WorldWideScience

Sample records for nuclear physics programs

  1. Nuclear physics program plan

    International Nuclear Information System (INIS)

    1985-11-01

    The nuclear physics program objectives, resources, applications and implications of scientific opportunities are presented. The scope of projected research is discussed in conjunction with accelerator facilities and manpower. 25 figs., 2 tabs

  2. Computer programs of information processing of nuclear physical methods as a demonstration material in studying nuclear physics and numerical methods

    Science.gov (United States)

    Bateev, A. B.; Filippov, V. P.

    2017-01-01

    The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.

  3. Audit program for physical security systems at nuclear power plants

    International Nuclear Information System (INIS)

    Minichino, C.

    1982-01-01

    Licensees of nuclear power plants conduct audits of their physical security systems to meet the requirements of 10 CFR 73, Physical Protection of Plants and Materials. Section 73.55, Requirements for physical Protection of Licensed Activities in Nuclear Power Reactors Against Radiological Sabotage, requires that the security programs be reviewed at least every 12 months, that the audit be conducted by individuals independent of both security management and security supervision, and that the audit program review all aspects of the physical security system: hardware, personnel, and operational and maintenance procedures. This report contains information for the Nuclear Regulatory Commission (NRC) and for the licensees of nuclear power reactors who carry out these comprehensive audits. Guidance on the overall management of the audit function includes organizational structure and issues concerning the auditors who perform the review: qualifications, independence, due professional care, and standards. Guidance in the audit program includes purpose and scope of the audit, planning, techniques, post-audit procedures, reporting, and follow-up

  4. Programs for low-energy nuclear physics data processing

    International Nuclear Information System (INIS)

    Antuf'ev, Yu.P.; Dejneko, A.S.; Ekhichev, O.I.; Kuz'menko, V.A.; Mashkarov, Yu.G.; Nemashkalo, B.A.; Skakun, E.A.; Storizhko, V.E.; Shlyakhov, N.A.

    1978-01-01

    Purpose of six computer programs developed in KhPTI of AN USSR for the processing of the experimental data on low energy nuclear physics ia friendly described. The programs are written in Algol-60 language. They are applied to some types of nuclear reactions and permit to process differential cross sections and γ spectra, to compute statistical tensors and excitation functions as well as to analyze some processes by means of theoretical models

  5. A program in medium-energy nuclear physics

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1992-01-01

    This report reviews progress on our nuclear-physics program for the last year, and includes as well copies of our publications and other reports for that time period. The structure of this report follows that of our 1991 Renewal Proposal and Progress Report: Sec. II outlines our research activities aimed at future experiments at CEBAF, NIKHEF, and Bates; Sec. III gives results of our recent research activities at NIKHEF, LAMPF, and elsewhere; Sec. IV provides an update of our laboratory activities at GWU, including the acquisition of our new Nuclear Detector Laboratory at our new Virginia Campus; and Sec. V is a list of our publications, proposals, and other reports. copies of those on medium-energy nuclear physics are reproduced in the Appendix

  6. Nuclear physics at Peking University

    International Nuclear Information System (INIS)

    Wang, Ruo Peng

    2009-01-01

    Full text: The teaching program of nuclear physics at Peking University started in 1955, in answer to the demand of China's nuclear program. In 1958, the Department of Atomic Energy was founded. The name of this department was changed to the Department of Technique Physics in 1961. Graduates in nuclear physics and technical physics had great contribution in China's nuclear program. The nuclear physics specialty from the Department of Technique Physics merged into the School of Physics in 2001. At present, nuclear physics is not any more a major for undergraduate students in the school of physics, but there are Master programs and Ph. D programs in nuclear physics, nuclear techniques and heavy ion physics. About 200 new students are admitted each year in the School of Physics at Peking University. About 20 graduates from the School of Physics work or continue to study in nuclear physics and related fields each year. (author)

  7. Nuclear Physics computer networking: Report of the Nuclear Physics Panel on Computer Networking

    International Nuclear Information System (INIS)

    Bemis, C.; Erskine, J.; Franey, M.; Greiner, D.; Hoehn, M.; Kaletka, M.; LeVine, M.; Roberson, R.; Welch, L.

    1990-05-01

    This paper discusses: the state of computer networking within nuclear physics program; network requirements for nuclear physics; management structure; and issues of special interest to the nuclear physics program office

  8. Library of problem-oriented programs for solving problems of atomic and nuclear physics

    International Nuclear Information System (INIS)

    Kharitonov, Yu.I.

    1976-01-01

    The Data Centre of the Leningrad Institute of Nuclear Physics (LIYaF) is working on the establishment of a library of problem-oriented computer programs for solving problems of atomic and nuclear physics. This paper lists and describes briefly the programs presently available to the Data Centre. The descriptions include the program code numbers, the program language, the translator for which the program is designed, and the program scope

  9. Seminar Neutronika-2012. Neutron-physical problems of nuclear-power engineering. Program and abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    On October, 30 - November, 2 in State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky a seminar Neutron-physical problems of nuclear power engineering - Neutronika-2012 took place. On the seminar the following problems were discussed: justification of neutron-physical characteristics of reactor facilities and innovation projects; constant support of neutron-physical calculations of nuclear power installations; numerical simulation during solving reactor physics problems; simulation of neutron-physical processes in reactor facilities by Monte Carlo method; development and verification of programs for reactor facilities neutron-physical calculations; algorithms and programs for solving nonstationary problems of neutron-physical calculation of nuclear reactors; analysis of integral and reactor experiments, experimental database; justification of nuclear and radiation safety of fuel cycle [ru

  10. Broadening of nuclear engineering programs: An engineering physics approach at Rensselaer

    International Nuclear Information System (INIS)

    Malaviya, B.K.

    1990-01-01

    With the maturing of nuclear engineering as an academic discipline and the uncertainty surrounding the nuclear industry, attention is being increasingly turned to ways in which the base of traditional nuclear engineering programs in universities can be broadened to make them more attractively useful to a wider class of potential students and employers while maintaining the strengths in mainstream areas of nuclear technology. An approach that seems to provide a natural evolution combining the existing programmatic strengths, infrastructure, and resources with the trending needs of a broad segment of diversified industries is the development and initiation of an engineering physics degree program as an adjunct to an established nuclear engineering curriculum. In line with these developments, a new comprehensive academic program offering baccalaureate, master's, and doctoral degrees in engineering physics has been developed and formally instituted at Rensselaer Polytechnic Institute (RPI). It provides a valuable opportunity for students to pursue education and research that cuts across traditional disciplinary lines, leading to a wide variety of career opportunities in industry, government, national research and defense laboratories, and academia

  11. Theoretical nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The theoretical physics program in the Physics Division at ORNL involves research in both nuclear and atomic physics. In nuclear physics there is extensive activity in the fields of direct nuclear reactions with light- and heavy-ion projectiles, the structure of nuclei far from stability and at elevated temperatures, and the microscopic and macroscopic description of heavy-ion dynamics, including the behavior of nuclear molecules and supernuclei. New research efforts in relativistic nuclear collisions and in the study of quark-gluon plasma have continued to grow this year. The atomic theory program deals with a variety of ionization, multiple-vacancy production, and charge-exchange processes. Many of the problems are selected because of their relevance to the magnetic fusion energy program. In addition, there is a joint atomic-nuclear theory effort to study positron production during the collision of two high-Z numbers, i.e., U+U. A new Distinguished Scientist program, sponsored jointly by the University of Tennessee and ORNL, has been initiated. Among the first appointments is G.F. Bertsch in theoretical physics. As a result of this appointment, Bertsch and an associated group of four theorists split their time between UT and ORNL. In addition, the State of Tennessee has established a significant budget to support the visits of outstanding scientists to the Joint Institute for Heavy Ion Research at ORNL. This budget should permit a significant improvement in the visitor program at ORNL. Finally, the Laboratory awarded a Wigner post-doctoral Appointment to a theorist who will work in the theory group of the Physics Division

  12. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  13. Nuclear engineering, health physics, and radioactive waste management fellowship program: Summary of program activities: Nuclear engineering and health physics fellowship, 1985-1986

    International Nuclear Information System (INIS)

    1986-01-01

    Progress is reported in the nuclear engineering and health physics elements of the fellowship program. Statistics are given on numbers of student applications and new appointments, the degree areas of applicants, GPA and GRE score averages of the fellows, and employment of completed fellows

  14. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy's Nuclear Physics program is a comprehensive program of interdependent experimental and theoretical investigation of atomic nuclei. Long range goals are an understanding of the interactions, properties, and structures of atomic nuclei and nuclear matter at the most elementary level possible and an understanding of the fundamental forces of nature by using nuclei as a proving ground. Basic ingredients of the program are talented and imaginative scientists and a diversity of facilities to provide the variety of probes, instruments, and computational equipment needed for modern nuclear research. Approximately 80% of the total Federal support of basic nuclear research is provided through the Nuclear Physics program; almost all of the remaining 20% is provided by the National Science Foundation. Thus, the Department of Energy (DOE) has a unique responsibility for this important area of basic science and its role in high technology. Experimental and theoretical investigations are leading us to conclude that a new level of understanding of atomic nuclei is achievable. This optimism arises from evidence that: (1) the mesons, protons, and neutrons which are inside nuclei are themselves composed of quarks and gluons and (2) quantum chromodynamics can be developed into a theory which both describes correctly the interaction among quarks and gluons and is also an exact theory of the strong nuclear force. These concepts are important drivers of the Nuclear Physics program

  15. Initiation of a Nuclear Research Program at Fisk University in Cooperation with the Nuclear Physics Group at Vanderbilt University, August 15, 1997 - January 14, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W.E.; Hamilton, J.H.

    2002-10-01

    Carrying a spirit of a long history of cooperation in physics education and research between Fisk University and Vanderbilt University, the Nuclear Research Program in the Department of Physics at Fisk University was proposed in 1996 in cooperation with the Nuclear Physics Group at Vanderbilt University. An initial NRP program was commissioned in 1997 with the financial support from DOE. The program offers a great opportunity for students and faculty at Fisk University to directly access experimental nuclear data and analyzing facilities within the Nuclear Physics Group at Vanderbilt University for a quick start. During the program Fisk Faculty and students (along with the colleagues at Vanderbilt University) have achieved progress in a few areas. We have (a) established an in-house nuclear data processing and analysis program at Fisk University, (b) conducted hands-on nuclear physics experiments for a Fisk undergraduate student at Vanderbilt University, (c) participated in the UNIRIB research with radioactive ion beam and Recoil Mass Spectrometer at Oak Ridge National Laboratory, and (d) studied {sup 252}Cf spontaneous fission and in-beam nuclear reactions for exotic nuclei. Additionally, this work has produced publication in conference proceedings as well as referred journals. [2-7].

  16. The US Department of Energy Nuclear Data and Low Energy Physics Programs: Aspects of current operational status and future direction

    International Nuclear Information System (INIS)

    Whetstone, S.L.; Meyer, R.A.

    1991-01-01

    The Nuclear Data and Low-Energy Programs are operated within the Division of Nuclear Physics of the US Department of Energy. The data program supports a range of activities including large scale data measurements, nuclear cross section modelling, and nuclear data compilation and dissemination. The US nuclear data needs and prospects for the future of this effort are currently being addressed and its present status is reviewed. Possibilities for the next generation nuclear data accessibility will be discussed and examples presented. The Low-Energy Nuclear Physics Program supports investigations into low-energy nuclear structure and neutrino physics. Among examples of the latter that are covered is the Sudbury Neutrino Observatory

  17. HIRFL-CSR physics program

    International Nuclear Information System (INIS)

    Xu, Hushan

    2009-01-01

    The research activities at HIRFL-CSR cover the fields of the radio-biology, material science, atomic physics, and nuclear physics. This talk will mainly concentrate on the program on nuclear physics with the existing and planned experimental setups at HIRFL-CSR. (author)

  18. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Heeringa, W.; Voss, F.

    1988-02-01

    This report surveys the activities in basic research from July 1, 1986 to June 30, 1987 at the Institute for Nuclear Physics (IK) of the Nuclear Research Center Karlsruhe. The research program of this institute comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and high energy physics, as well as detector technology. (orig.) [de

  19. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  20. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  1. Summaries of FY 1988 research in nuclear physics

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. The nuclear physics research summaries in this document were initially prepared by the investigators, then reviewed and edited by DOE staff. They describe the general character and goals of the research programs, current research efforts, especially significant recent results, and plans for the near future. The research summaries are organized into two groups: research programs at national laboratories and those at universities, with the material arranged alphabetically by institution. The names of all Ph.D.-level personnel who are primarily associated with the work are included. The FY 1988 funding levels are also provided. Included for the first time are activities of the nuclear data program, which was incorporated within nuclear physics in FY 1987. We remind the readers that this compilation is just an overview of the Nuclear Physics program. Primary publications should be used for reference to the work and for a more complete and accurate understanding

  2. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  3. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  4. Summaries of FY 1992 research in nuclear physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed

  5. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Borie, E.; Doll, P.; Rebel, H.

    1982-11-01

    This report surveys the activities in fundamental research from July 1, 1981 to June 30, 1982 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and physics at medium and higher energies. (orig.) [de

  6. Nuclear Physics studies at ELI-NP

    International Nuclear Information System (INIS)

    Stevenson, P.D.; Goddard, P.M.; Rios, A.

    2015-01-01

    The mission of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility is to use extreme electromagnetic fields for nuclear physics research. At ELI-NP, high-power lasers together with a very brilliant γ-ray beam are the main research tools. Their targeted operational parameters are described. The emerging experimental program of the facility in the field of nuclear physics is reported and the main directions of the research envisioned are presented. The experimental instrumentation, which will operate at ELI-NP for the realization of the research program, is discussed. The expected impact of ELI-NP on the future advance of the field is summarized

  7. The implementation of nuclear security program and the improvement of physical protection in Indonesia: progress and challenges

    International Nuclear Information System (INIS)

    Khairul

    2009-01-01

    facilities. The nuclear material and its installation is potential target in the facilities so that they needed physical protection measures in prevention and protection of nuclear material and radioactive source against theft and sabotage. The implementation of physical protection of nuclear material and radioactive sources in Indonesia complied with the international instruments such as the Convention of the Physical Protection on Nuclear Material and Facilities, amended on July 2005, and INFCIRC/225/Rev. 4, (corrected), the physical protection of nuclear material and nuclear facilities, June 1999. The application of nuclear energy for power program generation involve in the management of nuclear materials and other radioactive substance. According to international regulation and convention, an effective physical protection system is needed to protect nuclear materials and its facilities against theft and sabotage for both non-proliferation and radiation safety purpose. Further to implementation of the IAEA nuclear security program in the region, Indonesia received two nuclear security services, IPPAS and INSServ mission. Based on the expert mission recommendation, therefore Indonesia improved their physical protection system on nuclear material and facilities against theft and sabotage. One thing that should be considered by the Government of Indonesia is human resource development programmes. So far, some effort has developed to enhance the knowledge of the employee who deals with nuclear material and radioactive substances. It still needed to increase the awareness in particular to personal and other related agencies as well. The Department of Energy's National Nuclear Security Administration discussed security assistance with Indonesia's National Nuclear Energy Agency, BATAN. These upgrades not only reduced the threat of theft at the three research reactors, but also provided local physical protection expertise to use during the concept, design, and operation of

  8. Nuclear physics in Cuba: a historical outline

    International Nuclear Information System (INIS)

    Castro Díaz-Balart, Fidel

    2015-01-01

    The present article summarizes an historical perspective of the national experience in Nuclear Physics development, with particular emphasis on its relationship with the Cuban Nuclear Program, its scientific and technological achievements, and its social and economic impact. Multiple peaceful applications introduced in the country and specifically those related to the Nuclear Power Program are also included. In order to support nuclear energy as well as nuclear power plants, specialized institutions were created, in addition to the training of professionals and interdisciplinary research groups in theoretical and experimental nuclear physics, engineering and in other different specialties. (author)

  9. Nuclear physics

    International Nuclear Information System (INIS)

    Guzman B, O.; Vallejo M, J.I.; Cardenas C, H.F.

    1989-01-01

    A historical review of the evolution of the Nuclear Physics Section at the IAN is presented along the 30 years of existence of the Institute. Objectives, structure, programs and goal are historically examined. Present status of the section and its projection on national development is also analyzed

  10. Argonne Nuclear Data Program

    Energy Technology Data Exchange (ETDEWEB)

    Kondev, F. [US Nuclear Data Program, U.S. DOE/SC (United States)

    2013-08-15

    Nuclear Data Compilations and Evaluations: - Nuclear structure and decay data compilations and evaluations for the International NSDD network (ENSDF and XUNDL); - AME12 and NuBase12 - in collaboration with G. Audi and M. MacCormick, CSNSM (Orsay), M. Wang, IMP (Lanzhou) and B. Pfeiffer, GSI (Darmstadt) - presentation by M. Wang; - DDEP coordinator - completed; - Horizontal nuclear data evaluation activities -IAEA CRP's, Isomers, Medical Isotopes; Complementary ND research Activities: - CARIBU, FRIB and other RIB facilities, Gretina, IAEA-CRP - emphasis on nuclear structure physics and astrophysics, and their intersection with applied nuclear physics programs.

  11. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  12. Overview of the DOE nuclear data program

    International Nuclear Information System (INIS)

    Whetstone, S.L.

    1991-01-01

    Numerous researchers receive support from the US Department of Energy's (DOE's) nuclear data program; others work closely with it, attending coordination meetings and contributing to data activities. Since fiscal year (FY) 1988, the nuclear data program has been included in the budget of the Division of Nuclear Physics in the DOE's Office of High Energy and Nuclear Physics. The budget for nuclear data consists of two budget categories: nuclear data compilation and evaluation and nuclear data measurements, both of which are contained within the low-energy nuclear physics program. The program has become essentially the sole supporter of the National Nuclear Data Center at Brookhaven National Laboratory. The Center coordinates the production of the ENSDF data base and Nuclear Data Sheets as well as, through the Cross Section Evaluation Working Group (CSEWG138), the production of the ENDF. Two rather large accelerator facilities, completely supported by the program, the Oak Ridge Electron Linear Accelerator and the fast neutron generator at Argonne National Laboratory, form the core of the nuclear data measurement activity together with measurement programs at Los Alamos National Laboratory's LAMPF/WNR facility, and at accelerator laboratories at Ohio University, Duke University, the University of Lowell, the University of Michigan, and the Colorado School of Mines. Some history is discussed and future modernizing plans are identified

  13. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  14. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Beck, R.; Bueche, G.; Fluegge, G.

    1982-02-01

    This report surveys the activities in fundamental research from July 1, 1980 to June 30, 1981 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions and physics at medium and higher energies. (orig.) [de

  15. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Brown, G.E.

    1980-05-01

    This report presents the keynote address given by G.E. Brown at a LASL colloquium on August 21, 1979, for the Workshop on Program Options in Intermediate-Energy Physics. Professor Brown reviewed major topics of interest in intermediate-energy nuclear physics and suggested experimental approaches that might be most productive in the near future. 22 figures

  16. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  17. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report presents the research programs and the technical developments carried out at the Nuclear Physics Department of Saclay from October 1, 1986 to September 30, 1987. The research programs concern the structure of nuclei and the general study of nuclear reaction mechanisms. Experiments use electromagnetic probes of the 700 Mev Saclay linear electron accelerator and hadronic probes, light polarised particles and heavy ions of the National Laboratories SATURNE and GANIL. The Nuclear Physics Department is also involved in development of accelerator technologies, especially in the field of superconducting cavities [fr

  18. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  19. Nuclear Physics Laboratory, University of Washington annual report

    International Nuclear Information System (INIS)

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters

  20. Summaries of FY 1986 research in nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics

  1. Nuclear Physics Laboratory annual report 1982

    International Nuclear Information System (INIS)

    1982-06-01

    This Annual Report describes the activities of the Nuclear Physics Laboratory of the University of Washington for the year ending approximately April 30, 1982. As in previous years we report here on a strong nuclear physics research program based upon use of the Laboratory's principal facility, an FN tandem and injector accelerator system. Other major elements of the Laboratory's current program include the hydrogen parity mixing experiment, intermediate-energy experiments conducted at Los Alamos and elsewhere, an accelerator mass spectrometry program emphasizing 10 Be and 14 C measurements on environmental materials, and a number of researches carried out by Laboratory members working collaboratively at other institutions both in this country and abroad

  2. [Studies in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1993-01-01

    This report summarizes work carried out between October 1, 1992 and September 30, 1993 at the Nuclear Physics Laboratory of the University of Colorado, Boulder. The experimental program in intermediate-energy nuclear physics is very broadly based; it includes pion-nucleon and pion-nucleus studies at LAMPF and TRIUMF, kaon-nucleus scattering at the AGS, and equipment development for experiments at the next generation of accelerator facilities

  3. Nuclear Technology Programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  4. Nuclear technology programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  5. Nuclear Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  6. Health physics educational program in the Tennessee Valley Authority

    International Nuclear Information System (INIS)

    Holley, Wesley L.

    1978-01-01

    In the spring of 1977, the Radiological Hygiene Branch of the Tennessee Valley Authority (TVA) instituted a training program for health physics technicians to ensure availability of qualified personnel for the agency, which is rapidly becoming the world's largest nuclear utility. From this, a health physics education program is developing to also include health physics orientation and retraining for unescorted entry into nuclear power plants, health physics training for employees at other (non-TVA) nuclear plants, specialized health physics training, and possibly theoretical health physics courses to qualify technician-level personnel for professional status. Videotaped presentations are being used extensively, with innovations such as giving examinations by videotape of real-life, in-plant experiences and acted out scenarios of health physics procedures; and teaching health physics personnel to observe, detect, and act on procedural, equipment, and personnel deficiencies promptly. Video-taped lectures are being used for review and to complement live lectures. Also, a 35-mm slide and videotape library is being developed on all aspects of the operational health physics program for nuclear plants using pressurized and boiling water reactors. (author)

  7. Computers in Nuclear Physics Division

    International Nuclear Information System (INIS)

    Kowalczyk, M.; Tarasiuk, J.; Srebrny, J.

    1997-01-01

    Improving of the computer equipment in Nuclear Physics Division is described. It include: new computer equipment and hardware upgrading, software developing, new programs for computer booting and modernization of data acquisition systems

  8. Panel report: nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph A [Los Alamos National Laboratory; Hartouni, Edward P [LLNL

    2010-01-01

    Nuclear science is at the very heart of the NNSA program. The energy produced by nuclear processes is central to the NNSA mission, and nuclear reactions are critical in many applications, including National Ignition Facility (NIF) capsules, energy production, weapons, and in global threat reduction. Nuclear reactions are the source of energy in all these applications, and they can also be crucial in understanding and diagnosing the complex high-energy environments integral to the work of the NNSA. Nuclear processes are complex quantum many-body problems. Modeling and simulation of nuclear reactions and their role in applications, coupled tightly with experiments, have played a key role in NNSA's mission. The science input to NNSA program applications has been heavily reliant on experiment combined with extrapolations and physical models 'just good enough' to provide a starting point to extensive engineering that generated a body of empirical information. This body of information lacks the basic science underpinnings necessary to provide reliable extrapolations beyond the domain in which it was produced and for providing quantifiable error bars. Further, the ability to perform additional engineering tests is no longer possible, especially those tests that produce data in the extreme environments that uniquely characterize these applications. The end of testing has required improvements to the predictive capabilities of codes simulating the reactions and associated applications for both well known and well characterized cases as well as incompletely known cases. Developments in high performance computing, computational physics, applied mathematics and nuclear theory have combined to make spectacular advances in the theory of fission, fusion and nuclear reactions. Current research exploits these developments in a number of Office of Science and NNSA programs, and in joint programs such as the SciDAC (Science Discovery through Advanced Computing) that

  9. Nuclear physics, neutron physics and nuclear energy. Proceedings

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1994-01-01

    The book contains of proceedings of XI International School on Nuclear Physics, Neutron Physics and Nuclear Energy organized traditionally every two years by Bulgarian Academy of Sciences and the Physics Department of Sofia University held near the city of Varna. It provides a good insight to the large range of theoretical and experimental results, prospects, problems, difficulties and challenges which are at the core of nuclear physics today. The efforts and achievements of scientists to search for new phenomena in nuclei at extreme circumstances as superdeformation and band crossing in nuclear structure understanding are widely covered. From this point of view the achievements and future in the field of high-precision γ-spectroscopy are included. Nuclear structure models and methods, models for strong interaction, particle production and properties, resonance theory and its application in reactor physics are comprised also. (V.T.)

  10. University of Washington, Nuclear Physics Laboratory annual report, 1995

    International Nuclear Information System (INIS)

    1995-04-01

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995

  11. Physical protection of nuclear operational units

    International Nuclear Information System (INIS)

    1981-07-01

    The general principles of and basic requirements for the physical protection of operational units in the nuclear field are established. They concern the operational units whose activities are related with production, utilization, processing, reprocessing, handling, transport or storage of materials of interest for the Brazilian Nuclear Program. (I.C.R.) [pt

  12. National Nuclear Physics Summer School

    CERN Document Server

    2016-01-01

    The 2016 National Nuclear Physics Summer School (NNPSS) will be held from Monday July 18 through Friday July 29, 2016, at the Massachusetts Institute of Technology (MIT). The summer school is open to graduate students and postdocs within a few years of their PhD (on either side) with a strong interest in experimental and theoretical nuclear physics. The program will include the following speakers: Accelerators and Detectors - Elke-Caroline Aschenauer, Brookhaven National Laboratory Data Analysis - Michael Williams, MIT Double Beta Decay - Lindley Winslow, MIT Electron-Ion Collider - Abhay Deshpande, Stony Brook University Fundamental Symmetries - Vincenzo Cirigliano, Los Alamos National Laboratory Hadronic Spectroscopy - Matthew Shepherd, Indiana University Hadronic Structure - Jianwei Qiu, Brookhaven National Laboratory Hot Dense Nuclear Matter 1 - Jamie Nagle, Colorado University Hot Dense Nuclear Matter 2 - Wilke van der Schee, MIT Lattice QCD - Sinead Ryan, Trinity College Dublin Neutrino Theory - Cecil...

  13. The University of Utah Nuclear Engineering Program

    International Nuclear Information System (INIS)

    Jevremovic, T.; McDonald, L. IV; Schow, R.

    2016-01-01

    As of 2014, the University of Utah Nuclear Engineering Program (UNEP) manages and maintains over 7,000 ft 2 (~650 m 2 ) nuclear engineering facilities that includes 100 kW TRIGA Mark I and numerous laboratories such as radiochemistry, microscopy, nuclear forensics, nuclear medicine, radiation detection and instrumentation laboratories. The UNEP offers prestigious educational and training programs in the field of faculty reserach: reactor physics, reactor design and operation, advanced numerical modeling and visualizations in radiation transport, radiochemistry, nuclear forensics, radiation detection and detector designs, signal processing, nuclear medicine, nuclear space and nuclear robotic’s engineering and radiological sciences. With the state-of-the-art nuclear instrumentation and state-of-the-art numerical modeling tools, reserach reactor and modernized educational and training programs, we positioned ourselves in the last five years as the fastest growing national nuclear engineering program attracting the students from many disciplines such as but not limited to: chemical engineering, civil engineering, environmental engineering, chemistry, physics, astronomy, medical sciences, and others. From 2012, we uniquely developed and implemented the nuclear power plants’ safety culture paradigm that we use for day-to-day operation, management and maintenance of our facilities, as well as train all our students at undergraduate and graduate levels of studies. We developed also a new distance-learning approaches in sharing knowledge about experiential learning based on no-cost internet-tools combined with the use of mobile technologies. (author)

  14. Program for upgrading nuclear materials protection, control, and accounting at all facilities within the All-Russian Institute of Experimental Physics (VNIIEF)

    International Nuclear Information System (INIS)

    Yuferev, V.; Zhikharev, S.; Yakimov, Y.

    1998-01-01

    As part of the Department of Energy-Russian program for strengthening nuclear material protection, control, and accounting (MPC and A), plans have now been formulated to install an integrated MPC and A system at all facilities containing large quantities of weapons-usable nuclear material within the All-Russian Institute of Experimental Physics (VNIIEF, Arzamas-16) complex. In addition to storage facilities, the complex houses a number of critical facilities used to conduct nuclear physics research and facilities for developing procedures for disassembly of nuclear weapons

  15. A Program in Medium-Energy Nuclear Physics

    International Nuclear Information System (INIS)

    Feldman, Gerald

    2015-01-01

    We report here on the final stages of the Berman grant. The study of the spectrum and properties of the excited states of the nucleon (the N* states) is one of the highest-priority goals of nuclear physics and one of the major programs of Jefferson Lab, especially in Hall B. We have most recently focused our attention on exclusive studies (in both spin and strangeness) of the neutron in the deuteron. Our g13 experiment, @@@Production of Kaons from the Deuteron with Polarized Photons@@@ [Nadel-Turonski (2006)], was carried out between October 2006 and June 2007. This experiment was done using both linearly and circularly polarized photons, mainly to try to unscramble the multitude of wide and overlapping N* states and to measure their properties by studying in fine detail their decays into strange-particle reaction channels. To this end, one of our students, Edwin Munevar, has analyzed the @@n@@@K + @@ - reaction channel for his Ph.D. topic. The strangeness-production channels constitute the subject of the original GW group@@@s g13 proposal. But the g13 data set, by virtue of its statistics, polarization, and kinematic coverage, is ideally suited for many other reaction channels as well. Among these is the azimuthal angular asymmetry for deuteron photodisintegration, which was analyzed by another of our students, Nicholas Zachariou, for his Ph.D. topic, with help from Nickolay Ivanov (from the Yerevan Physics Institute in Armenia). This study required a deuterium target and a linearly polarized photon beam.

  16. A Program in Medium-Energy Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Gerald [George Washington Univ., Washington, DC (United States)

    2015-03-23

    We report here on the final stages of the Berman grant. The study of the spectrum and properties of the excited states of the nucleon (the N* states) is one of the highest-priority goals of nuclear physics and one of the major programs of Jefferson Lab, especially in Hall B. We have most recently focused our attention on exclusive studies (in both spin and strangeness) of the neutron in the deuteron. Our g13 experiment, “Production of Kaons from the Deuteron with Polarized Photons” [Nadel-Turonski (2006)], was carried out between October 2006 and June 2007. This experiment was done using both linearly and circularly polarized photons, mainly to try to unscramble the multitude of wide and overlapping N* states and to measure their properties by studying in fine detail their decays into strange-particle reaction channels. To this end, one of our students, Edwin Munevar, has analyzed the γn→K+Σ- reaction channel for his Ph.D. topic. The strangeness-production channels constitute the subject of the original GW group’s g13 proposal. But the g13 data set, by virtue of its statistics, polarization, and kinematic coverage, is ideally suited for many other reaction channels as well. Among these is the azimuthal angular asymmetry for deuteron photodisintegration, which was analyzed by another of our students, Nicholas Zachariou, for his Ph.D. topic, with help from Nickolay Ivanov (from the Yerevan Physics Institute in Armenia). This study required a deuterium target and a linearly polarized photon beam.

  17. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    International Nuclear Information System (INIS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-01-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  18. PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina

    2014-09-01

    The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in

  19. Complex of two-dimensional multigroup programs for neutron-physical computations of nuclear reactor

    International Nuclear Information System (INIS)

    Karpov, V.A.; Protsenko, A.N.

    1975-01-01

    Briefly stated mathematical aspects of the two-dimensional multigroup method of neutron-physical computation of nuclear reactor. Problems of algorithmization and BESM-6 computer realisation of multigroup diffuse approximations in hexagonal and rectangular calculated lattices are analysed. The results of computation of fast critical assembly having complicated composition of the core are given. The estimation of computation accuracy of criticality, neutron fields distribution and efficiency of absorbing rods by means of computer programs developed is done. (author)

  20. Nuclear astrophysics: An application of nuclear physics

    International Nuclear Information System (INIS)

    Fueloep, Z.

    2005-01-01

    Nuclear astrophysics, a fruitful combination of nuclear physics and astrophysics can be viewed as a special application of nuclear physics where the study of nuclei and their reactions are motivated by astrophysical problems. Nuclear astrophysics is also a good example for the state of the art interdisciplinary research. The origin of elements studied by geologists is explored by astrophysicists using nuclear reaction rates provided by the nuclear physics community. Due to the high interest in the field two recent Nuclear Physics Divisional Conferences of the European Physical Society were devoted to nuclear astrophysics and a new conference series entitled 'Nuclear Physics in Astrophysics' has been established. Selected problems of nuclear astrophysics will be presented emphasizing the interplay between nuclear physics and astrophysics. As an example the role of 14 N(p,r) 15 O reaction rate in the determination of the age of globular clusters will be discussed in details

  1. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  2. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    1991-12-01

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  3. PREFACE: XIX International School on Nuclear Physics, Neutron Physics and Applications (VARNA 2011)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina; Voronov, Victor

    2012-05-01

    This volume contains the lectures and short talks given at the XIX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 19-25 September 2011 in 'Club Hotel Bolero' located in the 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences. The co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research - Dubna. According to long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year - 2011, we had the pleasure of welcoming more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to each present a short contribution. The program ranged from recent achievements in areas such as nuclear structure and reactions to the hot topics of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The main topics were as follows: Nuclear excitations at various energies Nuclei at high angular moments and temperature Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues helped with the organization of the School. We would like

  4. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    1983-04-01

    Progress is described in the following areas: astrophysics and cosmology, nuclear structure and light ion reactions, giant resonances in radiative capture, heavy ion reations, nuclear tests of fundamental symmetries, parity violation in hydrogen, medium energy physics, accelerator mass spectrometry (C-14 and Be-10 radiochronology programs), accelerators and ion sources, magnetic spectrograph/momentum filter, instrumentation and experimental techniques, computers and computing, and the superconducting booster for the University of Washington tandem accelerator. Publications are listed

  5. PREFACE: XXXIV Symposium on Nuclear Physics

    Science.gov (United States)

    Barrón-Palos, Libertad; Bijker, Roelof

    2011-10-01

    In the present volume of the Journal of Physics: Conference Series we publish the proceedings of the 'XXXIV Symposium on Nuclear Physics', which was held from 4-7 January 2011 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings consist of 19 contributions that were presented as invited talks at the meeting. The abstracts of all contributions, plenary talks and posters were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. From the first meeting in Oaxtepec in 1978, the Symposium has been organized every year without interruption, which makes the present Symposium the 34th in a row. The scientific program consisted of 27 invited talks and 17 posters on a wide variety of hot topics in contemporary nuclear physics, ranging from the traditional fields of nuclear structure (Draayer, Pittel, Van Isacker, Fraser, Lerma, Cejnar, Hirsch, Stránský and Rath) and nuclear reactions (Aguilera, Gómez-Camacho, Scheid, Navrátil and Yennello) to radioactive beams (Padilla-Rodal and Galindo-Uribarri), nuclear astrophysics (Aprahamian, Civitarese and Escher), hadronic physics (Bijker, Valcarce and Hess), fundamental symmetries (Liu, Barrón-Palos and Baessler) and LHC physics (Menchaca-Rocha and Paic). The high quality of the talks, the prestige of the speakers and the broad spectrum of subjects covered in the meeting, shows that nuclear physics is a very active area at the frontier of scientific research which establishes bridges between many different disciplines. Libertad Barr

  6. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  7. The nuclear physics program at SIS/ESR

    International Nuclear Information System (INIS)

    Henning, W.

    1991-01-01

    The present workshop discusses the physics program to be addressed with the new photon spectrometer TAPS. Part of this program will be carried out at the new accelerator facility SIS/ESR at GSI Darmstadt. To put the TAPS activities at SIS into perspective, an overview is given in the following discussing the new GSI facility, the research program under consideration and the various experimental facilities besides TAPS to carry out these studies. (orig.)

  8. XXXIX Symposium on Nuclear Physics

    International Nuclear Information System (INIS)

    Acosta, Luis; Bijker, Roelof

    2016-01-01

    In the present volume of Journal of Physics: Conference Series we publish the proceedings of the “XXXIX Symposium on Nuclear Physics”, that was held from January 5-8, 2016 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings consist of 20 contributions that were presented as plenary talks at the meeting. The abstracts of all contributions, invited talks and posters, were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. After the first meeting in Oaxtepec in 1978, the Symposium was organized every year without interruption which makes the present one the 39th in a row. The scientific program consisted of 29 invited talks and a poster session on a wide variety of hot topics in contemporary nuclear physics, ranging from the traditional fields of nuclear structure and nuclear reactions to radioactive beams, nuclear astrophysics, hadronic physics, fundamental symmetries and relativistic heavy ions, as well as progress reports of large international projects like the HAWC Observatory in Puebla, Mexico, and the ATLAS and ALICE Collaborations of the LHC accelerator at CERN, Switzerland. In addition, there were several contributions highlighting interesting new results from foreign laboratories like Notre Dame, RIKEN, Jefferson Lab, Oak Ridge, INFN-Legnaro and INFN-LNS, as well as Mexican laboratories at ININ, LEMA and the Carlos Graef Laboratory at IF-UNAM. On the theoretical side there were talks on recent developments in nuclear structure, weakly bound nuclei, cluster models

  9. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  10. Programs for nuclear data analysis

    International Nuclear Information System (INIS)

    Bell, R.A.I.

    1975-01-01

    The following report details a number of programs and subroutines which are useful for analysis of data from nuclear physics experiments. Most of them are available from pool pack 005 on the IBM1800 computer. All of these programs are stored there as core loads, and the subroutines and functions in relocatable format. The nature and location of other programs are specified as appropriate. (author)

  11. Annual report on nuclear physics activities. July 1, 1987 - June 30, 1988

    International Nuclear Information System (INIS)

    Doll, P.; Meisel, G.

    1989-02-01

    This report surveys the activities in basic research from July 1, 1987 to June 30, 1988 at the Institute for Nuclear Physics (IK) of the Kernforschungszentrum Karlsruhe. The research program of this institute comprises nuclear astropysics, laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and high energy physics, as well as detector technology. (orig.) [de

  12. High Energy Physics (HEP) benchmark program

    International Nuclear Information System (INIS)

    Yasu, Yoshiji; Ichii, Shingo; Yashiro, Shigeo; Hirayama, Hideo; Kokufuda, Akihiro; Suzuki, Eishin.

    1993-01-01

    High Energy Physics (HEP) benchmark programs are indispensable tools to select suitable computer for HEP application system. Industry standard benchmark programs can not be used for this kind of particular selection. The CERN and the SSC benchmark suite are famous HEP benchmark programs for this purpose. The CERN suite includes event reconstruction and event generator programs, while the SSC one includes event generators. In this paper, we found that the results from these two suites are not consistent. And, the result from the industry benchmark does not agree with either of these two. Besides, we describe comparison of benchmark results using EGS4 Monte Carlo simulation program with ones from two HEP benchmark suites. Then, we found that the result from EGS4 in not consistent with the two ones. The industry standard of SPECmark values on various computer systems are not consistent with the EGS4 results either. Because of these inconsistencies, we point out the necessity of a standardization of HEP benchmark suites. Also, EGS4 benchmark suite should be developed for users of applications such as medical science, nuclear power plant, nuclear physics and high energy physics. (author)

  13. Expert training on physical protection of nuclear materials at universities of Russia

    International Nuclear Information System (INIS)

    Pogozhin, N.S.; Bondarev, P.V.; Geraskin, N.I.; Kryuchkov, E.F.; Tolstoy, A.I.

    2002-01-01

    Full text: The expert training on physical protection of nuclear materials in Russia is carry out by the universities on the following directions: 'Physical Protection, Control and Accountability of Nuclear Materials (MPCA)' master educational program. 'Physical and technical problems of atomic engineering' master educational standard. 'Technical Physics' direction. Qualification - master of physics. Duration of training - two years. 'Physical protection of nuclear objects' specialization. 'Nuclear physics and technology' educational standard of a direction for professionally qualified expert training. 'Safety and nonproliferation of nuclear materials' specialty. Qualification - engineer-physician. Duration of training - five years. The Master educational program is intended for the expert training with fundamental knowledge. The masters are assigned to work at the establishments of the Ministry of Atomic Energy of Russia and at the state committee on nuclear supervision (Gosatomnaozor). Many graduates continue their education as post-graduate students. The program is designed for the experts having education of an engineer or a bachelor. The program concept consists in integration in a uniform educational process: profound scientific and technical knowledge; system approach to designing MPCA systems; knowledge of scientific and technical principles, means, devices; MPCA facilities and tools; legal, political and economic aspects of nuclear material management; modern computer and information technologies for MPCA systems; research work and practice of the students. The educational program for 'physical protection of nuclear objects' specialization is intended for the expert training of a practical orientation. Engineer-physicians are assigned as a rule to work at the nuclear objects and are intended for operation and servicing of the certain physical protection systems (PPS). The program concept consists in training not only fundamental aspects of an engineering

  14. Assistance to high schools: A mobile Nuclear Physics Laboratory. Final report, 1991--1992 activities

    International Nuclear Information System (INIS)

    Kerlin, T.W.; Dean, C.H.

    1992-01-01

    The Nuclear Engineering Department of the University of Tennessee was awarded a grant from DOE to expand and improve a program of assisting high school physics teachers in their coverage of nuclear physics. Nuclear physics has routinely been handled poorly in high school classes. There are several reasons for this: nuclear physics is usually near the end of high school physics texts and teachers often fail to get to it, many teachers are unfamiliar with nuclear physics and are reluctant to cover it, and laboratories are a problem because equipment is expensive, teachers often do not know how to use the equipment and schools often do not want to store radioactive sources. The assistance program encourages teachers to cover nuclear physics and overcomes the problems associated with laboratories

  15. Physics Division Argonne National Laboratory description of the programs and facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  16. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  17. Specialists training on nuclear materials control, accounting and physical protection in the Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Khromov, V.V.; Pogozhin, N.S.; Kryuchkov, E.F.; Glebov, V.B.; Geraskin, N.I.

    1998-01-01

    Educational program to train specialists on non-proliferation problems and nuclear materials control, accounting and physical protection systems (NMCA and PP) at the Science Master's level was developed and is being realized in Moscow Sate Institute of Engineering and Physics at the support of the USA Ministry of Energy. The program is intended to train students who already got the Bachelor's degree on physical and technical subjects. The United methodological base of the program comprises lecture courses, practice in laboratories and computer programs. The educational program contains the following parts for training the students. 1) Deep scientific and technical knowledge. 2) System approach to designing and analysis of the NMCA and PP systems. 3) Knowledge of scientific and technical principles, means, devices and procedures used in the NMCA and PP systems. 4) Judicial, international and economical aspects of nuclear materials management. 5) Application of computer and information technologies for nuclear materials control and accounting. 6) Extensive practice in laboratories, using the most up-to-date equipment and devices used in the worldwide practice of NM control

  18. LXII International conference NUCLEUS 2012. Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies (LXII Meeting on nuclear spectroscopy and nuclear structure). Book of abstracts

    International Nuclear Information System (INIS)

    Vlasnikov, A.K.

    2012-01-01

    The scientific program of the conference covers almost all problems in nuclear physics and its applications. The recent results of experimental investigations of atomic nuclei properties and nuclear reaction mechanisms are presented. The theoretical problems of atomic nuclei and fundamental interactions as well as nuclear reactions are discussed. The new techniques and methods of nuclear physical experiments are considered. The particular attention is given to fundamental problems of nuclear power and qualitative training of russian and foreign specialist in field of nuclear physics and atomic power engineering [ru

  19. Accelerator physics and nuclear energy education in INRNE-BAS

    International Nuclear Information System (INIS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2015-01-01

    Presently Bulgaria has no research nuclear facility, neither a research reactor, nor an accelerator. With the new cyclotron laboratory in Sofia the Institute for Nuclear Research and Nuclear Energy at the Bulgarian Academy of Sciences will restart the experimental research program not only in the fi eld of nuclear physics, but also in many interdisciplinary fields related to nuclear physics. The cornerstone of the cyclotron laboratory is a cyclotron TR24, which provides a proton beam with a variable energy between 15 and 24 MeV and current of up to 0.4 mA. The TR24 accelerator allows for the production of a large variety of radioisotopes for medical applications and development of radiopharmaceuticals. The new cyclotron facility will be used for research in radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including especially nuclear energy. Keywords: Cyclotron, PET/CT, radiopharmacy

  20. Proceedings of the topical conference on nuclear physics, high energy physics and astrophysics (NPHEAP-2010)

    International Nuclear Information System (INIS)

    Vo Van Thuan; Tran Duc Thiep; Le Hong Khiem

    2011-01-01

    There were roughly 80 scientists gathering for the NPHEAP-2010 and there 61 oral talks and posters have been presented. The audience has been introduced to the status of long term nuclear power program of Vietnam up to 2030. One of the highlights for near future activity of Vietnamese nuclear sector should be the manpower training and education for this huge master plan. Most of invited and contributed papers have devoted to both basic nuclear physics at world radioactive beams and applied nuclear instrumentation. In addition to some traditional astronomical papers, there were more contributions on advanced cosmic ray physics and related nuclear astrophysics. A few of papers on high energy and particle physics jointly showed a high interest in flavor physics at LHC, KEK and J-PARC. (NHA)

  1. Physical protection evaluation methodology program development and application

    International Nuclear Information System (INIS)

    Seo, Janghoon; Yoo, Hosik

    2015-01-01

    It is essential to develop a reliable physical protection evaluation methodology for applying physical protection concept to the design stage. The methodology can be used to assess weak points and improve performance not only for the design stage but also for nuclear facilities in operation. Analyzing physical protection property of nuclear facilities is not a trivial work since there are many interconnected factors affecting overall performance. Therefore several international projects have been organized to develop a systematic physical protection evaluation methodology. INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF PRPP (Generation IV International Forum Proliferation Resistance and Physical Protection) methodology are among the most well-known evaluation methodologies. INPRO adopts a checklist type of questionnaire and has a strong point in analyzing overall characteristic of facilities in a qualitative way. COMPRE program has been developed to help general users apply COMPRE methodology to nuclear facilities. In this work, COMPRE program development and a case study of the hypothetical nuclear facility are presented. The development of COMPRE program and a case study for hypothetic facility is presented in this work. The case study shows that COMPRE PP methodology can be a useful tool to assess the overall physical protection performance of nuclear facilities. To obtain meaningful results from COMPRE PP methodology, detailed information and comprehensive analysis are required. Especially, it is not trivial to calculate reliable values for PPSE (Physical Protection System Effectiveness) and C (Consequence), while it is relatively straightforward to evaluate LI (Legislative and Institutional framework), MC (Material Control) and HR (Human Resources). To obtain a reliable PPSE value, comprehensive information about physical protection system, vital area analysis and realistic threat scenario assessment are required. Like

  2. Physical protection evaluation methodology program development and application

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Yoo, Hosik [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    It is essential to develop a reliable physical protection evaluation methodology for applying physical protection concept to the design stage. The methodology can be used to assess weak points and improve performance not only for the design stage but also for nuclear facilities in operation. Analyzing physical protection property of nuclear facilities is not a trivial work since there are many interconnected factors affecting overall performance. Therefore several international projects have been organized to develop a systematic physical protection evaluation methodology. INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF PRPP (Generation IV International Forum Proliferation Resistance and Physical Protection) methodology are among the most well-known evaluation methodologies. INPRO adopts a checklist type of questionnaire and has a strong point in analyzing overall characteristic of facilities in a qualitative way. COMPRE program has been developed to help general users apply COMPRE methodology to nuclear facilities. In this work, COMPRE program development and a case study of the hypothetical nuclear facility are presented. The development of COMPRE program and a case study for hypothetic facility is presented in this work. The case study shows that COMPRE PP methodology can be a useful tool to assess the overall physical protection performance of nuclear facilities. To obtain meaningful results from COMPRE PP methodology, detailed information and comprehensive analysis are required. Especially, it is not trivial to calculate reliable values for PPSE (Physical Protection System Effectiveness) and C (Consequence), while it is relatively straightforward to evaluate LI (Legislative and Institutional framework), MC (Material Control) and HR (Human Resources). To obtain a reliable PPSE value, comprehensive information about physical protection system, vital area analysis and realistic threat scenario assessment are required. Like

  3. Applications of nuclear physics

    Science.gov (United States)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  4. Applications of nuclear physics

    International Nuclear Information System (INIS)

    Hayes-Sterbenz, Anna Catherine

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  5. Overview of research in physics and health sciences at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Milton, J.C.D.

    1988-01-01

    Toxicology research was a logical extension of existing program at Chalk River. Research in radiotoxicology has been going on there since the early forties. An overview of the existing physics and health sciences research programs operating at the Research Company of Atomic Energy of Canada Limited was presented. Programs in nuclear physics, heavy ion nuclear physics, astrophysical neutrino physics, condensed matter physics, fusion, biology, dosimetry, and environmental sciences were briefly described. In addition, a description of the research company organization was provided

  6. Nuclear physics experiment at INS

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo.

    1981-02-01

    Present activities at the Institute for Nuclear Study (INS) are presented. Selected topics are from recent experiments by use of the INS cyclotron, experiments at the Bevalac facility under the INS-LBL collaboration program, and preparatory works for the Numatron project, a new project for the high-energy heavy-ion physics. (author)

  7. PREFACE: XVIII International School on Nuclear Physics, Neutron Physics and Applications

    Science.gov (United States)

    Stoyanov, Chavdar; Janeva, Natalia

    2010-11-01

    This volume contains the lectures and short talks given at the XVIII International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 21 to 27 September 2009 in Hotel 'Lilia' located on 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was Bulgarian Nuclear Regulatory Agency. The event was sponsored by National Science Fund of Bulgaria. According to the long-standing tradition the School has taken place every second year since 1973. The School content has been restructured according to our new enlarged international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts a lot of young scientists and students from many countries. This year - 2009, we had the pleasure to welcome more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to present a short contribution. The program ranges from recent achievements in nuclear structure and reactions to the hot problems of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and the pleasant evenings. The main topics were the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues contributed to the organization of the School. We would like to thank to them and especially to the Scientific Secretary of the School Dr

  8. Nuclear physics

    International Nuclear Information System (INIS)

    Patel, S.B.

    1991-01-01

    This book is a simple and direct introduction to the tools of modern nuclear physics, both experimental and mathematical. Emphasizes physical intuition and illuminating analogies, rather than formal mathematics. Topics covered include particle accelerators, radioactive series, types of nuclear reactions, detection of the neutrino, nuclear isomerism, binding energy of nuclei, fission chain reactions, and predictions of the shell model. Each chapter contains problems and illustrative examples. Pre-requisites are calculus and elementary vector analysis

  9. Marie Curie: the Curie Institute in Senegal to Nuclear Physics

    Science.gov (United States)

    Gueye, Paul

    Sub-Saharan Africa is not a place where one will look first when radioactivity or nuclear physics is mentioned. Conducting forefront research at the international stage at US national facilities such as the Thomas Jefferson National Accelerator Facility in Virginia or the National Superconducting Cyclotron Facility/Facility for Rare Isotope Beams in Michigan does not point to Historically Black Colleges either. The two are actually intrinsically connected as my personal journey from my early exposure to radiation at the Curie Institute at the LeDantec Hospital in Senegal lead me to Hampton University. The former, through one of my uncles, catapulted me into a nuclear physics PhD while the latter houses the only nuclear physics program at an HBCU to date that has established itself as one of the premier programs in the nation. This talk will review the impact of Marie Curie in my life as a nuclear physicist.

  10. Towards sustainable nuclear energy: Putting nuclear physics to work

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2008-01-01

    We have developed a new method to propagate the uncertainties of fundamental nuclear physics models and parameters to the design and performance parameters of future, clean nuclear energy systems. Using Monte Carlo simulation, it is for the first time possible to couple these two fields at the extremes of nuclear science without any loss of information in between. With the help of a large database of nuclear reaction measurements, we have determined the uncertainties of theoretical nuclear reaction models such as the optical, compound nucleus, pre-equilibrium and fission models. A similar assessment is done for the parameters that describe the resolved resonance range. Integrating this into one simulation program enables us to describe all open channels in a nuclear reaction, including a complete handling of uncertainties. Moreover, in one and the same process, values and uncertainties of nuclear reactor parameters are computed. This bypasses all the intermediate steps which have been used so far in nuclear data and reactor physics. Two important results emerge from this work: (a) we are able to quantify the required quality of theoretical nuclear reaction models directly from the reactor design requirements and (b) our method leads to a deviation from the commonly assumed normal distribution for uncertainties of safety related reactor parameters, and this should be taken into account for future nuclear energy development. In particular, calculated k eff distributions show a high-value tail for fast reactor spectra

  11. Applications of Nuclear Physics

    OpenAIRE

    Hayes, Anna C.

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that und...

  12. International Conference-Session of the Section of Nuclear Physics of the Physical Sciences Division of RAS

    CERN Document Server

    2014-01-01

    From November 17 to 21, 2014 the Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences and the National Research Nuclear University MEPhI will hold in MEPhI, Moscow, the International Conference-Session of SNP PSD RAS "Physics of Fundamental Interactions". The program of the session covers basic theoretical and experimental aspects of particle physics and related problems of nuclear physics and cosmology, and will consist of 30-minute highlight and review talks as well as 10-15-minute contributed reports. All highlight talks and part of contributed reports will be presented at plenary sessions of the conference. The remaining reports will be presented at the sections which will be formed after receiving of abstracts. On the recommendation of the Organizing Committee reports and talks containing new unpublished results will be published in special issues of journals "Nuclear Physics" and "Nuclear Physics and Engineering". For the institutions belonging to the Rosatom s...

  13. Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    1991-01-01

    This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion- nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p) reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse quenching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  14. Reactors physics. Bases of nuclear physics

    International Nuclear Information System (INIS)

    Diop, Ch.M.

    2006-01-01

    The aim of nuclear reactor physics is to quantify the relevant macroscopic data for the characterization of the neutronic state of a reactor core and to evaluate the effects of radiations (neutrons and gamma radiations) on organic matter and on inorganic materials. This first article presents the bases of nuclear physics in the context of nuclear reactors: 1 - reactor physics and nuclear physics; 2 - atomic nucleus - basic definitions: nucleus constituents, dimensions and mass of the atomic nucleus, mass defect, binding energy and stability of the nucleus, strong interaction, nuclear momentums of nucleons and nucleus; 3 - nucleus stability and radioactivity: equation of evolution with time - radioactive decay law; alpha decay, stability limit of spontaneous fission, beta decay, electronic capture, gamma emission, internal conversion, radioactivity, two-body problem and notion of radioactive equilibrium. (J.S.)

  15. Annual report on nuclear physics activities July 1, 1983 - June 30, 1984

    International Nuclear Information System (INIS)

    Fries, D.C.; Matussek, P.; Weddigen, C.

    1984-10-01

    This report surveys the activities in fundamental research from July 1, 1983 to June 30, 1984 at the Institute for Nuclear Physics (IK) of the Kernforschungszentrum Karlsruhe. The research program of this institute comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and physics at medium and higher energies. (orig.) [de

  16. Annual report on nuclear physics activities. July 1, 1985 - June 30, 1986

    International Nuclear Information System (INIS)

    Bueche, G.; Doll, P.; Friedrich, L.

    1986-12-01

    This report surveys the activities in basic research from July 1, 1985 to June 30, 1986 at the Institute for Nuclear Physics (IK) of the Kernforschungszentrum Karlsruhe. The research program of this institute comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and physics at medium and high energies. (orig.) [de

  17. Nuclear physics workshop

    International Nuclear Information System (INIS)

    1988-01-01

    This Workshop in Nuclear Physics related to the TANDAR, took place in Buenos Aires in April from 23 to 26, 1987, with attendance of foreign scientists. There were presented four seminars and a lot of studies which deal with the following fields: Nuclear Physics at medium energies, Nuclear Structure, Nuclear Reactions, Nuclear Matter, Instrumentation and Methodology for Nuclear Spectroscopy, Classical Physics, Quantum Mechanics and Field Theory. It must be emphasized that the Electrostatic Accelerator TANDAR allows to work with heavy ions of high energy, that opens a new field of work in PIXE (particle induced X-ray emission). This powerful analytic technique makes it possiblethe analysis of nearly all the elements of the periodic table with the same accuracy. (M.E.L.) [es

  18. A program in medium-energy nuclear physics. Progress report, January 1, 1992--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Berman, B.L.; Dhuga, K.S.

    1994-08-01

    This renewal proposal requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past three years we have focused our attention ever more sharply on experiments with real tagged photons at CEBAF. We are part of the Hall-B Collaboration at CEBAF. We are co-spokespersons on two approved CEBAF experiments, Photoreactions on {sup 3}He and Photoabsorption and Photofission of Nuclei, and we are preparing another, Nondiffractive Photoproduction of the {rho} Meson with Linearly Polarized Photons, for presentation to the next CEBAF PAC. We are part of the team that is instrumenting the Photon Tagger and a high-energy tagged polarized-photon beam for Hall B; some of the instrumentation for these projects is being built at our Nuclear Detector Laboratory, under the auspices of The George Washington University Center for Nuclear Studies. Our recent measurements of pion scattering from {sup 3}H and {sup 3}He at LAMPF and of cluster knockout from few-body nuclei at NIKHEF have yielded very provocative results, showing the importance of the very light nuclei as a laboratory for quantifying important aspects of the nuclear many-body force. We look forward to expanding our studies of short-range forces in nuclei, particularly the very fight nuclei using electromagnetic probes and employing the extraordinary power of CEBAF and the CLAS.

  19. A program in medium-energy nuclear physics. Renewal proposal and progress report August 1, 1994

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1994-01-01

    This renewal proposal requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past three years we have focused our attention ever more sharply on experiments with real tagged photons at CEBAF. We are part of the Hall-B Collaboration at CEBAF. We are co-spokespersons on two approved CEBAF experiments, Photoreactions on 3 He and Photoabsorption and Photofission of Nuclei, and we are preparing another, Nondiffractive Photoproduction of the ρ Meson with Linearly Polarized Photons, for presentation to the next CEBAF PAC. We are part of the team that is instrumenting the Photon Tagger and a high-energy tagged polarized-photon beam for Hall B; some of the instrumentation for these projects is being built at our Nuclear Detector Laboratory, under the auspices of The George Washington University Center for Nuclear Studies. Our recent measurements of pion scattering from 3 H and 3 He at LAMPF and of cluster knockout from few-body nuclei at NIKHEF have yielded very provocative results, showing the importance of the very light nuclei as a laboratory for quantifying important aspects of the nuclear many-body force. We look forward to expanding our studies of short-range forces in nuclei, particularly the very fight nuclei using electromagnetic probes and employing the extraordinary power of CEBAF and the CLAS

  20. Current status and improvement of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology

    International Nuclear Information System (INIS)

    Qu Guopu; Guo Lanying

    1999-01-01

    The author reviews the current status of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology in higher education and expresses author's views on the future improvement of the nuclear physics experiment course

  1. Annual report of the nuclear physics section of the institute of applied nuclear physics (July 1, 1976 - June 30, 1977)

    International Nuclear Information System (INIS)

    Bechtold, V.; Ottmar, H.

    1977-10-01

    The activities of the Nuclear Physics Section of the Institute of Applied Nuclear Physics from mid 1976 to mid 1977 are surveyed. The research program comprises both contributions to fundamental and applied nuclear research. The activities on the application of nuclear methods mainly concentrate on the measurements of cross sections of neutron-induced nuclear reactions for the fast breeder project, the application of gamma-ray spectrometry to nuclear fuel assay problems, the development of a proton microbeam for elemental analysis, and the production of 123 J for medical application. The study of nuclear reactions induced by α particles, 6 Li ions and fast neutrons, and the measurement of optical hyperfine structure using high-resolution laser spectroscopy form the major part of the fundamental research work. In addition, the operation of the two accelerators of the institute, an isochronous cyclotron and a 3 MV Van de Graaff accelerator, are briefly reviewed. (orig.) [de

  2. International Cooperation Programs Of The Department Of Nuclear And Quantum Engineering (NQe) At KAIST For Nuclear Program Developing Countries In Asia

    International Nuclear Information System (INIS)

    Poong Huyn Seong; Ki SoonYum

    2008-01-01

    NQe of KAIST has developed and conducted a few international cooperation programs for Asian countries which are actively developing their nuclear programs. These include inviting several students from these countries annually for short term period such as one semester and have them experience nuclear education programs at KAIST by taking NQe courses, attending Korean Nuclear Society (KNS) meeting, and visiting some nuclear related organizations such as nuclear power plants and Doosan Heavy Industry Machine shops in Korea. These also include visiting lectures conducted by KAIST NQe professors at some universities in the nuclear program developing countries. Both of above two programs have been performed mainly for Vietnam so far but now are becoming expanded. The last program of these international cooperation activities at NQe for Nuclear Program Developing countries in Asia is the RCA/KAIST master degree program which is open to all 17 RCA countries. Thus far, we have had about 18 students from 9 different countries. NQe is looking for some more international cooperation programs which are beneficial both for Korea and for other countries right now. NQe is starting a joint summer school program between KAIST and Shanghai Jiatong University in this sense. Also, some kind of cooperation between NQe at KAIST and Department of Engineering Physics at Tsinghua University in China is also being sought now. (author)

  3. Physics through the 1990s: Nuclear physics

    International Nuclear Information System (INIS)

    1986-01-01

    This volume is the report of the Panel on Nuclear Physics of the Physics Survey Committee, established by the National Research Council in 1983. The report presents many of the major advances in nuclear physics during the past decade, sketches the impacts of nuclear physics on other sciences and on society, and describes the current frontiers of the field. It concludes with a chapter on the recommended priorities for this discipline

  4. Health physics self-assessment and the nuclear regulatory oversight process at a nuclear power plant

    International Nuclear Information System (INIS)

    Schofield, R.S.

    2003-01-01

    The U.S. Nuclear Regulatory Commission has developed improvements in their Nuclear Power Plant inspection, assessment and enforcement practices. The objective of these changes was to link regulatory action with power plant performance through a risk- informed process which is intended to enhance objectivity. One of the Strategic Performance Areas of focus by the U.S. NRC is radiation safety. Two cornerstones, Occupational Radiation Safety and Public Radiation Safety, make up this area. These cornerstones are being evaluated through U.S. NRC Performance Indicators (PI) and baseline site inspections. Key to the U.S. NRC's oversight program is the ability of the licensee to implement a self-assessment program which pro-actively identifies potential problems and develops improvements to enhance management's effectiveness. The Health Physics Self-Assessment Program at San Onofre Nuclear Generating Station (SONGS) identifies radiation protection-related weakness or negative trends. The intended end result is improved performance through rapid problem identification, timely evaluation, corrective action and follow-up effectiveness reviews. A review of the radiation protection oversight process and the SONGS Health Physics Self-Assessment Program will be presented. Lessons learned and management tools, which evaluate workforce and Health Physics (HP) staff performance to improve radiological practices, are discussed. (author)

  5. Implementing Physical Protection Education for an Enhanced Nuclear Security Culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, Hyun Chul; Shin, Ick Hyun; Lee, Hyung Kyung; Choe, Kwan Kyoo [KINAC, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, we are going to outline our efforts and experiences at implementing physical protection education. KINAC (as the only designated educational institute) places great effort in delivering an effective and a high-quality education program for physical protection. We have also provided a way for nuclear operators to share the lessons they have gained through their own experiences. We made physical protection education an important communication channel, not only among nuclear operators but also between operators and a regulatory body. There is growing attention given to education and training on the subject of physical protection in order to enhance the nuclear security culture. The IAEA recommends that all personnel in organizations directly involved with the nuclear industry receive regularly education in physical protection according to the recently revised INFCIRC/225/Rev.5. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) and the Nuclear Safety and Security Commission (NSSC), which are mainly responsible for the national nuclear security regime, have already recognized the importance of education and training in physical protection. The NSSC enacted its decree on physical protection education and training in 2010. KINAC was designated as the first educational institute in 2011 and implemented physical protection education as mandatory from 2012.

  6. Implementing Physical Protection Education for an Enhanced Nuclear Security Culture

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Kim, Hyun Chul; Shin, Ick Hyun; Lee, Hyung Kyung; Choe, Kwan Kyoo

    2013-01-01

    In this paper, we are going to outline our efforts and experiences at implementing physical protection education. KINAC (as the only designated educational institute) places great effort in delivering an effective and a high-quality education program for physical protection. We have also provided a way for nuclear operators to share the lessons they have gained through their own experiences. We made physical protection education an important communication channel, not only among nuclear operators but also between operators and a regulatory body. There is growing attention given to education and training on the subject of physical protection in order to enhance the nuclear security culture. The IAEA recommends that all personnel in organizations directly involved with the nuclear industry receive regularly education in physical protection according to the recently revised INFCIRC/225/Rev.5. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) and the Nuclear Safety and Security Commission (NSSC), which are mainly responsible for the national nuclear security regime, have already recognized the importance of education and training in physical protection. The NSSC enacted its decree on physical protection education and training in 2010. KINAC was designated as the first educational institute in 2011 and implemented physical protection education as mandatory from 2012

  7. Nuclear physics

    International Nuclear Information System (INIS)

    Spicer, B.M.

    1981-01-01

    Major centres of experimental nuclear physics are at Melbourne University, A.N.U., the A.A.E.C., James Cook University and the University of Western Australia. Groups working in theoretical nuclear physics exist at Melbourne, A.N.U., the A.A.E.C., Flinders and Adelaide Universities and the University of Western Australia. The activities of these groups are summarised

  8. Physical security in multinational nuclear-fuel-cycle operations

    International Nuclear Information System (INIS)

    Willrich, M.

    1977-01-01

    Whether or not multinationalization will reduce or increase risks of theft or sabotage will depend on the form and location of the enterprise, the precise nature of the physical security arrangements applied to the enterprise, and the future course of crime and terrorism in the nuclear age. If nuclear operations are multinationalized, the host government is likely to insist on physical security measures that are at least as stringent as those for a national or private enterprise subject to its jurisdiction. At the same time, the other participants will want to be sure the host government, as well as criminal groups, do not steal nuclear material from the facility. If designed to be reasonably effective, the physical security arrangements at a multinational nuclear enterprise seem likely to reduce the risk that any participating government will seek to divert material from the facility for use in a nuclear weapons program. Hence, multinationalization and physical security will both contribute to reducing the risks of nuclear weapons proliferation to additional governments. If economic considerations dominate the timing, scale and location of fuel-cycle facilities, the worldwide nuclear power industry is likely to develop along lines where the problems of physical security will be manageable. If, however, nuclear nationalism prevails, and numerous small-scale facilities become widely dispersed, the problem of security against theft and sabotage may prove to be unmanageable. It is ironic, although true, that in attempting to strengthen its security by pursuing self-sufficiency in nuclear power, a nation may be reducing its internal security against criminal terrorists

  9. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  10. Nuclear physics looks ahead

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-03-15

    A very wide-ranging report published by the Nuclear Physics European Collaboration Committee (NuPECC) looks at the future of nuclear physics in general, and in Europe in particular. However in view of the increasing interplay between nuclear and particle physics, many of the report's recommendations are of wider interest.

  11. Nuclear physics looks ahead

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A very wide-ranging report published by the Nuclear Physics European Collaboration Committee (NuPECC) looks at the future of nuclear physics in general, and in Europe in particular. However in view of the increasing interplay between nuclear and particle physics, many of the report's recommendations are of wider interest

  12. Proceedings of the 9. Workshop on Nuclear Physics - Communications of basic nuclear physics

    International Nuclear Information System (INIS)

    1986-01-01

    The abstracts of researches on basic nuclear physics of 9. Workshop on Nuclear Physics in Brazil are presented. Mathematical models and experimental methods for nuclear phenomenon description, such as nuclear excitation and disintegration of several nuclei were discussed. (M.C.K.) [pt

  13. The ELI–NP facility for nuclear physics

    International Nuclear Information System (INIS)

    Ur, C.A.; Balabanski, D.; Cata-Danil, G.; Gales, S.; Morjan, I.; Tesileanu, O.; Ursescu, D.; Ursu, I.; Zamfir, N.V.

    2015-01-01

    Extreme Light Infrastructure–Nuclear Physics (ELI–NP) is aiming to use extreme electromagnetic fields for nuclear physics research. The facility, currently under construction at Magurele–Bucharest, will comprise a high power laser system and a very brilliant gamma beam system. The technology involved in the construction of both systems is at the limits of the present-day’s technological capabilities. The high power laser system will consist of two 10 PW lasers and it will produce intensities of up to 10 23 –10 24 W/cm 2 . The gamma beam, produced via Compton backscattering of a laser beam on a relativistic electron beam, will be characterized by a narrow bandwidth (<0.5%) and tunable energy of up to almost 20 MeV. The research program of the facility covers a broad range of key topics in frontier fundamental physics and new nuclear physics. A particular attention is given to the development of innovative applications. In the present paper an overview of the project status and the overall performance characteristics of the main research equipment will be given. The main fundamental physics and applied research topics proposed to be studied at ELI–NP will also be briefly reviewed

  14. Georgia Tech video-based MS program in health physics/radiological engineering

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Kahn, B.

    1991-01-01

    For the past several years, the health physics/radiation protection field has experienced a significant shortage of qualified professionals. The shortage is expected to continue for foreseeable future given the continued demand by both nuclear and medical facilities and the expected growth in the areas of waste management and environmental remediation. In response to such a shortage, beginning in the fall of 1984, Georgia Institute of Technology (Georgia Tech) established a video-based instruction program that enables professionals in the nuclear field to earn a master of science degree in health physics/radiological engineering while working at a distant nuclear facility. The admission criteria and curricular requirements for the program are identical to those for the resident (on-campus) students (except that weekly attendance at departmental seminars is excused). The program is designed for students with undergraduate degrees in health physics, engineering, or appropriate sciences such as physics, chemistry, or biology. A total of 50 quarter credit hours is required, so that a student who takes one course per quarter can complete the program in four years

  15. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1994-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1993. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects nd work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics. In theoretical physics the group is concerned with the many-body description of nuclear properties as well as with the foundation of quantum physics

  16. Research program on nuclear technology and nuclear safety

    International Nuclear Information System (INIS)

    Dreier, J.

    2010-04-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning nuclear technology and nuclear safety. Work carried out, knowledge gained and results obtained in the various areas are reported on. These include projects carried out in the Laboratory for Reactor Physics and System Behaviour LRS, the LTH Thermohydraulics Laboratory, the Laboratory for Nuclear Materials LNM, the Laboratory for Final Storage Safety LES and the Laboratory for Energy Systems Analysis LEA of the Paul Scherrer Institute PSI. Work done in 2009 and results obtained are reported on, including research on transients in Swiss reactors, risk and human reliability. Work on the 'Proteus' research reactor is reported on, as is work done on component safety. International co-operation in the area of serious accidents and the disposal of nuclear wastes is reported on. Future concepts for reactors and plant life management are discussed. The energy business in general is also discussed. Finally, national and international co-operation is noted and work to be done in 2010 is reviewed

  17. Nuclear physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Explains the concepts in detail and in depth. Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov's theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.

  18. Status and hadron physics program of J-PARC

    Directory of Open Access Journals (Sweden)

    Ozawa K.

    2012-12-01

    Full Text Available Current status and hadron physics programs of Japan Accelerator Research Complex (J-PARC are reported. Several physics programs are proposed at the Hadron Hall of J-PARC. Strangeness and hyper nuclear physics is undertaken at K1.8 beam line. Study of meson nucleon bound system is underway at K1.8BR beam line. After the earthquake, all beam line components and experimental setups are reassembled. Protons are successfully accelerated in the last December and hadron physics experiments are resumed in this February. In this manuscript, status of on-going experiment and near future plans of such physics programs are reported. Especially, a new beam line for a primary protons and high momentum secondary particles is proposed to study meson properties in nucleus.

  19. Yukawa Tomonaga and nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, Takeshi

    2006-01-01

    Yukawa and Tomonaga made epoch-making contributions to the development of elementary particle physics; Yukawa proposed the meson theory of the nuclear force and Tomonaga developed renormalization theory in QED. The nuclear force is, of course, the basis of all nuclear physics. In this sense, Yukawa's work set the foundations for nuclear physics. Tomonaga worked in his late years on problems of collective motion appearing in many many-particle-systems, nuclear systems being one of the examples. Yukawa and Tomonaga were also deeply involved in founding the Institute of Fundamental Physics and Institute for Nuclear Study, through which they made invaluable contributions to the development of the field of nuclear physics. It is almost impossible to report in this short article on all of what they have achieved and thus I would like to discuss here their contributions to nuclear physics only in a limited scope, based on my personal reminiscence of them. (author)

  20. NuPECC Meeting - Nuclear Physics in France - Slides of the presentations

    International Nuclear Information System (INIS)

    Guillemaud-Mueller, D.; Sorlin, O.; Lansberg, J.P.; Laune, B.; Brasse, D.; Grambow, B.; Chomaz, P.; Baube, E.; Garcon, M.; Dael, A.; Mur, M.; Lewitowicz, M.

    2012-01-01

    In France the research in nuclear physics is made in 2 institutes: IN2P3 (National Institute for Nuclear Physics and Particle Physics) that belongs to CNRS (National Center for Scientific Research) and IRFU (Institute of Research of the Fundamental laws of the Universe) that belongs to CEA (French Alternative Energies and Atomic Energy Commission). This series of slides describes the organization, the activities and the main research programs of both institutes

  1. Microcomputers in a nuclear physics laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Ortega, J; Guardiola, R

    1986-01-01

    The use of a small home computer as a measurement device in a Nuclear Physics Lab. An important aspect of our approach is that there is no hardware at all, and some simple and modular machine language programs are needed. In this form the system can work as a pulse counter, a multiscale device or a time-interval analyzer.

  2. Nuclear physics and neutronics

    International Nuclear Information System (INIS)

    Paya, D.

    1997-01-01

    After a brief review of the beginnings of the nuclear reaction physics in France in the 40's and 50's, the experimentation neutronics and nuclear physics studies are related and their uses presented, which aims were to provide data for the study of the various reactor concepts and to study fundamental physics. Progressively, pure nuclear physics lost its links with neutronics, and its influence decreases more or less. Long life radioactive waste reprocessing is an important domain where it could regain its contribution

  3. A program in medium energy nuclear physics. Progress report and continuation proposal October 1, 1995

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1995-01-01

    This progress report and continuation proposal summarizes our achievements for the period from July 1, 1994 to September 30, 1995 and requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past year we have focused our attention ever more sharply on experiments with real tagged photons, and we have successfully defended two new experimental proposals: Photofission of Actinide and Preactinide Nuclei at SAL and Photoproduction of the ρ Meson from the Proton with Linearly Polarized Photons at CEBAF. (We are co-spokespersons on two previously approved Hall-B experiments at CEBAF, Photoreactions on 3 He and Photoabsorption and Photofission of Nuclei.) As part of the team that is instrumenting the Photon Tagger for Hall B; we report excellent progress on the focal-plane detector array that is being built at our Nuclear Detector Laboratory, as well as progress on our plans for instrumentation of a tagged polarized-photon beam using coherent bremsstrahlung. Also, we shall soon receive a large computer system (from the SSC) which will form the basis for our new Data Analysis Center, which, like the Nuclear Detector Laboratory, will be operated under the auspices of The George Washington University Center for Nuclear Studies. Finally, during the past year we have published six more papers on the results of our measurements of pion scattering at LAMPF and of electron scattering at NIKHEF and Bates, and we can report that nearly all of the remaining papers documenting this long series of measurements are in the pipeline

  4. Research in theoretical nuclear physics. Annual progress report No. 18

    International Nuclear Information System (INIS)

    1986-01-01

    Research programs in four major areas are described: the structure of the nucleon and the nucleon-nucleon interaction, strangeness, and strange baryons; the equation of state of dense matter with specific concern both for the problems of stellar collapse and supernova explosions and of relativistic heavy-ion collisions, nuclear structure physics; and relativistic effects in nuclear particularly heavy ion reactions and quark matter physics. New research efforts in many-body theory are also described

  5. Nuclear physics at PEP: First test and future plans

    International Nuclear Information System (INIS)

    Van Bibber, K.; Dietrich, F.S.; Melnikoff, S.O.

    1986-09-01

    A test run of internal target nuclear physics at the PEP storage ring is described. The Time Projection Chamber (TPC-2γ detector) was used to detect the inelastically scattered electron and complete hadronic final state in the interaction of 14.5 GeV electrons with D 2 , Ar and Xe gas targets. The data comprise mostly low-x low-Q 2 events, but some deep inelastic scattering as well. The future possibilities of a dedicated nuclear physics program at PEP are outlined. 15 refs., 25 figs

  6. Nuclear and particle physics 1993

    International Nuclear Information System (INIS)

    MacGregor, I.J.D.; Doyle, A.T.

    1993-01-01

    This item documents the International Conference on Nuclear and Particle Physics held at the University of Glasgow, UK, from 30th March to 1st April 1993. It was organised by the Department of Physics and Astronomy at Glasgow University on behalf of the Nuclear and Particle Physics Division of the Institute of Physics. The scientific programme covered many areas of current interest in nuclear and particle physics. Particle physics topics included up to the minute reports on the physics currently coming from CERN'S Low Energy Antiproton Ring (LEAR), Hadron-Elektron-Ring Analage (HERA) and Large Electron-Positron Storage Rings (LEP), and reviews of quantum chromodynamics (QCD) lattice gauge theory. Looking to the future the programme covered the search for the Higgs boson and a review of physics experiments planned for the new generation of accelerators at Large Hadron Collider (LHC) and Superconducting Supercollider (SSC). The conference coincided with the final closure of the world class Nuclear Structure Facility at Daresbury and marked the transition of United Kingdom (UK) nuclear physics research into a new era of international collaboration. Several talks described new international collaborative research programmes in nuclear physics initiated by UK scientists. The conference also heard of new areas of nuclear physics which will in future be opened up by high energy continuous beam electron accelerators and by radioactive ion beam accelerators. (author)

  7. Orbach urges renewed commitment to nuclear physics work

    CERN Multimedia

    Jones, D

    2002-01-01

    According to US Office of Science director Raymond Orbach, the Energy Department plans to issue a background paper in the coming months that will make the case for supporting the department's accelerator program for nuclear physics research (1 page).

  8. Interactive information system on the nuclear physics properties of nuclides and radioactive decay chains

    International Nuclear Information System (INIS)

    Plyaskin, V.I.; Kosilov, R.A.; Manturov, G.N.

    2001-01-01

    A brief review is given of a computerized information system on the nuclear physics properties of nuclides and radioactive decay chains. The main difference between the system presented here and those already in existence is that these evaluated databases of nuclear physics constants are linked to a set of programs, thus enabling analysis of a wide range of problems regarding various nuclear physics applications. (author)

  9. Results in Developing an Engineering Degree Program in Safeguards and Security of Nuclear Materials at Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.; Duncan, Cristen L.

    2007-01-01

    The world's first master's degree program in nuclear safeguards and security, established at Moscow Engineering Physics Institute (MEPhI), has now graduated nine classes of students. Most of the graduates have gone on to work at government agencies, research organizations, or obtain their PhD. In order to meet the demand for safeguards and security specialists at nuclear facilities, MEPhI established a 5-1/2 year engineering degree program that provides more hands-on training desired by facilities. In February 2004, the first students began their studies in the new discipline Nuclear Material Safeguards and Nonproliferation. This class, as well as other subsequent classes, included students who started the program in their third year of studies, as the first 2-1/2 years consists of general engineering curriculum. Fourteen students made up the first graduating class, receiving their engineering degrees in February 2007. The topics addressed in this paper include specific features of the program caused by peculiarities of Russian education legislation and government quality control of academic education. This paper summarizes the main joint actions undertaken by MEPhI and the US National Laboratories in conjunction with the U.S. Department of Energy, to develop the engineering degree program. Also discussed are the program's specific training requirements, student internships, and job placement. The paper concludes with recommendations from a recent international seminar on nonproliferation education and training

  10. PREFACE: XIV Conference on Theoretical Nuclear Physics in Italy

    Science.gov (United States)

    Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.

    2014-07-01

    This volume contains the invited and contributed papers presented at the 14th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 29-31 October, 2013. The meeting was held at the Palazzone, an elegant Renaissance Villa, commissioned by the Cardinal Silvio Passerini (1469-1529), Bishop of Cortona, and presently owned by the Scuola Normale Superiore di Pisa. The aim of this biennial Conference is to bring together Italian theorists working in various fields of nuclear physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to stimulate new ideas and promote collaborations between different research groups. The Conference was attended by 46 participants, coming from 13 Italian Universities and 11 Laboratories and Sezioni of the Istituto Nazionale di Fisica Nucleare - INFN. The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on the following main topics: Few-Nucleon Systems Nuclear Structure Nuclear Matter and Nuclear Dynamics Relativistic Heavy Ion Collisions and Quark-Gluon Plasma Nuclear Astrophysics Nuclear Physics with Electroweak Probes Structure of Hadrons and Hadronic Matter. In the last session of the Conference there were two invited review talks related to experimental activities of great current interest. Giacomo De Angelis from the Laboratori Nazionali di Legnaro spoke about the INFN SPES radioactive ion beam project. Sara Pirrone, INFN Sezione di Catania, gave a talk on the symmetry energy and isospin physics with the CHIMERA detector. Finally, Mauro Taiuti (Università di Genova), National Coordinator of the INFN-CSN3 (Nuclear Physics Experiments), reported on the present status and future challenges of experimental nuclear physics in Italy. We gratefully acknowledge the financial support of INFN who helped make the conference possible. I Bombaci, A Covello

  11. An operational health physics quality assurance program

    International Nuclear Information System (INIS)

    Costigan, S.A.; McAtee, J.L. III; Somers, W.M.; Huchton, R.L.

    1996-01-01

    DOE Order 5700.6C, Quality Assurance, stipulates QA requirements for all DOE activities. This order is now codified as 10CFR830.120, Nuclear Safety Management, Quality Assurance Requirements, which is applicable to DOE nuclear facilities. A Quality Assurance Management Plan (QAMP) was developed by the Health Physics Operations Group (ESH-1) at Los Alamos National Laboratory (LANL). The goal of the ESH-1 QAMP is to ensure that operational radiation protection activities meet the criteria outlined in DOE Order 5700.6C, DOE-ER-STD-6001-92 and 10CFR830.120. The ten required elements are QA Program, Personal Training and Qualifications, Quality Improvement, Documents and Records, Work Processes, Design, Procurement, Inspection and Acceptance Testing, Management Assessment and Independent Assessment. The QAMP has been useful for the development of QAMPs at nuclear facilities and has helped ensure uniformity of institutional requirements where Health Physics services are deployed to facilities. To implement a subset of QAMP requirements, a Quality Assurance Self-Evaluation Program (QASE) was established. This program provides a novel self-audit mechanism for the formal identification and correction of non-conforming items related to Operational Health Physics. Additionally, the QASE is a useful management tool for Radiological Control Technician Supervisors and staff and provides a tracking mechanism for ongoing problem areas. Data have been Collected for two calendar years on a number of concerns that fall into four general categories: radiological posting and labeling, instrumentation, monitoring requirements, and radiological documents/records

  12. PREFACE: International Nuclear Physics Conference 2010 (INPC2010)

    Science.gov (United States)

    Dilling, Jens

    2011-09-01

    The International Nuclear Physics Conference 2010 (INPC 2010) was held from 4-9 July in Vancouver, Canada, hosted by TRIUMF, the Canadian National Laboratory for Particle and Nuclear Physics. The INPC is the main conference in the field of nuclear physics, endorsed and supported by IUPAP (International Union for Pure and Applied Physics) and held every three years. This year's conference was the 25th in the series and attracted over 750 delegates (150 graduate students) from 43 countries. The conference's hallmark is its breadth in nuclear physics; topics included structure, reactions, astrophysics, hadronic structure, hadrons in nuclei, hot and dense QCD, new accelerators and underground nuclear physics facilities, neutrinos and nuclei, and applications and interdisciplinary research. The conference started with a public lecture 'An Atom from Vancouver' by L Krauss (Arizona), who gave a broad perspective on how nuclear physics is key to a deeper understanding of how the Universe was formed and the birth, life, and death of stars. The conference opened its scientific plenary program with a talk by P Braun-Munzinger (GSI/EMMI Darmstadt) who highlighted the progress that has been made since the last conference in Tokyo 2007. The presentation showcased theoretical and experimental examples from around the world. All topics were well represented by plenary sessions and well attended afternoon parallel sessions where over 250 invited and contributed talks were presented, in addition to over 380 poster presentations. The poster sessions were among the liveliest, with high participation and animated discussions from graduate students and post-doctoral fellows. Many opportunities were found to connect to fellow nuclear physicists across the globe and, particularly for conferences like the INPC which span an entire field, many unexpected links exist, often leading to new discussions or collaborations. Among the scientific highlights were the presentations in the fields of

  13. Physical Research Program: research contracts and statistical summary

    International Nuclear Information System (INIS)

    1975-01-01

    The physical research program consists of fundamental theoretical and experimental investigations designed to support the objectives of ERDA. The program is directed toward discovery of natural laws and new knowledge, and to improved understanding of the physical sciences as related to the development, use, and control of energy. The ultimate goal is to develop a scientific underlay for the overall ERDA effort and the fundamental principles of natural phenomena so that these phenomena may be understood and new principles, formulated. The physical research program is organized into four functional subprograms, high-energy physics, nuclear sciences, materials sciences, and molecular sciences. Approximately four-fifths of the total physical research program costs are associated with research conducted in ERDA-owned, contractor-operated federally funded research and development centers. A little less than one-fifth of the costs are associated with the support of research conducted in other laboratories

  14. The Relevance of Nuclear Physics

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1969-01-01

    I am asked what nuclear physics is about, that is, nuclear physics as distinct from particle physics and other parts of physics. I see three trends in this science. One is the discovery of new phenomena, phenomena of nature which we have not seen or observed, of which we did not know anything before. The second trend, I would say, is towards the solution of fundamental problems, the answers to certain basic questions in physics; I shall give some details later on. The third is the construction of new concepts in physics necessary to deal with the problems not only in nuclear physics but also in the rest of physics. The order of these three items is unimportant. This meeting should be concerned not only with the factual questions of science, but also with the, let me say, philosophic and practical questions of nuclear physics. Why do we do nuclear physics, what is the sense of it, what is the meaning of it and, most importantly, how can we defend the support of nuclear physics, how can we convince the governments to spend money on such a thing, which to a certain extent is our pleasure? And so we will have to be quite clear among ourselves that this is a very important matter

  15. Lasers in nuclear physics

    International Nuclear Information System (INIS)

    Inamura, T.T.

    1988-01-01

    The hyperfine interaction has been reviewed from a point of view of nuclear physics. Recent progress of nuclear spectroscopy with lasers is presented as one of laser studies of fundamental physics currently pursued in Japan. Especially, the hyperfine anomaly is discussed in connection with the origin of nuclear magnetism. (author)

  16. The Israel Physical Society 1997 Annual Meeting. Program and abstracts

    International Nuclear Information System (INIS)

    1997-01-01

    The book of program and abstracts of the 43rd meeting of the Israel physical society presents abstracts of presentations in various field of physics. Follow is the list of these fields. Astrophysics, condensed matter, laser and quantum optics, nuclear physics, particle and fields, physics in biology, physics in industry, plasma and space physics, statistical physics and nonlinear dynamics

  17. Activities report in nuclear physics

    NARCIS (Netherlands)

    Jansen, J. F. W.; Scholten, O.

    1987-01-01

    Experimental studies of giant resonances, nuclear structure, light mass systems, and heavy mass systems are summarized. Theoretical studies of nuclear structure, and dynamics are described. Electroweak interactions; atomic and surface physics; applied nuclear physics; and nuclear medicine are

  18. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  19. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  20. Department of Nuclear Physical Chemistry

    International Nuclear Information System (INIS)

    Mikulski, J.

    1994-01-01

    The research program at the Department of Nuclear Physical Chemistry of the Niewodniczanski Institute of Nuclear Physics is described. The Department consist of three laboratories. First - Laboratory of Physical Chemistry of Separation Processes on which the activity is concentrated on production and separation of neutron deficient isotopes for medical diagnostic. Recently, the main interest was in 111 In which is a promising tracer for cancer diagnostic. To increase the effectiveness of production of indium 111 In the reaction with deuterons on the enriched cadmium target was carried out instead of the previously used one with alpha particles on natural silver. In the second one - Laboratory of Chemistry and Radiochemistry - the systematic studies of physicochemical properties of transition elements in solutions are carried out. The results of the performed experiments were used for the elaboration of new rapid and selective methods for various elements. Some of these results have been applied for separation of trans actinide elements at U-400 cyclotron of JINR Dubna. The third one laboratory -Environmental Radioactivity Laboratory - conducts continuous monitoring of radioactivity contamination of atmosphere. The investigation of different radionuclides concentration in natural environment, mainly in the forest had been carried out

  1. Analysis of LWR Full MOX Core Physics Experiments with Major Nuclear Data Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toru [Japan Nuclear Energy Safety Organization, Tokyo (Japan)

    2007-07-01

    Nuclear Power Engineering Corporation (NUPEC) studied high moderation full MOX cores as a part of advanced LWR core concept studies from 1994 to 2003 supported by the Ministry of Economy, Trade and Industry. In order to obtain the major physics characteristics of such advanced MOX cores, NUPEC carried out core physics experimental programs called MISTRAL and BASALA from 1996 to 2002 in the EOLE critical facility of the Cadarache Center in collaboration with CEA. NUPEC also obtained a part of experimental data of the EPICURE program that CEA had conducted for 30 % Pu recycling in French PWRs. Japan Nuclear Energy Safety Organization(JNES) established in 2003 as an incorporated administrative agency took over the NUPEC's projects for nuclear regulation and has been implementing FUBILA program that is for high burn up BWR full MOX cores. This paper presents an outline of the programs and a summary of the analysis results of the criticality of those experimental cores with major nuclear data libraries.

  2. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1991-06-01

    This report contains abstracts of ongoing projects in the following areas: strong interaction physics; relativistic heavy ion physics; nuclear structure and nuclear many-body theory; and nuclear astrophysics

  3. Hadron physics programs at J-PARC

    Directory of Open Access Journals (Sweden)

    Naruki M.

    2014-06-01

    Full Text Available The J-PARC Hadron Facility is designed as a multipurpose experimental facility for a wide range of particle and nuclear physics programs, aiming to provide the world highest intensity secondary beams. Currently three secondary beam lines; K1.8, K1.8BR and KL together with the test beam line named K1.1BR come into operation. Various experimental programs are proposed at each beam line and some of them have been performed so far. As the first experiment at the J-PARC Hadron Facility, the Θ+ pentaquark was searched for via the pion-induced hadronic reaction in the autumn of 2010. Also experimental programs to search for new hadronic states such as K−pp have started to perform a physics run. The current status and near future programs are introduced.

  4. Nuclear physics principles and applications

    CERN Document Server

    Lilley, J S

    2001-01-01

    This title provides the latest information on nuclear physics. Based on a course entitled Applications of Nuclear Physics. Written from an experimental point of view this text is broadly divided into two parts, firstly a general introduction to Nuclear Physics and secondly its applications.* Includes chapters on practical examples and problems* Contains hints to solving problems which are included in the appendix* Avoids complex and extensive mathematical treatments* A modern approach to nuclear physics, covering the basic theory, but emphasising the many and important applicat

  5. THE PREVENTION PROGRAMS OF PHYSICAL REHABILITATION FOR CHERNOBYL DISASTER SURVIVORS

    OpenAIRE

    G.V. Korobeynikov; V.U. Drojjin

    2013-01-01

    The purpose of the study: approbation of the prevention program of physical rehabilitation for Chernobyl disaster survivors in lifestyle aspects. Sixty persons who were disaster survivors and workers of Chernobyl Nuclear Power Plant aged 32-60 have rehabilitation during 21 days. The complex of training prevention programs of physical and psycho-emotional rehabilitation methods was elaborated. The study of efficacy of training prevention programs among Chernobyl disaster survivors. The results...

  6. 14. International workshop on nuclear fission physics. Proceedings

    International Nuclear Information System (INIS)

    2000-01-01

    The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed [ru

  7. Nuclear physics group report

    International Nuclear Information System (INIS)

    1982-04-01

    A brief description is given of the operation and maintenance of the cyclotron. The computors and data collection system are also briefly described, as is the nuclear instrumentation at the cyclotron laboratory. A number of experiments in nuclear reactions and nuclear structure which are in progress or soon to be reported are presented. Projects in theoretical nuclear physics and radiation physics are also described. Lists of seminars, lectures, visitors, conferences and publications are given. (RF)

  8. Panorama of the nuclear physics

    International Nuclear Information System (INIS)

    Aragones, J.M.

    1981-01-01

    A summary of the topics covered by the nuclear physics, as disciplinary basis of the nuclear engineering, is presented, including from the fundamentals of modern physics used in nuclear physics, to the methods and more important applications, with the nucleus structure as central topic of the nuclear physics. In addition to a survey of the essential historical development in the different areas, this survey summarizes the basic concepts, postulates, laws and processes, which are the starting points, as in every scientific discipline for the understanding, interpretation and prediction of the variety of nuclear phenomena observed by methods increasingly improved and more complex, although such experimental methods are not discussed. (author) [es

  9. Theoretical nuclear physics

    CERN Document Server

    Blatt, John M

    1979-01-01

    A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to

  10. Training of personnel for nuclear power at Nuclear Physics Department of Faculty of Mathematics and Physics, Comenius University

    International Nuclear Information System (INIS)

    Povinec, P.; Florek, M.; Chudy, M.

    1983-01-01

    The Science Faculty of the Comenius University in Bratislava established the nuclear physics specialization in 1962. Students enrolled in the study course acquired basic knowledge in mathematics and physics, foundations of the microstructure of matter and experimental methods of nuclear physics and technics. Since 1976 nuclear physics has been a separate study field which from the fourth year of study has its narrow specializations, namely applied nuclear physics, experimental nuclear physics and physics of the atomic nucleus and elementary particles. A change has recently been made in the system of optional lectures with the aim of providing the students with a wider range of knowledge in the physics of nuclear reactors and the use of computer technology and microelectronics in nuclear physics and technology. In 1980 a postgraduate study course was opened oriented to nuclear power and the environment. (E.S.)

  11. Nuclear physics at the KAON factory

    International Nuclear Information System (INIS)

    Kitching, R.

    1989-05-01

    The author surveys the range of nuclear physics issues which can be addressed with a high intensity hadron facility such as the KAON factory. He discusses hadron spectroscopy, kaon scattering, hypernuclear physics, spin physics, and nuclear physics with neutrinos. Nuclear Physics is defined rather broadly, encompassing the study of strongly interacting systems, and including the structure of individual hadrons, hadron-hadron interactions, hadronic weak and electromagnetic currents (in nuclei too), conventional nuclear structure, and exotic nuclei. The basic theme is how the KAON Factory can shed light on non-perturbative QCD and its relation to conventional nuclear physics

  12. Some basic physics aspects of the Canadian nuclear power program

    International Nuclear Information System (INIS)

    Millar, C.H.

    1975-07-01

    The public is aware that nuclear reactors can be made to operate, so this paper treats reactor lattice and core physics as briefly as possible before proceeding to the physical principles of reactor control which currently seems of more public concern. First the role of delayed fission neutrons in slowing down the exponential divergence of a super-critical reactor is outlined. Next the physical basis of the various components of the power coefficient of reactivity is explained together with the methods of adjusting this coefficient toward the desired value. Finally, longer-term reactivity effects are discussed with emphasis on the several effects of Xe-135 'poison' on reactor design and operation. (author)

  13. PREFACE: XXXV Symposium on Nuclear Physics

    Science.gov (United States)

    Padilla-Rodal, E.; Bijker, R.

    2012-09-01

    Conference logo The XXXV Symposium on Nuclear Physics was held at Hotel Hacienda Cocoyoc, Morelos, Mexico from January 3-6 2012. Conceived in 1978 as a small meeting, over the years and thanks to the efforts of various organizing committees, the symposium has become a well known international conference on nuclear physics. To the best of our knowledge, the Mexican Symposium on Nuclear Physics represents the conference series with longest tradition in Latin America and one of the longest-running annual nuclear physics conferences in the world. The Symposium brings together leading scientists from all around the world, working in the fields of nuclear structure, nuclear reactions, physics with radioactive ion beams, hadronic physics, nuclear astrophysics, neutron physics and relativistic heavy-ion physics. Its main goal is to provide a relaxed environment where the exchange of ideas, discussion of new results and consolidation of scientific collaboration are encouraged. To celebrate the 35th edition of the symposium 53 colleagues attended from diverse countries including: Argentina, Australia, Canada, Japan, Saudi Arabia and USA. We were happy to have the active participation of Eli F Aguilera, Eduardo Andrade, Octavio Castaños, Alfonso Mondragón, Stuart Pittel and Andrés Sandoval who also participated in the first edition of the Symposium back in 1978. We were joined by old friends of Cocoyoc (Stuart Pittel, Osvaldo Civitarese, Piet Van Isacker, Jerry Draayer and Alfredo Galindo-Uribarri) as well as several first time visitors that we hope will come back to this scientific meeting in the forthcoming years. The scientific program consisted of 33 invited talks, proposed by the international advisory committee, which nicely covered the topics of the Symposium giving a balanced perspective between the experimental and the theoretical work that is currently underway in each line of research. Fifteen posters complemented the scientific sessions giving the opportunity

  14. Reactor physics teaching and research in the Swiss nuclear engineering master

    International Nuclear Information System (INIS)

    Chawla, R.

    2012-01-01

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  15. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1991-04-01

    The report summarizes the research and development activities of the Section for nuclear physics and energy physics at the University of Oslo in 1990. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. The experimental activities in nuclear physics have, as in the previous years, mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Using the CACTUS multidetector system, several experiments in collaboration with the nuclear physics group at the University of Bergen have been completed. Some results have been published and were also presented at the international conference in Oak Ridge, USA, while more data remains to be analyzed

  16. A comprehensive program of nuclear engineering and science education

    International Nuclear Information System (INIS)

    Bereznai, G.; Lewis, B.

    2014-01-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)

  17. Health physics training at V.C. Summer Nuclear Station

    International Nuclear Information System (INIS)

    Blue, L.A.; Bellmore, J.R.; Shultz, P.A.

    1981-01-01

    Health Physics training for radiation workers and Health Physics Specialists continues to receive full attention by regulatory agencies such as the NRC and ANI. Guidance for such training continues to develop in a direction which forces utilities to continuously increase the quality and quantity of their Health Physics Training Program. This occurs at a time when our rapidly growing industry is placing greatly increased demands on the available work force of highly trained nuclear workers

  18. Laboratory portrait: the Saclay nuclear physics division

    International Nuclear Information System (INIS)

    Alamanos, N.; Auger, F.

    2005-01-01

    The research activities of the nuclear physics division (SPHN) of DAPNIA (Cea) take place within strong national and international collaborations. Its programs cover a broad range of topics in nuclear physics from low to high energies, they include the structure and dynamics of the nucleus, the structure of the nucleon, the search for phase transitions in nuclear matter, and contribution to the development of nuclear energy. Concerning the structure of the nucleus, SPHN is involved in the study of the structure of light exotic nuclei such as He 6-8 , C 10-11 , Ne 27 and in the study of shape coexistence in Kr isotopes. The experiments are performed at GANIL. SPHN is also involved in the study of the structure of Md 251 through experiments made in Finland. Near-barrier and sub-barrier fusion of light unstable nuclei and their respective stable isotopes with U 238 targets are studied in Louvain-la-Neuve (Belgium). Concerning nuclear phase transitions, the purpose of our activities is twofold: the study of the liquid-gas phase transition in nuclei at relatively low incident energies and the search for the quark-gluon plasma (QGP) at very high energies. We look for QGP signatures in 2 experiments: Phenix with the accelerator RHIC at Bnl and Alice at the LHC (CERN). Concerning the structure of the nucleon, SPHN is involved in 2 experimental programs both using electromagnetic probes, one to obtain information on the spin carried by the gluons in the proton (Compass at CERN) and the other to extract information on generalized parton distributions by means of deeply virtual Compton scattering (Clas at Jlab). Concerning nuclear energy, the activities are focused along 3 main lines: spallation studies, neutron cross-section measurements and application oriented modeling. (A.C.)

  19. Atlas of atomic and nuclear physics

    International Nuclear Information System (INIS)

    Brocker, B.

    2002-01-01

    This book presents the main notions of nuclear physics in a very pedagogical way, many drawings and the use of colors make easier the understanding. The aim of this work is to give a general background in nuclear physics to all people interested in sciences. The text is divided into 14 themes: 1) first discoveries, 2) quantum physics, 3) the electronic cloud around atoms and molecules, 4) measurement methods, 5) nuclear physics, 6) nuclear models, 7) elementary particles, 8) interactions, 9) radiation detection, 10) radiation sources, 11) nuclear reactors, 12) atomic bombs, 13) radiation protection, 14) isotope table and physics constants. (A.C.)

  20. The program of group constants creation (SMOK) on basis libraries of evaluated nuclear data in ENDE/B format for physical module FORTUN-88

    International Nuclear Information System (INIS)

    Borisov, A.A.

    1991-01-01

    The SMOK program for creation of group microconstants in the FORTUN-88 physical module format providing for calculations of neutron transport by the Monte Carlo method is described. The program processes files of evaluated neutron nuclear data in the ENDF-4 format. The constant structure gives an apportunity to simulate the process of neutron collisions with matter in details. The program service capabilities provide for graphical constant comparison. 11 refs

  1. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1989-08-01

    This report discusses the following areas of investigation of the Stony Brook Nuclear Theory Group: the physics of hadrons; QCD and the nucleus; QCD at finite temperature and high density; nuclear astrophysics; nuclear structure and many-body theory; and heavy ion physics

  2. Nuclear physics with intermediate energy electrons

    International Nuclear Information System (INIS)

    Moniz, E.J.

    1988-01-01

    Nuclear physics is the study of strongly interacting matter and of the forces which govern its structure and dynamics. The goal of this paper is to give an understanding of nuclei as quantal many-body systems and of the nature of the strong force, ultimately in terms of the presumed underlying theory of quantum chromodynamics. The latter task will require a deeper understanding of hadron structure and of color confinement and, in turn, will provide the basis for exploring the structure of matter under extreme conditions, such as very high density or temperature. This program covers a very broad range of phenomena, theoretical concepts, and experimental tools and is reflected in the diverse degrees of freedom invoked in various contexts. This is indicated where degrees of freedom loosely identified with successively smaller distance scales are indicated. Very importantly, theoretical bridges have been built between the phenomenological descriptions associated with each set of degress of freedom. The mean field, determined self-consistently from the interactions of nucleons in quantum orbits, provides the basis for much of the authors microscopic understanding of nuclear structure and of our characterization of nuclear scattering processes. However, the authors are only beginning to address quantitatively the physics associated with short-range correlations, physics which takes us beyond the mean field description. The nuclear force has a very successful semi-phenomenological description in terms of hadronic degrees of freedom, both mesons and nucleon isobars. More problematic, of course, is our understanding of hadron structure and dynamics in terms of QCD

  3. Nuclear physics and High Energy Physics Institute: 1988 to 1989 progress report

    International Nuclear Information System (INIS)

    1990-01-01

    The 1988 to 1989 progress report of the Nuclear Physics and High Energy Physics National Institute (France) is presented. The main objectives of the Institute research programs are the identification of the fundamental components of matter, the study of the properties and interactions between quarks and leptons. The results and the experiments presented are: Z O event at LEP, hadron spectroscopy, CP violation, standard model, sixth quark, heavy ions at CERN, thermistocle experiment, high spin, exotic nuclei. The research and developments concerning instruments are also reported [fr

  4. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  5. Nuclear Technology Programs semiannual progress report, April-- September 1990

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  6. Section for nuclear physics and energy physics - Annual Report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1991. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  7. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1992. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  8. Development of Computer-Aided Learning Programs on Nuclear Nonproliferation and Control

    International Nuclear Information System (INIS)

    Kim, Hyun Chul

    2011-01-01

    The fulfillment of international norms for nuclear nonproliferation is indispensable to the promotion of nuclear energy. The education and training for personnel and mangers related to the nuclear material are one of crucial factors to avoid unintended non-compliance to international norms. Korea Institute of Nuclear Nonproliferation and Control (KINAC) has been providing education and training on nuclear control as its legal duty. One of the legally mandatory educations is 'nuclear control education' performed since 2006 for the observation of the international norms on nuclear nonproliferation and the spread of the nuclear control culture. The other is 'physical protection education' performed since 2010 for maintaining the national physical protection regime effectively and the spread of the nuclear security culture. The 2010 Nuclear Security Summit was held in Washington, DC to enhance international cooperation to prevent nuclear terrorism. During the Summit, the South Korea was chosen to host the second Nuclear Summit in 2012. South Korean President announced that South Korea would share its expertise and support the Summit's mission by setting up an international education and training center on nuclear security in 2014. KINAC is making a full effort to set up the center successfully. An important function of the center is education and training in the subjects of nuclear nonproliferation, nuclear safeguards, nuclear security, and nuclear export/import control. With increasing importance of education and training education on nuclear nonproliferation and control, KINAC has been developing computer-aided learning programs on nuclear nonproliferation and control to overcome the weaknesses in classroom educations. This paper shows two learning programs. One is an e-learning system on the nuclear nonproliferation and control and the other is a virtual reality program for training nuclear material accountancy inspection of light water reactor power plants

  9. Development of Computer-Aided Learning Programs on Nuclear Nonproliferation and Control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Chul [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2011-10-15

    The fulfillment of international norms for nuclear nonproliferation is indispensable to the promotion of nuclear energy. The education and training for personnel and mangers related to the nuclear material are one of crucial factors to avoid unintended non-compliance to international norms. Korea Institute of Nuclear Nonproliferation and Control (KINAC) has been providing education and training on nuclear control as its legal duty. One of the legally mandatory educations is 'nuclear control education' performed since 2006 for the observation of the international norms on nuclear nonproliferation and the spread of the nuclear control culture. The other is 'physical protection education' performed since 2010 for maintaining the national physical protection regime effectively and the spread of the nuclear security culture. The 2010 Nuclear Security Summit was held in Washington, DC to enhance international cooperation to prevent nuclear terrorism. During the Summit, the South Korea was chosen to host the second Nuclear Summit in 2012. South Korean President announced that South Korea would share its expertise and support the Summit's mission by setting up an international education and training center on nuclear security in 2014. KINAC is making a full effort to set up the center successfully. An important function of the center is education and training in the subjects of nuclear nonproliferation, nuclear safeguards, nuclear security, and nuclear export/import control. With increasing importance of education and training education on nuclear nonproliferation and control, KINAC has been developing computer-aided learning programs on nuclear nonproliferation and control to overcome the weaknesses in classroom educations. This paper shows two learning programs. One is an e-learning system on the nuclear nonproliferation and control and the other is a virtual reality program for training nuclear material accountancy inspection of light water

  10. Experimental techniques in nuclear and particle physics

    International Nuclear Information System (INIS)

    Tavernier, Stefaan

    2010-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and nuclear physics. For the physicists it is a good introduction to all experimental aspects of nuclear and particle physics. Nuclear engineers will appreciate the nuclear measurement techniques, while biomedical engineers can learn about measuring ionising radiation, the use of accelerators for radiotherapy. What's more, worked examples, end-of-chapter exercises, and appendices with key constants, properties and relationships supplement the textual material. (orig.)

  11. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  12. Transweb and trafficking in illicit nuclear materials: beyond the borders of physical security

    International Nuclear Information System (INIS)

    Ballard, J.D.; Dilger, F.

    2005-01-01

    Full text: Transweb is a developing threat assessment analytical protocol that uses real time GIS based assessments (a.k.a., GTA for GIS Threat Assessment) to better understand potential trafficking in illicit nuclear materials that may come from energy related sites and/or weapons production facilities. This is not a physical security protocol nor is this program a border check format like the DOE's Second Line of Defense which is designed to detect special nuclear fuels. Transweb is a tool that allows the user to look at surreptitious transportation pathways that may be used to move illicit nuclear materials after they have already breached traditional physical security barriers and allows for movement prediction and potential mitigation/intervention if they are not traveling on the highways or railways, traversing the waterways, or entering ports equipped with detecting equipment like that deployed in Second Line of Defense program. Transweb is for the real world, a world where physical security may be breached and the smugglers that capture these materials do not follow the most traveled highways, railways, or waterways in a given society. Transweb focuses on the less obvious transportation routes that may be the most likely ways that illicit nuclear materials will be transported. Thus this program offers an additional layer of security analysis not currently in use as physical protection or as border mitigation. (author)

  13. Proceedings of the 9. Workshop on Nuclear Physics - Communications of applied nuclear physics and instrumentation

    International Nuclear Information System (INIS)

    1986-01-01

    The communications of applied nuclear physics and intrumentation of 9. Workshop on Nuclear Physics in Brazil are presented. Several intruments for radiation measurements, such as detectors, dosemeters and spectrometers were developed. Techniques of environmental monitoring and instrument monitoring for nuclear medicine are evaluated. (M.C.K.) [pt

  14. Physical protection of nuclear material

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: An Advisory Group met to consider the up-dating and extension of the Recommendations for the Physical Protection of Nuclear Material, produced in 1972. Twenty-seven experts from 11 countries and EURATOM were present. Growing concern has been expressed in many countries that nuclear material may one day be used for acts of sabotage or terrorism. Serious attention is therefore being given to the need for States to develop national systems for the physical protection of nuclear materials during use, storage and transport throughout the nuclear fuel cycle which should minimize risks of sabotage or theft. The revised Recommendations formulated by the Advisory Group include new definitions of the objectives of national systems of physical protection and proposals for minimizing possibilities of unauthorized removal and sabotage to nuclear facilities. The Recommendations also describe administrative or organizational steps to be taken for this purpose and the essential technical requirements of physical protection for various types and locations of nuclear material, e.g., the setting up of protected areas, the use of physical barriers and alarms, the need for security survey, and the need of advance arrangements between the States concerned in case of international transportation, among others. (author)

  15. An overview of nuclear physics research

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2010-01-01

    This overview is aimed to give a general picture of the global developments in nuclear physics research over the years since the beginning. It is based on the inaugural talk given at the 54th annual nuclear physics symposium organized by the Department of Atomic Energy, which was held as an International Symposium at BARC, Mumbai during Dec 8-12, 2009. The topics of nuclear fission, nuclear shell effects, super-heavy nuclei, and expanding frontiers of nuclear physics research with the medium to ultra-relativistic energy heavy-ion reactions are in particular highlighted. Accelerator driven sub-critical reactor system (ADS) is briefly described in the end as an example of spin-off of nuclear physics research. (author)

  16. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  17. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-08-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  18. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [es

  19. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  20. Status report of the US Department of Energy's International Nuclear Safety Program

    International Nuclear Information System (INIS)

    1994-12-01

    The US Department of Energy (DOE) implements the US Government's International Nuclear Safety Program to improve the level of safety at Soviet-designed nuclear power plants in Central and Eastern Europe, Russia, and Unkraine. The program is conducted consistent with guidance and policies established by the US Department of State (DOS) and the Agency for International Development and in close collaboration with the Nuclear Regulatory Commission. Some of the program elements were initiated in 1990 under a bilateral agreement with the former Soviet Union; however, most activities began after the Lisbon Nuclear Safety Initiative was announced by the DOS in 1992. Within DOE, the program is managed by the International Division of the Office of Nuclear Energy. The overall objective of the International Nuclear Safety Program is to make comprehensive improvements in the physical conditions of the power plants, plant operations, infrastructures, and safety cultures of countries operating Soviet-designed reactors. This status report summarizes the Internatioal Nuclear Safety Program's activities that have been completed as of September 1994 and discusses those activities currently in progress

  1. Physical Protection of Nuclear Safeguards Technology

    International Nuclear Information System (INIS)

    Hoskins, Richard

    2004-01-01

    IAEA's Nuclear Security Plan is established to assist Member States in implementing effective measures against nuclear terrorism. Four potential threats were identified: theft of nuclear weapon, nuclear explosive device, radiological dispersal device and an attack on radiation facility. In order to achieve effective protection of nuclear materials and facilities, the IAEA sponsored the Convention of the Physical Protection of Nuclear Materials which focuses on the protection of nuclear materials 'in international transport. The IAEA also promoted INFCIRC/255 entitled the Physical Protection of Nuclear Materials and Nuclear Facilities and published TECDOC/967 for the protection of nuclear materials and facilities against theft and sabotage and during transport. Assistance is available for the Member States through the International Physical Protection Advisory Service (IPPAS) and the International Nuclear Security Advisory Service (INSServ). (author)

  2. Nuclear Physics Laboratory. Annual report no.21

    International Nuclear Information System (INIS)

    1986-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  3. Nuclear Physics Laboratory. Annual report no.22

    International Nuclear Information System (INIS)

    1987-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  4. Current puzzles in nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    A meeting on ''Current puzzles in nuclear physics'' was held at Research Center for Nuclear Physics, Osaka University, on June 27 - 28, 1984. The meeting put emphasis on several puzzles which have not been solved for a long time in nuclear physics, and also on the puzzles. This collective report is composed of following eleven papers presented at the meeting. Almost all the papers are witten in English : (1) M1, GT excitations and configuration mixing (in Japanese). (2) Hadronic excitation of pionic states. (3) Microscopic analyses of 28 Si(α,α') 28 Si scattering and single particle strength in A = 29 nuclei. (4) Few-body physics and its incentives to nuclear physics. (5) Is it necessary to introduce three body interactions ? (in Japanese). (6) Puzzles in the neutron-deuteron elastic scattering. (7) Puzzles in NN, NΔ, πN and Nanti N interactions. (8) Problems in Hadron-Nucleus interaction. (9) Unified approach to the meson- and quark- theory of nuclear forces and currents. (10) Pion photoproduction in two Chiral bag models. (11) The dynamic bag model : The electromagnetic properties of nucleon. (Aoki, K.)

  5. University of Colorado at Boulder Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1991-01-01

    This report summarizes experimental work carried out between October 1, 1990, the closing of our Progress Report, and August 14, 1991 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contract DE-FG02-ER40269 with the United States Department of Energy. This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion-nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p') reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse queching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  6. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  7. Progress report of Applications of Nuclear Physics. July 1993 - June 1994

    International Nuclear Information System (INIS)

    2004-01-01

    The objectives of the Applications of Nuclear Physics Program Area are: The development and promotion of research programs on national nuclear science facilities such as charged particle accelerators and neutron beam instruments thereby encouraging strategic research in nuclear science and technology at ANSTO, in tertiary institutions and industrial research and development laboratories; Participation in and management ofA ustralian use of international neutron scattering, synchrotron radiation and high energy physics facilities to assist graduate training in the universities and to foster Australian benefits from developments in high technology; The maintenance of expertise in fundamental nuclear and atomic processes relevant to nuclear science and technology including neutron physics, ion interactions, radiation standards, dosimetry and laser enrichment; Expansion of the use of the accelerator mass spectrometry service both nationally and internationally to make major contributions in the understanding and remediation of severe environmental problems such as the greenhouse effect; The application of charged particle beams and ionizing radiation to industrial, biological and environmental problems; The exploitation of neutron scattering techniques in the development of new materials, drugs, biological substances and complex chemicals. The Program Area is continuing the development of several major new facilities. These include new beam lines and a new ion source on the Tandem accelerator (ANTARES), preliminary calibration of the small angle neutron scattering instrument (AUSANS) on the HIFAR reactor, refurbishment of one of the single crystal spectrometers on HIFAR (2TANA) and further development of the Australian National Beam line Facility at the Photon Factory at Tsukuba in Japan. In addition, significant improvements were made to the two neutron powder diffractometers on HIFAR (autor)

  8. Progress report of Applications of Nuclear Physics. July 1993 - June 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The objectives of the Applications of Nuclear Physics Program Area are: The development and promotion of research programs on national nuclear science facilities such as charged particle accelerators and neutron beam instruments thereby encouraging strategic research in nuclear science and technology at ANSTO, in tertiary institutions and industrial research and development laboratories; Participation in and management ofA ustralian use of international neutron scattering, synchrotron radiation and high energy physics facilities to assist graduate training in the universities and to foster Australian benefits from developments in high technology; The maintenance of expertise in fundamental nuclear and atomic processes relevant to nuclear science and technology including neutron physics, ion interactions, radiation standards, dosimetry and laser enrichment; Expansion of the use of the accelerator mass spectrometry service both nationally and internationally to make major contributions in the understanding and remediation of severe environmental problems such as the greenhouse effect; The application of charged particle beams and ionizing radiation to industrial, biological and environmental problems; The exploitation of neutron scattering techniques in the development of new materials, drugs, biological substances and complex chemicals. The Program Area is continuing the development of several major new facilities. These include new beam lines and a new ion source on the Tandem accelerator (ANTARES), preliminary calibration of the small angle neutron scattering instrument (AUSANS) on the HIFAR reactor, refurbishment of one of the single crystal spectrometers on HIFAR (2TANA) and further development of the Australian National Beam line Facility at the Photon Factory at Tsukuba in Japan. In addition, significant improvements were made to the two neutron powder diffractometers on HIFAR (autor)

  9. France: New horizons for nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The increasing realization that the underlying mechanisms of nuclear physics are controlled by the inner quark structure of nucleons rather than the nucleons themselves is blurring the once fairly distinct frontier between nuclear and particle physics. Thus nuclear physicists are awaiting new high energy machines, notably CEBAF, the US Continuous Electron Beam Accelerator Facility now under construction in Newport News, Virginia, while particle physics facilities such as the LEAR low energy antiproton ring and the high energy muon beams at CERN are gaining popularity with the nuclear physics community

  10. Nuclear physics in the UK

    International Nuclear Information System (INIS)

    1994-12-01

    Nuclear physics is the study of the heavy but tiny nucleus that lies at the centre of all atoms and makes up 99.9 per cent by weight of everything we see. There are many applications of nuclear physics including direct contributions to medicine and industry, such as the use of radioactive isotopes as diagnostic tracers, or of beams of nuclei for tailoring the properties of semiconductors. More indirectly, ideas and concepts of nuclear physics have influence in many corners of modern science and technology. Physicists in the UK have a long tradition in nuclear physics, and have developed a world-wide reputation for the excellence of their work. This booklet explains more about this rich field of study, its applications, its role in training, and its future directions. (author)

  11. PREFACE: XXXVII Brazilian Meeting on Nuclear Physics

    Science.gov (United States)

    2015-07-01

    The XXXVII Brazilian Meeting on Nuclear Physics (or XXXVII RTFNB 2014) gave continuity to a long sequence of workshops held in Brazil, devoted to the study of the different aspects of nuclear physics. The meeting took place in the Maresias Beach Hotel, in the town of Maresias (state of São Paulo) from 8th to 12th September 2014. Offering gentle weather, a charming piece of green land of splendid natural beauty with beach and all amenities, the place had all the conditions for very pleasant and fruitful discussions. The meeting involved 162 participants and attracted undergraduate and graduate students, Brazilian and South American physicists and invited speakers from overseas (USA, Italy, Spain, France, England, Switzerland, Germany and South Corea). In the program we had plenary morning sessions with review talks on recent developments in theory, computational techniques, experimentation and applications of the many aspects of nuclear physics. In the parallel sessions we had a total of 58 seminars. This volume contains 60 written contributions based on these talks and on the poster sessions. Evening talks and poster sessions gave still more insight and enlarged the scope of the scientific program. The contributed papers, representing mainly the scientific activity of young physicists, were exhibited as posters and are included in the present volume. Additional information about the meeting can be found at our website: http://www.sbfisica.org.br/~rtfnb/xxxvii-en Support and sponsorship came from brazilian national agencies: Conselho Nacional de Desenvolvimento Científico e Tecnoógico (CNPq); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Fundação de Amparo á Pesquisa do Estado de São Paulo (FAPESP); Fundação de Amparo á Pesquisa do Estado do Rio de Janeiro (FAPERJ); Sociedade Brasileira de Física (SBF) and Instituto de Física da Universidade de São Paulo (IFUSP). We honored Professor Alejandro Szanto de Toledo, who completed

  12. Experimental techniques in nuclear and particle physics

    CERN Document Server

    Tavernier, Stefaan

    2009-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and...

  13. 3. Mexican school of nuclear physics

    International Nuclear Information System (INIS)

    Chavez L, E.R.; Hess, P.O.; Martinez Q, E.

    2002-01-01

    The III Mexican School of Nuclear Physics which is directed to those post graduate in Sciences and those of last semesters students of the Physics career or some adjacent career was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at November 18-29, 2002 in the installations of the Institute of Physics and the Institute of Nuclear Sciences both in the UNAM, and the National Institute of Nuclear Research (ININ). In this as well as the last version its were offered 17 courses, 9 of them including laboratory practices and the rest were of theoretical character only. This book treats about the following themes: Nuclear physics, Electrostatic accelerators, Cyclotrons, Thermonuclear reactions, Surface barrier detectors, Radiation detection, Neutron detection, Bonner sphere spectrometers, Radiation protection, Biological radiation effects, Particle kinematics, Nucleosynthesis, Plastics, Muons, Quadrupoles, Harmonic oscillators, Quantum mechanics among many other matters. (Author)

  14. Nuclear physics in astrophysics. Part 2. Abstracts

    International Nuclear Information System (INIS)

    Gyuerky, Gy.; Fueloep, Zs.

    2005-01-01

    The proceedings of the 20. International Nuclear Physics Divisional Conference of the European Physical Society covers a wide range of topics in nuclear astrophysics. The topics addressed are big bang nucleosynthesis, stellar nucleosynthesis, measurements and nuclear data for astrophysics, nuclear structure far from stability, neutrino physics, and rare-ion-beam facilities and experiments. The perspectives of nuclear physics and astrophysics are also overviewed. 77 items are indexed separately for the INIS database. (K.A.)

  15. 36th Brazilian Workshop on Nuclear Physics

    CERN Document Server

    Brandão de Oliveira, José Roberto; Barbosa Shorto, Julian Marco; Higa, Renato

    2014-01-01

    The Brazilian Workshop on Nuclear Physics (RTFNB, acronym in Portuguese) is organized annually by the Brazilian Physics Society since 1978, in order to: promote Nuclear Physics research in the country; stimulate and reinforce collaborations among nuclear physicists from around the country; disseminate advances in nuclear physics research and its applications; disseminate, disclose and evaluate the scientific production in this field.

  16. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1978-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  17. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1979-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  18. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1980-01-01

    The report summarizes the main activities of the linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission 2. Photonuclear reactions 3. Nuclear spectroscopy and positron annihilation 4. Dosimetry 5. Theoretical studies. (MDC)

  19. Experimental nuclear physics in Vietnam - recent status

    International Nuclear Information System (INIS)

    Tran Thanh Minh

    1995-01-01

    Status of research works on experimental nuclear physics in Vietnam is reviewed. Vietnam institutions and main instruments for nuclear research are listed. The results on physics and technology of nuclear reactor, neutron physics, nuclear reactions, radiological safety are mentioned. (N.H.A). 6 tabs, 4 figs

  20. Nuclear Power Infrastructure Development Program: Korean Education Program

    International Nuclear Information System (INIS)

    Choi, Sung Yeol; Hwang, Il Soon; Kim, Si Hwan

    2009-01-01

    Many countries have decided nuclear power for next energy resources as one of the long-term energy supply options. IAEA projected nuclear power expansion up to 2030 reaching between 447 GWe and 691 GWe compared to 370 GWe and 2660 TWh at the end of 2006. Both low and high projection is accompanied with new nuclear power plant constructions respectively 178 and 357, about 11 units per year, and most new construction is in North America, the Far East, Eastern Europe, the Middle East, and Southeast Asia. During the last forty years, thirty three countries have established commercial nuclear power programs but only some of them have developed comprehensive and large scale peaceful nuclear power infrastructure. Although various cooperation and guidance program of nuclear power infrastructure, developing appropriate environment and infrastructure of nuclear power plant is still challenging problems for developing countries launching nuclear power program. With increasing the demand of safety and safeguard from international society, creating appropriate infrastructure becomes essential requirements in national nuclear power program. In the viewpoint of developing countries, without sufficient explanation and proper guidance, infrastructure could be seen only as another barrier in its nuclear power program. The importance of infrastructure development would be obscured by ostensible business and infrastructure program can result in increasing entering barriers to peaceful nuclear power application field without benefits to developing countries and international community. To avoid this situation by providing enough explanation and realistic case example and cooperate with the countries wanting to establish comprehensive nuclear power infrastructure in the peaceful applications, we are creating the education program of infrastructure development with basic guidelines of the IAEA infrastructure series and Korean experiences from least developed country to advanced country

  1. CANDU, an analysis of the Canadian nuclear program. Part I. Technical handbook

    Energy Technology Data Exchange (ETDEWEB)

    Watters, M

    1975-12-01

    An excellent compilation is given of facts not easily found on the Canadian nuclear program. Some background physics and radiation biology are explained. The implications of using uranium, plutonium, and thorium as nuclear fuels are discussed. Heavy water production is briefly discussed, as is management of nuclear wastes. Overall, great emphasis is placed on explicating environmental effects and possible hazards of nuclear power.

  2. Nuclear physics: the core of matter, the fuel of stars

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1999-01-01

    quantitatively the properties of nuclei, which are at the centers of all atoms in our world, in terms of models derived from the properties of the strong interaction. These properties include the nuclear processes that fuel the stars and produce the chemical elements. A third active frontier addresses fundamental symmetries of nature that manifest themselves in the nuclear processes in the cosmos, such as the behavior of neutrinos from the Sun and cosmic rays, and in low-energy laboratory tests of these symmetries. With recent developments on the rapidly changing frontiers of nuclear physics the Committee on Nuclear Physics is greatly optimistic about the next ten years. Important steps have been taken in a program to understand the structure of matter in terms of quarks and gluons

  3. 4. Mexican School of Nuclear Physics

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Hernandez, E.; Hirsch, J.G. -mail: svp@nuclear.inin.mx

    2005-01-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, taken place from June 27 to July 8, 2005 in the Institute of Nuclear Sciences and the Institute of Physics of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided to the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the subject to whom we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University of Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to those 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Institute of Nuclear Sciences, UNAM, Institute of Physics, UNAM, Coordination of the Scientific Research, UNAM, National Institute of Nuclear Research, Nuclear

  4. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  5. Nuclear technology programs. Semiannual progress report, April--September 1991

    International Nuclear Information System (INIS)

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  6. New perspectives from nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-11-15

    Connections between nuclear physics and neighbouring disciplines of elementary particle physics, astrophysics and cosmology were emphasized at the International Symposium on Weak and Electromagnetic Interactions in Nuclei held in Heidelberg this summer in conjunction with the 600th anniversary of the University of Heidelberg. The meeting reflected the new trend in nuclear physics towards fundamental physics questions. Important subjects included the roles of the neutrino and of proton decay and their deep implications.

  7. New perspectives from nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Connections between nuclear physics and neighbouring disciplines of elementary particle physics, astrophysics and cosmology were emphasized at the International Symposium on Weak and Electromagnetic Interactions in Nuclei held in Heidelberg this summer in conjunction with the 600th anniversary of the University of Heidelberg. The meeting reflected the new trend in nuclear physics towards fundamental physics questions. Important subjects included the roles of the neutrino and of proton decay and their deep implications

  8. Alternative Nuclear Program

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1982-01-01

    An analysis of the development of nuclear energy in Brazil is made since its beginning, showing the fundamental policy changes introduced in the end of the 60's with the purchase of the Angra dos Reis I reactor. This decision discouraged the existing efforts of an autonomous development in nuclear energy. The reaction to this policy led to the Nuclear Deal with Germany, which although incorporating some positive aspects is not capable to lead to nuclear independence. The presently existing options are discussed, as well as the transformation of the Nuclear Program in a R and D Program based only in the reactors I, II and III, located in Angra dos Reis. (Author) [pt

  9. Theoretical nuclear and subnuclear physics

    CERN Document Server

    Walecka, John Dirk

    1995-01-01

    This comprehensive text expertly details the numerous theoretical techniques central to the discipline of nuclear physics. It is based on lecture notes from a three-lecture series given at CEBAF (the Continuous Electron Beam Accelerator Facility), where John Dirk Walecka at the time was Scientific Director: "Graduate Quantum Mechanics", "Advanced Quantum Mechanics and Field Theory" and "Special Topics in Nuclear Physics". The primary goal of this text is pedagogical; providing a clear, logical, in-depth, and unifying treatment of many diverse aspects of modern nuclear theory ranging from the non-relativistic many-body problem to the standard model of the strong, electromagnetic, and weak interactions. Four key topics are emphasised in this text: basic nuclear structure, the relativistic nuclear many-body problem, strong-coupling QCD, and electroweak interactions with nuclei. The text is designed to provide graduate students with a basic level of understanding of modern nuclear physics so that they in turn can...

  10. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1990-06-01

    We shall organize the description of our many activities under following broad headings: Strong Interaction Physics: the physics of hadrons; QCD and the nucleus; and QCD at finite temperature and high density. Relativistic Heavy Ion Physics. Nuclear Structure and Many-body Theory. Nuclear Astrophysics. While these are the main areas of activity of the Stony Brood group, they do not cover all activities

  11. Nuclear Physics Division Biennial Report 1995-1996

    International Nuclear Information System (INIS)

    Kumar, K.; Nayak, B.K.; Jain, B.K.

    1997-01-01

    The report gives an overview of the scientific and technical activities of the Nuclear Physics Division (NPD) during the last two years. The physics report includes detailed experimental explorations carried out using heavy ion beams at the BARC-TIFR Pelletron facility located at Tata Institute of Fundamental Research (TIFR) and operated by NPD staff. The report also includes the experimental collaborations carried out at advanced accelerator facilities, like RHIC, COSY, etc., abroad for the quark gluon plasma studies and the η meson production in the intermediate energy nuclear reactions. The theoretical research reported includes that relevant to various experimental programs mentioned above and in general, the nuclear physics in non- and sub-nucleonic domains. In the field of accelerator development the division has the ongoing projects of the design, development, fabrication and installation of the 7 MV Folded Tandem Ion Accelerator (FOTIA) and Superconducting Linac Booster for the Pelletron Accelerator. The first stage of the linac project has been completed. It has successfully demonstrated the functioning of the indigenously developed resonator modules. On FOTIA project the installation has begun. The injector part for putting the beam in the vertical column is working. The Pelletron Accelerator, the main work horse for experimentalists, provided an excellent service to the users. A report on its running and maintenance is included. (author)

  12. NP2010: An Assessment and Outlook for Nuclear Physics

    International Nuclear Information System (INIS)

    Lancaster, James

    2014-01-01

    This grant provided partial support for the National Research Council's (NRC) decadal survey of nuclear physics. This is part of NRC@s larger effort to assess and discuss the outlook for different fields in physics and astronomy, Physics 2010, which takes place approximately every ten years. A report has been prepared as a result of the study that is intended to inform those who are interested about the current status of research in this area and to help guide future developments of the field. A pdf version of the report is available for download, for free, at http://www.nap.edu/catalog.php?record_id=13438. Among the principal conclusions reached in the report are that the nuclear physics program in the United States has been especially well managed, principally through a recurring long-range planning process conducted by the community, and that current opportunities developed pursuant to that planning process should be exploited. In the section entitled @Building the Foundation for the Future,@ the report notes that attention needs to be paid to certain elements that are essential to the continued vitality of the field. These include ensuring that education and research at universities remain a focus for funding and that a plan be developed to ensure that forefront-computing resources, including exascale capabilities when developed, be made available to nuclear science researchers. The report also notes that nimbleness is essential for the United States to remain competitive in a rapidly expanding international nuclear physics arena and that streamlined and flexible procedures should be developed for initiating and managing smaller-scale nuclear science projects.

  13. Second Mexican School of Nuclear Physics: Notes

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Chavez L, E.R.; Hess, P.O.

    2001-01-01

    The II Mexican School of Nuclear Physics which is directed to those last semesters students of the Physics career or post-graduate was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at April 16-27, 2001 in the installations of the Institute of Physics and the Institute of Nuclear Sciences, both in the UNAM, and the National Institute of Nuclear Research (ININ). A first school of a similar level in Nuclear Physics, was carried out in Mexico at 1977 as Latin american School of Physics. This book treats about the following themes: Interactions of radiation with matter, Evaluation of uncertainty in experimental data, Particle accelerators, Notions of radiological protection and dosimetry, Cosmic rays, Basis radiation (environmental), Measurement of excitation functions with thick targets and inverse kinematics, Gamma ray technique for to measure the nuclear fusion, Neutron detection with Bonner spectrometer, Energy losses of alpha particles in nickel. It was held the practice Radiation detectors. (Author)

  14. Vinca nuclear decommissioning program

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Sotic, O.; Plecas, I.; Ljubenov, V.; Peric, A.

    2002-01-01

    In this paper a preliminary program for the nuclear decommissioning in The Vinca Institute of Nuclear Sciences is presented. Proposed Projects and Activities, planned to be done in the next 10 years within the frames of the Program, should improve nuclear and radiation safety and should solve the main problems that have arisen in the previous period. Project of removal of irradiated spent nuclear fuel from the RA reactor, as a first step in all possible decommissioning strategies and the main activity in the first two-three years of the Program realization, is considered in more details. (author)

  15. Physical Protection Study of the Radio metallurgy Installation Using SAVIComputer Program

    International Nuclear Information System (INIS)

    Pinitoyo, Andreas

    2000-01-01

    Based on IAEA Recommendation on INFCIR/225/Rev.3 (The Physical Protectionof Nuclear Material), a nuclear installation shall have physical protectionsystem for protection or being secure on sabotage activities in theinstallation and thieve of nuclear materials. The recommendation states therequirements for physical protection of nuclear materials usage, transit andstorage. Radio metallurgy Installation of the Fuel Element and ReprocessingDevelopment Center (BATAN) at Serpong is a nuclear installation for researchon post irradiation of high radioactive spent fuel element, its processingand storage. The installation has risk on threat of a sabotage, which isdominant than thieve. The RMI building was designed and constructed ofphysical protection components and have been integrated with the BATAN Safetyand Security System and the Security Guards functions to be PhysicalProtection System for the RMI. By using the SAVI Computer Program with inputdata from the existing standards, assumptions for detection possibility,delay and response, that will result the probability of interruptions of theworst adversary paths PI = 0.1. These mean that the physical protectionsystems of the RMI shall be upgraded and improved in order to be reliable orbetter if the most of paths to the target PI = 1.0. (author)

  16. THE PREVENTION PROGRAMS OF PHYSICAL REHABILITATION FOR CHERNOBYL DISASTER SURVIVORS

    Directory of Open Access Journals (Sweden)

    G.V. Korobeynikov

    2013-02-01

    Full Text Available The purpose of the study: approbation of the prevention program of physical rehabilitation for Chernobyl disaster survivors in lifestyle aspects. Sixty persons who were disaster survivors and workers of Chernobyl Nuclear Power Plant aged 32-60 have rehabilitation during 21 days. The complex of training prevention programs of physical and psycho-emotional rehabilitation methods was elaborated. The study of efficacy of training prevention programs among Chernobyl disaster survivors. The results showed the improvement of psycho-emotional status and normalization of cardiovascular vegetative regulation after training prevention programs in Chernobyl disasters survivors. The studies show that the preventive programs for Chernobyl disaster survivors in lifestyle aspects had the high effect. This displays the decrease of tempo of aging and the improving of physical and psychological health status of Chernobyl disaster survivors during preventive course.

  17. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1993-01-01

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm 3 . Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important is reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA

  18. Vol. 2: Nuclear Physics

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to nuclear physics

  19. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Trainor, T.A.; Weitkamp, W.G.

    1985-04-01

    Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14 N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0 + - 0 - isoscalar parity mixing in 14 N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project

  20. Nuclear physics

    International Nuclear Information System (INIS)

    Dacre, J.

    1990-01-01

    This book fills a gap in current literature by covering the increasing nuclear physics content of various A-level syllabuses. In section 1 we outline the background and early development of the subject, in section 2 we deal with nuclear properties and theories at a level suitable for the pre-university student. The majority of topics have been treated with the limited use of mathematics, this necessitating some simplification which we hope to have accomplished without undue error. A few topics have been developed mathematically, to some extent, e.g. series decay. While it is the purpose of a book at this level to introduce the reader to the facts and theories of nuclear physics, we have to recognise that any teacher of science, at any level, must attempt to instill in the young scientist a sense of responsibility and an understanding of the problems attendant on the technological applications are important. These problems have been touched on in the text but we hope the student will be persuaded to read further; for this purpose we have added a short list of suggested additional reading. A selection of A-level past paper questions has been included. (author)

  1. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  2. WORKSHOP: Nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Sheepard, Jim; Van Dyck, Olin

    1985-06-15

    A workshop 'Dirac Approaches t o Nuclear Physics' was held at Los Alamos from 31 January to 2 February, the first meeting ever on relativistic models of nuclear phenomena. The objective was to cover historical background as well as the most recent developments in the field, and communication between theorists and experimentalists was given a high priority.

  3. Radiochemistry course in the undergraduate nuclear science program at Universiti Kebangsaan Malaysia

    International Nuclear Information System (INIS)

    Sarmani, S.B.; Yahaya, R.B.; Yasir, M.S.; Majid, A.Ab.; Khoo, K.S.; Rahman, I.A.; Mohamed, F.

    2015-01-01

    Universiti Kebangsaan Malaysia offered an undergraduate degree program in Nuclear Science since 1980 and the programme has undergone several modifications due to changes in national policy and priority. The programme covers nuclear sub-disciplines such as nuclear physics, radiobiology, radiochemistry, radiation chemistry and radiation safety. The radiochemistry component consists of radiochemistry, chemistry in nuclear industry, radiochemical analysis laboratory, radiopharmaceutical chemistry subjects and mini research project in radiochemistry. (author)

  4. Peculiarities of physical protection assurance of the nuclear materials at nuclear installation decommissioning stage

    International Nuclear Information System (INIS)

    Pinchuk, M.G.

    2001-01-01

    objective is timely prevention, detection of and response to the attempts to use accounted nuclear material for illicit trafficking. In addition to traditional measures, a centralized automated system to detect unauthorized intrusion, to register and suppress the penetration attempts and to organize controlled access to nuclear installation Chernobyl NPP and its internal areas is being established. This system covers three levels of hierarchical physical protection system of all facilities of Chernobyl NPP. The distinguishing features of this system are: high level of stability and reliability, automatic self-diagnostic functions, detection of performance intrusion and restoration of the normal operability. This system has a number of local physical protection subsystems which are the key data base users and are capable to operate off-line in case of the short-time loss of connection with the top level. The access means will include full-height turnstiles and tripods. In the areas of particular importance video identification is envisaged. Passive remote inductive cards encoded on-site will be used as passes. In addition, the issue of control, accountancy and physical protection to be exercised throughout the whole process of fuel discharge, cooling and transportation to KHOYAT -2 (interim storage facility), which will house nuclear material of the total activity more than 1.2 million Ci and about 4.00 tonnes Pu-239, is under review. It is envisaged to create complex to support nuclear material management processes. A provisional engineering solution provides for visual control and video recording, automated record of processes, casks' integrity control, communication means, blocking of the further operations when the precedent operations are inconsistent with QA program requirements, routing control and response forces notification. It shall be emphasized that so far we do not know for sure the amount of nuclear and radioactive materials inside the Shelter Object which is

  5. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    Bethge, K.; Baumann, H.; Jex, H.; Rauch, F.

    1980-01-01

    Proceedings of the seventh divisional conference of the Nuclear Physics Division held at Darmstadt, Germany, from 23rd through 26th of September, 1980. The scope of this conference was defined as follows: i) to inform solid state physicists and materials scientists about the application of nuclear physics methods; ii) to show to nuclear physicists open questions and problems in solid state physics and materials science to which their methods can be applied. According to the intentions of the conference, the various nuclear physics methods utilized in solid state physics and materials science and especially new developments were reviewed by invited speakers. Detailed aspects of the methods and typical examples extending over a wide range of applications were presented as contributions in poster sessions. The Proceedings contain all the invited papers and about 90% of the contributed papers. (orig./RW)

  6. Job analysis of nuclear power reactor health physics technicians

    International Nuclear Information System (INIS)

    Davis, L.T.; Mazour, T.J.; Clark, P.V.; Todd, R.C.; Marotta, F.J.

    1984-06-01

    This report describes a project, an industry-wide Job Analysis of Nuclear Power Reactor Health Physics Technicians (HPTs), conducted by Brookhaven National Laboratory and Analysis and Technology, Inc. to provide the industry with job-performance data that can be used in systematically defining training programs in terms of required job functions responsibilities, and performance standards. The job-analysis methodology is consistent with that used by the Institute of Nuclear Power Operations (INPO) in similar industry-wide projects and includes administration of over 850 job task questionnaires to utility and contractor Health Physics Technicians throughout the country. Data collected includes task performance (difficulty, importance, and frequency) and industry-wide demographics (job levels, experience, education, and training). The results of this project discussed herein include model job descriptions for HPT positions, summaries of HPT experience, education, and training, industry-wide task listings with task-performance characteristics, and recommendations of selected tasks as a basis for HPT training development. Finally, potential future applications of the data base by utility and contractor organizations in training program development and evaluation and personnel qualifications are discussed

  7. Basic physics program for a low energy antiproton source in North America

    International Nuclear Information System (INIS)

    Bonner, B.E.; Nieto, M.M.

    1987-01-01

    We summarize much of the important science that could be learned at a North American low energy antiproton source. It is striking that there is such a diverse and multidisciplinary program that would be amenable to exploration. Spanning the range from high energy particle physics to nuclear physics, atomic physics, and condensed matter physics, the program promises to offer many new insights into these disparate branches of science. It is abundantly clear that the scientific case for rapidly proceeding towards such a capability in North America is both alluring and strong. 38 refs., 2 tabs

  8. Experimental nuclear physics in Vietnam - recent status

    International Nuclear Information System (INIS)

    Tran Thanh Minh

    1995-01-01

    It is really difficult to determine the exact date for the starting of nuclear physics research in Vietnam. Serious research on experimental nuclear physics began only since 1972 with the installation of such nuclear instrument like microtron accelerator, neutron generator, etc. During the past 20 years, hundred of research works have been published in local and foreign scientific journals. In the 5th national conference in Physics held in Hanoi in October 1993, at the Nuclear Physics section, 62 reports were presented reflecting the situation of nuclear physics research in the recent years, especially in the past five years. This review introduces its main results and formulates some perspectives of development in the late nineties in Vietnam. (K.A.). 27 refs., 4 figs., 6 tabs

  9. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1984-06-01

    The 1983 progress report of the Nuclear Physics Division, UKAEA Harwell, is divided into four main topics. These are a) nuclear data and technology for nuclear power; b) nuclear studies; c) applications of nuclear and associated techniques, including ion beam techniques and moessbauer spectroscopy; and d) accelerator operation, maintenance and development. (U.K.)

  10. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  11. Implementation of the G8GP program on physical protection - experiences and results

    International Nuclear Information System (INIS)

    Hagemann, A.

    2006-01-01

    At the Kananaskis Summit in June 2002, G8 Leaders launched the Global Partnership against the Spread of Weapons and Materials of Mass Destruction committing to support projects to issues of non-proliferation, disarmament, counter terrorism and nuclear safety in Russia. Since then progress has been made in implementing projects. The German Federal Foreign Office contracted GRS to implement a program for improving the physical protection of nuclear or highly radioactive materials of relevance at facilities in the Russian Federation. This paper reports about this G8GP Program on physical protection, its implementation, gained experiences, current achievements and results. (author)

  12. Nuclear physics

    International Nuclear Information System (INIS)

    1990-01-01

    This work describes the actual situation of nuclear physics in Brazil as well as its perspectives of developments and real needs in the next decade. It discusses the main projects and the financing of brazilian research groups and Universities. (A.C.A.S.)

  13. Nuclear physics I

    International Nuclear Information System (INIS)

    Elze, T.

    1988-01-01

    This script consisting of two parts contains the matter of the courses Nuclear Physics I and II, as they were presented in the winter term 1987/88 and summer term 1988 for students of physics at Frankfurt University. In the present part I the matter of the winter term is summarized. (orig.) [de

  14. Fundamental aspects of nuclear physics

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1987-01-01

    I am pleased to be able to attend this symposium in honor of D. Allan Bromley and to see the new accelerator of the Yale University Nuclear Structure Laboratory. My talk on symmetry tests seems appropriate for this occasion: so much of the progress in this field depends on detailed knowledge of nuclear structure. The nuclear ''tricks'' that are played to filter and amplify interactions are possible because the nuclear spectroscopists have cataloged nuclear levels and determined their properties. I will describe how such nuclear structure studies may help to provide a window on physics beyond the standard model. My talk is not a summary of this subfield of nuclear physics. There is simply too much happening today to make a summary talk feasible. Instead, I have chosen four topics that I hope are representative of the field as a whole: parity mixing of nuclear states, time-reversal-odd nuclear moments, the Mikheyev-Smirnov enhancement of solar neutrino oscillations, and a nuclear experiment to monitor the long-term rate of stellar collapse in the galaxy. 39 refs., 5 figs., 1 tab

  15. Nuclear technology programs semiannual progress report, April--September 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1991-08-01

    This document reports on the work done by the Nuclear Technology Program of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with developing a process for separating the organic and inorganic constitutents of the red-water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 154 refs., 154 figs., 100 tabs

  16. Nuclear and atomic physics at one gigaflop

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, J.B.

    1989-01-01

    A three-day workshop on problems in atomic and nuclear physics which depend on and are, at present, severely limited by access to supercomputing at effective rates of one gigaflop or more, was held at Oak Ridge, Tennessee, April 14-16, 1988. The participants comprised researchers from universities, industries and laboratories in the United States and Europe. In this volume are presented talks from that meeting on atomic and nuclear physics topics and on modern parallel processing concepts and hardware. The physics topics included strong fields in atomic and nuclear physics, the role of quarks in nuclear physics, the nuclear few-body problem, relativistic descriptions of heavy-ion collisions, nuclear hydrodynamics, Monte Carlo techniques for many-body problems, precision calculation of atomic QED effects, classical simulation of atomic processes, atomic structure, atomic many-body perturbation theory, quantal studies of small and large molecular systems, and multi-photon atomic and molecular problems

  17. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    1989-12-01

    A Technical Committee on Physical Protection of Nuclear Material met in April-May 1989 to advise on the need to update the recommendations contained in document INFCIRC/225/Rev.1 and on any changes considered to be necessary. The Technical Committee indicated a number of such changes, reflecting mainly: the international consensus established in respect of the Convention on the Physical Protection of Nuclear Material; the experience gained since 1977; and a wish to give equal treatment to protection against the theft of nuclear material and protection against the sabotage of nuclear facilities. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. 1 tab

  18. Physical bases of nuclear medicine

    International Nuclear Information System (INIS)

    Isabelle, D.B.; Ducassou, D.

    1975-01-01

    The physical bases of nuclear medicine are outlined in several chapters devoted successively to: atomic and nuclear structures; nuclear reactions; radioactiity laws; a study of different types of disintegration; the interactions of radiations with matter [fr

  19. Intermediate energy nuclear physics at the MIT-Bates linear accelerator Center

    International Nuclear Information System (INIS)

    Alarcon, R.

    2001-01-01

    The MlT-Bates linear accelerator center is a University-based laboratory carrying out frontier research in electromagnetic nuclear physics. The research program is focussed on the flavor structure, charge distribution, shape, size and polarizability of the nucleon; the spin and electromagnetic structure of light nuclei; and the origin of the elements. The Bates research program has three central thrusts: the SAMPLE experiments to probe the flavor structure of the proton using parity-violating electron scattering at back angles; the OOPS (out-of-plane spectrometer system) program which uses out-of-plane detection to probe nucleon and few-body nuclear structure; and the BLAST (Bates large acceptance spectrometer toroid) program which will use a new spectrometer under construction to measure electron scattering from internal gas targets in the south hall ring. (Author)

  20. Application of local computer networks in nuclear-physical experiments and technology

    International Nuclear Information System (INIS)

    Foteev, V.A.

    1986-01-01

    The bases of construction, comparative performance and potentialities of local computer networks with respect to their application in physical experiments are considered. The principle of operation of local networks is shown on the basis of the Ethernet network and the results of analysis of their operating performance are given. The examples of operating local networks in the area of nuclear-physics research and nuclear technology are presented as follows: networks of Japan Atomic Energy Research Institute, California University and Los Alamos National Laboratory, network realization according to the DECnet and Fast-bus programs, home network configurations of the USSR Academy of Sciences and JINR Neutron Physical Laboratory etc. It is shown that local networks allows significantly raise productivity in the sphere of data processing

  1. Nuclear Physics division progress report

    International Nuclear Information System (INIS)

    Lees, E.W.; Longworth, G.; Scofield, C.J.

    1981-07-01

    Work undertaken by the Nuclear Physics Division of AERE, Harwell during 1980 is presented under the headings: (1) Nuclear Data and Technology for Nuclear Power. (2) Nuclear Studies. (3) Applications of Nuclear and Associated Techniques. (4) Accelerator Operation, Maintenance and Development. Reports, publications and conference papers presented during the period are given and members of staff listed. (U.K.)

  2. Annual report from the realization of the Central Program of the Fundamental Studies no 01.09. ''Studies of elementary particles and nuclear processes'' in 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Report on the realization of research program in the domain of high and medium energy physics, structural studies by means of nuclear physics methods, nuclear chemistry and high-energy instrumentation in 1987 is presented. Program is coordinated by Institute of Nuclear Physics in Cracow, Institute of Physics of Jagiellonian University in Cracow and Institute of Nuclear Studies in Swierk. The information on international cooperation and costs of the realization of the program are given. Lists of the 487 most important publications are presented. (M.F.W.)

  3. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  4. The Radiation Source ELBE and its Research Program in Nuclear Physics

    International Nuclear Information System (INIS)

    Lehnert, U.; Michel, P.; Schwengner, R.

    2005-01-01

    The new radiation source 'Strahlungsquelle ELBE' at the Forschungszentrum Rossendorf (FZR) near Dresden, Germany, is a user facility that utilizes a superconducting linear accelerator to produce various secondary beams for experiments in nuclear science, solid state physics, materials research, environmental chemistry and in the life sciences. The high brilliance electron beam of up to 40 MeV and 1 mA (cw) is mainly used to drive free electron lasers producing infrared light in the 5-150 μm wavelength region. Additionally, polarized MeV-Bremsstrahlung and X-rays from electron channeling are available, facilities for neutron and positron production are under construction. The talk outlines the ongoing research activities at ELBE with special attention to the nuclear resonance fluorescence experiments

  5. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  6. Functional process descriptions for the program to develop the Nuclear Waste Management System

    International Nuclear Information System (INIS)

    Woods, T.W.

    1991-09-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is executing a plan for improvement of the systems implemented to carry out its responsibilities under the Nuclear Waste Policy Act of 1982 (NWPA). As part of the plan, OCRWM is performing a systems engineering analysis of both the physical system, i.e., the Nuclear Waste Management System (NWMS), and the programmatic functions that must be accomplished to bring the physical system into being. The purpose of the program analysis is to provide a systematic identification and definition of all program functions, functional process flows, and function products necessary and sufficient to provide the physical system. The analysis resulting from this approach provides a basis for development of a comprehensive and integrated set of policies, standard practices, and procedures for the effective and efficient execution of the program. Thus, this analysis will form a basis for revising current OCRWM policies and procedures, or developing new ones is necessary. The primary purposes of this report are as follows: (1) summarizes the major functional processes and process flows that have been developed as a part of the program analysis, and (2) provide an introduction and assistance in understanding the detailed analysis information contained in the three volume report titled The Analysis of the Program to Develop the Nuclear Waste Management System (Woods 1991a)

  7. Functional process descriptions for the program to develop the Nuclear Waste Management System

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T.W.

    1991-09-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is executing a plan for improvement of the systems implemented to carry out its responsibilities under the Nuclear Waste Policy Act of 1982 (NWPA). As part of the plan, OCRWM is performing a systems engineering analysis of both the physical system, i.e., the Nuclear Waste Management System (NWMS), and the programmatic functions that must be accomplished to bring the physical system into being. The purpose of the program analysis is to provide a systematic identification and definition of all program functions, functional process flows, and function products necessary and sufficient to provide the physical system. The analysis resulting from this approach provides a basis for development of a comprehensive and integrated set of policies, standard practices, and procedures for the effective and efficient execution of the program. Thus, this analysis will form a basis for revising current OCRWM policies and procedures, or developing new ones is necessary. The primary purposes of this report are as follows: (1) summarizes the major functional processes and process flows that have been developed as a part of the program analysis, and (2) provide an introduction and assistance in understanding the detailed analysis information contained in the three volume report titled The Analysis of the Program to Develop the Nuclear Waste Management System (Woods 1991a).

  8. On modern needs in nuclear physics and nuclear safety education

    International Nuclear Information System (INIS)

    Tom Loennroth

    2005-01-01

    The teaching of nuclear physics has a long history, particularly after the second world war, and the present author has 20 years of experience of teaching in that field. The research in nuclear physics has made major advances over the years, and the experiments become increasingly sophisticated. However, very often the university literature lags the development, as is, indeed, the case in all physics education. As a remedy of to-day, the didactic aspects are emphasized, especially at a basic level, while the curriculum content is. still left without upgrade. A standard textbook in basic nuclear physics is, while represent more modern theoretical treatises. The latter two, as their headings indicate, do not treat experimental methods, whereas has a presentation that illustrates methods and results with figures and references. However, they are from the 60 s and 70 s, they are old, and therefore cannot attract modern students of today. Consequently, one has the inevitable feeling that modern university teaching in nuclear physics, and the related area of nuclear safety, must be upgraded. A recent report in Finland, concluded that there is not sufficient nuclear safety education, but that on the other hand, it does not necessarily have to be connected with nuclear physics education, although this is recommendable. Further, the present Finnish university law states that 'The mission of the university shall be to promote free research and scientific and artistic education, to provide higher education based on research, and. to educate students to serve their country and humanity. In carrying out their mission, the universities shall interact with the surrounding society and promote the societal impact o research finding and artistic activities'. This mismatch between the curricula and the required 'societal impact' will be discussed, and examples of implications, usually not implemented, will be given. For nuclear physics specifically, the (lack of) connection between

  9. A long range plan for nuclear physics

    International Nuclear Information System (INIS)

    Morrison, G.C.

    1983-01-01

    The report is in two parts. The first part reviews the current understanding of nuclear physics and indicates areas of significant interest for future work. It briefly discusses the special contributions of nuclear physics in other sciences. The second part considers new facilities which would be particularly relevant to the future development of nuclear physics in the UK. The present position of UK nuclear physics with respect to the wider nuclear community is considered. In conclusion the report establishes priorities for UK nuclear physics and makes recommendations for future action for the provision of facilities and also for future funding and manpower levels. The working party seeks to build on the valuable base provided by the NSF and Oxford accelerators. The principal recommendation of the Working Party is that a new 600MeV continuous beam electron accelerator should be built at the Daresbury Laboratory. For higher energy heavy ion beams the Working Party suggests these should be sought at overseas laboratories. (author)

  10. PREFACE: XXXIII Symposium on Nuclear Physics

    Science.gov (United States)

    Barrón-Palos, Libertad; Bijker, Roelof; Fossion, Ruben; Lizcano, David

    2010-04-01

    The attached PDF gives a full listing of contributors and organisation members. In the present volume of Journal of Physics: Conference Series we publish the proceedings of the "XXXIII Symposium on Nuclear Physics", that was held from January 5-8, 2010 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings contain the plenary talks that were presented during the conference. The abstracts of all contributions, plenary talks and posters, were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. After the first meeting in Oaxtepec in 1978, the Symposium was organized every year without interruption which makes the present one the 33rd in a row. This year's meeting was dedicated to the memory of Marcos Moshinsky, who passed away on April 1, 2009. Dr. Moshinsky was the most distinguished pioneer and promoter of nuclear physics in Mexico and Latin America and holds the record of 31 (out of 32) participations at the Symposium. In the inaugural session, Alejandro Frank (ICN-UNAM), Peter Hess (ICN-UNAM) and Jorge Flores (IF-UNAM) spoke in his honor and recalled the virtues that characterized him as a teacher, scientist, founder of schools and academic institutions, colleague and friend. His generosity, excellence and honesty were emphasized as the personal qualities that characterized both his personal and academic life. moshinksky_photo "Marcos Moshinsky (1921-2009)" The scientific program consisted of 26 invited talks and 20 posters on a wide variety of hot topics in contemporary nuclear

  11. Serber says: About nuclear physics

    International Nuclear Information System (INIS)

    Serber, R.

    1986-01-01

    This book is a distillation of a set of lecture notes used by the author at Columbia. Written with a pedagogical aim it emphasizes topics of current interest not only in nuclear physics but also in other branches of physics such as atomic physics and solid state physics. Contents: Some Arguments Concerning Nuclear Forces; The Neutron-Proton Force; Low Energy Neutron-Proton Scattering Experiments; Photo-Effect of the Deuteron; The Slowing Down and Diffusion of Neutrons; Nucleon Magnetic Moments and Quadrupole Moment of the Deuteron; Proton-Proton and Neutron-Neutron Interactions; Isotopic Spin Invariance; High Energy Reactions; Resonance Levels

  12. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  13. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  14. International Conference for Young Scientists, Specialists, and Postgraduates on Nuclear Reactor Physics 2016 (ICNRP-2016)

    International Nuclear Information System (INIS)

    2017-01-01

    We are pleased to introduce the Proceedings of the International research conference «International Conference for young scientists, specialists and post-graduates on Nuclear Reactor Physics 2016 (ICNRP-2016)» (5-9 September 2016, Health resort «Volga», Moscow, Russia) organized by the National Research Nuclear University MEPhI, with ROSATOM partnership. Representatives of research organizations and universities from twelve countries (Russia, Germany, Norway, Finland, Kazakhstan, Belarus, Italy, Slovakia etc.), delivered their presentations on various topics. The major topics are features of fast reactors, calculation for the needs of operation and design of nuclear reactors, computational reactor tests, codes and databases. Over a hundred people from 37 organizations attended the conference. More than 93 papers were presented. The received papers were reviewed according to the standards of the Journal of Physics: Conference Series and developed by the organizers’ scientific criteria. This volume of the journal includes 65 papers devoted to various branches of nuclear reactor physics and technology. During the conference, various sports activities were held, as well as a workshop on the problems of nuclear education in Russia. Most of the participants, according to the results of the survey were satisfied and expressed a desire to take part in the next conference in 2018. The organizing committee is very grateful to the: • Participants of the conference for their valuable contribution with the delivered presentations and interesting papers, • Conference program committee chairman Strikhanov M.N., rector of National Research Nuclear University MEPhI, • Program committee co-chairs: Caruso G., professor, Sapienza University of Rome, Hascik J., professor, Technical University of Bratislava, Janardhanan N.K., assistant professor, Jawaharlala Nehru University, Pershukov V.A., deputy director general, Rosatom, Tikhomirov G.V., dean of Physical

  15. 3. Mexican school of nuclear physics; 3. Escuela Mexicana de Fisica Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Chavez L, E R [Instituto de Fisica, UNAM, 04510 Mexico D.F. (Mexico); Hess, P O [Instituto de Ciencias Nucleares, UNAM, 04510 Mexico D.F. (Mexico); Martinez Q, E [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The III Mexican School of Nuclear Physics which is directed to those post graduate in Sciences and those of last semesters students of the Physics career or some adjacent career was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at November 18-29, 2002 in the installations of the Institute of Physics and the Institute of Nuclear Sciences both in the UNAM, and the National Institute of Nuclear Research (ININ). In this as well as the last version its were offered 17 courses, 9 of them including laboratory practices and the rest were of theoretical character only. This book treats about the following themes: Nuclear physics, Electrostatic accelerators, Cyclotrons, Thermonuclear reactions, Surface barrier detectors, Radiation detection, Neutron detection, Bonner sphere spectrometers, Radiation protection, Biological radiation effects, Particle kinematics, Nucleosynthesis, Plastics, Muons, Quadrupoles, Harmonic oscillators, Quantum mechanics among many other matters. (Author)

  16. 1997 report of the scientific evaluation committee of DAPNIA (Department of astrophysics, particle physics, nuclear physics and instrumentation)

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The DAPNIA is a department of CEA, its main characteristic is to manage scientific teams working on astrophysics, nuclear physics, elementary particles and instrumentation. Every 2 years DAPNIA's activities are submitted to an evaluation made by a scientific committee whose members are experts independent from CEA. This committee reviews the work done, gives an opinion about the options chosen for the projects to come and writes out a report. In 1997 the committee had a very positive opinion of the work done by DAPNIA teams. The contributions to various and important national or international programs have been successful, we can quote: Ulysse mission, soho, iso, integral for spatial programs, aleph, delphi, H1 at Hera, atlas, cms, na48, nomad, babar, antares for particle physics and spiral, smc, compass for nuclear physics. The committee advises DAPNIA to favour more contacts between the theoreticians and the experimentalists who work on quantum chromodynamics and hadron physics. The committee shows its concern about improving the balance between the means dedicated to instrumentation designing and those dedicated to the analysis and interpretation of the experimental data collected. (A.C.)

  17. Application of electrostatic accelerators for nuclear physics studies

    International Nuclear Information System (INIS)

    Kuz'minov, B.D.; Romanov, V.A.; Usachev, L.N.

    1983-01-01

    The data are reviewed on dynamics of the development of single- and two-stage electrostatic accelerators (ESA) used as a tool or nuclear physics studies in the range of low and medium energies. The ESA wide possibilities are shown on examples of the most specific studies in the field of nuclear physics, work on measurement of nuclear constants to safisfy the nuclear power needs and applied studies on nuclear microanalysis. It is concluded that the contribution of studies performed using ESA to the development of nowadays concepts on nuclear structure and nuclear reaction kinetics is immeasurably higher than of any other nuclear-physics tool. ESA turned out to be also exceptionally useful for solving applied problems and investigations in different fields of knowledge. Carrying over the technique of investigations using ESA and nuclear physics concepts to atomic and molecular problems has found its application in optical spectroscopy in Lamb shift investigations in strongly ionized heavy ions, in various experiments on atom-atom and atom-molecular scattering, in stUdies of collisions and charge exchange. ESA contributed to the progress in such scientific fields as astraphysics, nuclear physics, solid-state physics, material science and biophysics

  18. Training programs in medical physics in the United States

    International Nuclear Information System (INIS)

    Lanzl, L.H.

    1977-01-01

    The history of the field of medical physics in the United States is reviewed; the importance of the development of the nuclear reactor and particle accelerators to medical physics is pointed out. Conclusions and recommendations of an IAEA/WHO seminar on the training of medical physicists (in 1972) are given and compared with existing programs in the US. It is concluded that the recommendations of the IAEA are, for the most part, followed. 1 table

  19. 4. Mexican School of Nuclear Physics. Papers

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Hernandez, E.; Hirsch, J.

    2005-01-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, takes place from June 27 to July 8, 2005 in the Nuclear Sciences and of Physics Institutes of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the matter to who we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University de Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to the 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Nuclear Sciences Institute, UNAM, Physics Institute of UNAM, Coordination of the Scientific Research UNAM, National Institute of Nuclear Research, Nuclear Physics Division of the Mexican

  20. Progress report on reactor physics research program, January 1963 - February 1964

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-02-15

    This progress report is a part of the annual report of the department of reactor physics prepared for the Boris Kidric Institute of nuclear sciences. It is a review of research activities in the field of theoretical and experimental reactor physics in the year 1973. A part of this program was included in the NPY Cooperative program in reactor physics. The topics covered by this report are as follows: Calculations of the thermal neutron distribution and reaction rate in a reactor cell and comparison with experiments; buckling measurements; thermalization and slowing down of neutrons; pulsed neutron source techniques; and reactor kinetics.

  1. Progress report on reactor physics research program, January 1963 - February 1964

    International Nuclear Information System (INIS)

    1964-02-01

    This progress report is a part of the annual report of the department of reactor physics prepared for the Boris Kidric Institute of nuclear sciences. It is a review of research activities in the field of theoretical and experimental reactor physics in the year 1973. A part of this program was included in the NPY Cooperative program in reactor physics. The topics covered by this report are as follows: Calculations of the thermal neutron distribution and reaction rate in a reactor cell and comparison with experiments; buckling measurements; thermalization and slowing down of neutrons; pulsed neutron source techniques; and reactor kinetics

  2. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [es

  3. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [fr

  4. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-01-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  5. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  6. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  7. Fundamentals in nuclear physics

    International Nuclear Information System (INIS)

    Diserbo, Michel

    2014-01-01

    The author proposes an overview of the main notions related to nuclear physics. He first addresses the atom and the nucleus: brief history, their constituents, energetic aspects for electrons and nucleus. The second part deals with radioactivity: definitions, time law and conservation law, natural and artificial radio-elements, α, β and γ radiations. Nuclear reactions (fission and fusion) are then presented as well as their application to nuclear reactor operation. The next part concerns interactions between radiations and matter, more precisely between charged particles and matter, neutrons and matter, X rays or γ rays and matter. The last chapter presents the various quantities used to characterise a source, the radiation field and the physical action, and quantities and units used in radiobiology and in radiation protection

  8. Strangeness nuclear physics

    International Nuclear Information System (INIS)

    Imai, Kenichi

    1999-01-01

    A simple review of strangeness nuclear physics is stated in the order of introduction, generation, structure and decay of hyper-nucleus and S=-2 nuclear physics. Strangeness nuclear physics investigate the structure and nuclear force of new created nucleus by introducing strangeness to the nuclear matter. The fundamental problems are hyperon-nucleon and hyperon-hyperon interaction. There are many methods to generate hyper nucleus. The stopped K - reaction is the best one. Λ and S hyper and S=-2 nucleus were generated by (K - , π) and (π + , K + ) reaction, (K - , π) reaction and (K - , K + ) reaction, respectively. The elementary decay process in the nucleus is Λ - > pπ (Q=38 MeV), nπ 0 and Λp - > np (Q=176 MeV), Λn- > nn. In emulsion, mass of light nucleus less than 160 were determined. Two measurement units are stated. One of them is a double focusing type K beam line in BNL to investigate H dibaryon by (K - , K + ) reaction. The other is KEK-SKS, which is superconducting kaon spectrometer to study hyper nucleus by (π + , K + ) reaction. The various kinds of binding energy of Λ single-particle states are displayed as a function of A -2/3 . These experimental data fit well with DWIA calculation using Woods-Saxon type one-body potential. A spectrum of 12C (π + , K + ) reaction showed small peak without main two peaks, which was a hyperfine structure between the exited state of 11 C core and couple of s 1/2 Λ. Although γ-ray was detected by three nucleuses such as 4 HΛ, 7 Li Λ and 9 Be Λ , γ-ray spectrometry of hyper nucleus remains unexplored. E hyper nucleus is detected by 4He(K-, t) and not by 4 He (K - , π + ). The binding energy of 4He Σ is 4.4 + 1 MeV and the width 7.0 + 0.7 MeV. Λ hyper nucleus decay is occurred by weak interaction. The elementary processes are a mesonic decay of Λ - > pπ - and Λ - > nπ 0 and a nonmesonic decay of Λn - > nn and Λp- > np. The lifetime of hyper nucleus is shorter than free Λ. Subject of S=-2 nuclear

  9. Nuclear Physics in Poland 1996-2006

    International Nuclear Information System (INIS)

    Broda, R.; Dobaczewski, J.; Jastrzebski, J.; Palacz, M.; Styczen, J.

    2007-12-01

    This Report is a result of the Polish Nuclear Physics Network (PNPN) action having as objective the mapping study of the basic and applied research in this domain in Poland. In the often employed slang it constitutes one of the '' deliverables '' of the EWON (East-West Outreach) Network, operating within the I3- (Integrated Infrastructure Initiative) EURONS, one of the Nuclear Physics projects in the Six Framework Programme (FP6). However, although prepared within the nuclear structure EURONS framework, this mapping study also reports on the activities in the hadron physics in Poland (organized in the FP6 within a second Nuclear Physics project I3-Hadron Physics) as well as in Nuclear Theory and Applications of Nuclear Physics. The Report contains references to activities and published papers from the last ten years: 1996 - 2006. In some cases also slightly older data are included, if necessary, for the completeness of the reported subjects. The Report is organized as follows. After the information on Polish Nuclear Physics Network (a part of the EWON Network), a few overview papers describe the main domains of the PNPN scientific activity. The contents of these papers were previously presented during the NuPECC meeting, held in Krakow June 9, 2006. A number (89) of more detailed contributions (together with appropriate references) emanating from various research groups follows the review articles. Some of the contributions provide concise summaries of wide research activities. Other authors preferred to report separately or individually on narrower topics. Most of the presented activities were conducted within the international collaborations. However, the adopted policy was that only Polish researchers are indicated as authors of the contributions, whereas the international collaborations are reflected by (all) authors of cited publications. The Polish Nuclear Physics Long-Range Plan prepared recently by the Nuclear Physics Committee of the National Atomic Energy

  10. Reactor physics computations for nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Huria, H.C.

    1989-01-01

    The undergraduate program in nuclear engineering at the University of Cincinnati provides three-quarters of nuclear reactor theory that concentrate on physical principles, with calculations limited to those that can be conveniently completed on programmable calculators. An additional one-quarter course is designed to introduce the student to realistic core physics calculational methods, which necessarily requires a computer. Such calculations can be conveniently demonstrated and completed with the modern microcomputer. The one-quarter reactor computations course includes a one-group, one-dimensional diffusion code to introduce the concepts of inner and outer iterations, a cell spectrum code based on integral transport theory to generate cell-homogenized few-group cross sections, and a multigroup diffusion code to determine multiplication factors and power distributions in one-dimensional systems. Problem assignments include the determination of multiplication factors and flux distributions for typical pressurized water reactor (PWR) cores under various operating conditions, such as cold clean, hot clean, hot clean at full power, hot full power with xenon and samarium, and a boron concentration search. Moderator and Doppler coefficients can also be evaluated and examined

  11. 9. Biennial session of nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    As every two years the 9th biennial session of nuclear physics shall try to make a survey of the recent experimental developments as well as the evolution of the theoretical ideas in Nuclear Physics. Communications are indexed and analysed separately

  12. Research on effectiveness assessment programs for physical protection system

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Yoo, Hosik; Ham, Taekyu [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    PPS (Physical Protection System) is an integrated set of procedures, installation and human resources to protect valuable assets from physical attack of potential adversaries. Since nuclear facilities or radioactive materials can be attractive targets for terrorists, PPS should be installed and maintained throughout the entire lifecycle of nuclear energy systems. One of key ingredients for effective protection is a reliable assessment procedure of the PPS capability. Due to complexity of possible threat categories and pathways, several pathway analysis programs have been developed to ease analysis or visualization. ASSESS using ASD approach runs fast and adopts a relatively simple modeling process for facility elements. But uncertainty due to assumptions used in modeling might complicate the interpretation of results. On the other hand, 2D pathway program such as TESS can utilize more self-consistent detection probability and delay time since actual pathway on 2D map is available. Also, this pathway visualization helps users understand analysis result more intuitively. But, in general, 2D pathway programs require strong computational power and careful optimization. Another possible difference between two approaches is response force deployment and RFT.

  13. Research on effectiveness assessment programs for physical protection system

    International Nuclear Information System (INIS)

    Seo, Janghoon; Yoo, Hosik; Ham, Taekyu

    2015-01-01

    PPS (Physical Protection System) is an integrated set of procedures, installation and human resources to protect valuable assets from physical attack of potential adversaries. Since nuclear facilities or radioactive materials can be attractive targets for terrorists, PPS should be installed and maintained throughout the entire lifecycle of nuclear energy systems. One of key ingredients for effective protection is a reliable assessment procedure of the PPS capability. Due to complexity of possible threat categories and pathways, several pathway analysis programs have been developed to ease analysis or visualization. ASSESS using ASD approach runs fast and adopts a relatively simple modeling process for facility elements. But uncertainty due to assumptions used in modeling might complicate the interpretation of results. On the other hand, 2D pathway program such as TESS can utilize more self-consistent detection probability and delay time since actual pathway on 2D map is available. Also, this pathway visualization helps users understand analysis result more intuitively. But, in general, 2D pathway programs require strong computational power and careful optimization. Another possible difference between two approaches is response force deployment and RFT

  14. Nuclear Physics Research at ELI-NP

    Science.gov (United States)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  15. Nuclear medical physics

    International Nuclear Information System (INIS)

    Williams, L.E.

    1987-01-01

    This three-volume set covers the physical basis of nuclear medicine, and is intended as a source of data for practicing scientists and physicians as well as those beginning their careers or simply studying nuclear medical physics. It leads the reader from quantum theory to the production and attenuation of ionizing radiation; considers dosimetry and the most recent assessment of biological effects of such particles; describes in detail detector materials, signal analysis, and gamma cameras; includes extensive discussions of bone mineral measurement as well as magnetic resonance imaging; covers limited angle, rotating camera, and positron tomography; presents quality assurance and statistical theory with an eye toward enhanced departmental operations; and features descriptions of functional imaging and the psychophysical basis of diagnosis

  16. Nuclear Physics Laboratory technical progress report, [August 15, 1991--October 1, 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes work carried out between August 15, 1991 and October 1, 1992 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG02-86ER-40269 and DE-FG02-87ER-40335 with the United States Department of Energy. These contracts support experimental and theoretical work in intermediate energy nuclear physics. The experimental program is very broadly based; it includes pion-nucleon and pion-nucleus studies at Los Alamos and TRIUMF inelastic pion scattering and charge exchange reactions at LAMPF, kaon-nucleus scattering at the AGS, and nucleon charge exchange at LAMPF/NTOF

  17. Nuclear physics group report

    International Nuclear Information System (INIS)

    A brief description is given of the new cyclotron tested and inaugurated during the period under review, and its main specifications are presented. Preliminary beam measurements are reported. The computers and data collection system are also briefly described, as is the nuclear instrumentation at the cyclotron laboratory. A number of experiments in nuclear structure and nuclear reactions which are in progress, or soon to be reported are presented. Projects in theoretical nuclear physics are also described. Lists of seminars and lectures and of publications are given. (JIW)

  18. 1932: ''annus mirabilis'' for nuclear physics

    International Nuclear Information System (INIS)

    Hughes, J.

    1998-01-01

    1932 was an extraordinary year for nuclear physics: J. Chadwick discovered the neutron, C.D.Anderson identified the positron and the first artificial disintegration was realised with a particle accelerator by J.Cockcroft and E.Walton. These 3 discoveries transformed nuclear physics by providing basis on which any new research could be led. The neutron allowed the discovery of artificial radioactivity by Joliot-Curie in 1934 and later the discovery of nuclear fission by O. Hahn, F. Strassman and L. Meitner. The positron brought new concepts about cosmic radiation and drew the way to the discovery of new particles. Artificial disintegration paved the way to the ever-bigger machines. It was the beginning of the era of breaking nuclei. 1932 deserves its title of ''annus mirabilis'' of physics. This article presents the quick evolution of ideas, concepts in nuclear physics in the thirties. (A.C.)

  19. An alternative nuclear program

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1981-01-01

    An analysis of the development of nuclear energy in Brazil is made since its beginning, showing the fundamental policy changes introduced in the end of the 60's with the purchase of the Angra dos Reis I reactor. This decision discouraged the existing efforts of an autonomous development in nuclear energy. The reaction to this policy led to the Nuclear Deal with Germany, which although incorporating some positive aspects is nor capable to lead to nuclear independence. The presently existing options are discussed, as well as the transformation of the Nuclear Program in a R and D Program based only in the reactors I, II and III, located in Angra dos Reis. (Author) [pt

  20. Recommended numerical nuclear physics data for cutting-edge nuclear technology applications

    International Nuclear Information System (INIS)

    Ganesan, S.; Srivenkatesan, R.; Anek Kumar; Murthy, C.S.R.C.; Dhekne, P.S.

    2005-01-01

    This paper introduces some aspects of online nuclear data services at Mumbai as part of today's technology of sharing knowledge of the recommended numerical nuclear physics data for nuclear applications. The physics foundation for cutting-edge technology applications is significantly strengthened by such knowledge generation and sharing techniques. A BARC server is presently mirroring the nuclear data services of the IAEA, Vienna. The users can get all the nuclear data information much faster from the BARC nuclear data mirror website that is now fully operational. The nuclear community is encouraged to develop the habit of accessing the website for recommended values of nuclear data for use in research and applications. The URL is: www-nds.indcentre.org.in (author)

  1. The physical protection of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  2. The physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  3. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  4. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  5. DOE fundamentals handbook: Nuclear physics and reactor theory

    International Nuclear Information System (INIS)

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance

  6. Nuclear physics--at the frontiers of knowledge

    International Nuclear Information System (INIS)

    Feshbach, H.

    1995-01-01

    Nuclear physics has been and will be a major factor in science and technology. The researches in nuclear physics leads to results which can be characterized as universal in that will suitable modifications they apply to small systems generally. It is introduced on the study of nucleon heavy ions and the quark-gluon plasma radioactive nuclei weak interactions and nuclear theory in this paper. The contributions to medicine, industry and other sciences is reviewed. The activity of nuclear physics as frontier research is emphasized. The importance of its applications is pointed out. (Su)

  7. The health physics programs in low-level radioactive waste management at the Institute of Nuclear Energy Research, Republic of China

    International Nuclear Information System (INIS)

    Chen, W-L.

    1986-01-01

    The primary mission of the health physics programs in low-level radioactive management is to ensure radiation safety for personnel and environment of the Institute of Nuclear Energy Research (INER), and also for the general public surrounding INER. In view of the above, the Health Physics programs in low-level radioactive waste management are divided into three sub-programs: the radiation control program, the environmental survey and bioassay program, and the radiation dosimetry supporting program. The general guidelines, responsibilities, and performance of these programs will be discussed in this paper in the following order. The responsibility of radiation control group is to conduct area monitoring and radiation surveillance for the radioactive waste treatment workers. It includes the control of radiation field level of the working area, servicing personnel dosimeters, instruction on radiation safety, and handling of radiation accidents. The responsibility of the environmental survey and bioassay group is to perform environmental surveys and bioassays. Environmental gamma monitoring stations were installed both on-site and off-site at INER. For bioassays, urine samples are taken from radioactive waste treatment workers, and for internal contamination checks of workers, total body counting systems are being used. The main responsibility of the radiation dosimetry group is to provide radiation dosimetrical support to the radiation control group and the environmental survey and bioassay group. Some typical work of the radiation dosimetry group is the qualitative assay and quantitative determination of radioactive samples, and calibration of dosimeters and survey meters

  8. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5): Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  9. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  10. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1991-10-01

    The work done during the past year covers three separate areas, low energy nuclear reactions intermediate energy physics, and nuclear structure studies. This manuscript summarizes our achievements made in these three areas

  11. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 127 refs., 76 figs., 103 tabs

  12. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  13. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.; Tanihata, I.

    1992-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides. One goal, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell modelclose quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. 25 refs., 7 figs

  14. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.

    1995-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell model close quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. (author). 25 refs., 7 figs

  15. China's nuclear programs and policies

    International Nuclear Information System (INIS)

    Wang, C.

    1983-01-01

    Economics and the futility of arms competition with the US and USSR has forced China to shift its nuclear effort to peaceful uses, although its current nuclear-deterrent warrants including China in arms negotiations. China's nuclear program began during the 1950s with an emphasis on weaponry and some development in space technology. Proponents of nuclear power now appear to have refuted the earlier arguments that nuclear-plant construction would be too slow, too dangerous and polluting, and too expensive and the idea that hydro resources would be adequate. The current leadership supports a serious nuclear-power-plant construction program. 6 references

  16. MIT nuclear reactor laboratory high school teaching program

    International Nuclear Information System (INIS)

    Olmez, I.

    1991-01-01

    For the last 6 years, the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory's academic and scientific staff a have been conducting evening seminars for precollege science teachers, parents, and high school students from the New England area. These seminars, as outlined in this paper, are intended to give general information on nuclear technologies with specific emphasis on radiation physics, nuclear medicine, nuclear chemistry, and ongoing research activities at the MIT research reactor. The ultimate goal is to create interest or build on the already existing interest in science and technology by, for example, special student projects. Several small projects have already been completed ranging from environmental research to biological reactions with direct student involvement. Another outcome of these seminars was the change in attitudes of science teachers toward nuclear technology. Numerous letters have been received from the teachers and parents stating their previous lack of knowledge on the beneficial aspects of nuclear technologies and the subsequent inclusion of programs in their curriculum for educating students so that they may also develop a more positive attitude toward nuclear power

  17. Argentine nuclear program

    International Nuclear Information System (INIS)

    Leibovich, H.; Takacs, E.A.

    1983-01-01

    The paper describes Argentina's nuclear program, detailing its objectives, the schedule of construction of nuclear plants and local production of required equipment. The technologies adopted so far, the local industrial and engineering participation, the preliminary study for the construction of the next power station and Argentina's nonproliferation nuclear policy are analyzed. Argentina's point of view on Canadian nonproliferation policy and CANDU reactor export is discussed

  18. Preparations for the start-up of a research program in nuclear safeguards at Chalmers

    International Nuclear Information System (INIS)

    Avdic, Senada; Pazsit, Imre

    2004-03-01

    The Department of Reactor Physics at Chalmers University of Technology plans to start-up a research program in nuclear safeguards and nuclear material management. The program is aimed at utilizing the experimental facilities as well as the experience in reactor physics, criticality safety, signal processing and unfolding, and experimental nuclear techniques, in tackling problems in non-destructive assay (NDA) of nuclear materials. For the introductory part of this program, support has been received from the Swedish Nuclear Power Inspectorate to host Dr. Senada Avdic, University of Tuzla, Bosnia, as a post-doc for three months to participate in the preparatory program. The preparations were focussed on a survey of existing active non-destructive assay methods and preparations of their application in the experimental and theoretical/calculational research of our Department. The methods surveyed comprise - the use of a 252 Cf source in active NDA measurements; - planning of an experiment with the existing equipments of the Department; - time correlation measurements with a 252 Cf source and/or a 252 Cf detector; - Monte Carlo simulations of the time correlations between gammas and neutrons from a measurement with a 252 Cf detector: the MCNP-PoliMi code; - Identification of fissile material (enrichment/mass) with 252 Cf measurements; the use of various unfolding techniques (artificial neural networks) for identifying nuclear parameters; use of neutron activation analysis with a neutron generator for determination of distribution of material in an unknown sample; - determination of fissile material content by measurements of delayed neutrons

  19. Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL

    Science.gov (United States)

    linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group fundamental and applied theoretical research in applied and fundamental nuclear physics, particle physics

  20. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2006-2007

    International Nuclear Information System (INIS)

    Debu, Pascal; Ben-Haim, Eli; Hardin, Delphine; Laporte, Didier; Maurin, David; Cossin, Isabelle; Mathy, Jean-Yves

    2008-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2006-2007: 1 - Forewords; 2 - Scientific activities: Physics with accelerators (LHC, Tevatron, CP Violation, ILC, Neutrino Physics); Physics without accelerators (Cosmology, high-energy gamma astronomy, extreme energy cosmic radiation, theoretical physics, physics-biology interface); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, internships and PhDs); 5 - Internal activities (seminars, meetings..); 6 - External activities (Public information, relations with the industry, valorisation..)

  1. Physics and technology of nuclear materials

    International Nuclear Information System (INIS)

    Ursu, I.

    1985-01-01

    The subject is covered in chapters, entitled; elements of nuclear reactor physics; structure and properties of materials (including radiation effects); fuel materials (uranium, plutonium, thorium); structural materials (including - aluminium, zirconium, stainless steels, ferritic steels, magnesium alloys, neutron irradiation induced changes in the mechanical properties of structural materials); moderator materials (including - nuclear graphite, natural (light) water, heavy water, beryllium, metal hydrides); materials for reactor reactivity control; coolant materials; shielding materials; nuclear fuel elements; nuclear material recovery from irradiated fuel and recycling; quality control of nuclear materials; materials for fusion reactors (thermonuclear fusion reaction, physical processes in fusion reactors, fuel materials, materials for blanket and cooling system, structural materials, materials for magnetic devices, specific problems of material irradiation). (U.K.)

  2. Nuclear Physics Laboratory 1976 annual report. [Nuclear Physics Laboratory, Univ. of Washington

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    Laboratory activities for the period spring, 1975 to spring, 1976 are described. The emphasis of the work can be discerned from the chapter headings: accelerator development; ion source development; instrumentation, detectors, research techniques; computer and computing; atomic physics; nuclear astrophysics; fundamental symmetries in nuclei; nuclear structure; radiative capture measurements and calculations; scattering and reactions; reactions with polarized protons and deuterons; heavy-ion elastic and inelastic scattering; heavy-ion deeply inelastic and fusion reactions; heavy ion transfer and intermediate structure reactions; medium-energy physics; and energy studies. Research by users and visitors is also described; and laboratory personnel, degrees granted, and publications are listed. Those summaries having significant amounts of information are indexed individually. (RWR)

  3. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    Nuclear power utilization within 2020 horizon is expanding in Asia, particularly in Japan, China, India, Republic of Korea, Vietnam and Indonesia. The nuclear energy policy iof Japan sees the increase of nuclear power contribution for energy security and to control CO 2 emission with the contribution ratio through the 21 st century kept at the current level of 30-40% or even higher. Japan expects its first reprocessing plant to be operational in 2007 and its first commercial fast breeder reactor operational in 2050. Starting with her experience with the operation of its first research reactor in 1957, a power demonstration reactor from USA in 1963; the first commercial 166 MW power plant from UK in 1966 and then its first commercial 375 MW light water reactor from USA in 1970, Japan developed her own nuclear reactor technology. Today, Japan has 55 operating nuclear power plants (NPPs) totaling 49 GW which supply 30% of its electricity needs. There are two NPPs under construction and 11 additional NPPs to be completed by 2017. Japan's experience showed that engineers in the nuclear, mechanical, electrical, material and chemical fields are needed to man their nuclear power plant. For the period 1958 to about 1970, there was a rapid increase in the number of students enrolled for their bachelor of science majoring in nuclear science and technology but this number of enrollees leveled off beyond 1970 up to 2002. For those pursuing their masters of science degree in this field, there was a steady but moderate rise in the number of students from 1958 to 2002. The population of students in the Ph.D program in nuclear science and technology had the lowest number of enrollees and lowest level of increase from 1958 to 2002. The courses offered at the university for nuclear power are nuclear reactor physics and engineering, nuclear reactor safety engineering and radiation safety. Prior to graduation, the students undergo training at a nuclear research institute, nuclear power

  4. Second Mexican School of Nuclear Physics: Notes; Segunda Escuela Mexicana de Fisica Nuclear: Notas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, E F [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Chavez L, E R [Instituto de Fisica, UNAM, 04510 Mexico D.F. (Mexico); Hess, P O [Instituto de Ciencias Nucleares, UNAM, 04510 Mexico D.F. (Mexico)

    2001-07-01

    The II Mexican School of Nuclear Physics which is directed to those last semesters students of the Physics career or post-graduate was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at April 16-27, 2001 in the installations of the Institute of Physics and the Institute of Nuclear Sciences, both in the UNAM, and the National Institute of Nuclear Research (ININ). A first school of a similar level in Nuclear Physics, was carried out in Mexico at 1977 as Latin american School of Physics. This book treats about the following themes: Interactions of radiation with matter, Evaluation of uncertainty in experimental data, Particle accelerators, Notions of radiological protection and dosimetry, Cosmic rays, Basis radiation (environmental), Measurement of excitation functions with thick targets and inverse kinematics, Gamma ray technique for to measure the nuclear fusion, Neutron detection with Bonner spectrometer, Energy losses of alpha particles in nickel. It was held the practice Radiation detectors. (Author)

  5. Proceedings of the X. international school on nuclear physics, neutron physics and nuclear energy

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1992-01-01

    The history of the International School on Nuclear Physics, Neutron physics and nuclear Energy ('Varna School') goes back to the year 1973. Since that time it has been carried out in the fall of every other year in the Conference Center of the Bulgarian Academy of Sciences at the Black Sea coast near Varna. This volume contains the full texts of the lectures delivered by distinguished scientists from different countries on the Tenth Varna School, 1991. 14 of them are included in INIS separately

  6. Evolvement of nuclear criticality safety programs

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1992-01-01

    Nuclear criticality safety (NCS) has developed from a discipline requiring the services of personnel with only a background in reactor physics to that involving reactor physics, process engineering, and design as well as administration of the program to ensure all its requirements are implemented. When Oak Ridge National Laboratory (ORNL) was designed and constructed, the physicists at Los Alamos National Laboratory (LANL) were performing the criticality analyses. A physicist who had no chemical process or engineering experience was brought in from LANL to determine whether the facility would be safe. It was only because of his understanding of the reactor physics principles, scientific intuition, and some luck that the design and construction of the facility led to a safe plant. It took a number of years of experience with facility operations and the dedication of personnel for NCS to reach its present status as a recognized discipline

  7. Research in theoretical nuclear physics: Progress report

    International Nuclear Information System (INIS)

    1988-08-01

    In April 1988 we, along with the nuclear theory groups of Brookhaven and MIT, submitted a proposal to the Department of Energy for a national Institute of Theoretical Nuclear Physics. The primary areas of investigation proposed for this Institute are: Strong Interaction Physics--including (1) The physics of hadrons, (2) QCD and the nucleus, (3) QCD at finite temperatures and high density; nuclear astrophysics; nuclear structure and nuclear many-body theory; and nuclear tests of fundamental interactions. It is, of course, no coincidence that these are the main areas of activity of the three groups involved in this proposal and of our group in particular. Here, we will organize an outline of the progress made at Stony Brook during the past year along these lines. These four areas do not cover all of the activities of our group

  8. Theses of reports 'V Conference of high energy physics, nuclear physics and accelerators'

    International Nuclear Information System (INIS)

    Dovbnya, A.N.

    2007-01-01

    Nucleus structure study in the reactions on the charged particles; application of the nuclear and physical methods in the adjacent science fields; study and development of accelerators and accumulators of charged particles; basic research in an effort to develop the nuclear and physical methods for the nuclear power needs, medicine and industry; computed engineering in the physical studies; basic research of interaction processes of ultrarelativistic particles with monocrystals and substance; physics of detectors are submitted in proceedings of V Conference on High Energy Physics

  9. Trends in nuclear physics. 100 years later

    International Nuclear Information System (INIS)

    Nifenecker, H.; Blaizot, J.P.; Bertsch, G.F.; Weise, W.; David, F.

    1998-01-01

    In the first years after the discovery of radioactivity it became clear that nuclear physics was, by excellence, the science of small quantum systems. Between the fifties and the eighties nuclear physics and elementary particles physics lived their own lives, without much interaction. During this period the basic concepts were defined. Recently, contrary to the specialization law often observed in science, the overlap between nuclear and elementary particle physics has become somewhat blurred. This Les Houches Summer School was set up with the aim of fighting off the excessive specialization evident in many international meetings, and return to the roots. The twofold challenge of setting up a fruitful exchange between experimentalists and theorists in the first place, and between nuclear and hadronic matter physicists in the second place was successfully met. The volume presents high quality, up-to-date reviews starting with an account of the birth and first developments of nuclear physics. Further chapters discuss the description of the nuclear structure, the physics of nuclei at very high spin, the existence of super-heavy nuclei as a consequence of shell structure, liquid-gas transition, including both a description and a review of the experimental situation. Other topics dealt with include the interactions between moderately relativistic heavy ions, the concept of a nucleon dressed by a cloud of pions, the presence of pions in the nucleus, the subnucleonic phenomena in nuclei and quark-gluons deconfinement transition, both theoretical and experimental aspects. Nuclear physics continues to influence many other fields, such as astrophysics, and is also inspired by these same fields. This cross-fertilisation is illustrated by the treatment of neutron stars in one of the final chapters. The last chapter provides an overview of a recent development in which particle and nuclear physicists have cooperated to revitalize an alternative method for nuclear energy

  10. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  11. The 1989 annual report: Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 annual report of the Nuclear Physics Institute (Orsay, France) is presented. The results concerning exotic nuclei and structure studies by means of nuclear reactions are summarized. Research works involving the inertial fusion and the actinides are discussed. Theoretical and experimental work on the following fields is also included: high excitation energy nuclear states, heavy ion collision, intermediate energy nuclear physics, transfer reactions, dibaryonic resonances, thermodiffusion, management of radioactive wastes [fr

  12. Introducing Knowledge Management in Study Program of Nuclear Engineering

    International Nuclear Information System (INIS)

    Pleslic, S.

    2012-01-01

    Nuclear engineering is the branch of engineering concerning application of the fission as well as the fusion of atomic nuclei, and the application of other sub-atomic physics, based on the principles of nuclear physics. In the sub-field of nuclear fission there are many investigations of interactions and maintaining of systems and components like nuclear reactors and nuclear power plants. The field also includes the study of different applications of ionizing radiation (medicine, agriculture...), nuclear safety, the problems of thermodynamics transport, nuclear materials and nuclear fuels, and other related technologies like radioactive waste management. In the area of nuclear science and engineering a big amount of knowledge has been accumulated over the last decades. Different levels of nuclear knowledge were considered in different ways and they were taught to different parts of population as a general human culture and as a general scientific-technical-technological culture (high schools, nuclear information centres, training centres, universities...). An advanced level of nuclear knowledge has been accumulated by many experienced workers, specialists and experts in all nuclear and nuclear-related fields and applications. In the last 20 years knowledge management has established itself as a discipline of enabling individuals, teams and whole organizations to create, share and apply knowledge collectively and systematically, with goal to better achieve their objectives. Also, knowledge management became key strategic approach for management of intellectual assets and knowledge that can improve safety, efficiency and innovation, and lead to preserve and enhance current knowledge. Knowledge management could be applied in education, training, networking, human resource development and capacity building, sharing, pooling and transferring knowledge form centres of knowledge to centres of growth. Considering the critical importance of nuclear knowledge it is important

  13. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1997

    International Nuclear Information System (INIS)

    1998-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1997. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. The main auxiliary equipment consists of a multi-detector system CACTUS, and presently with a unique locally designed silicon strip detector array SIRI. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics

  14. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1996

    International Nuclear Information System (INIS)

    1997-05-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1996. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics

  15. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1996. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics.

  16. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1997. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. The main auxiliary equipment consists of a multi-detector system CACTUS, and presently with a unique locally designed silicon strip detector array SIRI. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics.

  17. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Popkiewicz, M. [eds.

    1997-12-31

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` by NPD director prof. Ch. Droste.

  18. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M. [eds.

    1998-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  19. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M.

    1998-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  20. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Popkiewicz, M.

    1997-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' by NPD director prof. Ch. Droste

  1. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    1989-01-01

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  2. Annual report of Research Center for Nuclear Physics, Osaka University. April 1, 1993 - March 31, 1994

    International Nuclear Information System (INIS)

    Matsuoka, Nobuyuki; Miura, Iwao; Takahisa, Keiji

    1994-01-01

    This volume of the RCNP annual report gives briefly research activities of the RCNP (Research Center for Nuclear Physics), Osaka University, in the academic year of 1993 (April 1993 - March 1994). RCNP is a national nuclear physics laboratory with the AVF cyclotron and the ring cyclotron. This annual report includes major research activities at RCNP as follows. 1) Low-energy nuclear physics by means of the K=140 MeV AVF cyclotron. Nuclear reactions and nuclear structures were studied. 2) Medium-energy nuclear physics by means of the 0.4 GeV ring cyclotron. The new ring cyclotron is in full operation, and several new progresses in the medium energy nuclear physics have been made. In particular, spin-isospin responses for discrete states, giant resonances and for quasi-free scattering processes have been studied by means of charge exchange reactions. 3) Heavy-ion physics with the secondary radio-active nuclear beams. It includes production of radioactive nuclei with large spin-polarization and studies of snow-balls. 4) Non-accelerator physics programs have started in collaboration with the Dept. Phys. group. Neutrino studies by means of double beta decays and dark matter searches by means of scintillators are under progress at the Kamioka underground laboratory. 5) Theoretical works on nuclear structures and nuclear reactions. The RCNP computers are widely used for theoretical studies all over Japan. 6) Developments of accelerators and detector systems. The new external ion-source and the new axial injection line are build in order to increase beam currents. (J.P.N.)

  3. Quark effects in nuclear physics

    International Nuclear Information System (INIS)

    Miller, G.A.

    1983-01-01

    A phenomenological approach which enables the size of quark effects in various nuclear processes is discussed. The principle of conservation of probability provides significant constraints on six quark wave functions. Using this approach, it is found that the low-energy proton-proton weak interaction can be explained in terms of W and Z boson exchanges between quarks. That the value of the asymptotic ratio of D to S state wave functions is influenced (at the 5% level) by quark effects, is another result of our approach. We have not discovered a nuclear effect that can be uniquely explained by quark-quark interactions. However it does seem that quark physics is very relevant for nuclear physics. 52 references

  4. Nuclear Physics from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage

    2011-01-01

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  5. The Nuclear Physics Programme at CERN (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    This lecture series will focus on the two major facilities at CERN for nuclear physics: ISOLDE and nToF. ISOLDE is one of the world's leading radioactive beam facilities which can produce intense beams of unstable nuclei. Some of these beams can also be re-acclerated to energies around the Coulomb barrier and undergo nuclear reactions in turn. ISOLDE can address a wide range of Physics from nuclear structure to nuclear astrophysics (the origin of the chemical elements) and fundamental physics. The second major facility is nToF which is a neutron time-of-flight facility. Intense neutron beams are used to study nuclear reactions important both for nuclear astrophysics and for present and future reactor cycles. An overview will be given of these two facilities including highlights of their Physics programmes and the perspectives for the future.

  6. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2003

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Skwira, I.; Grodner, E.

    2004-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2003 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  7. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Szeflinski, Z.

    1999-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  8. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2004

    International Nuclear Information System (INIS)

    Kirejczyk, M.K.

    2005-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2004 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  9. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kirejczyk, M.; Szeflinski, Z. [eds.

    1999-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  10. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2000

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2000 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in 'Preface' written by NDP director prof. K. Siwek-Wilczynska

  11. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2001

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2001 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one which contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  12. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1999

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2000-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1999 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  13. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, Takeshi.

    1990-10-01

    The work done during the past year or so may be divided into three separate areas, low energy nuclear reactions, intermediate energy physics and nuclear structure studies. In this paper, we shall separately summarize our achievements made in these three areas

  14. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  15. Program-technical complex for collection, processing and archiving of the physical information about chain nuclear reaction based on VMEbus. I. Subsystem for energy supplying control

    International Nuclear Information System (INIS)

    Alpatov, S.V.; Golovanova, Eh.Z.; Gorskaya, E.A.; Dobryanskij, V.M.; Makan'kin, A.M.; Puzynin, V.I.; Samojlov, V.N.; Cheker, A.V.

    1996-01-01

    The substantiation of choice of the hardware and software for integration in program-technical complex is given. The complex is intended for automation of the physical experiments connected with chain nuclear reaction investigations. The subsystem for energy supplying control of experiment is considered in detail. For building the subsystem the 'client-server' architecture is used. The subsystem includes the work station and VMEbus measuring modules in the net. The description of the programs and result formats are given. 5 refs., 6 figs

  16. Why should we study nuclear physics?

    International Nuclear Information System (INIS)

    Darriulat, Pierre

    2015-01-01

    After a brief look at the history of nuclear science and technology in the past hundred years, arguments are given for the study of Nuclear Physics, very different of course from what they were in the middle of the past century. Nuclear physics no longer appears as a good bet to study the strong force. Problems left open by QCD are better addressed by relativistic ion accelerators, RHIC and LHC/Alice. Radioactive Ion Beams have caused a renaissance of experimental nuclear physics. They explore the nuclear equation of state far from the stability valley, discovering new isotopes and new forms of dynamics, such as halo nuclei. They contribute essential data to nuclear astrophysics. They have new applications in medicine and industry. They enjoy strong support all around the world; in Asia, Japan is a leader and Korea and China are joining the club. Nuclear processes are ubiquitous in astrophysics: Big bang nucleosynthesis, Main Sequence stars, evolved stars (Asymptotic Giant Branch and Supernovae). Understanding what is going on requires knowledge from laboratory measurements; at the same time astrophysics gives nuclear physics a laboratory having no equivalent on Earth. Applications of nuclear physics pervade modern societies. Medicine and material sciences, make ample use of radioactive sources and ion beams, as do all branches of agriculture and industry. Accelerators are now commercially available and part of the industrial landscape. Implications on training competent scientists, technicians and engineers are enormous. Particularly crucial are matters of safety. Nuclear Power Plants are a major element of the Vietnamese energy policy in the decades to come. Their safe and efficient operation requires high level skills and competence that cover a broad spectrum of scientific and technical, but also socio-economic and geo-political issues. Nuclear physics must be taught to the young generation in a form that takes proper account of the current scientific

  17. Program summary. Nuclear waste management and fuel cycle programs

    International Nuclear Information System (INIS)

    1982-07-01

    This Program Summary Document describes the US Department of Energy (DOE) Nuclear Waste Management and Fuel Cycle Programs. Particular emphasis is given to near-term, specifically Fiscal Year (FY) 1982, activities. The overall objective of these programs will be achieved by the demonstration of: (1) safe radioactive waste management practices for storage and disposal of high-level waste and (2) advanced technologies necessary to close the nuclear fuel cycle on a schedule which would assure a healthy future for the development of nuclear power in this country

  18. Rutherford, Radioactivity and the Origins of Nuclear Physics

    International Nuclear Information System (INIS)

    Hughes, J

    2012-01-01

    When Ernest Rutherford became Professor of Physics at Manchester University in 1907, he brought with him the research field in which he had played a leading role over the previous few years: radioactivity. Rutherford turned the Manchester physics lab over to studies of radioactivity and radiation, and through his own work and that of his many collaborators and students, established Manchester as a major international centre in atomic physics. It was out of this powerhouse that the nuclear theory of the atom emerged in 1911. In 1917, Rutherford 'disintegrated' the nitrogen nucleus using α-particles, opening up the possibility of nuclear structure. At Cambridge's Cavendish Laboratory from 1919, Rutherford and his co-workers began to explore the constitution of the nucleus. With Chadwick, Aston and others, Rutherford turned his research school to the emergent field of nuclear physics – a field he dominated (though not without controversy) until his death in 1937. Exploring the intellectual, material and institutional cultures of early twentieth century physics, this paper will outline the background to Rutherford's career and work, the experimental and theoretical origins of nuclear theory of the atom and the early development of nuclear physics. (rutherford centennial conference on nuclear physics university of manchester 8-12 august 2011)

  19. Intersections between particle and nuclear physics

    International Nuclear Information System (INIS)

    Van Oers, W.T.H.

    1992-01-01

    This report contains papers on High Energy Physics and Nuclear Physics research. Some of areas covered are: antiproton physics; detectors and instrumentation; accelerator facilities; hadron physics; mesons and lepton decays; physics with electrons and muons; physics with relativistic heavy ions; physics with spin; neutrinos and nonaccelerator physics. The individual paper have been indexed separately elsewhere

  20. A lecture on nuclear physics in primary school

    International Nuclear Information System (INIS)

    Arh, S.

    2004-01-01

    I am going to propose the contents of a lecture on nuclear physics and radioactivity in primary school. Contemporary technology, medicine and science exploit intensively the discovered knowledge about processes in atoms and in a nucleus. Mankind has gained huge profit from peaceful applications of nuclear reactions and ionizing radiation. We use the products of nuclear industry every day. But about half of the school population never hears a professional explanation about what is going on in nuclear power plants. Only on some secondary schools students learn about nuclear physics. The lack of knowledge about nuclear processes is the main reason why people show great fear when hearing the words: radiation, radioactivity, nuclear, etc. At last it is now time to give some fundamental lessons on nuclear physics and radioactivity also to pupils in primary school. From my four-year teaching experience in primary school I am suggesting a programme of lectures on nuclear physics and radioactivity. At the end of the lessons we would visit the Krsko Nuclear Power Plant or the Nuclear Training Centre Milan Copic. This could be included in the so called natural science day. Pupils come from the eight class (14 years old) of primary school and have no problems following the explanation. (author)

  1. Growth points in nuclear physics

    CERN Document Server

    Hodgson, Peter Edward

    1980-01-01

    Growth Points in Nuclear Physics, Volume 2 covers the progress in the fields of nuclear structure and nuclear reactions. This book is composed of three chapters. The first chapter is devoted to nuclear forces and potentials, in particular the optical model potential that enables the elastic scattering of many particles by nuclei to be calculated in a very simple manner. This chapter also deals with the three-body forces and the spin dependence of the nuclear potential. The second chapter describes higher order processes involving two or more stages, specifically their intrinsic interest and th

  2. Status of Iran's nuclear program and negotiations

    International Nuclear Information System (INIS)

    Albright, David

    2014-01-01

    Iran's nuclear program poses immense challenges to international security. Its gas centrifuge program has grown dramatically in the last several years, bringing Iran close to a point where it could produce highly enriched uranium in secret or declared gas centrifuge plants before its breakout would be discovered and stopped. To reduce the risk posed by Iran's nuclear program, the P5+1 have negotiated with Iran short term limits on the most dangerous aspects of its nuclear programs and is negotiating long-term arrangements that can provide assurance that Iran will not build nuclear weapons. These long-term arrangements need to include a far more limited and transparent Iranian nuclear program. In advance of arriving at a long-term arrangement, the IAEA will need to resolve its concerns about the alleged past and possibly on-going military dimensions of Iran's nuclear program

  3. Preparations for the start-up of a research program in nuclear safeguards at Chalmers

    Energy Technology Data Exchange (ETDEWEB)

    Avdic, Senada; Pazsit, Imre

    2004-03-01

    The Department of Reactor Physics at Chalmers University of Technology plans to start-up a research program in nuclear safeguards and nuclear material management. The program is aimed at utilizing the experimental facilities as well as the experience in reactor physics, criticality safety, signal processing and unfolding, and experimental nuclear techniques, in tackling problems in non-destructive assay (NDA) of nuclear materials. For the introductory part of this program, support has been received from the Swedish Nuclear Power Inspectorate to host Dr. Senada Avdic, University of Tuzla, Bosnia, as a post-doc for three months to participate in the preparatory program. The preparations were focussed on a survey of existing active non-destructive assay methods and preparations of their application in the experimental and theoretical/calculational research of our Department. The methods surveyed comprise - the use of a {sup 252}Cf source in active NDA measurements; - planning of an experiment with the existing equipments of the Department; - time correlation measurements with a {sup 252}Cf source and/or a {sup 252}Cf detector; - Monte Carlo simulations of the time correlations between gammas and neutrons from a measurement with a {sup 252}Cf detector: the MCNP-PoliMi code; - Identification of fissile material (enrichment/mass) with {sup 252}Cf measurements; the use of various unfolding techniques (artificial neural networks) for identifying nuclear parameters; use of neutron activation analysis with a neutron generator for determination of distribution of material in an unknown sample; - determination of fissile material content by measurements of delayed neutrons.

  4. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The experimental activities of the nuclear physics group at the University of Oslo have in 1983 as in the previous years mainly been centered around the SCANDITRONIX MC-35 cyclotron. The cyclotron has been in extensive use during the year for low-energy nuclear physics experiments. In addition it has been used for production of radionuclides for nuclear medicine, for experiments in nuclear chemistry and for corrosion and wear studies. After four years of operation, the cyclotron is still the newest nuclear accelerator in Scandinavia. The available beam energies (protons and alpha-particles up to 35 MeV and *sp3*He-particles up to 48 MeV, makes it a good tool for studies of highly excited low-spin states. The well developed on-line computer system has added to its usefulness. Most of the nuclear experiments during the year have been connected with the study of nuclear structure at high temperature. Experimens with the *sp3*He beam have given very interesting results. Theoretical studies have continued in the same field, and there has been a fruitful cooperation between experimental and theoretical physicists. Most of the experiments are performd as joint projects where physicists from two or three Nordic universities take part. (RF)

  5. The online simulation of core physics in nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Qiang

    2005-01-01

    The three-dimensional power distribution in core is one of the most important status variables of nuclear reactor. In order to monitor the 3-D in core power distribution timely and accurately, the online simulation system of core physics was designed in the paper. This system combines core physics simulation with the data, which is from the plant and reactor instrumentation. The design of the system consists of the hardware part and the software part. The online simulation system consists of a main simulation computer and a simulation operation station. The online simulation system software includes of the real-time simulation support software, the system communication software, the simulation program and the simulation interface software. Two-group and three-dimensional neutron kinetics model with six groups delayed neutrons was used in the real-time simulation of nuclear reactor core physics. According to the characteristics of the nuclear reactor, the core was divided into many nodes. Resolving the neutron equation, the method of separate variables was used. The input data from the plant and reactor instrumentation system consist of core thermal power, loop temperatures and pressure, control rod positions, boron concentration, core exit thermocouple data, Excore detector signals, in core flux detectors signals. There are two purposes using the data, one is to ensure that the model is as close as the current actual reactor condition, and the other is to calibrate the calculated power distribution. In this paper, the scheme of the online simulation system was introduced. Under the real-time simulation support system, the simulation program is being compiled. Compared with the actual operational data, the elementary simulation results were reasonable and correct. (author)

  6. U.S.-origin nuclear material removal program

    International Nuclear Information System (INIS)

    Messick, C.E.; Galan, J.J.

    2014-01-01

    The United States (U.S.) Department of Energy (DOE) Global Threat Reduction Initiative's (GTRI) U.S.-Origin Nuclear Material Removal program, also known as the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (FRR SNF AP), was established by the U.S. Department of Energy in May 1996. The program's mission provides a disposition pathway for certain U.S. origin spent nuclear fuel and other weapons-grade nuclear material. The program will continue until May 2016 with an additional three year window for fuel cooldown and transportation. This paper provides an update on recent program accomplishments, current program initiatives and future activities.

  7. Student Scientific Conference - Nuclear Physics, 2008. Proceedings of contributions

    International Nuclear Information System (INIS)

    2008-01-01

    The conference included the following sections: (i) Biophysics and medicine physics; (ii) Experimental physics and theoretical physics; (iii) Nuclear physics; (iv) Informatics; (v) Mathematics; (vi) Theoretical graphics. Contributions of nuclear physics have been inputted to INIS.

  8. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  9. 3.International conference 'Nuclear and Radiation Physics'

    International Nuclear Information System (INIS)

    2001-01-01

    The 3-rd International Conference 'Nuclear and Radiation Physics' was held in Almaty (Kazakhstan) 4-7 June 2001. The primary purpose of the conference is consolidation of the scientists efforts in the area of fundamental and applied investigations on nuclear physics, radiation physics of solids and radioecology. In the conference more than 350 papers were presented by participants from 17 countries

  10. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    Science.gov (United States)

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  11. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  12. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major US Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed in this paper. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. Finally, a list of measures is given for assessing overall physical protection system performance. (author)

  13. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-10-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely-activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. A list of measures is given for assessing overall physical protection system performance. (auth)

  14. Ontario Hydro's nuclear program

    International Nuclear Information System (INIS)

    McCredie, J.

    1984-01-01

    This report briefly describes Ontario Hydro's nuclear program, examining the design and construction status, and the future from Ontario Hydro's perspective. Ontario Hydro relies heavily on nuclear power. Nuclear fuel was responsible for approximately 34% of Ontario Hydro's energy production in 1983. The nuclear proportion was supplied by twelve operating units located: NPD, Douglas Point, Pickering A and B. It is expected that by approximately 1992, 65% of the total energy needs will be generated through nuclear power

  15. METHUSELAH II - A Fortran program and nuclear data library for the physics assessment of liquid-moderated reactors

    International Nuclear Information System (INIS)

    Brinkworth, M.J.; Griffiths, J.A.

    1966-03-01

    METHUSELAH II is a Fortran program with a nuclear data library, used to calculate cell reactivity and burn-up in liquid-moderated reactors. It has been developed from METHUSELAH I by revising the nuclear data library, and by introducing into the program improvements relating to nuclear data, improvements in efficiency and accuracy, and additional facilities which include a neutron balance edit, specialised outputs, fuel cycling, and fuel costing. These developments are described and information is given on the coding and usage of versions of METHUSELAH II for the IBM 7030 (STRETCH), IBM 7090, and KDF9 computers. (author)

  16. Elements of a nuclear criticality safety program

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1995-01-01

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance

  17. Evolution of the physical protection and control of nuclear materials in Brazil

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Renha, G.; Mafra, O.Y.

    2005-01-01

    Full text: Brazil started protecting its nuclear materials soon after the end of the World War II, when the Combined Development Trust intended to control the world supply of uranium and thorium. This happened in 1944, but on December 27, 1946, an amendment to the report of Committee II of the United Nations established that the international ownership of the unexplored uranium and thorium would not be mandatory. Brazil nationalized its thorium and uranium reserves in 1951. The Brazil-Germany agreement signed in 1975 enhanced the need for Brazilian nuclear safeguards and security. The physical protection (PP) and control of nuclear materials (CNM) became activities under the supervision of the Brazilian military forces. The System for Protection of the Brazilian Nuclear Program (SIPRON), established on 7 October 1980, took over the responsibilities for PP and other aspects of the Brazilian nuclear program. The central organ of SIPRON was the Brazilian National Security Council (CSN). The Brazilian Nuclear Energy Commission (CNEN) was in charge of coordinating, among others, the PP sector. Earlier that year - on 3 March 1980 - the Convention on the Physical Protection of Nuclear Material (CPPNM) was signed simultaneously in New York and Vienna. The Brazilian congress approved the CPPNM on 27 November 1984, and the Brazilian government deposited the ratification letter on 17 October 1985. On 16 April 1991 the Brazilian government issued a decree to enforce the CPPNM in the Brazilian territory. CNEN published the regulatory documents NE - 2.01 on 19 April 1996, and NN - 2.02 on 21 September 1999 for PP, and CNM, respectively. CNEN has the ultimate responsibility to enforce these regulations. The operational aspects of PP and CNM in Brazil are still improving. Potential nuclear terrorism for example needs to be examined. Activities concerning training personnel and implementing PP and CNM will be described in the paper. (author)

  18. An overview of activities of nuclear data physics centre of India (NDPCI)

    International Nuclear Information System (INIS)

    Saxena, Alok

    2015-01-01

    India has a three stage nuclear power programme which requires accurate inputs of nuclear data for design and safe operation of existing as well as for the design of new and innovative reactors. Apart from that nuclear data is required for accelerator shield design, personal dosimetry, radiation safety, production of radioisotopes, radiation damage studies, waste transmutation etc. To cater to various needs of department, the Nuclear Data Physics Centre of India (NDPCI) was formed in 2010-11 to provide a platform for coordinated efforts in all aspects of nuclear data, viz., measurements, analysis, compilation and evaluation involving national laboratories and universities in India. The NDPCI has projects / collaborations with universities and various units of department of atomic energy (DAE) across India involving physicist, radio-chemists, reactor physicists and computer engineers. A number of projects have been awarded under NDPCI to various universities to involve faculties and students in nuclear reactions, nuclear structure and EXFOR compilations. The NDPCI is presently a virtual centre under Board of Research in Nuclear Sciences of DAE and functions through two committees namely Program Implementation Committee and Program Review Committee involving scientists and faculties from various divisions of DAE units and universities. A brief account of NDPCI activities carried out by our researchers is described in this report

  19. PREFACE: XXXVI Symposium on Nuclear Physics (Cocoyoc 2013)

    Science.gov (United States)

    Barrón-Palos, Libertad; Morales-Agiss, Irving; Martínez-Quiroz, Enrique

    2014-03-01

    logo The XXXVI Symposium on Nuclear Physics, organized by the Division of Nuclear Physics of the Mexican Physical Society, took place from 7-10 January, 2013. As it is customary, the Symposium was held at the Hotel Hacienda Cocoyoc, in the state of Morelos, Mexico. Conference photograph This international venue with many years of tradition was attended by outstanding physicists, some of them already regulars to this meeting and others who joined us for the first time; a total of 45 attendees from different countries (Argentina, Brazil, Canada, China, Germany, Italy, Japan, Mexico and the United States). A variety of topics related to nuclear physics (nuclear reactions, radioactive beams, nuclear structure, fundamental neutron physics, sub-nuclear physics and nuclear astrophysics, among others) were presented in 26 invited talks and 10 contributed posters. Local Organizing Committee Libertad Barrón-Palos (IF-UNAM)) Enrique Martínez-Quíroz (ININ)) Irving Morales-Agiss (ICN-UNAM)) International Advisory Committee Osvaldo Civitarese (UNLP, Argentina) Jerry P Draayer (LSU, USA)) Alfredo Galindo-Uribarri (ORNL, USA)) Paulo Gomes (UFF, Brazil)) Piet Van Isacker (GANIL, France)) James J Kolata (UND, USA)) Reiner Krücken (TRIUMF, Canada)) Jorge López (UTEP, USA)) Stuart Pittel (UD, USA)) W Michael Snow (IU, USA)) Adam Szczepaniak (IU, USA)) Michael Wiescher (UND, USA)) A list of participants is available in the PDF

  20. Advances in nuclear physics

    CERN Document Server

    Vogt, Erich

    1975-01-01

    Review articles on three topics of considerable current interest make up the present volume. The first, on A-hypernuclei, was solicited by the editors in order to provide nuclear physicists with a general description of the most recent developments in a field which this audience has largely neglected or, perhaps, viewed as a novelty in which a bizarre nuclear system gave some information about the lambda-nuclear intersection. That view was never valid. The very recent developments reviewed here-particularly those pertaining to hypernuclear excitations and the strangeness exchange reactions-emphasize that this field provides important information about the models and central ideas of nuclear physics. The off-shell behavior of the nucleon-nucleon interaction is a topic which was at first received with some embarrassment, abuse, and neglect, but it has recently gained proper attention in many nuclear problems. Interest was first focused on it in nuclear many-body theory, but it threatened nuclear physicists'comf...

  1. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2000-2001

    International Nuclear Information System (INIS)

    Astier, Pierre; Bassler, Ursula; Levy, Jean-Michel; Cossin, Isabelle; Mathy, Jean-Yves

    2002-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2000-2001: 1 - Forewords; 2 - Scientific and technical activities of the laboratory: Physics with accelerators (CP Violation, hadronic physics, proton-antiproton physics, Neutrino beams, LEP, LHC, future linear electron collider); Physics without accelerators (extreme energy cosmic radiation, Cosmology and supernovae, high-energy gamma astronomy); theoretical physics (QCD, phenomenological approaches); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, Internal activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  2. Computational atomic and nuclear physics

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.; McGrory, J.B.

    1990-01-01

    The evolution of parallel processor supercomputers in recent years provides opportunities to investigate in detail many complex problems, in many branches of physics, which were considered to be intractable only a few years ago. But to take advantage of these new machines, one must have a better understanding of how the computers organize their work than was necessary with previous single processor machines. Equally important, the scientist must have this understanding as well as a good understanding of the structure of the physics problem under study. In brief, a new field of computational physics is evolving, which will be led by investigators who are highly literate both computationally and physically. A Center for Computationally Intensive Problems has been established with the collaboration of the University of Tennessee Science Alliance, Vanderbilt University, and the Oak Ridge National Laboratory. The objective of this Center is to carry out forefront research in computationally intensive areas of atomic, nuclear, particle, and condensed matter physics. An important part of this effort is the appropriate training of students. An early effort of this Center was to conduct a Summer School of Computational Atomic and Nuclear Physics. A distinguished faculty of scientists in atomic, nuclear, and particle physics gave lectures on the status of present understanding of a number of topics at the leading edge in these fields, and emphasized those areas where computational physics was in a position to make a major contribution. In addition, there were lectures on numerical techniques which are particularly appropriate for implementation on parallel processor computers and which are of wide applicability in many branches of science

  3. Experimental Nuclear Physics Activity in Italy

    Science.gov (United States)

    Chiavassa, E.; de Marco, N.

    2003-04-01

    The experimental Nuclear Physics activity of the Italian researchers is briefly reviewed. The experiments, that are financially supported by the INFN, are done in strict collaboration by more than 500 INFN and University researchers. The experiments cover all the most important field of the modern Nuclear Physics with probes extremely different in energy and interactions. Researches are done in all the four National Laboratories of the INFN even if there is a deeper involvement of the two national laboratories expressly dedicated to Nuclear Physics: the LNL (Laboratorio Nazionale di Legnaro) and LNS (Laboratorio Nazionale del Sud) where nuclear spectroscopy and reaction dynamics are investigated. All the activities with electromagnetic probes develops in abroad laboratories as TJNAF, DESY, MAMI, ESFR and are dedicated to the studies of the spin physics and of the nucleon resonance; hypernuclear and kaon physics is investigated at LNF. A strong community of researchers work in the relativistic and ultra-relativistic heavy ions field in particular at CERN with the SPS Pb beam and in the construction of the ALICE detector for heavy-ion physics at the LHC collider. Experiments of astrophysical interest are done with ions of very low energy; in particular the LUNA accelerator facility at LNGS (Laboratorio Nazionale del Gran Sasso) succeeded measuring cross section at solar energies, below or near the solar Gamow peak. Interdisciplinary researches on anti-hydrogen atom spectroscopy and on measurements of neutron cross sections of interest for ADS development are also supported.

  4. Student Scientific Conference - Nuclear Physics, 2006. Proceedings of contributions

    International Nuclear Information System (INIS)

    2006-04-01

    The conference included the following sections: (i) Applied mathematics; (ii) Didactics; (iii) Experimental physics and biophysics; (iv) Nuclear physics; (v) Theoretical physics, astronomy, meteorology and Earth physics; (vi) Mathematics; (vii) Theoretical informatics. Contributions of nuclear physics have been inputted to INIS.

  5. U.S.-origin nuclear material removal program

    Energy Technology Data Exchange (ETDEWEB)

    Messick, C.E.; Galan, J.J. [U.S. Department of Energy, Washington, DC (United States). U.S.-Origin Nuclear Material Removal Program

    2014-12-15

    The United States (U.S.) Department of Energy (DOE) Global Threat Reduction Initiative's (GTRI) U.S.-Origin Nuclear Material Removal program, also known as the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (FRR SNF AP), was established by the U.S. Department of Energy in May 1996. The program's mission provides a disposition pathway for certain U.S. origin spent nuclear fuel and other weapons-grade nuclear material. The program will continue until May 2016 with an additional three year window for fuel cooldown and transportation. This paper provides an update on recent program accomplishments, current program initiatives and future activities.

  6. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  7. FOREWORD: Nuclear Physics in Astrophysics V

    Science.gov (United States)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    The fifth edition of the bi-annual 'Nuclear Physics in Astrophysics (NPA)' conference series was held in Eilat, Israel on April 3-8, 2011. This Conference is also designated as the 24th Nuclear Physics Divisional Conference of the EPS. The main purpose of this conference, as that of the four previous ones in this series, is to deal with those aspects of nuclear physics that are directly related to astrophysics. The concept of such a meeting was conceived by the Nuclear Physics Board of the European Physical Society in 1998. At that time, the idea of such a conference was quite new and it was decided that this meeting would be sponsored by the EPS. The first meeting, in January 2001, was planned and organized in Eilat, Israel. Due to international circumstances the conference was moved to Debrecen, Hungary. Subsequent conferences were held in Debrecen again, in Dresden, Germany, and in Frascati, Italy (moved from Gran Sasso due to the tragic earthquake that hit the L'Aquila region). After 10 years the conference finally returned to Eilat, the originally envisioned site. Eilat is a resort town located on the shore of the Gulf of Eilat, which connects Israel to the Red Sea and further south to the Indian Ocean. It commands spectacular views of the desert and mountains, offering unique touristic attractions. The local scientific backdrop of the conference is the fact that the Israeli scientific scene exhibits a wide variety of research activities in many areas of nuclear physics and astrophysics. A new accelerator, SARAF at Soreq Nuclear Research Center is presently undergoing final acceptance tests. SARAF will serve as a platform for production of radioactive ion beams and nuclear-astrophysics research in Israel. The meeting in Eilat was organized by four Israeli scientific institutions, Hebrew University, Soreq Nuclear Research Center, Tel Aviv University and the Weizmann Institute of Science. The welcome reception and lectures were held at the King Solomon hotel and

  8. Foundations of nuclear and particle physics

    CERN Document Server

    Donnelly, T William; Holstein, Barry R; Milner, Richard G; Surrow, Bernd

    2017-01-01

    This textbook brings together nuclear and particle physics, presenting a balanced overview of both fields as well as the interplay between the two. The theoretical as well as the experimental foundations are covered, providing students with a deep understanding of the subject. In-chapter exercises ranging from basic experimental to sophisticated theoretical questions provide an important tool for students to solidify their knowledge. Suitable for upper undergraduate courses in nuclear and particle physics as well as more advanced courses, the book includes road maps guiding instructors on tailoring the content to their course. Online resources including color figures, tables, and a solutions manual complete the teaching package. This textbook will be essential for students preparing for further study or a career in the field who require a solid grasp of both nuclear and particle physics.

  9. Upgrade with a sociocultural focus of the process of teaching-learning of the nuclear physics for the formation and professors' excellence

    International Nuclear Information System (INIS)

    Vazquez Conde, Julio P.

    2003-01-01

    When modernizing the teaching-learning procces of the nuclear physics, to put it in better correspondence with the current sociocultural context and to overcome the limitations presented in the professors formation, It have kept in mind a nucleus of ideas in those that it is synthesized the theoretical and practice experience in the field of the science didactics during the last decades. The idea defend in the investigation is that in correspondence with a sociocultural focus the process teaching-learning of the nuclear physics for the formation and professors should be structured around the most general problems that face the science, the technology and the society. The theoretical contribution of the work resides in the establishment of essential relationships among the teaching-learning of the nuclear physics, the sociocultural focus of the scientific education, the distinctive characteristics of the human psychic activity and of the activity scientist contemporary investigator, The practical contribution of the carried out work resides in the following results. a) strategy for the bring up to date of the process of teaching-learning of the nuclear physics, b) it programs of the subject the nuclear physics in the science, the technology and the society, c) systems of educational tasks, d) it structures basic of a place Web Science and nuclear Technology'', d) it programs computer of simulation of the dispersion of nuclear particles and and) I study on-line Nuclear Physics and the situation of the world'' (Author)

  10. Nuclear Engineering Academic Programs Survey, 2004

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2005-01-01

    This annual report details the number of nuclear engineering bachelor's, master's, and doctoral degrees awarded at a sampling of academic programs from 1998-2004. It also looks at nuclear engineering degrees by curriculum and the number of students enrolled in nuclear engineering degree programs at 31 U.S. universities in 2004

  11. Prof. Ikeda’s important contributions to nuclear physics

    CERN Document Server

    Brink, D M

    2010-01-01

    Professor Ikeda has made many fundamental contributions to nuclear physics, especially to the theory of Gamow-Teller giant resonances, to nuclear cluster physics, to hypernuclear physics, and to the physics of neutron-rich nuclei. He also has played an important role in the education of young researchers in Japan and on the contacts between theoreticians and experimentalists.

  12. Modernization of physical protection educational laboratories in the National Research Nuclear University MEPhI

    Science.gov (United States)

    Geraskin, N. I.; Krasnoborodko, A. A.

    2017-01-01

    Non-proliferation of nuclear materials includes, in addition to accounting and control, the Physical Protection (PP) of one. The paper considers the experience by MEPhI in application the practical educational in the area of PP technical systems. The following aspects are discussed in the paper: specific features graduate program in nuclear security area; overview of the practical course curricula in the special laboratory.

  13. Guidelines for DOE Long Term Civilian Research and Development. Volume III. Basic Energy Sciences, High Energy and Nuclear Physics

    International Nuclear Information System (INIS)

    1985-12-01

    The Research Panel prepared two reports. This report reviews the Department of Energy's Basic Energy Sciences, High Energy Physics, and Nuclear Physics programs. The second report examines the Environment, Health and Safety programs in the Department. This summary addresses the general value and priority of basic research programs for the Department of Energy and the nation. In addition, it describes the key strategic issues and major recommendations for each program area

  14. 4. Mexican School of Nuclear Physics. Papers; 4. Escuela Mexicana de Fisica Nuclear. Notas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, E F; Hernandez, E; Hirsch, J [eds.

    2005-07-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, takes place from June 27 to July 8, 2005 in the Nuclear Sciences and of Physics Institutes of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the matter to who we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University de Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to the 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Nuclear Sciences Institute, UNAM, Physics Institute of UNAM, Coordination of the Scientific Research UNAM, National Institute of Nuclear Research, Nuclear Physics Division of the Mexican

  15. Intersections between particle and nuclear physics

    International Nuclear Information System (INIS)

    Bunce, G.M.

    1988-01-01

    This report contains papers from an AIP conference on the intersections between particle and nuclear physics. Some of the general topics covered are: Accelerator physics; Antiproton physics; Electron and muon physics; Hadron scattering; Hadron spectroscopy; Meson and lepton decays; Neutrino physics; Nonaccelerator and astrophysics; Relativistic heavy-ion physics; and Spin physics. There are 166 papers that will be processed separately

  16. Quarklei: nuclear physics from QCD

    International Nuclear Information System (INIS)

    Goldman, T.

    1985-01-01

    The difficulties posed for nuclear physics by either recognizing or ignoring QCD, are discussed. A QCD model for nuclei is described. A crude approximation is shown to qualitatively reproduce saturation of nuclear binding energies and the EMC effect. The model is applied seriously to small nuclei, and to hypernuclei

  17. Center of Nuclear Physics Data (CNPD), RFNC-VNIIEF

    International Nuclear Information System (INIS)

    Taova, S.

    2011-01-01

    high-precision numerical methods. The procedure of optimum potential automatic search at describing elastic scattering data was implemented and is being under test now. It is planned to present the early calculation results on differential cross sections at the conference 'Nucleus-2011'. The works on obtaining the calculated reaction cross sections with the EMPIRE code are being continued in our Center. The constantly update program version available through the Internet CVN protocol is used. General The report entitled 'Center of Nuclear Physics Data in VNIIEF' was presented last year in Saint-Petersburg at the 60th Meeting on Nuclear Spectroscopy and Nuclear Structure 'Nucleus 2010. Methods of Nuclear Physics for Femto - and Nanotechnologies'. The Center staff takes an active part in preparation of the 61st conference 'Nucleus-2011' which will be held in Sarov, October 10-14, 2011. (author)

  18. PREFACE: 12th Conference on ''Theoretical Nuclear Physics in Italy''

    Science.gov (United States)

    Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.

    2009-07-01

    These Proceedings contain the invited and contributed papers presented at the 12th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 8-10 October 2008. As usual, the meeting was held at il Palazzone, a 16th century castle owned by the Scuola Normale Superiore di Pisa. The aim of this biennal conference is to bring together Italian theorists working in various fields of Nuclear Physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to promote collaborations between different groups. There were about 50 participants at the conference, coming from 14 Italian Universities (Cagliari, Catania, Ferrara, Firenze, Genova, Lecce, Milano, Napoli, Padova, Pavia, Pisa, Roma, Trento, Trieste). The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on six main topics: Few-Nucleon Systems, Nuclear Matter and Nuclear Dynamics, Nuclear Astrophysics, Structure of Hadrons and Hadronic Matter, Nuclear Structure, Nuclear Physics with Electroweak Probes. Winfried Leidemann, Maria Colonna, Marcello Lissia, Elena Santopinto, Silvia Lenzi and Omar Benhar took the burden of giving general talks on these topics and reviewing the research activities of the various Italian groups. In addition, 19 contributed papers were presented, most of them by young participants. In the last session of the Conference there were two invited talks related to experimental activities of great current interest. Gianfranco Prete from the Laboratori Nazionali di Legnaro spoke about the Italian radioactive ion beam facility SPES and the status of the European project EURISOL, while Nicola Colonna from the INFN, Bari, gave an overview of the perspectives of development of fourth-generation nuclear reactors. We would like to thank the authors of the general reports for their hard work in reviewing the main achievements in

  19. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2004-2005

    International Nuclear Information System (INIS)

    Debu, Pascal; Bassler, Ursula; Boratav, Murat; Lacour, Didier; Lebbolo, Herve; Cossin, Isabelle; Mathy, Jean-Yves

    2006-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2004-2005: 1 - Forewords; 2 - Scientific activities: Physics with accelerators (LHC, Tevatron, CP Violation, future linear electron collider, Neutrino beams); Physics without accelerators (Cosmology and supernovae, high-energy gamma astronomy, extreme energy cosmic radiation, theoretical physics, physics-biology interface); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration, health and safety, radiation protection); 4 - Laboratory life (Teaching, training, internships and PhDs); 5 - Internal activities (seminars, meetings..); 6 - External activities (Public information, relations with the industry, valorisation..); 7 - List of publications; 8 - Appendixes: organigram, staff

  20. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2002-2003

    International Nuclear Information System (INIS)

    Dagoret-Campagne, Sylvie; Roos, Lydia; Schwemling, Philippe; Cossin, Isabelle; Mathy, Jean-Yves

    2004-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2002-2003: 1 - Forewords; 2 - Scientific and technical activities of the laboratory: Physics with accelerators (CP Violation, proton-antiproton physics, LHC, Neutrino beams, LEP, future linear electron collider); Physics without accelerators (extreme energy cosmic radiation, Cosmology and supernovae, high-energy gamma astronomy); theoretical physics (QCD, phenomenological approaches); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, Internal activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - Appendix: staff

  1. Learning to Embrace Nuclear Physics through Education

    International Nuclear Information System (INIS)

    Avadanei, Camelia

    2010-01-01

    Due to its achievements, nuclear physics is more and more present in life of every member of the society. Its applications in the medical field and in nuclear energy, as well as the advanced research, always pushing the limits of science towards micro cosmos and macro cosmos, are subjects frequently presented in the media. In addition to their invaluable benefits, these achievements involve also particular rules to prevent potential risks. These risks are also underlined by the media, often being presented in an unfriendly manner. Specialists in nuclear physics are familiar with these problems complying with the specific rules in order to reduce risks at insignificant levels. The development of a specific field ('Radiation protection') defining norms and requirements for 'assuring the radiological safety of the workers, population and environment', and its dynamics represent a proof of a responsible attitude regarding nuclear safety. Dedicated international bodies and experts analyze and rigorously evaluate risks in order to draw the right ways of managing activity in the field. The improvement of the formal and informal education of public regarding the real risks of nuclear applications is very important in order to understand and better assimilate some general rules concerning the use of these techniques, as well as for their correct perception, leading to an increase of interest towards nuclear physics. This educational update can be started even from elementary school and continued in each stage of formal education in adapted forms. The task of informing general public is to be carried out mainly by specialists who, unlike 30-40 years ago, can rely on a much more efficient generation of communications' mean. Taking into account the lack of interest for nuclear, an attractive way of presenting the achievements and future possibilities of nuclear physics would contribute to youth orientation towards specific universities in order to become next generation of

  2. Learning to Embrace Nuclear Physics through Education

    Science.gov (United States)

    Avadanei, Camelia

    2010-01-01

    Due to its achievements, nuclear physics is more and more present in life of every member of the society. Its applications in the medical field and in nuclear energy, as well as the advanced research, always pushing the limits of science towards micro cosmos and macro cosmos, are subjects frequently presented in the media. In addition to their invaluable benefits, these achievements involve also particular rules to prevent potential risks. These risks are also underlined by the media, often being presented in an unfriendly manner. Specialists in nuclear physics are familiar with these problems complying with the specific rules in order to reduce risks at insignificant levels. The development of a specific field ("Radiation protection") defining norms and requirements for "assuring the radiological safety of the workers, population and environment," and its dynamics represent a proof of a responsible attitude regarding nuclear safety. Dedicated international bodies and experts analyze and rigorously evaluate risks in order to draw the right ways of managing activity in the field. The improvement of the formal and informal education of public regarding the real risks of nuclear applications is very important in order to understand and better assimilate some general rules concerning the use of these techniques, as well as for their correct perception, leading to an increase of interest towards nuclear physics. This educational update can be started even from elementary school and continued in each stage of formal education in adapted forms. The task of informing general public is to be carried out mainly by specialists who, unlike 30-40 years ago, can rely on a much more efficient generation of communications' mean. Taking into account the lack of interest for nuclear, an attractive way of presenting the achievements and future possibilities of nuclear physics would contribute to youth orientation towards specific universities in order to become next generation of

  3. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  4. A comparative study of European nuclear energy programs

    Energy Technology Data Exchange (ETDEWEB)

    Presas i Puig, Albert [ed.

    2011-07-01

    The report includes the following contributions: Comparative study of European Nuclear Energy Programs. From international cooperation to the failure of a national program: the Austrian case. The ''go-and-stop'' of the Italian civil nuclear programs, among improvisations, ambitions and conspiracy. Nuclear energy in Spain - a research agenda for economic historians. The Portuguese nuclear program: a peripheral experience under dictatorship (1945-1973). The nuclear energy programs in Switzerland. The rise and decline of an independent nuclear power industry in Sweden, 1945-1970. The German fast breeder program, a historical review. Fast reactors as future visions - the case of Sweden. Transnational flows of nuclear knowledge between the U.S. and the U.K. and continental Europe in the 1950/60s. The Carter administration and its non-proliferation policies: the road to INFCE.

  5. Exploratory study of the radiation-protection training programs in nuclear power plants

    International Nuclear Information System (INIS)

    Fields, C.D.

    1982-06-01

    The objective of the study was to examine current radiation training programs at a sample of utilities operating nuclear reactors and to evaluate employee information on radiation health. The study addressed three elements: (1) employee perceptions and understanding of ionizing radiation; (2) utility trainers-their background, training, and problems; (3) the content, materials, and conduct of training programs; (4) program uniformity and completeness. These areas were examined through visits to utilities, surveys, and employee interviews. The programs reviewed were developed by utility personnel who have backgrounds, for the most part, in health physics but who may have little formal training in adult education. This orientation, coupled with the inherent nature of the subject, has produced training programs that appear to be too technical to achieve the educational job intended. The average nuclear power plant worker does not have the level of sophistication needed to understand some of the information. It became apparent that nuclear power plant workers have concerns that do not necessarily reflect those of the scientific community. Many of these result from misunderstandings about radiation. Unfortunately, the training programs do not always address these unfounded but very real fears

  6. Approaches to Education and Training for Kenya's Nuclear Power Program

    International Nuclear Information System (INIS)

    Kalambuka, H.A.

    2014-01-01

    1. Review of status and development of E and T for the nuclear power program in Kenya; 2. Review of challenges in nuclear E and T, and the initiatives being undertaken to mitigate them: • Recommendations for strategic action; 3. State of nuclear skills in the context of key drivers of the global revival in nuclear energy; 4. Point of view: Education in Applied Nuclear and Radiation physics at Nairobi: • Its growth has helped identify the gaps, and relevant practical approaches for realizing the broad spectrum of technical capacity to conduct a national NPP; 5. Proposed approach to support the E and T infrastructure necessary to allow the country to plan, construct, operate, regulate, and safely and securely handle nuclear facilities sustainably; 6. Specified E and T initiatives in the context of the national industrial development strategy and nuclear energy policy and funding for the complete life cycle and technology localization. (author)

  7. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  8. High Performance Computing and Storage Requirements for Nuclear Physics: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wasserman, Harvey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-04-30

    In April 2014, NERSC, ASCR, and the DOE Office of Nuclear Physics (NP) held a review to characterize high performance computing (HPC) and storage requirements for NP research through 2017. This review is the 12th in a series of reviews held by NERSC and Office of Science program offices that began in 2009. It is the second for NP, and the final in the second round of reviews that covered the six Office of Science program offices. This report is the result of that review

  9. Main Achievements 2003-2004 - Nuclear Physics

    International Nuclear Information System (INIS)

    2005-01-01

    Two Departments of our Institute are engaged in nuclear studies, in the following areas: studies of the nuclear reaction mechanism at low, intermediate and high energies, studies of nuclear structure by means of gamma spectroscopy, and theoretical research concerning nuclear structure and reaction mechanisms. Most of these studies are carried out in the form of international collaborations with the world-leading nuclear physics experimental facilities. Our physicists usually play an important role in these collaborative projects and often lead them. Nuclear structure experiments were performed mainly within the following European Large Scale Facilities: ALPI-INFN-Legnaro, VIVITRONIReS-Strasbourg, UNILAC/SIS-GSI-Darmstadt, K100-Cyclotron-Jyvaeskylea with the use of the GASP, GARFIELD, EUROBALL, ICARE, RISING + FRS, RITU+JUROGAM systems and with the application of RFD, HECTOR, DIAMANT, EUCLIDES ancillary detectors. Experimental data were also obtained at the Argonne National Laboratory, USA, with the GAMMASPHERE array and the ATLAS accelerator. In addition, we are involved in planning the experiments for the project of international accelerator facility of the next generation FAIR (Facility for Antiproton and Ion Research) at GSI. The nuclear reaction experiments were performed at the Joint Institute of Nuclear Physics in Dubna (collaborations FASA and COMBAS), in GANIL in Caen, in the Forschungszentrum Juelich at the accelerator COSY in the framework of collaboration PISA, as well as at the Warsaw Laboratory of Heavy Ions. The hadronic nuclear physics experiments were carried out exclusively at the Forschungszentrum Juelich where we have participated in international collaborations COSY11, GEM and HIRES. Recently, we have joined international detector project WASA planned at Forschungszentrum Juelich and plan to participate in the project PANDA, being constructed in GSI Darmstadt. Both detectors will be devoted to low and intermediate hadronic physics. We also

  10. Proceedings of the symposium on frontier nuclear physics (FRONP99)

    International Nuclear Information System (INIS)

    Chiba, Satoshi

    2000-01-01

    The symposium on Frontier Nuclear Physics (FRONP99), organized by the Research Group for Hadron Science, Advanced Science Research Center, under close cooperation with the Research Center for Nuclear Physics, Osaka University and High Energy Accelerator Research Organization, was held at Tokai Research Establishment of JAERI on August 2 to 4, 1999. The symposium was devoted for discussions and presentations of research results in wide variety of fields such as hyper nuclear physics, lepton nuclear physics, quark nuclear physics, unstable nuclear physics, superheavy elements and heavy-ion physics. Three talks on the joint project between JAERI (Neutron Science Research Center) and KEK (JHF) were presented in a public session. Thirty three talks on these topics presented at the symposium aroused lively discussions among approximately 70 participants. This report contains 26 papers submitted from the lecturers. (author)

  11. IAEA nuclear security program

    Energy Technology Data Exchange (ETDEWEB)

    Ek, D. [International Atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  12. IAEA nuclear security program

    International Nuclear Information System (INIS)

    Ek, D.

    2006-01-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  13. Nuclear detectors. Physical principles of operation

    International Nuclear Information System (INIS)

    Pochet, Th.

    2005-01-01

    Nuclear detection is used in several domains of activity from the physics research, the nuclear industry, the medical and industrial sectors, the security etc. The particles of interest are the α, β, X, γ and neutrons. This article treats of the basic physical properties of radiation detection, the general characteristics of the different classes of existing detectors and the particle/matter interactions: 1 - general considerations; 2 - measurement types and definitions: pulse mode, current mode, definitions; 3 - physical principles of direct detection: introduction and general problem, materials used in detection, simple device, junction semiconductor device, charges generation and transport inside matter, signal generation; 4 - physical principles of indirect detection: introduction, scintillation mechanisms, definition and properties of scintillators. (J.S.)

  14. Nuclear Physics Group progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1985-02-01

    This report summarises the work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period January-December 1983. Commissioning of the EN-tandem electrostatic accelerator continued, with the first proton beam produced in June. Many improvements were made to the vacuum pumping and control systems. Applications of the nuclear microprobe on the 3MV accelerator continued at a good pace, with applications in archaeometry, dental research, studies of glass and metallurgy

  15. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-07

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German “hub” for visits of U.S. physicists, while Jefferson Lab served as the corresponding “hub” for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theory Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.

  16. Physical aspects of quality assurance in nuclear medicine and radiotherapy, regulatory approach of the National Nuclear Safety Center

    International Nuclear Information System (INIS)

    Gonzalez C, D.; Fuente P, A. de la; Quevedo G, J.R.; Lopez F, Y.; Varela C, C.

    2006-01-01

    The physical aspects of the quality guarantee in Nuclear Medicine and Radiotherapy its are of cardinal importance to guarantee the quality of the diagnoses and treatments that are carried out to the patients in this type of services. The OIEA, the OMS and other scientific and professional organizations have contributed significantly to the elaboration of recommendations, Protocols, etc. applicable in the quality control programs and safety of the Nuclear Medicine and Radiotherapy departments. In spite of the great effort developed in this sense the Installation of the programs of quality control and safety of the Nuclear Medicine and Radiotherapy departments can fail if the same ones are not based in three decisive elements that are: the existence of national regulations, the existence of the infrastructure required for it and the existence of enough qualified personnel to develop this programs. The present work shows the regulatory focus that on this topic, it has followed the National Center of Nuclear Safety of Cuba (CNSN). The same left of strengthen all the existent Synergies in the different organizations of the country and it went in two fundamental directions: installation of the regulatory requirements that govern this activity and the Authorization of a Cuban Entity, specialized in carrying out audits to the quality control and safety programs of the Nuclear Medicine and Radiotherapy departments. After 4 work years in this direction, the results confirm the validity of the experience developed by the CNSN, at the moment all the services of Nuclear Medicine and Radiotherapy of Cuba possess quality control and safety programs, these programs are annually Auditing by an Authorized entity by the CNSN and the Inspectors of the Regulatory Authority, control, during the inspections, the one execution of the established requirements in the national regulations. The work developed so far can serve, modestly, of reference to others countries of Latin America that

  17. The 26th International Nuclear Physics Conference

    Science.gov (United States)

    It was a pleasure to welcome all delegates and accompanying persons to Adelaide for the 26th International Conference in Nuclear Physics, INPC2016. As the major meeting in our field, it was a wonderful opportunity to catch up with colleagues from around the world, learn about the very latest developments and share ideas. We were grateful for the support of the Commission on Nuclear Physics, C12, of the International Union of Pure and Applied Physics (IUPAP), which chose Adelaide to host this meeting. We were also honoured that the President of IUPAP, Prof. Bruce McKellar was present at the meeting to welcome delegates and participate in the proceedings. We acknowledge the financial support for the conference which was made available by a number of organisations. We were especially grateful to the major sponsors, the Adelaide Convention Bureau, the University of Adelaide, the Australian National University and ANSTO, as well as IUPAP, the ARC Centre of Excellence for Particle Physics at the Terascale (CoEPP) and several of the world's major nuclear physics laboratories, BNL, GSI, JLab and TRIUMF. As a result of these contributions we were able to offer support to attend the conference to more than 50 international students. Not only did we have a superb scientific program but, consistent with IUPAP guidelines, more than 40% of the invited plenary talks were presented by women. In order to reach out to the local community, Cynthia Keppel (from JLab) presented a public lecture on Hadron Beam Therapy on Tuesday evening, September 13th. As presenting a talk is now often a condition for financial support to attend an international conference, there were 11 simultaneous parallel sessions with more than 350 presentations. We are especially grateful to the International Advisory Committee, the Program Committee and the Conveners whose advice and hard work made it possible for all this to come together. I would also like to acknowledge the work of the Local Organising

  18. National practices in physical protection of nuclear materials. Regulatory basis

    International Nuclear Information System (INIS)

    Goltsov, V.Y.

    2002-01-01

    Full text: The Federal law 'On The Use Of Atomic Energy' containing the section on physical protection of nuclear materials and nuclear facilities was issued in 1995 in Russian Federation. This document became the first federal level document regulating the general requirements to physical protection (PP). The federal PP rules developed on the base of this law by Minatom of Russia and other federal bodies of the Russian Federation were put in force by the government of Russia in 1997. The requirements of the convention on physical protection of nuclear materials (INFCIRC 274) and the modern IAEA recommendations (INFCIRC/225/Rev.4) are taken into account in the PP rules. Besides, while developing the PP rules the other countries' experience in this sphere has been studied and taken into account. The PP rules are action-obligatory for all juridical persons dealing with nuclear activity and also for those who are coordinating and monitoring this activity. Nuclear activity without physical protection ensured in accordance with PP rules requirements is prohibited. The requirements of PP Rules are stronger than the IAEA recommendations. The PP rules are establishing: physical protection objectives; federal executive bodies and organizations functions an implementation of physical protection; categorization of nuclear materials; requirements for nuclear materials physical protection as during use and storage as during transportation; main goals of state supervision and ministry level control for physical protection; notification order about the facts of unauthorized actions regarding nuclear materials and facilities. Besides the above mentioned documents, there were put in force president decrees, federal laws and regulations in the field of: counteraction to nuclear terrorism; interactions in physical protection systems; military and ministerial on-site guard activities; information protection. By the initiative of Minatom of Russia the corrections were put into the

  19. India's nuclear program

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    India made an early commitment to being as self-sufficient as possible in nuclear energy and has largely achieved that goal. The country operates eight nuclear reactors with a total capacity of 1,304 MWe, and it remains committed to an aggressive growth plan for its nuclear industry, with six reactors currently under construction, and as many as twelve more planned. India also operates several heavy water production facilities, fabrication facilities, reprocessing works, and uranium mines and mills. Due to India's decision not to sign the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), the country has had to develop nearly all of its nuclear industry and infrastructure domestically. Overall, India's nuclear power program is self-contained and well integrated, with plans to expand to provide up to ten percent of the country's electrical generating capacity

  20. The Chinese nuclear program

    International Nuclear Information System (INIS)

    Prenez, J.C.; Bettoun, G.

    2009-01-01

    This series of slides presents the organization of the Chinese nuclear industry and its perspectives for the 2 next decades. The presentation is divided into 5 parts. Part one: the energy sector in China. Due to the economic development of the country this sector is flourishing and reaches an average growth rate of 9% per year. More than fifty per cent of the power plants being built in the world, are located in China. The electricity production stems by far from fossil energies (>80%) but this part is expected to decrease to reach 70% in 2020. Part 2: the Chinese nuclear program. This program is dual: the massive deployment of chinese improved reactors of second generation (the construction of 6 CPR1000 reactors will be launched each year) and the import and assimilation of reactors of the third generation: 4 AP1000 and 2 EPR are being built. Part 3: the organization of the Chinese nuclear sector. The main actors are CNNC (China National Nuclear Corporation), CGNPC (China Guangdong Nuclear Power Corporation), CPI (China Power Investment Corporation), SNPTC (State Nuclear Power Technology Corporation). The main 5 Chinese suppliers are also presented. Part 4: The role of EDF. Today's EDF role is multiple: to be active in the Chinese nuclear program, to go beyond technical assistance to reach partnership, to invest in Chinese power plants, to promote cooperation between French and Chinese actors of the nuclear industry. A lot of joint ventures have been created. Part 5: the Taishan project. Taishan is a coastal site near Macao in the Guangdong province in which 2 EPR are being built, the first concrete was cast in october 2009, 52 months of construction are scheduled and the first unit will be commissioned in end 2013 while the second commissioning is planned for end 2014. (A.C.)

  1. Research in theoretical nuclear physics, Nuclear Theory Group. Progress report

    International Nuclear Information System (INIS)

    Brown, G.E.; Jackson, A.D.; Kuo, T.T.S.

    1984-01-01

    Primary emphasis is placed on understanding the nature of nucleon-nucleon and meson-nucleon interactions and on determining the consequences of such microscopic interactions in nuclear systems. We have constructed models of baryons which smoothly interpolate between currently popular bag and Skyrme models of hadrons and provide a vehicle for introducing the notions of quantum chromodynamics to low energy nuclear physics without violating the constraints of chiral invariance. Such models have been used to study the nucleon-nucleon interaction, the spectrum of baryons, and the important question of the radius of the quark bag. We have used many-body techniques to consider a variety of problems in finite nuclei and infinite many-body systems. New light has been shed on the nuclear coexistence of spherical and deformed states in the A = 18 region as well as the role of genuine three-body forces in this region. Phenomenological studies of infinite systems have led to a number of predictions particularly regarding the spin-polarized quantum liquids of current experimental interest. Microscopic many-body theories, based on the parquet diagrams, have been improved to a fully quantitative level for the ground state properties of infinite many-body systems. Finite temperature theories of nuclear matter, important in the study of heavy ion reactions, have been constructed. An expanded program in heavy ion theory has led to major advances in the multi-dimensional barrier penetration problem. Activities in nuclear astrophysics have provided a far more reliable description of the role of electron capture processes in stellar collapse. As a consequence, we have been able to perform legitimate calculations of the unshocked mass in Type II supernovae

  2. Canadian Nuclear Safety Commission's intern program

    International Nuclear Information System (INIS)

    Gilmour, P.E.

    2002-01-01

    The Intern Program was introduced at the Canadian Nuclear Safety Commission, Canada's Nuclear Regulator in response to the current competitive market for engineers and scientists and the CNSC's aging workforce. It is an entry level staff development program designed to recruit and train new engineering and science graduates to eventually regulate Canada's nuclear industry. The program provides meaningful work experience and exposes the interns to the general work activities of the Commission. It also provides them with a broad awareness of the regulatory issues in which the CNSC is involved. The intern program is a two-year program focusing on the operational areas and, more specifically, on the generalist functions of project officers. (author)

  3. Towards a conceptual diagnostic survey in nuclear physics

    International Nuclear Information System (INIS)

    Kohnle, Antje; Mclean, Stewart; Aliotta, Marialuisa

    2011-01-01

    Understanding students' prior beliefs in nuclear physics is a first step towards improving nuclear physics instruction. This paper describes the development of a diagnostic survey in nuclear physics covering the areas of radioactive decay, binding energy, properties of the nuclear force and nuclear reactions, that was administered to students at two institutions in a pre- and post-test design. The pre-test was given in a free-text entry format, with responses being used to develop a multiple-choice version that was given as a post-test. We performed statistical tests to evaluate the reliability and discriminatory power. Students' reasoning comments and rated certainties in their responses were used to determine students' misconceptions. We give details of misconceptions in the areas of radioactive decay, binding energy and nuclear density, and discuss possible underlying reasons for these misconceptions.

  4. Management of Spent Nuclear Fuel of Nuclear Research Reactor VVR-S at the National Institute of Physics and Nuclear Engineering, Bucharest, Romania

    Science.gov (United States)

    Biro, Lucian

    2009-05-01

    The Nuclear Research Reactor VVR-S (RR-VVR-S) located in Magurele-Bucharest, Romania, was designed for research and radioisotope production. It was commissioned in 1957 and operated without any event or accident for forty years until shut down in 1997. In 2002, by government decree, it was permanently shutdown for decommissioning. The National Institute of Physics and Nuclear Engineering (IFIN-HH) is responsible for decommissioning the RR-VVR-S, the first nuclear decommissioning project in Romania. In this context, IFIN-HH prepared and obtained approval from the Romanian Nuclear Regulatory Body for the Decommissioning Plan. One of the most important aspects for decommissioning the RR-VVR-S is solving the issue of the fresh and spent nuclear fuel (SNF) stored on site in wet storage pools. In the framework of the Russian Research Reactor Fuel Return Program (RRRFR), managed by the U.S. Department of Energy and in cooperation with the International Atomic Energy Agency and the Rosatom State Corporation, Romania repatriated all fresh HEU fuel to the Russian Federation in 2003 and the HEU SNF will be repatriated to Russia in 2009. With the experience and lessons learned from this action and with the financial support of the Romanian Government it will be possible for Romania to also repatriate the LEU SNF to the Russian Federation before starting the dismantling and decontamination of the nuclear facility. [4pt] In collaboration with K. Allen, Idaho National Laboratory, USA; L. Biro, National Commission for Nuclear Activities Control, Romania; and M. Dragusin, National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania.

  5. Nuclear physics II

    International Nuclear Information System (INIS)

    Elze, T.

    1988-01-01

    This script consisting of two parts contains the matter of the courses Nuclear Pyhsics I and II, as they were presented in the winter term 1987/88 and summer term 1988 for students of physics at Frankfurt University. In the present part II the matter of the summer term is summarized. (orig.) [de

  6. SNAP: a tool for nuclear physical protection system modeling

    International Nuclear Information System (INIS)

    Engi, D.; Grant, F.H. III.

    1979-10-01

    Nuclear safeguards systems are concerned, in part, with the physical protection of nuclear materials. The function of a physical protection system is to define the facility against adversary activities which could lead to theft of nuclear material or sabotage resulting in a radiological release. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system analysis. This paper describes a detailed application of SNAP to a hypothetical nuclear facility

  7. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  8. Nuclear physics and ideas of quantum chaos

    International Nuclear Information System (INIS)

    Zelevinsky, V.G.

    2002-01-01

    The field nowadays called 'many-body quantum chaos' was started in 1939 with the article by I.I. Gurevich studying the regularities of nuclear spectra. The field has been extensively developed recently, both mathematically and in application to mesoscopic systems and quantum fields. We argue that nuclear physics and the theory of quantum chaos are mutually beneficial. Many ideas of quantum chaos grew up from the factual material of nuclear physics; this enrichment still continues to take place. On the other hand, many phenomena in nuclear structure and reactions, as well as the general problem of statistical physics of finite strongly interacting systems, can be understood much deeper with the help of ideas and methods borrowed from the field of quantum chaos. A brief review of the selected topics related to the recent development is presented

  9. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  10. Applied nuclear physics group - activities report. 1977-1997

    International Nuclear Information System (INIS)

    Appoloni, Carlos Roberto

    1998-06-01

    This report presents the activities conducted by the Applied Nuclear Physics group of the Londrina State University - Applied Nuclear Physics Laboratory - Brazil, from the activities beginning (1977) up to the end of the year 1997

  11. Nuclear and high-energy physics laboratory - LPNHE. Activity report 1998-1999

    International Nuclear Information System (INIS)

    Vaissiere, Christian de la; Banner, Marcel; Faivre, Maria; Moine, Marguerite; Dumas, Jean-Marc; Jos, Jeanne

    2000-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 1998-1999: 1 - Forewords; 2 - Physics experiments: LHC Physics with ATLAS, search for new physics at LEP, DIRAC experiment, Neutrinos oscillation with NOMAD, TONIC and HERA-H1 experiments, CP Violation (BaBar), DΦ experiment at Tevatron, high-energy gamma astronomy, Supernovae, Pierre Auger Laboratory); 3 - Technical activities and means (electronics, computers, mechanics departments); 4 - Laboratory life (Teaching, Administration and general services, Internal and external activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  12. Nuclear and high-energy physics laboratory - LPNHE. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Vaissiere, Christian de la; Boniface, Nicole; Dumas, Jean-Marc; Jos, Jeanne

    1998-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 1996-1997: 1 - Forewords; 2 - Physics experiments: LHC Physics with ATLAS, search for new physics at LEP (DELPHI), Neutrinos oscillation DIRAC experiment, Neutrinos oscillation (NOMAD, TONIC), HERA-H1 experiment, CP Violation (BaBar), DΦ experiment at Tevatron, study of gamma radiation sources (CAT), Supernovae, Auger Laboratory project; 3 - Technical activities and means (electronics, computers, mechanics departments); 4 - Laboratory life (Teaching, Administration and general services, Internal and external activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  13. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  14. National nuclear scientific program

    International Nuclear Information System (INIS)

    Plecas, I.; Matausek, M.V.; Neskovic, N.

    2001-01-01

    National scientific program of the Vinca Institute Nuclear Reactors And Radioactive Waste comprises research and development in the following fields: application of energy of nuclear fission, application of neutron beams, analyses of nuclear safety and radiation protection. In the first phase preparatory activities, conceptual design and design of certain processes and facilities should be accomplished. In the second phase realization of the projects is expected. (author)

  15. Education in nuclear physics, medical physics and radiation protection in medicine and veterinary medicine

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.; Andric, S.

    2001-01-01

    Education in Nuclear Physics, Medical Physics and Radiation Protection in medicine and veterinary medicine studies on Belgrade University is an integral part of the curriculum, incorporated in different courses of graduate and post-graduate studies. During graduate studies students get basic elements of Nuclear Physics through Physics and/or Biophysics courses in the 1 st year, while basic knowledge in Medical Physics and Radiation Protection is implemented in the courses of Radiology, Physical Therapy, Radiation Hygiene, Diagnostic Radiology and Radiation Therapy in the 4 th or 5 th year. Postgraduate studies offer MSc degree in Radiology, Physical Therapy, while courses in Nuclear Physics, Nuclear Instrumentation, Radiation Protection and Radiology are core or optional. On the Faculty of Veterinary Medicine graduated students may continue their professional education and obtain specialization degree in Radiology, Physical Therapy or Radiation Protection. On the Faculty of Medicine there are specialization degrees in Medical Nuclear Physics. Still, a closer analysis reveals a number of problems both from methodological and cognitive point of view. They are related mostly to graduate students ability to apply their knowledge in practise and with the qualifications of the educators, as those engaged in graduate studies lack basic knowledge in biological and medical sciences, while those engaged in post graduate studies mostly lack basic education in physics. Therefore, a reformed curricula resulting from much closer collaboration among educators, universities and professional societies at the national level should be considered. (author)

  16. Theoretical study of nuclear physics with strangeness at Nankai University

    International Nuclear Information System (INIS)

    Ning Pingzhi

    2007-01-01

    Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the properties of kaonic nuclei. (authors)

  17. Perspectives of experimental nuclear physics research at RBI Croatia

    International Nuclear Information System (INIS)

    Soic, N.

    2009-01-01

    Experimental nuclear physics has been one of the top research activities at the Rudjer Boskovic Institute, the largest and leading Croatian research center in science and applications. The RBI nuclear physics group has strong link with the researchers at the University of Zagreb. RBI scientists perform experiments at the RBI Tandem accelerator facility and at the top European experimental facilities in collaboration with the prominent research groups in the field. Current status of the RBI experimental nuclear physics research and our recent activities aimed to strengthen our position at the RBI and to increase our international reputation and impact in collaborative projects will be presented. Part of these activities is focused on local accelerator facilities, at present mainly used for application research, and their increased usage for nuclear physics research and for development and testing of novel research equipment for large international facilities. Upgrade of the local research equipment is on the way through FP7 REGPOT project 'CLUNA: Clustering phenomena in nuclear physics: strengthening of the Zagreb-Catania-Birmingham partnership'. Recently, steps to exploit potential of the facility for nuclear astrophysics research have been initiated. Possible future actions for further strengthening of the RBI experimental nuclear physics research will be discussed.(author)

  18. Developments in the Nuclear Safeguards and Security Engineering Degree Program at Tomsk Polytechnic University

    International Nuclear Information System (INIS)

    Boiko, Vladimir I.; Demyanyuk, Dmitry G.; Silaev, Maxim E.; Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.

    2009-01-01

    Over the last six years, Tomsk Polytechnic University (TPU) has developed a 5 1/2 year engineering degree program in the field of Material Protection Control and Accounting (MPC and A). In 2009 the first students graduated with this new degree. There were 25 job offers from nuclear fuel cycle enterprises of Russia and Kazakhstan for 17 graduates of the program. Due to the rather wide selection of workplaces, all graduates have obtained positions at nuclear enterprises. The program was developed within the Applied Physics and Engineering Department (APED). The laboratory and methodological base has been created taking into consideration the experience of the similar program at the Moscow Engineering Physics Institute (MEPhI). However, the TPU program has some distinguishing features such as the inclusion of special courses pertaining to fuel enrichment and reprocessing. During the last two years, three MPC and A laboratories have been established at APED. This was made possible due to several factors such as establishment of the State innovative educational program at TPU, assistance of the U.S. Department of Energy through Pacific Northwest National Laboratory and Los Alamos National Laboratory, and the financial support of the Swedish Radiation Safety Authority and some Russian private companies. All three of the MPC and A laboratories are part of the Innovative Educational Center 'Nuclear Technologies and Non-Proliferation,' which deals with many topics including research activities, development of new curricula for experts training and retraining, and training of master's students. In 2008, TPU developed a relationship with the International Atomic Energy Agency (IAEA), which was familiarized with APED's current resources and activities. The IAEA has shown interest in creation of a master's degree educational program in the field of nuclear security at TPU. A future objective is to acquaint nuclear fuel cycle enterprises with new APED capabilities and involve

  19. Ontario Hydro's nuclear program

    International Nuclear Information System (INIS)

    Jackson, H.A.

    1982-06-01

    In 1981 Ontario Hydro generated over 100 billion KWh of electrical energy. Approximately one third of this was from nuclear units. There are ten CANDU units (5 250 MW) currently in operation, and another twelve (8 600 MW) are under construction. The presently committed nuclear expansion program is estimated to involve expenditures of 16 billion dollars over the next 10 years. About 10 000 people are employed in the nuclear design and construction program. All projects are generally on schedule, with the stations coming into service during the following time periods: Pickering B, 1983-85; Bruce B, 1984-87; Darlington, 1988-90. The status of each project is reviewed. Planning is underway for some retubing projects, as early as 1985 for Pickering A

  20. Concrete Technology program for nuclear power plants

    International Nuclear Information System (INIS)

    Hassazadeh, M.; Wrangensten, L.

    2009-01-01

    The nuclear power plants in Sweden and Finland were built during the seventies/eighties and it is planned to extend their service life and increase their production capacity. The challenges are now to assess the condition of the concrete structures; to verify whether or not the structures can withstand the prescribed loads and functions; and verify if the structures can be upgraded in order to fulfil the requirements regarding load bearing and functional capacity. A research program was launched whose priority is condition assessment of the reactor containment. The research includes condition of the pre-stressing reinforcement, reinforcement bars, lining, leakage etc. The conditions are assessed both by destructive and non-destructive test methods. The addressed properties are physical, mechanical, electro-chemical and geometrical. The paper presents the organisation of the program, the co-operating partners, the research program, and the content of the on-going and planned research projects

  1. Romanian knowledge transfer network in nuclear physics and engineering - REFIN

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie

    2007-01-01

    According to the requirements of the Romanian Nuclear Programme regarding the education and training of the skilled personnel for the nuclear facilities, a knowledge transfer network named REFIN (in Romanian: Retea Educationala in Fizica si Ingineria Nucleara) was developed since 2005. The knowledge target field is nuclear physics and engineering. The main objective of this network is to develop an effective, flexible and modern educational system in the nuclear physics and engineering area which could meet the requirements of all known types of nuclear facilities and therewith be redundant with the perspectives of the European Research Area (FP7, EURATOM). A global strategy was proposed in order to harmonize the curricula between the network facilities to implement pilot modern teaching programs (courses/modules), to introduce advanced learning methods (as Systematic Approach to Training, e-learning and distance-learning), to strengthen and better use the existing research infrastructures of the research institutes in network. The education and training strategy is divided into several topics: university engineering , master, post-graduate, Ph.D. degree, post-doctoral activity, training for industry, improvement. For the first time in our country, a modular scheme is used allowing staff with different technical background to participate at different levels. In this respect, the European system with transferable credits (ECTS) is used. Based on this strategy, courses in 'Radioactive Waste Management' and 'Numerical and Experimental Methods in Reactor Physics' for both MS students and for industry. This way the training activity which a student attends will allow him or her to be involved, depending on specific professional needs, into a flexible educational scheme. This scheme will ensure competence and enhancement and also the possibility of qualification development and a better mobility on labour market. This kind of activity is already in progress in the

  2. Multimedia on nuclear reactors physics

    International Nuclear Information System (INIS)

    Dies, Javier; Puig, Francesc

    2010-01-01

    The paper present an example of measures that have been found to be effective in the development of innovative educational and training technology. A multimedia course on nuclear reactor physics is presented. This material has been used for courses at master level at the universities; training for engineers at nuclear power plant as modular 2 weeks course; and training operators of nuclear power plant. The multimedia has about 785 slides and the text is in English, Spanish and French. (authors)

  3. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    International Nuclear Information System (INIS)

    Dudek, Jozef; Melnitchouk, Wally

    2016-01-01

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German ''hub'' for visits of U.S. physicists, while Jefferson Lab served as the corresponding ''hub'' for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theory Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.

  4. Human resource development program for nuclear safety and security in Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Han, Chi Young; Sagara, Hiroshi; Nagasaka, Hideo

    2014-01-01

    The Academy for Global Nuclear Safety and Security Agent was established at Tokyo Institute of Technology in 2011, to develop global nuclear human resources in the field of 3S (Safety, Security, and Safeguards) as a Program for Leading Graduate Schools supported by MEXT (Ministry of Education, Culture, Sports, Science and Technology). New courses of nuclear safety and security were developed in addition to the existing nuclear engineering program; 1) Environmental Dynamics of Radioactive Nuclides; Numerical simulation of the environmental dispersion of radioactive materials released from hypothetical nuclear accidents and evaluation of the public exposure are performed, by using a computer-based emergency response system, to have students predict the environmental dispersion of radionuclides and radiological consequence by nuclear accidents. 2) Measurement of Environmental Radiation; Students acquire hands-on experiences measuring environmental radiation contamination caused by the nuclear accident in Fukushima with multiple types of radiation detectors. Environmental samples are collected and analyzed for isotope identification and its spatial distribution. 3) Simulation of Severe Nuclear Accidents; The evaluation results of Fukushima accident progression are discussed as well as typical sever accidents that threaten the integrity of reactor vessel. Students simulate BWR (Boiling Water Cooled Reactor) transients, design basis accidents, and severe accidents by using simulators. 4) Nuclear Security Training; Design of physical protection systems, its fundamental physics, and regulatory frameworks are covered and students gain the practical experiences by use of intrusion detection systems at JAEA (Japan Atomic Energy Agency), and by numerical simulation of hydro-dynamics of structure material and nuclear material criticality at the university. (author)

  5. Nuclear Physics in Poland

    International Nuclear Information System (INIS)

    Wroblewski, A.K.

    2004-01-01

    Full text: This will be a short presentation of low and high energy nuclear physics in Poland, its history, essential results, and the present status. Nuclear physics in Poland has a tradition of hundred years. Research started just after the discovery of radium and polonium by Polish-born Maria Sklodowska-Curie and her husband Pierre Curie. Maria Sklodowska-Curie employed numerous Polish assistants in her Paris laboratory and supported radioactivity studies in Warsaw, her birth place, then under the occupation of tsarist Russia. In the first decades of the XXth century Poland was one of the leading countries in radioactivity studies. In the late 1930-ies a cyclotron was constructed in Warsaw and an ambitious 'Star of Poland' project was launched to study the cosmic rays. Unfortunately, the Second World War stopped all scientific activity in Poland. A large fraction of Polish physicists perished in the period 1939-1945. After the World War nuclear physics of low and high energy was rebuilt in Warsaw and Krakow. Already in 1952 Marian Danysz and Jerzy Pniewski discovered the first hypernucleus. This important discovery was essential to understand the properties of numerous new particles found in cosmic rays. Polish physicists entered intensive collaboration with both CERN and Dubna and took part also in research at other centers in Europe (DESY, GSI, GANIL, Julich, SACLAY) and the United States (Fermilab). At present the research is concentrated in Warsaw and Krakow (the two largest centers), and smaller teams, mostly theorists, are also in Bialystok, Katowice, Kielce, Lublin, Lodz and Wroclaw. Several years ago a heavy ion cyclotron was built in Warsaw. Among the important discoveries made by Polish nuclear physicists one may mention the theoretical works on superheavy elements and the recent discovery of the two-proton radioactivity

  6. Achievements and future directions in the reactors physics and nuclear safety research

    International Nuclear Information System (INIS)

    Dumitrache, Ion

    2001-01-01

    A historical overlook is presented with respect to inception and development of reactor physics research and on the job training in Romania. First these activities were carried out at the Institute for Atomic Physics and Institute for Power Reactors (IRNE) in Bucharest and afterward at the Institute for Nuclear Technologies, later on transformed in the Institute of Nuclear Research at Pitesti. CYBER Computer installed at Pitesti allowed formation in as early as 1971 reactor specialists who worked out computer programs for neutron physics calculations. These specialists were able to assimilate the characteristic of CANDU 6 type reactor as well as the AECL methodology of simulating processes of CANDU reactor physics. At present four programs are under way. These are: 1. The nuclear reactor physics; 2. The nuclear facility safety; 3. Safety analyses for the transport and radioactive waste disposal; 4. Analyses for radiation shielding and biological protection. There are presented results of the work associated to the CANDU type reactor: 1. Adapting and improving the code system for neutron and thermohydraulic calculation for CANDU type reactor, as supplied by AECL; 2. The IRNE manual for CANDU reactor neutron designing; 3. Final sizing of shim rods of Cernavoda NPP Unit 2; 4. Tests and measurements of reactor physics at the Cernavoda NPP Unit 1 commissioning; 5. Simulation and independent analysis of thermosiphoning carried out at Cernavoda NPP Unit 1 commissioning; 6. Static and dynamical response of the detectors in the CANDU reactor core and their time evolution following the burnup in the neutron flux and their ageing effects; 7. PSA studies at Unit 1; 8. Safety analyses for the radioactive waste disposal at Saligny repository. Also, reported are the results of the work associated to the TRIGA reactor, as follows: 1. Flux measurements and neutron computations necessary in the reactor commissioning; 2. Cleaning up controversial issues relating to neutron flux

  7. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  8. Proceedings of the Third Nuclear and Particle Physics Conference (NUPPAC-2001)

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N.H.; Hanna, K M [Egyptian Nuclear Physics Association, Cairo (Egypt)

    2002-09-15

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) applied nuclear physics; (5) computer codes; (6) selected topics; (7) radiation sciences.

  9. Proceedings of the Third Nuclear and Particle Physics Conference (NUPPAC-2001)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.; Hanna, K.M.

    2002-09-01

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) applied nuclear physics; (5) computer codes; (6) selected topics; (7) radiation sciences

  10. Physical protection: threat response and performance goals as applied at the nuclear material inspection and storage (NMIS) building

    International Nuclear Information System (INIS)

    Sanford, T.H.

    1982-01-01

    Only one aspect of nuclear security has been discussed here, a disciplined approach to physical protection systems (PPS) design. The best security against a multitude of threats to the nuclear industry is a dynamic and multifaceted safeguards program. It is one that combines PPS design with employee screening, reliability or behavioral observation programs, procedural control, assessment techniques, response capabilities, and security hardware. To be effective, such a program must be supported by management and applied uniformly to all personnel, including the safeguards and security staff

  11. Medium-energy physics program. Progress report, August 1--October 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    van Dyck, O.B.; Dunn, E.D. (comps.)

    1978-05-01

    A report is given of the medium-energy physics program at the LAMPF linac for the period from August 1 through October 31, 1977. Topics discussed include: (1) accelerator facilities and development; (2) the main beam lines; (3) experimental areas; (4) research; (5) nuclear chemistry; (6) practical applications; (7) linac technology; and (8) management. (PMA)

  12. Medium-energy physics program. Progress report, August 1--October 31, 1977

    International Nuclear Information System (INIS)

    van Dyck, O.B.; Dunn, E.D.

    1978-05-01

    A report is given of the medium-energy physics program at the LAMPF linac for the period from August 1 through October 31, 1977. Topics discussed include: (1) accelerator facilities and development; (2) the main beam lines; (3) experimental areas; (4) research; (5) nuclear chemistry; (6) practical applications; (7) linac technology; and (8) management

  13. The Brazilian Nuclear Energy Program

    International Nuclear Information System (INIS)

    Carvalho, H.G. de

    1980-01-01

    A survey is initially of the international-and national situation regarding energetic resources. The Brazilian Nuclear Energy Policy and the Brazilian Nuclear Program are dealt with, as well as the Nuclear Cooperation agreement signed with the Federal Republic of Germany. The situation of Brazil regarding Uranium and the main activities of the Brazilian Nuclear Energy Commission are also discussed [pt

  14. Nuclear Science Division 1992 annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1993-04-01

    This report contains short papers from research conducted at Lawrence Berkeley Laboratory in Nuclear Physics. The categories of these papers are: Low-Energy Research Program; Bevalac Research Program; Relativistic Nuclear Collisions Program; Nuclear Theory Program; Nuclear Data Evaluation Program; and 88-Inch Cyclotron Operations

  15. Nuclear Science Division 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W. D. [ed.

    1993-04-01

    This report contains short papers from research conducted at Lawrence Berkeley Laboratory in Nuclear Physics. The categories of these papers are: Low-Energy Research Program; Bevalac Research Program; Relativistic Nuclear Collisions Program; Nuclear Theory Program; Nuclear Data Evaluation Program; and 88-Inch Cyclotron Operations.

  16. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1993-06-01

    The University of Massachusetts (UMass) Nuclear Physics Program continues to concentrate upon the use of the electromagnetic interaction in a joint experimental and theoretical approach to the study of nucleon and nuclear properties. During the past year the activities of the group involved data analysis, design and construction of equipment, planning for new experiments, completion of papers and review articles for publication, writing of proposals for experiments, but very little actual data acquisition. Section II.A. described experiments at Bates Linear Accelerator Center. They include the following: electrodisintegration of deuteron; measurement of the elastic magnetic form factor of 3 He; coincidence measurement of the D(e,e'p) cross section; transverse form factors of 117 Sn; ground state magnetization density of 89 Y; and measurement of the 5th structure function in deuterium and 12 C. Section II.B. includes the following experiments at Stanford Linear Accelerator Center: deuteron threshold electrodisintegration; separation of charge and magnetic form factors of the neutron and proton; measurement of the X-, Q 2 , and A-dependence of R = σ L /σ T ; and analysis of 14.5 GeV electrons and positions scattered from gases in the PEP Storage Ring. Section III.C. includes the following experiments at NIKHEF and Lund: complementary studies of single-nucleon knockout and single-nucleon wave functions using electromagnetic interactions and single-particle densities of sd-shell nuclei. Section II.D. discusses preparations for future work at CEBAF: electronics for the CLAS region 1 drift chamber Section III. includes theoretical work on parity-violating electron scattering and nuclear structure

  17. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  18. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  19. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  20. Nuclear physics on the lattice?

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1985-01-01

    The goal of the paper is to try to adapt lattice gauge theory to build in some biases in order for being applicable to nuclear physics. In so doing the calculations are made more precise, and the author can address questions like the size of the nucleon, the nucleon-nucleon potential, the modifications of the nucleon in the nuclear medium, etc. (Auth.)

  1. Nuclear physics with electroweak probes

    International Nuclear Information System (INIS)

    Benhar, Omar

    2009-01-01

    In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects

  2. Management plan for the Nuclear Standards Program

    International Nuclear Information System (INIS)

    1979-11-01

    This Management Plan was prepared to describe the manner in which Oak Ridge National Laboratory will provide technical management of the Nuclear Standards Program. The organizational structure that has been established within ORNL for this function is the Nuclear Standards Management Center, which includes the Nuclear Standards Office (NSO) already in existence at ORNL. This plan is intended to support the policies and practices for the development and application of technical standards in ETN projects, programs, and technology developments as set forth in a standards policy memorandum from the DOE Program Director for Nuclear Energy

  3. Max-Planck-Institute for Nuclear Physics. Annual report 1986

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short descriptions of the research performed at the given institute together with an extensive list of publications. The research in nuclear physics is concerned with developments in accelerators and ion sources, radiation detectors, solid-state studies by nuclear methods, counting circuits, data processing, target preparation, fission, fusion, and nuclear friction, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics and interaction of charged particles with matter, medium and high energy physics. The research in cosmophysics works on meteorites and lunar rocks, the gallium-solar-neutrino experiment (project GALLEX), problems of Halley's comet, interplanetary and interstellar dust, planetary atmospheres, interstellar medium and cosmic rays, molecular collision processes in the gas phase, nuclear geology and geochemistry, and archaeometry. (GG)

  4. Sustaining Physics Teacher Education Coalition programs in physics teacher education

    Directory of Open Access Journals (Sweden)

    Rachel E. Scherr

    2017-02-01

    Full Text Available Understanding the mechanisms of increasing the number of physics teachers educated per year at institutions with thriving physics teacher preparation programs may inspire and support other institutions in building thriving programs of their own. The Physics Teacher Education Coalition (PhysTEC, led by the American Physical Society (APS and the American Association of Physics Teachers (AAPT, has supported transformation of physics teacher preparation programs at a number of institutions around the country for over a decade. In 2012–2013, PhysTEC supported an independent study on the sustainability of its sites after project funding ends. The study sought to measure the extent to which programs have been sustained and to identify what features should be prioritized for building sustainable physics teacher preparation programs. Most of the studied sites have sustained increases in the number of physics teachers educated per year as well as funding for physics teacher preparation. About half of the programs are thriving, in that in the post-award period, they have further increased both the number of physics teachers educated per year and funding for physics teacher preparation. All studied sites that sustained increases in the number of physics teachers educated per year have two features in common: a champion of physics teacher education and institutional commitment. The thriving physics teacher preparation programs in this study implemented different elements of physics teacher preparation according to diverse local priorities and opportunities, including the unique expertise of local personnel.

  5. KFA Institute of Nuclear Physics. Annual report 1990

    International Nuclear Information System (INIS)

    1991-03-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (orig.)

  6. KFA Institute of Nuclear Physics. Annual report 1989

    International Nuclear Information System (INIS)

    1990-04-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (HSI)

  7. The Physical Protection of Nuclear Material; Proteccion Fisica Delos Materiales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-15

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [French] La proteccion fisica contra el robo o la desviacion no autorizada de materiales nucleares y contra el sabotaje de las instalaciones nucleares por parte de individuos o de grupos ha sido durante largo tiempo motivo de preocupacion nacional e internacional. Aunque la obligacion de crear y hacer funcionar un sistema completo de proteccion fisica para las instalaciones y materiales nucleares en el territorio de un Estado determinado incumbe enteramente al Gobierno de dicho Estado, el que esa obligacion se cumpla o no, y si se cumple, en que medida o hasta que punto, es cosa que no deja indiferentes a los demas Estados. De aqui que la proteccion fisica se haya convertido en motivo de interes y cooperacion internacional. La necesidad de cooperacion internacional se hace evidente en los casos en que la eficacia de la proteccion fisica en el territorio de un Estado depende de que otros Estados tomen tambien medidas apropiadas para evitar o hacer fracasar los actos hostiles dirigidos contra instalaciones y

  8. Accreditation of nuclear engineering programs

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1989-01-01

    The American Nuclear Society (ANS) Professional Development and Accreditation Committee (PDAC) has the responsibility for accreditation of engineering and technology programs for nuclear and similarly named programs. This committee provides society liaison with the Accreditation Board for Engineering and Technology (ABET), is responsible for the appointment and training of accreditation visitors, nomination of members for the ABET Board and Accreditation Commissions, and review of the criteria for accreditation of nuclear-related programs. The committee is composed of 21 members representing academia and industry. The ABET consists of 19 participating bodies, primarily professional societies, and 4 affiliate bodies. Representation on ABET is determined by the size of the professional society and the number of programs accredited. The ANS, as a participating body, has one member on the ABET board, two members on the Engineering Accreditation Commission, and one on the Technology Accreditation Commission. The ABET board sets ABET policy and the commissions are responsible for accreditation visits

  9. PREFACE: 11th International Spring Seminar on Nuclear Physics: Shell Model and Nuclear Structure - achievements of the past two decades

    Science.gov (United States)

    2015-02-01

    shell model. Then, as usual, the program of the meeting consisted of general talks and more specialized contributions, which covered five main topics: i) From nuclear forces to nuclear structure; ii) Exploring nuclear structure toward the drip line; iii) Role of the shell model in the study of exotic nuclei; iv) Nuclear structure aspects outside the shell model; and v) Special topics. The main conclusions were drawn in two keynote talks given by Amand Faessler and Franco Iachello. The Conference had about 90 participants from some 20 countries [please see the list of participants]. This is well in line with the tradition of these meetings, as is the fact that more than 50% of the present participants attended one or more of the previous Seminars. We received 58 manuscripts out of the 73 invited papers and contributions presented at the Seminar. All of these have been peer reviewed and are collected in this volume. We would like to thank all the colleagues who have acted as referees to assess the suitability of the various articles for publication in the Journal of Physics: Conference Series. We are confident that the high quality of both invited and contributed papers contained in these Proceedings will be appreciated by the nuclear physics community. We gratefully acknowledge the members of the Advisory Committee for their valuable cooperation in preparing the scientific program as well as the financial support of the Istituto Nazionale di Fisica Nucleare, the University of Naples Federico II, and the Dipartimento di Fisica who helped make the Seminar possible. Angela Gargano Luigi Coraggio Nunzio Itaco Editors

  10. Nuclear emulsion and high-energy physics

    International Nuclear Information System (INIS)

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  11. Perspectives for photonuclear research at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D.; Balabanski, D.L.; Constantin, P.; Gales, S.; Tesileanu, O.; Ur, C.A.; Ursu, I.; Zamfir, N.V. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); Anzalone, A.; La Cognata, M.; Spitaleri, C. [INFN-LNS, Catania (Italy); Belyshev, S.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Camera, F. [Departement of Physics, University of Milano, Milano (Italy); INFN section of Milano, Milano (Italy); Csige, L.; Krasznahorkay, A. [Hungarian Academy of Sciences (MTA Atomki), Institute of Nuclear Research, Post Office Box 51, Debrecen (Hungary); Cuong, P.V. [Vietnam Academy of Science and Technology, Centre of Nuclear Physics, Institute of Physics, Hanoi (Viet Nam); Cwiok, M.; Dominik, W.; Mazzocchi, C. [University of Warsaw, Warszawa (Poland); Derya, V.; Zilges, A. [University of Cologne, Institute for Nuclear Physics, Cologne (Germany); Gai, M. [University of Connecticut, LNS at Avery Point, Connecticut, Groton (United States); Gheorghe, I. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Ishkhanov, B.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Kuznetsov, A.A.; Orlin, V.N.; Stopani, K.A.; Varlamov, V.V. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Pietralla, N. [Technische Universitat Darmstadt, Institut fur Kernphysik, Darmstadt (Germany); Sin, M. [University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Utsunomiya, H. [Konan University, Department of Physics, Kobe (Japan); University of Tokyo, Center for Nuclear Study, Saitama (Japan); Weller, H.R. [Triangle Universities Nuclear Laboratory, North Carolina, Durham (United States); Duke University, Department of Physics, North Carolina, Durham (United States)

    2015-12-15

    The perspectives for photonuclear experiments at the new Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility are discussed in view of the need to accumulate novel and more precise nuclear data. The parameters of the ELI-NP gamma beam system are presented. The emerging experimental program, which will be realized at ELI-NP, is presented. Examples of day-one experiments with the nuclear resonance fluorescence technique, photonuclear reaction measurements, photofission experiments and studies of nuclear collective excitation modes and competition between various decay channels are discussed. The advantages which ELI-NP provides for all these experiments compared to the existing facilities are discussed. (orig.)

  12. Nuclear Physics Division biennial report 1993-1994

    International Nuclear Information System (INIS)

    Kumar, K.; Kataria, S.K.

    1995-01-01

    The activities of the Nuclear Physics Division of Bhabha Atomic Research Centre for the two year period January 1993 to December 1994 are summarised. The experimental nuclear physics research activities are centred around the 14 UD Pelletron accelerator. Instrumentation development for the research utilization of the accelerator as well as accelerator development activities connected with the superconducting LINAC booster are included. During the period the conversion of the 5.5 MV single stage Van de Graaff Accelerator into a 7 MV folded tandem accelerator for light and heavy ions, for use not only in low energy nuclear physics but also in various inter-disciplinary areas was carried out. The research activity in the field of study of heavy ion reactions involving elastic scattering, transfer reactions, fusion-fission phenomena, heavy ion resonances, high energy photons in nuclear reactions and level density determination from charged particle spectra emitted in heavy ion reactions are given. (author). refs., figs., tabs

  13. Nuclear physics in the cosmos

    International Nuclear Information System (INIS)

    Bertulani, Carlos

    2011-01-01

    Nuclear astrophysics studies the physics of atomic nuclei, gravity, and thermodynamics in the early universe, stars and stellar explosions. Seventy years of nuclear science has allowed us to infer the origin of the chemical elements out of which our bodies and the Earth are made. We now believe that the lightest elements were created in nuclear reactions in the first three minutes after the big bang, and all the rest were made in nuclear reactions inside the stars and distributed throughout interstellar space via stellar winds and giant stellar explosions. I will show how a new generation of theoretical developments and experiments can shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. (author)

  14. Nuclear Physics Research Activity In Vietnam During Period From 2005 To 2007

    International Nuclear Information System (INIS)

    Tran Duc Thiep

    2008-01-01

    During the recent years though the difficult conditions as the limit in research budget, the lack in experimental facilities and in manpower, the Nuclear Physics Research in Vietnam still continues to develop and has achieved promising results. This expresses the efforts from the Government as well as from the nuclear physics scientists. In this report we would like to present the Nuclear Physics Research Activity and the achieved results in Vietnam during period from 2005 to 2007 in following directions: Nuclear Reaction and Structure, Nuclear Matter and Nuclear Data, Nuclear Reactor Physics, Nuclear Physics Research based on Accelerators, Physics of Cosmic Rays, Nuclear Physics Related Researches. The report also concerns the problems of manpower, the joining of research institutes in the Country and the expansion of international collaborations in the coming period of the Nuclear Physics Research Activity. The Report was prepared mainly on the basis of the reports that will be presented at the 7th National Conference on Nuclear Science and Technology, held from 30-31 August 2007 in Danang city. (author)

  15. Proceeding of the seventh Nuclear and Particle Physics Conference (NUPPAC-2009)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-11-01

    The publication has been set up as proceedings of the Nuclear and Particle physics conference. the conference consists Nuclear Scattering and Reactions; High Energy Physics; Nuclear Structure and Spectroscopy; Neutron and Reactor Physics; Relativistic and Quantum Physics; Modeling, Codes and Simulation; Nuclear Analytical Techniques; Accelerator and Reactor Utilization; Detectors and Instrumentation; Radiation and Radioactivity. This conference consists of 662 p., figs., tabs., refs.

  16. Proceeding of the Sixth Nuclear and Particle Physics Conference (NUPPAC-2007)

    International Nuclear Information System (INIS)

    2008-11-01

    The publication has been set up as proceedings of the Nuclear and Particle Physics conference, the conference contains of the following subjects: High Energy Physics; Nuclear Scattering and Reactions; Nuclear Structure and Spectroscopy; Nuclear and Reactor Physics; Relativistic and Quantum Physics; Plasma and magneto hydro Dynamics; Computation and Simulation and Radiation Measurement and Dosimetry. This conference consists of 642 pages., figs., tabs., refs

  17. High energy-density physics: From nuclear testing to the superlasers

    International Nuclear Information System (INIS)

    Teller, E.; Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.

    1995-01-01

    The authors describe the role for the next-generation ''superlasers'' in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, the authors focus on three important areas of physics that have unresolved issues which must be addressed by experiment: equations of state, turbulent hydrodynamics, and the transport of radiation. They describe the advantages the large lasers will have in a comprehensive experimental program

  18. High energy-density physics: From nuclear testing to the superlasers

    Energy Technology Data Exchange (ETDEWEB)

    Teller, E.; Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.

    1995-08-14

    The authors describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, the authors focus on three important areas of physics that have unresolved issues which must be addressed by experiment: equations of state, turbulent hydrodynamics, and the transport of radiation. They describe the advantages the large lasers will have in a comprehensive experimental program.

  19. High energy-density physics: From nuclear testing to the superlasers

    International Nuclear Information System (INIS)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-01-01

    We describe the role for the next-generation ''superlasers'' in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program

  20. High energy-density physics: From nuclear testing to the superlasers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  1. National nuclear program

    International Nuclear Information System (INIS)

    Costa A, D.

    1980-01-01

    The basic concepts of the Nuclear program that Mexico plans are presented, to develop pointing out that it constitutes an outstanding event within the history of the country, that will result in an equilibrated profit of the resources of oil exploitation consolidating each step of its technical evolution; all of this represents a challenge since it establishes a qualitative transformation in the very roots of the National economy. Being certain that oil is a non renovable natural resource, the author points out that Mexican Government has emphasized the promotion of the research of alternate resource of energy in the future. According to this panorama, the quidelines that Mexico must undertake regarding production, distribution and consumption of nuclear energy, will point primarily to a global program, which will avoid the imports of equipment and technicians, to achieve maximum advantages for the Country. It stresses the fact that this program cannot start from zero; since first, Mexico, has to import foreign technology, which once assimilated, will give to the Mexican technicians the starting point to establish the proper solution to the foreseen objectives. Therefore, any kind of International cooperation must tend to accelerate the nuclear development and to obtain the transference to technology, within a frame of respect to Mexican sovereignity. The conclusion is that the task at which Mexico aims must be based on the existing human potentiality and on the one that will be prepared in the future, and also on the knowledge and adequate exploitation of the uranium reserves, having the ININ a prominent role of creating the necessary human infrastructure, the development of a Mexican nuclear energy can be achieved in a medium term. (author)

  2. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  3. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    International Nuclear Information System (INIS)

    Arcones, Almudena; Bardayan, Dan W.

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.

  4. UCLA Particle and Nuclear Physics Research Group, 1993 progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.; Clajus, M.; Price, J.W.; Tippens, W.B.; White, D.B.

    1993-09-01

    The research programs of the UCLA Particle and Nuclear Physics Research Group, the research objectives, results of experiments, the continuing activities and new initiatives are presented. The primary goal of the research is to test the symmetries and invariances of particle/nuclear physics with special emphasis on investigating charge symmetry, isospin invariance, charge conjugation, and CP. Another important part of our work is baryon spectroscopy, which is the determination of the properties (mass, width, decay modes, etc.) of particles and resonances. We also measure some basic properties of light nuclei, for example the hadronic radii of 3 H and 3 He. Special attention is given to the eta meson, its production using photons, electrons, π ± , and protons, and its rare and not-so-rare decays. In Section 1, the physics motivation of our research is outlined. Section 2 provides a summary of the research projects. The status of each program is given in Section 3. We discuss the various experimental techniques used, the results obtained, and we outline the plans for the continuing and the new research. Details are presented of new research that is made possible by the use of the Crystal Ball Detector, a highly segmented NaI calorimeter and spectrometer with nearly 4π acceptance (it was built and used at SLAC and is to be moved to BNL). The appendix contains an update of the bibliography, conference participation, and group memos; it also indicates our share in the organization of conferences, and gives a listing of the colloquia and seminars presented by us

  5. Nuclear Physics Group progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1985-07-01

    This report summarises the work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period January-December 1984. Commissioning of the EN-tandem accelerator was completed. The first applications included the production of 13 N from a water target and the measurement of hydrogen depth profiles with a 19 F beam. Further equipment was built for tandem accelerator mass spectrometry but the full facility will not be ready until 1985. The nuclear microprobe on the 3 MV accelerator was used for many studies in archaeometry, metallurgy, biology and materials analysis

  6. Training programs for the systems approach to nuclear security

    International Nuclear Information System (INIS)

    Ellis, D.

    2005-01-01

    Full text: In support of United States Government (USG) and International Atomic Energy Agency (IAEA) nuclear security programs, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been developed and implemented as the basis for a performance-based methodology for the design and evaluation of physical protection systems against a design basis threat (DBT) for theft and sabotage of nuclear and/or radiological materials. Integrated systems must include technology, people, and the man-machine interface. A critical aspect of the human element is training on the systems-approach for all the stakeholders in nuclear security. Current training courses and workshops have been very beneficial but are still rather limited in scope. SNL has developed two primary international classes - the international training course on the physical protection of nuclear facilities and materials, and the design basis threat methodology workshop. SNL is also completing the development of three new courses that will be offered and presented in the near term. They are vital area identification methodology focused on nuclear power plants to aid in their protection against radiological sabotage, insider threat analysis methodology and protection schemes, and security foundations for competent authority and facility operator stakeholders who are not security professionals. In the long term, we envision a comprehensive nuclear security curriculum that spans policy and technology, regulators and operators, introductory and expert levels, classroom and laboratory/field, and local and offsite training options. This training curriculum will be developed in concert with a nuclear security series of guidance documents that is expected to be forthcoming from the IAEA. It is important to note that while appropriate implementation of systems based on such training and documentation can improve the risk reduction, such a

  7. Sustaining Physics Teacher Education Coalition programs in physics teacher education

    OpenAIRE

    Rachel E. Scherr; Monica Plisch; Renee Michelle Goertzen

    2017-01-01

    Understanding the mechanisms of increasing the number of physics teachers educated per year at institutions with thriving physics teacher preparation programs may inspire and support other institutions in building thriving programs of their own. The Physics Teacher Education Coalition (PhysTEC), led by the American Physical Society (APS) and the American Association of Physics Teachers (AAPT), has supported transformation of physics teacher preparation programs at a number of institutions aro...

  8. Nuclear program review

    International Nuclear Information System (INIS)

    Brito, S.; Rosa, L.P.; Carvalho, Joaquim de; Simon, D.N.

    1985-01-01

    A review of the Brazilian Nuclear Program based in Brazilian energy perspectives, in world-wide technology evolution and in international and national economic context is done. The objetive is look for subsidies for new decisions related to the future of program, taking in account the acquired experience and new data created by evolution of internal and external political and technological conjuncture. (M.C.K.) [pt

  9. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  10. Lattice QCD Calculations in Nuclear Physics towards the Exascale

    Science.gov (United States)

    Joo, Balint

    2017-01-01

    The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.

  11. Proceedings of the 3. Workshop on Nuclear Physics in Brazil

    International Nuclear Information System (INIS)

    1980-01-01

    This publication is the final report of the III Workshop on Nuclear Physics in Brazil. Many works were presented on the fields related to Nuclear Physics. It was organized some work groups which discussed the following topics: Perspectivas of Nuclear Physics in Brazil, Personnel Formation and Related Instrumentation. (A.C.A.S.) [pt

  12. Abstracts of the sixth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    Yuldashev, B.; Fazylov, M.; Ibragimova, E.; Salikhbaev, U.

    2006-09-01

    The Sixth International Conference on modern problems of nuclear physics was held on 19-22 September, 2006 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. About 275 talks were presented in the meetingof on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; radiation physics of condenced matter; nuclear applications in industry, medicine, biology and agriculture; nuclear and radiation safety, non prolifaration issues. (K.M.)

  13. Abstracts of the sixth international conference on modern problems of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Yuldashev, B; Fazylov, M; Ibragimova, E; Salikhbaev, U [eds.

    2006-09-15

    The Sixth International Conference on modern problems of nuclear physics was held on 19-22 September, 2006 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. About 275 talks were presented in the meetingof on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; radiation physics of condenced matter; nuclear applications in industry, medicine, biology and agriculture; nuclear and radiation safety, non prolifaration issues. (K.M.)

  14. Intriguing Trends in Nuclear Physics Articles Authorship

    Energy Technology Data Exchange (ETDEWEB)

    Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2014-11-06

    A look at how authorship of physics publications (particularly nuclear publications) have changed throughout the decades by comparing data mined from the National Nuclear Data Center (NNDC) with observations.

  15. Abstracts of the fourth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    2001-09-01

    The Fourth International Conference on modern problems of nuclear physics was held on 25-29 September, 2001 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; applied nuclear physics; radiation solid state physics, condensed matter physics; activation analysis, radiochemistry, isotopes. (M.K.)

  16. New nuclear physics at Berkeley Conference

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    One of the highlights of the summer was the International Conference on Nuclear Physics, held at Berkeley in August. These big meetings provide a periodic focus for the nuclear physics community. Overall, the Conference paid a lot of attention to topics and phenomna which only a few years ago would have been considered exotic. With many novel ideas being put forward and with new projects afoot, a lot of fresh ground could have been covered by the time of the next meeting, scheduled to be held in Florence in a few years

  17. Abstracts of the fifth international conference on modern problems of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Fifth Uzbekistan Conference on modern problems of nuclear physics was held on 12-15 August, 2003 in Samarkand, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics.

  18. Abstracts of the fifth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    2003-08-01

    The Fifth Uzbekistan Conference on modern problems of nuclear physics was held on 12-15 August, 2003 in Samarkand, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics

  19. Department of Energy: Nuclear S&T workforce development programs

    International Nuclear Information System (INIS)

    Bingham, Michelle; Bala, Marsha; Beierschmitt, Kelly; Steele, Carolyn; Sattelberger, Alfred P.; Bruozas, Meridith A.

    2016-01-01

    The U.S. Department of Energy (DOE) national laboratories use their expertise in nuclear science and technology (S&T) to support a robust national nuclear S&T enterprise from the ground up. Traditional academic programs do not provide all the elements necessary to develop this expertise, so the DOE has initiated a number of supplemental programs to develop and support the nuclear S&T workforce pipeline. This document catalogs existing workforce development programs that are supported by a number of DOE offices (such as the Offices of Nuclear Energy, Science, Energy Efficiency, and Environmental Management), and by the National Nuclear Security Administration (NNSA) and the Naval Reactor Program. Workforce development programs in nuclear S&T administered through the Department of Homeland Security, the Nuclear Regulatory Commission, and the Department of Defense are also included. The information about these programs, which is cataloged below, is drawn from the program websites. Some programs, such as the Minority Serving Institutes Partnership Programs (MSIPPs) are available through more than one DOE office, so they appear in more than one section of this document.

  20. PREFACE: The 6th Nordic Meeting on Nuclear Physics

    Science.gov (United States)

    Løvhøiden, G.; Thorsteinsen, T. F.; Vaagen, J. S.

    1990-01-01

    After an unintended time gap of five years, the series of regular Nordic meetings on nuclear physics was continued with the 6th Nordic Meeting, August 10-15, 1989. The site was Utgarden in the outskirts of Kopervik, the administration center for the Saga island of Karmøy on the west-coast of Norway. Utgarden, a "peoples high-school'' with a kitchen, housing facility and a neighboring modern gymnasium with fine lecture halls, proved to be an inexpensive and adequate site for the meeting. From the time of the Vikings, the sound between Karmøyy and the mainland has been a vital part of the way to the north. Mobility and international orientation is still a signature of an area where today essential parts of Norway's oil- and metal industry are located. The conference program included a session on nuclear physics in industry and society, with contributed talks from a number of companies and technology/research institutions, which also sponsored the meeting. Lunch visits to Hydro's aluminium plant on Karmøy or alternatively to Statoil's gas terminal on the mainland, were included in the program. The scientific program gives a cross section of nuclear physics activities in which researchers from the Nordic countries are involved nowadays. The spectrum is rich, and the emphasis has shifted to higher energies than was the case five years ago. We appreciate the possibility to present this overview in a separate volume of Physica Scripta. The present issue covers nearly all the talks given at the meeting. The order deviates, however, somewhat from that of the conference program. The organizing committee tried to encourage in various ways the participation of young physicists; this effort was truely rewarded. The young participants put their imprint on the activities in the lecture halls and even more on the soccer arena. The meeting was sponsored by The University of Bergen, The Nordic Accelerator Committee, NORDITA, The Norwegian Research Council for Science and the

  1. The convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1980-05-01

    This document contains the full text of a convention to facilitate the safe transfer of nuclear material, and to insure the physical protection of nuclear material in domestic use, storage, and transport. Two annexes are included, which establish categories of nuclear materials and levels of physical protection to be applied in international transport

  2. Current status of nuclear physics research

    International Nuclear Information System (INIS)

    Bertulani, Carlos A.; Hussein, Mahir S.

    2015-01-01

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4 He, 7 Li, 9 Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested

  3. Current status of nuclear physics research

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Department of Physics and Astronomy, Texas A and M University-Commerce (United States); Hussein, Mahir S., E-mail: hussein@if.usp.br [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil). Dept. de Fisica

    2015-12-15

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as {sup 4}He, {sup 7}Li, {sup 9}Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate

  4. Proceedings of the Second Conference on Nuclear and Particle Physics (NUPPAC-99)

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N.H.; Hanna, K M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    2000-11-15

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) plasma and fusion physics; (5) applied nuclear physics; (6) related topics.

  5. Proceedings of the Second Conference on Nuclear and Particle Physics (NUPPAC-99)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.; Hanna, K.M.

    2000-11-01

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) plasma and fusion physics; (5) applied nuclear physics; (6) related topics

  6. Low-energy nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    The 1985 annual report of the Schuster Laboratory, Manchester University, England, on low-energy nuclear physics, is presented. The report includes experiments involving: high spin states, nuclei far from stability, reactions and fission, spectroscopy and related subjects. Technical developments are also described. (U.K.)

  7. Strengthened implementation of physical protection of nuclear material and nuclear facilities in the Republic of Korea

    International Nuclear Information System (INIS)

    Shim, H.-W.; Lee, J.-U.

    2005-01-01

    Full text: Since the 9.11 terror, strengthening physical protection has been an accelerated trend internationally. IAEA has been requesting that member states implement a strengthened physical protection of nuclear facilities on the basis of threat assessments. In order to cope with this demand, the Korean government promulgated the 'Law for Physical Protection and Radiological Emergency Preparedness (LPPRE)' as a substantial countermeasure against possible threats. Pursuant to LPPRE, which entered into force on February 16, 2004, nuclear enterprisers are obliged to implement an effective physical protection of nuclear materials, get approval for its physical protection system, and be constantly inspected on. The Ministry of Science and Technology (MOST) approved physical protection regulations of 24 domestic facilities operated by 14 enterprisers. National Nuclear management and Control Agency (NNCA) is entrusted with physical protection related duty and has been conducting physical protection inspection on nuclear materials in use, storage and transport. In addition, NNCA has established the methodology of threat assessment that entails organizing the threat assessment working group to develop a design basis threat (DBT). Korea is putting its best efforts to construct the threat assessment system and strengthen domestic physical protection regime in cooperation with competent authorities. (author)

  8. Nuclear physics with polarized heavy ions

    International Nuclear Information System (INIS)

    Fick, D.; Grawert, G.; Turkiewicz, I.M.

    1992-01-01

    Polarized heavy ion beams ( 6 Li, 7 Li, 23 Na) have been in use as tools for the investigation of nuclear scattering and nuclear reactions for almost two decades. This review attempts to survey the research activities in this field with reference to nuclear structure, nuclear dynamics and reaction mechanisms. Besides reviewing the results from full quantum mechanical coupled channels analyses of data, special attention is paid to handwaving arguments and semiclassical pictures as a complementary way of obtaining a better understanding of the relevant physics. (orig.)

  9. Green Vinca - Vinca Institute nuclear decommissioning program

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Ljubenov, V.; Sotic, O.

    2003-01-01

    Current conditions related to the nuclear and radiation safety in the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro are the result of the previous nuclear programs in the former Yugoslavia and strong economic crisis during the previous decade. These conditions have to be improved as soon as possible. The process of establishment and initialisation of the Vinca Institute Nuclear Decommissioning (VIND) Program, known also as the 'Green Vinca' Program supported by the Government of the Republic Serbia, is described in this paper. It is supposed to solve all problems related to the accumulated spent nuclear fuel, radioactive waste and decommissioning of RA research reactor. Particularly, materials associated to the RA reactor facility and radioactive wastes from the research, industrial, medical and other applications, generated in the previous period, which are stored in the Vinca Institute, are supposed to be proper repackaged and removed from the Vinca site to some other disposal site, to be decided yet. Beside that, a research and development program in the modern nuclear technologies is proposed with the aim to preserve experts, manpower and to establish a solid ground for new researchers in field of nuclear research and development. (author)

  10. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  11. Abstracts of the third international conference on modern problems of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The Third Uzbekistan Conference on modern problems of nuclear physics was held on 23-27 August, 1999 in Bukhara, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics. (A.A.D.)

  12. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    Directory of Open Access Journals (Sweden)

    Chang-Bum Moon

    2014-02-01

    Full Text Available This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL and fragmentation capability to produce rare isotopes beams (RIBs and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  13. Nuclear Criticality Safety Department Qualification Program

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document

  14. Physical Protection of Nuclear Material and Nuclear Facilities (Implementation of INFCIRC/225/Revision 5). Implementing Guide

    International Nuclear Information System (INIS)

    2018-01-01

    This publication is the lead Implementing Guide in a suite of guidance on implementing the Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5), IAEA Nuclear Security Series No. 13. It provides guidance and suggestions to assist States and their competent authorities in establishing, strengthening and sustaining their national physical protection regime and implementing the associated systems and measures, including operators’ physical protection systems. The structure of this publication is as follows. After this introduction, Section 2 describes the objectives of physical protection and the overall approach to managing the risks of the unauthorized removal of nuclear material and the sabotage of nuclear facilities. Section 3 provides guidance for the State and its competent authorities on the physical protection elements of the nuclear security regime; this guidance is based on the fundamental principles set out in the Recommendations publication. Section 4 provides guidance on the operator’s physical protection system and describes a systematic, integrated approach. Appendix I gives an annotated outline of the typical contents of an operator’s security plan. Appendix II provides similar guidance for the contingency plan. Appendix III provides a description of nuclear material aggregation that can be used to categorize nuclear material and determine the appropriate level of protection against unauthorized removal. Appendix IV presents a table of paragraph cross-references between the Recommendations publication and this Implementing Guide.

  15. Class notes from the first international training course on the physical protection of nuclear facilities and materials

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, P.B. (ed.)

    1979-05-01

    The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included in these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility.

  16. Class notes from the first international training course on the physical protection of nuclear facilities and materials

    International Nuclear Information System (INIS)

    Herrington, P.B.

    1979-05-01

    The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included in these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility

  17. Theoretical studies in medium-energy nuclear and hadronic physics

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Macfarlane, M.H.; Matsui, T.; Serot, B.D.

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e'p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus endash nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark endash gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon endash nucleon force

  18. Physical protection and its role in nuclear non-proliferation

    International Nuclear Information System (INIS)

    Nilsson, A.

    1999-01-01

    Non-proliferation of nuclear weapons has been one of the main concerns of the international community since the first nuclear weapons were developed. To prevent the proliferation of nuclear weapons has been on the agenda for individual States, groups of States and the international organizations. A number of treaties, conventions and agreements, the most important being the Non-Proliferation Treaty, have been negotiated to prevent the horizontal proliferation of nuclear weapons. States have concluded safeguards agreements with the IAEA to fulfill their obligations according to Article III.1 of the NPT. Other agreements relate to the prevention of vertical proliferation and also to the disarmament of nuclear weapons. It has also been recognized that sub-national, terrorist, or criminal activities may pose a proliferation risk. Illicit trafficking of nuclear material, particularly highly enriched uranium or plutonium, is a non-proliferation concern. States have recognized the need to prevent, as far as possible, the use of nuclear material in unlawful activities. The Convention of Physical Protection of Nuclear Materials, obligates the State Parties to protect nuclear material from theft during international transport, and to make unlawful possession, use, etc., of nuclear material a criminal offense, subject to punishment under national law. Although the physical protection convention recognizes the importance of the physical protection of nuclear material in domestic use, storage and transport, it does not obligate the State party to establish the necessary systems for this purpose. It is this limitation which led many States to believe that the international physical protection regime needs to be strengthened. Although not legally binding per se, the recommendations documented in INFCIRC/225/Rev. 4, The Physical Protection of Nuclear Material and Nuclear Facilities, has obtained wide recognition. There is recognition among States that protecting nuclear material

  19. Geoscience research for the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Whitaker, S.H.

    1987-01-01

    The Canadian Nuclear Fuel Waste Management Program is assessing the concept of deep disposal of nuclear fuel waste in plutonic rock. As part of that assessment, a broad program of geoscience and geotechnical work has been undertaken to develop methods for characterizing sites, incorporating geotechnical data into disposal facility design, and incorporating geotechnical data into environmental and safety assessment of the disposal system. General field investigations are conducted throughout the Precambrian Shield, subsurface investigations are conducted at designated field research areas, and in situ rock mass experiments are being conducted in an Underground Research Laboratory. Samples from the field research areas and elsewhere are subjected to a wide range of tests and experiments in the laboratory to develop an understanding of the physical and chemical processes involved in ground-water-rock-waste interactions. Mathematical models to simulate these processes are developed, verified and validated. 114 refs.; 13 figs

  20. A program in medium-energy nuclear physics

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1990-01-01

    This report discusses the following topics: electron-scattering nuclear-structure studies; coincidence electrodisintegration studies of light nuclei; pion scattering and reactions on the three-body nuclei; and pion scattering from shell-model nuclei