WorldWideScience

Sample records for nuclear plant annual

  1. Nuclear power plant operating experience. Annual report, 1978

    International Nuclear Information System (INIS)

    Beebe, M.R.

    1979-12-01

    This report is the fifth in a series of reports issued annually that summarizes the operating experience of US nuclear power plants in commercial operation. Power generation statistics, plant outages, reportable occurrences, fuel element performance, occupational radiation exposure for each plant are presented. Summary highlights of these areas are discussed. The report includes 1978 data from 65 plants - 25 boiling water reactor plants and 40 pressurized water reactor plants. Discussion of radioactive effluents which has been a part of this report in previous years, has not been included in this issue because of late acquisition of data

  2. Occupational exposures at nuclear power plants. Fourteenth annual report of the ISOE programme, 2004

    International Nuclear Information System (INIS)

    2006-01-01

    The ISOE Programme was created by the OECD Nuclear Energy Agency in 1992 to promote and co-ordinate international co-operative undertakings in the area of worker protection at nuclear power plants. The programme provides experts in occupational radiation protection with a forum for communication and exchange of experience. The ISOE databases enable the analysis of occupational exposure data from 478 operating and shutdown commercial nuclear power plants participating in the programme (representing some 90% of the world's total operating commercial reactors). The Fourteenth Annual Report of the ISOE Programme summarises achievements made during 2004 and compares annual occupational exposure data. Principal developments in ISOE participating countries are also described. (author)

  3. Occupational exposures at nuclear power plants. Eleventh annual report of the Isoe programme, 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The ISOE Programme was created by the OECD Nuclear Energy Agency in 1992 to promote and co-ordinate international co-operative undertakings in the area of worker protection at nuclear power plants. The programme provides experts in occupational radiation protection with a forum for communication and exchange of experience. The ISOE databases enable the analysis of occupational exposure data from the 452 commercial nuclear power plants participating in the programme (representing some 90 per cent of the world's total operating commercial reactors). The Eleventh Annual Report of the ISOE Programme summarises achievements made during 2001 and compares annual occupational exposure data. Principal developments in ISOE participating countries are also described. (author)

  4. Occupational exposures at nuclear power plants. Twelfth annual report of the Isoe programme, 2002

    International Nuclear Information System (INIS)

    2004-01-01

    The Information System on Occupational Exposure (ISOE) was created by the OECD Nuclear Energy Agency in 1992 to promote and co-ordinate international co-operative undertakings in the area of worker protection at nuclear power plants. The ISOE Programme provides experts in occupational radiation protection with a forum for communication and exchange of experience. The ISOE databases enable the analysis of occupational exposure data from the 465 commercial nuclear power plants participating in the Programme (representing some 90 per cent of the world's total operating commercial reactors). The Twelfth Annual Report of the ISOE Programme summarises achievements made during 2002 and compares annual occupational exposure data. Principal developments in ISOE participating countries are also described. (author)

  5. KWL Lingen nuclear plant. Technical annual report 2016; KWL Kernkraftwerk Lingen. Technischer Jahresbericht 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-01

    The technical annual report 2016 for KWL (Lingen nuclear plant) covers the following sections: dismantling project management and operation, monitoring and clearance; waste management, technical qualification, security and safety, central tasks; licensing and supervision procedures, operational data, radiation monitoring, radioactive materials, in-service inspections.

  6. U.S. nuclear plant statistics, 8th Edition

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Wolf Creek was the lowest cost nuclear plant in 1992 according to the annual plant rankings in UDI's comprehensive annual statistical factbook for US nuclear power plants (operating, under construction, deferred, canceled or retired). The book covers operating and maintenance expenses for the past year (1992), annual and lifetime performance statistics, capitalization expenses and changes in capitalization, construction cost information, joint ownership of plants and canceled plants. First published for CY1984 statistics

  7. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1994-03-01

    In the third quarter of 1993, all of Finland's four nuclear power plant units were in power operation, with the exception of the annual maintenance outages of the Loviisa units. The load factor average of the plant units was 83.6 %. None of the events which occurred during this annual quarter had any bearing on nuclear or radiation safety. (4 figs., 5 tabs.)

  8. Operation of Finnish nuclear power plants. Quarterly report 4th quarter, 1994 and annual summary

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1995-05-01

    The Loviisa NPP units were in power operation the whole last quarter, with the exception of a reactor scram at Loviisa 1. The load factor average of all Finnish plant units was 100.2 %. The annual average was 90.0 %. All events in the fourth annual quarter were assigned level 0 (no safety significance) on the international INES scale. Four events in 1994 were classified level 1 (an anomaly). The Finnish Centre for Radiation and Nuclear Safety in December approved Imatran Voima Oy's application to extend the operation of the reactor pressure vessel of Loviisa 2 until the annual maintenance outage of 2010. During this quarter, a batch of spent fuel from Loviisa power plant was transported to Russia. Occupational doses and radioactive releases off-site were below authorised limits. Only such quantities of plant-based radioactive materials were measurable in samples collected around the plants as have no bearing on the radiation exposure of the population. The report includes a summary of all the items described in the Quarterly Reports of 1994. (8 figs., 4 tabs.)

  9. Operation of Finnish nuclear power plants. Quarterly report 4th quarter, 1994 and annual summary

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K [ed.

    1995-05-01

    The Loviisa NPP units were in power operation the whole last quarter, with the exception of a reactor scram at Loviisa 1. The load factor average of all Finnish plant units was 100.2 %. The annual average was 90.0 %. All events in the fourth annual quarter were assigned level 0 (no safety significance) on the international INES scale. Four events in 1994 were classified level 1 (an anomaly). The Finnish Centre for Radiation and Nuclear Safety in December approved Imatran Voima Oy`s application to extend the operation of the reactor pressure vessel of Loviisa 2 until the annual maintenance outage of 2010. During this quarter, a batch of spent fuel from Loviisa power plant was transported to Russia. Occupational doses and radioactive releases off-site were below authorised limits. Only such quantities of plant-based radioactive materials were measurable in samples collected around the plants as have no bearing on the radiation exposure of the population. The report includes a summary of all the items described in the Quarterly Reports of 1994. (8 figs., 4 tabs.).

  10. Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.

  11. Nuclear Regulatory Commission: 1981 annual report

    International Nuclear Information System (INIS)

    1981-01-01

    This seventh annual report of the US Nuclear Regulatory Commission covers major actions, events and planning that occurred during fiscal year 1981, with some coverage of later events, where appropriate. Chapters of the report address the agency's various functions or areas of activity: regulating nuclear power plants; evaluating reactor operating experience; licensing nuclear materials and their transportation; safeguarding nuclear plants and materials; managing nuclear wastes; inspection and enforcement; cooperation with state governments; international activities; research and standards development; hearings; decisions and litigation; and administrative and public communications matters. Each chapter presents a detailed review of program accomplishments during the report period, fiscal year 1981

  12. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    International Nuclear Information System (INIS)

    2000-01-01

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants

  13. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

  14. Proceedings of the Canadian Nuclear Society sixth annual conference

    International Nuclear Information System (INIS)

    French, P.M.; Phillips, G.J.

    1985-01-01

    The proceedings of the Sixth Annual Conference of the Canadian Nuclear Society comprise 103 papers on the following subjects: fuel technology, nuclear plant safety, instrumentation, public and regulatory matters, fusion, fuel behaviour under normal and accident conditions, nuclear plant design and operations, thermal hydraulics, reactor physics, accelerators, waste management, new reactor concepts

  15. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-02-01

    During the third quarter of 1990 the Finnish nuclear power plant units Loviisa 1 and 2 and TVO I and II were in commercial operation for most of the time. The annual maintenance outages of the Loviisa plant units were held during the report period. All events during this quarter are classified as Level hero (Below Scale) on the International Nuclear Event Scale. Occupational radiation doses and external releases of radioactivity were below authorised limits. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  16. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1992-03-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in operation for almost the whole third quarter of 1991. Longer interruptions in electricity generation were caused by the annual maintenances of the Loviisa plant units. The load factor average was 81.7 %. In a test conducted during the annual maintenance outage of Loviisa 1 it was detected that the check valve of the discharge line of one pressurized emergency make-up tank did not open sufficiently at the tank's hydrostatic pressure. In connection with a 1988 modification, a too tightly dimensioned bearing had been mounted on the valve's axle rod and the valve had not been duly tested after the operation. The event is classified as Level 1 on the International Nuclear Event Scale. Other events in this quarter which are classified according to the International Nuclear Event Scale are Level Zero (Below Scale). Occupational radiation doses and releases of radioactive material off-site were below authorised limits in this quarter. Only small amounts of radioactive materials originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  17. Dukovany nuclear power plant in 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Data on the power generation, nuclear safety, and gaseous and liquid releases into the environment were extracted from the 1993 annual report of the Dukovany nuclear power plant. Operation of the plant was safe and reliable in 1993. Three events were classed as INES category 1. The plant's Failure Commission dealt with 100 events which brought about a total electricity generation loss of 217,624 MWh, corresponding to about 22 reactor-days. Out of this, 26.8 % was due to human error. Three fires occurred at the power plant site. Releases of radioactive aerosols, tritium, noble gases and radioiodine into air and of tritium, corrosion products, and fission products into the aquatic environment were below annual limits. The collective dose equivalent was 1.78 manSv in 1993. (Z.S.). 2 tabs., 11 figs

  18. US nuclear power plant operating cost and experience summaries

    International Nuclear Information System (INIS)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov)

  19. US nuclear power plant operating cost and experience summaries

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  20. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1992-12-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well TVO I and II were in operation for almost the whole second quarter of 1992. Longer breaks in production were caused by the annual maintenance of the TVO plant units. The load factor was 87.4 %. At TVO I it was detected during the annual maintenance outage when removing nuclear fuel assemblies from the reactor that one assembly had been loaded into the reactor in an incorrect manner during the previous year's annual maintenance: the assembly was slightly higher than the other assemblies. The water cooling the nuclear fuel partly by-passed the fuel assembly and the coolant flow proper passing through the assembly was below design. The fuel assembly's cooling had been sufficient during the whole operating cycle but could have essentially deteriorated during certain transients with the danger of consequent damage to some fuel rods. On the International Nuclear Event Scale the event is classified as level 1. Other events in this quarter which are classified on the International Nuclear Event Scale were level 0/below scale on the scale

  1. Proceedings of the seventeenth annual Canadian Nuclear Society conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The seventeenth annual conference of the Canadian Nuclear Society, presented in Fredericton, New Brunswick. The conference includes papers on general topics of interest on the nuclear community, waste management and the environment, instrumentation and design of Candu reactors, safety analysis, thermal hydraulics, fuel channels, plant operations and in-core instrumentation.

  2. Proceedings of the seventeenth annual Canadian Nuclear Society conference

    International Nuclear Information System (INIS)

    1996-01-01

    The seventeenth annual conference of the Canadian Nuclear Society, presented in Fredericton, New Brunswick. The conference includes papers on general topics of interest on the nuclear community, waste management and the environment, instrumentation and design of Candu reactors, safety analysis, thermal hydraulics, fuel channels, plant operations and in-core instrumentation

  3. Biological recipient control at the Ringhals nuclear power plant. Annual report for 2011

    International Nuclear Information System (INIS)

    Jansson, Maria; Gustavsson, Frida; Fagerholm, Bjoern

    2012-01-01

    The cooling system of the Ringhals nuclear power plant affects the fish community in two steps. In the first step, seawater is used to cool the system in the nuclear power plant. Fish eggs, larvae and small juveniles are carried by the incoming water and are exposed to risk of damage or mortality. In the second step the heated water is released back into the sea, where the fish is affected by the increase in temperature. Reactor 1 and reactor 3 at Ringhals nuclear power plant produced electricity during the major part of the year 2011, with exceptions for the annual audits, and shorter stops in production. Reactor 2 only operated between January and April, due to a fire which led to a shutdown and a thorough remediation work during the rest of the year. Reactor 4 was producing electricity from January to June, but was later shutdown due to a prolonged annual audit until November. Fish eggs and fish larvae are sampled in the incoming cooling water using a modified Bongo net to monitor losses of eggs and larvae in the nuclear power plant. The abundance of shorthorn sculpin larvae (Myoxocephalus scorpius) has decreased since the sampling period started, although it is still the most abundant larvae. Also the abundance of rock gunnel larvae (Pholis gunnellus) has decreased over the years. To sample juvenile fish a modified Isaacs-Kidd midwater-trawl is used. This sampling is mainly focused on glass eels (Anguilla anguilla). The abundance of glass eels have declined strongly since the beginning of the 1980's, but a minor increase was observed in 2011. The decline of the glass eel abundance is most probably due to a general decrease in recruitment and not to a local effect caused by the nuclear power plant. The effects of the heated water released into the sea are monitored by fykenet surveys in the recipient as well as in a reference area. These two areas are monitored in two seasons to compare differences between the two areas in naturally cold and warm water of the

  4. Institute of Nuclear Power Operations annual report, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen's joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO's 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

  5. Institute of Nuclear Power Operations 1994 annual report

    International Nuclear Information System (INIS)

    1994-01-01

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen's joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO's 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

  6. Institute of Nuclear Power Operations 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

  7. Proceedings of the Canadian Nuclear Association 34. annual conference

    International Nuclear Information System (INIS)

    Girard, A.M.

    1994-01-01

    The proceedings of the thirty-fourth annual conference of the Canadian Nuclear Association contain 23 complete papers and three speeches organized in the following sessions: opening, plenary, new environmental regulations and their effect on the energy industry, CANDU update, life cycle management of nuclear power plants, evolution of nuclear technology, technologies for tomorrow, nuclear used fuel and disposal of low-level waste, world economics and energy consumption. The complete papers have been abstracted separately

  8. Proceedings of the Canadian Nuclear Association 34. annual conference

    Energy Technology Data Exchange (ETDEWEB)

    Girard, A M [Atomic Energy of Canada Ltd., Montreal, PQ (Canada). CANDU Operations

    1994-12-31

    The proceedings of the thirty-fourth annual conference of the Canadian Nuclear Association contain 23 complete papers and three speeches organized in the following sessions: opening, plenary, new environmental regulations and their effect on the energy industry, CANDU update, life cycle management of nuclear power plants, evolution of nuclear technology, technologies for tomorrow, nuclear used fuel and disposal of low-level waste, world economics and energy consumption. The complete papers have been abstracted separately.

  9. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1992-05-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in operation for almost the whole fourth quarter of 1991. The load factor average was 94.7 % (the whole year 90.9 %). All the events in the last annual quarter, which are classified on the International Nuclear Event Scale, were below scale/level 0. Also the events which occurred in the other quarters of the year 1991 were rated at the scale's lowest levels. Occupational radiation doses and releases of radioactive material off-site remained well below authorised limits. Only quantities of radioactive material insignificant to radiation exposure originating in nuclear power plants were detected in the samples collected in the vicinity of the nuclear power plants

  10. Nuclear power plant operating experience, 1976

    International Nuclear Information System (INIS)

    1977-11-01

    This report is the third in a series of reports issued annually that summarize the operating experience of U.S. nuclear power plants in commercial operation. Power generation statistics, plant outages, reportable occurrences, fuel element performance, occupational radiation exposure and radioactive effluents for each plant are presented. Summary highlights of these areas are discussed. The report includes 1976 data from 55 plants--23 boiling water reactor plants and 32 pressurized water reactor plants

  11. Genome-wide investigation reveals high evolutionary rates in annual model plants.

    Science.gov (United States)

    Yue, Jia-Xing; Li, Jinpeng; Wang, Dan; Araki, Hitoshi; Tian, Dacheng; Yang, Sihai

    2010-11-09

    Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those

  12. Annual radiological environmental monitoring report, Watts Bar Nuclear Plant

    International Nuclear Information System (INIS)

    1988-05-01

    This report describes the preoperational environmental radiological monitoring program conducted by TVA in the vicinity of the Watts Bar Nuclear Plant (WBN) in 1988. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas that will not be influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. During plant operations, results from stations near the plant will be compared with concentrations from control stations and with preoperational measurements to determine potential impacts to the public. The exposures calculated from environmental samples were contributed by naturally occurring radioactive materials, from materials commonly found in the environment as a result of atmospheric fallout, or from the operation of other nuclear facilities in the area. Since WBN has not operated, there has been no contribution of radioactivity from the plant to the environment. 4 refs., 2 figs., 1 tab

  13. Annual conference on nuclear technology. Nuclear power 2001: option for the future

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Dresden Palace for Culture was the venue of the ANNUAL MEETING ON NUCLEAR TECHNOLOGY on May 15-17, 2001, the first to be held in Dresden and the first also to be held in one of the new German federal states. Although no nuclear plant is in operation in East Germany after the Greifswald Nuclear Power Station was decommissioned, nuclear technology continues to play an important role especially in research and university teaching in this part of Germany. The organizers of the conference, Deutsches Atomforum e.V. (DAtF) and Kerntechnische Gesellschaft e.V. (KTG), welcomed more than 1000 participants from nineteen countries. The three-day program, with its traditional, proven structure, featured plenary sessions on the first day, and specialized sessions, technical sessions, poster sessions, and other events on the following days. The partner country at the Annual Meeting on Nuclear Technology was Russia, with a session specially devoted to selected topics of the country. The conference was accompanied by a technical exhibition with company meeting points of vendors, suppliers, and service industries. A video film forum was arranged for the interested public which featured contributions about nuclear research, nuclear power plant operation, transport and storage as well as decommissioning. Another major event was a workshop on 'Preserving Competence in Nuclear Technology'. The plenary day is described in this summary report, while the results of the technical sessions as seen by the rapporteurs are printed elsewhere in this issue of atw 8/9, 2001. (orig.) [de

  14. Annual Report 2008. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2009-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  15. Annual Report 2007. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2008-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  16. World-class outage performance of the Olkiluoto nuclear power plant

    International Nuclear Information System (INIS)

    Paavola, M.

    1998-01-01

    The production of the Olkiluoto power plant units covered 17% of the electricity consumption in Finland in 1997; the total share of nuclear energy was 27% of the electricity consumed in the country. Based on Finnish experience, nuclear energy is a safe, environmentally friendly and economic way to produce electricity provided that the plants and their personnel are well taken care of. TVO's policy is to keep the plant units in good condition and technically modern. This requires continuous investments in the plant. In maintenance, attention is paid to monitoring the condition of the plant and to preventive maintenance aiming at avoiding disturbances in production. TVO has chosen continuous development as the operational line develops the plant by annual investments and performs the necessary modifications during planned annual outages trying to avoid long production interruptions. The load factors of the Olkiluoto nuclear power plant have been high. The average load factor during the last decade was over 93%. The most significant single factor in the production deficits is the amount or electricity, which has not been produced because of the annual outages. Due to this, special attention has been paid to the performance of the annual outages. TVO aims at continuous development of the annual outage procedure. A centralized task management system makes it possible to perform simultaneously more tasks than before. The company has also invested in equipment and systems, which ease and speed up servicing. Normal outage length varies between 10 and 16 days. By keeping the plant units as modern as possible and in good condition we facilitate reaching TVO's target, which is also stated in TVO's slogan 'always 40 years lifetime'. (author)

  17. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1992-01-01

    This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Third Annual Technical Progress report summarizes the period from September 1991 to October 1992. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. His philosophy, is to improve public perception of the safety of nuclear power plants by incorporating a high degree of automation where a greatly simplified operator control console minimizes the possibility of human error in power plant operations. To achieve this goal, a hierarchically distributed control system with automated responses to plant upset conditions was pursued in this research. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 stem plant. Emphasized in this Third Annual Technical Progress Report is the continuing development of the in-plant intelligent control demonstration for the final project milestone and includes: simulation validation and the initial approach to experiment formulation

  18. Ardennes nuclear power plant. Annual report 1975

    International Nuclear Information System (INIS)

    1977-05-01

    At the beginning of the year 1975 the nominal power of the nuclear plant of the Ardennes was brought from 950 up to 1040 MWth, after a positive decision of the official safety organizations. Net energy produced: 2016 GWh, number of coupled hours: 6832 h, coefficient of availability: 75%, total number of standstills: 25. The functioning of the installations is, on the whole, very satisfying. Liquid wastes are clearly inferior to admissible maximum limits. The cost per KWh of the plant amounts to 5.57 French centimes. For the last 5 years net production has reached 9375 GWh, which means an average coefficient of availability of 76.7%

  19. Nuclear power plant construction activity, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors

  20. Annual radiological environmental monitoring report: Watts Bar Nuclear Plant, 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report describes the preoperational environmental radiological monitoring program conducted by TVA in the vicinity of the Watts Bar Nuclear Plant (WBN) in 1991. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas that will not be influenced by plant operations. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. During plant operations, results from stations near the plant will be compared with concentrations from control stations and with preoperational measurements to determine potential impacts to the public. Exposures calculated from environmental samples were contributed by naturally occurring radioactive materials, from materials commonly found in the environment a a result of atmospheric fallout, or from the operation of other nuclear facilities in the area. Since WBN has not operated, there has been no contribution of radioactivity from the plant to the environment

  1. Annual radiological environmental monitoring report: Watts Bar Nuclear Plant, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    This report describes the preoperational environmental radiological monitoring program conducted by TVA in the vicinity of the Watts Bar Nuclear Plant (WBN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas that will not be influenced by plant operations. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. During plant operations, results from stations near the plant will be compared with concentrations from control stations and with preoperational measurements to determine potential impacts to the public. Exposures calculated from environmental samples were contributed by naturally occurring radioactive materials, from materials commonly found in the environment as a result of atmospheric fallout, or from the operation of other nuclear facilities in the area. Since WBN has not operated, there has been no contribution of radioactivity from the plant to the environment

  2. Risk-benefit evaluation of nuclear power plant siting

    International Nuclear Information System (INIS)

    Miettinen, J.; Savolainen, I.; Silvennoinen, P.

    1976-01-01

    An assessment scheme is described for the risk-benefit analyses of nuclear power versus conventional alternatives. Given the siting parameters for the proposed nuclear plant an economic comparison is made with the most advantageous competitive conventional production scenario. The economic benefit is determined from the differential discounted annual energy procurement cost as a function of the real interest rate and amortization time. The risk analysis encompasses the following factors: radiation risks in normal operation, reactor accident hazards and economic risks, atmospheric pollutants from the conventional power plants, and fuel transportation. The hazards are first considered in terms of probabilistic dose distributions. In the second stage risk components are converted to a compatible form where excess mortality is used as the risk indicator. Practical calculations are performed for the power production alternatives of Helsinki where district heat would be extracted from the nuclear power plant. At the real interest rate of 10% and amortization time of 20 yr the 1000 MW(e) nuclear option is found to be Pound9.1 m per yr more economic than the optimal conventional scenario. Simultaneously the nuclear alternative is estimated to reduce excess mortality by 2 to 5 fatal injuries annually. (author)

  3. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1990-12-01

    During the second quarter of 1990 the Finnish nuclear plant units Loviisa 1 and 2 and TVO and II were in commercial operation for most of the time. The feedwater pipe rupture at Loviisa 1 and the resulting inspections and repairs at both Loviisa plant units brought about an outage the overall duration of which was 32 days. The annual maintenance outages of the TVO plant units were arranged during the report period and their combined duration was 31.5 days. Nuclear electricity accounted for 35.3% of the total Finnish electricity production during this quarter. The load factor average of the nuclear power plant units was 83.0%. Three events occurred during the report period which are classified as Level 1 on the International Nuclear Event Scale: feedwater pipe rupture at Loviisa 1, control rod withdrawal at TVO I in a test during an outage when the hydraulic scram system was rendered inoperable and erroneous fuel bundle transfers during control rod drives maintenance at TVO II. Other events during this quarter are classified as Level Zero (Below Scale) on the International Nuclear Event Scale. Occupational radiation doses and external releases of radioactivity were considerably below authorised limits. Only small amounts of nuclides originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  4. Slovak power stations, Nuclear Power Plants Mochovce (Annual report 1997)

    International Nuclear Information System (INIS)

    1998-01-01

    A brief account of activities carried out by the Nuclear power plants Mochovce in 1997 is presented. These activities are reported under the headings: (1) Director's foreword; (2) Power plant management; (3) Highlights of 1997; (4) Capital construction; (5) Nuclear safety; (6) Radiation safety; (7) Work safety and health protection at work; (9) Fire protection; (10) Units upgrading - safety measures; (11) Maintenance; (12) Operation; (13) Environmental impacts of operations; (14) List of balances; (15) Human sources; (16) International co-operation; (17) Public relations

  5. Annual Report 2009. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  6. Conference summaries. Canadian Nuclear Association 29. annual conference; Canadian Nuclear Society 10. annual conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Separate abstracts were prepared for 15 papers from the twenty-ninth Annual Conference of the Canadian Nuclear Association. Abstracts were also prepared for the 102 papers from the tenth Annual Conference of the Canadian Nuclear Society.

  7. Conference summaries. Canadian Nuclear Association 29. annual conference; Canadian Nuclear Society 10. annual conference

    International Nuclear Information System (INIS)

    1989-01-01

    Separate abstracts were prepared for 15 papers from the twenty-ninth Annual Conference of the Canadian Nuclear Association. Abstracts were also prepared for the 102 papers from the tenth Annual Conference of the Canadian Nuclear Society

  8. Cost estimation of thermal and nuclear power using annual securities report

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Nagatomi, Yu; Murakami, Tomoko

    2011-01-01

    Cost estimation of generation cost derived from various power sources was widely conducted using model plant or annual securities report of electric utilities. Although annual securities report method was subjected to some limitation in methodology itself, useful information was obtained for cost comparison of thermal and nuclear power. Studies on generation cost evaluation of thermal and nuclear power based on this method during past five years showed that nuclear power cost was almost stable 7 Yen/kWh and thermal power cost was varying 9 - 12 Yen/kWh dependent on violent fluctuations of primary energy cost. Nuclear power was expected cost increase due to enhanced safety requirements or damage compensation of accidents as well as decommissioning and back-end cost, which were difficult to evaluate accurately with annual securities report. Further comprehensive and accurate cost estimation should be encouraged including these items. (T. Tanaka)

  9. Profitability of producing electricity in nuclear power plants

    International Nuclear Information System (INIS)

    Marecki, J.

    2001-01-01

    In the first part of this paper, the method used in energy economics to calculate the annual costs of electricity generation is described. The procedure of discounting these costs for complex time distributions of costs and effects is also presented. Hence the principles of choosing the optimum variant from different solutions having the same or not the same effects are determined. Subsequently, the conditions of competitiveness are formulated for nuclear power plants in comparison with other energy options. As example, the the results of calculating total annual costs of electricity generation in various (coal-fired, gas-fired and nuclear) power plants are given for two different values of the discount rate: 5% and 10%. (author)

  10. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-12-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations related to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Safety-enhancing plant modifications and general matters relating to the use of nuclear energy are also reported. A summary of the radiation safety of plant personnel and the environment, and tabulated data on the plants' production and their load factors are also given. At the Loviisa 1 plant unit one of two specially-backed AC busbars was lost during the second quarter of 1993. A ca. 30 minute voltage break caused malfunctions in the plant unit's electrical equipment and rendered inoperable certain components important to safety. The event is rated on the International Nuclear Event Scale (INES) at level 1. In inspections carried out at TVO II during the annual maintenance outage, the number of cracks detected in control rod structural material was higher than usual. When cracks occur, part of boron carbide, the power regulating medium in control rods, may wash into the reactor water and control rod shutdown capability may be impaired. The event is rated on the INES at level 1. Other events in the second quarter of 1993 had no bearing on nuclear or radiation safety. (4 figs., 5 tabs.)

  11. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1988

    International Nuclear Information System (INIS)

    1989-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1988. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 2 tabs

  12. Annual Report 2013. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across seven parts and eight annexes the activities developed by the organism during 2013. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication has annexes with the following content: regulatory documents; inspections to medical; presentations of publications from ARN staff; measurement and evaluation of the drinking water of Ezeiza; international expert report on the implementation of international standards on radiation protection in the Ezeiza Atomic Center; Code of Ethics of the Nuclear Regulatory Authority.

  13. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1995-10-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Fasety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and of the evironment and tabulated data on the plants` production and load factors. Except for the annual maintenance outages of the TVO plant units and for TVO II`s Midsummer outage which was due to low electricity demand, the Finnish nuclear power plants were in power operation during the second quarter of 1995. The load factor average of all four plant units was 91.2 %. Events during the second annual quarter were level 0 on the INES scale. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (4 figs., 4 tabs.).

  14. Review of annual radioecological studies carried out since 1991 in the French nuclear power plants environment

    International Nuclear Information System (INIS)

    Duffa, C.; Gontier, G.; Renaud, P.

    2004-01-01

    Since 1991, the IRSN carries out annual radioecological studies in the environment of the French Nuclear Power Plants. More than 5,000 samples, collected in terrestrial and aquatic ecosystems around the 20 studied plants, have been analysed by low-level gamma spectrometry. This paper presents the main goals and methods for such studies, and the lessons learnt from 11 years results. The French NPP routine atmospheric releases do not lead to detectable radioactive inputs into their surroundings. For this reason, IRSN decided to reduce the number of analysis concerning terrestrial samples since 2000. On the other hand, NPP liquid discharges into rivers are responsible for the presence of low 60 Co, 58 Co, 110m Ag and 54 Mn activities and significant difference in 137 Cs/ 134 Cs activity ratios measured in aquatic compartments. Radioactive discharges of artificial gamma emitters are also detectable in the Channel marine environment around NPP. Nevertheless, this influence is often concealed by radionuclides released by COGEMA-La Hague nuclear reprocessing plant. Beyond important evaluations concerning the presence of artificial radionuclides in NPP's environment, studies conducted since 1991 give us an important database that can be used for a better knowledge of transfers and distribution of radioactivity through the environment. (author)

  15. Nuclear power plants 1995 - a world survey

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The atw Statistics Report compiled by atw lists 428 nuclear power plants with 363 397 gross MWe in operation in 30 countries in late 1995. Another 62 units with 55 180 gross MWe were under construction in 18 countries. This adds up to a total of 490 units with an aggregate 418 577 MWe. In the course of 1995 four units in four countries started commercial operation. In the survey of electricity generation in 1995 for which no information was made available from China and Kasachstan, a total of 417 nuclear power plants were covered. In the year under review they generated an aggregate 2 282 614 GWH, which is 3.4% more than in the previous year. The highest nuclear generation again was recorded in the USA with 705 771 GWh, followed by France with 377 021 GWh. The Grohnde power station in Germany attained the maximum annual production figure of 11 359 GWh. The survey includes nine tables indicating the generating performance of each nuclear power plant, the development of electricity generation in nuclear plants, and status of nuclear power plants at the end of 1995 arranged by countries, types of reactors, and reactor manufacturers. (orig.) [de

  16. Psychosocial work strain of maintenance personnel during annual outage and normal operation in a nuclear power plant

    International Nuclear Information System (INIS)

    Jacobsson, L.; Svensson, O.

    1991-01-01

    This paper reports on a study which evaluates psychosocial work demands during the annual outage for a maintenance work group in a nuclear power plant. The study is based on a stress paradigm and it has been asserted that increased work strain would have a negative effect on performance. Nineteen workers, aged 20-55 years, participated in the study. The subjects filled out a questionnaire comparing work strain during annual outage and normal operation. During the outage period a 3-shift 24-hour work schedule, including nightwork, was used (working hours during normal operation was 7-16). Increased demands on concentration and vigilance, increased time pressure and strain on social relations within the group were found to characterize work during annual outage. Interestingly, for specific work tasks an association was found between the risk of making errors and high psychological workload. Increased work strain, shiftwork including nightwork and reduced social support are important psychosocial risk factors that might contribute to human error during the outage period

  17. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.; Edwards, R.M.; Ray, A.; Lee, K.Y.; Garcia, H.E.: Chavez, C.M.; Turso, J.A.; BenAbdennour, A.

    1991-01-01

    In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Second Annual Technical Progress report covers the period from September 1990 to September 1991. It summarizes the second year accomplishments while the appendices provide detailed information presented at conference meetings. These are two primary goals of this research. The first is to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz, a project consultant during the first year of the project. This philosophy, as presented in the first annual technical progress report, is to improve public perception of the safety of nuclear power plants by incorporating a high degree automation where greatly simplified operator control console minimizes the possibility of human error in power plant operations. A hierarchically distributed control system with automated responses to plant upset conditions is the focus of our research to achieve this goal. The second goal is to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-II steam plant

  18. Risk perception of the public living in vicinity of nuclear power plant

    International Nuclear Information System (INIS)

    Li Xiaojuan; Hou Changsong; Wang Chunyan; Liu Ying; Sun Quanfu; Yu Ningle; Li Ningning; Zhou Rihui; Zhuang Jiayi

    2008-01-01

    Objective: To investigate the attitude toward and perception of the risk of nuclear power plant among the public residing in vicinity of nuclear power plant, as well as the related factors. Methods: A face-to-face interview on perceived radiation risks was conducted among 1408 individuals in Liangyungang City, Jiangsu Province, where the Tianwan nuclear power plant was under construction. The four groups was defined according to the distance between the residence of the subjects and the Tianwan nuclear power plant: <4 km, 4- 8 km, 8-30 km and 30-50 km. A was used to collect information on education, working history, religion, perception of major industries hazards especially nuclear power plant, and major factors may influence their perceptions. Ordinal logistic regression model was used to analyze the data. Results: About 91.18% of the interviewee heard about the nuclear power plant, 35.36% of them had knowledge about Chernobyl nuclear power plant accident, 71.05% of them believed that the nuclear power plant had no negative effects on environments, 37.03% of them believed that the nuclear energy was safe, 74.27% of them believed that it was necessary for China to develop nuclear energy, 63.29% of them supported the construction of the nuclear power plant in local area. Ordinal logistic regression analysis revealed that the higher education, higher family annual income, male, economic benefits from the nuclear power plant construction, and trust in local government having competency to handling emergencies were positive factors; otherwise, impression on nuclear power plant of bad influences on environment and health were negative factors. An inverted U-shaped with a right tailing relationship between negative attitudes toward nuclear power plant and distance to the plant was found. Conclusions: Education, gender, family annual income and expectation of economic benefit returns were the major factors influencing the perception of and attitudes toward nuclear power

  19. Annual radiological environmental operating report: Sequoyah Nuclear Plant, 1987

    International Nuclear Information System (INIS)

    1988-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of the Sequoyah Nuclear Plant in 1987. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. 2 figs., 2 tabs

  20. Annual Report 2007. Nuclear Regulatory Authority; Informe Anual 2007. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  1. Annual Report 2008. Nuclear Regulatory Authority; Informe Anual 2008. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  2. U.S. Nuclear Power Plant Operating Cost and Experience Summaries

    International Nuclear Information System (INIS)

    Reid, RL

    2003-01-01

    The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports

  3. Annual Report 2010. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2010. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  4. Annual Report 2011. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2011. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  5. Radioactive materials released from nuclear power plants: Annual report, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Tichler, J.; Norden, K.; Congemi, J.

    1987-08-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  6. Cost Evaluation with G4-ECONS Program for SI based Nuclear Hydrogen Production Plant

    International Nuclear Information System (INIS)

    Kim, Jong-ho; Lee, Ki-young; Kim, Yong-wan

    2014-01-01

    Contemporary hydrogen is production is primarily based on fossil fuels, which is not considered as environments friendly and economically efficient. To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution reducing the release of carbon dioxide. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The economic assessment was performed for nuclear hydrogen production plant consisting of VHTR coupled with SI cycle. For the study, G4-ECONS developed by EMWG of GIF was appropriately modified to calculate the LUHC, assuming 36 months of plant construction time, 5 % of annual interest rate and 12.6 % of fixed charge rate. In G4-ECONS program, LUHC is calculated by the following formula; LUHC = (Annualized TCIC + Annualized O-M Cost + Annualized Fuel Cycle Cost + Annualized D-D Cost) / Annual Hydrogen Production Rate

  7. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    International Nuclear Information System (INIS)

    2010-01-01

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  8. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    International Nuclear Information System (INIS)

    2010-01-01

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  9. Surveillance robot for nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Harvey, H.W.; Satterlee, P.E. Jr.

    1985-01-01

    A demonstration project to determine the feasibility and cost-effectiveness of mobile surveillance robots in nuclear power plants is being conducted by the Remote Technology Corporation (REMOTEC) for the US Nuclear Regulatory Commission. Phase I of the project was completed in March 1984 and included a survey of currently used robotic equipment and the development of a robotics application methodology. Three Tennessee Valley Authority plants were analyzed to identify specific plant areas with a high potential for surveillance robotics. Based on these results, a number of robotic system applications were prepared and evaluated for cost-effectiveness. The system with the highest potential, a mobile surveillance robot, was selected for fabrication and in-plant demonstration testing in a phase II effort. The design, fabrication, and assembly of SURBOT has been completed and cold testing is in process. It will be installed at the Browns Ferry Nuclear Plant early in 1986 for demonstration testing. Current projections are that SURBOT can be used in approx.40 rooms within the auxiliary building and will have annual savings of over 100 person-rem exposure, 1000 sets of C-zone clothing, and 1000 person-hours of labor

  10. Effect on the annual atmospheric dispersion factor of different diffusion parameters and meteorological data at nuclear power plant

    International Nuclear Information System (INIS)

    Hu Erbang; Yan Jiangyu; Wang Han; Xin Cuntian

    2003-01-01

    Based on the hourly metrological observing data of 100 m high tower during 1997-1999 at Tianwan Nuclear Power Plant (NPP) site and 1995-1997 in Fujian Huian NPP site, the effect on the annual atmospheric dispersion factor (AADF) of four different diffusion parameters (on-site measuring values, IAEA's, Briggs's and Pasquill's) are estimated. The analysis shows that the deviation between the results from IAEA's, Briggs's and on-site measured diffusion parameters is less than 20%. The effect on the AADF from different years' meteorological data also is estimated. (authors)

  11. Radioactive materials released from nuclear power plants. Annual report 1977

    International Nuclear Information System (INIS)

    Decker, T.R.

    1978-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1977 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1977 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized

  12. Annual report 2015 of the Institute for Nuclear and Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas

    2016-07-01

    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for nuclear fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies.

  13. Annual Report 2009. Nuclear Regulatory Authority; Informe Anual 2009. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  14. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  15. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1996-11-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the second quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of TVO plant units and the Midsummer shutdown at TVO II which was due to low electricity demand, a turbine generator inspection and repairs. The load factor average of all plant units was 88.9 %. Events in the second quarter of 1996 were classified level 0 on the International Nuclear Event Scale (INES)

  16. Annual radiological environmental operating report: Browns Ferry Nuclear Plant, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. Small amounts of Co-60 and Cs-134 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public

  17. Summary of operating experience in Swiss nuclear power plants 1993

    International Nuclear Information System (INIS)

    1994-07-01

    In 1993 the Swiss nuclear power plants produced their third highest combined annual output. The contribution to the total electricity generation in the country was close to 37%. Replacement of the steam generators in Beznau Unit 1 resulted in a longer than usual annual outage. For the other four units the availability figures were close to, or exceeded, those of previous years. The energy utilization was, however, lowered due to load reduction in autumn resulting from unusually high production by the hydro-electric power plants. The steam generator replacement at Beznau enabled an increase in electrical power of about 2% without increase in reactor power. With the approval of the Swiss government in December 1992, the output of the Muehleberg power plant was increased in two stages by a total of 10%. The application for an unlimited operating license for Beznau Unit 2, and for a power uprate at the Leibstadt power plant, are still pending. The average number of scrams at the Swiss plants remained stable, at less than one scram per reactor year. As a result of experience in the Swedish nuclear power plant at Barsebaeck, the suction strainers of the emergency core cooling systems of the boiling water reactors at Muehleberg and Leibstadt were replaced by strainers with larger surface areas. The re-inspection of crack indications previously detected in the core shroud of the Muehleberg reactor and the penetration tubes in the reactor pressure vessel closure head of Beznau revealed no growth during the intervening operating periods. Following the completion of installation activities during the annual outages at Beznau Unit 1, Goesgen and Leibstadt, all Swiss nuclear power plants are now equipped with filtered containment venting systems. (author) figs., tabs

  18. Conference summaries of the Canadian Nuclear Association 30. annual conference, and the Canadian Nuclear Society 11. annual conference

    International Nuclear Information System (INIS)

    1990-01-01

    This volume contains conference summaries for the 30. annual conference of the Canadian Nuclear Association, and the 11. annual conference of the Canadian Nuclear Society. Topics of discussion include: energy needs and challenges facing the Canadian nuclear industry; the environment and nuclear power; the problems of maintaining and developing industrial capacity; the challenges of the 1990's; programmes and issues for the 1990's; thermalhydraulics; reactor physics and fuel management; nuclear safety; small reactors; fuel behaviour; energy production and the environment; computer applications; nuclear systems; fusion; materials handling; and, reactor components

  19. 24 Annual meeting of the Spanish Nuclear Society, Valladolid 14-16 October 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The technical sessions of XXIV annual meeting of the Spanish Nuclear Society were: 1) Fusion 2) Engineering: calculation and simulation. 3) Economical, legal and social aspect. 4) Plant life extension 5) Operating experiences, refueling and operation support 6) Probabilistic safety 7) Radiological protection 8) Waste management 9)Maintenance 10) Nuclear Safety R and D. 11)Environmental aspects 12) Fuel 13) Quality

  20. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  1. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.

    2000-01-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants

  2. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  3. Environmental radioactivity levels, Sequoyah Nuclear Plant. Annual report, 1983

    International Nuclear Information System (INIS)

    1984-04-01

    This report describes the environmental radiological monitoring of the Sequoyah Nuclear Plant (SQN) located in Hamilton County, Tennessee, conducted in 1983. Dose estimates were calculated from concentrations of radioactivity found in samples of air, milk, water, and fish. It was concluded there were no significant increases in the exposure to members of the general public attributable to the operation of SQN. 11 figures, 34 tables

  4. JAEA FBR Plant Engineering Center annual report 2011

    International Nuclear Information System (INIS)

    2012-11-01

    The FBR Plant Engineering Center was established on April 1, 2009 located in a research building, of which care is taken by the International Nuclear Information Training Center, Tsuruga Head Office, at Shiraki in Tsuruga. The mission of the center is to perform R and D (research and development) works both for analysis of operational experiences at the prototype fast breeder reactor “Monju” and for technology development concerning design and operation of “Monju”. Moreover it is also required to apply the results to next generation fast breeder reactors, which is an important role of Advanced Nuclear System Research and Development Directorate. And in these R and D activities, it is expected to conduct the works in cooperation with domestic or foreign research organizations or universities by a joint-study or a collaborative-work manner. The R and D activities have been carried out specifically on the “demonstration of the reliability as a power generation plant” and “establishment of sodium handling technology”, which are originally intended missions of “Monju”. And the other R and Ds have been promoted both for the plant engineering, such as plant maintenance, to effectively use an existing reactor in order to apply the R and D results to a future demonstration reactor, and for the irradiation test study, such as advanced fuel irradiation, to use “Monju” as an irradiation test bed. In order to perform these R and D activities, five R and D groups have been set up in the center. They are operation-and-maintenance engineering, sodium engineering, reactor-core-and-fuel engineering, plant engineering, and safety engineering groups. However, the Japanese atomic energy policy is being reviewed after the accident of the Fukushima Daiichi nuclear power station caused by a tsunami generated by the Tohoku-district-off-the-Pacific-Ocean Earthquake on March 11, 2011, and all the R and D activities using “Monju” have been suspended since late 2011

  5. Start. Slovak power stations, Nuclear Power Plants Mochovce (Annual report 1998)

    International Nuclear Information System (INIS)

    1999-01-01

    A brief account of activities carried out by the Nuclear power plants Mochovce in 1998 is presented. These activities are reported under the headings: (1) Director's foreword; (2) Power plant management; (3) Highlights of 1998; (4) Quality system; (5) Electricity and heat generation; Maintenance; Capital construction; (6) Radiation safety; Environmental impacts of operations; (7) List of balances; Human resources; (8) International co-operation; Public relations

  6. FBR Plant Engineering Center annual report 2012

    International Nuclear Information System (INIS)

    2013-12-01

    This annual report shows the last year's R and D activities of currently-reorganized FBR Plant Engineering Center, which was established on April 1, 2009. FBR Safety Technology Center was founded on April 1, 2013 by the consolidation of both the activities of 'former FBR Plant Engineering Center' and a portion of 'FBR Safety Evaluation Unit, Advanced Nuclear System Research and Development Directorate', especially concentrating on safety evaluations and analyses for severe accidents. As for FBR safety technology, it is necessary to continuously make an effort for compliance with new safety regulations in preparation for 'Monju' to restart, for safety enhancement evaluation and for safety technology upgrading. In this context, the new organization was founded in order to reinforce the safety evaluation capability, which will surely and steadily promote FBR safety-technology related activities. As a result, FBR Plant Engineering Center was abolished. This report summarizes the R and D activities at the former FBR Plant Engineering Center, aiming at contributing to the commercialization by using operation experiences and technology development results derived from the actual reactor 'Monju'. The activities are divided into five areas of operation-and-maintenance engineering, sodium engineering, reactor-core-and-fuel engineering, plant engineering, and safety engineering. This annual report is intended for a report of the activities of individual researcher in the center rather than that of the progress of the center as a whole. This will clarify the individual themes, progresses and problems of each researcher, which will, hopefully, facilitate communication with the outside researchers. (author)

  7. Economic evaluation of heat extraction from nuclear power plants - a criterion for deciding their building order

    International Nuclear Information System (INIS)

    Navratil, J.

    1987-01-01

    Heat extraction from nuclear power plants is an important element in the current concept of supplying the population and industries with heat. Economic evaluation of the extraction is one of the factors of the total economic assessment of potential sites for nuclear power plant construction which can contribute to decision making on the priorities of construction. The methodological approach to the assessment of economic contribution of heat extraction from 2x1000 MW nuclear power plant is exemplified using three such sites on the Czechoslovak territory, viz., Opatovice (eastern Bohemia), Blahutovice (northern Moravia), and Kecerovce (eastern Slovakia). The so-called annual converted cost was used as a suitable quantity completely reflecting all significant economic effects of heat extraction. It is shown that the fuel component of the power plant costs is the decisive factor for the amount of the annual converted cost in respect to heat supply and thus also the economic priority of the construction sites of nuclear power plants. (Z.M.). 3 tabs., 3 refs

  8. Abatement of CO2 emissions by way of enhancing the efficiency of nuclear power plants

    International Nuclear Information System (INIS)

    Kienle, F.

    1995-01-01

    Contributing about one third of the overall electricity supplied by the public utilities in 1994, nuclear power as in the previous years has been one of the major pillars of electricity supply in Germany. The approx. 150 billion kWh generated by the nuclear power plants represent reliable electricity supply around the clock, and free of CO 2 emissions, or SO 2 emissions, or NO x . Comparing nuclear generation with the electricity output contributed by conventional power plants in Germany, nuclear generation can also be expressed in terms of emissions avoided, which in 1994 meant: almost 150 million tons of CO 2 , equivalent to about 16 % of the aggregate annual CO 2 emissions; 110.000 tons of SO 2 , equivalent to about 11 % of aggregate annual SO 2 emissions; 125.000 tons of NO x , equivalent to 5 % of aggregate, annual NO x emissions. (orig.) [de

  9. Operation of Finnish nuclear power plants. Quarterly report 3rd, quarter 1995

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1996-05-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. Except for the annual maintenance outages of Loviisa plant units and for TVO II's brief outage to repair a failed component, Finnish nuclear power plant units were in power operation in the third quarter of 1995. The load factor average of all plant units was 90.4 %. Events in this quarter were level 0 on the INES scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.) (4 figs., 4 tabs.)

  10. Operation of Finnish nuclear power plants. Quarterly report 3rd, quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sillanpaeae, T [ed.

    1996-05-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants` production and load factors. Except for the annual maintenance outages of Loviisa plant units and for TVO II`s brief outage to repair a failed component, Finnish nuclear power plant units were in power operation in the third quarter of 1995. The load factor average of all plant units was 90.4 %. Events in this quarter were level 0 on the INES scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.) (4 figs., 4 tabs.).

  11. Remote-automated inspection and maintenance of nuclear power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Masayoshi; Nakano, Yoshiyuki

    1984-12-01

    Employing remote-control inspection and maintenance equipment in nuclear power plants increases the plant availability by decreasing the annual shutdown time (outage), as well as radiation exposure and man-power. This paper presents an outline of the latest designs for an automatic refueling machine, a control rod drive handling machine, a fuel preparation machine, and a main steam line plug, which were supplied to the Fukushima Dai-Ni No. 2 Plant of the Tokyo Electric Power Co., Inc. (Fukushima 2-2). Also, the up-to-date developments of other new automatic machines, such as a CRD disassembly and cleaning system, spent fuel channel box volume reduction equipment, and robotics for nuclear plant use are presented.

  12. Comparative study of radiological impact of nuclear power plant and coal-fired power plant: estimation of radiation dose to public from nuclear power plant and coal-fired power plant generation

    International Nuclear Information System (INIS)

    Umbara, Heru; Yatim, Sofyan

    1998-01-01

    Radiation impact assessment of Nuclear Power Plant and Coal-Fired Power Plant in Muria Penninsula was carried out. The computation of radionuclide releases to the atmosphere subjects to gaussian plume model, on the other hand, the radionuclide transfer model between environmental compartment (pathway) follow concentration factor methods. Both models are compiled in GENII-The Hanford Environmental Radiation Dosimetry Software System, which is used in the assessment. Most of all input data for GENII package are site specific, such as meteorological data, stack flow, stack height, population, local consumption except the transfer factor data are taken from the GENII package. The results show that during operation of NPP the maximal exposed individual received annual effective dose 150 nSv at 300 -700 m from the site toward east otherwise in operation of CPP the maximal exposed individual received annual effective dose 410 nSv in the same distance and direction. Both results of the maximal exposed individual received annual effective dose about 0,003 % and 0,008 % of whole body annual dose limit for members of public for NPP and CPP. (author)

  13. Nuclear Physics Laboratory: Annual report

    International Nuclear Information System (INIS)

    1987-05-01

    Topics covered in this annual report are: astrophysics and cosmology, giant resonances in excited nuclei, heavy ions, fundamental symmetries, nuclear reactions, accelerator mass spectrometry, accelerators and ion sources, nuclear instrumentation, computer systems and the booster linac project

  14. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2008-07-01

    By August 2007, there were 438 nuclear power plants (NPPs) in operation worldwide, with a total capacity of 371.7 GW(e). Further, 31 units, totaling 24.1 GW(e), were under construction. During 2006 nuclear power produced 2659.7 billion kWh of electricity, which was 15.2% of the world's total. The vast majority of these plants use water-cooled reactors. Based on information provided by its Member States, the IAEA projects that nuclear power will grow significantly, producing between 2760 and 2810 billion kWh annually by 2010, between 3120 and 3840 billion kWh annually by 2020, and between 3325 and 5040 billion kWh annually by 2030. There are several reasons for these rising expectations for nuclear power: - Nuclear power's lengthening experience and good performance: The industry now has more than 12 000 reactor years of experience, and the global average nuclear plant availability during 2006 reached 83%; - Growing energy needs: All forecasts project increases in world energy demand, especially as population and economic productivity grow. The strategies are country dependent, but usually involve a mix of energy sources; - Interest in advanced applications of nuclear energy, such as seawater desalination, steam for heavy oil recovery and heat and electricity for hydrogen production; - Environmental concerns and constraints: The Kyoto Protocol has been in force since February 2005, and for many countries (most OECD countries, the Russian Federation, the Baltics and some countries of the Former Soviet Union and Eastern Europe) greenhouse gas emission limits are imposed; - Security of energy supply is a national priority in essentially every country; and - Nuclear power is economically competitive and provides stability of electricity price. In the near term most new nuclear plants will be evolutionary water cooled reactors (Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs), often pursuing economies of scale. In the longer term, innovative designs that

  15. Historical plant cost and annual production expenses for selected electric plants, 1982

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants

  16. Hazards to nuclear plants from surface traffic accidents

    International Nuclear Information System (INIS)

    Hornyik, K.

    1975-01-01

    Analytic models have been developed for evaluating hazards to nuclear plants from hazardous-materials accidents in the vicinity of the plant. In particular, these models permit the evaluation of hazards from such accidents occurring on surface traffic routes near the plant. The analysis uses statistical information on accident rates, traffic frequency, and cargo-size distribution along with parameters describing properties of the hazardous cargo, plant design, and atmospheric conditions, to arrive at a conservative estimate of the annual probability of a catastrophic event. Two of the major effects associated with hazardous-materials accidents, explosion and release of toxic vapors, are treated by a common formalism which can be readily applied to any given case by means of a graphic procedure. As an example, for a typical case it is found that railroad shipments of chlorine in 55-ton tank cars constitute a greater hazard to a nearby nuclear plant than equally frequent rail shipments of explosives in amounts of 10 tons. 11 references. (U.S.)

  17. Proceedings of the 29th annual conference of the Canadian Nuclear Association and 10th annual conference of the Canadian Nuclear Society. V. 1-3

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M; Fehrenbach, P J [eds.

    1990-12-31

    The symposium was designed to highlight how the technical information for nuclear energy came to Canada, the effect this information had in Canada in the fields of Physics, Chemistry, Medicine and Nuclear Power. Volume 1 is the combined proceedings of the Canadian Nuclear Association twenty-ninth annual conference and the Canadian Nuclear Society tenth annual conference. Volume 2 is the proceedings of the Canadian Nuclear Association twenty-ninth annual conference, and volume 3 is the proceedings of the Canadian Nuclear Society tenth annual conference.

  18. Proceedings of the 29th annual conference of the Canadian Nuclear Association and 10th annual conference of the Canadian Nuclear Society. V. 1-3

    International Nuclear Information System (INIS)

    Harvey, M.; Fehrenbach, P.J.

    1989-01-01

    The symposium was designed to highlight how the technical information for nuclear energy came to Canada, the effect this information had in Canada in the fields of Physics, Chemistry, Medicine and Nuclear Power. Volume 1 is the combined proceedings of the Canadian Nuclear Association twenty-ninth annual conference and the Canadian Nuclear Society tenth annual conference. Volume 2 is the proceedings of the Canadian Nuclear Association twenty-ninth annual conference, and volume 3 is the proceedings of the Canadian Nuclear Society tenth annual conference

  19. Environmental radioactivity levels, Browns Ferry Nuclear Plant: Annual report, 1986

    International Nuclear Information System (INIS)

    1986-04-01

    The report presents data gathered during radiological monitoring program conducted in the environs of the Browns Ferry Nuclear Plant. Dose estimates were made from concentrations of radioactivity found in samples of media including air, milk, food products, drinking water, and fish. Inhalation and ingestion doses estimated for persons at the indicator locations were essentially identical to those determined for persons at control locations. Greater than 95% of those doses were contributed by the naturally occurring K-40 and by Sr-90 and Cs-137 which are long-lived radioisotopes found in fallout from nuclear weapons testing. Increased levels of I-131 were reported in air, milk, and rainwater following the accident at the Chernobyl nuclear power station. In addition, Ru-103, Cs-137, and Cs-134 were identified in air particulates, and traces of Ru-103 were found in rainwater

  20. Operation of Finnish nuclear power plants. Quarterly report, 4th quarter 1996

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1997-05-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants's production and load factors. In the fourth quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outage of Loviisa 2 and a shutdown at Olkiluoto 1 to repair a condensate system stop valve. The load factor average of all plant units was 96.5%. Events in the fourth quarter of 1996 were level 0 on the International Nuclear Event Scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  1. Assessment of the Annual Additional Effective Doses amongst Minamisoma Children during the Second Year after the Fukushima Daiichi Nuclear Power Plant Disaster.

    Science.gov (United States)

    Tsubokura, Masaharu; Kato, Shigeaki; Morita, Tomohiro; Nomura, Shuhei; Kami, Masahiro; Sakaihara, Kikugoro; Hanai, Tatsuo; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2015-01-01

    An assessment of the external and internal radiation exposure levels, which includes calculation of effective doses from chronic radiation exposure and assessment of long-term radiation-related health risks, has become mandatory for residents living near the nuclear power plant in Fukushima, Japan. Data for all primary and secondary children in Minamisoma who participated in both external and internal screening programs were employed to assess the annual additional effective dose acquired due to the Fukushima Daiichi nuclear power plant disaster. In total, 881 children took part in both internal and external radiation exposure screening programs between 1st April 2012 to 31st March 2013. The level of additional effective doses ranged from 0.025 to 3.49 mSv/year with the median of 0.70 mSv/year. While 99.7% of the children (n = 878) were not detected with internal contamination, 90.3% of the additional effective doses was the result of external radiation exposure. This finding is relatively consistent with the doses estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The present study showed that the level of annual additional effective doses among children in Minamisoma has been low, even after the inter-individual differences were taken into account. The dose from internal radiation exposure was negligible presumably due to the success of contaminated food control.

  2. Technical evaluation of RETS-required reports for Kewaunee Nuclear Power Plant for 1983

    International Nuclear Information System (INIS)

    Magleby, E.H.; Young, T.E.

    1985-01-01

    A review of the reports required by Federal regulations and the plant-specific Radiological Effluent Technical Specifications (RETS) for operations conducted at the Kewaunee Nuclear Power Plant during 1983 was performed. The periodic reports reviewed were the two Semiannual Effluent Release Reports for 1983 and the annual Kewaunee Environmental Radioactivity Survey. The principal review guidelines were the plant's specific RETS and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines

  3. Testing of mobile surveillance robot at a nuclear power plant

    International Nuclear Information System (INIS)

    White, J.R.; Harvey, H.W.; Farnstrom, K.A.

    1987-01-01

    In-plant testing of a mobile surveillance robot (SURBOT) was performed at the Browns Ferry Nuclear Plant by TVA personnel. The results verified that SURBOT can be used for remote surveillance in 54 separate controlled radiation rooms at the plant. High-quality color video, audio, and other data are collected, digitized by an on-board computer, and transmitted through a cable to the control console for real-time display and videotaping. TVA projects that the use of SURBOT for surveillance during plant operation will produce annual savings of about 100 person-rem radiation exposure and $200,000 in operating costs. Based on the successful results of this program, REMOTEC is now commercializing the SURBOT technology on both wheeled and tracked mobile robots for use in nuclear power plants and other hazardous environments

  4. XXII annual meeting of the Spanish Nuclear Society, Santander 22-26 October 1996: program and synopsis of lectures

    International Nuclear Information System (INIS)

    1996-01-01

    The technical sessions of XXII annual meeting of the Spanish Nuclear Society were: 1) Fusion 2) Engineering: calculation and simulation. 3) Economical, legal and social aspect 4) Plant life extension 5) Operating experiences, refueling and operation support 9)Probabilistic safety 7) radiological protection 8) Waste management 9) Maintenance 10) Advanced plants 11) Steam generators 12) Nuclear Safety. R and D 13) Environmental aspects 14) Fuel 15) Quality

  5. Radioactive materials released from nuclear power plants. Annual report, 1982. Volume 3

    International Nuclear Information System (INIS)

    Tichler, J.; Norden, K.

    1986-02-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1982 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1982 release data are summarized in tabular form. Data covering specific radionuclides are summarized

  6. Annual harvests of Corbicula populations prevent clogging of nuclear reactor heat exchangers

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1983-01-01

    An annual program for removal of millions of Corbicula from upstream cooling water basins has prevented reclogging of nuclear reactor heat exchanger distributor plates at the Savannah River Plant during the past seven years. There are nine 32-megaliter basins in the three operating reactor areas where some settling of particulates occurs before cooling water is passed through screens in route to heat exchangers. Annual cleanings keep silt/clam substrate levels low and clam sizes small. Data are presented on the size/age distribution for clams recolonizing basins between cleanings

  7. Data list of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Izumi, Fumio; Morishima, Atsuyoshi; Suzuki, Motoe; Harayama, Yasuo

    1980-07-01

    this report has collected and compiled the data concerning performances, equipments and installations of the nuclear power plants constructed in Japan by December 1979. The data have been modified according to the changes produced after publication of 1978 edition (JAERI-M 8083), and extended to cover the new plants developed thereafter. All data have been processed and tabulated with a computer program FREP for the exclusive use of data processing. While this plant data list has been edited annually, there are increasing use of this in foreign countries; hence, a commentary in English on the usage has been presented in the Appendix. (author)

  8. Nuclear power plant performance statistics. Comparison with fossil-fired units

    International Nuclear Information System (INIS)

    Tabet, C.; Laue, H.J.; Qureshi, A.; Skjoeldebrand, R.; White, D.

    1983-01-01

    The joint UNIPEDE/World Energy Conference Committee on Availability of Thermal Generating Plants has a mandate to study the availability of thermal plants and the different factors that influence it. This has led to the collection and publication at the Congress of the World Energy Conference (WEC) every third year of availability and unavailability factors to be used in systems reliability studies and operations and maintenance planning. For nuclear power plants the joint UNIPEDE/WEC Committee relies on the IAEA to provide availability and unavailability data. The IAEA has published an annual report with operating data from nuclear plants in its Member States since 1971, covering in addition back data from the early 1960s. These reports have developed over the years and in the early 1970s the format was brought into close conformity with that used by UNIPEDE and WEC to report performance of fossil-fired generating plants. Since 1974 an annual analytical summary report has been prepared. In 1981 all information on operating experience with nuclear power plants was placed in a computer file for easier reference. The computerized Power Reactor Information System (PRIS) ensures that data are easily retrievable and at its present level it remains compatible with various national systems. The objectives for the IAEA data collection and evaluation have developed significantly since 1970. At first, the IAEA primarily wanted to enable the individual power plant operator to compare the performance of his own plant with that of others of the same type; when enough data had been collected, they provided the basis for assessment of the fundamental performance parameters used in economic project studies; now, the data base merits being used in setting availability objectives for power plant operations. (author)

  9. Proceedings of the Canadian Nuclear Society 12. annual conference

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains the Proceedings of the seventeen Technical Sessions from the Twelfth Annual Conference of the Canadian Nuclear Society held in Saskatoon, Saskatchewan, June 9 to 12, 1991. As in previous years, the Annual Conference of the Canadian Nuclear Society was held in conjunction with the Annual Conference of the Canadian Nuclear Association. The major topics of discussion included: reactor physics; thermal hydraulics; industrial irradiation; computer applications; fuel channel analysis; small reactors; severe accidents; fuel behaviour under accident conditions; reactor components; safety related computer software; nuclear fuel management; nuclear waste management; and, uranium mining processing

  10. Nuclear Medicine Annual, 1989

    International Nuclear Information System (INIS)

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine

  11. Radiation exposure control of nuclear power plant personnel in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Mehl, J.

    1980-01-01

    The analysis of exposure records of all persons engaged in radiation work at nuclear power plants of the Federal Republic of Germany has shown that annual collective doses increase rapidly with time. The annual gross electrical energy generated from nuclear power also increases rapidly with time, corresponding to about 11% of the total gross electrical energy produced in 1977/78. Therefore, it is obvious that there is an increase of both the risk and the benefit from nuclear power production. Whether in the course of time the situation develops more towards the risk or the benefit side is learned from the history of the annual ratio of the collective dose per gross electrical energy generated. This ratio shows a significant decrease since 1972. The decrease is due to the experience gained from operation of the first-generation plants, which led to several administrative measures aimed at an improved control of the collective doses of power plant personnel in the Federal Republic of Germany. The administrative measures include, among others, the introduction of the following requirements: (a) Everyone who applies for a nuclear power plant construction licence has to provide evidence that, in the design of the plant, full use is made of the experience gained from plants in operation with respect to reduction of collective doses of the power plant personnel. (b) Everyone who engages his employees on radiation work within operations for which an operation licence is required, but which is held by others, requires a special 'contractor licence'. (c) Every person engaged in radiation work on the basis of a contractor licence must carry a special exposure record book which is registered by the competent national authority. (author)

  12. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  13. Cost-benefit analysis for environmental impacts and radwaste system for nuclear power plant

    International Nuclear Information System (INIS)

    Mun, K.N.; Yook, C.C.

    1982-01-01

    During operation of nuclear power plant, radioactive material is inevitably formed. This radioactive material must be safely processed by radwaste system so that essentially zero activity is released to the environment. However zero released activity is not really practicable and population doses resulted from released activity are proportional to total annual cost for the radwaste system. In this study, cost-benefit analysis for the radwaste system of the Korean Nuclear Units 5 and 6 is performed to evaluate the optimization between the total annual cost for the radwaste system and population doses within 80 km from the plants. From the analysis, the following results are obtained; 1. the total population dose is estimated 4.04 x 10 3 man-rem/year, 2. total annual cost for the radwaste system is required $ 1.74 x 10 6 , 3. cost-benefit ratio is estimated $ 429/man-rem. (Author)

  14. Slovak power stations, Nuclear power plants Jaslovske Bohunice. (Annual report 1997)

    International Nuclear Information System (INIS)

    1998-01-01

    A brief account of activities carried out by the Nuclear power plants Jaslovske Bohunice in 1997 is presented. These activities are reported under the headings: (1) Foreword by the director of Bohunice NPPs; (2) Management of Bohunice NPPs Subsidiary Plant; (3) The most significant events of the year 1997; (4) Electricity and heat production; (5) Safety; (6) Bohunice NPPs operation impact on environment; (7) The V-1 NPP and V-2 NPP upgrading; (8) Maintenance; (9) Capital construction; (10) Economic balance; (11) International co-operation; (12) Human sources; (12) Public relations

  15. Optimization of heat supply systems employing nuclear power plants

    International Nuclear Information System (INIS)

    Urbanek, J.

    1988-01-01

    Decision making on the further development of heat supply systems requires optimization of the parameters. In particular, meeting the demands of peak load ranges is of importance. The heat supply coefficient α and the annual utilization of peak load equipment τ FS have been chosen as the characteristic quantities to describe them. The heat price at the consumer, C V , offers as the optimization criterion. The transport distance, temperature spread of the heating water, and different curves of annual variation of heat consumption on heat supply coefficient and heat price at the consumer. A comparison between heat supply by nuclear power plants and nuclear heating stations verifies the advantage of combined heat and power generation even with longer heat transport distances as compared with local heat supply by nuclear district heating stations based on the criterion of minimum employment of peak load boilers. (author)

  16. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1997-02-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the third quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of Loviisa plant units and a shutdown at Olkiluoto 1 to identify and repair malfunctions of a high pressure turbine control valve. The load factor average of all plant units was 77.2%. Events in the third quarter of 1996 were classified level 0 on the International Nuclear Event Scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. The names of Teollisuuden Voima Oy's plant units have changed. Olkiluoto 1 and Olkiluoto 2 now replace the names TVO I and TVO II previously used in quarterly reports. (orig.)

  17. Nuclear energy: a world of service to humanity. 27th annual conference of the Canadian Nuclear Society and 30th Canadian Nuclear Society/Canadian Nuclear Association student conference

    International Nuclear Information System (INIS)

    2006-01-01

    The 27th Annual conference of the Canadian Nuclear Society was held on June 11-14, 2006 in Toronto, Ontario, Canada. The conference gathered close to 400 scientists, engineers, technologists and students interested in all aspects and applications of energy from the atom. The central objective of this conference was to provide a forum for exchange of views on how this technical enterprise can best serve the needs of humanity, now and in the future. The plenary sessions addressed broad industrial and commercial developments in the field. Over eighty papers were presented in 15 technical sessions on the following topics: safety analysis; plant refurbishment; control room operation; nuclear chemistry and materials; advanced reactor design; plant operation; reactor physics; safety analysis; nuclear instrumentation; and, nuclear general topics. Embedded in the conference was the 30th student conference, sponsored by the Canadian Nuclear Society and the Canadian Nuclear Association. Over thirty-five papers were presented in five sessions on the following topics: corrosion processes; control systems / physics / modelling; and, chemistry / chemical engineering

  18. Primary circuit contamination in nuclear power plants: contribution to occupational exposure

    International Nuclear Information System (INIS)

    Provens, H.

    2002-01-01

    In every country since the 80's, a clear downward trend is observed concerning the occupational doses at nuclear power plants, as shows the regularly decreasing annual collective dose per operating reactor. Even if technology and work management are improving, the reduction and the control of radiation sources remain one critical point. This paper summarizes the results of an extended study on the primary circuit contamination in nuclear power plants and its contribution to workers' exposure. The paper reviews the origin and mechanisms of radiation production and the different ways of radiation control or reduction based on physical and chemical parameters and not organisational or human factors. It underlines that chemistry control of the primary circuit is one essential component of radiation protection optimisation in nuclear power plants. Results reported come from scientific data in open literature and cannot be generalized to all the power plants

  19. Investment issues in nuclear plant license renewal

    International Nuclear Information System (INIS)

    Eynon, R.T.

    1999-01-01

    A method that determines the operating lives for existing nuclear power plants is discussed. These assumptions are the basis for projections of electricity supply through 2020 reported in the Energy Information Administration's (EIA's) Annual Energy Outlook 1999. To determine if plants will seek license renewal, one must first determine if they will be operating to the end of their current licenses. This determination is based on an economic test that assumes an investment of $150/kW will be required after 30 yr of operation for plants with older designs. This expenditure is intended to be equivalent to the cost that would be associated with any of several needs such as a one0time investment to replace aging equipment (steam generators), a series of investments to fix age-related degradation, increases in operating costs, or costs associated with decreased performance. This investment is compared with the cost of building and operating the lowest-cost new plant over the same 10-yr period. If a plant fails this test, it is assumed to be retired after 30 yr of service. All other plants are then considered candidates for license renewal. The method used to determine if it is economic to apply for license renewal and operate plants for an additional 20 yr is to assume that plants face an investment of $250 million after 40 yr of operation to refurbish aging components. This investment is compared with the lowest-cost new plant alternative evaluated over the same 20 yr that the nuclear plant would operate. If the nuclear plant is the lowest cost option, it is projected to continue to operate. EIA projects that it would be economic to extend the operating licenses for 3.7 GW of capacity (6 units)

  20. Strategic Nuclear Research Collaboration - FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  1. 1. Biologic monitoring at Barsebaeck nuclear power plant 1985-1997. 2. Biological monitoring at Swedish nuclear power plants in 1998. Annual report 1998

    International Nuclear Information System (INIS)

    Andersson, Jan; Mo, K.; Thoernqvist, S.

    1999-06-01

    This report gives an account for two studies on the ecological effects of effluents to the aquatic environment from the Swedish nuclear power plants: 1. The results of biological monitoring at the Barsebaeck nuclear power plant during the period 1985-1997 are summarised. Comparisons are made with a previous report from 1969-1983. The fish community was studied by fyke net test fishing in the cooling water effluent area along a gradient out to unaffected sites. The loss of young eels in the cooling water intake was estimated annually. Damage on female grey mullet oocyte development was analysed on samples of cooling water exposed fish. 2. The biological monitoring at the Swedish nuclear power plants during 1998 was with minor exceptions performed according to the established programmes. The monitoring at Forsmark is running in the enclosed Biotest basin at the cooling water outlet and in the surrounding archipelago. Reference data are collected at Finbo, NW Aaland, and in the nearby Graesoe archipelago. In 1998 as in previous years the benthic macro fauna abundance within the Biotest basin showed strong variations. In the beginning of the year abundance and biomass were low, in the autumn though, higher than average. Oskarshamn: The monitoring is performed in the small effluent bay, Hamnefjaerden bay, in the waters surrounding the cooling water plume and in a reference area, Kvaedoe-fjaerden, 100 km north of the power plant. Perch and roach catches have been high in the Hamnefjaerden bay since the late 1980's. In 1998 catches of perch were on a higher level than in 1997, both in spring and in summer. The changes for roach were small. A moderate decrease in eel catches took place in 1997 and 1998, indicating a reduced effect of stockings in the late 1980's. Ringhals: The monitoring is performed in the area close to the cooling water outlet, which is located at an open coast, and in a reference area. An attraction of yellow eel to the effluent area has been

  2. Obrigheim nuclear power station. Annual report 1987

    International Nuclear Information System (INIS)

    Koerner, C.

    1988-01-01

    The Obrigheim nuclear power station was operated at full load during the year 1987; 7.351 operating hours procuded electrical energy of 2.607 GWh. This is the fifth best annual result during Obrigheim's operating period. Since commissioning in October 1968, 139.310 hours of operation have generated 46.681 GWh (gross) and from test operation in March 1969 until the end of 1987, 138.530 hours of operation have generated 46.569 GWh. This is an availability of power of 81.6% in this period and a time availability of 83.9%. In 1987, the plant was shut down for 1.222 hours for the 18th refueling including testing, inspection and repair work. Apart from refueling, the plant had a good time availability and therefore contributed 5% to the safe, economical and environmentally acceptable electricity supply of the Land Baden-Wuerttemberg. The power station is of great significance to the region, both in terms of power supply and the economy. (orig./HP) [de

  3. Trend analysis of fire events at nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Hiroki

    2007-01-01

    We performed trend analyses to compare fire events occurring overseas (1995-2005) and in Japan (1966-2006). We decided to do this after extracting data on incidents (storms, heavy rain, tsunamis, fires, etc.) occurring at overseas nuclear power plants from the Events Occurred at Overseas Nuclear Power Plants recorded in the Nuclear Information Database at the Institute of Nuclear Safety System (INSS) and finding that fires were the most common of the incidents. Analyses compared the number of fires occurring domestically and overseas and analyzed their causes and the effect of the fires on the power plants. As a result, we found that electrical fires caused by such things as current overheating and electric arcing, account for over one half of the domestic and overseas incidents of fire, which indicates that maintenance management of electric facilities is the most important aspect of fire prevention. Also, roughly the same number of operational fires occurred at domestic and overseas plants, judging from the figures for annual occurrences per unit. However, the overall number of fires per unit at domestic facilities is one fourth that of overseas facilities. We surmise that, while management of operations that utilizes fire is comparable for overseas and domestic plants, this disparity results from differences in the way maintenance is carried out at facilities. (author)

  4. The use of nuclear energy between the market place and public debate - 1989 nuclear energy annual conference in Duesseldorf

    International Nuclear Information System (INIS)

    Lehmann, W.M.

    1989-01-01

    The Kerntechnische Gesellschaft e.V. and the Deutsches Atomforum e.V. jointly organized the traditional annual conference 'Nuclear Technology' in the Duesseldorf Messe-Congress-Center from 9th to 11th May, 1989. It took place at a time which is characterized by unbroken uncertainty about the future of the THTR, the Wackersdorf reprocessing plant, the significance of scenarios for abandoning nuclear energy and about the economic effects of the European Single Market which will become effective by 1992. Numerous papers and discussions reflected the yet unsolved problem of acceptance. (orig.) [de

  5. Enhancing nuclear safety. Annual report 2014. Financial report 2014

    International Nuclear Information System (INIS)

    2015-01-01

    After some introductory texts proposed by several IRSN head managers, and a brief presentation of some key data illustrating the activity, the annual report presents the main strategic orientations, notably in the field of knowledge management, and of information and communication. After some images illustrating the past year, activities are presented. They first deal with safety: Reactor safety (operating experience feedback), From decommissioning old reactors to designing those of the future, Safety of laboratories and plants, Safety regarding risks due to infrastructure near nuclear facilities, Reactor aging, Fuel: research on corrosion and deformation, Research and assessments for improved understanding of accident situations, Earthquakes: research and assessments, About defense, Geological disposal of radioactive waste. They secondly deal with security and non-proliferation (nuclear security, nuclear non-proliferation, chemical weapon ban), thirdly with radiation protection for human and environment health (environment monitoring, radionuclide transfer in the environment, radon and polluted sites, human exposure, radiation protection in the workplace, effects of low-dose chronic exposures, Organization of radiation protection at the European level, protection in health care), and fourthly with emergency and post-accident situations (emergency and post-accident preparedness and response, Emergency response tools). The next part of the activity report addresses issues related to efficiency: Real estate program (construction projects get started), Hygiene, safety, social responsibility, Human resources, Organization chart, Board of directors, Steering committee for the nuclear defense expertise Division - CODEND, Scientific council, Ethics commission composition, Nuclear safety and radiation protection Research policy committee - COR. The financial report proposes a management report, financial statements with an appendix to annual accounts, and an auditor

  6. Nuclear Physics Laboratory. Annual report no.21

    International Nuclear Information System (INIS)

    1986-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  7. Nuclear Physics Laboratory. Annual report no.22

    International Nuclear Information System (INIS)

    1987-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  8. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1993-01-01

    This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 steam plant. Described in this Final (Third Annual) Technical Progress Report is the accomplishment of the project's final milestone, an in-plant intelligent control experiment conducted on April 1, 1993. The development of the experiment included: simulation validation, experiment formulation and final programming, procedure development and approval, and experimental results. Other third year developments summarized in this report are: (1) a theoretical foundation for Reconfigurable Hybrid Supervisory Control, (2) a steam plant diagnostic system, (3) control console design tools and (4) other advanced and intelligent control

  9. Environmental impacts of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Horyna, J.; Horynova, H.

    1984-01-01

    The current situation in the development of nuclear power in the world and in Czechoslovakia is briefly outlined and the possibilities are discussed of alternative energy resources. The environmental impact is described of conventional power plants firing coal; sulphur and nitrogen oxides are mentioned and their environmental impacts shown. Their quantities and the quantities of other gaseous, liquid and soid wastes produced by coal power plants are given. Annual estimates are presented of radioactive material emissions; trace amount emissions of toxic metals and their ecological risks are shown. Concern over the increasing concentration of CO 2 in the atmosphere is voiced. For nuclear power plants, the amount of radionuclides in stack emission and of those released into water flows is tabulated. Their effect on the aqueous ecosystem is characterized as is thermal pollution of water flows and the environmental impact of cooling towers. Other factors are also mentioned, such as the increased industrial land use, the effect of high voltage transmission lines and aesthetic effects. The conclusion is arrived at that the construction of nuclear power plants will eliminate the adverse environmental impact of emissions while the other impacts of the two types of power plants are comparable. (A.K.)

  10. Biological recipient control at the Ringhals nuclear power plant. Annual report for 2011; Biologisk recipientkontroll vid Ringhals kaernkraftverk. Aarsrapport foer 2011

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Maria; Gustavsson, Frida; Fagerholm, Bjoern

    2012-07-01

    The cooling system of the Ringhals nuclear power plant affects the fish community in two steps. In the first step, seawater is used to cool the system in the nuclear power plant. Fish eggs, larvae and small juveniles are carried by the incoming water and are exposed to risk of damage or mortality. In the second step the heated water is released back into the sea, where the fish is affected by the increase in temperature. Reactor 1 and reactor 3 at Ringhals nuclear power plant produced electricity during the major part of the year 2011, with exceptions for the annual audits, and shorter stops in production. Reactor 2 only operated between January and April, due to a fire which led to a shutdown and a thorough remediation work during the rest of the year. Reactor 4 was producing electricity from January to June, but was later shutdown due to a prolonged annual audit until November. Fish eggs and fish larvae are sampled in the incoming cooling water using a modified Bongo net to monitor losses of eggs and larvae in the nuclear power plant. The abundance of shorthorn sculpin larvae (Myoxocephalus scorpius) has decreased since the sampling period started, although it is still the most abundant larvae. Also the abundance of rock gunnel larvae (Pholis gunnellus) has decreased over the years. To sample juvenile fish a modified Isaacs-Kidd midwater-trawl is used. This sampling is mainly focused on glass eels (Anguilla anguilla). The abundance of glass eels have declined strongly since the beginning of the 1980's, but a minor increase was observed in 2011. The decline of the glass eel abundance is most probably due to a general decrease in recruitment and not to a local effect caused by the nuclear power plant. The effects of the heated water released into the sea are monitored by fykenet surveys in the recipient as well as in a reference area. These two areas are monitored in two seasons to compare differences between the two areas in naturally cold and warm water of

  11. Annual report of the Nuclear Structure Committee

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1975 to 31 July 1976 of the Nuclear Structure Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of nuclear structure grants and laboratory agreements. (U.K.)

  12. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-04-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety that the Radiation and Nuclear Safety Authority of Finland (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the third quarter of 1997, except for the annual maintenance outages of Loviisa plant units which lasted well over a month in all. There was also a brief interruption in electricity generation at Olkiluoto 1 for repairs and at Olkiluoto 2 due to a disturbance at the turbine plant. All plant units were in long-term test operation at upgraded reactor power level approved by STUK. The load factor average of all plant units was 87.6 %. One event in the third quarter was classified level 1 on the International Nuclear Event Scale (INES). It was noted at Loviisa 2 that one of four pressurized water tanks in the plant unit's emergency cooling system had been inoperable for a year. Other events in this quarter were INES level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  13. Cost estimating relationships for nuclear power plant operationa and maintenance

    International Nuclear Information System (INIS)

    Bowers, H.I.; Fuller, L.C.; Myers, M.L.

    1987-11-01

    Revised cost estimating relationships for 1987 are presented for estimating annual nonfuel operation and maintenance (O and M) costs for light-water reactor (LWR) nuclear power plants, which update guidelines published previously in 1982. The purpose of these cost estimating relationships is for use in long range planning and evaluations of the economics of nuclear energy for electric power generation. A listing of a computer program, LWROM, implementing the cost estimating relationships and written in advanced BASIC for IBM personal computers, is included

  14. Chromosome analyses of nuclear-power plant workers

    International Nuclear Information System (INIS)

    Bauchinger, M.; Kolin-Gerresheim, J.; Schmid, E.; Dresp, J.

    1980-01-01

    A brief report is given on chromosome aberration analyses of 57 healthy male employees of six German nuclear power plants. All had received annual doses below maximum permissible occupational limit of 5 rem and had worked with radiation for periods ranging from 1 - 14 years. Exposure was mainly due to external sources of γ rays and high energy x radiation. Controls were 11 healthy males with no radiation exposure except natural background. The yields of dicentrics and acentrics were significantly higher than in the unirradiated controls, but no dose dependence was apparent. These results are compared with the dose response dependence of dicentrics + rings found in nuclear dockyard workers by Evans et al. (1979). (U.K.)

  15. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  16. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1999

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1999-12-01

    Quarterly reports on the operation of Finnish NPPs describe events and observations relating to nuclear and radiation safety that the Finnish Radiation and Nuclear Safety Authority (STUK) considers safety significant. Safety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and the environment and tabulated data on the plants' production and load factors. All Finnish NPP units were in power operation for the whole second quarter of 1999, with the exception of the annual maintenance outages of the Olkiluoto plant units. The load factor average of the plant units in this quarter was 93.1%. Two events in this quarter were classified Level 1 on the INKS Scale. At Olkiluoto 1, a valve of the containment gas treatment system had been in an incorrect position for almost a month, owing to which the system would not have been available as planned in an accident. At Olkiluoto 2, main circulation pump work was done during the annual maintenance outage and a containment personnel air lock was briefly open in violation of the Technical Specifications. Water leaking out of the reactor in an accident could not have been directed to the emergency cooling system because it would have leaked out from the containment via the open personnel air lock. Other events in this quarter had no bearing on the nuclear or radiation safety of the plant units. The individual doses of NPP personnel and also radioactive releases off-site were well below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  17. Annual report ''nuclear safety in France''

    International Nuclear Information System (INIS)

    2001-01-01

    This document is the 2001 annual report of the French authority of nuclear safety (ASN). It summarizes the highlights of the year 2000 and details the following aspects: the nuclear safety in France, the organization of the control of nuclear safety, the regulation relative to basic nuclear facilities, the control of facilities, the information of the public, the international relations, the organisation of emergencies, the radiation protection, the transport of radioactive materials, the radioactive wastes, the PWR reactors, the experimental reactors and other laboratories and facilities, the nuclear fuel cycle facilities, and the shutdown and dismantling of nuclear facilities. (J.S.)

  18. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1997-12-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which STUK - Radiation and Nuclear Safety Authority considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the second quarter of 1997, except for the annual maintenance outages of Olkiluoto plant units and the Midsummer outage at Olkiluoto 2 due to reduced demand for electricity. There were also brief interruptions in power operation at the Olkiluoto plant units due to three reactor scrams. All plant units are undergoing long-term test operation at upgraded reactor power level which has been approved by STUK The load factor average of all plant units was 88.7 %. One event in the second quarter of 1997 was classified level 1 on the INES. The event in question was a scram at Olkiluoto 1 which was caused by erroneous opening of switches. Other events in this quarter were level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  19. Integrated Nuclear Recycle Plant

    International Nuclear Information System (INIS)

    Patodi, Anuj; Parashar, Abhishek; Samadhiya, Akshay K.; Ray, Saheli; Dey, Mitun; Singh, K.K.

    2017-01-01

    Nuclear Recycle Board (NRB), Tarapur proposes to set up an 'Integrated Nuclear Recycle Plant' at Tarapur. This will be located in the premises of BARC facilities. The project location is at coastal town of Tarapur, 130 Km north of Mumbai. Project area cover of INRP is around 80 hectares. The plant will be designed to process spent fuel received from Pressurized Heavy Water Reactors (PHWRs). This is the first large scale integrated plant of the country. INRP will process spent fuel obtained from indigenous nuclear power plants and perform left over nuclear waste disposal

  20. Nuclear physics annual report 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The paper is the annual report of Manchester University Nuclear Physics Group, 1985/6. The bulk of the work has been carried out at the Nuclear Structure Facility, often in collaboration with other groups. The research programme topics include: high spin states, nuclei far from stability, reactions and fission, spectroscopy and related subjects, and technical developments. The experiments associated with these topics are described, together with the results of the investigations. (UK)

  1. The risk of storing radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Gruemm, H.

    1976-09-01

    Serious bottle-necks exist in the nuclear fuel cycle and will continue for the next decade. A total of 800 nuclear reactors are now in operation. 153 nuclear power plants represent an installed capacity of 70 GVe. Until 1985 five hundred nuclear power plants will be in operation from which up to this date 53.000 t uranium will have been discharged. Part of this will have to be reprocessed. Associated with the above mentioned amount are 500 t plutonium and 1.500 t highly radioactive wastes. Two risks for the population have to be considered: firstly, the effect of small amounts of radioactive substances released during normal operation of nuclear power plants (the annual dose is about 1 mrem per person). Secondly, the possibility of the release of great amounts of radioactivity during heavy accidents (the probability for which is extremely small). A series of feasible possibilities for conditioning are shown. Firstly, the wastes are packed in substances which are insoluble in water. Secondly, for low and medium wastes these can be mixed with concrete or bitumen and filled into stable containers. Thirdly, the wastes could also be solidified. Fourthly, the wastes could be enclosed in small glass spheres which are embedded in a metal matrix. (H.G.)

  2. CO2 Price Impacts on Nuclear Power Plant Competitiveness in Croatia

    International Nuclear Information System (INIS)

    Tomsic, Z.; Pasicko, R.

    2010-01-01

    Long term power system planning faces growing number of concerns and uncertainties, which is especially true for nuclear power plants due to their high investment costs and financial risk. In order to analyze competitiveness of nuclear power plants and optimize energy mix, existing models are not sufficient anymore and planners need to think differently in order to face these challenges. Croatia will join EU ETS (European Emission Trading Scheme) with accession to EU (probably in 2012). Thus, for Croatian electrical system it is very important to analyze possible impacts of CO 2 emissions. Analysis presented in this paper is done by electricity market simulation model PLEXOS which was used for modelling Croatian electrical system during development of the Croatian Energy Strategy in 2008. Paper analyzes impacts of CO 2 price on competitiveness of nuclear power plant within Croatian power system between 2020 and 2025. Analyzes are focused on how nuclear power plant influences total emission from the power system regarding coal and gas prices, average electricity price regarding CO 2 , coal and gas prices price. Results of this paper are showing that with emissions from Energy strategy development scenario with two new coal power plants (600 MW each) and two new gas power plants (400 MW each) until 2020, Croatia does not meet Kyoto target due to this emissions from power system. On the other side, introduction of nuclear power plants presented in this paper (1000 MW instead of one coal and one gas power plant) means nearly 6.5 Mt CO 2 emissions less annually and gives possibility to achieve Kyoto target (as this reduced amount represents nearly 22 % of Croatian Kyoto target). Results are also showing how increase in CO 2 price is enhancing competitiveness of a nuclear power plant.(author).

  3. 24 Annual meeting of the Spanish Nuclear Society: Valladolid 14-16 October 1998: program and synopsis of lectures

    International Nuclear Information System (INIS)

    1998-01-01

    The technical sessions of XXIV annual meeting of the Spanish Nuclear Society were: 1) Fusion 2) Engineering: calculation and simulation. 3) Economical, legal and social aspect 4) Plant life extension 5) Operating experiences, refueling and operation support 6) Probabilistic safety 7) Radiological protection 8) Waste Management 9) Maintenance 10) Nuclear Safety R and D 11) Environmental aspects 12) Fuel 13) Quality

  4. Nuclear plant simulation using the Nuclear Plant Analyzer

    International Nuclear Information System (INIS)

    Beelman, R.J.; Laats, E.T.; Wagner, R.J.

    1984-01-01

    The Nuclear Plant Analyzer (NPA), a state-of-the-art computerized safety analysis and engineering tool, was employed to simulate nuclear plant response to an abnormal transient during a training exercise at the US Nuclear Regulatory Commission (USNRC) in Washington, DC. Information relative to plant status was taken from a computer animated color graphics display depicting the course of the transient and was transmitted to the NRC Operations Center in a manner identical to that employed during an actual event. Recommendations from the Operations Center were implemented during on-line, interactive execution of the RELAP5 reactor systems code through the NPA allowing a degree of flexibility in training exercises not realized previously. When the debriefing was conducted, the RELAP5 calculations were replayed by way of the color graphics display, adding a new dimension to the debriefing and greatly enhancing the critique of the exercise

  5. Environmental monitoring at the Savannah River Plant. Annual report, 1979

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.; Culp, P.A.; Smith, D.L.

    1982-11-01

    An extensive surveillance program has been maintained since 1951 to determine the concentrations of radionuclides in a 1200 square mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. This document summarizes the 1979 results. The radiation dose at the plant perimeter and the population dose in the region from SRP operations are very small relative to the dose recieved from naturally occurring radiation. The annual average dose in 1979 from atmospheric releases of radioactive materials was 0.71 mrem at the perimeter (1% of natural background). The maximum dose at the plant perimeter was 0.97 mrem. Air and water are the major dispersal media for radioactive emissions. Samples representing most segments of the environment were monitored. Releases of radioactivity from SRP had a very small effect on living plants and animals and were too minute to be detectable, and with a few exceptions, concentrations outside the plant boundary were too low to distinguish from the natural radioactive background and continuing worldwide fallout from nuclear weapons tests. 40 figures, 60 tables. (MF)

  6. Performance of nuclear power plants and analysis of some factors affecting their operational reliability and economy

    International Nuclear Information System (INIS)

    Kozak, M.; Havel, S.

    1989-09-01

    In Czechoslovakia, there are eight WWER 440 type reactors in operation at present. Since their introduction into operation, nuclear power plants in Czechoslovakia have exhibited high reliability. In the paper, total parameters of reliability with an analysis of causes affecting negatively their annual utilization are presented. Existence of a computerized information system for acquisition, recording and evaluation of reliability-significant data from operation and its feedback to designers and manufacturers of nuclear power plant equipment and components is a basic requirement of a systematic assurance of the needed level of nuclear power plant reliability. The information system is used simultaneously also for realistic evaluation of aging of equipment and systems. Analysis of the state of equipment is important mainly in the final stage of the NPP during consideration of further extension of its service life. Environmental effects of the Czechoslovak NPPs are very low (favourable). It follows from comparison of annual dose equivalents of the Czechoslovak NPPs operational personnel with the foreign NPPs that the values recorded in Czechoslovakia belong to the lowest ones. In conclusion, some ways of assurance of operational safety and reliability of the Czechoslovak nuclear power plants including the role of the State regulatory body are briefly discussed. (author). 3 tabs

  7. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  8. 41st Annual Meeting of the Spanish Nuclear Society

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The Spanish Nuclear Society (SNE) is a non-profit association, made up of professionals and institutions, in order to promote awareness and dissemination of nuclear science and technology. The 41 Annual Meeting of the Spanish Nuclear Society was held in A Coruña from 23 to 25 September 2015. This Annual Meeting allows professionals and companies in the sector to analyze the current state of nuclear energy and its future challenges, covering different topics from engineering to R & D, nuclear safety, also impact on health and the environment, climate change, nuclear facilities, experience spanish companies in the management of knowledge in the nuclear sector. This congress has involved some 600 experts who have dealt with current issues and maximum interest.

  9. Nuclear Safety Bureau. Annual Report 1996-1997

    International Nuclear Information System (INIS)

    1997-01-01

    Throughout the year the Nuclear Safety Bureau (NSB) continued its regulatory approach to monitor and review the safety of nuclear plant operated by the Australian Nuclear Science and Technology Organisation (ANSTO). This included an ongoing regime of safety audits against the authorised arrangements in ANSTO's safety documentation and the bureau's expectations for nuclear plant drawn from international best practice. The NSB invited the participation of officers of the Australian Radiation Laboratory in these audits. Aspects of ANSTO's operation of nuclear plant reviewed by the NSB included training and accreditation of operations staff, abnormal occurrences, modifications to plant and emergency arrangements and exercises for the Lucas Heights Science and Technology Centre. Audits of HIFAR were also conducted on operating logs, radiation protection and radioactive discharges. Based on the reviews and audits conducted by the NSB, and ANSTO's actions in responding to the bureau's requests and requirements for actions, the NSB concluded that ANSTO's nuclear plant operated safely throughout the year, and that risks to on-site personnel and the public were maintained at acceptably low levels

  10. Application of Entry-Time Processes to Asset Management in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Nelson, Paul; Wang, Shuwen; Kee, Ernie J.

    2006-01-01

    The entry-time approach to dynamic reliability is based upon computational solution of the Chapman-Kolmogorov (generalized state-transition) equations underlying a certain class of marked point processes. Previous work has verified a particular finite-difference approach to computational solution of these equations. The objective of this work is to illustrate the potential application of the entry-time approach to risk-informed asset management (RIAM) decisions regarding maintenance or replacement of major systems within a plant. Results are presented in the form of plots, with replacement/maintenance period as a parameter, of expected annual revenue, along with annual variance and annual skewness as indicators of associated risks. Present results are for a hypothetical system, to illustrate the capability of the approach, but some considerations related to potential application of this approach to nuclear power plants are discussed. (authors)

  11. Concepts for the calculation of radiation exposure in the environment of nuclear plants for planning and surveillance purposes

    International Nuclear Information System (INIS)

    Brenk, H.D.; Vogt, K.J.; Bruessermann, K.; Schwarz, G.

    1977-01-01

    In connection with the release of radioactive substances from nuclear plants, the following requirements are to be met in respect of the assessment of radiation exposure of persons in the environment of the plant: for the purpose of planning and licencing nuclear plants, the release rates of radioactive substances are to be limited to such a degree that the dose limit values specified in the Radiation Protection Ordinance are not exceeded at any time or on any site. This applies possibly under consideration of the pre-exposure rate. For long-lived radionuclides this requirement involves the calculation of annual doses at the end of a period determined by the time of operation of the plant and by the exposure time of the persons. During the operation of nuclear plants it is necessary to calculate the radiation exposure rates resulting from the emission measured for the year of reference. This application requires the calculation of the dose commitment resulting in the future on the basis of annual emissions for persons living in the environment of the plant. In connection with the long-term prediction of the environmental impact caused by the entire nuclear industry, problems will also be arising in conjunction with the case history of the environmental exposure being subject to respective alterations as a result of additional plants

  12. Reconsidering the generation time hypothesis based on nuclear ribosomal ITS sequence comparisons in annual and perennial angiosperms

    Directory of Open Access Journals (Sweden)

    Fiz-Palacios Omar

    2008-12-01

    Full Text Available Abstract Background Differences in plant annual/perennial habit are hypothesized to cause a generation time effect on divergence rates. Previous studies that compared rates of divergence for internal transcribed spacer (ITS1 and ITS2 sequences of nuclear ribosomal DNA (nrDNA in angiosperms have reached contradictory conclusions about whether differences in generation times (or other life history features are associated with divergence rate heterogeneity. We compared annual/perennial ITS divergence rates using published sequence data, employing sampling criteria to control for possible artifacts that might obscure any actual rate variation caused by annual/perennial differences. Results Relative rate tests employing ITS sequences from 16 phylogenetically-independent annual/perennial species pairs rejected rate homogeneity in only a few comparisons, with annuals more frequently exhibiting faster substitution rates. Treating branch length differences categorically (annual faster or perennial faster regardless of magnitude with a sign test often indicated an excess of annuals with faster substitution rates. Annuals showed an approximately 1.6-fold rate acceleration in nucleotide substitution models for ITS. Relative rates of three nuclear loci and two chloroplast regions for the annual Arabidopsis thaliana compared with two closely related Arabidopsis perennials indicated that divergence was faster for the annual. In contrast, A. thaliana ITS divergence rates were sometimes faster and sometimes slower than the perennial. In simulations, divergence rate differences of at least 3.5-fold were required to reject rate constancy in > 80 % of replicates using a nucleotide substitution model observed for the combination of ITS1 and ITS2. Simulations also showed that categorical treatment of branch length differences detected rate heterogeneity > 80% of the time with a 1.5-fold or greater rate difference. Conclusion Although rate homogeneity was not rejected

  13. The 1989 annual report: Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 annual report of the Nuclear Physics Institute (Orsay, France) is presented. The results concerning exotic nuclei and structure studies by means of nuclear reactions are summarized. Research works involving the inertial fusion and the actinides are discussed. Theoretical and experimental work on the following fields is also included: high excitation energy nuclear states, heavy ion collision, intermediate energy nuclear physics, transfer reactions, dibaryonic resonances, thermodiffusion, management of radioactive wastes [fr

  14. New nuclear power plants and the electricity market competition

    International Nuclear Information System (INIS)

    Ruska, M.; Koreneff, G.

    2009-11-01

    The study assesses the effects the different nuclear power plant projects would have on crossownership, market concentration and market power in electricity market. The analyses are given both for Finnish and Nordic power markets. The authors feel that the electricity market should primarily be viewed as a common Nordic market in the future. During 2000 to 2008 the hours when Finland was an own price area ranged from 1 % to 29 % as annual averages. In the future it will be more and more seldom that Finland will become an own deficit price area, because the cross-border transmission capacity to Sweden will increase as will Finnish electricity production capacity. In addition, the extension of Nord Pool to the Baltic will increase the size of the market. The ownership of power plants is typically organized through power share companies in Finland. Two of the three nuclear power plant projects are joint ventures with several electricity producers and consumers. The current ownership relations and what effects the new projects might have on them were analyzed in this study. The competitiveness of different electricity production forms in the future was assessed using different market scenarios based on varying demand expectations. The capacity structure was assumed to stay quite unchanged, where the biggest change is expected to come from new renewable power capacity due to EU targets. Conventional condensing power production will decrease and Nordic electricity exports will increase in the future. The market concentration would increase in Finland with new nuclear plants, the most if Fortum were the builder. Vattenfall has a decidedly larger electricity production in the Nordic countries than Fortum, and Vattenfall's capacity would be unchanged by the new planned nuclear plants. The nuclear power plant projects do not therefore increase market concentration significantly on a Nordic level. Nuclear power is not used for day or hour regulation in Finland, which means

  15. Finnish research programmes on nuclear power plant safety

    International Nuclear Information System (INIS)

    Puska, E. K.

    2010-01-01

    The current Finnish national research programme on nuclear power plant safety SAFIR2010 for the years 2007-2010 as well as the coming SAFIR2014 programme for the years 2011-2014 are based on the chapter 7a, 'Ensuring expertise', of the Finnish Nuclear Energy Act. The objective of this chapter is realised in the research work and education of experts in the projects of these research programmes. SAFIR2010 research programme is divided in eight research areas that are Organisation and human, Automation and control room, Fuel and reactor physics, Thermal hydraulics, Severe accidents, Structural safety of reactor circuit, Construction safety, and Probabilistic Safety Analysis (PSA). All the research areas include both projects in their own area and interdisciplinary co-operational projects. Research projects of the programme are chosen on the basis of annual call for proposals. In 2010 research is carried out in 33 projects in SAFIR2010. VTT is the responsible research organisation in 26 of these projects and VTT is also the coordination unit of SAFIR2010 and SAFIR2014. In 2007-2009 SAFIR2010 produced 497 Specified research results (Deliverables), 618 Publications, and 33 Academic degrees. SAFIR2010 programme covers approximately half of the reactor safety research volume in Finland currently. In 2010 the programme volume is EUR 7.1 million and 47 person years. The major funding partners are VYR with EUR 2.96 million, VTT with EUR 2.66 million, Fortum with EUR 0.28 million, TVO with EUR 0.19 million, NKS with EUR 0.15 million, EU with only EUR 0.03 million and other partners with EUR 0.85 million. The new decisions-in-principle on Olkiluoto unit 4 for Teollisuuden Voima and new nuclear power plant for Fennovoima ratified by the Finnish Parliament on 1 July 2010 increase the annual funding collected according to the Finnish Nuclear Energy Act from Fennovoima, Fortum and Teollisuuden Voima for the SAFIR2014 programme to EUR 5.2 million from the current level of EUR 3

  16. The availability of German nuclear power plants and possible further improvements

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1985-01-01

    West Germany's 19 nuclear power plants with a capacity of 17,000 MW are actually producing about 30% of the public electricity generation. In 1984 they produced 93 billion kWh; three plants produced more than 10 billion kWh each. Most of the plants are Pressurized Water Reactors (PWR), some are Boiling Water reactors (BWR), of which the largest units went into operation recently. Considering the availability of German nuclear power plants meanwhile achieved no major systems modifications or changes in materials used are required for the time being. Instead, plant standardization is the target to be pursued. This paper discusses that the standardization of the plants allows to set up a spare part pool not just for one unit but for a parc of units. With experience of operation, maintenance and repair accumulating it is possible to have tool and repair procedures prepared well in advance for all foreseeable incidents. More optimized and automated equipment for refueling is under development to reduce even further the present annual refueling time of 30 days

  17. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  18. Malaysian Nuclear Agency: Annual report 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2008. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2008 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  19. Malaysian Nuclear Agency: Annual report 2009

    International Nuclear Information System (INIS)

    2009-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2009. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2009 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  20. Malaysian Nuclear Agency: Annual report 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2010. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2010 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  1. Malaysian Nuclear Agency; Annual report 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2013. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2013 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers

  2. Malaysian Nuclear Agency; Annual report 2014

    International Nuclear Information System (INIS)

    2009-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2014. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2014 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers

  3. Malaysian Nuclear Agency; Annual report 2011

    International Nuclear Information System (INIS)

    2008-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2011. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2011 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  4. US Nuclear Regulatory Commission 1983 annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The thirteen chapters of this annual report are titled: 1983 highlights/1984 planning; reactor regulation; cleanup at TMI-2; operational experience; nuclear materials; safeguards; waste management; inspection, enforcement and emergency preparedness; cooperation with the states; international programs; nuclear regulatory research; proceedings and litigation; and management and communication

  5. Regulatory control of nuclear safety in Finland. Annual report 2008

    International Nuclear Information System (INIS)

    Kainulainen, E.

    2009-06-01

    This report covers the regulatory control of nuclear safety in 2008, including the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The control of nuclear facilities and nuclear waste management, as well as nuclear non-proliferation, concern two STUK departments: Nuclear Reactor Regulation and Nuclear Waste and Material Regulation. It constitutes the report on regulatory control in the field of nuclear energy, which the Radiation and Nuclear Safety Authority (STUK) is required to submit to the Ministry of Employment and the Economy pursuant to section 121 of the Finnish Nuclear Energy Decree. The first parts of the report explain the basics of the nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision. The chapter also includes a summary of the application of the updated YVL Guides to nuclear facilities. The section concerning the regulation of nuclear facilities contains a complete safety assessment of the nuclear facilities currently in operation or under construction. For the nuclear facilities in operation, the section describes plant operation, events during operation, annual maintenance, development of the plants and their safety, and observations made during monitoring. Data and observations gained during regulatory activities are reviewed with a focus on ensuring the safety functions of nuclear facilities and the integrity of structures and components. The report also includes a description of the oversight of the operations and quality management of organisations, oversight of operational experience feedback activities, and the results of these oversight activities. The radiation safety of nuclear

  6. The Community's research and development programme on decommissioning of nuclear power plants. Fourth annual progress report (year 1983)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This is the fourth progress report of the European Community's program. (1979-83) of research on decommissioning of nuclear power plants. It covers the year 1983 and follows the 1980, 1981 and 1982 reports (EUR 7440, EUR 8343, EUR 8962). The present report describes the further progress of research and contains a large amount of results. For a majority of the 51 research contracts composing the 1979-83 programme, work was completed by the end of 1983; the conclusions drawn from this work are in this report. The European Community's program deals with the following fields: long-term integrity of buildings and systems; decontamination for decommissioning purposes; dismantling techniques; treatment of specific wastes materials (steel, concrete and graphite); large transport containers for radioactive waste produced in the dismantling of nuclear power plants; estimation of the quantities of radioactive waste arising from the decommissioning of nuclear power plants in the Community; influence of nuclear power plant design features on decommissioning

  7. Annual report 2003

    International Nuclear Information System (INIS)

    2003-01-01

    Delivering products and services to nuclear power plants operators, AREVA operates in every sector of the civilian nuclear power and fuel cycle industry. This annual report 2003 provides, in seven chapters, information on persons responsible for the annual report and for auditing the financial statements, general information on the company and share capital (statute, capital, share trading, dividends), information on company operations, changes and future prospects, assets, financial position and financial performance, corporate governance, recent developments and future prospects. (A.L.B.)

  8. Economics of Nuclear Power Plant and the development of nuclear power in Viet Nam

    International Nuclear Information System (INIS)

    Thanh, Thuy Nguyen Thi; Song, JinHo; Ha, Kwang Soon

    2015-01-01

    There are many factors affecting the capital costs like: increased plant size, multiple unit construction, improved construct methods, increase the lifetime of plant and so on, and beside is technical to enhancing the safety for NPPs. For the question that whether building a NPP is really economic than other energy resources or not, we will find the answer by comparing the USD per kWh of different energy sources as: nuclear power, coal, oil, hydro natural energy sources. The situation of energy in Vietnam was also mentioned in this paper. Vietnam has an abundant natural resources likes: coal, gas, hydro power etc, but from year 2013 to now Vietnam facing of electricity shortage and to solve the problem, Vietnam Government has chosen nuclear power energy to achieve energy balance between the rate of energy consumption and the ability to energy supply. Eight units will be built in Vietnam and in October 2014 Vietnamese officials have chosen Rosatom's AES-2006 design with VVER-1200/v-491 reactors for country's first nuclear power plant at Ninh Thuan and a second plant should follow based on a partnership with Japan. In this paper, the breakdown of NPP costs is considered. All the costs for building a NPP includes: the investment costs are the largest components (about 60%), fuel costs (15%), O and M costs (25%) and external costs are lower than 1% of the kWh costs. The situation for energy in Vietnam was mentioned with increase annually by 5.5 %, and now the shortage electricity is the big problem in power section. The purpose of this report is to give a general picture to consider the cost of nuclear power. It includes all the costs for building a nuclear power plant like total capital investment costs, production costs, external costs in which the capital investment costs is the largest component of the kWh cost. Nuclear energy Power was chosen to deal with situation of diminishing resources shortages

  9. Economics of Nuclear Power Plant and the development of nuclear power in Viet Nam

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Thuy Nguyen Thi; Song, JinHo [University of Science and Technology, Daejeon (Korea, Republic of); Ha, Kwang Soon [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    There are many factors affecting the capital costs like: increased plant size, multiple unit construction, improved construct methods, increase the lifetime of plant and so on, and beside is technical to enhancing the safety for NPPs. For the question that whether building a NPP is really economic than other energy resources or not, we will find the answer by comparing the USD per kWh of different energy sources as: nuclear power, coal, oil, hydro natural energy sources. The situation of energy in Vietnam was also mentioned in this paper. Vietnam has an abundant natural resources likes: coal, gas, hydro power etc, but from year 2013 to now Vietnam facing of electricity shortage and to solve the problem, Vietnam Government has chosen nuclear power energy to achieve energy balance between the rate of energy consumption and the ability to energy supply. Eight units will be built in Vietnam and in October 2014 Vietnamese officials have chosen Rosatom's AES-2006 design with VVER-1200/v-491 reactors for country's first nuclear power plant at Ninh Thuan and a second plant should follow based on a partnership with Japan. In this paper, the breakdown of NPP costs is considered. All the costs for building a NPP includes: the investment costs are the largest components (about 60%), fuel costs (15%), O and M costs (25%) and external costs are lower than 1% of the kWh costs. The situation for energy in Vietnam was mentioned with increase annually by 5.5 %, and now the shortage electricity is the big problem in power section. The purpose of this report is to give a general picture to consider the cost of nuclear power. It includes all the costs for building a nuclear power plant like total capital investment costs, production costs, external costs in which the capital investment costs is the largest component of the kWh cost. Nuclear energy Power was chosen to deal with situation of diminishing resources shortages.

  10. Nuclear Safety Project - annual report 1980

    International Nuclear Information System (INIS)

    1981-08-01

    The Annual Report 1980 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1980 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work completed, essential results, plans for the near future. (orig./RW) [de

  11. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  12. Nuclear physics annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the annual report of the Schuster Laboratory, Manchester University Nuclear Physics Group, United Kingdom, 1986-7. Much of the work has been carried out at the Daresbury Nuclear Structure Facility, often in collaboration with other U.K. groups and with foreign participation. The report contains the work on: studies of light nuclei, spectroscopy of medium mass nuclei, low and high spin spectroscopy of nuclei with A ≥ 100, and the fission process. Technical developments carried out at the Laboratory are also described. (U.K.)

  13. Maintenance risk management in Dayabay nuclear power plant

    International Nuclear Information System (INIS)

    He Xuhong; Tong Jiejuan

    2005-01-01

    The importance of proper maintenance to safe and reliable nuclear plant operation has long been recognized by the nuclear utility and regulatory body. This paper presents a process of maintenance risk management developed for a Chinese Nuclear Power Plant (NPP). The process includes three phases: (I) long term maintenance plan risk management, (II) monthly maintenance plan risk management, and (III) detailed risk management for high risk configuration. A risk matrix is developed for phase I whose purpose is to provide a rough guide for risk management in the making of the annual maintenance plan. For Phase II and Phase III, a software tool named Maintenance- Risk-Monitor is developed based on the internal initiating event, level 1 PSA model. The results of Phase II are the risk information of the all plant configurations caused by the unavailability of the components included the monthly maintenance plan. When the increase of core damage frequency (CDF) or the incremental core damage probability (ICDP) of a configuration is higher than the corresponding thresholds, Phase III is needed for this high risk configuration to get the useful information such as risk-importance components, human actions and initial events, from which appropriate preventive measurements could be derived. It is hoped that the provided process of maintenance risk management, together with the developed software tool, could facilitate the maintenance activities in the NPPs of China. (authors)

  14. Hazards to nuclear plants from off-site release of toxic vapors

    International Nuclear Information System (INIS)

    Hornyik, K.

    1976-01-01

    A method for the assessment of risk involved in shipping toxic compounds past nuclear power plants uses a postulated chain of events, starting with a traffic accident causing instantaneous release of the compound as vapor, and leading to incapacitation of control operators in the nuclear plant, described by deterministic and statistical models as appropriate to the respective event. Statistical treatment of relevant atmospheric conditions is a major improvement over more conservative assumptions commonly made in current analyses of this problem. Consequently, one obtains a substantial reduction in the estimated risk expressed in usual terms of the annual probability of an unacceptable event, in spite of the fact that no credit is taken for protective measures other than potential control room isolation

  15. Nuclear Structure Committee annual report 1976-1977, nuclear structure grants and laboratory agreements

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1976 to 31 July 1977 of the Nuclear Structure Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of nuclear structure grants and laboratory agreements. (U.K.)

  16. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  17. Federal securities law and the need to disclose the risk of canceling nuclear plant

    International Nuclear Information System (INIS)

    Sponseller, D.

    1984-01-01

    Almost every electric utility company involved in nuclear plant construction has experienced difficulty as a result of the deteriorating condition of the nuclear industry as a whole. The thrust of a growing number of lawsuits brought against electric companies for alleged violations of federal securities laws is that the companies failed to reveal cost overruns, delays, and the risk of cancellation and write-off of nuclear plants in their annual reports and registration statements. A review of several suits and the disclosure requirements of securities statutes concludes that, although investors have known about utility problems, they have just become aware this year that the entire financial viability of the electric companies is threatened

  18. Carbon Emission Impact for Energy Strategy in which All Non-CSS Coal Power Plants Are Replaced by Nuclear Power Plants

    International Nuclear Information System (INIS)

    Knapp, V.; Matijevic, M.; Pevec, D.; Lale, D.

    2016-01-01

    The Paris climate conference recognized the urgency of measures to mitigate climate changes and achieved an agreement on the targets for future decades. We wish to show that advanced LWR initiated nuclear strategy can offer us long term carbon free energy future. Human action is putting carbon dioxide into atmosphere where it resides effectively for hundreds of years. We are forced to look ahead on the same time scale but we have much shorter time to act as we almost used up the quota of emission of carbon before disaster would be unavoidable, as shown in paper by Meinshausen et al. and IPCC report. We have to change our ways of relying on fossil fuel dramatically in the next few decades. It would be a change in use of fossil fuel which cannot be achieved with usual business practices. Arising awareness of reality and threat of global warming in parallel with fading promise of nuclear fusion and Carbon Capture and Storage (CCS) technology, should convince the public to accept nuclear fission contribution to climate change mitigation, at least for the climate critical years up to 2065. Nuclear fission has the additional value of supporting intermittent sources by covering the base load consumption. It can be available now, with proven reactors, such as advanced LWR reactors. Nuclear strategy in this paper outlines a proposal to replace all non-CCS coal power plants with nuclear power plants in the period 2025-2065. Assuming once through advanced LWR technology, one would need nuclear capacity of 1600 GW to replace coal power plants in the period 2025-2065. Corresponding reduction of emission would amount to 11.8 Gt of CO2. This energy strategy would reduce carbon emission by approximately 22 percent in the year 2065. The annual uranium requirements and the cumulative uranium requirements, as well as the annual plutonium production and cumulative plutonium production for the proposed nuclear strategy are determined. A possibility of larger reduction of carbon

  19. Annual meeting on nuclear technology. Opening address

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Ralf [DAtF, Berlin (Germany)

    2014-07-15

    The operators of Germany's nuclear power plants continue to make their contribution to the security of supply with the safe and reliable operation of their plants, thus ensuring the success of the energy transition. Despite increased load following operation due to a further increase in feed-in especially of volatile renewable energies, three German nuclear power plants were in the Top Ten global producers of electricity from nuclear energy in 2013. In spite of not producing an equivalent of seven full-load days due to load following operation, the Isar 2 nuclear power plant once again bears the proud title of 'world champion producer'. This balance is also an impressive performance record for nuclear power made in Germany. Despite the accelerated nuclear phase-out, German plants with German operators, and suppliers and service providers based mainly in Germany, are in the top category worldwide once more. Since the end of last year Germany has a new Federal Government as a new version of the grand coalition of 2005 to 2009. The government has set new priorities in the energy sector. However, on many questions concerning nuclear energy, particularly the complex topics of decommissioning and waste management, we are still seeing far too little movement at present. Main topics are: - New site selection process for final repository for high active waste, - Alternative interim storage - just not Gorleben, - Decommissioning, dismantling and administrative bottlenecks, - Lack of predictability for low and medium active waste, - Nuclear fuel tax, electricity market and security of supply, - Electricity market, security of supply and regulation. (orig.)

  20. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  1. Council for Nuclear Safety annual report 1988/89

    International Nuclear Information System (INIS)

    1989-01-01

    An overview of the structure, duties and activities of the Council for Nuclear Safety during 1988/1989 is presented in this annual report. It is the Council's first duty to ensure that all aspects - siting, design, construction and operation - in all areas of the nuclear industry, from mining of the nuclear ores to the ultimate disposal of nuclear waste, are conducted in such a manner that the potential for harm associated with the radioactive properties of the materials involved is kept under proper control. In order to achieve this the Council is responsible for the establishment and application of safety standards, the issuing of nuclear licenses and the evaluation and inspection of nuclear installations to ensure that the licensees are complying with the conditions laid down in the license and that they are adhering to all the safety criteria established by the Council. Other information contained in this annual report is, inter alia, the financial statements of the Council, the meetings attended by members of the Council and the administrative and management aspects of the Council. 8 figs

  2. Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report

    International Nuclear Information System (INIS)

    Bond, L.G.; Doctor, S.R.; Gilbert, R.W.; Jarrell, D.B.; Greitzer, F.L.; Meador, R.J.

    2000-01-01

    OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities

  3. Life management plants at nuclear power plants PWR

    International Nuclear Information System (INIS)

    Esteban, G.

    2014-01-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  4. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  5. Cost structure analysis of commercial nuclear power plants in Japan based on corporate financial statements of electric utility companies

    International Nuclear Information System (INIS)

    Kunitake, Norifumi; Nagano, Koji; Suzuki, Tatsujiro

    1998-01-01

    In this paper, we analyze past and current cost structure of commercial nuclear power plants in Japan based on annual corporate financial statements published by the Japanese electric utility companies, instead of employing the conventional methodology of evaluating the generation cost for a newly constructed model plant. The result of our study on existing commercial nuclear plants reveals the increasing significance of O and M and fuel cycle costs in total generation cost. Thus, it is suggested that electric power companies should take more efforts to reduce these costs in order to maintain the competitiveness of nuclear power in Japan. (author)

  6. Nuclear Safety Project. Annual report 1983

    International Nuclear Information System (INIS)

    1984-06-01

    The annual report 1983 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1983 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig.) [de

  7. Nuclear safety project. Annual report 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The annual report 1985 is a detailed description (in German language) of work within the nuclear safety project performed in 1985 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./HP) [de

  8. Annual report 1999 - Brazil Nuclear Industry (INB)

    International Nuclear Information System (INIS)

    2000-01-01

    This document presents the 1999 annual report covering the following activities: nuclear fuel, resources and application, ISO 9001, environment social activities, personnel, financial indicators, and countability

  9. Embracing the future: Canada's nuclear renewal and growth. 28th annual conference of the Canadian Nuclear Society and 31st CNS/CNA student conference

    International Nuclear Information System (INIS)

    2007-01-01

    The 28th Annual Conference of the Canadian Nuclear Society and 31st CNS/CNA Student Conference was held on June 3-6, 2007 in Saint John, New Brunswick. The central objective of this conference was to provide a forum for exchange of views on how this technical enterprise can best serve the needs of humanity, now and in the future. 'Embracing the Future: Canada's Nuclear Renewal and Growth' was the theme for this year's gathering of nuclear industry experts from across Canada and around the world. This theme reflects the global renaissance of interest in nuclear technology, strongly evident here in Canada through plant refurbishments (underway and planned), new-build planning, renewal and expansion of the nuclear workforce, and growth in public support for environmentally sustainable technology. Topics for discussion at this conference include: the nuclear renaissance in Canada and around the world, recent developments at Canadian utilities, status of plant refurbishment and new build plans, and uranium supply issues. For business, energy, and science reporters this conference offers an insight into major nuclear projects and an opportunity to meet leaders in the nuclear sector. Over 100 technical papers were presented, as well as over 20 student papers, in the following sessions: control room operation; safety analyses; environment and waste management; plant life management and refurbishment; reactor physics; advanced reactor design; instrumentation control; general nuclear topics and standards; chemistry and materials; probabilistic safety assessment; and, performance improvement

  10. Operating experience from Swedish nuclear power plants 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The total production of electricity from Swedish nuclear power plants was 69.2 TWh during 2001, which is an increase of more than 25% compared to 2000. The hydroelectric power production increased to 78.3 TWh, 22% more than during a normal year, i.e. a year with average rainfall. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 9.6 TWh. The electricity generation totalled 157.6 TWh, the highest annual production to date. The preliminary figures for export were 18.5 TWh and and for import 11.1 TWh. Operational statistics are presented for each Swedish reactor. Two events, given INES level 1 rating, are reported from Barsebaeck 2 and Ringhals 2.

  11. Operating experience from Swedish nuclear power plants 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The total production of electricity from Swedish nuclear power plants was 69.2 TWh during 2001, which is an increase of more than 25% compared to 2000. The hydroelectric power production increased to 78.3 TWh, 22% more than during a normal year, i.e. a year with average rainfall. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 9.6 TWh. The electricity generation totalled 157.6 TWh, the highest annual production to date. The preliminary figures for export were 18.5 TWh and and for import 11.1 TWh. Operational statistics are presented for each Swedish reactor. Two events, given INES level 1 rating, are reported from Barsebaeck 2 and Ringhals 2

  12. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  13. Nuclear the next generation. 34th Annual Canadian Nuclear Society conference and 37th CNS/CNA student conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The 34th Annual Canadian Nuclear Society Conference and 37th CNS/CNA Student Conference was held in Toronto, Ontario, Canada on June 10-13, 2013. With the theme of the conference, 'Nuclear the Next Generation{sup ,} the conference actively engaged 400 participants in the many facets of this well-rum event. The conference combined excellent plenary speakers, a full set of technical papers, challenging student poster competitions, and interesting exhibits. The plenary session focussed on the themes: 'Nuclear Power - a Business Driver for the Next Generation'; and, 'Designing - the Next Generation'. The technical session titles were: Reactor and Radiation Physics; Environment and Spent Fuel Management; Operations and Maintenance; Fusion Science and Technology; Advanced Reactors and Fuels; Plant Life Extension, Refurbishment and Aging; Safety and Licensing; Chemistry and Materials; and, Thermalhydraulics. The student conference session was well attended and completed the 4 day event.

  14. Annual colloquium 1976 of the project nuclear safety

    International Nuclear Information System (INIS)

    1976-11-01

    The present report gives the full text of the nine papers read during the annual colloquium 1976 of the Project Nuclear Safety at Karlsruhe Nuclear Research Centre, in which the main activities and findings of the project in 1976 are contained. (RW) [de

  15. Complex nuclear safety evaluation of the Bohunice V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Kriz, Z.

    1991-01-01

    The safety concept of V-230 type reactor units dates back to the late 1960s. The units fail to be sufficiently dimensioned for emergency cooling of the reactor core and are fitted with no containment. So far, operating experience is good. The availability factor is 71.5% for unit 1 and 77.8% for unit 2. There occur 1 to 3 unscheduled shutdowns annually. The quality of steam generator tubes is very good. A complex safety assessment of the plant was accomplished in 1990. It concerned the concept and criteria of safety assessment, the earthquake situation, the condition of the primary coolant circuit equipment, the control system, the effect of the human factor, and preparedness of emergency plans. OSART and ASSET missions were accomplished at the plant. Based on the results of the missions as well as of inspections by the State Surveillance over Nuclear Safety, the decision has been adopted to operate the plant not longer than till 1995; the further fate of the plant will be decided on according to a future technical and economic analysis. (M.D.)

  16. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  17. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  18. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  19. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  20. Technical evaluation of RETS-required reports for the Edwin I. Hatch Nuclear Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Young, T.E.; Magleby, E.H.

    1985-01-01

    A review of the reports required by federal regulations and the plant-specific Radiological Effluent Technical Specifications (RETS) for operations conducted during 1983 was performed. The periodic reports reviewed for the Edwin I. Hatch Nuclear Plant were the Annual Radiological Environmental Operating Report for 1983 and the Semiannual Radioactive Effluent Release Reports for 1983. The principal review guidelines were the plant's specific RETS, NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants'', and NRC Guidance on the Review of the Process Control Programs. The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines. 7 refs

  1. Technical evaluation of RETS-required reports for Crystal River Nuclear Generating Plant, Unit 3, for 1983

    International Nuclear Information System (INIS)

    Magleby, E.H.; Young, T.E.

    1985-01-01

    A review was performed on the reports required by Federal regulations and the plant-specific Radiological Effluent Technical Specifications (RETS) for operations conducted at Florida Power Corporation's Crystal River Nuclear Plant, Unit 3, during 1983. The three periodic reports reviewed were (1) the Effluent and Waste Disposal Semiannual Report, January 1-June 30, 1983, (2) the Effluent and Waste Disposal Semiannual Report, July 1-December 31, 1983, and (3) the Annual Environmental Operating Report, Radiological, 1983. The principal review guidelines were the plant's specific RETS and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines

  2. Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    L. J. Bond; S. R. Doctor; R. W. Gilbert; D. B. Jarrell; F. L. Greitzer; R. J. Meador

    2000-09-01

    OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities.

  3. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  4. An analysis of nuclear plant operating costs: A 1991 update

    International Nuclear Information System (INIS)

    1991-05-01

    This report updates a 1988 Energy Information Administration (EIA) report which examined trends in nonfuel operating costs at the Nation's nuclear power plants. Nonfuel operating costs are comprised of operating and maintenance (O ampersand M) costs and capital expenditures incurred after a plant begins operating. Capital expenditures are typically called ''capital additions'' because the costs are added to the utility's rate base and recovered as a depreciation expense over several years, the number of years being regulated by State Public Utility Commissions. These costs consist of large maintenance expenditures needed to keep a plant operational as well as those needed to make plant modifications mandated by the Nuclear Regulatory Commission (NRC) or implemented at the utility's discretion. The 1988 report found that from 1974 through 1984, the last year for which data were available, nuclear power plant nonfuel operating costs escalated by 14 percent annually in real terms. The objective of the present study was to determine whether trends in nonfuel operating costs have changed since 1984, if there was any change in the underlying factors influencing these costs, and if so, how these changes affect the basic conclusions of the 1988 report. The general trends are encouraging: Total nonfuel operating costs peaked in 1984 and have been lower since that time; O ampersand M costs have been rising, but at a much lower rate than seen from 1974 through 1984; capital additions costs have actually been declining. 9 figs., 12 tabs

  5. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  6. Nuclear security - New challenge to the safety of nuclear power plants

    International Nuclear Information System (INIS)

    Li Ganjie

    2008-01-01

    The safety of nuclear power plants involves two aspects: one is to prevent nuclear accidents resulted from systems and equipments failure or human errors; the other is to refrain nuclear accidents from external intended attack. From this point of view, nuclear security is an organic part of the nuclear safety of power plants since they have basically the same goals and concrete measures with each other. In order to prevent malicious attacks; the concept of physical protection of nuclear facilities has been put forward. In many years, a series of codes and regulations as well as technical standard systems on physical protection had been developed at international level. The United Nations passed No. 1540 resolution as well as 'Convention on the Suppression of Acts of Nuclear terrorism', and revised 'Convention on Physical Protection of Nuclear Materials', which has enhanced a higher level capacity of preparedness by international community to deal with security issues of nuclear facilities. In China, in order to improve the capability of nuclear power plants on preventing and suppressing the external attacks, the Chinese government consecutively developed the related codes and standards as well as technical documents based on the existing laws and regulations, including 'Guide for the Nuclear Security of Nuclear Power Plants' and 'Guide for the Physical Protection of Nuclear Materials', so as to upgrade the legislative requirements for nuclear security in power plants. The government also made greater efforts to support the scientific research and staff training on physical protection, and satisfying the physical protection standards for newly-built nuclear facilities such as large scale nuclear power plants to meet requirement at international level. At the same time old facilities were renovated and the Chinese government established a nuclear emergency preparedness coordination mechanism, developed corresponding emergency preparedness plans, intensified the

  7. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  8. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  9. Sustainable development through nuclear technology : 29th annual conference of the Canadian Nuclear Society and 32nd CNS/CNA student conference

    International Nuclear Information System (INIS)

    2008-01-01

    The 29th Annual Conference of the Canadian Nuclear Society and 32nd CNS/CNA Student Conference on Sustainable Development through Nuclear Technology was held on June 1-4, 2008 in Toronto, Ontario, Canada. The theme of the conference was 'Nuclear Sustainability'. The central objective of this conference was to provide a forum for exchange of views on how this technical enterprise can best serve the needs of humanity, now and in the future. The renewed global interest in nuclear technology is based on a recognition of its potential to meet economic and environmental targets more favourably than competing technologies. Although many of these attractions are short-term in nature, they stem from a broader potential of nuclear technology to drive all aspects of development (social, environmental, economic) in a sustainable in this area. (author) a terial in support of fuel resources themselves. The conference drew a record attendance of over 450 delegates. Over 100 technical papers were presented within 15 technical sessions, as well as over 30 student papers in 5 sessions. The following list of session titles indicates the diversity of the technical papers: advanced reactors; plant and components; process systems; thermalhydraulics; safety and licensing; hydrogen; human factors; physics; instrumentation and control; environment and waste management; and plant operation. (author)

  10. Power Reactor Docket Information. Annual cumulation (citations)

    International Nuclear Information System (INIS)

    1977-12-01

    An annual cumulation of the citations to the documentation associated with civilian nuclear power plants is presented. This material is that which is submitted to the U.S. Nuclear Regulatory Commission in support of applications for construction and operating licenses. Citations are listed by Docket number in accession number sequence. The Table of Contents is arranged both by Docket number and by nuclear power plant name

  11. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  12. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1991-01-01

    In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this First Annual Technical Progress report summarizes the first year tasks while the appendices provide detailed information presented at conference meetings. One major addendum report, authored by M.A. Schultz, describes the ultimate goals and projected structure of an automatic distributed control system for EBR-2. The remaining tasks of the project develop specific implementations of various components required to demonstrate the intelligent distributed control concept

  13. Improvement of the nuclear plant analyzer for Korean Standard Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Sung Soo; Han, Byoung Sub; Suh, Jae Seung; Son, Dae Seong

    2005-04-01

    Accurate analysis of the operating characteristics of Nuclear Power Plants provides valuable information for both norman and abnormal operation. The information can be used for the enhancement of plant performance and safety. Usually, such analysis is performed using computer codes used for plant design or simulators. However, their usages are limited because special expertise is required to use the computer codes and simulators are not portable. Therefore, it deemed necessary to develop an NPA which minimizes those limitations and can be used for the analysis and simulation of Nuclear Power Plants. The purpose of this study is to develop a real-time best-estimate NPA for the Korean Nuclear Power Plants(KSNP). The NPA is an interactive, high fidelity engineering simulator. NPA combines the process model simulating the plant behavior with the latest computer technology such as Graphical User Interface(GUI) and simulation executive for enhanced user interface. The process model includes models for a three-dimensional reactor core, the NSSS, secondary system including turbine and feedtrain, safety auxiliary systems, and various control systems. Through the verification and validation of the NPA, it was demonstrated that the NPA can realistically simulate the plant behaviors during transient and accident conditions

  14. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  15. [Experimental nuclear physics]. Annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    This is the April 1989 annual report of the Nuclear Physics Labortaory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, computer systems, instrumentation, and the Laboratory`s booster linac work. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1988-1989 academic year, and publications. Refs., 23 figs., 3 tabs.

  16. The United States nuclear plant reliability data program: Its description and status

    International Nuclear Information System (INIS)

    Wise, M.J.

    1975-01-01

    The American National Standards Institute Subcommittee N18-20 has developed and implemented the United States Nuclear Plant Reliability Data System (NPRDS). The NPRDS is designed to accumulate, store, analyse, and report reliability and failure statistics on systems and components of nuclear power plants related to nuclear safety. Input data to the NPRDS consist of engineering, operating, and failure information submitted on a voluntary basis by participating utilities. Prior to entry into the computerized data base, the data are thoroughly checked for accuracy by both the submitting organizations and the NPRDS operating contractor. The data base is the source of various periodic output reports to the nuclear power industry and is utilized to produce special reports upon request. The present data base represents data accumulated from about thirty nuclear units with additional units expected to begin submitting data immediately. The objective is to have essentially all operating nuclear units in the United States of America participating in the program by the end of 1975. The first NPRDS annual reports containing meaningful reliability and failure statistics are expected to be produced following the end of 1975. (author)

  17. 2007 annual meeting on nuclear technology. Report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    This year's Annual Nuclear Technology Conference (JK) organized by the Deutsches Atomforum e.V. (DAtF) and the Kerntechnische Gesellschaft e.V. (KTG) was held in Karlsruhe on May 22-24. The attendance of more than 1,200 persons from 21 nations, and the increase in participation over the past few years, underline the role of this specialized congress as one of the leading international events in the field of the peaceful uses of nuclear power. The first day of the conference, with its plenary presentations, traditionally focused mainly on political and economic problems of the use of nuclear power. The situation of nuclear power in the United Kingdom, the key country of this year's meeting, was covered in depth. As usual, the program of the three-day event was organized as follows: plenary sessions on the first day were followed by topical sessions, technical sessions, and special events on the other days. This year, the conference featured a record program of 251 papers presented at these sessions. The 'Nuclear Power Campus' was arranged very successfully for the 5th time as an event comprising lectures and a 'hands-on' exhibition explaining the world of nuclear power in a transparent way to students from schools and universities. The special commitment to young scientists and to the preservation of competence in the nuclear field were emphasized at the JK 2007, among other things, in a workshop on 'Preservation of Competence in Nuclear Technology'. Nearly 20 young scientists presented results of their scientific work. The Annual Meeting on Nuclear Technology was accompanied by a specialized exhibition with meeting points of industry organized by 33 manufacturers, vendors, and service companies. (orig.)

  18. Public regulation of nuclear plants

    International Nuclear Information System (INIS)

    Burtheret, M.; Cormis, de

    1980-01-01

    The construction and operation of nuclear plants are subject to a complex system of governmental administration. The authors list the various governmental authorisations and rules applicable to these plants. In the first part, they describe the national regulations which relate specifically to nuclear plants, and emphasize the provisions which are intended to ensure the safety of the installations and the protection of the public against ionizing radiation. However, while the safety of nuclear plants is a major concern of the authorities, other interests are also protected. This is accomplished by various laws or regulations which apply to nuclear plants as well as other industrial installations. The duties which these texts, and the administrative practice based thereon, impose on Electricite de France are covered in the second part [fr

  19. 2005 annual nuclear technology conference

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This year's Annual Nuclear Technology Conference of the Deutsches Atomforum and Kerntechnische Gesellschaft was held in Nuremberg on May 10-12, 2005. More than 1 100 participants from eighteen countries make this specialized event one of the largest international conventions in the field of the peaceful uses of nuclear power, whose attendance has steadily increased over the past few years. The first day of the conference was devoted to plenary lectures traditionally dealing mainly with political and economic problems of the use of nuclear power. The partner country of JK 2005 was Switzerland. Traditionally, the program of the three-day conference was organized in the proven format of plenary sessions on the first day, followed by technical sessions, specialized sessions, poster sessions, and special events on the following days. For the third time, the ''Nuclear Campus'' was organized which successfully made the world of nuclear technology transparent to high school and university students in lectures and an exhibition. The meeting was accompanied by a technical exhibition with meeting points of manufacturers, suppliers, and service industries. (orig.)

  20. Rainfall effects on rare annual plants

    Science.gov (United States)

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2008-01-01

    Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood.We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future.Species showed 9 to 100-fold between-year variation in plant density over the 5–12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants.Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect.Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response

  1. Nuclear power plants in the world, as of December 31, 1983. 2. ed.

    International Nuclear Information System (INIS)

    1984-01-01

    A List of Nuclear Power Plants all over the world is made every year by JAIF, based on an annual survey on reactors in operation, under construction, on oder, and planned throughout the world. The English version of the List is published now for the second time. The present survey was to find the present status of the world's nuclear power plants as of the end December 1983 as well as changes or new developments during 1983 in the countries listed. The results of the survey are 302 reactors in operation for 198,508.6 MWe, 210 reactors under construction for 205,852 MWe, 13 reactors on order for 10,038 MWe and 134 planned reactors for 134,902 MWe, a total of 659 reactors and a total gross nuclear power generating capacity of 549,300.6 MWe. (author)

  2. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  3. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  4. Summary of nuclear power plant construction

    International Nuclear Information System (INIS)

    Tamura, Saburo

    1973-01-01

    Various conditions for the construction of nuclear power plants in Japan without natural resources were investigated. Expansion of the sites of plants, change of reactor vessels, standardization of nuclear power plants, possiblity of the reduction of construction period, approaching of nuclear power plants to consuming cities, and group construction were studied. Evaluation points were safety and economy. Previous sites of nuclear power plants were mostly on plane ground or cut and enlarge sites. Proposals for underground or offshore plants have been made. The underground plants were made at several places in Europe, and the ocean plant is now approved in U.S.A. as a plant on a man-made island. Vessels for containing nuclear reactors are the last barriers to the leakage of radioactive substance. At the initial period, the vessels were made of steel, which were surrounded by shielding material. Those were dry well type containers. Then, vessel type changed to pressure-suppression type wet containers. Now, it tends to concrete (PC or RC) type containers. There is the policy on the standardization of nuclear power plants by U.S.A.E.C. in recent remarkable activity. The merit and effect of the standardization were studied, and are presented in this paper. Cost of the construction of nuclear power plants is expensive, and interest of money is large. Then, the reduction of construction period is an important problem. The situations of plants approaching to consuming cities in various countries were studied. Idea of group construction is described. (Kato, T.)

  5. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  6. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  7. KWU Nuclear Plant Analyzer

    International Nuclear Information System (INIS)

    Bennewitz, F.; Hummel, R.; Oelmann, K.

    1986-01-01

    The KWU Nuclear Plant Analyzer is a real time engineering simulator based on the KWU computer programs used in plant transient analysis and licensing. The primary goal is to promote the understanding of the technical and physical processes of a nuclear power plant at an on-site training facility. Thus the KWU Nuclear Plant Analyzer is available with comparable low costs right at the time when technical questions or training needs arise. This has been achieved by (1) application of the transient code NLOOP; (2) unrestricted operator interaction including all simulator functions; (3) using the mainframe computer Control Data Cyber 176 in the KWU computing center; (4) four color graphic displays controlled by a dedicated graphic computer, no control room equipment; and (5) coupling of computers by telecommunication via telephone

  8. Nuclear Safety Project. Annual report 1986

    International Nuclear Information System (INIS)

    1987-09-01

    The annual report 1986 is a detailed description of work within the Nuclear Safety Project performed in 1986 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes individual research activities on dynamic loads and strains of reactor components under accident conditions, fuel behaviour under accident conditions, investigation and control of LWR core-meltdown accidents, improvement of fission product retention and reduction of radiation exposure, and on behaviour, impact and removal of released pollutants. (DG)

  9. Nuclear accidents and safety measures of domestic nuclear power plants

    International Nuclear Information System (INIS)

    Song Zurong; Che Shuwei; Pan Xiang

    2012-01-01

    Based on the design standards for the safety of nuclear and radiation in nuclear power plants, the three accidents in the history of nuclear power are analyzed. And the main factors for these accidents are found out, that is, human factors and unpredicted natural calamity. By combining the design and operation parameters of domestic nuclear plants, the same accidents are studied and some necessary preventive schemes are put forward. In the security operation technology of domestic nuclear power plants nowadays, accidents caused by human factors can by prevented completely. But the safety standards have to be reconsidered for the unpredicted neutral disasters. How to reduce the hazard of nuclear radiation and leakage to the level that can be accepted by the government and public when accidents occur under extreme conditions during construction and operation of nuclear power plants must be considered adequately. (authors)

  10. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  11. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  12. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  13. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  14. Off-shore nuclear power plant

    International Nuclear Information System (INIS)

    Nakanishi, T.

    1980-01-01

    In order to avoid losses of energy and seawater pollution an off-shore nuclear power plant is coupled with a power plant which utilizes the temperature difference between seawater and hot reactor cooling water. According to the invention the power plant has a working media loop which is separated from the nuclear power plant. The apparative equipment and the operational characteristics of the power plant are the subject of the patent. (UWI) [de

  15. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  16. Annual meeting on nuclear technology '85. Technical session on nuclear power plant simulators. Jahrestagung Kerntechnik '85. Fachsitzung Simulatoren bei Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The ten lectures read at this Technical Session deal with nuclear power plant simulators and their functions for the training of control room personnel, with test facilities for analysis and simulation of incidents and the relevant plant behaviour, and with the computer codes for fast simulation of reactor processes. The papers explain in particular the HAMMLAB project, the COSIMA fast core simulator, and the OPAL simulator for the KWU convoy process information system named PRINS.

  17. Building of nuclear power plant

    International Nuclear Information System (INIS)

    Saito, Takashi.

    1997-01-01

    A first nuclear plant and a second nuclear power plant are disposed in adjacent with each other in a building for a nuclear reactor. A reactor container is disposed in each of the plants, and each reactor container is surrounded by a second containing facility. A repairing chamber capable of communicating with the secondary containing facilities for both of the secondary containing facilities is disposed being in contact with the second containing facility of each plant for repairing control rod driving mechanisms or reactor incorporated-type recycling pumps. Namely, the repairing chamber is in adjacent with the reactor containers of both plants, and situated between both of the plants as a repairing chamber to be used in common for both plants. Air tight inlet/exit doors are formed to the inlets/exits of both plants of the repairing chamber. Space for the repairing chamber can be reduced to about one half compared with a case where the repairing chamber is formed independently on each plant. (I.N.)

  18. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  19. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  20. KFA Institute of Nuclear Physics. Annual report 1990

    International Nuclear Information System (INIS)

    1991-03-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (orig.)

  1. KFA Institute of Nuclear Physics. Annual report 1989

    International Nuclear Information System (INIS)

    1990-04-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (HSI)

  2. Electromagnetic compatibility of nuclear power plants

    International Nuclear Information System (INIS)

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants

  3. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  4. Plan for research to improve the safety of light-water nuclear power plants

    International Nuclear Information System (INIS)

    1978-03-01

    This is the U.S. Nuclear Regulatory Commission's first annual report to Congress on recommendations for research on improving the safety of light-water nuclear power plants. Suggestions for reactor safety research were identified in, or received from, various sources, including the Advisory Committee on Reactor Safeguards, the NRC regulatory staff, and the consultants to the Research Review Group. After an initial screening to eliminate those not related to improved reactor safety, all the suggestions were consolidated into research topics. It is recommended that the following research projects be carried out: alternate containment concepts, especially vented containments; alternate decay heat removal concepts, especially add-on bunkered systems; alternate emergency core cooling concepts; improved in-plant accident response; and advanced seismic designs

  5. Annual report and accounts 1994/95: Scottish Nuclear

    International Nuclear Information System (INIS)

    1995-01-01

    The Annual Report and Accounts for Scottish Nuclear are presented for the year 1994/1995. Scottish Nuclear Limited produces about half of Scotland's electricity requirement in its advanced gas-cooled reactors (AGRs) at Hunterston and Torness. It also has responsibility for decommissioning the Hunterston A Magnox nuclear power station. The role of the company in the international arena and as part of the United Kingdom's electric power industry, following privatisation, are discussed. (UK)

  6. IRSN - Annual Report 2013. Financial Report 2013. Enhancing nuclear safety

    International Nuclear Information System (INIS)

    Schuler, Matthieu; Marchal, Valerie; Albert, Marc-Gerard; Aurelle, Jacques; Bigot, Marie-Pierre; Bruna, Giovanni; Charron, Sylvie; Clavelle, Stephanie; Cousinou, Patrick; Deschamps, Patrice; Delattre, Aleth; Demeillers, Didier; Dumas, Agnes; Franquard, Dominique; Laloi, Patrick; Lorthioir, Stephane; Monti, Pascale; Rollinger, Francois; Rouyer, Veronique; Rutschkovsky, Nathalie; Scott De Martinville, Edouard; Tharaud, Christine; Verpeaux, Jean-Luc; Jaunet, Camille; Hedouin, Jean-Christophe; Pascal-Heuze, Charlotte

    2014-03-01

    IRSN, a public entity with industrial and commercial activities, is placed under the joint authority of the Ministries of Defense, Environment, Industry, Research, and Health. It is the nation's public service expert in nuclear and radiation risks, and its activities cover all the related scientific and technical issues. Its areas of specialization include the environment and radiological emergency response, human radiation protection in both a medical and professional capacity, and in both normal and post-accident situations, the prevention of major accidents, nuclear reactor safety, as well as safety in nuclear plants and laboratories, transport and waste treatment, and nuclear defense and security expertise. IRSN interacts with all parties concerned by these risks (public authorities, in particular nuclear safety and security authorities, local authorities, companies, research organizations, stakeholders' associations, etc.) to contribute to public policy issues relating to nuclear safety, human and environmental protection against ionizing radiation, and the protection of nuclear materials, facilities, and transport against the risk of malicious acts. This document is the 2013 issue of IRSN's activity report. Content: 1 - Organization, key figures; 2 - Strategy: Progress and main activities in 2013, Transparency and communications policy, Promoting a safety and radiation protection culture; 3 - Activities: Safety (Safety of existing facilities, Studies and researches, About defense, Conducting assessments of future facilities); Nuclear security and non-proliferation (Nuclear security activities, International non-proliferation controls); Radiation protection - environment and human health (Environmental and population exposure, Radiation protection in the workplace, Effects of chronic exposure, Protection in health care); Emergency and post-accident situations efficiency; 4 - Efficiency: Health, safety, environmental, protection and quality, Human resources

  7. KfA Institute of Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    Gruemmer, F.; Kilian, K.; Schult, O.; Seyfarth, H.; Speth, J.; Turek, P.

    1988-04-01

    This annual report contains extended abstracts about the work performed at the named institute together with a list of publications and speeches. The work concerns nuclear reactions, nuclear spectroscopy, intermediate-energy physics, nuclear structure, developments of the isochronous cyclotron and the ISIS ion source, construction of spectrometers, detectors, and targets, computer development, counting electronics, and radiation protection. (HSI)

  8. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report, 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The concentration of radioactivity added by the Savannah River Plant operations to the environs during 1977 was, for the most part, too small to be distinguished from natural background radiation and fallout from worldwide nuclear weapon tests. Beta activity in particulate air filters was about two times the 1976 level and was due entirely to global fallout. Tritium oxide in air at the plant perimeter was greater than in air at more distant locations; the average concentration at the plant perimeter (65 pCi/m 3 ) was 0.03% of the Concentration Guide (CG). Tritium, 137 Cs, and 90 Sr were the only radionuclides of plant origin detectable in Savannah River water by routine analyses. None of these had an average concentration exceeding 0.2% of the CG in river water sampled 8 mi downstream from the plant. The tritium concentration in river water immediately downstream of the plant (4.8 pCi/ml, including 0.5 pCi/ml background river contribution) represented the highest CG percentage (0.16) of the three radionuclides measured in river water. Special research programs using ultra-low-level techniques may detect trace quantities of other radionuclides of plant origin. Radioactive materials in river fish also continued very low (0.2 pCi/g 137 Cs maximum). Annual analyses of plant perimeter soil samples 0-5 cm deep) showed deposition of 137 Cs (52 mCi/km 2 ) and 239 Pu (1.2 mCi/km 2 ) within the range normally found in global fallout. 238 Pu in all soil samples was near the sensitivity of the analysis (approximately 0.1 mCi/km 2 ). For 1977, the calculated annual average dose from atmospheric releases of radioactive materials from SRP was 0.8 millirem (mrem) at the plant perimeter

  9. Proceedings of the Canadian Nuclear Association 35. annual conference

    International Nuclear Information System (INIS)

    Loewer, R.

    1995-01-01

    The proceedings of the thirty-fifth annual conference of the Canadian Nuclear Association contain 22 papers organized in the following sessions: update on the status of the Canadian nuclear industry, non-proliferation and related political issues, nuclear waste disposal perspectives, regulatory issues, trade development, new markets, economics of nuclear electricity, public acceptance or rejection. In addition one paper from a CNA/CNS special session on nuclear diffraction is included. The individual papers have been abstracted separately

  10. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  11. Nuclear power plants in the world - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2009 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2010/01/01, Worldwide status of nuclear power plants (12/31/2009), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2009, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear power plants by country at the end 2009, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2009, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2009, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2009, Long term shutdown units at 12/31/2009, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  12. Regulatory control of nuclear safety in Finland. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    2000-06-01

    This report concerns the regulatory control of nuclear energy in Finland in 1999. Its submission to the Ministry of Trade and Industry by the Finnish Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. STUK's regulatory work was focused on the operation of the Finnish nuclear power plants as well as on nuclear waste management and safeguards of nuclear materials. The operation of the Finnish nuclear power plants was in compliance with the conditions set out in their operating licences and with current regulations, with the exception of some inadvertent deviations from the Technical Specifications. No plant events endangering the safe use of nuclear energy occurred. The individual doses of all nuclear power plant workers remained below the dose threshold. The collective dose of the workers was low, compared internationally, and did not exceed STUK's guidelines at either nuclear power plant. The radioactive releases were minor and the dose calculated on their basis for the most exposed individual in the vicinity of the plant was well below the limit established in a decision of the Council of State at both Loviisa and Olkiluoto nuclear power plants. STUK issued statements to the Ministry of Trade and Industry about the environmental impact assessment programme reports on the possible nuclear power plant projects at Olkiluoto and Loviisa and about the continued operation of the research reactor in Otaniemi, Espoo. A Y2k-related safety assessment of the Finnish nuclear power plants was completed in December. In nuclear waste management STUK's regulatory work was focused on spent fuel storage and final disposal plans as well as on the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would have endangered safety. A statement was issued to the Ministry of Trade and Industry about an environmental impact assessment report on a proposed final

  13. Regulatory control of nuclear safety in Finland. Annual report 1999

    International Nuclear Information System (INIS)

    Tossavainen, K.

    2000-06-01

    This report concerns the regulatory control of nuclear energy in Finland in 1999. Its submission to the Ministry of Trade and Industry by the Finnish Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. STUK's regulatory work was focused on the operation of the Finnish nuclear power plants as well as on nuclear waste management and safeguards of nuclear materials. The operation of the Finnish nuclear power plants was in compliance with the conditions set out in their operating licences and with current regulations, with the exception of some inadvertent deviations from the Technical Specifications. No plant events endangering the safe use of nuclear energy occurred. The individual doses of all nuclear power plant workers remained below the dose threshold. The collective dose of the workers was low, compared internationally, and did not exceed STUK's guidelines at either nuclear power plant. The radioactive releases were minor and the dose calculated on their basis for the most exposed individual in the vicinity of the plant was well below the limit established in a decision of the Council of State at both Loviisa and Olkiluoto nuclear power plants. STUK issued statements to the Ministry of Trade and Industry about the environmental impact assessment programme reports on the possible nuclear power plant projects at Olkiluoto and Loviisa and about the continued operation of the research reactor in Otaniemi, Espoo. A Y2k-related safety assessment of the Finnish nuclear power plants was completed in December. In nuclear waste management STUK's regulatory work was focused on spent fuel storage and final disposal plans as well as on the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would have endangered safety. A statement was issued to the Ministry of Trade and Industry about an environmental impact assessment report on a proposed final disposal facility for

  14. YKAe - Research programme on nuclear power plant systems behaviour and operational aspects of safety

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1992-01-01

    The major part of nuclear energy research in Finland has been organised as five-year nationally coordinated research programs. The research programme on Systems Behaviour and Operational Aspects of Safety is under way during 1990-1994. Its annual volume has been about 35 person-years and its annual expenditure about FIM 18 million. Studies in the field on safe operational margins of nuclear fuel and reactor core concentrate on fuel high burn-up behaviour, VVER fuel experiments, and reactor core behaviour in complex reactivity transients such as 3-D phenomena and ATWS events. The PACTEL facility is used for the thermal hydraulic studies of the Loviisa type reactors (scaled 1:305). Validation of accident analysis codes is carried out by participation in international standard problems. Advanced foreign computer codes for severe reactor accidents are implemented, modified as needed and applied to level-2 PSAs and the improvement of accident management procedures. Fire simulation methods are tested using data from experiments in the German HDR facility. A nuclear plant analyzer for efficient safety analyses is being developed using the APROS process simulation environment. Computerized operator support systems are being studied in cooperation with the OECD Halden Project. The basic factors affecting plant operator activities and the development of their competence are being investigated. A comprehensive system for the control of plant operational safety is being developed by combining living PSA and safety indicators

  15. Nuclear plant life - A business decision

    International Nuclear Information System (INIS)

    Joosten, J.K.

    1995-01-01

    Regarding the future of the nuclear power option, many scenarios have been put forth over the years. The most commonly accepted projections for installed nuclear capacity show it growing at a rate of about 2% per year throughout the next few decades. These projections appear modes on the surface. However, underlying the projections are critical assumptions and sometimes misconceptions about the lifetimes of existing reactors and how they are determined. The notion of a 40 year plant life is very common. Consequently, many projections start either with the assumption that no plants will be retired in the near terms or with the assumption that each retired plant will be replaced by another nuclear plant after 40 years. Effectively, these assumptions yield future projections for installed capacity that might be characterized as low growth, medium growth and high growth scenarios - or grow, grow, grow. The question remains as to whether or not these assumptions accurately model the driving forces and constraints to nuclear development. After all, there is no scientific basis for believing that all plants, PWRs BWRs, RBMKs, etc., should have the same 40 year life. Most power plant owners purchase the plant for the main reason of supplying electrical power to their consumer. For these owners, electricity production is a day to day commercial activity with various alternatives on how to achieve the prime objective. The decision of which electricity generation alternative to select (gas, coal, nuclear or renewable energy) and how long to operate the plant before replacing it with a new one is essentially a business decision. The paper discusses ageing, the nuclear plant life decision process, the factors which influence the decision and their ramifications regarding the near term growth of nuclear power capacity. The modelling of nuclear plant lifetimes is also discussed. (author). 5 refs, 10 figs, 1 tab

  16. Analysis of future nuclear power plants competitiveness with stochastic methods

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.

    2004-01-01

    To satisfy the increased demand it is necessary to build new electrical power plants, which could in an optimal way meet, the imposed acceptability criteria. The main criteria are potential to supply the required energy, to supply this energy with minimal (or at least acceptable) costs, to satisfy licensing requirements and be acceptable to public. The main competitors for unlimited electricity production in next few decades are fossil power plants (coal and gas) and nuclear power plants. New renewable power plants (solar, wind, biomass) are also important but due to limited energy supply potential and high costs can be only supplement to the main generating units. Large hydropower plans would be competitive under condition of existence of suitable sites for construction of such plants. The paper describes the application of a stochastic method for comparing economic parameters of future electrical power generating systems including conventional and nuclear power plants. The method is applied to establish competitive specific investment costs of future nuclear power plants when compared with combined cycle gas fired units combined with wind electricity generators using best estimated and optimistic input data. The bases for economic comparison of potential options are plant life time levelized electricity generating costs. The purpose is to assess the uncertainty of several key performance and cost of electricity produced in coal fired power plant, gas fired power plant and nuclear power plant developing probability distribution of levelized price of electricity from different Power Plants, cumulative probability of levelized price of electricity for each technology and probability distribution of cost difference between the technologies. The key parameters evaluated include: levelized electrical energy cost USD/kWh,, discount rate, interest rate for credit repayment, rate of expected increase of fuel cost, plant investment cost , fuel cost , constant annual

  17. Owners of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  18. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  19. Advanced plant design recommendations from Cook Nuclear Plant experience

    International Nuclear Information System (INIS)

    Zimmerman, W.L.

    1993-01-01

    A project in the American Electric Power Service Corporation to review operating and maintenance experience at Cook Nuclear Plant to identify recommendations for advanced nuclear plant design is described. Recommendations so gathered in the areas of plant fluid systems, instrument and control, testing and surveillance provisions, plant layout of equipment, provisions to enhance effective maintenance, ventilation systems, radiological protection, and construction, are presented accordingly. An example for a design review checklist for effective plant operations and maintenance is suggested

  20. 14C emission from Swedish nuclear power plants and its effect on the 14C levels in the environment

    International Nuclear Information System (INIS)

    Stenstroem, K.; Erlandsson, Bengt; Hellborg, R.; Kiisk, M.; Persson, Per; Mattsson, Soeren; Thornberg, C.; Skog, G.

    2000-02-01

    The radionuclide 14 C is produced in all types of nuclear reactors mainly by neutron induced reactions in oxygen ( 17 O), nitrogen ( 14 N) and carbon ( 13 C). Part of the 14 C created is continuously released during normal operation as airborne effluents in various chemical forms (such as CO 2 , CO and hydrocarbons) to the surroundings. Because of the biological importance of carbon and the long physical half-life of 14 C, it is of interest to measure the releases and their incorporation into living material. The 14 C activity concentrations in annual tree rings and air around two Swedish nuclear power plants (Barsebaeck and Forsmark) as well as the background 14 C activity levels from two reference sites in southern Sweden during 1973-1996 are presented in this report. In order to verify the reliability of the method some investigations have been conducted at two foreign nuclear sites, Sellafield fuel reprocessing plant in England, and Pickering nuclear generating station in Canada, where the releases of 14 C are known to be substantial. Furthermore, results from some measurements in the vicinity of Paldiski submarine training centre in Estonia are presented. The results of the 14 C measurements of air, vegetation and annual tree rings around the two Swedish nuclear power plants show very low enhancements of 14 C, if at all above the uncertainty of the measurements. Even if the accuracy of the measurements of the annual tree rings is rather good (1-2%) the contribution of 14 C from the reactors to the environment is so small that it is difficult to separate it from the prevailing background levels of 14 C . This is the case for all sampling procedures: in air and vegetation as well as in annual tree rings. Only on a few occasions an actual increase is observed. However, although the calculations suffer from rather large uncertainties, the calculated release rate from Barsebaeck is in fair agreement with reported release data. The results of this investigation show

  1. Development of small size wall decontamination robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Fujita, Tsuneaki; Takahashi, Tsuyosi

    2004-01-01

    This paper describes the development of wall decontamination robot systems for nuclear power plants. In nuclear power plants, it is required to reduce maintenance costs, including annual inspection, repairs and so on. Most of such maintenance activities are actually performed after decontamination processes are completed. In particular, the decontamination process of reactor wells is very important for reducing the radiation exposure of human workers. In the past, decontamination of reactor wells used to be done by extra large machine and tools, which caused long working hours and tiresome works. It was one of the reasons maintenance costs couldn't have been easily reduced. There are narrow spaces in the reactor wells that have to be decontaminated by human workers. In order to minimize the radiation exposure to humans, wall decontamination robot systems have been developed. The decontamination robots have rolled brushes and suction mechanisms and are capable of removing contaminants attached to the wall surface of the reactor wells. By making the robots smaller, it is possible to work in narrower spaces. In this paper, the effectiveness of decontamination by the developed robots is shown through experiments in the actual nuclear power plants. (author)

  2. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  3. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-08-01

    In the Quarterly Reports on the operation of the Finnish nuclear power plants such events and observations are described relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Also other events of general interest are reported. The report also includes a summary of the radiation safety of the plants' workers and the environment, as well as tabulated data on the production and load factors of the plants. The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in commercial operation during the whole first quarter of 1991. The load factor average was 99.1 %. Failures have been detected in the uppermost spacing lattices of nuclear fuel bundles removed from the Loviisa nuclear reactors. Further investigations into the significance of the failures have been initiated. In this quarter, renewed cooling systems for the instrumentation area were introduced at Loviisa 1. The modifications made in the systems serve to ensure reliable cooling of the area even during the hottest summer months when the possibility exists that the temperature of the automation equipment could rise too high causing malfunctions which could endanger plant safety. Occupational radiation doses and external releases of radioactivity were below prescribed limits in this quarter. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  4. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  5. The generation characteristics of solid radioactive wastes in the KEPCO nuclear power plants

    International Nuclear Information System (INIS)

    Shon, Soon Hwan; Kang, Duck Won; Kim, Hee Keun

    1991-01-01

    Solid radwastes generation trend and characteristics were discussed for nuclear power plants in KEPCO. Each plant has a specific tendency of solid radwastes generation due to the plant characteristics. The total volume of solid radwastes generated from nine power plants was accumulated in 23,012 drums by the end of 1989. The average annual volume per unit was about 670 drums. The solid radwaste mostly consisted of solidified concentrates and contaminated trash. The contaminated trash has been the major portion of the solid radwastes since 1982. The volume of the contaminated trash was dependent on the availability factor and period of overhaul. Therefore, the contaminated trash was considered to be a prime target for the solid radwastes minimization plan

  6. Operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.

    1987-01-01

    This textbook gives a systematic introduction into the operational and maintenance activities in nuclear power plants with pressurized water reactors. Subjects: (1) Setup and operational behaviour of power reactors, (2) setup of nuclear power plants, (3) radiation protection and nuclear safety, (4) nuclear fuel, (5) constructional layout of nuclear power plants, (6) management, and (7) maintenance. 158 figs., 56 tabs

  7. Recent Trends in the Adequacy of Nuclear Plant Decommissioning Funding

    International Nuclear Information System (INIS)

    Williams, D. G.

    2002-01-01

    Concerned about the potential cost and sufficiency of funds to decommission the nation's nuclear power plants, the Congress asked the U.S. General Accounting Office (GAO) to assess the adequacy, as of December 31, 1997, of electric utilities'; funds to eventually decommission their plants. GAO's report (GAO/RCED-99-75) on this issue addressed three alternative assumption scenarios--baseline (most likely), optimistic, and pessimistic; and was issued in May 1999. This paper updates GAO's baseline assessment of fund adequacy in 1997, and extends the analysis through 2000. In 2000, we estimate that the present value cost to decommission the nation's nuclear plants is about $35 billion; utility fund balances are about $29 billion. Both our two measures of funding adequacy for utilities are on average not only much above ideal levels, but also overall have greatly improved since 1997. However, certain utilities still show less than ideal fund balances and annual contributions. We suggest that the range of these results among the individual utilities is a more important policy measure to assess the adequacy of decommissioning funding than is the funding adequacy for the industry as a whole

  8. The Swiss nuclear installations annual report 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report concerns the safety of the Swiss nuclear installations in the period of 1992. Surveillance of these installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). In Switzerland five nuclear power plants are operational: Beznau I and II, Muehleberg, Goesgen and Leibstadt. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basle. Further subject to HSK's supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut down experimental reactor of Lucens, the exploration in Switzerland of final disposal facilities for radwaste and the interim radwaste storage facilities. The present report first deals with the nuclear power plants and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK (chapters 1-4). In chapter 5, the corresponding information is given for the research installations. Chapter 6 on radwaste disposal is dedicated to the waste treatment, waste from reprocessing, interim storage and exploration by the NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants' vicinity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into some general questions relating to the safety of nuclear installations, and in particular covers important events in nuclear installations abroad. In all, the operation of the Swiss nuclear installations in the period of 1992 is rated safe by HSK. (author) 7 figs., 13 tabs

  9. Nuclear plant scram reduction

    International Nuclear Information System (INIS)

    Wiegle, H.R.

    1986-01-01

    The Nuclear Utility Management and Human Resources Committee (NUMARC) is a confederation of all 55 utilities with nuclear plants either in operation or under construction. NUMARC was formed in April 1984 by senior nuclear executives with hundreds of man-years of plant experience to improve (plant) performance and resolve NRC concerns. NUMARC has adopted 10 commitments in the areas of management, training, staffing and performance. One of these commitments is to strive to reduce automatic trips to 3 per year per unit for calendar year 1985 for plants in commercial operation greater than 3 years (with greater than 25% capacity factor). This goal applies to any unplanned automatic protection system trips at any time when the reactor is critical. Each utility has committed to develop methods to thoroughly evaluate all unplanned automatic trips to identify the root causes and formulate plans to correct the root causes thus reducing future unplanned scrams. As part of this program, the Institute of Nuclear Power Operations (INPO) collects and evaluates information on automatic reactor trips. It publishes the results of these evaluations to aid the industry to identify root causes and corrective actions

  10. 2002 annual report

    International Nuclear Information System (INIS)

    2003-01-01

    Delivering products and services to nuclear power plants operators, AREVA operates in every sector of the civilian nuclear power and fuel cycle industry. This annual report 2002 provides information on financial highlights, corporate governance, organization of the Group, share, sustainable development policy (integration into the management practices, financial and environmental responsibility, responsibility to the employees and to the society), nuclear power (front end division, reactors and services division, back end division), connectors division, equity interests and financial report. (A.L.B.)

  11. Opening speech annual meeting on nuclear technology 2013, 14 to 16 May 2013, Berlin, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Ralf [Deutsches Atomforum e.V. (DAtF), Berlin (Germany)

    2013-07-15

    Germany is an important location for nuclear technology also in the face of the 'Energiewende'. Our industry is not merely the object of political decisions, but it also continues to make its reliable and safe contribution to supplying energy and to this country's prosperity. The 9 nuclear power plants connected to the grid are a pillar of the energy supply especially for baseload generation, with an installed power of 12,700 MW at an average availability of over 90 %. With almost 100 billion kilowatt hours generated annually, they contributed 1/6 of the electricity generated in Germany in 2012 and made Germany the second largest nuclear power producer in the European Union. The nuclear power plants ensure, as do the other large power plants, the regional voltage and frequency stability and with their good controllability and the large standard service volume make an important contribution to integrating the production of electricity from renewables which is very high by international comparison. Nuclear technology in Germany is not restricted to the dismantling, final storage and remaining operations of plants, but rather it is made up of a vigorous, competitive nuclear industry that is among the best in the world. That does not merely show in the ranking of the nuclear power plants with the highest output rates, which placed 4 German plants in the top ten in the world also in 2012. It also becomes apparent when nuclear technology Made in Germany is sought after all over the world, in particular where the level of safety is concerned, e.g. worldwide in improving the safety of plants after the accident at Fukushima. Quite a number of safety components that are just being ordered elsewhere have been tried and tested for years already in Germany, and are supplied, installed and serviced by German suppliers and service providers. The broad range of the nuclear industry in Germany and its backing in a diverse research landscape means that the products

  12. Effects of nuclear electromagnetic pulse (EMP) on nuclear power plants

    International Nuclear Information System (INIS)

    Barnes, P.R.; Manweiler, R.W.; Davis, R.R.

    1977-09-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation consists of a transient pulse of high intensity electromagnetic fields. These intense fields induce current and voltage transients in electrical conductors. Although most nuclear power plant cables are not directly exposed to these fields, the attenuated EMP fields that propagate into the plant will couple some EMP energy to these cables. The report predicts the probable effects of the EMP transients that could be induced in critical circuits of safety-related systems. It was found that the most likely consequence of EMP for nuclear plants is an unscheduled shutdown. EMP could prolong the shutdown period by the unnecessary actuation of certain safety systems. In general, EMP could be a nuisance to nuclear power plants, but it is not considered a serious threat to plant safety

  13. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-09-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear safety and radiation protection which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Safety-enhancing modifications at the nuclear power plants and issues relating to the use of nuclear energy which are of general interest are also reported. The reports include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the first quarter of 1993, a primary feedwater system pipe break occurred at Loviisa 2, in a section of piping after a feedwater pump. The break was erosion-corrosion induced. Repairs and inspections interrupted power generation for seven days. On the International Nuclear Event Scale the event is classified as a level 2 incident. Other events in the first quarter of 1993 had no bearing on nuclear safety and radiation protection

  14. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-12-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO 1 and II were in operation for almost the whole second quarter of 1991. The load factor average was 87.4 %. In consequence of a fire, which broke out in the switchgear building, connections to both external grids were lost and TVO II relied on power supplied by four back-up diesels for 7.5 hrs. The event is classified as Level 2 on the International Nuclear Event Scale. The process of examining the non-leaking fuel bundles removed from the Loviisa nuclear reactors has continued. The examinations have revealed, so far, that the uppermost spacing lattices of the bundles exhibit deformations similar to those detected in the leaking fuel bundles removed from the reactors. This event is classified as Level 1 on the International Nuclear Event Scale. Other events in this quarter which are classified according to the International Nuclear Event Scale are Level Zero (Below Scale) on the Scale. The Finnish Centre for Radiation and Nuclear Safety has assessed the safety of the Loviisa and Olkiluoto nuclear power plants based on the new regulations issued on 14.2.1991 by the Council of State. The safety regulations are much more stringent than those in force when the Loviisa and Olkiluoto nuclear power plants were built. The assessment indicated that the TVO nuclear power plant meets these safety regulations. The Loviisa nuclear power plant meets the requirements with the exception of certain requirements related to the ensuring of safety functions and provision for accidents. At the Loviisa nuclear power plant there are several projects under consideration to enhance safety

  15. Nuclear power plants maintenance

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Nuclear power plants maintenance now appears as an important factor contributing to the competitivity of nuclea energy. The articles published in this issue describe the way maintenance has been organized in France and how it led to an actual industrial activity developing and providing products and services. An information note about Georges Besse uranium enrichment plant (Eurodif) recalls that maintenance has become a main data not only for power plants but for all nuclear industry installations. (The second part of this dossier will be published in the next issue: vol. 1 January-February 1989) [fr

  16. Cooling towers of nuclear power plants

    International Nuclear Information System (INIS)

    Mikyska, L.

    1986-01-01

    The specifications are given of cooling towers of foreign nuclear power plants and a comparison is made with specifications of cooling towers with natural draught in Czechoslovak nuclear power plants. Shortcomings are pointed out in the design of cooling towers of Czechoslovak nuclear power plants which have been derived from conventional power plant design. The main differences are in the adjustment of the towers for winter operation and in the designed spray intensity. The comparison of selected parameters is expressed graphically. (J.B.)

  17. The operation of nuclear power plants

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The duties to be performed in managing the operation of a nuclear power plant are highly diverse, as will be explained in this contribution by the examples of the Grafenrheinfeld Nuclear Power Station. The excellent safety record and the high availabilities of German nuclear power plants demonstrate that their operators have adopted the right approaches. Systematic evaluation of the operating experience accumulated inhouse and in other plants is of great significance in removing weak spots and improving operation. The manifold and complex activities in the structure of organization and of activities in a nuclear power plant require a high degree of division of labor. (orig.) [de

  18. 2003 annual report

    International Nuclear Information System (INIS)

    2004-01-01

    The 2003 issue of the annual report of the French nuclear safety authority (ASR) presents the activities of the ASR in the following domains: 2003 highlights (the project of law relative to the nuclear transparency and safety, the EPR reactor project, the radioprotection priorities, the inspection of radioprotection, the action plan for the monitoring of patients' exposure to ionizing radiations, the 2003 heat wave and the operation of nuclear power plants, the national plan of radioactive wastes management, the behaviour of long living and high level radioactive wastes, and the European 'nuclear package'), nuclear activities, ionizing radiations and health hazards, organisation of nuclear safety control and radioprotection, radioprotection and nuclear facilities regulation, control of nuclear activities, public information and transparency, international relations, radiological emergency situations, radiological and biomedical activities, industrial and research activities, transport of radioactive materials, safety and radioprotection of nuclear power plants, research and other nuclear facilities, fuel cycle centers, safety of the definitive shut-down and dismantling of nuclear facilities, radioactive waste management and cleansing of polluted sites. (J.S.)

  19. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  20. Preparation and practice for nuclear power plant operation

    International Nuclear Information System (INIS)

    Wu Xuesong; Lu Tiezhong

    2015-01-01

    The operational preparation of the nuclear power plant is an important work in nuclear power plant production preparation. Due to the construction period of nuclear power plant from starting construction to production is as long as five years, the professional requirements of nuclear power operation are very strict, and the requirements for nuclear safety are also extremely high. Especially after the Fukushima accident, higher requirements for the safe operation of nuclear power plant are posed by competent authorities of the national level, regulatory authorities and each nuclear power groups. Based on the characteristics of the construction phase of nuclear power plant and in combination with engineering practice, this paper expounds the system established in the field of nuclear power plant operation and generally analyses the related management innovation. (authors)

  1. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-06-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear and radiation safety, which the Finnish Centre for Radiation and Nuclear Safety considers significant. Also other events of general interest are reported. The reports also include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the plants' production and load factors

  2. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  3. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  4. Nuclear plant life extension

    International Nuclear Information System (INIS)

    Negin, C.A.

    1989-01-01

    The nuclear power industry's addressing of life extension is a natural trend in the maturation of this technology after 20 years of commercial operation. With increasing emphasis on how plants are operated, and less on how to build them, attention is turning on to maximizing the use of these substantial investments. The first studies of life extension were conducted in the period from 1978 and 1982. These were motivated by the initiation, by the Nuclear Regulatory Commission (NRC), of studies to support decommissioning rulemaking. The basic conclusions of those early studies that life extension is feasible and worth pursuing have not been changed by the much more extensive investigations that have since been conducted. From an engineering perspective, life extension for nuclear plants is fundamentally the same as for fossil plants

  5. NUCLEAR POWER PLANT

    Science.gov (United States)

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  6. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  7. An eight pushbutton control system for the PSU ultra-safe nuclear plant: Addendum to annual report

    International Nuclear Information System (INIS)

    Schultz, M.A.

    1988-10-01

    The control system described in this report was developed for a ''Light Water Ultra-Safe Plant Concept'' studied at Penn State during a 2 year program funded by the Department of Energy. A reconfigured pressurized water reactor was designed which eliminated the conventional PWR pressurizer and added an active pumping system with a large dedicated water storage tank to control pressure. The thermal hydraulics aspects of the design were studied and reported in several master's theses and other addendum reports and first annual report. In addition to improving the inherent safety of an advanced plant by changes in the thermal hydraulic aspects of the design, a new approach to control system organization and design should also be included in an advanced plant. The study presented in this report modifies a conventional PWR plant control system to the needs of the Ultra-Safe Plant Concept and then describes implementation of the control system in a distributed network of control computers. The end result is a control system that is much simpler at the operator level. This simplicity should eliminate the possibility of operator error in the Ultra-Safe plant

  8. Annual meeting on nuclear technology '92. Technical session 'Nuclear energy discussion'

    International Nuclear Information System (INIS)

    1992-05-01

    The report contains the six special papers red at the 1992 annual conference on nuclear engineering at Karlsruhe, all of which are individually retrievable from the database. They deal with the following subjects: historical development of the basic trends of technology criticism; communication problems in connection with the conveying of technical facts; psycho-sociological patterns of technology anxiety-mental infection or risk consciousness; field of tension between technology and journalism; handling of insecurities; ethical justifiability of nuclear energy use. (HSCH) [de

  9. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  10. Guidelines for nuclear plant response to an earthquake

    International Nuclear Information System (INIS)

    1989-12-01

    Guidelines have been developed to assist nuclear plant personnel in the preparation of earthquake response procedures for nuclear power plants. The objectives of the earthquake response procedures are to determine (1) the immediate effects of an earthquake on the physical condition of the nuclear power plant, (2) if shutdown of the plant is appropriate based on the observed damage to the plant or because the OBE has been exceeded, and (3) the readiness of the plant to resume operation following shutdown due to an earthquake. Readiness of a nuclear power plant to restart is determined on the basis of visual inspections of nuclear plant equipment and structures, and the successful completion of surveillance tests which demonstrate that the limiting conditions for operation as defined in the plant Technical Specifications are met. The guidelines are based on information obtained from a review of earthquake response procedures from numerous US and foreign nuclear power plants, interviews with nuclear plant operations personnel, and a review of reports of damage to industrial equipment and structures in actual earthquakes. 7 refs., 4 figs., 4 tabs

  11. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  12. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  13. Medium-size nuclear plants

    International Nuclear Information System (INIS)

    Vogelweith, L.; Lavergne, J.C.; Martinot, G.; Weiss, A.

    1977-01-01

    CEA (TECHNICATOME) has developed a range of pressurized water reactors of the type ''CAS compact'' which are adapted to civil ship propulsion, or to electric power production, combined possibly with heat production, up to outputs equivalent to 125 MWe. Nuclear plants equipped with these reactors are suitable to medium-size electric networks. Among the possible realizations, two types of plants are mentioned as examples: 1) Floating electron-nuclear plants; and 2) Combined electric power and desalting plants. The report describes the design characteristics of the different parts of a 125 MWe unit floating electro-nuclear plant: nuclear steam system CAS 3 G, power generating plant, floating platform for the whole plant. The report gives attention to the different possibilities according to site conditions (the plant can be kept floating, in a natural or artificial basin, it can be put aground, ...) and to safety and environment factors. Such unit can be used in places where there is a growing demand in electric power and fresh water. The report describes how the reactor, the power generating plant and multiflash distillation units of an electric power-desalting plant can be combined: choice of the ratio water output/electric power output, thermal cycle combination, choice of the gain ratio, according to economic considerations, and to desired goal of water output. The report analyses also some technical options, such as: choice of the extraction point of steam used as heat supply of the desalting station (bleeding a condensation turbine, or recovering steam at the exhaust of a backpressure turbine), design making the system safe. Lastly, economic considerations are dealt with: combining the production of fresh water and electric power provides usually a much better energy balance and a lower cost for both products. Examples are given of some types of installations which combine medium-size reactors with fresh water stations yielding from 10000 to 120000 m 3 per day

  14. Annual report 2003; Rapport annuel 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Delivering products and services to nuclear power plants operators, AREVA operates in every sector of the civilian nuclear power and fuel cycle industry. This annual report 2003 provides, in seven chapters, information on persons responsible for the annual report and for auditing the financial statements, general information on the company and share capital (statute, capital, share trading, dividends), information on company operations, changes and future prospects, assets, financial position and financial performance, corporate governance, recent developments and future prospects. (A.L.B.)

  15. Analysis of color environment in nuclear power plants

    International Nuclear Information System (INIS)

    Natori, Kazuyuki; Akagi, Ichiro; Souma, Ichiro; Hiraki, Tadao; Sakurai, Yukihiro.

    1996-01-01

    This article reports the results of color and psychological analysis of the outlook of nuclear power plants and the visual environments inside of the plants. Study one was the color measurements of the outlook of nuclear plants and the visual environment inside of the plants. Study two was a survey of the impressions on the visual environments of nuclear plants obtained from observers and interviews of the workers. Through these analysis, we have identified the present state of, and the problems of the color environments of the nuclear plants. In the next step, we have designed the color environments of inside and outside of the nuclear plants which we would recommend (inside designs were about fuel handling room, operation floor of turbine building, observers' pathways, central control room, rest room for the operators). Study three was the survey about impressions on our design inside and outside of the nuclear plants. Nuclear plant observers, residents in Osaka city, residents near the nuclear plants, the operators, employees of subsidiary company and the PR center guides rated their impressions on the designs. Study four was the survey about the design of the rest room for the operators controlling the plants. From the results of four studies, we have proposed some guidelines and problems about the future planning about the visual environments of nuclear power plants. (author)

  16. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-03-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear and radiation safety, which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Also other events of general interest are reported. The reports also include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the plants' production and load factors

  17. Annual report 1999

    International Nuclear Information System (INIS)

    2002-01-01

    This 1999 annual report of the Authorities of Nuclear Safety presents the main technical topics of the year: time evolution of nuclear installations, crisis and particular plan of intervention, impacts of the nuclear activities on the human and the environment, the criticality risk, EdF, the EPR project, the ANDRA, transportation events and the nuclear safety at the East. It provides also information on nuclear safety, organization of nuclear safety supervision, BIN regulatory provisions, plant supervision, information of the public, international relations, emergency response, radiation protection, radioactive material transportation, radioactive waste, PWR reactors, research reactors and other installations, nuclear fuel cycle installations and final shutdown and dismantling of nuclear installations. (A.L.B.)

  18. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Managing radioactive wastes of nuclear power plants in operation and site decommissioning phases

    International Nuclear Information System (INIS)

    Ardalani, E.; Khadivi, S.

    2008-01-01

    A large nuclear reactor annually produces about 25-50 tons consumed Uranium. These consumed materials consist of Uranium and also Plutonium and Curium. In total, about three percent of these materials are remained from fission. Existing actinides (Uranium, Plutonium, and Curium) cause long-term and short-term radiation that could have harmful effects on the environment. In order to reduce the diverse effects of radioactive wastes in Nuclear Power Plants, different procedures are employed such as compaction, chemical treatment, vitrification, canning and sealing with concrete and safe storage. In this paper, the harmful effects of nuclear wastes on the environment are introduced and a management procedure is presented to minimize its diverse effects

  20. Nuclear versus fossil power plants: evolution of economic evaluation techniques

    International Nuclear Information System (INIS)

    Thuesen, G.J.

    1975-01-01

    The purpose of this presentation is to document the evolution of methods used by an electric utility for comparing the economic attractiveness of nuclear versus fossil electric power generation. This process of change is examined as it took place within the Georgia Power Company (GPC), a company spending in the neighborhood of half a billion dollars annually for capital improvements. This study provides a look at the variety of richness of information that can be made available through the application of different methods of economic analysis. In addition, the varied presentations used to disclose relationships between alternatives furnish evidence as to the effectiveness of providing pertinent information in a simple, meaningful manner. It had been generally accepted throughout GPC that nuclear power was economically desirable as an alternative for the production of base-load power. With inflation increasing, its advantage over fossil power appeared to be significantly increasing as the large operating costs of fossil generation seemed to be more vulnerable to inflation than the costs of operating a nuclear facility. An early indication that the company should reevaluate this position was the experience gained with the installation of their first nuclear plant. Here, actual total costs were exceeding their original construction estimates by a factor of two. Thus the question arose ''Does the high capital cost of nuclear generation offset its operating advantages when compared to similar-sized coal-burning plants.'' To answer this question, additional analyses were undertaken

  1. First annual report on nuclear non-proliferation: supplement to annual report to Congress

    International Nuclear Information System (INIS)

    1979-01-01

    Section 602 of the Nuclear Non-Proliferation Act of 1978 (NNPA) requires that DOE's Annual Report include views and recommendations regarding non-proliferation policies and actions for which the Department is responsible. The Act also requires a detailed analysis of the proliferation implications of advanced enrichment and reprocessing techniques, advanced reactors, and alternative fuel cycles, including an unclassified summary and a comprehensive version containing relevant classified information. The goals of United States non-proliferation policy are to minimize the spread of nuclear weapons and to create a stable international environment for the peaceful use of nuclear energy

  2. World nuclear power plant capacity

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides the background information for statistics and analysis developed by NUKEM in its monthly Market Report on the Nuclear Fuel Cycle. The assessments in this Special Report are based on the continuous review of individual nuclear power plant projects. This Special Report begins with tables summarizing a variety of nuclear power generating capacity statistics for 1990. It continues with a brief review of the year's major events regarding each country's nuclear power program. The standard NUKEM Market Report tables on nuclear plant capacity are given on pages 24 and 25. Owing to space limitations, the first year shown is 1988. Please refer to previous Special Reports for data covering earlier years. Detailed tables for each country list all existing plants as well as those expected by NUKEM to be in commercial operation by the end of 2005. An Appendix containing a list of abbreviations can be found starting on page 56. Only nuclear power plants intended for civilian use are included in this Special Report. Reactor lifetimes are assumed to be 35 years for all light water reactors and 30 years for all other reactor types, unless other data or definite decommissioning dates have been published by the operators. (orig./UA) [de

  3. Development of nuclear power plant Risk Monitor

    International Nuclear Information System (INIS)

    Yang Xiaoming; Sun Jinlong; Ma Chao; Wang Lin; Gu Xiaohui; Bao Zhenli; Qu Yong; Zheng Hao

    2014-01-01

    Risk Monitor is a tool to monitor the real-time risk of a nuclear power plant for risk management and comprehensive decision-making, which has been widely used all over the world. The nuclear power plant Risk Monitor applies the real-time risk model with low-complicacy that could reflect the plant's actual configuration, automatically reads the plant's configuration information from the engineering system through the developed interface, and efficiently analyzes the plant's risk Dy the intelligent parallel-computing method in order to provide the risk basement for the safety management of nuclear power plant. This paper generally introduces the background, architecture, functions and key technical features of a nuclear power plant Risk Monitor, and validates the risk result, which could well reflect the plant's risk information and has a significant practical value. (authors)

  4. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  5. Centre for nuclear engineering University of Toronto annual report 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The annual report of the Centre for Nuclear Engineering, University of Toronto covers the following subjects: message from the Dean; Chairman's message; origins of the centre; formation of the centre; new nuclear appointments; and activities of the centre, 1984

  6. The application of plant information system on third Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Liu Wangtian

    2005-01-01

    Plant overall control has been applied in Qinshan Nuclear Power Plant, which enhances the security of plant operation, but it is not enough to improve the technical administration level. In order to integrate the overall information and to improve the technical administration level more. Third Qinshan Nuclear Power Plant applies the plant information system. This thesis introduces the application of plant information system in Third Qinshan Nuclear Power Plant and the effect to the plant after the system is carried into execution, in addition, it does more analysis and exceptions for application of plant information system in the future. (authors)

  7. Safety criteria for nuclear chemical plants

    International Nuclear Information System (INIS)

    Ball, P.W.; Curtis, L.M.

    1983-01-01

    Safety measures have always been required to limit the hazards due to accidental release of radioactive substances from nuclear power plants and chemical plants. The risk associated with the discharge of radioactive substances during normal operation has also to be kept acceptably low. BNFL (British Nuclear Fuels Ltd.) are developing risk criteria as targets for safe plant design and operation. The numerical values derived are compared with these criteria to see if plants are 'acceptably safe'. However, the criteria are not mandatory and may be exceeded if this can be justified. The risk assessments are subject to independent review and audit. The Nuclear Installations Inspectorate also has to pass the plants as safe. The assessment principles it uses are stated. The development of risk criteria for a multiplant site (nuclear chemical plants tend to be sited with many others which are related functionally) is discussed. This covers individual members of the general public, societal risks, risks to the workforce and external hazards. (U.K.)

  8. Development on database for foreign nuclear power plants

    International Nuclear Information System (INIS)

    Okuda, Yasunori; Yanagi, Chihiro

    1999-01-01

    The Nuclear Information Project in Institute of Nuclear Technology, Institute of Nuclear Safety Systems, Inc. (INSS) has been carrying out two activities related to technical information about nuclear power plants. The first is collection and analysis of accidents and incidents (troubles) of nuclear power plants in U.S.A. and West Europe and making draft of action proposals. The second is collection of main laws, government ordinances, regulatory guides, standard and domestic and international technical news connected with nuclear power plants. This report describes these two data bases about nuclear power plants details. (author)

  9. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  10. Life management plants at nuclear power plants PWR; Planes de gestion de vida en centrales nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, G.

    2014-10-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  11. Annual meeting of the nuclear forum Switzerland 2013. The 2050 energy strategy in the context of economic reality

    International Nuclear Information System (INIS)

    Rey, Matthias

    2013-01-01

    At this year's annual meeting of the Nuclear Forum Switzerland (Nuklearforums Schweiz) once again the 2050 Energy Strategy of the Swiss Federal Council (Schweizer Bundesrat) was the main topic. President Corina Eichenberger warned against political arbitrariness and reckless endangerment of the Swiss electricity supply. Instead she called for a more logical, a more rational and more a pragmatic discussion. Accordingly, Eichenberger dismissed clearly politically motivated operation restrictions for Swiss nuclear power plants. The guest speakers Prof. Peter Egger of the Economic Institute of the ETH Zurich and Christoph Mader, President of scienceindustries, discussed consequences of the 2050 energy strategy for economy and industry. About 130 guests from the nuclear industry, politicians and industry took part in the Annual Meeting of the Nuclear Forum to the Hotel Bellevue in Bern Switzerland. Again, the event 'The 2050 energy strategy in the context of economic reality' was of main interest due to the recent energy policy discussions. Corinna Eichenberger, President of the association, stated, that the audience received an deep view into the economic consequences of the 2050 energy strategy from the perspective of science and industry. (orig.)

  12. 2009 annual conference on nuclear technology opening address

    International Nuclear Information System (INIS)

    Hohlefelder, Walter

    2009-01-01

    To Germany, 2009 first and foremost is an election year. The course will be reset. At any rate, reassessing nuclear power policy in Germany in the sense of plant life extension and real progress in solving the energy problem is indispensable. One major reason is the change in boundary conditions since 2000, the year of the agreement between the Red-Green federal government and the nuclear power plant licensees. Climate change, security of power supply, and overcoming the worldwide financial and economic crisis are important points to be mentioned. The world of nuclear power, too, has changed. Besides Finland, also Switzerland, the United Kingdom, Sweden, Italy, and Poland are European countries intending to build new nuclear power plants. Premature shutdown of 7 out of the 17 German nuclear power plants in the next legislative term of the German federal parliament would have grave consequences for the security of supply and would greatly jeopardize the objectives of climate protection. In addition, it would weaken Germany's position as a center of industry. It is important, therefore, to negotiate a sensible approach after the national elections. Like the politically motivated alliance of coal and nuclear in the 1970s and 1980s, a model encompassing renewables, efforts towards energy efficiency, and nuclear power could be possible. As nuclear power has lost its divisive effect on society, despite ongoing discussions, the necessary reassessment must be put on the agenda also in Germany. One major issue is real progress in the waste management problem. This dialog will have to be carried on in a committed as well as unbiased way particularly in the weeks and months to come. We need all power technologies, nuclear included. (orig.)

  13. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  14. Man and nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    According to the Inst. fuer Unfallforschung/TUeV Rheinland, Koeln, the interpretation of empirical data gained from the operation of nuclear power plants at home and abroad during the period 1967-1975 has shown that about 38% of all reactor accidents were caused by human failures. These occured either during the design and construction, the commissioning, the reconditioning or the operation of the plants. This very fact stresses human responsibility for the safety of nuclear power plants, in spite of those plants being automated to a high degree and devices. (orig.) [de

  15. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Science.gov (United States)

    2010-04-01

    ... Company, Perry Nuclear Power Plant; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC... the Perry Nuclear Power Plant, Unit 1 (PNPP). The license provides, among other things, that the... date for all operating nuclear power plants, but noted that the Commission's regulations provide...

  16. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1992-09-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in operation for almost all the time in the first quarter of 1992. The load factor average was 99.8%. All events which are classified on the International Nuclear Event Scale were level 0/below scale on the Scale. Occupational radiation doses and releases of radioactive material off-site remained well below authorised limits. Only quantities of radioactive material insignificant to radiation exposure, originating from the nuclear power plants, were detected in samples collected in the vicinity of the nuclear power plants

  17. Challenges for new nuclear plants

    International Nuclear Information System (INIS)

    Bruschi, H.J.

    2000-01-01

    In the past 20 years, numerous new nuclear plant designs have been introduced in the hope of generating a mixture of features and benefits that generated enough enthusiasm amongst the utility industry decision makers to move forward with a new nuclear generation. Not only has there not been enough enthusiasm, there has been little interest in building new plants with advanced features, especially in the U.S. Compounding this predicament are the changing paradigms to which a new plant would be measured. The near hiatus on new plant orders is the clear cause of the significant consolidation in the nuclear industry. Regardless whether the disappearance of old-line nuclear companies is over or not, some paradigms for new generation designs are unmovable, while others are still under discussion as to their role in future plant designs. This paper will address those design goals that Westinghouse deems already having earned the rank of exemplar, and those still open to debate. Because it is my hope that this paper will lead to a fruitful discussion period, I will provide a list of what I feel are the champion design requirements, and those I consider the contenders. (author)

  18. Annual report 2008-09

    International Nuclear Information System (INIS)

    2009-01-01

    The Pakistan Atomic Energy Commission (PAEC) annual report for the year 2008-09 has been compiled. The salient features of the activities of various Centers, Power Plants and different project have been explained. The activities are described under the topics as: highlights of various projects, nuclear power, engineering, physical sciences, biological sciences, nuclear materials, safety, human resource development, PAEC health services projects and publications. (A.B).

  19. Safety culture in nuclear power plants

    International Nuclear Information System (INIS)

    Weihe, G. von; Pamme, H.

    2003-01-01

    Experience shows that German nuclear power plants have always been operated reliably and safely. Over the years, the safety level in these plants has been raised considerably so that they can stand any comparison with other countries. This is confirmed by the two reports published by the Federal Ministry for the Environment on the nuclear safety convention. Behind this, there must obviously stand countless appropriate 'good practices' and a safety management system in nuclear power plants. (orig.) [de

  20. Elecnuc - Nuclear power plants in the world - 2009 edition

    International Nuclear Information System (INIS)

    2009-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2008 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2008/01/01, Worldwide status of nuclear power plants (12/31/2008), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2008, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear powe plants by country at the end 2008, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2008, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2008, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2008, Long term shutdown units at 12/31/2008, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  1. ELECNUC Nuclear power plants in the world - 2013 edition

    International Nuclear Information System (INIS)

    2013-01-01

    This small booklet summarizes in a series of tables the figures relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2012 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2012/01/01; Worldwide status of nuclear power plants (12/31/2012); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2012; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2012; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2012; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2012; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2012; Long term shutdown units at 12/31/2012; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  2. Implication of dual-purpose nuclear desalination plants

    International Nuclear Information System (INIS)

    Kutbi, I.I.

    1983-01-01

    Available dual purpose nuclear desalination schemes are reviewed. Three specific issues namely, impact of availability and reliability of the desalination stage of the plant, integration of the desalination and power production stages and new safety concerns of dual system, relating to desalination schemes are discussed. Results of operational and reliability studies of nuclear power stations, reverse osmosis and multistage flash distillation desalination plants are considered. Operational aspects of nuclear-multistage flash distillation, nuclear-reverse osmosis and nuclear-multistage flash distillation-reverse osmosis are compared. Concludes that the combined nuclear-multistage flash distillation-reverse osmosis plant arrangement permits very large production capacity, high availability, improvement of plant reliability and proovision of savings on the cost of water and power produced. 23 Ref

  3. Annual report - Industrias Nucleares do Brasil S A - 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The annual report of 1998 of Industrias Nucleares do Brasil S A - Brazilian company responsible for the industrial activities of the nuclear fuel cycle - introduces the next main topics: mineral resource directory main actions; industrial directory main actions; finance and administration directory main actions; transparency; environment, safety and quality; the company; and financial statements

  4. Shanghai institute of nuclear research, academia sinica annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Annual Report is a comprehensive review of achievements made by Shanghai Institute of Nuclear Research (SINR), Academia Sinica in 1991, Which concerns nuclear physics (theories, experimentation, and application), nuclear chemistry (radiochemistry, radiopharmaceuticals, labelled compounds, analytical chemistry), radiation chemistry, accelerator physics and technology, nuclear detectors, computer application and maintenance, laboratory engineering, radiation protection and waste treatment. The maintenance, reconstruction and operation of its major facilities are also described

  5. Transactions of the Second Annual Congress of the Sociedad Nuclear Mexicana A.C.; Memorias del Segundo Congreso Anual de la Sociedad Nuclear Mexicana A.C.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-11-01

    With no doubt, 1991 has been a good year for Nuclear Energy in Mexico. The record imposed by Laguna Verde Nuclear Power Plant, the first in his type in the world, operating without interruption in its first operating cycle, represents a splendid incentive for we all the nuclear workers. This fact is reflected in the percentage of papers presented in this congress, dealing with several aspects of Laguna Verde Central. This achievement should serve as an impulse for the development of other areas of application of nuclear energy in the country and at the same time be a reflection of the participation of the members of our society with good quality papers. In this Second Congress of Sociedad Nuclear Mexicana A.C., around thirty papers were presented in the technical sessions, in areas as: fuel management, radiation protection, reactor physics, transients analysis, nuclear materials and others. A special section is dedicated to present the experiences of the first fuel reload of Unit 1 in Laguna Verde Nuclear Power Plant,as well as different plenary meetings dedicated to subjects of general interest as advanced reactors, waste disposal and others. It is the wish of all the members of Sociedad Nuclear Mexicana A.C., that this annual meetings will be enriched with the enthusiastic participation of the scholars of nuclear field and that they represent the forum that we all need for the exchange of knowledge and experiences. (Author).

  6. Total generating costs: coal and nuclear plants

    International Nuclear Information System (INIS)

    1979-02-01

    The study was confined to single and multi-unit coal- and nuclear-fueled electric-generating stations. The stations are composed of 1200-MWe PWRs; 1200-MWe BWRs; 800-and 1200-MWe High-Sulfur Coal units, and 800- and 1200-MWe Low-Sulfur Coal units. The total generating cost estimates were developed for commercial operation dates of 1985 and 1990; for 5 and 8% escalation rates, for 10 and 12% discount rates; and, for capacity factors of 50, 60, 70, and 80%. The report describes the methodology for obtaining annualized capital costs, levelized coal and nuclear fuel costs, levelized operation and maintenance costs, and the resulting total generating costs for each type of station. The costs are applicable to a hypothetical Middletwon site in the Northeastern United States. Plant descriptions with general design parameters are included. The report also reprints for convenience, summaries of capital cost by account type developed in the previous commercial electric-power cost studies. Appropriate references are given for additional detailed information. Sufficient detail is given to allow the reader to develop total generating costs for other cases or conditions

  7. Civaux nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Civaux, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  8. Chooz nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Chooz, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  9. Brennilis nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Brennilis, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  10. CEA Annual progress report 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report presents the general organization of the CEA, the international relations and politics in nuclear field, the activities (military application, nuclear applied research, ANDRA (National Agency for Radioactive Waste Management), nuclear safety and protection, fundamental research, applied research other than nuclear), the industrial group; among topics about men and means, the budget execution of the public establishment of research. In annex, the nuclear power plants around the world and the principal legislative texts related to CEA or atomic energy published in 1986 [fr

  11. Nuclear power plants: 2009 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the turn of 2009/2010, nuclear power plants were available for energy supply in 30 countries of the world. A total of 437 nuclear power plants, which is one plant less than at the 2008/2009 turn, were in operation with an aggregate gross power of approx. 391 GWe and an aggregate net power, respectively, of 371 GWe. The available gross power of nuclear power plants did not changed noticeably from 2008 to the end of 2009. In total 2 nuclear generating units were commissioned in 2009. One NPP started operation in India and one in Japan. Three nuclear generating units in Japan (2) und Lithuania (1) were decomissioned in 2009. 52 nuclear generating units, i.e. 10 plants more than at the end of 2008, with an aggregate gross power of approx. 51 GWe, were under construction in 14 countries end of 2009. New or continued projects are notified from (number of new projects): China (+9), Russia (1), and South Korea (1). Some 84 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another units are in their preliminary project phases. (orig.)

  12. Nuclear power plants: 2008 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    At the turn of 2008/2009, nuclear power plants were available for energy supply in 31 countries of the world. A total of 438 nuclear power plants, which is one plant less than at the 2007/2008 turn, were in operation with an aggregate gross power of approx. 393 GWe and an aggregate net power, respectively, of 372 GWe. The available gross power of nuclear power plants didn't changed noticeabely from 2007 to the end of 2008. No nuclear generating unit was commissioned in 2008. One nuclear generating unit in the Slovak Republic was decomissioned in 2008. 42 nuclear generating units, i.e. 10 plants more than at the end of 2007, with an aggregate gross power of approx. 38 GWe, were under construction in 14 countries end of 2008. New or continued projects are notified from (in brackets: number of new projects): Bulgaria (2), China (5), South Korea (2), Russia (1), and the Slovak Republic (2). Some 80 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another approximately 120 units are in their preliminary project phases. (orig.)

  13. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report, 1980

    International Nuclear Information System (INIS)

    1980-01-01

    An extensive surveillance program has been continuously maintained since 1951 to determine the concentrations of radonuclides in a 1200-square-mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. The results of this monitoring program are reported annually to the public. This document summarizes the 1980 results. The radiation dose at the plant perimeter and the population dose in the region from SRP operations is very small relative to the dose received from naturally occurring radiation. The annual average dose in 1980 from atmospheric releases of radioactive materials from SRP was 0.7 millirem at the plant perimeter. The maximum dose at the plant perimeter was 1.01 mrem, which is 0.2% of the Department of Energy limit for offsite exposures. The population dose to people living within 80 km of the center of SRP was 99.7 man-rems. During 1980, this same population received a radiation dose of 54,400 man-rems from natural radiation and an additional dose of 47,000 man-rems from medical x-rays. An individual consuming river water downstream from SRP would receive a maximum calculated dose in 1980 of 0.22 mrem which includes dose contributions from consumer products produced using Savannah River water. Air and water are the major dispersal media for radioactive emissions. Samples representing most segments of the environment that may conceivably be affected by these emissions were monitored to ensure a safe environment. Releases of radioactivity from SRP had an inconsequential effect on living plants and animals. With a few exceptions, concentrations outside the plant boundary were too low to distinguish from the natural radioactive background and continuing worldwide fallout from nuclear weapons tests

  14. Fire scenarios in nuclear power plant

    International Nuclear Information System (INIS)

    Asp, I.B.; MacDougall, E.A.; Hall, R.E.

    1978-01-01

    This report defines a Design Base Fire and looks at 3 major areas of a hypothetical model for a Nuclear Power Plant. In each of these areas a Design Base Fire was developed and explained. In addition, guidance is given for comparing fire conditions of a given Nuclear Power Plant with the model plant described. Since there is such a wide variation in nuclear plant layouts, model areas were chosen for simplicity. The areas were not patterned after any existing plant area; rather several plant layouts were reviewed and a simplified model developed. The developed models considered several types of fires. The fire selected was considered to be the dominant one for the case in point. In general, the dominant fire selected is time dependent and starts at a specific location. After these models were developed, a comparison was drawn between the model and an operating plant for items such as area, cable numbers and weight, tray sizes and lengths. The heat loads of the model plant are summarized by area and compared with those of an actual operating plant. This document is intended to be used as a guide in the evaluation of fire hazards in nuclear power stations and a summarization of one acceptable analytical methodology to accomplish this

  15. {sup 14}C emission from Swedish nuclear power plants and its effect on the {sup 14}C levels in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, K.; Erlandsson, Bengt; Hellborg, R.; Kiisk, M.; Persson, Per [Lund Univ. (Sweden). Dept. of Nuclear Physics; Mattsson, Soeren; Thornberg, C. [Lund Univ., Malmoe (Sweden). Dept. of Radiation Physics; Skog, G. [Lund Univ. (Sweden). Dept. of Quaternary Geology

    2000-02-15

    The radionuclide {sup 14}C is produced in all types of nuclear reactors mainly by neutron induced reactions in oxygen ({sup 17}O), nitrogen ({sup 14}N) and carbon ({sup 13}C). Part of the {sup 14}C created is continuously released during normal operation as airborne effluents in various chemical forms (such as CO{sub 2}, CO and hydrocarbons) to the surroundings. Because of the biological importance of carbon and the long physical half-life of {sup 14}C, it is of interest to measure the releases and their incorporation into living material. The {sup 14}C activity concentrations in annual tree rings and air around two Swedish nuclear power plants (Barsebaeck and Forsmark) as well as the background {sup 14}C activity levels from two reference sites in southern Sweden during 1973-1996 are presented in this report. In order to verify the reliability of the method some investigations have been conducted at two foreign nuclear sites, Sellafield fuel reprocessing plant in England, and Pickering nuclear generating station in Canada, where the releases of {sup 14}C are known to be substantial. Furthermore, results from some measurements in the vicinity of Paldiski submarine training centre in Estonia are presented. The results of the {sup 14}C measurements of air, vegetation and annual tree rings around the two Swedish nuclear power plants show very low enhancements of {sup 14}C, if at all above the uncertainty of the measurements. Even if the accuracy of the measurements of the annual tree rings is rather good (1-2%) the contribution of {sup 14}C from the reactors to the environment is so small that it is difficult to separate it from the prevailing background levels of {sup 14}C . This is the case for all sampling procedures: in air and vegetation as well as in annual tree rings. Only on a few occasions an actual increase is observed. However, although the calculations suffer from rather large uncertainties, the calculated release rate from Barsebaeck is in fair agreement

  16. Studies of safety and critical work situations in nuclear power plants: A human factors perspective

    International Nuclear Information System (INIS)

    Jacobsson Kecklund, L.

    1998-05-01

    The purpose of this thesis was to develop and apply different approaches for analyzing safety in critical work situations in real work settings in nuclear power plants, and also to identify safety enhancing measures by using the framework of interaction between human, organizational and technical subsystems. A Cognitive Psychology as well as a Stress Psychology framework was used. All studies were related to the annual outage operational state where the need for coping with many infrequent tasks, often carried out under high time pressure, puts great strain on the staff and organisation of the plant. In three studies the natural variations in the plant state, normal operation and annual outage operation, were used to explore human performance, work-related factors as well as coping and the operators' own resources and the relationship between them. In the annual outage condition high work demands, decreased sleepiness at night shift, more errors and less satisfaction with work performance quality was reported by maintenance as well as by control room operators. A relationship between high work demands and more organizational problems and reports of more frequent human errors and lower satisfactions with work performance quality was also identified in the annual outage condition. Moreover, a relationship between increased sleepiness during night shift, more frequent use of coping strategies and a higher frequency of human errors was reported. In two studies the Event and Barrier Function Model was applied to analyze the safety of barrier function systems inserted into work process sequences to protect the systems from the negative consequences of failures and errors. The model was also used to assess safety in relation to a technical and organizational change. The last study addressed changes in work performance and work-related factors in relation to a technical and organizational change of a safety significant work process involving increased automation and new

  17. Annual report of Nuclear Human Resource Development Center. April 1, 2011 - March 31, 2012

    International Nuclear Information System (INIS)

    2013-11-01

    This annual report summarizes the activities of Nuclear Human Resource Development Center (NuHRDeC) of Japan Atomic Energy Agency (JAEA) in the fiscal year 2011. In this fiscal year, we flexibly designed and conducted training courses corresponding with the needs from outside, while conducting the annually scheduled training programs, and also actively addressed the challenge of human resource development, such as to enhance the collaboration with academia and to organize international training for Asian countries. The number of trainees who completed the domestic training courses in 2011 was increased to 387, which is 14 percent more than the previous year. And also, in order to respond to the Tokyo Electric Power Company (TEPCO)'s Fukushima No.1 nuclear power plant accident, we also newly designed and organized the special training courses on radiation survey for the subcontracting companies working with TEPCO, and the training courses on decontamination work for the construction companies in Fukushima prefecture. The total number of attendees in these special courses was 3,800 persons. JAEA continued its cooperative activities with universities. In respect of the cooperation with graduate school of University of Tokyo, we accepted 17 students and cooperatively conducted practical exercises for nuclear major. Furthermore, we also actively continued cooperation on practical exercises for students of universities which were signed in Nuclear HRD Program. In terms of the collaboration network with universities, the joint course was held with six universities through utilizing the remote education system. Furthermore, the intensive course at Okayama University and practical exercise at Nuclear Fuel Cycle Engineering Laboratories of JAEA were also conducted. In respect of International training, NuHRDeC continuously implemented the Instructor Training Program (ITP) by receiving the annual sponsorship from MEXT. In fiscal year 2011, seven countries (i.e. Bangladesh

  18. Annual report of Nuclear Human Resource Development Center. April 1, 2012 - March 31, 2013

    International Nuclear Information System (INIS)

    2014-03-01

    This annual report summarizes the activities of Nuclear Human Resource Development Center (NuHRDeC) of Japan Atomic Energy Agency (JAEA) in the fiscal year 2012. In this fiscal year, we flexibly designed training courses corresponding with the needs from outside, while organizing the annually scheduled training programs, and also actively addressed the challenging issues on human resource development, such as to enhance the collaboration with academia and to organize international training for Asian countries. The number of trainees who completed the domestic training courses in 2012 was increased to 525, which is 30 percent more than the previous year. And also, in order to respond to the Tokyo Electric Power Company (TEPCO)'s Fukushima No.1 nuclear power plant accident, we also organized the special training courses on radiation survey for the subcontracting companies working with TEPCO, and the training courses on decontamination work for the construction companies in Fukushima prefecture. The total number of attendees in these special courses was more than 4,000 persons. JAEA continued its cooperative activities with universities. In respect of the cooperation with graduate school of University of Tokyo, we accepted 14 students and cooperatively conducted practical exercises for nuclear major. Furthermore, we also actively continued cooperation on practical exercises for students of universities which were signed in Nuclear HRD Program. In terms of the collaboration network with universities, the joint course was held with six universities through utilizing the remote education system. Furthermore, the intensive course at Okayama University, Fukui University, and practical exercise at Nuclear Fuel Cycle Engineering Laboratories of JAEA were also conducted. In respect of International training, NuHRDeC continuously implemented the Instructor Training Program (ITP) by receiving the annual sponsorship from MEXT. In fiscal year 2012, eight countries (i

  19. The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine

    International Nuclear Information System (INIS)

    Kot, C.

    1999-01-01

    Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Department of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments

  20. Ventilation-air conditioner system in nuclear power plant

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko.

    1989-01-01

    This invention concerns a ventilation-air conditioner system which enables, upon occurrence of accidents in a nuclear power plant, continuous operation for other adjacent nuclear power plants with no effect of accidents. Air supply system and exhaust system are operated during usual operaiton. If loss of coolants accidents should occur in an adjacent nuclear power plants, operation is switched from ventilation operaiton to the operation of re-cycling system based on an AND logic of three signals, that is, a pressure HIGH signal for the reactor container, a water level LOW signal for the reactor and a radioactivity signal of the ventilation-air conditioner sytem on the side of air supply in the nuclear power plant. Thus, nuclear reactor buildings of the nuclear power plant are from the external atmosphere. Therefore, the radioactivity HIGH signal for switching to the emergency air conditioner system of the nuclear power plant is not actuated due to the loss of coolant accidents in the adjacent nuclear power plant. In addition, since the atmospheric temperature in the nuclear reactor building can be maintained by a cooling device disposed to the recycling system, reactor shutdown can be prevented. (I.S.)

  1. Vital areas at nuclear power plants

    International Nuclear Information System (INIS)

    Cameron, D.F.

    1985-01-01

    Vital area analysis of nuclear power plants has been performed for the Nuclear Regulatory Commission by the Los Alamos National Laboratory from the late 1970's through the present. The Los Alamos Vital Area Study uses a fault-tree modeling technique to identify vital areas and equipment at nuclear power plants to determine their vulnerability. This technique has been applied to all operating plants and approximately one-half of those under construction in the US. All saboteur-induced loss-of-coolant accidents and transients and the systems needed to mitigate them are considered. As a result of this effort, security programs at nuclear power plants now include vulnerability studies that identify targets in a systematic manner, and thus unnecessary protection has been minimized. 1 ref., 8 figs., 1 tab

  2. 2000 Annual report

    International Nuclear Information System (INIS)

    2001-01-01

    This annual report presents information of the main activities on the scope of radiation protection and nuclear safety of the Nuclear Regulatory Authority (NRA) of the Argentina during 2000. The following activities and developed topic in this report describe: the Argentine regulatory system; the evolution of the nuclear regulatory activities in the Argentina since the beginnings in the National Atomic Energy Commission (NAEC) of Argentina; the nuclear regulatory laws and standards; the safeguards and inspection of the nuclear facilities and nuclear power plants; the radiological emergency systems; the environmental monitoring; the institutional relations with national and international organizations; the biological and physics dosimetry; the training courses and meetings; the economic and human recourses

  3. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... Systems for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  4. China’s Nuclear Power Plants in Operation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Qinshan Plant Phase I Located in Haiyan,Zhejiang Province,Qinshan Nuclear Power Plant Phase I is t he first 300-megawatt pressurized water reactor (PWR) nuclear power plant independently designed,constructed,operated and managed by China.The plant came into commercial operation in April 1994.

  5. HMI Section of Nuclear and Radiation Physics - annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This annual report contains extended abstracts of the scientific work performed at the named institute together with a list of publications and talks. The scientific work is concerned with the theory of nuclear and atomic processes with heavy ions, the experimental study of heavy ion reactions, nuclear structure studies, nuclear solid-state physics, atomic collisions, and the operation of VICKSI. (HSI)

  6. 2008 annual nuclear technology conference: opting out of the use of nuclear power. German special approach leads into a dead end of energy policy. Conference report

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    The President of the Deutsches Atomforum, Dr. Walter Hohlefelder, emphasized in his opening address at the 2008 Annual Nuclear Technology Conference in Hamburg that the German special approach to nuclear power utilization led straight into a dead end of energy policy. ''The outcome is foreseeable: The ambitious German goals of carbon dioxide reduction are missed, the competitiveness of the country is jeopardized, dependency on foreign energy imports rises,'' Dr. Hohlefelder stated. In view of the growing challenges in energy policy Germany had no alternative but to reassess nuclear power. The only outcome of this reappraisal could be extension of the life of nuclear power plants currently in operation. This was necessary also in order to avoid an impending gap in German electricity supply, Dr. Hohlefelder added. He invited all stakeholders to join in an open, unbiased dialog. Dr. Hohlefelder openly criticized the continued ban on research into the development of new reactors. ''A policy of this kind, a policy which bans thinking, is unacceptable in a technology-oriented, industrialized nation such as Germany.'' Nuclear power technology as a high-tech area was a unique achievement which had contributed to the prosperity of the country. The Annual Nuclear Technology Conference, which was held for the 39th time this year, is one of the biggest specialized conferences in the nuclear field with an attendance, this year, of approximately 1300 participants from more than twenty nations. (orig.)

  7. NO/sub x/ emissions from Hanford nuclear fuels reprocessing plants

    International Nuclear Information System (INIS)

    Pajunen, A.L.; Dirkes, R.L.

    1978-01-01

    Operation of the existing Hanford nuclear fuel reprocessing facilities will increase the release of nitrogen oxides (NO/sub x/) to the atmosphere over present emission rates. Stack emissions from two reprocessing facilities, one waste storage facility and two coal burning power plants will contain increased concentrations of NO/sub x/. The opacity of the reprocessing facilities' emissions is predicted to periodically exceed the State and local opacity limit of twenty percent. Past measurements failed to detect differences in the ambient air NO/sub x/ concentration with and without reprocessing plant operations. Since the facilities are not presently operating, increases in the non-occupational ambient air NO/sub x/ concentration were predicted from theoretical diffusion models. Based on the calculations, the annual average ambient air NO/sub x/ concentration will increase from the present level of less than 0.004 ppM to less than 0.006 ppM at the Hanford site boundaries. The national standard for the annual mean ambient air NO 2 concentration is 0.05 ppM. Therefore, the non-occupational ambient air NO/sub x/ concentration will not be increased to significant levels by reprocessing operations in the Hanford 200 Areas

  8. IRSN's Position on Safety and Radiation Protection at Nuclear Power Plants in France, 2012

    International Nuclear Information System (INIS)

    2014-01-01

    After working a year to consolidate the data, the annual report on the radiation protection and safety of nuclear power plants in France gives the IRSN's independent point of view on all progress and problems concerning safety and radiation protection encountered in the French nuclear power plant fleet in 2012. The first part of the report presents the main trends that emerge from IRSN's overall assessment of the radiation protection and safety performance of currently operating nuclear power plants for the year 2012. The year 2012 has witnessed an increase in the total number of significant events. However, IRSN notes the absence in 2012 of incidents with a potentially significant impact on nuclear power plant safety, the surrounding environment or nearby communities in a context of large-scale personnel renewal. This increase can mainly be explained by EDF's implementation of an improved nonconformance detection and handling procedure which led to the identification, in 2012, of various non-conformances presumably present for several years but previously undetected. With regard to radiation protection, IRSN notes that the effective dose received by the majority of exposed workers over a period of 12 consecutive months is below the annual public radiation dose limit. Faults may occur with nuclear power plant equipment or reactor monitoring systems. Given the standardisation of EDF nuclear power plant reactors, such faults may affect an entire reactor series or even the entire reactor fleet. A few examples deemed particularly significant by IRSN are presented in the second part of this report. French nuclear reactors are subject to modifications throughout their operating lives, particularly with a view to ensuring continuous safety improvement, this is the subject of the third part of the report. Most of these modifications are the result of studies conducted within the framework of ten-yearly safety reviews, leading to the definition and

  9. Commissioning of the nuclear power plant

    International Nuclear Information System (INIS)

    Furtado, P.M.; Rolf, F.

    1984-01-01

    Nuclear Power Plant Angra 2, located at Itaorna Beach-Angra dos Reis is the first plant of the Brazilian-German Agreement to be commissioned. The Nuclear Power Plant is a pressurized water reactor rated at 3765 Mw thermal/1325 Mw electrical. For commissioning purpose the plant is divided into 110 systems. Plant commissioning objective is to demonstrate the safe and correct operation of each plan component, system and of the whole plant in agreement with design conditions, licensing requirements and contractual obligations. This work gives a description of plant commissioning objectives, activities their time sequence, and documentation. (Author) [pt

  10. Fifth annual report Occupational exposures at nuclear power plants 1969-1995

    International Nuclear Information System (INIS)

    1997-01-01

    In order to facilitate the exchange of techniques and experiences in occupational exposure reduction, the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD) launched the Information System on Occupational Exposure (ISOE) on 1 January 1992, after a one year pilot programme. In 1993, an arrangement was agreed between the International Atomic Energy Agency (IAEA) and the NEA by which the IAEA co-sponsors ISOE inviting those IAEA Member States which are not members of the NEA to participate cost-free in the programme. This three-level database joins utilities and regulatory agencies throughout the world, providing occupational data for trending, cost-benefit analyses, technique comparison, information exchange, and other analyses following the ALARA principle. In creating the network for the collection of this data, a forum for direct information and experience exchange was also created, thus allowing operational radiation protection professionals, from both utilities and authorities, to freely exchange ideas, views and experience. This is the Fifth Annual Report produced by the ISOE Programme, and covers the period up to the end of 1995. The analyses presented in this Report focus on the radiological indicators supplied to the NEA 1 database by Participating Utilities. Such reports will be produced annually, the next being expected to be issued in late 1997 and covering the period to the end of 1996. This report was prepared by the ISOE European Regional Technical Centre (ERTC), with the assistance of the NEA ISOE Secretariat, and was reviewed and approved by the Members of the ISOE Steering Group, who also provided valuable comments. The NEA Secretariats is very grateful to the ERTC for its excellent contribution. This report is published under the responsibility of the Secretary-General of the OECD. The opinions expressed are those only, and do not necessarily reflect the point of view of any OECD Member country or of

  11. Nuclear Physics Laboratory annual report 1982

    International Nuclear Information System (INIS)

    1982-06-01

    This Annual Report describes the activities of the Nuclear Physics Laboratory of the University of Washington for the year ending approximately April 30, 1982. As in previous years we report here on a strong nuclear physics research program based upon use of the Laboratory's principal facility, an FN tandem and injector accelerator system. Other major elements of the Laboratory's current program include the hydrogen parity mixing experiment, intermediate-energy experiments conducted at Los Alamos and elsewhere, an accelerator mass spectrometry program emphasizing 10 Be and 14 C measurements on environmental materials, and a number of researches carried out by Laboratory members working collaboratively at other institutions both in this country and abroad

  12. Partner of nuclear power plants

    International Nuclear Information System (INIS)

    Gribi, M.; Lauer, F.; Pauli, W.; Ruzek, W.

    1992-01-01

    Sulzer, the Swiss technology group, is a supplier of components and systems for nuclear power plants. Important parts of Swiss nuclear power stations, such as containments, reactor pressure vessels, primary pipings, are made in Winterthur. Sulzer Thermtec AG and some divisions of Sulzer Innotec focus their activities on servicing and backfitting nuclear power plants. The European market enjoys priority. New types of valves or systems are developed as economic solutions meeting more stringent criteria imposed by public authorities or arising from operating conditions. (orig.) [de

  13. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1990-08-01

    During the first quarter of 1990 the Finnish nuclear power plant units Loviisa 1 and 2 and TVO I and II were in commercial operation for most of the time. Nuclear electricity accounted for 32.5% of the total Finnish electricity production during this quarter. The load factor average of the nuclear power plant units was 99.0%. An international nuclear event scale has been introduced for the classification of nuclear power plant events according to their nuclear and radiation safety significance. The scale first undergoes about a year long trial period in several countries. on the scale, events are divided into levels from 1 to 7 of which events at Level 7 are the most serious. Furthermore, Level 0 (Below Scale) is used for events with no safety significance. All events which occurred at the Finnish nuclear power plants this quarter are classified as Level 0. Occupational radiation doses and external releases of radioactivity were considerably below authorised limits. At the Loviisa plant, a back-up emergency feedwater system independent of the plant's other systems has been introduced which offers a new, alternative means of removing residual heat from the reactor. Owing to this system, the risk of a severe accident has been further reduced. At the TVO plants, systems have been introduced by which accident sequences which lead to containment failure could be eliminated and the consequences of a potential severe accident could be mitigated. In this report, also the release of short-lived radioactive materials along the transfer route of an irradiated sample is described which occured at the FiR 1 research reactor. The amounts of radioactive materials individuals received in their bodies in connection with this event were very low

  14. The safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Do nuclear power plants present an unjustifiable risk Can there be confidence in their safety The Uranium Institute invited a group of senior safety experts from eight different Western countries operating different types of reactors to provide an authoritative explanation for non-specialists of the basic principles of reactor safety, their application and their implications. The report presents the group's opinion on the level of safety achieved in the Western nuclear power plants with which the authors are directly familiar. Although many of the points made may well also be true for non-Western reactors, the report does not cover them except where specifically stated. It does describe and discuss the causes of the Chernobyl disaster. It does not compare nuclear power with other fuels, nor does it deal with its benefits, since however great the benefits from the peaceful use of nuclear power, and its own advantages over other fuels, they could not compensate for lack of safety. The conclusion reached is that the risk associated with electricity production at nuclear power plants can be kept very low. Proper use of the extensive knowledge available today can guarantee operation of nuclear power plants at very high safety levels, carrying very low risks, both to health and of contamination of the environment: risks that are continually lowered by upgrading existing plants and their operation, and by the design of future power plants. (author).

  15. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  16. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  17. Nuclear re-think [The case for nuclear energy

    International Nuclear Information System (INIS)

    Moore, P.

    2006-01-01

    In the early 1970s, Patrick Moore, a co-founder of Greenpeace, believed that nuclear energy was synonymous with nuclear holocaust. Thirty years on, his views have changed because nuclear energy is the only non-greenhouse-gas-emitting power source that can effectively replace fossil fuels while satisfying the world's increasing demand for energy. Today, 441 nuclear plants operating globally avoid the release of nearly 3 billion tonnes of CO 2 emissions annually-the equivalent of the exhaust from more than 428 million cars. Concerns associated with nuclear energy are discussed including costs of nuclear energy, safety of nuclear plants, radioactive waste management, vulnerability of nuclear plants to terrorist attacks and diversion of nuclear fuel for weaponization. It is concluded that nuclear energy is the best way to produce safe, clean, reliable baseload electricity, and will play a key role in achieving global energy security. With climate change at the top of the international agenda, we must all do our part to encourage a nuclear energy renaissance

  18. 2011 annual meeting on nuclear technology fully on line

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY, in its familiar structure of 3 days of conferencing about topics from politics, economy, and technology, was the forum for presentations and discussions in the field of nuclear power. Participants accepted the new concept. This was borne out in particular by the great interest shown in the pre-conference evening with its keynote address, but also by the success of the plenary day, which included a press forum and a panel discussion as components of active communication making the plenary day much more attractive. The 2011 Annual Meeting on Nuclear Technology will be held again at the Berlin Congress Center (bcc) in Alexanderplatz on May 17-19. From September 1, some first important information is available under www.kerntechnik.info, for instance, the call for Papers. All other information about the program will be published in due course. All steps of importance to participants, from registration for the meeting to booking hotel accommodation, can be handled online. (orig.)

  19. Elecnuc. Nuclear power plants in the world. 1997

    International Nuclear Information System (INIS)

    Maubacq, F.; Tailland, C.

    1997-04-01

    This small booklet provides information about all type of nuclear power plants worldwide. It is based on the data taken from the CEA/DSE/SEE Elecnuc database. The content comprises: the 1996 highlights, the main characteristics of the different type of reactors in operation or under construction, the map of the French nuclear power plant sites, the worldwide status of nuclear power plants at the end of 1996, the nuclear power plants in operation, under construction or on order (by groups of reactor-types), the power capacity evolution of power plants in operation, the net and gross capacity of the power plants on the grid, the commercial operation and grid connection forecasts, the first achieved or expected power generation supplied by a nuclear reactor for each country and the power generation from nuclear reactors, the performance indicator of the PWR units in France, the trends of the power generation indicator worldwide, the nuclear power plants in operation, under construction, on order, planned, cancelled, decommissioned and exported worldwide, the schedule of steam generator replacements, and the MOX fuel plutonium recycling programme. (J.S.)

  20. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  1. Decommissioning and back working of Greifswald nuclear power plant

    International Nuclear Information System (INIS)

    Rittscher, D.; Leushacke, D.F.; Meyer, R.

    1998-01-01

    At Nuclear Power Plant Greifswald, the Energiewerke Nord are carrying out the presently world's largest decommissioning project. This requires the gathering up of experience from the operation of the nuclear power plants at Greifswald, the decommissioning of other nuclear power plants, waste management, project management and licensing procedures for the decommissioning of nuclear power plants. That confirmed that the back working of nuclear plants is not a technical problem but a challenge for project management and logistics. It shows that the dismantling and disposal of nuclear plants is an ordinary process in our economic life. (orig.) [de

  2. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    1988-04-01

    This general review of the operation of the Finnish nuclear power plants concentrates on such events and discoveries related to nuclear and radiation safety as the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tubulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment

  3. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Heimburger, H.

    1988-08-01

    This general review of the operation of the Finnish nuclear power plants concentrates on such events and discoveries related to nuclear and radiation safety as the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment

  4. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Ottosson, C.

    1989-05-01

    This general review of the operation of the Finnish nuclear power plants concentrates on such events and discoveries related to nuclear and radiation safety as the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment

  5. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Haenninen, R.; Koponen, H.; Nevander, O.; Paltemaa, R.; Poellaenen, I.; Rannila, P.; Valtonen, K.; Vilkamo, O.

    1988-02-01

    This general review of the operation of the Finnish nuclear power plants concentrates on such events and discoveries related to nuclear and radiation safety as the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment

  6. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Haenninen, R.

    1988-09-01

    This general review of the operation of the Finnish nuclear power plants concentrates on such events and discoveries related to nuclear and radiation safety as the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hzard to the personnel or the environment

  7. Increasing reliability of nuclear energy equipment and at nuclear power plants

    International Nuclear Information System (INIS)

    Ochrana, L.

    1997-01-01

    The Institute of Nuclear Energy at the Technical University in Brno cooperates with nuclear power plants in increasing their reliability. The teaching programme is briefly described. The scientific research programme of the Department of Heat and Nuclear Power Energy Equipment in the field of reliability is based on a complex systematic concept securing a high level of reliability. In 1996 the Department prepared a study dealing with the evaluation of the maintenance system in a nuclear power plant. The proposed techniques make it possible to evaluate the reliability and maintenance characteristics of any individual component in a nuclear power plant, and to monitor, record and evaluate data at any given time intervals. (M.D.)

  8. TVA's nuclear power plant experience

    International Nuclear Information System (INIS)

    Willis, W.F.

    1979-01-01

    This paper reviews TVA's nuclear power plant design and construction experience in terms of schedule and capital costs. The completed plant in commercial operation at Browns Ferry and six additional plants currently under construction represent the nation's largest single commitment to nuclear power and an ultimate investment of $12 billion by 1986. The presentation is made in three separate phases. Phase one will recapitulate the status of the nuclear power industry in 1966 and set forth the assumptions used for estimating capital costs and projecting project schedules for the first TVA units. Phase two describes what happened to the program in the hectic early 1979's in terms of expansion of scope (particularly for safety features), the dramatic increase in regulatory requirements, vendor problems, stretchout of project schedules, and unprecedented inflation. Phase three addresses the assumptions used today in estimating schedules and plant costs for the next ten-year period

  9. Proceedings of the Canadian Nuclear Society 15. annual conference

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, H M [Hydro-Quebec, Montreal, PQ (Canada)

    1994-12-31

    The proceedings of the 15. annual conference of the Canadian Nuclear Society cover a wide range of nuclear topics, but the emphasis is on CANDU reactors and Canadian experience. The 89 papers are arranged in 17 sessions dealing with the following subjects: thermalhydraulics, fuel channels, operations, reactor physics, fuel, new technology, safety, training, waste management. The individual papers have been abstracted separately.

  10. Proceedings of the Canadian Nuclear Society 15. annual conference

    International Nuclear Information System (INIS)

    Huynh, H.M.

    1994-01-01

    The proceedings of the 15. annual conference of the Canadian Nuclear Society cover a wide range of nuclear topics, but the emphasis is on CANDU reactors and Canadian experience. The 89 papers are arranged in 17 sessions dealing with the following subjects: thermalhydraulics, fuel channels, operations, reactor physics, fuel, new technology, safety, training, waste management. The individual papers have been abstracted separately

  11. Max-Planck-Institute for Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short communications and extended abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments on accelerators and ion sources, developments of detectors and experimental setups, electronics, data processing, target developments, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics, medium- and high-energy physics, statistical models of nuclei and nuclear reactions, nuclear reactions at high energies, many-particle theory, quantum chromodynamics, meteorites, comets, interstellar dust, planetary atmospheres, cosmic radiation, molecular collisions in the earth atmosphere, nuclear geology and geochemistry, as well as archaeology. See hints under the relevant topics. (HSI)

  12. Academic training for nuclear power plant operators

    International Nuclear Information System (INIS)

    Jones, D.W.

    1982-01-01

    In view of the increasing emphasis being placed upon academic training of nuclear power plant operators, it is important that institutions of higher education develop and implement programs which will meet the educational needs of operational personnel in the nuclear industry. Two primary objectives must be satisfied by these programs if they are to be effective in meeting the needs of the industry. One objective is for academic quality. The other primary objective is for programs to address the specialized needs of the nuclear plant operator and to be relevant to the operator's job. The Center for Nuclear Studies at Memphis State University, therefore, has developed a total program for these objectives, which delivers the programs, and/or appropriate parts thereto, at ten nuclear plant sites and with other plants in the planning stage. The Center for Nuclear Studies program leads to a Bachelor of Professional Studies degree in nuclear industrial operations, which is offered through the university college of Memphis State University

  13. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Science.gov (United States)

    2013-08-19

    ... Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station... that the NRC take action with regard to James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee.... Fitzpatrick Nuclear Power Plant (Fitzpatrick), Vermont Yankee Nuclear Power Station (Vermont Yankee), and...

  14. Cyber security issues imposed on nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Do-Yeon

    2014-01-01

    Highlights: • Provide history of cyber attacks targeting at nuclear facilities. • Provide cyber security issues imposed on nuclear power plants. • Provide possible countermeasures for protecting nuclear power plants. - Abstract: With the introduction of new technology based on the increasing digitalization of control systems, the potential of cyber attacks has escalated into a serious threat for nuclear facilities, resulting in the advent of the Stuxnet. In this regard, the nuclear industry needs to consider several cyber security issues imposed on nuclear power plants, including regulatory guidelines and standards for cyber security, the possibility of Stuxnet-inherited malware attacks in the future, and countermeasures for protecting nuclear power plants against possible cyber attacks

  15. Nuclear power plant insurance - experience and loss statistics

    International Nuclear Information System (INIS)

    Feldmann, J.; Dangelmaier, P.

    1982-01-01

    Nuclear power plants are treated separately when concluding insurance contracts. National insurance pools have been established in industrial countries, co-operating on an international basis, for insuring a nuclear power plant. In combined property insurance, the nuclear risk is combined with the fire risk. In addition, there are the engineering insurances. Of these, the one of significance for nuclear power plants is the machinery insurance, which can be covered on the free insurance market. Nuclear power plants have had fewer instances of damage than other, conventional installations. (orig.) [de

  16. Compilation of data on the release of radioactive substances in the vent air of nuclear power plants in the Federal Republic of Germany in 1975

    International Nuclear Information System (INIS)

    Winkelmann, I.; Endrulat, H.J.; Haubelt, R.; Westpfahl, U.

    1976-04-01

    The present compilation of data on the release of radioactive substances in the vent air of nuclear power plants in the FRG is a continuation of a report series on aerosol filter and iodine filter samples from the exhaust air control systems of the nuclear power plants Gundremmingen, Obrigheim, Wuergassen, Stade, Lingen and Biblis A. The reports have been issued by the Federal public health office since 1972. This report is supplemented by annual release values on radioactive noble gases, on short- and long-lived aerosols, and on gaseous 131 I, supplied by the individual nuclear power plants as in previous years on uniform questionnaires. Data on the release of tritium are also available from some nuclear power plants. (orig.) [de

  17. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Hennig, J.; Bohr, E.

    1976-04-01

    This annotated bibliography is a first attempt to give a survey of the kind of literature which is relevant for the ergonomic working conditions in nuclear power plants. Such a survey seems to be useful in view of the fact that the 'factor human being' comes recently more and more to the fore in nuclear power plants. In this context, the necessity is often pointed out to systematically include our knowledge of the performance capacity and limits of human beings when designing the working conditions for the personnel of nuclear power plants. For this reason, the bibliography is so much intended for the ergonomics experts as for the experts of nuclear engineering. (orig./LN) [de

  18. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    Science.gov (United States)

    2011-07-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-244; Docket No. 72-67] R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent Fuel Storage Installation; Notice of... Facility Operating License No. DPR-18, for the R.E. Ginna Nuclear Power Plant (Ginna), currently held by R...

  19. Advancements in nuclear plant maintenance programs

    International Nuclear Information System (INIS)

    Meligi, A.E.; Maras, M.C.

    1993-01-01

    The viability of the nuclear option as a technology choice for present and future electricity generation will be decided primarily on the basis of operating cost to achieve plant performance objectives. In a nuclear plant, performance is judged not only on availability and output rate but also on safety risk and radiation exposure. Operating, cost is essentially made up of the fuel cost and operation and maintenance (O and M) cost. Over the past decade, the industry average nuclear plant performance has improved significantly; however, this improvement was accompanied by rising O and M cost. The net result was that the nuclear option lost its long-standing economic advantage over the coal option, based on the industry average comparison, around 1987 - with the gap narrowing slightly in the last 2 years. In recent times, gas-fired plants have also become a basis for comparison. The electric generation cost comparisons of various fuel options has led to even greater scrutiny of nuclear plant performance, with the poorer performing plants facing the risk of shutdown. While effective O and M programs improve plant performance, present industry data show that there is no direct correlation between the cost of a plant O and M program and its associated performance. There is a significant number of existing tools and techniques in the O and M area that have proved to be successful and have resulted in significant benefits and payback. This paper presents an overview of the nuclear industry efforts to improve the conduct of O and M activities, describes the basic elements of an effective O and M program, and addresses some of the state-of-the-art tools and techniques to enhance maintenance work planning, training, and procedures

  20. Emergency control centers for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidance is provided for the development and implementation of emergency control centers for nuclear power plants, including nuclear plant control room, nuclear plant company headquarters, emergency control center, and nuclear plant alternate emergency control center. Requirements and recommendations are presented for the mission, communications, instrumentation and equipment associated with each type of control center. Decisional aids, manning requirements and resources are also given; the decision aids cover both the accident assessment and protective action areas. Both normal and alternate means of communications are considered. Off-site emergency control centers, although not covered in the strict sense by this standard, are considered in an appendix

  1. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1990: Twenty-third annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-01-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1990. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1990 annual reports submitted by about 443 licensees indicated that approximately 214,568 individuals were monitored, 110,204 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.19 rem (cSv) and an average measurable dose of about 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,361 individuals completed their employment with one or more of the 443 covered licensees during 1990. Some 77,633 of these individuals terminated from power reactor facilities, and about 11,083 of them were considered to be transient workers who received an average dose of 0.67 rem (cSv)

  2. SWOT of nuclear power plant sustainable development

    International Nuclear Information System (INIS)

    Abbaspour, M.; Ghazi, S.

    2008-01-01

    SWOT Analysis is a Useful tool that can he applied to most projects or business ventures. In this article we are going to examine major strengths, weaknesses, opportunities and threats of nuclear power plants in view of sustainable development. Nuclear power plants have already attained widespread recognition for its benefits in fossil pollution abatement, near-zero green house gas emission, price stability and security of energy supply. The impressive new development is that these virtues are now a cost -free bonus, because, in long run, nuclear energy has become an inexpensive way to generate electricity. Nuclear energy's pre-eminence economically and environmentally has two implications for government policy. First, governments should ensure that nuclear licensing and safety oversight arc not only rigorous but also efficient in facilitating timely development of advanced power plants. Second, governments should be bold incentivizing the transformation to clean energy economics, recognizing that such short-term stimulus will, in the case of nuclear plants, simply accelerate desirable changes that now have their own long-term momentum. The increased competitiveness of nuclear power plant is the result of cost reductions in all aspects of nuclear economics: Construction, financing, operations, waste management and decommissioning. Among the cost-lowering factors are the evolution to standardized reactor designs, shorter construction periods, new financing techniques, more efficient generation technologies, higher rates of reactor utilization, and longer plant lifetimes. U.S World Nuclear Association report shows that total electricity costs for power plant construction and operation were calculated at two interest rates. At 10%, midrange generating costs per kilowatt-hour are nuclear at 4 cents, coal at 4.7 cents and natural gas at 5.1 cent. At a 5% interest rate, mid-range costs per KWh fall to nuclear at 2.6 cents, coal at 3.7 cents and natural gas at 4.3 cents

  3. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    In this popular scientific brochure a brief description of construction scheme of Bohunice Nuclear Power Plant is presented. Electricity generation in a nuclear power plant is described. Instrumentation and control system as well as nuclear safety principles applied on the NPP are presented

  4. Millstone nuclear power plant emergency system assessment

    International Nuclear Information System (INIS)

    Akhmad Khusyairi

    2011-01-01

    U.S.NRC determined an obligation to build a nuclear power plant emergency response organization for both on-site and off-site. Millstone Nuclear Power Plants have 3 nuclear reactors and 2 of 3 still in commercial operation. Reactor unit 1, BWR type has been permanently shut down in 1998, while the two others, units 2 and 3 obtain the extended operating license respectively until 2035 and 2045. As a nuclear installation has the high potential radiological impact, Millstone nuclear power plant emergency response organization must establish both on-site or off-site. Emergency response organization that is formed must involve several state agencies, both state agencies and municipality. They have specific duties and functions in a state of emergency, so that protective measures can be undertaken in accordance with the community that has been planned. Meanwhile, NRC conduct their own independent assessment of nuclear power plant emergencies. (author)

  5. Safety Assessment - Swedish Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B. [Luleaa Univ. of Technology (Sweden)

    1996-12-31

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs.

  6. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kjellstroem, B.

    1996-01-01

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  7. Preliminary regulatory assessment of nuclear power plants vulnerabilities

    International Nuclear Information System (INIS)

    Kostadinov, V.; Petelin, S.

    2004-01-01

    Preliminary attempts to develop models for nuclear regulatory vulnerability assessment of nuclear power plants are presented. Development of the philosophy and computer tools could be new and important insight for management of nuclear operators and nuclear regulatory bodies who face difficult questions about how to assess the vulnerability of nuclear power plants and other nuclear facilities to external and internal threats. In the situation where different and hidden threat sources are dispersed throughout the world, the assessment of security and safe operation of nuclear power plants is very important. Capability to evaluate plant vulnerability to different kinds of threats, like human and natural occurrences and terrorist attacks and preparation of emergency response plans and estimation of costs are of vital importance for assurance of national security. On the basis of such vital insights, nuclear operators and nuclear regulatory bodies could plan and optimise changes in oversight procedures, organisations, equipment, hardware and software to reduce risks taking into account security and safety of nuclear power plants operation, budget, manpower, and other limitations. Initial qualitative estimations of adapted assessments for nuclear applications are shortly presented. (author)

  8. Generic safety issues for nuclear power plants with pressurized heavy water reactors and measures for their resolution

    International Nuclear Information System (INIS)

    2007-06-01

    be used in reassessing the safety of individual operating plants. In 1998, the IAEA completed IAEA-TECDOC-1044 entitled Generic Safety Issues for Nuclear Power Plants with Light Water Reactors and Measures Taken for their Resolution and established the associated LWRGSIDB database (Computer Manual Series No. 13). The present compilation, which is based on broad international experience, is an extension of this work to cover pressurized heavy water reactors (PHWRs). As in the case of LWRs, it is one element in the framework of IAEA activities to assist Member States in reassessing the safety of operating nuclear power plants. It addresses generic safety issues identified in nuclear power plants using PHWRs. In most cases, the measures taken or planned to resolve these issues are also identified. The work on this report was initiated by the Senior Regulators of Countries Operating CANDU-Type Nuclear Power Plants at one of their annual meetings. It was carried out within the framework of the IAEA's programme on National Regulatory Infrastructure for Nuclear Installation Safety and serves to enhance regulatory effectiveness through the exchange of safety related information

  9. Regulatory oversight of nuclear safety in Finland. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, E. (ed.)

    2012-07-01

    The report constitutes the report on regulatory control in the field of nuclear energy which the Radiation and Nuclear Safety Authority (STUK) is required to submit once a year to the Ministry of Employment and the Economy pursuant to Section 121 of the Nuclear Energy Decree. The report is also delivered to the Ministry of Environment, the Finnish Environment Institute, and the regional environmental authorities of the localities in which a nuclear facility is located. The regulatory control of nuclear safety in 2011 included the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The first parts of the report explain the basics of nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision work. The section concerning the regulation of nuclear facilities contains an overall safety assessment of the nuclear facilities currently in operation or under construction. The chapter concerning the regulation of the final disposal project for spent nuclear fuel de-scribes the preparations for the final disposal project and the related regulatory activities. The section concerning nuclear non-proliferation describes the nuclear non-proliferation control for Finnish nuclear facilities and final disposal of spent nuclear fuel, as well as measures required by the Additional Protocol of the Safeguards Agreement. The chapter describing the oversight of security arrangements in the use of nuclear energy discusses oversight of the security arrangements in nuclear power plants and other plants, institutions and functions included within the scope of STUK's regulatory oversight. The chapter also discusses the national and

  10. Loviisa nuclear power plant analyzer

    International Nuclear Information System (INIS)

    Porkholm, K.; Nurmilaukas, P.; Tiihonen, O.; Haenninen, M.; Puska, E.

    1992-12-01

    The APROS Simulation Environment has been developed since 1986 by Imatran Voima Oy (IVO) and the Technical Research Centre of Finland (VTT). It provides tools, solution algorithms and process components for use in different simulation systems for design, analysis and training purposes. One of its main nuclear applications is the Loviisa Nuclear Power Plant Analyzer (LPA). The Loviisa Plant Analyzer includes all the important plant components both in the primary and in the secondary circuits. In addition, all the main control systems, the protection system and the high voltage electrical systems are included. (orig.)

  11. I and C upgrading at nuclear power plants

    International Nuclear Information System (INIS)

    Tamiri, A.

    2003-01-01

    Continuing the operation of existing nuclear power plants will help reduce the number of new base-load nuclear and fossil power plants that need to be built. Old nuclear power plants in Canada are operating with analog instrumentation and control systems. For a number of reasons, such as changes and improvements in the applicable standards and design, maintenance problems due to the lack of spares, technical obsolescence, the need to increase power production, availability, reliability and safety, and in order to reduce operation and maintenance costs, instrumentation and control upgrading at nuclear power plants in a cost effective manner should be considered the greatest priority. Failures of instrumentation and control (I and C) due to aging and obsolescence issues may have an immediate negative impact on plant reliability and availability and also affect long-term plant performance and safety. In today's competitive marketplace, power plants are under pressure to cut spending on maintenance while reducing the risk of equipment failure that could cause unplanned outage. To improve plant safety and availability, old nuclear power plants will require investment in new technologies that can improve the performance and reduce the costs of generation by addressing the long term reliability of systems by up-grading to modem digital instrumentation and control and optimization opportunities. Boiler drum level control at nuclear power plants is critical for both plant protection and equipment safety and applies equality to high and low levels of water within the boiler drum. Plant outage studies at Pickering Nuclear have identified boiler drum level control and feed water control systems as major contributors to plant unavailability. Ways to improve transient and steady state response, upgrading existing poor analog control systems for boiler level and feed-water control systems at Pickering Nuclear, with enhanced and robust controller will be discussed in this paper

  12. Seismic reevaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    Hennart, J.C.

    1978-01-01

    The codes and regulations governing Nuclear Power Plant seismic analysis are continuously becoming more stringent. In addition, design ground accelerations of existing plants must sometimes be increased as a result of discovery of faulting zones or recording of recent earthquakes near the plant location after plant design. These new factors can result in augmented seismic design criteria. Seismic reanalysius of the existing Nuclear Power Plant structures and equipments is necessary to prevent the consequences of newly postulated accidents that could cause undue risk to the health or safety of the public. This paper reviews the developments of seismic analysis as applied to Nuclear Power Plants and the methods used by Westinghouse to requalify existing plants to the most recent safety requirements. (author)

  13. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-01-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics. (author)

  14. Robotics for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-10-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics.

  15. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  16. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators

    International Nuclear Information System (INIS)

    Matthes, Felix C.

    2009-10-01

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  17. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    International Nuclear Information System (INIS)

    Friedlander, E.M.

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out

  18. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  19. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  20. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods.

  1. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods.

  2. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, E.M. (ed.)

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

  3. Maintenance planning for nuclear power plants

    International Nuclear Information System (INIS)

    Mattu, R.K.; Cooper, S.E.; Lauderdale, J.R.

    2004-01-01

    Maintenance planning for nuclear power plants is similar to that in other industrial plants but it is heavily influenced by regulatory rules, with consequent costs of compliance. Steps by the nuclear industry and the Nuclear Regulatory Commission to address that problem include development of guidelines for maintenance of risk-critical equipment, using PRA-based techniques to select a set of equipment that requires maintenance and reliability-centered maintenance (RCM) approaches for determining what maintenance is required. The result of the process is a program designed to ensure effective maintenance of the equipment most critical to plant safety. (author)

  4. Safety assessment principles for nuclear plants

    International Nuclear Information System (INIS)

    1992-01-01

    The present Safety Assessment Principles result from the revision of those which were drawn up following a recommendation arising from the Sizewell-B enquiry. The principles presented here relate only to nuclear safety; there is a section on risks from normal operation and accident conditions and the standards against which those risks are assessed. A major part of the document deals with the principles that cover the design of nuclear plants. The revised Safety assessment principles are aimed primarily at the safety assessment of new nuclear plants but they will also be used in assessing existing plants. (UK)

  5. Qualification of nuclear power plant operations personnel

    International Nuclear Information System (INIS)

    1984-01-01

    With the ultimate aim of reducing the possibility of human error in nuclear power plant operations, the Guidebook discusses the organizational aspects, the staffing requirements, the educational systems and qualifications, the competence requirements, the ways to establish, preserve and verify competence, the specific aspects of personnel management and training for nuclear power plant operations, and finally the particular situations and difficulties to be overcome by utilities starting their first nuclear power plant. An important aspect presented in the Guidebook is the experience in training and qualification of nuclear power plant personnel in various countries: Argentina, Belgium, Canada, Czechoslovakia, France, Federal Republic of Germany, Spain, Sweden, United Kingdom and United States of America

  6. Main Characteristics of Nuclear Power Plants in the European Union and Candidate Countries

    International Nuclear Information System (INIS)

    Lillington, J.N.; Turland, B.D.; Haste, T.J.; Seiler, J.M.; Tapia, J.; Carretero, A.; Perez, T.; Geutges, A.; Sehgal, B.R.; Mattila, L.; Holmstrom, H.; Karwat, H.; Maroti, L.; Husarcek, J.

    2001-10-01

    The main objective was to advise the EC on future challenges and opportunities in terms of enhanced co-operation in the area of nuclear safety and harmonization of safety requirements and practices in an enlarged European Union Part of this activity was to provide a summary of the plant characteristics of the operating civil nuclear power plants in the EU Member and Candidate Countries. The present report provides these data in three formats: A reference table which lists the main characteristics of nuclear power-producing reactors operating in the European Union (EU) and Candidate Countries, as at 31 December 1999. Also included, for the sake of completeness, are data for reactors in the former Soviet Union, such as Russia and the Ukraine. The format adopted follows that in the annual International Atomic Energy Agency (IAEA) reference data report ''Nuclear Power Reactors of the World'', from which much of the information was taken; A summary table indicating totals by reactor type covering Western and Eastern Europe separately, again from IAEA sources, giving number of plant, total generating capacity and total years in operation. A list of the abbreviations for different reactor types is also provided; A set of detailed data sheets giving main plant characteristics for different reactor types ordered by country. These data sheets cover reactors in EU Member and Candidate Countries only. Details are provided on the origin of the data where these are available, so that further information may be obtained if desired and where permitted by commercial and/or proprietary considerations. (author)

  7. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  8. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  9. Annual Report 2000-2001

    International Nuclear Information System (INIS)

    2002-01-01

    The annual report for the year 2000-2001 has been compiled, which offers concise description of tasks achieved and status of on going efforts pertaining to PAEC (Pakistan Atomic Commission) programme. The tasks description are as: highlights of various projects, nuclear power plants, physical sciences and engineering, biosciences, nuclear minerals, human resource development, projects, international relations. At the end of this report financial position of PAEC and list of publication is also available. (A.B.)

  10. Annual Report 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The annual report for the year 2000-2001 has been compiled, which offers concise description of tasks achieved and status of on going efforts pertaining to PAEC (Pakistan Atomic Commission) programme. The tasks description are as: highlights of various projects, nuclear power plants, physical sciences and engineering, biosciences, nuclear minerals, human resource development, projects, international relations. At the end of this report financial position of PAEC and list of publication is also available. (A.B.)

  11. Occupational dose control in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Viktorsson, C.; Lochard, J.; Benedittini, M.; Baum, J.; Khan, T.A.

    1990-01-01

    Reduction in occupational exposure at nuclear power plants is desirable not only in the interest of the health and safety of plant personnel, but also because it enhances the safety and reliability of the plants. This report summarises the current trends of doses to workers at nuclear power plants and the achievements and developments regarding methods for their reduction

  12. Economics and policies of nuclear plant life management

    International Nuclear Information System (INIS)

    Yamagata, H.

    1998-01-01

    NEA provides an opportunity for international exchange of information on the economics and policies of nuclear plant life management for governments and plant owners. The NEA Secretariat is finalising the 'state-of-the-art report' on the economics and policies of nuclear plant life management, including the model approach and national summaries. In order to meet power supply obligations in the early 2000, taking into account energy security, environmental impact, and the economics of nuclear power plants whose lives have been extended, initiatives at national level must be taken to monitor, co-ordinate, and support the various industry programmes of nuclear plant life management by integrated and consistent policies, public acceptance, R and D, and international co-operation. Nuclear power owners should establish an organisation and objectives to carry nuclear plant life management in the most economic and smoothest way taking into consideration internal and external influences. The organisation must identify the critical item and the ageing processes, and optimise equipment reliability and maintenance workload. (author)

  13. German risk study 'nuclear power plants, phase B'

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1989-01-01

    The results of the German risk study 'Nuclear power plants, phase B' indicate that an accident in a nuclear power plant which cannot be managed by the safety systems according to design, is extremely improbable: Its probability is at about 3 to 100,000 per year and plant. Even if the safety systems fail, emergency measures can be effected in a nuclear power plant to prevent an accident. These in-plant emergency measures diminish the probability of a core meltdown to about 4 to 1,000,000 per year and plant. Hence, the accident risk is greatly reduced. The information given by the author are to smooth the emotional edge in the discussion about the safety of nuclear power plants. (orig.) [de

  14. Max-Planck-Institute for Nuclear Physics. Annual report 1986

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short descriptions of the research performed at the given institute together with an extensive list of publications. The research in nuclear physics is concerned with developments in accelerators and ion sources, radiation detectors, solid-state studies by nuclear methods, counting circuits, data processing, target preparation, fission, fusion, and nuclear friction, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics and interaction of charged particles with matter, medium and high energy physics. The research in cosmophysics works on meteorites and lunar rocks, the gallium-solar-neutrino experiment (project GALLEX), problems of Halley's comet, interplanetary and interstellar dust, planetary atmospheres, interstellar medium and cosmic rays, molecular collision processes in the gas phase, nuclear geology and geochemistry, and archaeometry. (GG)

  15. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  16. Nuclear power plant outage optimisation strategy

    International Nuclear Information System (INIS)

    2002-10-01

    Competitive environment for electricity generation has significant implications for nuclear power plant operations, including among others the need of efficient use of resources, effective management of plant activities such as on-line maintenance and outages. Nuclear power plant outage management is a key factor for good, safe and economic nuclear power plant performance which involves many aspects: plant policy, co-ordination of available resources, nuclear safety, regulatory and technical requirements and, all activities and work hazards, before and during the outage. This technical publication aims to communicate these practices in a way they can be used by operators and utilities in the Member States of the IAEA. It intends to give guidance to outage managers, operating staff and to the local industry on planning aspects, as well as examples and strategies experienced from current plants in operation on the optimization of outage period. This report discusses the plant outage strategy and how this strategy is actually implemented. The main areas identified as most important for outage optimization by the utilities and government organizations participating in this report are: organization and management; outage planning and preparation, outage execution, safety outage review, and counter measures to avoid extension of outages and to easier the work in forced outages. This report was based on discussions and findings by the authors of the annexes and the participants of an Advisory Group Meeting on Determinant Causes for Reducing Outage Duration held in June 1999 in Vienna. The report presents the consensus of these experts regarding best common or individual good practices that can be used at nuclear power plants with the aim to optimize

  17. Nuclear regulation. License renewal questions for nuclear plants need to be resolved

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Kruslicky, Mary Ann; McDowell, William D. Jr.; Coleman, Robert L.

    1989-04-01

    A December 1986 pipe rupture at Virginia Power's Surry unit 2 nuclear power plant injured eight workers; four later died. As a result of this accident, Representative Edward J. Markey requested GAO to examine the Surry accident and assess the problems confronting aging nuclear plants. In March 1988 we reported our findings concerning the accident and a July 1987 incident at the Trojan nuclear plant in Oregon. This report addresses problems confronting aging nuclear plants by examining the Nuclear Regulatory Commission's (NRC) program to develop a license renewal policy and accompanying regulations, and the initiatives underway by the Department of Energy (DOE) and the electric utility industry to extend the operating lives of these plants. Nuclear power has become second only to coal as the largest producer of electricity in the United States. The 110 nuclear plants currently in service are operated by 54 utilities, provide about 20 percent of the nation's electricity, and represent a capital investment of over $200 billion. The Atomic Energy Act authorizes NRC to issue nuclear plant operating licenses for up to 40 years and provides for license extensions beyond the initial operating period. The act does not, however, stipulate the criteria for evaluating a utility request to operate a nuclear plant longer than 40 years. The oldest operating license currently in effect will expire in the year 2000. According to NRC, about one-half of the existing operating licenses will terminate by the year 2015, and most licenses will expire by about 2030. Many utilities will have to decide in the early 1990s whether to continue operating older nuclear plants or to construct new generating capacity. A clear understanding of the terms and conditions governing the license renewal process will be a key element in deciding how to meet future electricity demand. Although NRC has developed 3 possible license renewal policy options and identified 15 areas of regulatory uncertainty that

  18. Plant designer's view of the operator's role in nuclear plant safety

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Porter, N.J.

    1981-01-01

    The nuclear plant operator's role supports the design assumptions and equipment with four functional tasks. He must set up th plant for predictable response to disturbances, operate the plant so as to minimize the likelihood and severity of event initiators, assist in accomplishing the safety functions, and feed back operating experiences to reinforce or redefine the safety analyses' assumptions. The latter role enhances the operator effectiveness in the former three roles. The Safety Level Concept offers a different perspective that enables the operator to view his roles in nuclear plant safety. This paper outlines the operator's role in nuclear safety and classifies his tasks using the Safety Level Concept

  19. Lippe-Ems GmbH nuclear power stations. Annual report 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Nuclear power company Lippe-Ems GmbH (KLE) runs the Emsland Nuclear Power Station (KKE) in Lingen (Ems) with a 1300 MW pressurized Water reactor. Partners of KLE are VEW and Elektromark. This 1992 annual report reveals numerous financial data of the operator (balance sheet, profit and loss account.) (orig./UA) [de

  20. An Annual Plant Growth Proxy in the Mojave Desert Using MODIS-EVI Data.

    Science.gov (United States)

    Wallace, Cynthia S A; Thomas, Kathryn A

    2008-12-03

    In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R² = 0.61 for 2005 and R² = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  1. An Annual Plant Growth Proxy in the Mojave Desert Using MODIS-EVI Data

    Directory of Open Access Journals (Sweden)

    Kathryn A. Thomas

    2008-12-01

    Full Text Available In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R2 = 0.61 for 2005 and R2 = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  2. Plant life extensions for German nuclear power plants? Controversial discussion on potential electricity price effects

    International Nuclear Information System (INIS)

    Matthes, Felix C.; Hermann, Hauke

    2009-06-01

    The discussions on electricity price effects in case of the plant life extension of German nuclear power plants covers the following topics: (1) Introduction and methodology. (2) Electricity generation in nuclear power plants and electricity price based on an empirical view: electricity generation in nuclear power plants and final consumption price for households and industry in the European Union; electricity generation in nuclear power plants and electricity wholesale price in case of low availability of nuclear power plants in Germany; comparison of electricity wholesale prices in Germany and France. (3) Model considerations in relation to electricity prices and nuclear phase-out. (4) Concluding considerations.

  3. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Kimura, Motohiko; Abe, Akira

    1993-01-01

    A continuing need exists for automatic or remote-controlled machines or robots which can perform inspection and maintenance tasks in nuclear power plants. Toshiba has developed several types of monofunctional and multi- functional robots for such purposes over the past 20 years, some of which have already been used in actual plants. This paper describes new multifunctional robots for inspection and maintenance. An inspection robot has been applied in an actual plant for two years for performance testing. Maintenance robots for grinding tasks have also been developed, which can be easily teleoperated by the operator using automatic control. These new robots are expected to be applied to actual inspection and maintenance work in nuclear power plants. (author)

  4. Affective imagery and acceptance of replacing nuclear power plants.

    Science.gov (United States)

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. © 2011 Society for Risk Analysis.

  5. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Swain, A.D.

    1981-01-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants. (orig.) [de

  6. Annual report 1993 by the Rossendorf Society of Nuclear Engineering and Analysis

    International Nuclear Information System (INIS)

    Haefele, W.

    1994-03-01

    The second annual report contains, apart from the business report and the organigram, priorities and results achieved in the special fields of nuclear installations (decommissioning and disposal), nuclear waste management (radioactive wastes), nuclear analyses and rehabilitation, radiopharmaceuticals, and safety and radiation protection. (HP) [de

  7. ALARA at nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.

    1991-01-01

    Implementation of the ALARA principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed through a variety of dose reduction techniques. Initiatives by the ICRP, NCRP, NRC, INPO, EPRI, and BNL ALARA Center have all contributed to a heightened interest and emphasis on dose reduction. The NCRP has formed Scientific Committee 46-9 which is developing a report on ALARA at Nuclear Power Plants. It is planned that this report will include material on historical aspects, management, valuation of dose reduction ($/person-Sv), quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report

  8. www.kerntechnik.info = annual meeting on nuclear technology on the web

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The ANNUAL MEETING ON NUCLEAR TECHNOLOGY can be found under the new Internet address of www.kerntechnik.info as of now. The Web site offers systematic access to all important information and features about this largest European specialized meeting of its kind. Pages showing the program of the Conference with its plenary session, topical sessions, technical sessions, and the ''Nuclear Power Campus'' and ''Competency Workshop'' special events, are updated continuously. In addition, contributions to the technical sessions may be submitted on line at an early point in time; registrating for the meeting as well as booking hotel accommodation are also possible on line. The next ANNUAL MEETING ON NUCLEAR TECHNOLOGY will be held at the Berlin Congress Center in Berlin/Germany on May 4-6, 2010. (orig.)

  9. A common high standard for nuclear power plant exports: overview and analysis of the Nuclear Power Plant Exporters' Principles of Conduct

    International Nuclear Information System (INIS)

    Perkovich, George; Radzinsky, Brian

    2012-01-01

    At this time, there is no overarching global framework to regulate the development of the nuclear power industry. Laws concerning the export of nuclear technology vary across jurisdictions, and politically-binding arrangements such as the Nuclear Suppliers Group (NSG) help ensure that weapons-usable or dual-use technologies are not exported, but no single international regime or agreement manages the gamut of potential risks that may arise from the export of civilian nuclear power plants. Accordingly in 2008, the Carnegie Endowment for International Peace convened internationally-recognised experts in nuclear energy to begin a dialogue with nuclear power plant vendors about defining common criteria for the socially responsible export of nuclear power plants. The goal was to articulate a comprehensive set of principles and best practices that would raise the overall standard of practice for exports of nuclear power plants while enjoying widespread support and adherence. The outcome of this process is the Nuclear Power Plant Exporters' Principles of Conduct - an export-oriented code of conduct for nuclear power plant vendors. The Principles of Conduct help ensure that the participating companies will proceed with the sale of a new nuclear power plant only after a careful assessment of the legal, political, and technical contexts surrounding potential customers. It comprises six 'principles' that each address a major area of concern involved in the export of a nuclear power plant: safety, physical security, environmental protection and spent fuel management, systems of compensation for nuclear damage, non-proliferation and safeguards, and business ethics. The Principles of Conduct entail vendor responsibilities to apply specific standards or engage in certain practices before signing contracts and during the marketing and construction phases of a nuclear power plant export project. Conformity with the Principles of Conduct is voluntary and not-legally binding, but the

  10. Nuclear plant license renewal

    International Nuclear Information System (INIS)

    Gazda, P.A.; Bhatt, P.C.

    1991-01-01

    During the next 10 years, nuclear plant license renewal is expected to become a significant issue. Recent Electric Power Research Institute (EPRI) studies have shown license renewal to be technically and economically feasible. Filing an application for license renewal with the Nuclear Regulatory Commission (NRC) entails verifying that the systems, structures, and components essential for safety will continue to perform their safety functions throughout the license renewal period. This paper discusses the current proposed requirements for this verification and the current industry knowledge regarding age-related degradation of structures. Elements of a license renewal program incorporating NRC requirements and industry knowledge including a schedule are presented. Degradation mechanisms for structural components, their significance to nuclear plant structures, and industry-suggested age-related degradation management options are also reviewed

  11. Low-temperature nuclear heat applications: Nuclear power plants for district heating

    International Nuclear Information System (INIS)

    1987-08-01

    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  12. Quality assurance in nuclear power plant

    International Nuclear Information System (INIS)

    Magalhaes, M.T. de

    1981-01-01

    The factors related to the licensing procedures of a nuclear power plant (quality assurance and safety analysis) are presented and discussed. The consequences of inadequate attitudes towards these factors are shown and suggestions to assure the safety of nuclear power plants in Brazil are presented. (E.G.) [pt

  13. US Nuclear Regulatory Commission, 1984 annual report. Volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    This is the 10th annual report of the US Nuclear Regulatory Commission (NRC). This report covers the major activities, events, decisions and planning that took place during fiscal year 1984 (October 1983 through September 1984) within the NRC or involving the NRC. Information is presented concerning 1984 highlights and planning for 1985; reactor regulation; cleanup at Three Mile Island Unit 2; operational experience; nuclear materials; safeguards; waste management; inspection, enforcement, quality assurance, and emergency preparedness; cooperation with the States; international programs; nuclear regulatory research; proceedings and litigation; and management and communication

  14. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Science.gov (United States)

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0202] Seismic Instrumentation for Nuclear Power Plants... Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.4, ``Seismic Instrumentation.'' DATES: Submit... Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a new Revision 3). The proposed...

  15. Nuclear power plant operation 2016. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2017-05-15

    A report is given on the operating results achieved in 2016, events important to plant safety, special and relevant repair, and retrofit measures from nuclear power plants in Germany. Reports about nuclear power plants in Belgium, Finland, the Netherlands, Switzerland, and Spain will be published in a further issue.

  16. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  17. Modifications at operating nuclear power plants

    International Nuclear Information System (INIS)

    Duffy, T.J.; Gazda, P.A.

    1985-01-01

    Modifications at operating nuclear power plants offer the structural engineer many challenges in the areas of scheduling of work, field adjustments, and engineering staff planning. The scheduling of structural modification work for operating nuclear power plants is normally closely tied to planned or unplanned outages of the plant. Coordination between the structural engineering effort, the operating plant staff, and the contractor who will be performing the modifications is essential to ensure that all work can be completed within the allotted time. Due to the inaccessibility of some areas in operating nuclear power plants or the short time available to perform the structural engineering in the case of an unscheduled outrage, field verification of a design is not always possible prior to initiating the construction of the modification. This requires the structural engineer to work closely with the contractor to promptly resolve problems due to unanticipated interferences or material procurement problems that may arise during the course of construction. The engineering staff planning for structural modifications at an operating nuclear power plant must be flexible enough to permit rapid response to the common ''fire drills,'' but controlled enough to ensure technically correct designs and to minimize the expenditure of man-hours and the resulting engineering cost

  18. Radiation management and health management at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Okazaki, Ryuji; Kubo, Tatsuhiko; Tateishi, Seiichiro

    2014-01-01

    This paper describes the measures taken by the Chernobyl nuclear power plant since the accident in April 1986 to date, compares them with the situation of the current Fukushima nuclear accident, and introduces the contents of the authors' visit and coverage in October 2013, including the report of radiation damage. At the Chernobyl site, a new sarcophagus is under construction since 2012. The health care of the workers working at the new and old sarcophaguses of the Chernobyl nuclear power plant is carried out at a national level of Ukraine, which is an important management for decommissioning work. Health diagnosis is also applied to the workers in the new sarcophagus, and radiation-related disease is not reported at present. The number of the persons who died from acute radiation exposure diseases after the accident was 28. It was reported that chronic lymphocytic leukemia (CLL) appeared significantly when the radiation exceeded 100 mSv. The workers who wish to work at the Chernobyl nuclear power plant must pass the test and obtain national qualifications, and then they are able to work for the first time. In the check-in medical control, about half of applicants were rejected. Workers who work at the new sarcophagus are subject to comprehensive health management under the Ukrainian law. There were 58 people who reached annual exposure dose limit of 20 mSv or more among 7,529 people, the cause of which may be the work at the areas of high radiation dose. Even in Fukushima, it is important to perform high quality management based on centralized medical examination, and to further analyze the effects of low-dose exposure to radiation. (A.O.)

  19. Max-Planck-Institute for Nuclear Physics. Annual report 1988

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1989-01-01

    This annual report contains short notes and abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments of accelerators and ion sources, experimental and theoretical studies on nuclear structure and reactions, high-energy physics, studies on meteorites and lunar rocks, comets, interplanetary and interstellar dust, interstellar dynamics, nuclear geology, and archaeometry. See hints under the relevant topics. (HSI)

  20. Nuclear power plant's safety and risk

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1975-01-01

    Starting with a comprehensive safety strategy as evolved over the past years and the present legal provisions for the construction and operation of nuclear power plants, the risk of the intended operation, of accidents and unforeseen events is discussed. Owing to the excellent safety record of nuclear power plants, main emphasis in discussing accidents is given to the precautionary analysis within the framework of the licensing procedure. In this context, hypothetical accidents are mentioned only as having been utilized for general risk comparisons. The development of a comprehensive risk concept for a completely objective safety assessment of nuclear power plants remains as a final goal. (orig.) [de

  1. Heat supply from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stach, V [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1978-05-01

    The current state of world power production and consumption is assessed. Prognoses made for the years 1980 to 2000 show that nuclear energy should replace the major part of fossil fuels not only in the production of power but also in the production of heat. In this respect high-temperature reactors are highly prospective. The question is discussed of the technical and economic parameters of dual-purpose heat and power plants. It is, however, necessary to solve problems arising from the safe siting of nuclear heat and power plants and their environmental impacts. The economic benefits of combined power and heat production by such nuclear plants is evident.

  2. Monitoring of radionuclides in the vicinities of Finnish nuclear power plants in 1991-1992

    Energy Technology Data Exchange (ETDEWEB)

    Ikaeheimonen, T.K.; Klemola, S.; Ilus, E.; Sjoeblom, K.-L.

    1995-06-01

    Surveillance of radioactive substances around Finnish nuclear power plants continued in 1991-1992 according to regular monitoring programmes, in which about 1000 samples were analysed annually from terrestrial and aquatic environments of the two power plants. Trace amounts of activation products originating from the airborne releases of the local power plants were detected in several air, deposition and soil samples. Discharged nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms, sinking matter and sediments. However, the concentrations were so low that they did not markedly increase the radiation burden in the environment. The dominant artificial radionuclides in the vicinity of the power plants remained the cesium isotopes, {sup 137}Cs and {sup 134}Cs, originating from the Chernobyl accident. (orig.) (21 figs., 40 tabs.).

  3. Information Technology for Nuclear Power Plant Configuration Management

    International Nuclear Information System (INIS)

    2010-07-01

    Configuration management (CM) is an essential component of nuclear power plant design, construction and operation. The application of information technology (IT) offers a method to automate and ensure the timely and effective capture, processing and distribution of key nuclear power plant information to support CM principles and practical processes and procedures for implementation of CM at nuclear power plants. This publication reviews some of the principles established in IAEA-TECDOC-1335, 'Configuration Management in Nuclear Power Plants.' It also recaps tenets laid out in IAEA- TECDOC-1284, 'Information Technology Impact on Nuclear Power Plant Documentation' that supports CM programmes. This publication has been developed in conjunction with and designed to support these other two publications. These three publications combined provide a comprehensive discussion on configuration management, information technology and the relationship between them. An extensive discussion is also provided in this publication on the role of the design basis of the facility and its control through the CM process throughout the facility's lifetime. While this report was developed specifically for nuclear power plants, the principles discussed can be usefully applied to any high hazard nuclear facility

  4. Nuclear power plant emergency preparedness

    International Nuclear Information System (INIS)

    2005-01-01

    The guide sets forth detailed requirements on how the licensee of a nuclear power plant shall plan, implement and maintain emergency response arrangements. The guide is also applied to nuclear material and nuclear waste transport in situations referred to in guide YVL 6.5. Requirements on physical protection are presented in a separate guide of Finnish Radiation and Nuclear Safety Authority (STUK)

  5. Seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.

    2001-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  6. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  7. Nuclear power plant

    International Nuclear Information System (INIS)

    Aisaka, Tatsuyoshi; Kamahara, Hisato; Yanagisawa, Ko.

    1982-01-01

    Purpose: To prevent corrosion stress cracks in structural materials in a BWR type nuclear power plant by decreasing the oxygen concentration in the reactor coolants. Constitution: A hydrogen injector is connected between the condensator and a condensate clean up system of a nuclear power plant. The injector is incorporated with hydrogenated compounds formed from metal hydrides, for example, of alloys such as lanthanum-nickel alloy, iron titanium alloy, vanadium, palladium, magnesium-copper alloy, magnesium-nickel alloy and the like. Even if the pressure of hydrogen obtained from a hydrogen bomb or by way of water electrolysis is changed, the hydrogen can always be injected into a reactor coolant at a pressure equal to the equilibrium dissociation pressure for metal hydride by introducing the hydrogen into the hydrogen injector. (Seki, T.)

  8. Proceedings: 2001 Nuclear Asset Management Workshop

    International Nuclear Information System (INIS)

    2002-01-01

    The fourth annual EPRI Nuclear Asset Management Workshop helped decision makers at all levels of nuclear enterprises to keep informed about developing nuclear asset management (NAM) processes, methods, and tools. The goal is to operate nuclear plants with enhanced profitability, while maintaining safety

  9. Monitoring of radionuclides in the vicinities of Finnish nuclear power plants in 1993 and 1994

    International Nuclear Information System (INIS)

    Klemola, S.; Ilus, E.; Ikaeheimonen, T.K.

    1998-08-01

    Monitoring of radioactive substances around Finnish nuclear power plants continued in 1993-1994 in accordance with the regular programmes. Some 1000 samples are analysed annually from the terrestrial and aquatic environments of the two power plant sites. Trace amounts of activation products originating from airborne releases from the local power plants were detected in several air, deposition and soil samples. Discharged nuclides were more abundant in the aquatic environment, especially in samples of indicator organisms, sinking matter and sediments. However, the concentrations were so low that they did not significantly increase the radiation burden in the environment. The dominant artificial radionuclides in the vicinity of the power plants remained the cesium isotopes, especially 137 Cs but also 134 Cs, originating from the Chernobyl accident. (orig.)

  10. Basic safety principles for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1989-01-01

    To ensure the safety operation of nuclear power plant, one should strictly adhere to the implelmentation of safety codes and the establishment of nuclear safety code system, as well as the applicable basic safety principles of nuclear power plants. This article briefly introduce the importance of nuclear codes and its economic benefits and the implementation of basic safety principles to be accumulated in practice for many years by various countries

  11. Annual report 2003-2004

    International Nuclear Information System (INIS)

    2004-01-01

    The annual report for the year 2003-2004 has been compiled, which offers concise description of tasks achieved and status of on going efforts pertaining to PAEC (Pakistan Atomic Commission) programme. The tasks description are as: highlights of various projects, nuclear power plants, physical sciences and engineering, biosciences, nuclear minerals, human resource development, projects, international relations. At the end of this report financial position of PAEC and list of publication list is also available. (A.B.)

  12. Fire prevention in nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    The causes and frequency of fires at nuclear power plants in various countries are briefly given. Methods are described of fire hazard assessment at nuclear power plants, such as Gretener's method and the probabilistic methods. Approaches to the management of nuclear reactor fire protection in various countries as well as the provisions to secure such protection are dealt with. An overview and the basic characteristics of fire detection and extinguishing systems is presented. (Z.S.). 1 tab

  13. Fire protection at nuclear power plants

    International Nuclear Information System (INIS)

    1999-11-01

    The guide presents specific requirements for the design and implementation of fire protection arrangements at nuclear power plants and for the documents relating to the fire protection that are to be submitted to STUK (Finnish Radiation and Nuclear Safety Authority). Inspections of the fire protection arrangements to be conducted by STUK during the construction and operation of the power plants are also described in this guide. The guide can also be followed at other nuclear facilities

  14. FY08 Annual Report for Nuclear Resonance Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Caggiano, Joseph A.

    2009-01-06

    FY08 annual report for project the "Nuclear Resonance Fluorescence Imaging" project. Reviews accomplishments of last 3 years, including U-235 signature search, comparison of different photon sources, and examination of NRF measurements using monochromatic photon source.

  15. Radioactive waste management for German nuclear power plants

    International Nuclear Information System (INIS)

    Weh, R.; Methling, D.; Sappok, M.

    1996-01-01

    In Germany, back-end fuel cycle provisions must be made for the twenty nuclear power plants currently run by utilities with an aggregate installed power of 23.4 GWe, and the four nuclear power plants already shut down. In addition, there are the shut down nuclear power plants of the former German Democratic Republic, and a variety of decommissioned prototype nuclear power plants built with the participation of the federal government and by firms other than utilities. The nuclear power plants operated by utilities contribute roughly one third of the total electricity generation in public power plants, thus greatly ensuring a stable energy supply in Germany. The public debate in Germany, however, focuses less on the good economic performance of these plants, and the positive acceptance at their respective sites, but rather on their spent fuel and waste management which, allegedly, is not safe enough. The spent fuel and waste management of German nuclear power plants is planned on a long-term basis, and executed in a responsible way by proven technical means, in the light of the provisions of the Atomic Act. Each of the necessary steps of the back end of the fuel cycle is planned and licensed in accordance with German nuclear law provisions. The respective facilities are built, commissioned, and monitored in operation with the dedicated assistance of expert consultants and licensing authorities. Stable boundary conditions are a prerequisite in ensuring the necessary stability in planning and running waste management schemes. As producers of waste, nuclear power plants are responsible for safe waste management and remain the owners of that waste until it has been accepted by a federal repository. (orig./DG) [de

  16. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants

    International Nuclear Information System (INIS)

    Feretic, Danilo; Cavlina, Nikola

    2010-01-01

    The aim of this paper is to compare potential energy options for future electricity generation. The paper considers comparison of discounted total cost of electricity generated by nuclear power plant and by combined natural gas and wind plants, having in total equal electricity generation. Large uncertainty in the future fuel costs makes planning of optimal power generating mix very difficult to justify. Probabilistic method is used in the analysis which allows inclusion of uncertainties in future electricity generating cost prediction. Additionally, an informative functional relation between nuclear plant investment cost, natural gas price and wind plant efficiency, that determines competitive power generation between considered options, is also shown. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants are presented. (authors)

  17. Docommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Essmann, J.

    1981-01-01

    The German utilities operating nuclear power plants have long concerned themselves with aspects of decommissioning and for this purpose an engineering company was given a contract to study the entire spectrum of decommissioning. The results of this study have been available in autumn 1980 and it is possible to discuss all the aspects of decommissioning on a new basis. Following these results no change in the design concept of LWR nuclear power plants in operation or under construction is necessary because the techniques, necessary for decommissioning, are fully available today. The technical feasibility of decommissioning for power plants of Biblis A and KRB type has been shown in detail. The calculations of the quantity of waste produced during removal of a nuclear power plant could be confirmed and it could be determined with high procedure. The radiation dose to the decommissioning personnel is in the range of the radiation protection regulations and is in the same range as the radiation dose to the personnel within a yearly inservice inspection. (AF)

  18. Fire prevention in nuclear plants

    International Nuclear Information System (INIS)

    Cayla, J.P.; Jacquet-Francillon, J.; Matarozzo, F.

    2014-01-01

    About 80 fire starts are reported in EDF nuclear power plants every year but only 3 or 4 turn into a real fire and none has, so far, has led to a major safety failure of a nuclear plant. A new regulation has been implemented in july 2014 that strengthens the concept of defense in depth, proposes an approach that is proportionate to the stakes and risks, this proportionality means that the requirements for a power reactor are not the same as for a nuclear laboratory, and imposes an obligation or result rather than of means. The second article deals with the fire that broke out in the waste silo number 130 at La Hague plant in january 1981. The investigation showed that the flammability of the silo content had been underestimated. The third article presents the consequences of the fire that broke out in a power transformer at the Cattenom plant in june 2013. The fire was rapidly brought under control thanks to the immediate triggering of the emergency plan. The article details also the feedback experience of this event. (A.C.)

  19. Nuclear Chemistry Division annual report FY83

    International Nuclear Information System (INIS)

    Struble, G.

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2)

  20. Seismic review of existing nuclear power plants

    International Nuclear Information System (INIS)

    Yanev, P.I.; Mayes, R.L.; Jones, L.R.

    1975-01-01

    Because of developments in the fields of earthquake and structural engineering over the last two decades, the codes, standards and design criteria for Nuclear Power Plants and other critical structures have changed substantially. As a result, plants designed only a few years ago do not satisfy the requirements for new plants. Accordingly, the Regulatory Agencies are requiring owners of older Nuclear Power Plants to re-qualify the plants seismically, using codes, standards, analytical techniques and knowledge developed in recent years. Seismic review consists of three major phases: establishing the design and performance criteria, re-qualifying the structures, and re-qualifying the equipment. The authors of the paper have been recently involved in the seismic review of existing nuclear power plants in the United States. This paper is a brief summary of their experiences

  1. Atom Mirny: The World’S First Civilian Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kaiser, Peter; Madsen, Michael

    2013-01-01

    The world’s first civilian nuclear power plant was commissioned on June 27, 1954 in Obninsk, which was at that time in the Soviet Union, today, the Russian Federation. The Obninsk nuclear power plant generated electricity and supported experimental nuclear research. The Obninsk nuclear power plant operated without incident for 48 years. In September 2002, the last fuel subassembly was unloaded, when the Obninsk nuclear power plant set another first: it became the first nuclear power plant to be decommissioned in Russia

  2. Nuclear and thermal power plants and the environment

    International Nuclear Information System (INIS)

    Mejstrik, V.

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared. (Z.M.)

  3. Nuclear and thermal power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Mejstrik, V [Ceskoslovenska Akademie Ved, Pruhonice. Ustav Krajinne Ekologie

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower than in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared.

  4. RATU2 - The Finnish research programme on the structural integrity of nuclear power plants. Synthesis of achievements 1995-1998

    International Nuclear Information System (INIS)

    Solin, J.; Sarkimo, M.; Asikainen, M.; Aavall, Aa.

    1998-01-01

    The symposium summarises the scientific and technical achievements within the Finnish Research programme on the structural integrity of nuclear power plants (RATU2). The programme began in 1995 and will be accomplished at the end of 1998. The annual volume of this programme represented approximately 6 % of the total nuclear energy R and D in Finland. The research programme was mainly publicly funded and supplied impartial expertise for the regulation of nuclear energy. It also played an important role in the education of new experts, technology transfer and the international exchange of scientific results. (orig.)

  5. Strengthening of nuclear power plant construction safety management

    International Nuclear Information System (INIS)

    Yu Jun

    2012-01-01

    The article describes the warning of the Fukushima nuclear accident, and analyzes the major nuclear safety issues in nuclear power development in China, problems in nuclear power plants under construction, and how to strengthen supervision and management in nuclear power construction. It also points out that the development of nuclear power must attach great importance to the safety, and nuclear power plant construction should strictly implement the principle of 'safety first and quality first'. (author)

  6. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1994-06-01

    Quarterly reports on the operation of the Finnish NPPs describe nuclear and radiation safety related events and observations which the Finnish Centre for Radiation and Nuclear Safety considers significant. Safety improvements at the plants and general matters relating to the use of nuclear energy are also reported. A summary of the radiation safety of plant personnel and the environment, and tabulated data on the plants' production and load factors are also given. One event during the last quarter of 1993 was rated on the International Nuclear Event Scale (INES) as level 1. During this event at Loviisa 2, the secondary circuit emergency feedwater system was erroneously isolated from automatic start-up readiness. The error went unnoticed for 4.5 hours. During 1993 one level 2 incident and three level 1 incidents occurred at the Finnish NPPs. (8 figs., 4 tabs.)

  7. Slovenske elektrarne, a.s., Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1998-01-01

    In this booklet the uranium atom nucleus fission as well as electricity generation in a nuclear power plant (primary circuit, reactor, reactor pressure vessel, fuel assembly, control rod and reactor power control) are explained. Scheme of electricity generation in nuclear power plant and Cross-section of Mochovce Nuclear Power Plant unit are included. In next part a reactor scram, refuelling of fuel, instrumentation and control system as well as principles of nuclear safety and safety improvements are are described

  8. Aircraft, ships, spacecraft, nuclear plants and quality

    International Nuclear Information System (INIS)

    Patrick, M.G.

    1984-05-01

    A few quality assurance programs outside the purview of the Nuclear Regulatory Commission were studied to identify features or practices which the NRC could use to enhance its program for assuring quality in the design and construction of nuclear power plants. The programs selected were: the manufacture of large commercial transport aircraft, regulated by the Federal Aviation Administration; US Navy shipbuilding; commercial shipbuilding regulated by the Maritime Administration and the US Coast Guard; Government-owned nuclear plants under the Department of Energy; spacecraft under the National Aeronautics and Space Administration; and the construction of nuclear power plants in Canada, West Germany, France, Japan, Sweden, and the United Kingdom

  9. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  10. Nuclear Waste Treatment Program: Annual report for FY 1986

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Brouns, R.A.; Powell, J.A.

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs

  11. Nuclear Waste Treatment Program: Annual report for FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Brouns, R.A. (comps.); Powell, J.A. (ed.)

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  12. Insurance risk of nuclear power plant concentrations

    International Nuclear Information System (INIS)

    Feldmann, J.

    1976-01-01

    The limited number of sites available in the Federal Republic of Germany for the erection of nuclear power plants has resulted in the construction of multiple nuclear generating units on a few sites, such as Biblis, Gundremmingen and Neckarwestheim. At a value invested of approximately DM 1,200/kW this corresponds to a property concentration on one site worth DM 2 - 3 billion and more. This raises the question whether a concentration of value of this magnitude does not already exceed the limits of bearable economic risks. The property risk of a nuclear power plant, as that of any other industrial plant, is a function of the property that can be destroyed in a maximum probable loss. Insurance companies subdivide plants into so-called complex areas in which fire damage or nuclear damage could spread. While in some foreign countries twin nuclear power plants are built, where the technical systems of both units are installed in one building without any physical separation, dual unit plants are built in the Federal Republic in which the complexes with a high concentration of valuable property are physically separate building units. As a result of this separation, property insurance companies have no grounds for assessing the risk and hence, the premium different from those of single unit plants. (orig.) [de

  13. Aquatic indicator organisms as a tool to monitor discharges from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Outola, Iisa; Vartti, Vesa-Pekka; Klemola, Seppo [STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki (Finland)

    2014-07-01

    There are four operating nuclear power plant units in Finland at two separate locations. The units started operation during 1977-1980. The surveillance of radioactive substances in the vicinities of the nuclear power plant is carried out under the permanent monitoring programs. Some 1000 samples are taken annually from the surroundings of the power plants to confirm that the discharges from the power plants are within permissible release limits and to monitor the dispersion of discharges in the environment. Aquatic indicator organisms (macro-algae, periphyton, mussels, crustacean, submerged aquatic plants) are included in the monitoring program. The indicator organisms are valuable monitoring objects both in normal and emergency situations because they accumulate effectively and often very rapidly radioactive substances from the medium. Six different species (Periphyton, Fucus vesiculosus, Myriophyllum spicatum, Potamogeton pectinatus, Saduria entomon, Macoma Baltica/Mytilus edulis) are collected regularly. Number of sampling location for each species varies from 1 to 7. Some species are collected continuously, some 1-2 times in a year. In this study we have evaluated the monitoring results for the aquatic indicator organisms for the period of 2005-2010 concerning concentration of discharge nuclides. Our aim was to answer the following questions using the monitoring data from aquatic organisms: 1) Which radionuclides are released to the marine environment and how often do we detect them? 2) How far from the nuclear power plants discharge radionuclides are detected? 3) How concentration of discharge radionuclides has changed with time in aquatic organisms? The number of discharge nuclides detected in the aquatic indicator samples was 11. Most of them were only detected in few samples, but {sup 58}Co, {sup 60}Co, {sup 54}Mn and {sup 110m}Ag were detected more frequently. Most of the observations above detection limits were made within the 5 km distance from the

  14. 2006 annual nuclear technology conference Aachen

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    This year's ANNUAL NUCLEAR TECHNOLOGY CONFERENCE (JK) was organized in Aachen by the Deutsches Atomforum e.V. (DAtF) and the Kerntechnische Gesellschaft e.V. (KTG). The attendance by more than 1,200 participants from 17 nations underlines the role of this specialized congress as one of the leading events in the field of nuclear power use. For several years in a row, the number of participants has been increasing steadily. The first conference day offered plenary presentations traditionally dealing mainly with political and economic issues of the use of nuclear power, including a presentation by the President of the DAtF. The lead countries of JK 2006 were Belgium and Finland with contributions to the plenary day and special meetings on selected topics. The traditional proven scheme of the three-day meeting offered plenary sessions on the first day, and technical sessions, topical sessions, poster sessions, and special events on the following days. The 'Nuclear Power Campus' was run most successfully for the fourth time, presenting to high school students and university freshmen the world of nuclear power in a transparent way. The special commitment to the young generation was stressed at JK 2006 also by the 'Competence Preservation in Nuclear Technology' workshop. Nearly 2 dozen young scientists used the forum to present results of their work. The meeting was accompanied by a technical exhibition with meeting points established by vendors, suppliers, and service providers. (orig.)

  15. Application of Advanced Technology to Improve Plant Performance in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Advances in computer technologies, signal processing, analytical modeling, and the advent of wireless sensors have provided the nuclear industry with ample means to automate and optimize maintenance activities and improve safety, efficiency, and availability, while reducing costs and radiation exposure to maintenance personnel. This paper provides a review of these developments and presents examples of their use in the nuclear power industry and the financial and safety benefits that they have produced. As the current generation of nuclear power plants have passed their mid-life, increased monitoring of their health is critical to their safe operation. This is especially true now that license renewal of nuclear power plants has accelerated, allowing some plants to operate up to 60 years or more. Furthermore, many utilities are maximizing their power output through uprating projects and retrofits. This puts additional demand and more stress on the plant equipment such as the instrumentation and control (I and C) systems and the reactor internal components making them more vulnerable to the effects of aging, degradation, and failure. In the meantime, the nuclear power industry is working to reduce generation costs by adopting condition-based maintenance strategies and automation of testing activities. These developments have stimulated great interest in on-line monitoring (OLM) technologies and new diagnostic and prognostic methods to anticipate, identify, and resolve equipment and process problems and ensure plant safety, efficiency, and immunity to accidents. The foundation for much of the required technologies has already been established through 40 years of research and development (R and D) efforts performed by numerous organizations, scientists, and engineers around the world including the author. This paper provides examples of these technologies and demonstrates how the gap between some of the more important R and D efforts and end users have been filled

  16. Closures for underground nuclear power plants

    International Nuclear Information System (INIS)

    1981-10-01

    This study demonstrates that, with the appropriate selection of an access concept on the underground nuclear power plant, it is possible to design a gate complying with the increased requirements of the construction of an underground nuclear power plant. The investigations revealed that a comparison leakage of 42 mm in diameter for the failure of seals is too conservative. When selecting suitable seals a leakage being more extensive than the above mentioned one can be prevented even in case of disturbance lasting several months. The closure structures of the personnel and material accesses do not represent any weak point within the concept of the construction method for underground nuclear power plants. (orig./HP)

  17. Methods of assessing nuclear power plant risks

    International Nuclear Information System (INIS)

    Skvarka, P.; Kovacz, Z.

    1985-01-01

    The concept of safety evalution is based on safety criteria -standards or set qualitative values of parameters and indices used in designing nuclear power plants, incorporating demands on the quality of equipment and operation of the plant, its siting and technical means for achieving nuclear safety. The concepts are presented of basic and optimal risk values. Factors are summed up indispensable for the evaluation of the nuclear power plant risk and the present world trend of evaluation based on probability is discussed. (J.C.)

  18. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  19. Annual meeting on nuclear technology '88. Technical session on focal points of the atomic energy law and the radiation protection law in 1988

    International Nuclear Information System (INIS)

    1988-06-01

    This issue of Annual Meeting on Nuclear Technology reports presents the papers of the technical session on 'Focal points of the atomic energy law and the radiation protection law in 1988'. The titles are: Is there a binding link between decisions of the atomic energy authority and criminal law? Conclusions to be drawn from the Alkem case court decision. - Recent developments in atomic energy law. - Current radiation protection law. - Codetermination at plant level in a nuclear installation. - The legal position of foreigners from neigbour countries in the field of atomic energy law. The licensing of nuclear installations near the border. (RST) [de

  20. Regulatory aspects of radiation protection in Indian nuclear plants

    International Nuclear Information System (INIS)

    Chander, Vipin; Pawar, S.K.; Duraisamy, S.

    2012-01-01

    Atomic Energy Act of 1962 covers the radiation safety aspects in the development, control and use of atomic energy. To carry out certain regulatory and safety functions under this act, Atomic Energy Regulatory Board (AERB) was constituted in November 15, 1983. Operating Nuclear Power Plants (NPPs) account for about 60% of occupational collective dose and about 65% of the number of radiation workers in the nuclear fuel cycle facilities. Therefore radiation protection aspects in NPPs are of prime importance. In 1970s and 1980s the high radiation exposures in NPPs was an issue with TAPS-1 and 2 reaching annual collective dose of 50 Person-Sv. In response to this, AERB constituted an expert committee to investigate the possibility of reducing collective doses in NPPs in 1988. Subsequently the recommendations of this committee were implemented in all NPPs. In 1990, International Commission on Radiological Protection (ICRP) recommended a downward revision of occupational dose limit to 20 mSv/yr from the earlier limit of 50 mSv/yr. Regulatory body endorsed these recommendations and gradually brought down the annual dose limits from 40 mSv in 1991 to 30 mSv in 1994 with the limit of 100 mSv averaged over a five year period in line with ICRP recommendations. Over the years, the regulatory body has put in place a sound regulatory frame work and mechanism to ensure adequate protection of occupational workers, members of public and environment due to operation of NPPs. Vast experiences in the field of radiation protection vis-à-vis stringent regulatory requirements such as review of exposure cases and special regulatory inspections during Biennial Shut Down (BSD) has helped in downward trends in occupational and public doses. This paper highlights the role of regulatory body in controlling the radiation doses to both occupational workers and members of public in the NPPs through a three-tier review system. The regulatory oversight, inspections and reviews has resulted in

  1. Annual report on nuclear power station operational management, 1984

    International Nuclear Information System (INIS)

    1985-09-01

    As of the end of fiscal year 1984, 28 nuclear power plants were in operation in Japan, the total power output of which was 20.56 million kW, equivalent to 22.9 % of the total generated electric power in Japan. Now nuclear power generation bears a very important role in the stable supply and cost stabilization of electric power. The result of the capacity factor in fiscal year 1984 was 73.9 %, which showed that the nuclear power generation and safety management technologies in Japan are at the top level in the world. However, in order that nuclear power generation accomplishes the role as main power source sufficiently hereafter by increasing the number of plants, the reliability and economical efficiency must be further improved, and especially the safety management and operational management become important. For the purpose, the operational experience accumulated so far must be effectively utilized. In this book, the outline of the administration on the safety regulation of nuclear power generation, the state of operation of nuclear power plants, the state of accidents and failures, the state of regular inspections and so on are summarized. Also the state of radioactive waste management and the radiation control for workers are reported. (Kako, I.)

  2. Striving for excellence in nuclear plant safety and reliability

    International Nuclear Information System (INIS)

    Beard, P.M.

    1985-01-01

    The Institute of Nuclear Power Operations, or INPO, promotes excellence in the construction and operation of nuclear power plants. All US nuclear utilities are INPO members. Additionally, INPO has an active international programme that includes utility participants from 13 countries and a supplier programme composed of 13 firms that provide construction, design or manufacturing services for nuclear utilities. INPO's activities revolve around four programme categories: (1) evaluating US nuclear plant construction projects and operating nuclear power plants; (2) assisting utilities in developing and maintaining performance-based training programmes and accrediting US nuclear plant training programmes; (3) analysing and sharing information on operating experience from plants around the world; (4) providing technical assistance to members and participants. INPO periodically evaluates all US operating nuclear power plants. Additionally, INPO uses the evaluations to observe good practices that can be shared with nuclear utilities world wide. The Significant Event Evaluation and Information Network (SEE-IN) programme provides a system for collecting, analysing and sharing information on plant operating experience throughout the world. SEE-IN provides the industry with information on events that could lead to serious consequences and provides recommendations on how these events can be prevented or their effects mitigated. INPO's international programme promotes information exchange among members and participants. The international programme centres on three activities: (1) collecting, analysing and sharing information on international nuclear plant operating experience; (2) establishing a forum for nuclear utilities world-wide to exchange technical data with each other; (3) providing technical assistance to participants on a variety of concerns

  3. Allowance for aging in Spanish nuclear power plants

    International Nuclear Information System (INIS)

    Rodriguez, C.

    2009-01-01

    In Spain, as in most European Union countries, the nuclear power plants (NPP) operation license is open regarding its duration, there being no legal restrictions for extending the operational life of the NPP by renewing their licenses. Plant operation permits are renewed every ten years, following the performance of periodic safety reviews, which constitute a reasonable guarantee that safety conditions will be maintained throughout the next ten years period. Plant ageing management programmes in Spain started in mid 80's with a joint programme shared by all Spanish utilities through their common organisation, U.N.E.S.A., and the Spanish nuclear regulatory Authority (C.S.N.). The development of the methodology was based mainly in technical documents from IAEA and from U.S.N.R.C. rulemaking and documents, as well as in the international experience available. C.S.N. is interested in realising an effective management of components ageing processes. Therefore C.S.N. has introduced within its inspection and control functions specific requirements related to ageing management. The regulatory requirements related to NPP lifetime management are basically the following: NPP operation license requires preparing and submitting to the C.S.N. an annually updated report on the ageing control activities or the Lifetime Management Programme; - continuous NPP safety evaluation process by C.S.N., complemented with periodic safety reviews, to be performed every 10 years, including: a) review of components behaviour (identify degradation mechanism and current corrective measures adopted by the plant for ageing mechanisms control and mitigation) and b) updating of the safety evaluation and improvement programmes (Lifetime management programme is included among them). In the case the period of validity of a new operation permit exceeds the lifetime considered in the initial design of the plant, the periodic safety review process remains valid, but it must be supplemented with additional

  4. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  5. Nuclear power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, K [Ceskoslovenska Komise pro Atomovou Energii, Prague

    1978-05-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO/sub 2/, NO/sub 2/, ash and soot emissions with /sup 133/Xe and /sup 85/Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts.

  6. Nuclear power plants and the environment

    International Nuclear Information System (INIS)

    Barabas, K.

    1978-01-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO 2 , NO 2 , ash and soot emmisions with 133 Xe and 85 Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts. (O.K.)

  7. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  8. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  9. Section for nuclear physics and energy physics - Annual Report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1991. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  10. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1992. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  11. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  12. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  13. Quality assurance during operation of nuclear power plants

    International Nuclear Information System (INIS)

    1994-01-01

    The general requirements applicable to the quality assurance of the Finnish nuclear power plants are presented in the Council of State Decision (395/91) and in the guide YVL 1.4. This guide specifies the quality assurance requirements to be applied during the operation of the nuclear power plants as well as of the other nuclear facilities. Quality assurance applies to all the activities and organizations with a bearing on the safe operation of the nuclear power plants. (5 refs.)

  14. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  15. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants

  16. Directory of nuclear power plants in the world, 1985

    International Nuclear Information System (INIS)

    Fujii, Haruo

    1985-01-01

    This book presents technical information and estimates trends of load factors and construction costs of nuclear power plants. Particularly road maps indicating plants are drawn in, which would be practical in visiting them. The data used here are directly confirmed by operators in every part of the world. Therefore, they reflect up-to-date nuclear power developments and its future. This allows wide and exact understanding of world's nuclear power. Chapter 1 presents nuclear power growth around the world and estimates forecasts based on information from electric power companies: nuclear power growths and the growths in the number of reactors around the world, in WOCA (World outside the Centrally Planned Economies Area), in CPEA (Centrally Planned Economies Area) are analyzed in detail. Chapter 2 presents nuclear power plants on maps by country. The maps show exact locations of nuclear power plants with local cities around them, rivers and lakes. For convenience, symbols are given to aid in identifying the types of reactors. Chapter 3 presents general information of nuclear power plants. Also the addresses of operators, all segments of nuclear power supply industries and nuclear organizations are included. For convenience, the index of nuclear power plants is added. Chapter 4 presents technical information, road maps in large scales and photographs of nuclear power plants in the world. The road maps show exact locations of plants. Chapter 5 presents operating experiences, load factors, refuelling and maintenance outages. The trends of data are analyzed both regionally (WOCA, CPEA) and world-widely. Chapter 6 presents trends of construction costs, component costs as percent of total construction costs and direct costs, and construction durations. (J.P.N.)

  17. Characterization of the temporary radiation workforce at US nuclear power plants

    International Nuclear Information System (INIS)

    Cehn, J.I.

    1984-01-01

    The temporary radiation worker is the subject of this recent study by the National Environmental Studies Project. ''Lenny'', an imaginary worker, is actually a composite of the estimated 22,000 radiation workers employed at various times at the 80 nuclear power plants in the U.S. Lenny reports to a trailer on the plant site to check in and spends the next day and a half in a training class that covers radiation safety, federal regulations and exposure limits and plant procedures. He must take and pass a written exam, then he fills out a medical history, indicating whether or not he has received any industrial radiation exposure. After three days of training and ''processing'' he dons a radiation measuring dosimeter and begins work. A key question to this study is whether the temporary employees are getting assigned the dirty work. It has been alleged that temps are used as ''glowboys'' or ''radiation sponges''. The new study finds no basis for this allegation. Data show that permanent plant staff received nearly the same average annual radiation dose as temporary employees

  18. Cooling water recipients for nuclear power plants

    International Nuclear Information System (INIS)

    Dahl, F.-E.; Saetre, H.J.

    1971-10-01

    The hydrographical and hydrological conditions at 17 prospective nuclear power plant sites in the Oslofjord district are evaluated with respect to their suitability as recipients for thermal discharges from nuclear power plants. No comparative evaluations are made. (JIW)

  19. Fuel performance annual report for 1989

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.; Wu, S.

    1992-06-01

    This annual report, the twelfth in a series, provides a brief description of fuel performance during 1989 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included

  20. Plant Biology and Biogeochemistry Department annual report 1999

    DEFF Research Database (Denmark)

    Jensen, A.; Gissel Nielsen, G.; Giese, H.

    2000-01-01

    The Department of Plant Biology and Biogeochemistry is engaged in basic and applied research to improve the scientific knowledge of developing new methods and technology for the future environmentally benign industrial and agricultural production, thusexerting less stress and strain...... of Biomass, 3. DLF-Risø Biotechnology, 4. Plant Genetics and Epidemiology, 5. Biogeochemistry and 6. Plant Ecosystems and Nutrient Cycling. This version ofthe annual report from the Plant Biology and Biogeochemistry Department aims to provide information about the progress in our research. Each programme...... on the environment. This knowledge will lead to a greater prosperity and welfare for agriculture, industry and consumers in Denmark. The research approach in the Department is mainly experimental and the projects areorganized in six research programmes: 1. Plant-Microbe Symbioses, 2. Plant Products and Recycling...