For these reason, It is inavoidable to construct the nuclear power plant and to develop technology related nuclear energy. The rate of operation in large nuclear power facilities depends upon the performance of work system through design and construction, and also the applied technology. Especially, it is the most important element that safety and reliability in operation of nuclear power plant. In view of this aspects, Nuclear power plant is performed severe examinations during perceives and inservice inspection. This study provide an automation of analysis for volumetric examination which is required to nuclear power plant components. It is composed as follows: I. Introduction II. Inservice Inspection of Nuclear Power Plant * General Requirement. * Principle and Methods of Ultrasonic Test. * Study of Flaw Evaluation and Design of Classifying Formula for Flaws. III. Design of Automation for Flaw Evaluation. IV. An Example V. Conclusion In this theory, It is classifying the flaws, the formula of classifying flaws and the design of automation that is the main important point. As motioned the above, Owing to such as automatic design, more time could be allocated to practical test than that of evaluation of defects, Protecting against subjective bias tester by himself and miscalculation by dint of various process of computation. For the more, adopting this method would be used to more retaining for many test data and comparative evaluating during successive inspection intervals. Inspire of limitation for testing method and required application to test components, it provide useful application to flow evaluation for volumetric examination. Owing to the characteristics of nuclear power plant that is highly skill intensive industry and has huge system, the

  12. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  13. Compendium of cost-effectiveness evaluations of modifications for dose reduction at nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.; Matthews, G.R.

    1985-12-01

    This report summarizes available information on cost effectiveness of engineering modifications potentially valuable for dose reduction at nuclear power plants. Data were gathered from several US utilities, published literature, equipment and service suppliers, and recent technical meetings. Five simplified econometric models were employed to evaluate data and arrive at a value for cost effectiveness expressed in either (a) dollars/rem, or (b) total dollar savings calculated using a nominal value of $1000/rem. Models employed were: a basic model with no consideration given to the time value of money; two models in which discounting was used to evaluate costs and savings in terms of present values; and two models in which income taxes and revenue requirements were considered. Results from different models varied by as much as a factor of 10, and were generally lowest for the basic model and highest for the before-tax revenue requirements model. Results for 151 evaluations employing different assumptions concerning number of plants per site and outage impacts were tabulated in order of decreasing cost effectiveness. Twenty-five evaluations were identified as exceptionally cost effective since both costs and dose were saved. Forty evaluations indicated highly cost-effective changes based on costs below $1000/rem saved using results of the present-worth model that included discounting of future dose savings

  14. Criteria for seismic evaluation and potential design fixes for WWER type nuclear power plants

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-01-01

    The purpose for this document is to provide a criteria for the seismic evaluation and development of potential design fixes for structures, systems and components for the WWER type Nuclear power plants. The design fixes are divided into two categories, detailed and easy fixes. Detailed fixes are typically applicable to building structures, components for which there is little or no seismic capacity information, large tanks and vital systems and components which make up the reactor cooling system and components which perform support or auxiliary functions. In case of the design of 'easy fixes', the criteria presented may be used for both the seismic design as well as for the evaluation of structures, systems and components to which easy fix design applies. Easy fixes are situations where seismic capacities of structures, systems and components can be significantly increased with relatively minor, inexpensive fixes usually associated with anchorage modification of safety related structures, systems and components or those that could interact with safety related structures, systems and components. Often these fixes can be accomplished while the plant is in operation

  15. Criteria for seismic evaluation and potential design fixes for WWER type nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J D [Stevenson and Associates, Cleveland, OH (United States)

    1995-07-01

    The purpose for this document is to provide a criteria for the seismic evaluation and development of potential design fixes for structures, systems and components for the WWER type Nuclear power plants. The design fixes are divided into two categories, detailed and easy fixes. Detailed fixes are typically applicable to building structures, componentsfor which there is little or no seismic capacity information, large tanks and vital systems and components which make up the reactor cooling system and components which perform support or auxiliary functions. In case of the design of 'easy fixes', the criteria presented may be used for both the seismic design as well as for the evaluation of structures, systems and components to which easy fix design applies. Easy fixes are situations where seismic capacities of structures, systems and components can be significantly increased with relatively minor, inexpensive fixes usually associated with anchorage modification of safety related structures, systems and components or those that could interact with safety related structures, systems and components. Often these fixes can be accomplished while the plant is in operation.

  16. Technical Evaluation on Ageing Management in Nuclear Power in Japan -Life Extension over 40 Years at Japanese Nuclear Power Plants-

    International Nuclear Information System (INIS)

    Tanaka, H.; Iwasaki, M.; Miyama, S.

    2012-01-01

    The Japanese commercial reactors have accumulated more than 40 years operating experience since Tsuruga-1 started commercial operation in March 1970. However, the severe accident occurred at Fukushima nuclear power plants triggered by East Japan Great Earthquake on March 11 last year. The facts that all the reactors having experienced core meltdown had operated for more than 30 years and Fukushima Daiichi unit 1 had just received the approval for its 40th year Ageing Management Technical Evaluation results from the Japanese government caused increasing distrust among the public in nuclear power plants operating for a long period of time. However, investigations of the accident conducted so far have not revealed any evidence that ageing degradation accelerated the accident. In addition, the analysis of seismic accelerations of the earthquake did not show that any component function was lost due to the accident. Considering these facts, I would like to discuss the issues to be continuously pursued and to be additionally implemented as part of the plat life management activities. In addition, I will introduce the efforts made by the Japanese utilities following the accident. (author)

  17. Strain measurements of nuclear power plant steam generator antiseismic supports

    International Nuclear Information System (INIS)

    Kulichevsky, R.

    1997-01-01

    The nuclear power plants steam generators have different types of structural supports. One of these types are the antiseismic supports, which are intended to be under stress only if a seismic event takes place. Nevertheless, the antiseismic supports lugs, that are welded to the steam generator vessel, are subjected to thermal fatigue because of the temperature cycles related with the shut down and start up operations performed during the life of the nuclear power plant. In order to evaluate the stresses that the lugs are subjected to, several strain gages were welded on two supports lugs, positioned at two heights of one of the Embalse nuclear power plant steam generators. In this paper, the instrumentation used and the strain measurements obtained during two start up operations are presented. The influence of the plant start up operation parameters on the lugs strain evolution is also analyzed. (author) [es

  18. The application of plant information system on third Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Liu Wangtian

    2005-01-01

    Plant overall control has been applied in Qinshan Nuclear Power Plant, which enhances the security of plant operation, but it is not enough to improve the technical administration level. In order to integrate the overall information and to improve the technical administration level more. Third Qinshan Nuclear Power Plant applies the plant information system. This thesis introduces the application of plant information system in Third Qinshan Nuclear Power Plant and the effect to the plant after the system is carried into execution, in addition, it does more analysis and exceptions for application of plant information system in the future. (authors)

  19. Social and economic implications of the installation of nuclear plants

    International Nuclear Information System (INIS)

    Olivetti, F.A.

    1981-01-01

    This chapter summarizes the Italian experience with the evaluation, control, and containment of the social and economic impacts of nuclear power plant installations. Social and economic impact is defined as a set of causal relationships, direct and indirect, which are established between a nuclear plant and a surrounding territory. A nuclear plant imposes certain permanent restrictions in the use of the surrounding territory. The utilization of particularly dangerous substances requires that the plants be sited at a due distance from large urban centers and industrial areas. Therefore they are located in rural areas where the social and economic equilibria are less stable and more easily subjected to disturbances from outside factors. Essential services which must be provided for nonresident workers during the construction phase result in massive impacts which are compensated by the inflow of economic resources into the community. Social tension is also a likely consequence of importing workers into a community. There are disruptive effects induced by the high salaries paid to the construction workers such as local inflation. During the operating phase, the impacts will be smaller in proportion to the construction phase. Examples of social and economic impacts of nuclear plants in Italy are cited

  20. Safety criteria for nuclear chemical plants

    International Nuclear Information System (INIS)

    Ball, P.W.; Curtis, L.M.

    1983-01-01

    Safety measures have always been required to limit the hazards due to accidental release of radioactive substances from nuclear power plants and chemical plants. The risk associated with the discharge of radioactive substances during normal operation has also to be kept acceptably low. BNFL (British Nuclear Fuels Ltd.) are developing risk criteria as targets for safe plant design and operation. The numerical values derived are compared with these criteria to see if plants are 'acceptably safe'. However, the criteria are not mandatory and may be exceeded if this can be justified. The risk assessments are subject to independent review and audit. The Nuclear Installations Inspectorate also has to pass the plants as safe. The assessment principles it uses are stated. The development of risk criteria for a multiplant site (nuclear chemical plants tend to be sited with many others which are related functionally) is discussed. This covers individual members of the general public, societal risks, risks to the workforce and external hazards. (U.K.)