WorldWideScience

Sample records for nuclear optical model

  1. Building better optical model potentials for nuclear astrophysics applications

    International Nuclear Information System (INIS)

    Bauge, Eric; Dupuis, Marc

    2004-01-01

    In nuclear astrophysics, optical model potentials play an important role, both in the nucleosynthesis models, and in the interpretation of astrophysics related nuclear physics measurements. The challenge of nuclear astrophysics resides in the fact that it involves many nuclei far from the stability line, implying than very few (if any) experimental results are available for these nuclei. The answer to this challenge is a heavy reliance on microscopic optical models with solid microscopic physics foundations that can predict the relevant physical quantities with good accuracy. This use of microscopic information limits the likelihood of the model failing spectacularly (except if some essential physics was omitted in the modeling) when extrapolating away from the stability line, in opposition to phenomenological models which are only suited for interpolation between measured data points and not for extrapolating towards unexplored areas of the chart of the nuclides.We will show how these microscopic optical models are built, how they link to our present knowledge of nuclear structure, and how they affect predictions of nuclear astrophysics models and the interpretation of some key nuclear physics measurements for astrophysics

  2. Analytical solution of dispersion relations for the nuclear optical model

    Energy Technology Data Exchange (ETDEWEB)

    VanderKam, J.M. [Center for Communications Research, Thanet Road, Princeton, NJ 08540 (United States); Weisel, G.J. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States); Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601-3760 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States)

    2000-12-01

    Analytical solutions of dispersion integral relations, linking the real and imaginary parts of the nuclear optical model, have been derived. These are displayed for some widely used forms of the volume- and surface-absorptive nuclear potentials. When the analytical solutions are incorporated into the optical-model search code GENOA, replacing a numerical integration, the code runs three and a half to seven times faster, greatly aiding the analysis of direct-reaction, elastic scattering data. (author)

  3. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    International Nuclear Information System (INIS)

    Young, P.G.

    1994-01-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, 3 He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei

  4. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    International Nuclear Information System (INIS)

    Young, P.G.

    1998-01-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, 3 He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions in direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH, FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei. (author)

  5. Programs OPTMAN and SHEMMAN Version 6 (1999) - Coupled-Channels optical model and collective nuclear structure calculation -

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jong Hwa; Lee, Jeong Yeon; Lee, Young Ouk; Sukhovitski, Efrem Sh [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Programs SHEMMAN and OPTMAN (Version 6) have been developed for determinations of nuclear Hamiltonian parameters and for optical model calculations, respectively. The optical model calculations by OPTMAN with coupling schemes built on wave functions functions of non-axial soft-rotator are self-consistent, since the parameters of the nuclear Hamiltonian are determined by adjusting the energies of collective levels to experimental values with SHEMMAN prior to the optical model calculation. The programs have been installed at Nuclear Data Evaluation Laboratory of KAERI. This report is intended as a brief manual of these codes. 43 refs., 9 figs., 1 tabs. (Author)

  6. Development Of The Nuclear Optical Penetration

    Science.gov (United States)

    Inoue, K.; Koike, K.; Imada, Y.

    1984-10-01

    We have developed the nuclear optical penetration to be incorporated in the wall penetration of the shell to introduce a data transmission system using optical fibers into a nuclear power plant with a pressurized water reactor. Radiation-induced coloration in optical glass seriously affects transmission characteristics of optical fibers, whereas it has been revealed that the pure-silica core optical fiber without any dopant in the core has wide applicability in radiation fields thanks to its very low radiation-induced attenuation. The wall penetration of the shell should have airtightness and resistivity to heat, vibration, and pressure, let alone radiation, excellent enough to be invariable in data transmission efficiency even when subjected to severe environmental tests. The sealing modules of this newly developed nuclear optical penetration are hermetically sealed. The gap between the optical fiber rod (100 pm in core diameter and 5 mm in rod diameter) and stainless steel tube is sealed with lamingted glass layer. As the result of He gas leakage test, high airtightness of less than 10 cc/sec was achieved. No thermal deformation of the core was caused by sealing with laminated glass layer, nor was observed transmission loss. Then the sealiing modules were subjected to the irradiation test using 60 Co gamma ray exposure of 2 x 10 rads. Though silica glass layer supporting the fiber rod and sealing glass portion turned blackish purple, transparency of the fiber was not affected. Only less than 0.5 dB of connecting loss was observed at the connecting point with the optical fiber cable. The sealing modules were also found to have resistivity to vibration and pressure as excellent as that of existing nuclear electric penetrations. We expect the nuclear optical fiber penetration will be much effective in improving reliability of data transmission systems using optical fibers in radiation fields.

  7. Optical Fibers in Nuclear Reactor Radiation Environments.

    Science.gov (United States)

    Holcomb, David Eugene

    1992-01-01

    A performance evaluation of fiber optics under radiation conditions similar to those encountered in nuclear power plants is reported. The evaluation was accomplished by the creation of an analytical model for atomic scale radiation damage in silica glass and by the execution of an extensive fiber performance measurement program. The analytic model calculates displacement and electronic damage rates for silica glass subjected to a specified nuclear reactor radiation environment. It accomplishes this by first generating the primary charged particle spectrum produced in silica irradiated in a nuclear reactor. The resultant spectra are then applied to the integral equations describing radiation damage in polyatomic solids. The experimental measurements were selected to span the range of fiber types, radiation environments, temperatures, and light powers expected to be used in nuclear power plants. The basic experimental protocol was to expose the optical fibers to either a nuclear reactor or a ^{60}Co radiation environment while simultaneously monitoring fiber light transmission. Experimental temperatures were either ~23 ^circC or ~100 ^circC and light powers were either -30 dBm or -60 dBm. Measurements were made at each of the three standard communications wavelengths (850 nm, 1300 nm, and 1550 nm). Several conclusions are made based on these performance measurements. First, even near the core of a nuclear reactor the vast majority of the dose to silica glass is due to gamma rays. Even with the much lower doses (factor of roughly 40) neutrons cause much more displacement damage than gamma rays (35 times the oxygen displacement rate and 500 times the silicon displacement rate). Even with neutrons having many times the displacement rate as compared with gamma rays, little if any difference is observed in the transmission losses for gamma only as compared to mixed neutron/gamma transmission losses. Therefore, atomic displacement is not a significant damage mechanism for

  8. Fiber optic applications in nuclear power plants

    International Nuclear Information System (INIS)

    Collette, P.; Kwapien, D.

    1984-01-01

    Fiber optic technology possesses many desirable attributes for applications in commercial nuclear power plants. The non-electrical nature of fiber optics is an important factor in an industry governed by federal safety regulations such as Class 1E isolation and separation criteria. Immunity from Electromagnetic Interference (EMI), an increasing industry problem area, is another significant characteristic. Because of the extremely wide bandwidth offered, fiber optics better addresses the data acquistion and communication requirements of the complex processes of a nuclear power plant. Potential for fiber optic sensor applications exists within the nuclear industry because their small size and physical flexibility allows access into normally inaccessible areas. They possess high accuracy and allow environmentally sensitive electronics to be remotely located. The purpose of this paper is to explore current applications for fiber optic technology in modern nuclear plants, document examples of present day usage in C-E plants and suggest possible future application areas

  9. Modelling optical fibers acquisition and transmission systems for their use in nuclear environments

    International Nuclear Information System (INIS)

    Van-Uffelen, Marco

    2001-01-01

    In order to introduce connections based on optical fibres in the field of civil nuclear activities, it is important to have a good knowledge of their behaviour under irradiation. The objective of this research thesis is thus to develop a tool to predict the lifetime of such an optical connection which would allow a predictive maintenance. The adopted methodology relies on a modular approach and consists in the characterization of the behaviour of individual components under test conditions which are representative of addressed applications. Transfer functions are then chained to obtain the connection predictive model. Various components have been studied: mono- and multi-mode optical fibres, light-emitting diodes, vertical-cavity surface-emitting laser diodes (VCSEL), as well as Si and InGaAs sensors. These components have been submitted to a range of dose rates and cumulated dose under temperatures reaching 85 C. Based on on-line measurements, a pragmatic approach has been assessed to predict the evolution of optical losses induced in optical fibres during several months. The difference between measurements and predictions ranges between 10 and 20 per cent depending on the fibre type and on the wavelength. VCSELs display a high tolerance to gamma radiation and a steady operation at high temperatures, whereas sensors appear to be the weakest link [fr

  10. Deuteron microscopic optical model potential

    International Nuclear Information System (INIS)

    Guo Hairui; Han Yinlu; Shen Qingbiao; Xu Yongli

    2010-01-01

    A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular distributions for some target nuclei in the mass range 6≤A≤208 with incident deuteron energies up to 200 MeV. The calculated results are compared with the experimental data.

  11. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1996-01-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I ampersand C) systems for the next generation of reactors and in older plants which are retrofitted with new I ampersand C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment

  12. Nuclear models relevant to evaluation

    International Nuclear Information System (INIS)

    Arthur, E.D.; Chadwick, M.B.; Hale, G.M.; Young, P.G.

    1991-01-01

    The widespread use of nuclear models continues in the creation of data evaluations. The reasons include extension of data evaluations to higher energies, creation of data libraries for isotopic components of natural materials, and production of evaluations for radiative target species. In these cases, experimental data are often sparse or nonexistent. As this trend continues, the nuclear models employed in evaluation work move towards more microscopically-based theoretical methods, prompted in part by the availability of increasingly powerful computational resources. Advances in nuclear models applicable to evaluation will be reviewed. These include advances in optical model theory, microscopic and phenomenological state and level density theory, unified models that consistently describe both equilibrium and nonequilibrium reaction mechanism, and improved methodologies for calculation of prompt radiation from fission. 84 refs., 8 figs

  13. Deep-lying hole states in the optical model

    International Nuclear Information System (INIS)

    Klevansky, S.P.; Lemmer, R.H.

    1982-01-01

    The strength function for deep-lying hole states in an optical potential is studied by the method of Green's functions. The role of isospin is emphasized. It is shown that, while the main trends of the experimental data on hole states in isotopes of Sn and Pd can be described by an energy independent optical potential, intermediate structures in these data indicate the specific nuclear polarization effects have to be included. This is done by introducing doorway states of good isospin into the optical model potential. Such states consist of neutron hole plus proton core vibrations as well as more complicated excitations that are analog states of proton hole plus neutron core vibrations of the parent nuclear system. Specific calculations for 115 Sn and 103 Pd give satisfactory fits to the strength function data using optical model and doorway state parameters that are reasonable on physical grounds

  14. Salvaging of nuclear waste by nuclear-optical converters

    Science.gov (United States)

    Karelin, A. V.; Shirokov, R. V.

    2007-06-01

    In modern conditions of power consumption growing in Russia, apparently, it is difficult to find alternative to further development of nuclear power engineering. The negative party of nuclear power engineering is the spent fuel of nuclear reactors (radioactive waste). The gaseous and fluid radioactive waste furbished of highly active impurity, dumps in atmosphere or pools. The highly active fluid radioactive waste stores by the way of saline concentrates in special tanks in surface layers of ground, above the level of groundwaters. A firm radioactive waste bury in pods from a stainless steel in underground workings, salt deposits, at the bottom of oceans. However this problem can be esteemed in a positive direction, as irradiation is a hard radiation, which one can be used as a power source in nuclear - optical converters with further conversion of optical radiation into the electric power with the help of photoelectric converters. Thus waste at all do not demand special processing and exposure in temporary storehouses. And the electricity can be worked out in a constant mode within many years practically without gang of a stimulus source, if a level of a residual radioactivity and the half-lives of component are high enough.

  15. Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot

    Science.gov (United States)

    Korenev, V. L.

    2007-12-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.

  16. The optical model in atomic physics

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1978-01-01

    The optical model for electron scattering on atoms has quite a short history in comparison with nuclear physics. The main reason for this is that there were insufficient data. Angular distribution for elastic and some inelastic scattering have now been measured for the atoms which exist in gaseous form at reasonable temperatures, inert gases, hydrogen, alkalies and mercury being the main ones out in. The author shows that the optical model makes sense in atomic physics by considering its theory and recent history. (orig./AH) [de

  17. Application technology for optical fiber in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Chul Jung; Lee, Yong Bum; Kim, Woong Ki; Yoon, Tae Seob; Sohn, Surg Won; Kim, Chang Hoi; Hwang, Suk Yong; Baik, Sung Hum; Kwon, Seong Ouk

    1987-12-01

    Lately, the optical fiber increasingly used in such adverse environments as nuclear power plant, radiation facilities because of their endurant properties against heat, radiation, corrosion, etc. Moreover, the transmission of signal through optical fiber does not induce interference from the electromagnetic wave. Basic theory about the optical fiber technology was studied and the developed techniques for nuclear facilities were reviewed. Since the radiations change the characteristics of the optical fiber, the effects of γ-ray irradiation on single mode and multimode optical fiber were examined. The image transmission system through optical fiber bundle was designed, constructed, and tested. Its software system was also updated. It can be used for remote internal inspection in adverse environment. (Author)

  18. Fiber optic pressure sensors for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services.

  19. Fiber optic pressure sensors for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.

    1995-01-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services

  20. The nuclear Thomas-Fermi model

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from 82 Sn to 170 Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z 2 /A exceeds about 100

  1. The Nuclear Thomas-Fermi Model

    Science.gov (United States)

    Myers, W. D.; Swiatecki, W. J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  2. Extreme Spectroscopy: In situ nuclear materials behavior from optical data

    Energy Technology Data Exchange (ETDEWEB)

    Guimbretiere, G.; Canizares, A.; Raimboux, N.; Omnee, R.; Duval, F.; Ammar, M.R.; Simon, P. [CNRS - UPR3079 CEMHTI, Universite d' Orleans, 45071Orleans cedex 2 (France); Desgranges, L.; Mohun, R. [CEA, DEN, DEC, F-13108 Saint-Paul-Lez-Durance (France); Jegou, C.; Magnin, M. [CEA/DTCD/SECM/LMPA, Marcoule 30207 Bagnols Sur Ceze (France); Clavier, N.; Dacheux, N. [ICSM-UMR5257 CEA/CNRS/UM2/ENSCM, Marcoule, BP17171, 30207 Bagnols sur Ceze (France)

    2015-07-01

    In the nuclear industry, materials are regularly exposed to high temperature or/and irradiation and a better knowledge and understanding of their behavior under such extreme conditions is a key-point for improvements and further developments. Nowadays, Raman spectroscopy begins to be well known as a promising technique in the post mortem and remote characterization of nuclear materials exposed to extreme conditions. On this topic, at ANIMMA 2013 conference, we have presented some results about its implementation in the study of model or real nuclear fuel. However, the strength of Raman spectroscopy as in situ characterization tool is mainly its ability to be implemented remotely through optical fibers. Aware of this, implementation of other optical techniques can be considered in order to gain information not only on the structural dynamics of materials but also on the electronic charge carrier populations. In this paper, we propose to present our last advances in Raman characterization of nuclear materials and enlarge to the in situ use of complementary optical spectroscopies. Emphasis will be made on the information that can be gained to the behavior of the model fuel depleted UO{sub 2} under extreme conditions of high temperature and ionic irradiation: - In Situ Raman identification of the radiolysis alteration products of UO{sub 2} in contact with water under ionic irradiation. - In Situ Raman recording of the damaged dynamic of UO{sub 2} under inert atmosphere. - In Situ Raman and photo-luminescence study of virgin and damaged UO2 at high temperature. - In Situ study of electronic charge carriers' behavior in U{sub x}Th{sub 1-x}O{sub 2} solid solutions by mean of Iono- and Thermo- luminescence under and post- ionic irradiation. (authors)

  3. Use of the optical model in the actinide region

    International Nuclear Information System (INIS)

    Salvy, J.

    1985-11-01

    This paper reviews current methods as well as recent developments in the use of optical model for calculating actinide nuclear data in the incident neutron energy range from 10 keV to 20 MeV. Special consideration is given of the general role of the model, parameterization procedures with taking account of nuclear deformations, parameters sets to be recommended, and some utilization problems [fr

  4. Optically induced dynamic nuclear spin polarisation in diamond

    International Nuclear Information System (INIS)

    Scheuer, Jochen; Naydenov, Boris; Jelezko, Fedor; Schwartz, Ilai; Chen, Qiong; Plenio, Martin B; Schulze-Sünninghausen, David; Luy, Burkhard; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13 C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13 C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13 C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis. (paper)

  5. Nucleon-nucleus optical model up to 200 MeV. Proceedings of a specialist meeting

    International Nuclear Information System (INIS)

    OECD Nuclear Energy Agency; Commissariat a l'Energie Atomique

    1997-01-01

    The proceedings of the Specialists Meeting on Nucleon-Nucleus Optical Model up to 200 MeV contains papers on different topics in connection with the nuclear optical potential research. The purpose of the meeting was to reach a common understanding between nuclear theorists, experimentalists and the applied community on the most reliable approaches to predicting nuclear cross-sections in the medium energy region. The discussion centred around such questions as 'What are the better theoretical models today?', and 'What experimental data are required to test the models?'. 23 items are indexed separately for the INIS database. (K.A.)

  6. Fibre optic cable in the nuclear industry

    International Nuclear Information System (INIS)

    Roberts, Berwyn

    1987-01-01

    The uses of optical fibre cables to transmit light signals include medical applications and telecommunications. In the nuclear industry the applications include process control and monitoring, conventional datacoms, security fencing and sensors. Time division multiplexing is described and currently available fibre optic multipexers are listed and explained. Single and multimode fibres are mentioned. Fibre optics are also used in cryogenics, to monitor the integrity of the storage vessels for cryogenic liquids. The uses of fibre optics at Hartlepool, Heysham I and Torness are mentioned in particular. (UK)

  7. The nuclear reaction model code MEDICUS

    International Nuclear Information System (INIS)

    Ibishia, A.I.

    2008-01-01

    The new computer code MEDICUS has been used to calculate cross sections of nuclear reactions. The code, implemented in MATLAB 6.5, Mathematica 5, and Fortran 95 programming languages, can be run in graphical and command line mode. Graphical User Interface (GUI) has been built that allows the user to perform calculations and to plot results just by mouse clicking. The MS Windows XP and Red Hat Linux platforms are supported. MEDICUS is a modern nuclear reaction code that can compute charged particle-, photon-, and neutron-induced reactions in the energy range from thresholds to about 200 MeV. The calculation of the cross sections of nuclear reactions are done in the framework of the Exact Many-Body Nuclear Cluster Model (EMBNCM), Direct Nuclear Reactions, Pre-equilibrium Reactions, Optical Model, DWBA, and Exciton Model with Cluster Emission. The code can be used also for the calculation of nuclear cluster structure of nuclei. We have calculated nuclear cluster models for some nuclei such as 177 Lu, 90 Y, and 27 Al. It has been found that nucleus 27 Al can be represented through the two different nuclear cluster models: 25 Mg + d and 24 Na + 3 He. Cross sections in function of energy for the reaction 27 Al( 3 He,x) 22 Na, established as a production method of 22 Na, are calculated by the code MEDICUS. Theoretical calculations of cross sections are in good agreement with experimental results. Reaction mechanisms are taken into account. (author)

  8. Use of results from microscopic methods in optical model calculations

    International Nuclear Information System (INIS)

    Lagrange, C.

    1985-11-01

    A concept of vectorization for coupled-channel programs based upon conventional methods is first presented. This has been implanted in our program for its use on the CRAY-1 computer. In a second part we investigate the capabilities of a semi-microscopic optical model involving fewer adjustable parameters than phenomenological ones. The two main ingredients of our calculations are, for spherical or well-deformed nuclei, the microscopic optical-model calculations of Jeukenne, Lejeune and Mahaux and nuclear densities from Hartree-Fock-Bogoliubov calculations using the density-dependent force D1. For transitional nuclei deformation-dependent nuclear structure wave functions are employed to weigh the scattering potentials for different shapes and channels [fr

  9. Nuclear matter as a nonlinear optical medium

    International Nuclear Information System (INIS)

    Hefter, E.F.; Papini, G.

    1986-01-01

    This paper is concerned with the question whether nuclear matter should be considered as a nonlinear optical medium. Taking, in a pragmatic way, quality and quantity of the results of well-established linear and nonlinear approaches as the main criterion, an affirmative answer is seen to be consistent with long-standing practices adhered to in nuclear physics

  10. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2016-02-01

    Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.

  11. A comparison of integrated and fiber optic responses in the presence of nuclear fields

    International Nuclear Information System (INIS)

    Taylor, E.W.; Wilson, V.R.; Sanchez, A.D.; Coughenour, M.; Chapman, S.

    1988-01-01

    A short survey of past experimental results is presented along with new investigative data, mathematical and physical response models and a comparison of the nuclear effects compatibility of fiber and integrated optic guided wave structures. The disparity in radiation resistance between optical fibers and guided wave structures is discussed and predictions are offered on the impact that these differences may have on influencing the eventual development of totally integrated radiation resistant structures

  12. ECISVIEW. An interactive toolbox for optical model development

    International Nuclear Information System (INIS)

    Koning, A.J.; Van Wijk, J.J.; Delaroche, J.P.

    1997-01-01

    The software package ECISVIEW is a graphical interface built around the multi-disciplinary nuclear reaction code ECIS-95. The key feature of the working method is that the user can specify the value of optical potential parameters as any mathematical function of the energy, A, Z or user defined parameters. This enables us to obtain conveniently the optimal optical potential parameters for a given nucleus over the whole energy region of interest. ECISVIEW makes it possible to simultaneously study the dependence of all calculated angular distributions, polarizations and total cross sections on optical model parameters. This method is perhaps more than 100 times faster than the conventional method of preparing an input file, running the code, editing the output file and finally viewing the data with a graphical program. As an example, a spherical 0-200 MeV nucleon optical model for 90 Zr is presented. A demonstration of ECISVIEW has been given at this Specialist's Meeting. (author)

  13. High-energy nuclear optics of polarized particles

    CERN Document Server

    Baryshevsky, Vladimir G

    2012-01-01

    The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.

  14. Smoke inputs to climate models: optical properties and height distribution for nuclear winter studies

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C. Jr.

    1985-04-01

    Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs

  15. EMPIRE-II statistical model code for nuclear reaction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M [International Atomic Energy Agency, Vienna (Austria)

    2001-12-15

    EMPIRE II is a nuclear reaction code, comprising various nuclear models, and designed for calculations in the broad range of energies and incident particles. A projectile can be any nucleon or Heavy Ion. The energy range starts just above the resonance region, in the case of neutron projectile, and extends up to few hundreds of MeV for Heavy Ion induced reactions. The code accounts for the major nuclear reaction mechanisms, such as optical model (SCATB), Multistep Direct (ORION + TRISTAN), NVWY Multistep Compound, and the full featured Hauser-Feshbach model. Heavy Ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers (BARFIT), moments of inertia (MOMFIT), and {gamma}-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations. The results can be converted into the ENDF-VI format using the accompanying code EMPEND. The package contains the full EXFOR library of experimental data. Relevant EXFOR entries are automatically retrieved during the calculations. Plots comparing experimental results with the calculated ones can be produced using X4TOC4 and PLOTC4 codes linked to the rest of the system through bash-shell (UNIX) scripts. The graphic user interface written in Tcl/Tk is provided. (author)

  16. Nuclear radiation detected optical pumping of neutron deficient Hg isotopes

    International Nuclear Information System (INIS)

    Bonn, J.

    1975-01-01

    The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 0 -6s6p 3 P 1 (lambda = 2537 A) resonance line of the investigated isotope and the Hg lamp. The orientation build up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magnetic moments, electric quadrupole moments and isotopic shift are obtained for 181 Hg- 191 Hg using the β-asymmetry as detector. The extension of the method using the γ-anisotropy is discussed and measurements on 193 Hg are presented. (orig./HK)

  17. Optical-model analysis of exotic atom data. Pt. 1

    International Nuclear Information System (INIS)

    Batty, C.J.

    1981-01-01

    Data for kaonic atoms are fitted using a simple optical model with a potential proportional to the nuclear density. Very satisfactory fits to strong interaction shift and width values are obtained but difficulties in fitting yield values indicate that the model is not completely satisfactory. The potential strength can be related to the free kaon-nucleon scattering lengths using a model due to Deloff. A good overall representation of the data is obtained with a black-sphere model. (orig.)

  18. Relativistic nuclear matter with alternative derivative coupling models

    International Nuclear Information System (INIS)

    Delfino, A.; Coelho, C.T.; Malheiro, M.

    1994-01-01

    Effective Lagrangians involving nucleons coupled to scalar and vector fields are investigated within the framework of relativistic mean-field theory. The study presents the traditional Walecka model and different kinds of scalar derivative coupling suggested by Zimanyi and Moszkowski. The incompressibility (presented in an analytical form), scalar potential, and vector potential at the saturation point of nuclear matter are compared for these models. The real optical potential for the models are calculated and one of the models fits well the experimental curve from-50 to 400 MeV while also gives a soft equation of state. By varying the coupling constants and keeping the saturation point of nuclear matter approximately fixed, only the Walecka model presents a first order phase transition of finite temperature at zero density. (author)

  19. Research on nuclear reactor instrumentation system using optical technology. JAERI's nuclear research promotion program, H10-041. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji [University of Tokyo, Graduate School of Engineering, Tokyo (Japan)

    2002-03-01

    To apply optical fiber sensing technique to nuclear measurements, we have irradiated the F-doped optical fiber and experimented with two optical fiber sensors: Raman Distributed Temperature Sensor (RDTS) and Fiber Bragg Grating (FBG). We have irradiated F-doped optical fiber, which has high radiation resistivity, with a 60Co gamma source and fast neutron source reactor YAYOI. Although the radiation induced loss with gamma source showed saturation tendency, the loss with YAYOI showed linear loss increase. RDTS has been installed at YAYOI with the correction techniques. During the continuous measurements more than 1 year, the feasibility of RDTS for remote inspection and surveillance was demonstrated. From the result of irradiation experiments on FBG, FBG has high radiation resistivity for a temperature or strain monitor in nuclear plants. For these results, optical fiber sensing can be expected as nuclear measurements. (author)

  20. Spin temperature concept verified by optical magnetometry of nuclear spins

    Science.gov (United States)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  1. Development of global medium-energy nucleon-nucleus optical model potentials

    International Nuclear Information System (INIS)

    Madland, D.G.; Sierk, A.J.

    1997-01-01

    The authors report on the development of new global optical model potentials for nucleon-nucleus scattering at medium energies. Using both Schroedinger and Dirac scattering formalisms, the goal is to construct a physically realistic optical potential describing nucleon-nucleus elastic scattering observables for a projectile energy range of (perhaps) 20 meV to (perhaps) 2 GeV and a target mass range of 16 to 209, excluding regions of strong nuclear deformation. They use a phenomenological approach guided by conclusions from recent microscopic studies. The experimental database consists largely of proton-nucleus elastic differential cross sections, analyzing powers, spin-rotation functions, and total reaction cross sections, and neutron-nucleus total cross sections. They will use this database in a nonlinear least-squares adjustment of optical model parameters in both relativistic equivalent Schroedinger (including relativistic kinematics) and Dirac (second-order reduction) formalisms. Isospin will be introduced through the standard Lane model and a relativistic generalization of that model

  2. Optical model calculations with the code ECIS95

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, B V [Departamento de Fisica, Instituto Tecnologico da Aeronautica, Centro Tecnico Aeroespacial (Brazil)

    2001-12-15

    The basic features of elastic and inelastic scattering within the framework of the spherical and deformed nuclear optical models are discussed. The calculation of cross sections, angular distributions and other scattering quantities using J. Raynal's code ECIS95 is described. The use of the ECIS method (Equations Couplees en Iterations Sequentielles) in coupled-channels and distorted-wave Born approximation calculations is also reviewed. (author)

  3. Application condition of optical communication technique in the nuclear power plants

    International Nuclear Information System (INIS)

    Sakurai, Jun

    1999-01-01

    As the optical communication technique can process rapidly a lot of information and exclude perfectly error action due to noise, it is adopted gradually to commercial and company communications (containing operational managements in large scale facilities) in worldwide scale in stead of conventional communication technique (containing operational controls and measurements). In application to the nuclear power plants, as forming not only change in properties but also deterioration due to radiation damage in many cases of exposure to various types of radiations such as neutron, gamma-ray, and so forth in difference with conventional using environment, its using range is limited at present. In future, development of optical fibers or elements with excellent high temperature and radiation resistances usable stably at reactor core for a long time is essential. The regular application of the optical communication technique at the nuclear power plants begins just now, which is an expected field for future large development. And, for the old nuclear power plant in present operation, substitution to the optical communication technique in accompany with replace of appliances at periodical inspections will also be conducted. Its response is already required rapidly in the Tokyo Electric Power Co., Ltd.. (G.K.)

  4. ECISVIEW. An interactive toolbox for optical model development

    International Nuclear Information System (INIS)

    Koning, A.J.; Van Wijk, J.J.; Delaroche, J.P.

    1997-09-01

    The software package ECISVIEW is a graphical interface built around the multi-disciplinary nuclear reaction code ECIS-95. The basic purpose of ECISVIEW is the possibility to change optical potential parameters interactively, with the keyboard or the mouse, and to display the calculated result immediately on the screen. The key feature of the working method is that the user can specify the value of optical potential parameters as any mathematical function of the energy, A, Z or user defined parameters. This enables us to obtain conveniently the optimal optical potential parameters for a given nucleus over the whole energy region of interest. ECISVIEW makes it possible to simultaneously study the dependence of all calculated angular distributions, polarizations and total cross sections on optical model parameters. This method is perhaps more than 100 times faster than the conventional method of preparing an input file, running the code, editing the output file and finally viewing the data with a graphical program. ECISVIEW has been developed at ECN in Petten, Netherlands, and has been extensively used at CEA, Bruyeres-le-Chatel, France. A spherical 0-200 MeV nucleon optical model for 90 Zr is presented as an example. 4 figs., 1 tab., 5 refs

  5. Optical-coupling nuclear spin maser under highly stabilized low static field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)

    2008-01-15

    A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.

  6. 2nd-order optical model of the isotopic dependence of heavy ion absorption cross sections for radiation transport studies

    Science.gov (United States)

    Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.

    2018-01-01

    Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.

  7. Phenomenological optical potentials and optical model computer codes

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    An introduction to the Optical Model is presented. Starting with the purpose and nature of the physical problems to be analyzed, a general formulation and the various phenomenological methods of solution are discussed. This includes the calculation of observables based on assumed potentials such as local and non-local and their forms, e.g. Woods-Saxon, folded model etc. Also discussed are the various calculational methods and model codes employed to describe nuclear reactions in the spherical and deformed regions (e.g. coupled-channel analysis). An examination of the numerical solutions and minimization techniques associated with the various codes, is briefly touched upon. Several computer programs are described for carrying out the calculations. The preparation of input, (formats and options), determination of model parameters and analysis of output are described. The class is given a series of problems to carry out using the available computer. Interpretation and evaluation of the samples includes the effect of varying parameters, and comparison of calculations with the experimental data. Also included is an intercomparison of the results from the various model codes, along with their advantages and limitations. (author)

  8. Optical pumping of electron and nuclear spin in a negatively-charged quantum dot

    Science.gov (United States)

    Bracker, Allan; Gershoni, David; Korenev, Vladimir

    2005-03-01

    We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.

  9. Spectrophotometry with optical fibers applied to nuclear product processing

    International Nuclear Information System (INIS)

    Boisde, G.; Perez, J.J.; Velluet, M.T.; Jeunhomme, L.B.

    1988-01-01

    Absorption spectrophotometry is widely used in laboratories for composition analysis and quality control of chemical processes. Using optical fibers for transmitting the light between the instrument and the process line allows to improve the safety and productivity of chemical processes, thanks to real time measurements. Such applications have been developed since 1975 in CEA for the monitoring of nuclear products. This has led to the development of fibers, measurement cells, and optical feedthrough sustaining high radiation doses, of fiber/spectrophotometer couplers, and finally of a photodiode array spectrophotometer optimized for being used together with optical fibers [fr

  10. Simulated nuclear optical signatures using explosive light sources (ELS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April

  11. Simulated nuclear optical signatures using explosive light sources (ELS)

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April.

  12. Temperature-dependent relativistic microscopic optical potential and the mean free path of a nucleon based on Walecka's model

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhuo Yizhong

    1994-01-01

    The relativistic microscopic optical potential, the Schroedinger equivalent potential, and mean free paths of a nucleon at finite temperature in nuclear matter and finite nuclei are studied based on Walecka's model and thermo-field dynamics. We let only the Hartree-Fock self-energy of a nucleon represent the real part of the microscopic optical potential and the fourth order of meson exchange diagrams, i.e. the polarization diagrams represent the imaginary part of the microscopic optical potential in nuclear matter. The microscopic optical potential of finite nuclei is obtained by means of the local density approximation. (orig.)

  13. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute /sup 13/C nuclei in the solid state. The idea was to create /sup 1/H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the /sup 13/C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large /sup 1/H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large /sup 13/C polarizations have been created in fluorene single crystals. These large /sup 13/C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined.

  14. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    International Nuclear Information System (INIS)

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute 13 C nuclei in the solid state. The idea was to create 1 H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the 13 C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large 1 H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large 13 C polarizations have been created in fluorene single crystals. These large 13 C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined

  15. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models

    Science.gov (United States)

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-11-01

    Using various relativistic mean-field models, including nonlinear ones with meson field self-interactions, models with density-dependent meson-nucleon couplings, and point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compared the results with the constraints recently extracted from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions as well as from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes. Among the 23 parameter sets in the relativistic mean-field model that are commonly used for nuclear structure studies, only a few are found to give symmetry energies that are consistent with the empirical constraints. We have also studied the nuclear symmetry potential and the isospin splitting of the nucleon effective mass in isospin asymmetric nuclear matter. We find that both the momentum dependence of the nuclear symmetry potential at fixed baryon density and the isospin splitting of the nucleon effective mass in neutron-rich nuclear matter depend not only on the nuclear interactions but also on the definition of the nucleon optical potential.

  16. K- nuclear potentials from in-medium chirally motivated models

    International Nuclear Information System (INIS)

    Cieply, A.; Gazda, D.; Mares, J.; Friedman, E.; Gal, A.

    2011-01-01

    A self-consistent scheme for constructing K - nuclear optical potentials from subthreshold in-medium KN s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K - quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -Re V K - chiral =85±5 MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium KN threshold amplitudes. The moderate agreement with data is much improved by adding complex ρ- and ρ 2 -dependent phenomenological terms, found to be dominated by ρ 2 contributions that could represent KNN→YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed and systematic studies of K - quasibound nuclear states are presented.

  17. Optical model with multiple band couplings using soft rotator structure

    Science.gov (United States)

    Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi

    2017-09-01

    A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.

  18. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.

    Science.gov (United States)

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-02-03

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

  19. Applicability study of optical fiber distribution sensing to nuclear facilities

    International Nuclear Information System (INIS)

    Takada, Eiji; Kimura, Atsushi; Nakazawa, Masaharu; Kakuta, Tsunemi

    1999-01-01

    Optical fibers have advantages like flexible configuration, intrinsic immunity for electromagnetic fields etc., and they have been used for signal transmission and as optical fiber sensors (OFSs). By some of these sensor techniques, continuous or discrete distribution of physical parameters can be measured. Here, in order to discuss the applicability of these OFSs to nuclear facilities, irradiation experiments to optical fibers were carried out using the fast neutron source reactor 'YAYOI' and a 60 Co γ source. It has been shown that, under irradiation with fast neutrons, the radiation induced loss increase almost linearly with the neutron fluence. On the other hand, when irradiated with 60 Co γ rays, the loss shows a saturation tendency. As an example of the OFSs, applicability of the Raman distributed temperature sensor (RDTS) to the monitoring of nuclear facilities has been examined. Two correction techniques for radiation induced errors have been developed and for the demonstration of their feasibility, measurements were carried out along the primary piping system of the experimental fast reactor: JOYO. During the continuous measurements with the total dose of more than 10 7 [R], the radiation induced errors showed a saturating tendency and the feasibility of the loss correction technique was demonstrated. Although the time response of the system should be improved, the RDTS can be expected as a noble temperature monitor in nuclear facilities. (author)

  20. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-10-15

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research.

  1. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    International Nuclear Information System (INIS)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi

    2016-01-01

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research

  2. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  3. Nucleon-nucleon optical model for energies to 3 GeV

    International Nuclear Information System (INIS)

    Funk, A.; Von Geramb, H.V.; University of Melbourne, VIC; Amos, K.A.

    2001-01-01

    Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion, which describe the NN interaction for T Lab ≤ 300 MeV are extended in their range of application as NN optical models. Extensions are made in r-space using complex separable potentials definable with a wide range of form factor options including those of boundary condition models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of the optical model interactions account for loss of flux into direct or resonant production processes. The optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of nucleons when T Lab > 2 GeV. We do so by calculating the scattering wave functions to specify the energy and radial dependences of flux losses and of probability distributions. Furthermore, half-off the energy shell t-matrices are presented as they are readily deduced with this approach. Such t-matrices are required for studies of few- and many-body nuclear reactions

  4. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  5. Optical switching of nuclear spin-spin couplings in semiconductors.

    Science.gov (United States)

    Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi

    2011-07-05

    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear-spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings.

  6. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  7. Optical models of the human eye.

    Science.gov (United States)

    Atchison, David A; Thibos, Larry N

    2016-03-01

    Optical models of the human eye have been used in visual science for purposes such as providing a framework for explaining optical phenomena in vision, for predicting how refraction and aberrations are affected by change in ocular biometry and as computational tools for exploring the limitations imposed on vision by the optical system of the eye. We address the issue of what is understood by optical model eyes, discussing the 'encyclopaedia' and 'toy train' approaches to modelling. An extensive list of purposes of models is provided. We discuss many of the theoretical types of optical models (also schematic eyes) of varying anatomical accuracy, including single, three and four refracting surface variants. We cover the models with lens structure in the form of nested shells and gradient index. Many optical eye models give accurate predictions only for small angles and small fields of view. If aberrations and image quality are important to consider, such 'paraxial' model eyes must be replaced by 'finite model' eyes incorporating features such as aspheric surfaces, tilts and decentrations, wavelength-dependent media and curved retinas. Many optical model eyes are population averages and must become adaptable to account for age, gender, ethnicity, refractive error and accommodation. They can also be customised for the individual when extensive ocular biometry and optical performance data are available. We consider which optical model should be used for a particular purpose, adhering to the principle that the best model is the simplest fit for the task. We provide a glimpse into the future of optical models of the human eye. This review is interwoven with historical developments, highlighting the important people who have contributed so richly to our understanding of visual optics. © 2016 The Authors. Clinical and Experimental Optometry © 2016 Optometry Australia.

  8. International nuclear model and code comparison on pre-equilibrium effects

    International Nuclear Information System (INIS)

    Gruppelaar, H.; van der Kamp, H.A.J.; Nagel, P.

    1983-01-01

    This paper gives the specification of an intercomparison of statistical nuclear models and codes with emphasis on pre-equilibrium effects. It is partly based upon the conclusions of a meeting of an ad-hoc working group on this subject. The parameters studied are: masses, Q values, level scheme data, optical model parameters, X-ray competition parameters, total level-density specifications, for 86 Rb, 89 Sr, 90 Y, 92 Y, 92 Zr, 93 Zr, 89 Y, 91 Nb, 92 Nb and 93 Nb

  9. Nuclear model calculations below 200 MeV and evaluation prospects

    International Nuclear Information System (INIS)

    Koning, A.J.; Bersillon, O.; Delaroche, J.P.

    1994-08-01

    A computational method is outlined for the quantum-mechanical prediction of the whole double-differential energy spectrum. Cross sections as calculated with the code system MINGUS are presented for (n,xn) and (p,xn) reactions on 208 Pb and 209 Bi. Our approach involves a dispersive optical model, comprehensive discrete state calculations, renormalized particle-hole state densities, a combined MSD/MSC model for pre-equilibrium reactions and compound nucleus calculations. The relation with the evaluation of nuclear data files is discussed. (orig.)

  10. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading

    Directory of Open Access Journals (Sweden)

    You Na Kim

    2016-01-01

    Full Text Available Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III lens grading and corrected distance visual acuity (BCVA. Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R2 = 0.187, p<0.01 and nuclear density (R2 = 0.316, p<0.01 obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R2 = 0.454, p<0.01. Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts.

  11. Effects of strain and quantum confinement in optically pumped nuclear magnetic resonance in GaAs: Interpretation guided by spin-dependent band structure calculations

    Science.gov (United States)

    Wood, R. M.; Saha, D.; McCarthy, L. A.; Tokarski, J. T.; Sanders, G. D.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.; Reno, J. L.; Stanton, C. J.; Bowers, C. R.

    2014-10-01

    A combined experimental-theoretical study of optically pumped nuclear magnetic resonance (OPNMR) has been performed in a GaAs /A l0.1G a0.9As quantum well film epoxy bonded to a Si substrate with thermally induced biaxial strain. The photon energy dependence of the Ga OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from the electronic structure and differential absorption to spin-up and spin-down states of the electron conduction band using a modified k .p model based on the Pidgeon-Brown model. Comparison of theory with experiment facilitated the assignment of features in the OPNMR energy dependence to specific interband Landau level transitions. The results provide insight into how effects of strain and quantum confinement are manifested in optical nuclear polarization in semiconductors.

  12. Theoretical studies in nuclear reaction and nuclear structure. Final report, January 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1977-07-01

    Progress in theoretical research is reported under the following readings: (1) few nuclear reactions, Eikonal approximations, and optical models; (2) pion reactions; (3) nuclear structure by reaction studies; (4) nuclear dynamics

  13. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  14. Nuclear spin circular dichroism

    International Nuclear Information System (INIS)

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-01-01

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra

  15. Optical switching of nuclear spin–spin couplings in semiconductors

    Science.gov (United States)

    Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi

    2011-01-01

    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear–spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings. PMID:21730962

  16. Application of optical diagnosis to aged low-voltage cable insulation in nuclear plants

    International Nuclear Information System (INIS)

    Katagiri, Junichi; Takezawa, Yoshitaka; Shouji, Hiroshi

    2008-01-01

    We have developed a novel non-destructive optical diagnosis technique for low-voltage cable insulations used in nuclear power plants. The key features of this diagnosis are the use of two wavelengths to measure the change in reflective absorbance (ΔA R ), the use of polarized light to measure crystallinity and the use of element volatilizing to measure fluorescence. Chemical kinetics is used to predict the lifetimes of the cable insulations. When cable insulations darken and harden by time degradation, the ΔA R and depolarization parameters increase. This means that the cross-linking density in the cable insulations increases due to deterioration reactions. When the cross-linking density of insulation increases, its elasticity, corresponding to the material's life, increases. Similarly, as the crystallinity increases due to the change in the high-order structure of the insulating resin caused by irradiation, its elongation property decreases. The elongation property of insulation is one of the most important parameters that can be used to evaluate material lifetimes, because it relates to elasticity. The ΔA R correlated with the elongation property, and the correlation coefficient of an accelerated experiment using model pieces was over 0.9. Thus, we concluded that this optical diagnosis should be applied to evaluate the degradation of cable insulations used in nuclear power plants. (author)

  17. Intermediate-energy nuclear photoabsorption and the pion optical potential

    International Nuclear Information System (INIS)

    Christillin, P.

    1984-01-01

    Nuclear photoabsorption around the pion threshold is schematised as photoproduction of a pion which undergoes final-stae interaction with the nucleus, accounted for by the pion optical potential. It is shown that real pion photoproduction and exchange effects are naturally described by the same mechanism with a non-static pion. The complementarity of photoabsorption to pion physics and its usefulness in gaining new information about pion-nucleus dynamics are stressed. (author)

  18. Anatomically accurate, finite model eye for optical modeling.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1997-08-01

    There is a need for a schematic eye that models vision accurately under various conditions such as refractive surgical procedures, contact lens and spectacle wear, and near vision. Here we propose a new model eye close to anatomical, biometric, and optical realities. This is a finite model with four aspheric refracting surfaces and a gradient-index lens. It has an equivalent power of 60.35 D and an axial length of 23.95 mm. The new model eye provides spherical aberration values within the limits of empirical results and predicts chromatic aberration for wavelengths between 380 and 750 nm. It provides a model for calculating optical transfer functions and predicting optical performance of the eye.

  19. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    Science.gov (United States)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  20. Research on applicability of optical and digital technologies to nuclear power stations

    International Nuclear Information System (INIS)

    Emoto, Motonori

    1990-01-01

    Recently, the development of electronic technology represented by optical multiple transmission technology and digital technology is remarkable, and it is expected that this tendency advances further hereafter. The improvement of the reliability, operational performance and maintainability of nuclear power stations by applying these most advanced technologies to them has been desired. In this research, it was found that by the application of optical multiple transmission and digital technology to nuclear power stations, their operation by a small number of operators, the automation of work management and so on can be realized. Besides, it was found that as the major technologies of hereafter, the advance of artificial intelligence technology, rapid and large capacity information processing, the network of the computers of different types and others is necessary. Further, if these technologies are completed, the clarification of the requirement when those are actually applied to nuclear power stations is necessary, and it was found also that as the matters to be considered at that time, the extent of improvement of reliability, the reduction of risk at the time of the troubles of equipment and other fundamental matters must be clarified hereafter. (K.I.)

  1. Nuclear physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Explains the concepts in detail and in depth. Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov's theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.

  2. Three-particle forces and nuclear models

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1980-01-01

    Different nuclear models accounting and unaccounting for three-particle internucleon forces (TIF) are reviewed. At present only two nuclear models use manifestly TIP: the Vautherin-Brink-Skyrme (VBS) model and the model proposed by the author of the review and called the semiphenomenological (SP) nuclear model. There is a short discussion of major drawbacks of models unaccounting for TIF: multiparticle shell model, ''superfluid model'', Harty-Fock calculations with two-particle forces, Bruckner-Hartry-Fock calculations, the relativistic self-consistent nuclear model. The VBS and SP models are discussed in detail. It is concluded, that the employment of TIF even in a very simplified form (extremely short-range) puts away a lot of problems characteristic to models limited by two-particle forces (collapse at iteratious in Hartry-Fock, simultaneous fitting of the binding energy of a nucleus and the binding energy of a nucleon, etc.) and makes it possible to obtain in a rather simple way such nuclear characteristics as nuclear binding energy, nuclear mean square root radii, nucleon density of a nucleus

  3. A fiber optic link for the remote handling in nuclear environment

    International Nuclear Information System (INIS)

    Breuze, G.; Carnet, B.; Friant, A.; Blanc, F.; Lordet, J.; Boisde, G.

    1988-01-01

    At CEA a R/D program is running to improve performances of servomanipulators used in nuclear fuel reprocessing plants. Present work gives the main environmental parameters (gamma rays exposition, temperature) and shows the basis of the digital link designed to remote-handle such a manipulator. Up to 10 5 Gy behavior of optical fibers and electronic components was studied. Two different optical cables were built, one for the long link (100 m), the second to set in an especially designed winding unwinding wheel. Six way permanent or remote-handle connectors were developed to connect optical interfaces and a leaktight penetration. Measured budget of the link taking into account efficient photoblesching of the pure silica core fiber and influence of gamma rays on the slave interface is presented [fr

  4. Study of neutron shell structure of even-even 40-56Ca isotopes by the dispersive optical model

    International Nuclear Information System (INIS)

    Bespalova, O.V.; Boboshin, I.N.; Varlamov, V.V.; Ermakova, T.A.; Ishkhanov, B.S.; Romanovskij, E.A.; Spasskaya, T.I.; Timokhina, T.P.

    2005-01-01

    The single-particle energies and occupation probabilities of the bound neutron states in 40,42,44,46,48 Ca isotopes were obtained by the joint evaluation of the stripping and pick-up reaction data. The results were analyzed by the dispersive optical model and a good agreement was achieved. The dispersive optical potential was extrapolated to unstable 50,52,54,56 Ca nuclei. The calculated single-particle energies of the bound neutron states in unstable Ca isotopes were compared with the nuclear shell-model calculations, which predicted new magic number N = 34 for nuclei with Z = 20 [ru

  5. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiemann, Dora K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Choi, Junoh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  6. Microscopic optical potential at medium energies

    International Nuclear Information System (INIS)

    Malecki, A.

    1979-01-01

    The problems concerning a microscopic optical model for the elastic nuclear collisions at medium energies are discussed. We describe the method for constructing the optical potential which makes use of the particular properties of quantum scattering in the eikonal limit. The resulting potential is expressed in terms of the nuclear wave functions and the nucleon-nucleon scattering amplitudes. This potential has a dynamic character since by including the effects of multiple scattering it allows for the possibility of intermediate excitations of the projectile and target nuclei. The use of the potential in the exact wave equation accounts for the most important mechanisms present in the collisions between composite particles. The microscopic optical model was successfully applied in the analysis of elastic scattering of protons and α-particles on atomic nuclei in the energy range of 300-1000 MeV/nucleon. The dynamic optical potential in this case represents a considerable improvement over the eikonal Glauber model and the static optical potential of Watson. The possibilities to extend the microscopic description of the proton-nucleus interaction by considering the spin dependence of the elementary amplitude and the Majorana exchange effects were investigated. (author)

  7. Microscopic optical model potential based on Brueckner-Hartree-Fock theory

    International Nuclear Information System (INIS)

    Li Lulu; Zhao Enguang; Zhou Shangui; Li Zenghua; Zuo Wei; Bonaccorso, Angela; Lonbardo, Umberto

    2010-01-01

    The optical model is one of the most important models in the study of nuclear reactions. In the optical model, the elastic channel is considered to be dominant and the contributions of all other absorption channels are described by introducing an imaginary potential, Koning and Delaroche obtained empirically the so-called KDR optical potentials based on a best-fitting of massive experimental data on nucleon-nucleus scattering reactions. The volume part is found to be dominant in the real component of the OMP at low energies. Using the Bruckner-Hartree-Fock theory with Bonn B potential plus self consistent three body force, the nucleon-nucleus optical potential is studied in this thesis. In the Bruckner theory, the on-shell self energy, is corresponding to the depth of the volume part of the optical model potential (OMP) for nucleon-nucleus scattering. Using Bruckner-Hartree-Fock theory, the nucleon on-shell self energy is calculated based on Hughenoltz-Van Hove (HVH) theorem. The microscopic optical potentials thus obtained agree well with the volume part of the KDR potentials. Furthermore, the isospin splitting in the volume part of the OMP is also reproduced satisfactorily. The isospin effect in the volume part of the OMP is directly related to the isospin splitting of the effective mass of the nucleon. According to our results, the isospin splitting of neutron to proton effective mass is such that the neutron effective mass increases with isospin, whereas the proton effective mass decreases. The isovector potential U n (E) - U p (E) vanishes at energy E ≈ 200 MeV and then changes sign indicating a possible inversion in the effective mass isospin spitting. We also calculated from the Bruckner theory the imaginary part of the OMP, and the microscopic calculations predict that the isospin splitting exists also in the imaginary OMP whereas the empirical KDR potentials do not show this feature. The shape of the real component of the nucleon-nucleus OMP is

  8. Modeling nuclear processes by Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my [Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor (Malaysia)

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  9. Modeling nuclear processes by Simulink

    International Nuclear Information System (INIS)

    Rashid, Nahrul Khair Alang Md

    2015-01-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples

  10. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    International Nuclear Information System (INIS)

    Khoa, Dao T.; Thang, Dang Ngoc; Loc, Bui Minh

    2014-01-01

    The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ( 3 He, t) reaction, can be considered as ''elastic'' scattering of proton or 3 He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ( 3 He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or 3 He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or 3 He optical potential to the cross section of the charge-exchange (p, n) or ( 3 He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ( 3 He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)

  11. Real time analysis by in line spectrophotometry using optical fibre: application to nuclear fuel reprocessing solutions

    International Nuclear Information System (INIS)

    Pouyat, D.; Couston, L.; Noire, M.H.; Davin, T.; Delage, J.; Bouzon, C.; Goutier, J.; Marty, P.

    1998-01-01

    In nuclear fuel reprocessing factories, an in line determination of actinides and acidity is useful to control the efficiency of the liquid-liquid extraction steps. Although molecular absorptiometric methods are very efficient at the laboratory scale, in-line analysis require to develop passive optical fibre sensor, spectral treatment, and optical fibre active sensors for ions or molecule without optical property such H + . In the first case, a specific optical fibre sensor has been developed to reduce radiological or optical contamination, and to remove the hydraulic perturbations of an intrusive technology. The optical spectrum is directly measured- through a Teflon-PFA tube. Five determination (U IV , U VI , Pu III , Pu IV and HNO 2 ) on eight different process point are achieved every 3 seconds, by using Partial Least Square (PLS) multivariate treatment based on a standards data base. For non linear interference, such as matrix effects on U VI spectrum in nitric acid media, PLS is not very efficient. A physical-chemical model is then required to get a linear relationship. For acidity measurements, an acid-sensitive dye is coated on the core of an optical fiber by the Sol-Gel process. The sensor response, proportional to the indicator protonation, is based on the evanescent wave absorption. This system is free from spectral interference, the response time is fast and measurements are reversible, even with Pu IV at 4 g/l. (author)

  12. Modifications of the optical properties for DAM-ADC nuclear track detector exposed to alpha particles

    Science.gov (United States)

    Rammah, Y. S.; Awad, E. M.

    2018-05-01

    Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.

  13. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores

    Science.gov (United States)

    Law, Y. K.; Hassanali, A. A.

    2018-03-01

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  14. Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots

    Science.gov (United States)

    Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.

    2005-02-01

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  15. Uncertainties in Nuclear Proliferation Modeling

    International Nuclear Information System (INIS)

    Kim, Chul Min; Yim, Man-Sung; Park, Hyeon Seok

    2015-01-01

    There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. Such systematic approaches have shown the possibility to provide warning for the international community to prevent nuclear proliferation activities. However, there are still large debates for the robustness of the actual effect of determinants and projection results. Some studies have shown that several factors can cause uncertainties in previous quantitative nuclear proliferation modeling works. This paper analyzes the uncertainties in the past approaches and suggests future works in the view of proliferation history, analysis methods, and variable selection. The research community still lacks the knowledge for the source of uncertainty in current models. Fundamental problems in modeling will remain even other advanced modeling method is developed. Before starting to develop fancy model based on the time dependent proliferation determinants' hypothesis, using graph theory, etc., it is important to analyze the uncertainty of current model to solve the fundamental problems of nuclear proliferation modeling. The uncertainty from different proliferation history coding is small. Serious problems are from limited analysis methods and correlation among the variables. Problems in regression analysis and survival analysis cause huge uncertainties when using the same dataset, which decreases the robustness of the result. Inaccurate variables for nuclear proliferation also increase the uncertainty. To overcome these problems, further quantitative research should focus on analyzing the knowledge suggested on the qualitative nuclear proliferation studies

  16. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells

    International Nuclear Information System (INIS)

    Chang Yiren; Hsu Long; Chi Sien

    2006-01-01

    Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system

  17. Measurements of nuclear polarization and nuclear magnetic moment of 170Tm in 170Tm:SrF2 by optical pumping

    International Nuclear Information System (INIS)

    Shimomura, K.

    1988-01-01

    Significant nuclear polarization of unstable 170 Tm in Tm 2+ :SrF 2 was for the first time achieved with β-ray radiation detected optical pumping in solids, providing a new powerful method to measure magnetic moments of unstable nuclei. (author)

  18. Blind intercomparison of nuclear models for predicting charged particle emission

    International Nuclear Information System (INIS)

    Shibata, K.; Cierjacks, S.

    1994-01-01

    Neutron activation data are important for dosimetry, radiation-damage and production of long-lived activities. For fusion energy applications, it is required to develop 'low-activation materials' from the viewpoints of safety, maintenance and waste disposal. Existing evaluated activation cross-section libraries are to a large extent based on nuclear-model calculations. The former Nuclear Energy Agency Nuclear Data Committee, NEANDC, (presently replaced by the NEA Nuclear Science Committee) organized the working group on activation cross sections. The first meeting of the group was held in 1989, and it was then agreed that a blind intercomparison of nuclear-model calculations should be undertaken in order to test the predictive power of the theoretical calculations. As a first stage the working group selected the reactions 60g Co(n,p) 60 Fe and 60m Co(n,p) 60 Fe, for which no experimental data were available, in the energy range from 1 to 20 MeV. The preliminary results compiled at the NEA Data Bank were sent to each participant and a meeting was held during the International Conference on Nuclear Data for Science and Technology in Julich 1991 to discuss the results. Following the outcome of the discussion in Julich, it was decided to extend this intercomparison. In the second-stage calculation, the same optical-model parameters were employed for neutrons, protons and α-particles, i.e., V = 50 MeV, W = 10 MeV, r = 1.25 fm and a = 0.6 fm with the Woods-Saxon volume-type form factors. No spin-orbit interaction was considered. Concerning the level density, the Fermi gas model with a = A/8 MeV -1 was assumed without pairing corrections. Moreover, gamma-ray competition was neglected to simplify the calculation. This report describes the final results of the blind comparison. Section 2 deals with a survey of the received contributions. The final results are graphically presented in section 3. 67 figs., 1 tab., 12 refs

  19. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    Science.gov (United States)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  20. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    Science.gov (United States)

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  1. Evolving and energy dependent optical model description of heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Michaelian, K.

    1996-01-01

    We present the application of a genetic algorithm to the problem of determining an energy dependent optical model description of heavy-ion elastic scattering. The problem requires a search for the global best optical model potential and its energy dependence in a very rugged 12 dimensional parameter space of complex topographical features with many local minima. Random solutions are created in the first generation. The fitness of a solution is related to the χ 2 fit of the calculated differential cross sections with the experimental data. Best fit solutions are evolved through cross over and mutation following the biological example. This genetic algorithm approach combined with local gradient minimization is shown to provide a global, complete and extremely efficient search method, well adapted to complex fitness landscapes. These characteristics, combined with the facility of application, should make it the search method of choice for a wide variety of problems from nuclear physics. (Author)

  2. Global nuclear material control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  3. Nuclear theory for fast neutron nuclear data evaluation

    International Nuclear Information System (INIS)

    1988-11-01

    The proceedings contain all invited and contributed papers presented at the Advisory Group Meeting on Nuclear Theory for Fast Neutron Data Evaluation held in Beijing 12-16 October 1987, as well as the conclusions and recommendations and the Chairman's summary of the meeting. The meeting presentations have been divided into six sessions devoted to the following topics: introductory speech (1 paper), optical potential (9 papers), compound nuclear theory (10 papers), pre-compound nuclear theory (13 papers), isomeric cross-section (1 paper) and intercomparison of nuclear model computer codes (1 paper). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  4. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Khoa, Dao T.; Thang, Dang Ngoc [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); Loc, Bui Minh [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); University of Pedagogy, Ho Chi Minh City (Viet Nam)

    2014-02-15

    The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ({sup 3}He, t) reaction, can be considered as ''elastic'' scattering of proton or {sup 3}He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ({sup 3}He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or {sup 3}He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or {sup 3}He optical potential to the cross section of the charge-exchange (p, n) or ({sup 3}He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ({sup 3}He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)

  5. Pion scattering and nuclear dynamics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1988-01-01

    A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab

  6. Influence of nuclear radiation and laser beams on optical fibers and components

    Directory of Open Access Journals (Sweden)

    Pantelić Slađana N.

    2011-01-01

    Full Text Available The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc..

  7. Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging

    Science.gov (United States)

    Roncali, Emilie; Mosleh-Shirazi, Mohammad Amin; Badano, Aldo

    2017-10-01

    Computational modelling of radiation transport can enhance the understanding of the relative importance of individual processes involved in imaging systems. Modelling is a powerful tool for improving detector designs in ways that are impractical or impossible to achieve through experimental measurements. Modelling of light transport in scintillation detectors used in radiology and radiotherapy imaging that rely on the detection of visible light plays an increasingly important role in detector design. Historically, researchers have invested heavily in modelling the transport of ionizing radiation while light transport is often ignored or coarsely modelled. Due to the complexity of existing light transport simulation tools and the breadth of custom codes developed by users, light transport studies are seldom fully exploited and have not reached their full potential. This topical review aims at providing an overview of the methods employed in freely available and other described optical Monte Carlo packages and analytical models and discussing their respective advantages and limitations. In particular, applications of optical transport modelling in nuclear medicine, diagnostic and radiotherapy imaging are described. A discussion on the evolution of these modelling tools into future developments and applications is presented. The authors declare equal leadership and contribution regarding this review.

  8. High stress monitoring of prestressing tendons in nuclear concrete vessels using fibre-optic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M., E-mail: marcus.perry@strath.ac.uk [Institute for Energy and Environment, University of Strathclyde, 204 George Street, Glasgow G1 1XW (United Kingdom); Yan, Z.; Sun, Z.; Zhang, L. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Niewczas, P. [Institute for Energy and Environment, University of Strathclyde, 204 George Street, Glasgow G1 1XW (United Kingdom); Johnston, M. [Civil Design Group, EDF Energy, Nuclear Generation, East Kilbride G74 5PG (United Kingdom)

    2014-03-15

    Highlights: • We weld radiation-resistant optical fibre strain sensors to steel prestressing tendons. • We prove the sensors can survive 1300 MPa stress (80% of steel's tensile strength). • Mechanical relaxation of sensors is characterised under 1300 MPa stress over 10 h. • Strain transfer between tendon and sensor remains at 69% after relaxation. • Sensors can withstand and measure deflection of tendon around a 4.5 m bend radius. - Abstract: Maintaining the structural health of prestressed concrete nuclear containments is a key element in ensuring nuclear reactors are capable of meeting their safety requirements. This paper discusses the attachment, fabrication and characterisation of optical fibre strain sensors suitable for the prestress monitoring of irradiated steel prestressing tendons. The all-metal fabrication and welding process allowed the instrumented strand to simultaneously monitor and apply stresses up to 1300 MPa (80% of steel's ultimate tensile strength). There were no adverse effects to the strand's mechanical properties or integrity. After sensor relaxation through cyclic stress treatment, strain transfer between the optical fibre sensors and the strand remained at 69%. The fibre strain sensors could also withstand the non-axial forces induced as the strand was deflected around a 4.5 m bend radius. Further development of this technology has the potential to augment current prestress monitoring practices, allowing distributed measurements of short- and long-term prestress losses in nuclear prestressed-concrete vessels.

  9. Covariance matrices for nuclear cross sections derived from nuclear model calculations

    International Nuclear Information System (INIS)

    Smith, D. L.

    2005-01-01

    The growing need for covariance information to accompany the evaluated cross section data libraries utilized in contemporary nuclear applications is spurring the development of new methods to provide this information. Many of the current general purpose libraries of evaluated nuclear data used in applications are derived either almost entirely from nuclear model calculations or from nuclear model calculations benchmarked by available experimental data. Consequently, a consistent method for generating covariance information under these circumstances is required. This report discusses a new approach to producing covariance matrices for cross sections calculated using nuclear models. The present method involves establishing uncertainty information for the underlying parameters of nuclear models used in the calculations and then propagating these uncertainties through to the derived cross sections and related nuclear quantities by means of a Monte Carlo technique rather than the more conventional matrix error propagation approach used in some alternative methods. The formalism to be used in such analyses is discussed in this report along with various issues and caveats that need to be considered in order to proceed with a practical implementation of the methodology

  10. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  11. Parametric uncertainty in optical image modeling

    Science.gov (United States)

    Potzick, James; Marx, Egon; Davidson, Mark

    2006-10-01

    Optical photomask feature metrology and wafer exposure process simulation both rely on optical image modeling for accurate results. While it is fair to question the accuracies of the available models, model results also depend on several input parameters describing the object and imaging system. Errors in these parameter values can lead to significant errors in the modeled image. These parameters include wavelength, illumination and objective NA's, magnification, focus, etc. for the optical system, and topography, complex index of refraction n and k, etc. for the object. In this paper each input parameter is varied over a range about its nominal value and the corresponding images simulated. Second order parameter interactions are not explored. Using the scenario of the optical measurement of photomask features, these parametric sensitivities are quantified by calculating the apparent change of the measured linewidth for a small change in the relevant parameter. Then, using reasonable values for the estimated uncertainties of these parameters, the parametric linewidth uncertainties can be calculated and combined to give a lower limit to the linewidth measurement uncertainty for those parameter uncertainties.

  12. Development of nuclear models for higher energy calculations

    International Nuclear Information System (INIS)

    Bozoian, M.; Siciliano, E.R.; Smith, R.D.

    1988-01-01

    Two nuclear models for higher energy calculations have been developed in the regions of high and low energy transfer, respectively. In the former, a relativistic hybrid-type preequilibrium model is compared with data ranging from 60 to 800 MeV. Also, the GNASH exciton preequilibrium-model code with higher energy improvements is compared with data at 200 and 318 MeV. In the region of low energy transfer, nucleon-nucleus scattering is predominately a direct reaction involving quasi-elastic collisions with one or more target nucleons. We discuss various aspects of quasi-elastic scattering which are important in understanding features of cross sections and spin observables. These include (1) contributions from multi-step processes; (2) damping of the continuum response from 2p-2h excitations; (3) the ''optimal'' choice of frame in which to evaluate the nucleon-nucleon amplitudes; and (4) the effect of optical and spin-orbit distortions, which are included in a model based on the RPA the DWIA and the eikonal approximation. 33 refs., 15 figs

  13. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  14. Theoretical study on optical model potential

    International Nuclear Information System (INIS)

    Lim Hung Gi.

    1984-08-01

    The optical model potential of non-local effect on the rounded edge of the potential is derived. On the basis of this potential the functional form of the optical model potential, the energy dependence and relationship of its parameters, and the dependency of the values of the parameters on energy change are shown in this paper. (author)

  15. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  16. Towards sustainable nuclear energy: Putting nuclear physics to work

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2008-01-01

    We have developed a new method to propagate the uncertainties of fundamental nuclear physics models and parameters to the design and performance parameters of future, clean nuclear energy systems. Using Monte Carlo simulation, it is for the first time possible to couple these two fields at the extremes of nuclear science without any loss of information in between. With the help of a large database of nuclear reaction measurements, we have determined the uncertainties of theoretical nuclear reaction models such as the optical, compound nucleus, pre-equilibrium and fission models. A similar assessment is done for the parameters that describe the resolved resonance range. Integrating this into one simulation program enables us to describe all open channels in a nuclear reaction, including a complete handling of uncertainties. Moreover, in one and the same process, values and uncertainties of nuclear reactor parameters are computed. This bypasses all the intermediate steps which have been used so far in nuclear data and reactor physics. Two important results emerge from this work: (a) we are able to quantify the required quality of theoretical nuclear reaction models directly from the reactor design requirements and (b) our method leads to a deviation from the commonly assumed normal distribution for uncertainties of safety related reactor parameters, and this should be taken into account for future nuclear energy development. In particular, calculated k eff distributions show a high-value tail for fast reactor spectra

  17. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  18. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  19. Temperature dependent relativistic microscopic optical potential and mean free paths of nucleons

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhuo Yizhong

    1993-01-01

    The relativistic microscopic optical potential, mean free paths and Schroedinger equivalent potential of nucleons at finite temperature in nuclear matter are studied based on Walecka's model and thermo field dynamics. We let only the Hartree-Fock self-energy of nucleon represent to be the real part of the microscopic optical potential and the fourth order of meson exchange diagrams, i.e. the core polarization represent the imaginary part of microscopic optical potential in nuclear matter. The microscopic optical potential of finite nuclei is obtained with the local density approximation

  20. Shell and isotopic effects in neutron interaction with nuclei. [Optical model and nucleus asymmetry correlations

    Energy Technology Data Exchange (ETDEWEB)

    Pasechnik, M V

    1978-01-01

    Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.

  1. All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.

    Science.gov (United States)

    Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P

    2018-05-29

    Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.

  2. Dynamical equations for the optical potential

    International Nuclear Information System (INIS)

    Kowalski, K.L.

    1981-01-01

    Dynamical equations for the optical potential are obtained starting from a wide class of N-particle equations. This is done with arbitrary multiparticle interactions to allow adaptation to few-body models of nuclear reactions and including all effects of nucleon identity. Earlier forms of the optical potential equations are obtained as special cases. Particular emphasis is placed upon obtaining dynamical equations for the optical potential from the equations of Kouri, Levin, and Tobocman including all effects of particle identity

  3. Growth points in nuclear physics

    CERN Document Server

    Hodgson, Peter Edward

    1980-01-01

    Growth Points in Nuclear Physics, Volume 2 covers the progress in the fields of nuclear structure and nuclear reactions. This book is composed of three chapters. The first chapter is devoted to nuclear forces and potentials, in particular the optical model potential that enables the elastic scattering of many particles by nuclei to be calculated in a very simple manner. This chapter also deals with the three-body forces and the spin dependence of the nuclear potential. The second chapter describes higher order processes involving two or more stages, specifically their intrinsic interest and th

  4. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  5. Applications of optical fibers in nuclear test diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Hodson, E.K.; Looney, L.D.

    1980-01-01

    Two new plasma diagnostic experiments have been successfully fielded on nuclear device tests at NTS. Both systems rely on the unique advantages provided by optical fiber technology and both systems provide new diagnostic capabilities that previously were beyond the state-of-the-art in coaxial cable systems. One system addresses the need to record e wide bandwidth data on gamma-ray sources. Over the long (< 1 km) distances that characterize NTS testing, the bandwidth of coaxial cable systems is usually limited to < 200 to 400 MHz even with extensive equalization. The new system uses the Cerenkov process to generate light in a converter material. High bandwidth fibers and detectors are used to approach a 1-GHz bandwidth. In this case fibers provided the bandwidth capability. The second system provides time and space resolution of a neutron source on a fast (ns) time scale. Previous systems have utilized either an array of neutron detectors with individual coaxial cables or a fast scintillator viewed by a gated image intensifier. For a large number of channels, the coaxial system becomes very costly and is subject to potentially severe EMI concerns. The gated intensifier system requires complex electronics and accurate timing and can be affected by EMI. An alternative system is described which provides continuous time coverage with limited spatial resolution. Complete freedom from EMI is achieved through the use of optical data collection and transmission. The optical fibers offered a major (2 to 3 times) cost savings and a large weight savings relative to the coax system. Each system is discussed

  6. Verification Results of Safety-grade Optical Modem for Core Protection Calculator (CPC) in Korea Standard Nuclear Power Plant (KSNP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jangyeol; Son, Kwangseop; Lee, Youngjun; Cheon, Sewoo; Cha, Kyoungho; Lee, Jangsoo; Kwon, Keechoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    We confirmed that the coverage criteria for a safety-grade optical modem of a Core Protection Calculator is satisfactory using a traceability analysis matrix between high-level requirements and lower-level system test case data set. This paper describes the test environment, test components and items, a traceability analysis, and system tests as a result of system verification and validation based on Software Requirement Specifications (SRS) for a safety-grade optical modem of a Core Protection Calculator (CPC) in a Korea Standard Nuclear Power Plant (KSNP), and Software Design Specifications (SDS) for a safety-grade optical modem of a CPC in a KSNP. All tests were performed according to the test plan and test procedures. Functional testing, performance testing, event testing, and scenario based testing for a safety-grade optical modem of a Core Protection Calculator in a Korea Standard Nuclear Power Plant as a thirty-party verifier were successfully performed.

  7. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  8. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  9. How deep is the antinucleon optical potential at FAIR energies

    International Nuclear Information System (INIS)

    Gaitanos, T.; Kaskulov, M.; Lenske, H.

    2011-01-01

    The key question in the interaction of antinucleons in the nuclear medium concerns the deepness of the antinucleon-nucleus optical potential. In this work we study this task in the framework of the non-linear derivative (NLD) model which describes consistently bulk properties of nuclear matter and Dirac phenomenology of nucleon-nucleus interactions. We apply the NLD model to antinucleon interactions in nuclear matter and find a strong decrease of the vector and scalar self-energies in energy and density and thus a strong suppression of the optical potential at zero momentum and, in particular, at FAIR energies. This is in agreement with available empirical information and, therefore, resolves the issue concerning the incompatibility of G-parity arguments in relativistic mean-field (RMF) models. We conclude the relevance of our results for the future activities at FAIR.

  10. A review of potential uses for fiber optic sensors in nuclear power plants, with attendant benefits in plant safety and operational efficiency

    International Nuclear Information System (INIS)

    Holcomb, D.E.; Antonescu, C.

    1994-01-01

    Fiber optic-based sensing has a wide range of potential applications in nuclear power plants, and a fiber optic analog presently exists for virtually every conventional nuclear power plant sensing system. Fiber optic-based sensors are likely to eventually supplant many conventional sensors because of their inherent advantages-reduced mass, reduced size, ruggedness to vibration and shock, physical flexibility, high sensitivity, electrical isolation, extreme resistance to electromagnetic interference, high temperature resistance, reduced calibration requirements, passive operation, and high radiation resistance. In addition, fiber optic-based sensors exist which are capable of measuring parameters important to safety and performance which cannot be conventionally measured (high electromagnetic field, in-core, and distributed measurements). However, fiber optic sensors remain at too low a level of development for immediate application in safety-critical systems. Moreover, fiber optic sensors have different failure modes and mechanisms than conventional sensors; hence, considerable regulatory research will be necessary to establish the technical basis for the use of fiber optic sensors in safety-critical systems

  11. Application technology for optical fiber in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Kim, Woong Ki; Kim, Seung Ho; Kim, Chang Hoi; Hwang, Suk Yeong; Kim, Byung Soo; Sohn, Surg Won

    1990-01-01

    The objective of this project is to study the radiation effects on optical fiber, to develop remote inspection and image processing system, and to apply image processing technique to X-ray radiography analysis and to laser beam diagnostic system. Thermal neutrons cause nuclear radiation with fiber compositions, so secondary ionizing radiations of high energy are generated. These ionizing radiations from color centers, which increase transmission loss of optical fiber by absorbing propagating light in fiber core. As a result of experiment, owing to Ge, P, and B doping effects the induced loss in multimode fibers has been 5 times larger than that in single mode fibers, the loss at 0.85 μm wavelength region more susceptible for radiations has been twice higher than that at 1.3 μm. Remote inspection mechanism captures images remotely, and the images are inhanced by image processing surfaces of bent or long-straight pipe in hostile environment. Laser beam diagnostic system using image processing techniques can be used to observe and analyze laser beam quality. This system will be effectively applied for laser development and application field. X-ray radiographic image analysis by image processing technique make it easier to inspect and measure irradiated fuel rod, and the accuracy of the obtained data is also improved. (author)

  12. Critical assessment of nuclear mass models

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1992-01-01

    Some of the physical assumptions underlying various nuclear mass models are discussed. The ability of different mass models to predict new masses that were not taken into account when the models were formulated and their parameters determined is analyzed. The models are also compared with respect to their ability to describe nuclear-structure properties in general. The analysis suggests future directions for mass-model development

  13. Establishing a cat model of acute optic nerve injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: In order to investigate the progress in optic nerve injury and the following regeneration and repair, many kinds of animal models of optic nerve injury have been established, such as models of acute and chronic ocular hypertension, compression, amputating wound, ischemia reperfusion or hypoxia,intravitreal injection of excitatory amino acids, etc. However, most of these models are established by squeezing intraorbital optic nerve, and suitable for ophthalmology, and there are fewer models suitable for the acute cranial contusion in neurosurgery.OBJECTIVE: To observe the changes of optic nerve after acute injury, and the characteristics of methods for establishing model of acute optic nerve injury in cats.DESIGN: A complete randomized grouping and controlled animal trial.SETTING: Department of Neurosurgery, General Hospital of Ji'nan Military Area Command of Chinese PLA.MATERIALS: Twenty-eight healthy adult cats, common degree, either sex, weighing 2.0 - 3.5 kg, were provided by the animal experimental center of Fudan University. The cats were randomly divided into control group (n =3) and model group (n =25), and 5 cats in the model group were observed at 6 hours and 1,3, 7 and 14 days after injury respectively. JX-2000 biological signal processing system (Department of Physiology, Second Military Medical University of Chinese PLA, Shanghai); Inverted phase contrast microscope (Olympus); Axioplan 2 imaging microgram analytical system (Labsystems).METHODS: The experiments were carried out in the Department of Neurosurgery, General Hospital of Jinan Military Area Command of Chinese PLA from June 2004 to June 2005. The cats in the model groups were made into models of acute optic nerve injury: The cats were anesthetized, then the limbs were fixed in a lateral recumbent position. Pterion approach in human was imitated, the operative incision was made along the line between lateral canthus and tragus, and it could be seen deep along the skull base that white

  14. Modeling news dissemination on nuclear issues

    International Nuclear Information System (INIS)

    Reis Junior, Jose S.B.; Barroso, Antonio C.O.; Menezes, Mario O.

    2011-01-01

    Using a modified epidemiological model, the dissemination of news by media agents after the occurrence of large scale disasters was studied. A modified compartmented model was developed in a previous paper presented at INAC 2007. There it used to study to the Chernobyl's nuclear accident (1986) and the Concorde airplane crash (2000). Now the model has been applied to a larger and more diverse group of events - nuclear, non-nuclear and naturally caused disasters. To be comprehensive, old and recent events from various regions of the world were selected. A more robust news repository was used, and improved search techniques were developed to ensure that the scripts would not count false positive news. The same model was used but with improved non-linear embedded simulation optimization algorithms to generate the parameters of interest for our model. Individual parameters and some specific combination of them allow some interesting perceptions on how the nature of the accident / disaster gives rise to different profiles of growth and decay of the news. In our studies events involving nuclear causes generate news repercussion with more explosive / robust surge profiles and longer decaying tails than those of other natures. As a consequence of these differences, public opinion and policy makers are also much more sensitive to some issues than to others. The model, through its epidemiological parameters, shows in quantitative manner how 'nervous' the media content generators are with respect to nuclear installations and how resilient this negative feelings about nuclear is. (author)

  15. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  16. International Nuclear Model. Volume 3. Program description

    International Nuclear Information System (INIS)

    Andress, D.

    1985-01-01

    This is Volume 3 of three volumes of documentation of the International Nuclear Model (INM). This volume presents the Program Description of the International Nuclear Model, which was developed for the Nuclear and Alternate Fuels Division (NAFD), Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The International Nuclear Model (INM) is a comprehensive model of the commercial nuclear power industry. It simulates economic decisions for reactor deployment and fuel management decision based on an input set of technical economic and scenario parameters. The technical parameters include reactor operating characteristics, fuel cycle timing and mass loss factors, and enrichment tails assays. Economic parameters include fuel cycle costs, financial data, and tax alternatives. INM has a broad range of scenario options covering, for example, process constraints, interregional activities, reprocessing, and fuel management selection. INM reports reactor deployment schedules, electricity generation, and fuel cycle requirements and costs. It also has specialized reports for extended burnup and permanent disposal. Companion volumes to Volume 3 are: Volume 1 - Model Overview, and Volume 2 - Data Base Relationships

  17. ZZ-CENPL, Chinese Evaluated Nuclear Parameter Library. ZZ CENPL-DLS, Discrete Level Schemes and Gamma Branching Ratios Library; ZZ CENPL-FBP, Fission Barrier Parameter Library; ZZ CENPL-GDRP, Giant Dipole Resonance Parameter Library; ZZ CENPL-NLD, Nuclear Level Density Parameter Library; ZZ CENPL-MCC, Nuclear Ground State Atomic Masses Library; ZZ CENPL-OMP, Optical Model Parameter Library

    International Nuclear Information System (INIS)

    Su Zongdi

    1995-01-01

    Description of program or function: CENPL - GDRP (Giant Dipole Resonance Parameters for Gamma-Ray): - Format: special format described in documentation; - Nuclides: V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Lu, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, Th, U, Np, Pu. - Origin: Experimental values offered by S.S. Dietrich and B.L. Berman. CENPL - FBP (Fission Barrier Parameter Sub-Library): - Format: special format described in documentation; - Nuclides: (1) 51 nuclei region from Th-230 to Cf-255, (2) 46 nuclei region from Th-229 to Cf-253, (3) 24 nuclei region from Pa-232 to Cf-253; - Origin: (1) Lynn, (2) Analysis of experimental data by Back et al., (3) Ohsawa. CENPL - DLS (Discrete level scheme and branch ratio of gamma decay: - Format: Special format described in documentation; - Origin: ENSDF - BNL. CENPL - NLD (Nuclear Level Density): - Format: Special format described in documentation; - Origin: Huang Zhongfu et al. CENPL - OMP (Optical model parameter sub-library): - Format: special format described in documentation ; - Origin: CENDL, ENDF/B-VI, JENDL-3. CENPL - MC (I) and (II) (Atomic masses and characteristic constants for nuclear ground states) : - Format: Brief table format; - Nuclides: 4760 nuclides ranging from Z=0 A=1 to Z=122 A=318. - Origin: Experimental data and systematic results evaluated by Wapstra, theoretical results calculated by Moller, ENSDF - BNL and Nuclear Wallet Cards. CENPL contains the following six sub-libraries: 1. Atomic Masses and Characteristic Constants for nuclear ground states (MCC). This data consists of calculated and in most cases also measured mass excesses, atomic masses, total binding energies, spins, parities, and half-lives of nuclear ground states, abundances, etc. for 4800 nuclides. 2. Discrete Level Schemes and branching ratios of gamma decay (DLS). The data on nuclear discrete levels are based on the Evaluated

  18. Modeling news dissemination on nuclear issues

    Energy Technology Data Exchange (ETDEWEB)

    Reis Junior, Jose S.B.; Barroso, Antonio C.O.; Menezes, Mario O., E-mail: jsbrj@ime.usp.b, E-mail: barroso@ipen.b, E-mail: mario@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Using a modified epidemiological model, the dissemination of news by media agents after the occurrence of large scale disasters was studied. A modified compartmented model was developed in a previous paper presented at INAC 2007. There it used to study to the Chernobyl's nuclear accident (1986) and the Concorde airplane crash (2000). Now the model has been applied to a larger and more diverse group of events - nuclear, non-nuclear and naturally caused disasters. To be comprehensive, old and recent events from various regions of the world were selected. A more robust news repository was used, and improved search techniques were developed to ensure that the scripts would not count false positive news. The same model was used but with improved non-linear embedded simulation optimization algorithms to generate the parameters of interest for our model. Individual parameters and some specific combination of them allow some interesting perceptions on how the nature of the accident / disaster gives rise to different profiles of growth and decay of the news. In our studies events involving nuclear causes generate news repercussion with more explosive / robust surge profiles and longer decaying tails than those of other natures. As a consequence of these differences, public opinion and policy makers are also much more sensitive to some issues than to others. The model, through its epidemiological parameters, shows in quantitative manner how 'nervous' the media content generators are with respect to nuclear installations and how resilient this negative feelings about nuclear is. (author)

  19. Optical Propagation Modeling for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W H; Auerbach, J M; Henesian, M A; Jancaitis, K S; Manes, K R; Mehta, N C; Orth, C D; Sacks, R A; Shaw, M J; Widmayer, C C

    2004-01-12

    Optical propagation modeling of the National Ignition Facility has been utilized extensively from conceptual design several years ago through to early operations today. In practice we routinely (for every shot) model beam propagation starting from the waveform generator through to the target. This includes the regenerative amplifier, the 4-pass rod amplifier, and the large slab amplifiers. Such models have been improved over time to include details such as distances between components, gain profiles in the laser slabs and rods, transient optical distortions due to the flashlamp heating of laser slabs, measured transmitted and reflected wavefronts for all large optics, the adaptive optic feedback loop, and the frequency converter. These calculations allow nearfield and farfield predictions in good agreement with measurements.

  20. Full optical model of micro-endoscope with optical coherence microscopy, multiphoton microscopy and visible capabilities

    Science.gov (United States)

    Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.

    2018-02-01

    While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.

  1. Many-body approaches to nuclear physics

    International Nuclear Information System (INIS)

    Hjorth-Jensen, M.

    1993-10-01

    This thesis deals with applications of perturbative many-body theories to selected nuclear systems at low and intermediate energies. Examples are the properties of neutron stars, the calculation of shell-model effective interactions and the microscopic derivation of the optical-model potential for finite nuclei. The line of research leans on the microscopic approach, i.e. an approach which aims at describing nuclear properties from the underlying free interaction between the various hadrons where parameters like meson coupling constants define the Lagrangians. The emphasis is on the behavior of the various components of the free interaction in different nuclear media in order to understand how these components are affected by the studied nuclear correlations. 159 refs

  2. Contemporary models of the atomic nucleus

    CERN Document Server

    Nemirovskii, P E

    2013-01-01

    Contemporary Models of the Atomic Nucleus discusses nuclear structure and properties, expounding contemporary theoretical concepts of the low-energy nuclear processes underlying in nuclear models. This book focuses on subjects such as the optical nuclear model, unified or collective model, and deuteron stripping reaction. Other topics discussed include the basic nuclear properties; shell model; theoretical analysis of the shell model; and radiative transitions and alpha-decay. The deuteron theory and the liquid drop nuclear model with its application to fission theory are also mentioned, but o

  3. Probing nuclear structure with nucleons

    International Nuclear Information System (INIS)

    Bauge, E.

    2007-01-01

    The goal of this lecture is to show how nucleon scattering can be used to probe the structure of target nuclei, and how nucleon scattering observables can be interpreted in terms of nuclear structure using microscopic optical potentials. After a brief overview of the specificities of nucleon-nucleus scattering, and a quick reminder on scattering theory, the main part of this lecture is devoted to the construction of optical potentials in which the target nuclei structure information is folded with an effective interaction. Several examples of such microscopic optical model potentials are given. (author)

  4. FDTD method and models in optical education

    Science.gov (United States)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhu, Hao; Du, Jihe

    2017-08-01

    In this paper, finite-difference time-domain (FDTD) method has been proposed as a pedagogical way in optical education. Meanwhile, FDTD solutions, a simulation software based on the FDTD algorithm, has been presented as a new tool which helps abecedarians to build optical models and to analyze optical problems. The core of FDTD algorithm is that the time-dependent Maxwell's equations are discretized to the space and time partial derivatives, and then, to simulate the response of the interaction between the electronic pulse and the ideal conductor or semiconductor. Because the solving of electromagnetic field is in time domain, the memory usage is reduced and the simulation consequence on broadband can be obtained easily. Thus, promoting FDTD algorithm in optical education is available and efficient. FDTD enables us to design, analyze and test modern passive and nonlinear photonic components (such as bio-particles, nanoparticle and so on) for wave propagation, scattering, reflection, diffraction, polarization and nonlinear phenomena. The different FDTD models can help teachers and students solve almost all of the optical problems in optical education. Additionally, the GUI of FDTD solutions is so friendly to abecedarians that learners can master it quickly.

  5. Spectral and kinetic analysis of radiation induced optical attenuation in silica: towards intrinsic fibre optic dosimetry?

    International Nuclear Information System (INIS)

    Borgermans, P.

    2002-01-01

    The document is an abstract of a PhD thesis. The PhD work concerns the detailed investigation of the behaviour of optical fibres in radiation fields such as is the case for various nuclear and space application,s. The core of the work concerns the spectral and kinetic analysis of the radiation induced optical attenuation. Models describing underlying physical phenomena, both for the spectral and the time dimensions, have been developed. The potential of silica optical fibre waveguides for intrinsic dosimetry has been assessed by employing specific properties of radiation induced defects in the silica waveguide material

  6. Modeling and optimization of LCD optical performance

    CERN Document Server

    Yakovlev, Dmitry A; Kwok, Hoi-Sing

    2015-01-01

    The aim of this book is to present the theoretical foundations of modeling the optical characteristics of liquid crystal displays, critically reviewing modern modeling methods and examining areas of applicability. The modern matrix formalisms of optics of anisotropic stratified media, most convenient for solving problems of numerical modeling and optimization of LCD, will be considered in detail. The benefits of combined use of the matrix methods will be shown, which generally provides the best compromise between physical adequacy and accuracy with computational efficiency and optimization fac

  7. Nuclear reactions

    International Nuclear Information System (INIS)

    Lane, A.M.

    1980-01-01

    In reviewing work at Harwell over the past 25 years on nuclear reactions it is stated that a balance has to be struck in both experiment and theory between work on cross-sections of direct practical relevance to reactors and on those relevant to an overall understanding of reaction processes. The compound nucleus and direct process reactions are described. Having listed the contributions from AERE, Harwell to developments in nuclear reaction research in the period, work on the optical model, neutron capture theory, reactions at doorway states with fine structure, and sum-rules for spectroscopic factors are considered in more detail. (UK)

  8. Quantum model for electro-optical amplitude modulation.

    Science.gov (United States)

    Capmany, José; Fernández-Pousa, Carlos R

    2010-11-22

    We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.

  9. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    Science.gov (United States)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  10. The Maxwell-Lorentz Model for optical Pulses

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Brio, Moysey

    2007-01-01

    Dynamics of optical pulses, especially of ultra short femtosecond pulses, are of great technological and theoretical interest. The dynamics of optical pulses is usually studied using the nonlinear Schrodinger (NLS) equation model. While such approach works surprisingly well for description of pulse...

  11. Nuclear structure theory

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1990-06-01

    This report summarizes progress during the past ten months in the following areas of research: pion double charge exchange reactions, including a theory of the isotensor term in the pion-nucleus optical potential, and a study of meson exchange contributions to the reactions at low energies. Nuclear inelastic scattering, using quark models to calculate nuclear structure functions, and to test for sensitivity to the substructure of nucleons in nuclei. Fluctuation-free statistical spectroscopy including the theory and computer programs for interacting-particle densities, spin cutoff factors, occupancies, strength sums, and other expectation values

  12. Two-dimensional models for the optical response of thin films

    Science.gov (United States)

    Li, Yilei; Heinz, Tony F.

    2018-04-01

    In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.

  13. Progress on Chinese evaluated nuclear parameter library (CENPL) (II)

    International Nuclear Information System (INIS)

    Su Zhongdi; Ge Zhigang; Zhou Chunmei

    1993-01-01

    CENPL collected, evaluated and compiled nuclear basic constants and model parameters. CENPL-1 contain six sub-libraries, they are: (1) Atomic masses and characteristic constants for nuclear ground states; (2) discrete level schemes and branch ratios of γ decay; (3) level density parameters; (4) giant dipole resonance parameters for γ-ray strength function (5) fission barrier parameter; (6) optical model parameters. Their progresses are introduced

  14. International Nuclear Model personal computer (PCINM): Model documentation

    International Nuclear Information System (INIS)

    1992-08-01

    The International Nuclear Model (INM) was developed to assist the Energy Information Administration (EIA), U.S. Department of Energy (DOE) in producing worldwide projections of electricity generation, fuel cycle requirements, capacities, and spent fuel discharges from commercial nuclear reactors. The original INM was developed, maintained, and operated on a mainframe computer system. In spring 1992, a streamlined version of INM was created for use on a microcomputer utilizing CLIPPER and PCSAS software. This new version is known as PCINM. This documentation is based on the new PCINM version. This document is designed to satisfy the requirements of several categories of users of the PCINM system including technical analysts, theoretical modelers, and industry observers. This document assumes the reader is familiar with the nuclear fuel cycle and each of its components. This model documentation contains four chapters and seven appendices. Chapter Two presents the model overview containing the PCINM structure and process flow, the areas for which projections are made, and input data and output reports. Chapter Three presents the model technical specifications showing all model equations, algorithms, and units of measure. Chapter Four presents an overview of all parameters, variables, and assumptions used in PCINM. The appendices present the following detailed information: variable and parameter listings, variable and equation cross reference tables, source code listings, file layouts, sample report outputs, and model run procedures. 2 figs

  15. General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    Science.gov (United States)

    Sigrist, Norbert; Basinger, Scott A.; Redding, David C.

    2012-01-01

    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.

  16. Feasibility of Optical Instruments Based on Multiaperture Optics.

    Science.gov (United States)

    1984-10-16

    system may be configured. The optical elements may be nonimaging concentrators (light horns), the field of view (FOV) of which may be controlled by a...RD-RI58 868 FEASIBILITY OF OPTICAL INSTRUMENTS BASED ON i/I MULTIAPERTURE OPTICS (U) FLORIDA UNIV GAINESVILLE DEPT OF NUCLEAR ENGINEERING SCIENCES J D...d Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ’ 0 Feasibility of Optical Instruments Based on Final Report * CD Multiaperature Optics 615/83 to 9/30

  17. Industrial Qualification Process for Optical Fibers Distributed Strain and Temperature Sensing in Nuclear Waste Repositories

    Directory of Open Access Journals (Sweden)

    S. Delepine-Lesoille

    2012-01-01

    Full Text Available Temperature and strain monitoring will be implemented in the envisioned French geological repository for high- and intermediate-level long-lived nuclear wastes. Raman and Brillouin scatterings in optical fibers are efficient industrial methods to provide distributed temperature and strain measurements. Gamma radiation and hydrogen release from nuclear wastes can however affect the measurements. An industrial qualification process is successfully proposed and implemented. Induced measurement uncertainties and their physical origins are quantified. The optical fiber composition influence is assessed. Based on radiation-hard fibers and carbon-primary coatings, we showed that the proposed system can provide accurate temperature and strain measurements up to 0.5 MGy and 100% hydrogen concentration in the atmosphere, over 200 m distance range. The selected system was successfully implemented in the Andra underground laboratory, in one-to-one scale mockup of future cells, into concrete liners. We demonstrated the efficiency of simultaneous Raman and Brillouin scattering measurements to provide both strain and temperature distributed measurements. We showed that 1.3 μm working wavelength is in favor of hazardous environment monitoring.

  18. Investigation of nuclear nano-morphology marker as a biomarker for cancer risk assessment using a mouse model

    Science.gov (United States)

    Bista, Rajan K.; Uttam, Shikhar; Hartman, Douglas J.; Qiu, Wei; Yu, Jian; Zhang, Lin; Brand, Randall E.; Liu, Yang

    2012-06-01

    The development of accurate and clinically applicable tools to assess cancer risk is essential to define candidates to undergo screening for early-stage cancers at a curable stage or provide a novel method to monitor chemoprevention treatments. With the use of our recently developed optical technology--spatial-domain low-coherence quantitative phase microscopy (SL-QPM), we have derived a novel optical biomarker characterized by structure-derived optical path length (OPL) properties from the cell nucleus on the standard histology and cytology specimens, which quantifies the nano-structural alterations within the cell nucleus at the nanoscale sensitivity, referred to as nano-morphology marker. The aim of this study is to evaluate the feasibility of the nuclear nano-morphology marker from histologically normal cells, extracted directly from the standard histology specimens, to detect early-stage carcinogenesis, assess cancer risk, and monitor the effect of chemopreventive treatment. We used a well-established mouse model of spontaneous carcinogenesis--ApcMin mice, which develop multiple intestinal adenomas (Min) due to a germline mutation in the adenomatous polyposis coli (Apc) gene. We found that the nuclear nano-morphology marker quantified by OPL detects the development of carcinogenesis from histologically normal intestinal epithelial cells, even at an early pre-adenomatous stage (six weeks). It also exhibits a good temporal correlation with the small intestine that parallels the development of carcinogenesis and cancer risk. To further assess its ability to monitor the efficacy of chemopreventive agents, we used an established chemopreventive agent, sulindac. The nuclear nano-morphology marker is reversed toward normal after a prolonged treatment. Therefore, our proof-of-concept study establishes the feasibility of the SL-QPM derived nuclear nano-morphology marker OPL as a promising, simple and clinically applicable biomarker for cancer risk assessment and

  19. Third international workshop on compound nuclear reactions and related topics. Book of abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    The conference was divided into the following sections: Fission; Surrogate reactions; Heavy ion reactions; Neutron-induced reactions; Gamma-ray strength functions; Nuclear astrophysics; Superheavy nuclei; Nuclear level density; Various nuclear reactions; Optical model simulations; and Pre-equilibrium. The publication contains 82 abstracts. (P.A.)

  20. SO(3) "Nuclear Physics" with ultracold Gases

    Science.gov (United States)

    Rico, E.; Dalmonte, M.; Zoller, P.; Banerjee, D.; Bögli, M.; Stebler, P.; Wiese, U.-J.

    2018-06-01

    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S = 3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.

  1. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  2. Collision models in quantum optics

    Science.gov (United States)

    Ciccarello, Francesco

    2017-12-01

    Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

  3. A Novel Rodent Model of Posterior Ischemic Optic Neuropathy

    Science.gov (United States)

    Wang, Yan; Brown, Dale P.; Duan, Yuanli; Kong, Wei; Watson, Brant D.; Goldberg, Jeffrey L.

    2014-01-01

    Objectives To develop a reliable, reproducible rat model of posterior ischemic optic neuropathy (PION) and study the cellular responses in the optic nerve and retina. Methods Posterior ischemic optic neuropathy was induced in adult rats by photochemically induced ischemia. Retinal and optic nerve vasculature was examined by fluorescein isothiocyanate–dextran extravasation. Tissue sectioning and immunohistochemistry were used to investigate the pathologic changes. Retinal ganglion cell survival at different times after PION induction, with or without neurotrophic application, was quantified by fluorogold retrograde labeling. Results Optic nerve injury was confirmed after PION induction, including local vascular leakage, optic nerve edema, and cavernous degeneration. Immunostaining data revealed microglial activation and focal loss of astrocytes, with adjacent astrocytic hypertrophy. Up to 23%, 50%, and 70% retinal ganglion cell loss was observed at 1 week, 2 weeks, and 3 weeks, respectively, after injury compared with a sham control group. Experimental treatment by brain-derived neurotrophic factor and ciliary neurotrophic factor remarkably prevented retinal ganglion cell loss in PION rats. At 3 weeks after injury, more than 40% of retinal ganglion cells were saved by the application of neurotrophic factors. Conclusions Rat PION created by photochemically induced ischemia is a reproducible and reliable animal model for mimicking the key features of human PION. Clinical Relevance The correspondence between the features of this rat PION model to those of human PION makes it an ideal model to study the pathophysiologic course of the disease, most of which remains to be elucidated. Furthermore, it provides an optimal model for testing therapeutic approaches for optic neuropathies. PMID:23544206

  4. Monte Carlo Numerical Models for Nuclear Logging Applications

    Directory of Open Access Journals (Sweden)

    Fusheng Li

    2012-06-01

    Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models

  5. Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities

    Science.gov (United States)

    Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr

    2018-03-01

    Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of He 4 ,6 ,8 , 12C, and 16O are calculated and applied to optical potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality and the COM removal is discussed. Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves agreement with experiment in comparison to results generated with the local densities especially for light nuclei. For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the data although a more sophisticated model for the optical potential is required to properly describe the analyzing powers.

  6. Dynamic modelling of nuclear steam generators

    International Nuclear Information System (INIS)

    Kerlin, T.W.; Katz, E.M.; Freels, J.; Thakkar, J.

    1980-01-01

    Moving boundary, nodal models with dynamic energy balances, dynamic mass balances, quasi-static momentum balances, and an equivalent single channel approach have been developed for steam generators used in nuclear power plants. The model for the U-tube recirculation type steam generator is described and comparisons are made of responses from models of different complexity; non-linear versus linear, high-order versus low order, detailed modeling of the control system versus a simple control assumption. The results of dynamic tests on nuclear power systems show that when this steam generator model is included in a system simulation there is good agreement with actual plant performance. (author)

  7. NuSTAR calibration facility and multilayer reference database: Optic response model comparison to NuSTAR on-ground calibration data

    DEFF Research Database (Denmark)

    Brejnholt, Nicolai

    . To couple the as-coated multilayer to the actual optics, ray tracing is carried out in a detailed geometric model of the optic, including in-situ measured figure error for the mounted substrates. The effective area as a function of energy estimated from ray tracing is compared to NuSTAR on......The Nuclear Spectroscopic Telescope ARray (NuSTAR) is a NASA Small Explorer mission carrying the first focusing hard X-ray telescope (5 − 80 keV ) to orbit. NuSTAR is slated for launch in 2012. Through a leap in sensitivity, the realization of focusing optics holds promise of heralding in a golden...... the optic response for both on- and off-axis NuSTAR observations, detailed knowledge of the as-coated multilayer is required. The purpose of this thesis is to establish a multilayer reference database. As an integral part of this effort, a hard X-ray calibration facility was designed and constructed. Each...

  8. The new business model for nuclear

    International Nuclear Information System (INIS)

    Galange, D.

    2006-01-01

    New nuclear development will require new business models that ensure maximum risk mitigation for the plant owner and rate payers. To deliver this model, AECL has joined with leading members of the nuclear industry to form Team CANDU. This presentation will introduce contracting structures that have been used by Team CANDU members to reduce plant delivery risk in an ongoing record of successful project completions over the last decade. (author)

  9. Fabrication and optical characterization of cadmium sulfide needles using nuclear track membrane

    International Nuclear Information System (INIS)

    Peng, L.Q.; Wang, S.C.; Ju, X.; Xiao, H.; Chen, H.; He, Y.J.

    1999-01-01

    Cadmium sulfide needles with a diameter of 0.2 μm have been fabricated in nuclear track polyethylene-terephthalate (PET) membrane by electrochemically depositing from organic solvent dimethylsulfoxide (DMSO) containing CdCl 2 and elemental sulfur at the temperature 110 deg. C. The characterization of the sample of CdS needles was studied by scanning electron microscope, X-ray diffraction, absorption and photoluminescence spectra. The optical experiments show that in the sample of CdS needles there is an absorption peak that could be assigned to the interface states of the CdS needles

  10. Fabrication and optical characterization of cadmium sulfide needles using nuclear track membrane

    Energy Technology Data Exchange (ETDEWEB)

    Peng, L.Q.; Wang, S.C.; Ju, X.; Xiao, H.; Chen, H.; He, Y.J

    1999-06-01

    Cadmium sulfide needles with a diameter of 0.2 {mu}m have been fabricated in nuclear track polyethylene-terephthalate (PET) membrane by electrochemically depositing from organic solvent dimethylsulfoxide (DMSO) containing CdCl{sub 2} and elemental sulfur at the temperature 110 deg. C. The characterization of the sample of CdS needles was studied by scanning electron microscope, X-ray diffraction, absorption and photoluminescence spectra. The optical experiments show that in the sample of CdS needles there is an absorption peak that could be assigned to the interface states of the CdS needles.

  11. Infrastructure development assistance modeling for nuclear power plant

    International Nuclear Information System (INIS)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-01-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  12. Infrastructure development assistance modeling for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M. [Korea Hydro and Nuclear Power Co., LTD, 23, 106 gil, Yeongdong-daero, Gangnam-gu, 153-791 (Korea, Republic of)

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task

  13. General developments in the Los Alamos Nuclear Physics group (T-16)

    International Nuclear Information System (INIS)

    Young, P.G.; Chadwick, M.B.

    2000-01-01

    Nuclear physics activities in support of nuclear data development by the newly formed ''Nuclear Physics'' group (T-16) at Los Alamos are summarized. Activities such as the development of a new Hauser-Feshbach/preequilibrium reaction theory code, improvements to and reissue of the existing GNASH reaction theory code, nuclear cross section evaluation in the context of ENDF/B-VI, development of a new medium-energy optical model potential, new fission neutron spectrum calculations with the Los Alamos model, and development of new 6-group delayed neutron constants for ENDF/B-VI are described. (author)

  14. The Nuclear Shell Model and its Relation with Other Nuclear Models

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J. P. [University of Sussex, Brighton (United Kingdom)

    1963-01-15

    The starting point of all versions of the shell model is the physical idea that the interaction between a given nucleon and all the others resembles that between a nucleon and a fixed field. From this starting point one might attempt to construct a field which is self-consistent but this approach is not followed in most shell-model calculations because of the complications that arise. The more usual approach has been to use the idea of an average field to provide a complete set of sin gle-particle wave functions. Then, if the parameters of the field (e.g. its size) are correctly chosen, we would expect to reach a good approximation to the nuclear-wave function by taking that configuration of single-particle wave functions which has lowest energy in this field. The wave functions could clearly be improved by allowing the mixing of excited configurations but this is rarely done because of the resulting complexity of the problem. Even in the lowest configuration there are in general many independent wave functions for a many-particle system which would all be degenerate in the average field. To find the nuclear energy levels and wave functions we must therefore build up the energy matrix in this degenerate set, using the inter-nucleon two-body forces, and then diagonalize this matrix. If the detailed form of the nuclear forces was known we might regard such calculations as the first step towards an exact calculation in which higher configurations were included but every indication is that the convergence would be extremely slow. It is more usual to treat an energy calculation in the lowest configuration unashamedly as a model calculation and to attempt to deduce, by comparisons with experimental data in the many-particle nuclei, the nature of the effective nuclear forces required in that configuration. If the model is realistic then we should not expect these effective forces to change very much in going from one nucleus to its neighbour and since there are many more

  15. Modified quark-meson coupling model for nuclear matter

    International Nuclear Information System (INIS)

    Jin, X.; Jennings, B.K.

    1996-01-01

    The quark-meson coupling model for nuclear matter, which describes nuclear matter as nonoverlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: One invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics. copyright 1996 The American Physical Society

  16. Improved predictions of nuclear data: A continued challenge in astrophysics

    International Nuclear Information System (INIS)

    Goriely, S.

    2001-01-01

    Although important effort has been devoted in the last decades to measure reaction cross sections and decay half-lives of interest in astrophysics, most of the nuclear astrophysics applications still require the use of theoretical predictions to estimate experimentally unknown rates. The nuclear ingredients to the reaction or weak interaction models should preferentially be estimated from microscopic or semi-microscopic global predictions based on sound and reliable nuclear models which, in turn, can compete with more phenomenological highly-parametrized models in the reproduction of experimental data. The latest developments made in deriving the nuclear inputs of relevance in astrophysics applications are reviewed. It mainly concerns nuclear structure properties (atomic masses, deformations, radii, etc...), nuclear level densities, nucleon and α-optical potentials, γ-ray and Gamow-Teller strength functions

  17. Modeling fabrication of nuclear components: An integrative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.

    1996-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  18. Empire-3.2 Malta. Modular System for Nuclear Reaction Calculations and Nuclear Data Evaluation. User's Manual

    International Nuclear Information System (INIS)

    Herman, M.; Capote, R.; Sin, M.

    2013-08-01

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. The system can be used for theoretical investigations of nuclear reactions as well as for nuclear data evaluation work. Photons, nucleons, deuterons, tritons, helions ( 3 He), α's, and light or heavy ions can be selected as projectiles. The energy range starts just above the resonance region in the case of a neutron projectile, and extends up to few hundred MeV for heavy ion induced reactions. The code accounts for the major nuclear reaction models, such as optical model, Coupled Channels and DWBA (ECIS06 and OPTMAN), Multi-step Direct (ORION + TRISTAN), NVWY Multi-step Compound, exciton model (PCROSS), hybrid Monte Carlo simulation (DDHMS), and the full featured Hauser-Feshbach model including width fluctuations and the optical model for fission. Heavy ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters based on the RIPL-3 library covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, and γ-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations (BARFIT, MOMFIT). The results can be converted into the ENDF-6 format using the accompanying EMPEND code. Modules of the ENDF Utility Codes and the ENDF Pre-Processing codes are applied for ENDF file verification. The package contains the full EXFOR library of experimental data in computational format C4 that are automatically retrieved during the calculations. EMPIRE contains the resonance module that retrieves data from the electronic version of the Atlas of Neutron Resonances by Mughabghab (not provided with the EMPIRE distribution), to produce resonance section and related covariances for the

  19. Nuclear opacity for neutrinos at small Q2

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.

    1989-01-01

    The causes of nuclear screening of the vector and the weak axial currents are quite different. The hadronic fluctuations of neutrino in the nuclear matter live much longer than in the vacuum, due to interaction with nucleons. Nuclear opacity for neutrinos calculated using Glauber-Gribov theory, differs considerably from that given by the Bell optical model. A good agreement of the theory with the recent BEBC WA59 Collaboration measurements is found. 14 refs.; 4 figs

  20. Nuclear data evaluations of neutron and proton incidence on Zr, Nb, and W for energy up to 200 MeV

    International Nuclear Information System (INIS)

    Kunieda, Satoshi; Shigyo, Nobuhiro; Ishibashi, Kenji

    2003-01-01

    Neutron and proton nuclear data were evaluated on Zr, Nb, and W for energy up to 200 MeV. To execute optical model calculations, spherical optical potentials were developed to reproduce experimental data for many elements. The GNASH nuclear model code was used to evaluate light-particle production cross sections. For neutron emission, giant resonance correction came to be performed in the code system. (author)

  1. Phenomenological optical model for p-/sup 4/He elastic scattering. [560 to 1730 MeV: Dirac equation optical model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, R L [International Business Machines Corp., Yorktown Heights, N.Y. (USA); Arnold, L G; Clark, B C [Ohio State Univ., Columbus (USA). Dept. of Physics

    1978-01-30

    The results of a Dirac equation optical model analysis of p-/sup 4/He elastic scattering data are reported. The optical potential obtained at 1029 MeV reproduces the systematics of p-/sup 4/He data over the energy range from 560 to 1730 MeV.

  2. Nuclear spin noise in the central spin model

    Science.gov (United States)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  3. Calculation models for a nuclear reactor

    International Nuclear Information System (INIS)

    Tashanii, Ahmed Ali

    2010-01-01

    Determination of different parameters of nuclear reactors requires neutron transport calculations. Due to complicity of geometry and material composition of the reactor core, neutron calculations were performed for simplified models of the real arrangement. In frame of the present work two models were used for calculations. First, an elementary cell model was used to prepare cross section data set for a homogenized-core reactor model. The homogenized-core reactor model was then used to perform neutron transport calculation. The nuclear reactor is a tank-shaped thermal reactor. The semi-cylindrical core arrangement consists of aluminum made fuel bundles immersed in water which acts as a moderator as well as a coolant. Each fuel bundle consists of aluminum cladded fuel rods arranged in square lattices. (author)

  4. Organizational model of the nuclear sector

    Energy Technology Data Exchange (ETDEWEB)

    Metri, Paulo, E-mail: pmetri@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN/CGRC), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The Brazilian Constitution prohibits private investment in many activities of the Nuclear Industry. Right now, it is in progress a constitutional amendment that allows private companies to build and operate nuclear power plants of its own. This work rescues the historical reasons that led the Congress of 1988 to choose the State owned model for this sector. In addition, the arguments that are used to propose the present changes are repeated here. As indicated in INAC 2015 website, 'sustainable development is supported by three pillars: social, economic and environmental'. Thus, the organizational model to be adopted for the Nuclear Sector must meet these requirements. The official objectives of the energy sector, as set out in the law 9,478, are remembered. New objectives, better established, and also adapted to the electrical subsector, are shown. Besides the use of these objectives to choose the sources and related technologies for the electric generation, they also can be used as evaluation criteria to help in the decision process of the organizational model for the Nuclear Sector. Acting in this way, it is ensured that social, economic and environmental requirements are being attended. Finally, if the developed evaluation criteria are applied, the impacts of each organizational model can be analyzed and preliminary conclusion and recommendation can be made. (author)

  5. Organizational model of the nuclear sector

    International Nuclear Information System (INIS)

    Metri, Paulo

    2015-01-01

    The Brazilian Constitution prohibits private investment in many activities of the Nuclear Industry. Right now, it is in progress a constitutional amendment that allows private companies to build and operate nuclear power plants of its own. This work rescues the historical reasons that led the Congress of 1988 to choose the State owned model for this sector. In addition, the arguments that are used to propose the present changes are repeated here. As indicated in INAC 2015 website, 'sustainable development is supported by three pillars: social, economic and environmental'. Thus, the organizational model to be adopted for the Nuclear Sector must meet these requirements. The official objectives of the energy sector, as set out in the law 9,478, are remembered. New objectives, better established, and also adapted to the electrical subsector, are shown. Besides the use of these objectives to choose the sources and related technologies for the electric generation, they also can be used as evaluation criteria to help in the decision process of the organizational model for the Nuclear Sector. Acting in this way, it is ensured that social, economic and environmental requirements are being attended. Finally, if the developed evaluation criteria are applied, the impacts of each organizational model can be analyzed and preliminary conclusion and recommendation can be made. (author)

  6. Extended Hubbard models for ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Juergensen, Ole

    2015-01-01

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  7. Extended Hubbard models for ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Ole

    2015-06-05

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  8. Constraints on the α+nucleus optical-model potential via α-induced reaction studies on 108Cd

    Directory of Open Access Journals (Sweden)

    P. Scholz

    2016-10-01

    Full Text Available A big part in understanding the nucleosynthesis of heavy nuclei is a proper description of the effective interaction between an α-particle and a target nucleus. Information about the so-called α+nucleus optical-model potential is achieved by precise cross-section measurements at sub-Coulomb energies aiming to constrain the theoretical models for the nuclear physics input-parameters. The cross sections of the 108Cd(α,γ and 108Cd(α,n reaction have been measured for the first time close to the astrophysically relevant energy region via the in-beam method at the high-efficiency γ-ray spectrometer HORUS and via the activation technique at the Cologne Clover Counting Setup at the Institute for Nuclear Physics in Cologne, Germany. Comparisons between experimental results and theoretical predictions calculated in the scope of the Hauser–Feshbach statistical model confirm the need for a exponentially decreasing imaginary part of the potential. Moreover, it is shown that the results presented here together with already published data indicate that a systematic investigation of the real part of the potential could help to further improve the understanding of reactions involving α-particles.

  9. Validating neural-network refinements of nuclear mass models

    Science.gov (United States)

    Utama, R.; Piekarewicz, J.

    2018-01-01

    Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.

  10. A new model for nuclear matter

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    The different values obtained for nuclear radii from electromagnetic interactions as compared with specifically nuclear interactions suggested a model of nuclear matter in which the meson field is supposed to condense into an incompressible fluid and the nucleonic sources are confined to its interior by a strong interaction between the sources and the fluid as a whole. The sources are also coupled to spin and charge fluctuations in the fluid, whose exchange leads to further internucleonic forces. It is necessary to postulate that the fluid have a comparatively low density; as a result rotational levels of the fluid are high, leading to a small probability of exchange of angular momentum (and charge coupled to it) with the sources. The values of the anomalous electrical interactions of nucleons deduced are in rough agreement with the facts. The nuclear structure indicated is a shell model embedded in the mesic fluid whose oscillations, strongly coupled to the nucleons, give rise to the collective features of nuclear structure as in the theory of Bohr and Mottelson. It is suggested that this picture of the mesic field may indicate where to look for solutions of the meson field equations. (author). 9 refs

  11. Analytical model of the optical vortex microscope.

    Science.gov (United States)

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  12. Pion-nuclear many body problems

    International Nuclear Information System (INIS)

    Weise, W.

    1981-01-01

    This chapter examines pion-nucleus scattering data produced at the meson factories in order to gain information about the ''optical'' branches of the pion-nuclear excitation spectrum. Discusses basic meson-baryon effective Lagrangians and elementary processes; pion-baryon vertex form factors; the spin-isospin dependent baryon-baryon interaction; pions in nuclear matter; nuclear spin-isospin correlations; the baryon-hole model; photon-induced excitation of baryon-hole states; high momentum transfer properties of pion-like nuclear states; a response function for pionic low-frequency modes in finite nuclei; and applications. Finds that there is no clear evidence for pionic critical opalescence, as in agreement with the expectation that the minimal density for the appearance of a pion condensate is certainly not lower than two or three times nuclear matter density

  13. An integrated high-performance beam optics-nuclear processes framework with hybrid transfer map-Monte Carlo particle transport and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, L., E-mail: bandura@msu.ed [Argonne National Laboratory, Argonne, IL 60439 (United States); Erdelyi, B. [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Nolen, J. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-12-01

    An integrated beam optics-nuclear processes framework is essential for accurate simulation of fragment separator beam dynamics. The code COSY INFINITY provides powerful differential algebraic methods for modeling and beam dynamics simulations in absence of beam-material interactions. However, these interactions are key for accurately simulating the dynamics of heavy ion fragmentation and fission. We have developed an extended version of the code that includes these interactions, and a set of new tools that allow efficient and accurate particle transport: by transfer map in vacuum and by Monte Carlo methods in materials. The new framework is presented, along with several examples from a preliminary layout of a fragment separator for a facility for rare isotope beams.

  14. An integrated high-performance beam optics-nuclear processes framework with hybrid transfer map-Monte Carlo particle transport and optimization

    International Nuclear Information System (INIS)

    Bandura, L.; Erdelyi, B.; Nolen, J.

    2010-01-01

    An integrated beam optics-nuclear processes framework is essential for accurate simulation of fragment separator beam dynamics. The code COSY INFINITY provides powerful differential algebraic methods for modeling and beam dynamics simulations in absence of beam-material interactions. However, these interactions are key for accurately simulating the dynamics of heavy ion fragmentation and fission. We have developed an extended version of the code that includes these interactions, and a set of new tools that allow efficient and accurate particle transport: by transfer map in vacuum and by Monte Carlo methods in materials. The new framework is presented, along with several examples from a preliminary layout of a fragment separator for a facility for rare isotope beams.

  15. MODELLING OF NUCLEAR FUEL CLADDING TUBES CORROSION

    Directory of Open Access Journals (Sweden)

    Miroslav Cech

    2016-12-01

    Full Text Available This paper describes materials made of zirconium-based alloys used for nuclear fuel cladding fabrication. It is focused on corrosion problems their theoretical description and modeling in nuclear engineering.

  16. Optical modeling of induction-linac driven free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.; Fawley, W.M.

    1986-01-01

    The free-electron laser (FEL) simulation code FRED, developed at Lawrence Livermore National Laboratory (LLNL) primarily to model single-pass FEL amplifiers driven by induction linear accelerators, is described. The main emphasis is on the modeling of optical propagation in the laser and on the differences between the requirements for modeling rf-linac-driven vs. induction-linac-driven FELs. Examples of optical guiding and mode cleanup are presented for a 50 μm FEL

  17. A simple dynamic rising nuclear cloud based model of ground radioactive fallout for atmospheric nuclear explosion

    International Nuclear Information System (INIS)

    Zheng Yi

    2008-01-01

    A simple dynamic rising nuclear cloud based model for atmospheric nuclear explosion radioactive prediction was presented. The deposition of particles and initial cloud radius changing with time before the cloud stabilization was considered. Large-scale relative diffusion theory was used after cloud stabilization. The model was considered reasonable and dependable in comparison with four U.S. nuclear test cases and DELFIC model results. (authors)

  18. Sustainable multilateral nuclear fuel cycle framework. (2) Models for multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Adachi, T; Tanaka, S; Tazaki, M; Akiba, M; Takashima, R; Kuno, Y

    2011-01-01

    To construct suitable models for a reliable and sustainable international/regional framework in the fields of nuclear fuel cycle, it is essential to reflect recent political situations including such that 1) a certain number of emerging countries especially in south-east Asia want to introduce and develop nuclear power in the long-terms despite the accident of the Fukushima Daiichi NPP, and 2) exposition of nuclear proliferation threats provided by North Korea and Iran. It is also to be considered that Japan is an unique country having enrichment and reprocessing facilities on commercial base among non-nuclear weapon countries. Although many models presented for the internationalization have not been realized yet, studies at the University of Tokyo aim at multilateral nuclear approach (MNA) in Asian-Pacific countries balancing between nuclear non-proliferation and nuclear fuel supply/service and presenting specific examples such as prerequisites for participating countries, scope of cooperative activities, ownership of facilities and type of agreements/frameworks. We will present a model basic agreement and several bilateral and multi-lateral agreements for the combinations of industry or government led consortia including Japan and its neighboring countries and made a preliminary evaluation for the combination of processes/facilities based on the INFCIRC/640 report for MNA. (author)

  19. Development of Dynamic Spent Nuclear Fuel Environmental Effect Analysis Model

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je

    2010-07-01

    The dynamic environmental effect evaluation model for spent nuclear fuel has been developed and incorporated into the system dynamic DANESS code. First, the spent nuclear fuel isotope decay model was modeled. Then, the environmental effects were modeled through short-term decay heat model, short-term radioactivity model, and long-term heat load model. By using the developed model, the Korean once-through nuclear fuel cycles was analyzed. The once-through fuel cycle analysis was modeled based on the Korean 'National Energy Basic Plan' up to 2030 and a postulated nuclear demand growth rate until 2150. From the once-through results, it is shown that the nuclear power demand would be ∼70 GWe and the total amount of the spent fuel accumulated by 2150 would be ∼168000 t. If the disposal starts from 2060, the short-term decay heat of Cs-137 and Sr-90 isotopes are W and 1.8x10 6 W in 2100. Also, the total long-term heat load in 2100 will be 4415 MW-y. From the calculation results, it was found that the developed model is very convenient and simple for evaluation of the environmental effect of the spent nuclear fuel

  20. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...

  1. Identified state-space prediction model for aero-optical wavefronts

    Science.gov (United States)

    Faghihi, Azin; Tesch, Jonathan; Gibson, Steve

    2013-07-01

    A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.

  2. Safety Cultural Competency Modeling in Nuclear Organizations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Oh, Yeon Ju; Luo, Meiling; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear safety cultural competency model should be supplemented through a bottom-up approach such as behavioral event interview. The developed model, however, is meaningful for determining what should be dealt for enhancing safety cultural competency of nuclear organizations. The more details of the developing process, results, and applications will be introduced later. Organizational culture include safety culture in terms of its organizational characteristics.

  3. World Integrated Nuclear Evaluation System: Model documentation

    International Nuclear Information System (INIS)

    1991-12-01

    The World Integrated Nuclear Evaluation System (WINES) is an aggregate demand-based partial equilibrium model used by the Energy Information Administration (EIA) to project long-term domestic and international nuclear energy requirements. WINES follows a top-down approach in which economic growth rates, delivered energy demand growth rates, and electricity demand are projected successively to ultimately forecast total nuclear generation and nuclear capacity. WINES could be potentially used to produce forecasts for any country or region in the world. Presently, WINES is being used to generate long-term forecasts for the United States, and for all countries with commercial nuclear programs in the world, excluding countries located in centrally planned economic areas. Projections for the United States are developed for the period from 2010 through 2030, and for other countries for the period starting in 2000 or 2005 (depending on the country) through 2010. EIA uses a pipeline approach to project nuclear capacity for the period between 1990 and the starting year for which the WINES model is used. This approach involves a detailed accounting of existing nuclear generating units and units under construction, their capacities, their actual or estimated time of completion, and the estimated date of retirements. Further detail on this approach can be found in Appendix B of Commercial Nuclear Power 1991: Prospects for the United States and the World

  4. Adaptive optics for reduced threshold energy in femtosecond laser induced optical breakdown in water based eye model

    Science.gov (United States)

    Hansen, Anja; Krueger, Alexander; Ripken, Tammo

    2013-03-01

    In ophthalmic microsurgery tissue dissection is achieved using femtosecond laser pulses to create an optical breakdown. For vitreo-retinal applications the irradiance distribution in the focal volume is distorted by the anterior components of the eye causing a raised threshold energy for breakdown. In this work, an adaptive optics system enables spatial beam shaping for compensation of aberrations and investigation of wave front influence on optical breakdown. An eye model was designed to allow for aberration correction as well as detection of optical breakdown. The eye model consists of an achromatic lens for modeling the eye's refractive power, a water chamber for modeling the tissue properties, and a PTFE sample for modeling the retina's scattering properties. Aberration correction was performed using a deformable mirror in combination with a Hartmann-Shack-sensor. The influence of an adaptive optics aberration correction on the pulse energy required for photodisruption was investigated using transmission measurements for determination of the breakdown threshold and video imaging of the focal region for study of the gas bubble dynamics. The threshold energy is considerably reduced when correcting for the aberrations of the system and the model eye. Also, a raise in irradiance at constant pulse energy was shown for the aberration corrected case. The reduced pulse energy lowers the potential risk of collateral damage which is especially important for retinal safety. This offers new possibilities for vitreo-retinal surgery using femtosecond laser pulses.

  5. Diagnosis of Thermal Efficiency of Nuclear Power Plants Using Optical Torque Sensors

    International Nuclear Information System (INIS)

    Shuichi Umezawa; Jun Adachi

    2006-01-01

    A new optical torque measuring method was applied to diagnosis of thermal efficiency of nuclear power plants. The sensor allows torque deformation of the rotor caused by power transmission to be measured without contact. Semiconductor laser beams and small pieces of stainless reflector that have bar-code patterns are employed. The intensity of the reflected laser beam is measured and then input into a computer through an APD and an A/D converter having high frequency sampling rates. The correlation analysis technique can translate these data into the torque deformation angle. This angle allows us to obtain the turbine output along with the torsional rigidity and the rotating speed of the rotor. The sensor was applied to a nuclear plant of Tokyo Electric Power Company, TEPCO, following its application success to the early combined cycle plants and the advanced combined cycle plants of TEPCO. As the turbine rotor of the nuclear power plant is less exposed than that of the combined cycle plants, the measurement position is confined to a narrow gap. In order to overcome the difficulty in installation, the shape of the sensor is modified to be long and thin. Sensor performance of the nuclear power plant was inspected over a year. The value of the torsional rigidity was analyzed by the finite element method at first. Accuracy was improved by correcting the torsional rigidity so that the value was consistent with the generator output. As a result, it is considered that the sensor performance has reached a practical use level. (authors)

  6. A fermionic molecular dynamics technique to model nuclear matter

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2009-01-01

    Full text: At sub-nuclear densities of about 10 14 g/cm 3 , nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)

  7. Modelling of Extrinsic Fiber Optic Sagnac Ultrasound Interferometer ...

    African Journals Online (AJOL)

    Ultrasonic waves are used extensively in nondestructive testing both for characterization of material properties, in this paper, we describe a fiber optic sensor suitable for detection of ultrasonic waves. This sensor is based on an extrinsic fiber optic sagnac interferometer. The proposed sensor model can act as a conventional ...

  8. Test and Evaluation of Fiber Optic Sensors for High-Radiation Space Nuclear Power Applications

    International Nuclear Information System (INIS)

    Klemer, Daniel; Fielder, Robert S.; Stinson-Bagby, Kelly L.

    2004-01-01

    Fiber optic sensors can be used to measure a number of parameters, including temperature, strain, pressure and flow, for instrumentation and control of space nuclear power systems. In the past, this technology has often been rejected for use in such a high-radiation environment based on early experiments that revealed a number of degradation phenomena, including radiation-induced fiber attenuation, or 'graying', and Fiber Bragg Grating (FBG) fading and wavelength shift. However, this paper reports the results of recent experimental testing that demonstrates readability of fiber optic sensors to extremely high levels of neutron and gamma radiation. Both distributed Fiber Bragg Grating (FBG) sensors and single-point Extrinsic Fabry Perot Interferometer (EFPI) sensors were continuously monitored over a 2-month period, during which they were exposed to combined neutron and gamma radiation in both in-core and ex-core positions within a nuclear reactor. Total exposure reached approximately 2 x 10 19 cm -2 fast neutron (E > 1 MeV) fluence and 8.7 x 10 8 Gy gamma for in-core sensors. FBG sensors were interrogated using a standard Luna Innovations FBG measurement system, which is based on optical frequency-domain reflectometer (OFDR) technology. Approximately 74% of the 19 FBG sensors located at the core centerline in the in-core position exhibited sufficient signal-to-noise ratio (SNR) to remain readable even after receiving the maximum dose. EFPI sensors were spectrally interrogated using a broadband probe source operating in the 830 nm wavelength region. While these single-point sensors failed early in the test, important additional fiber spectral transmission data was collected, which indicates that interrogation of EFPI sensors in alternate wavelength regions may allow significant improvement in sensor longevity for operation in high-radiation environments. This work was funded through a Small Business Innovative Research (SBIR) contract with the Nasa Glenn Research

  9. Model integration and the economics of nuclear power

    International Nuclear Information System (INIS)

    Lundgren, S.

    1985-01-01

    The author proposes and applies a specific approach to model integration, i.e. the merger of two or several independently developed models. The approach is intended for integrations of activity analysis sector models and applied general equilibrium models. Model integration makes it possible to extend the range of applicability of applied general equilibrium models by exploiting the information contained in sector models. It also makes it possible to evaluate the validity of the partial equilibrium analyses in which sector models often are employed. The proposed approach is used to integrate a sector model of electricity and heat production with a general equilibrium model of the Swedish economy. Both models have been constructed within the research programme. The author uses the integrated model to look at two issues concerning the role of nuclear power on the Swedish electricity market: What are the likely consequences of a nuclear power discontinuation and how does the nuclear power investment programme of the 1970's and the early 1980's compare with a socially efficient one. (Author)

  10. Optical techniques for sensing and measurement in hostile environments

    International Nuclear Information System (INIS)

    Gillespie, C.H.; Greenwell, R.A.

    1987-01-01

    These proceedings collect papers on optical sensing and measurement in hostile environments. Topic include: nuclear waste storage facility monitoring, monitoring of nuclear and chemical explosions, exhaust gas monitoring, fiber-optic monitoring, temperature and radiation effects on optical fibers, and interferometers

  11. Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Yajie Jiang

    2015-06-01

    Full Text Available The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3−xClx and CH3NH3PbI3 perovskite films are reported at 297 K as determined by detailed analysis of reflectance and transmittance data. The data in this study is related to the research article “Room temperature optical properties of organic–inorganic lead halide perovskites” in Solar Energy Materials & Solar Cells [1].

  12. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  13. Nuclear densities of 1fsub(7/2) nuclei from elastic alpha-particle scattering

    International Nuclear Information System (INIS)

    Friedman, E.; Gils, H.J.; Rebel, H.

    1983-12-01

    The elastic scattering of 104 MeV α particles by sup(40,42,43,44,48)Ca, 50 Ti, 51 V, 52 Cr has been analyzed by phenomenological and semimicroscopic optical potentials in order to get information on isotopic and isotonic differences of the α particle optical potentials and of nuclear matter densities. The phenomenological optical potentials based on a Fourier-Bessel description of the real part reveal different behaviour in size and shape for the isotonic chain as compared to the isotopic chain. Odd-even effects are also indicated to be different for isotones and isotopes. The semi-microscopic analyses use a single-folding model with a density-dependent effective αN-interaction including a realistic local density approximation. The calculated potentials are fully consistent with the phenomenological ones. Isopotic and isotonic differences of the nuclear matter densities obtained from the folding model in general show a similar behavior as the optical potential differences. The results on matter densities are compared to other investigations. (orig.) [de

  14. An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor

    International Nuclear Information System (INIS)

    Staderini, E.M.; Castellano, A.

    1986-01-01

    An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2 . On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation. (orig.)

  15. A sample application of nuclear power human resources model

    International Nuclear Information System (INIS)

    Gurgen, A.; Ergun, S.

    2016-01-01

    One of the most important issues for a new comer country initializing the nuclear power plant projects is to have both quantitative and qualitative models for the human resources development. For the quantitative model of human resources development for Turkey, “Nuclear Power Human Resources (NPHR) Model” developed by the Los Alamos National Laboratory was used to determine the number of people that will be required from different professional or occupational fields in the planning of human resources for Akkuyu, Sinop and the third nuclear power plant projects. The number of people required for different professions for the Nuclear Energy Project Implementation Department, the regulatory authority, project companies, construction, nuclear power plants and the academy were calculated. In this study, a sample application of the human resources model is presented. The results of the first tries to calculate the human resources needs of Turkey were obtained. Keywords: Human Resources Development, New Comer Country, NPHR Model

  16. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  17. Nuclear reactor power control system based on flexibility model

    International Nuclear Information System (INIS)

    Li Gang; Zhao Fuyu; Li Chong; Tai Yun

    2011-01-01

    Design the nuclear reactor power control system in this paper to cater to a nonlinear nuclear reactor. First, calculate linear power models at five power levels of the reactor as five local models and design controllers of the local models as local controllers. Every local controller consists of an optimal controller contrived by the toolbox of Optimal Controller Designer (OCD) and a proportion-integration-differentiation (PID) controller devised via Genetic Algorithm (GA) to set parameters of the PID controller. According to the local models and controllers, apply the principle of flexibility model developed in the paper to obtain the flexibility model and the flexibility controller at every power level. Second, the flexibility model and the flexibility controller at a level structure the power control system of this level. The set of the whole power control systems corresponding to global power levels is to approximately carry out the power control of the reactor. Finally, the nuclear reactor power control system is simulated. The simulation result shows that the idea of flexibility model is feasible and the nuclear reactor power control system is effective. (author)

  18. Effect of neutron irradiation on etching, optical and structural properties of microscopic glass slide used as a solid state nuclear track detector

    International Nuclear Information System (INIS)

    Singh, Surinder; Kaur Sandhu, Amanpreet; Prasher, Sangeeta; Prakash Pandey, Om

    2007-01-01

    Microscopic glass slides are soda-lime glasses which are readily available and are easy to manufacture with low production cost. The application of these glasses as nuclear track detector will help us to make use of these glasses as solid-state nuclear track detector. The present paper describes the variation in the etching, optical and structural properties of the soda-lime microscopic glass slides due to neutron irradiation of different fluences. The color transformation and an increase in the optical absorption with neutron irradiation are observed. Both the bulk and track etch rates are found to increase with neutron fluence, thus showing a similar dependence on neutron fluence, but the sensitivity remains almost constant

  19. A Thermo-Optic Propagation Modeling Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developed for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.

  20. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    Science.gov (United States)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  1. Three-dimensional modeling of nuclear steam generator

    International Nuclear Information System (INIS)

    Bogdan, Z.; Afgan, N.

    1985-01-01

    In this paper mathematical model for steady-state simulation of thermodynamic and hydraulic behaviour of U-tube nuclear steam generator is described. The model predicts three-dimensional distribution of temperatures, pressures, steam qualities and velocities in the steam generator secondary loop. In this analysis homogeneous two phase flow model is utilized. Foe purpose of the computer implementation of the mathematical model, a special flow distribution code NUGEN was developed. Calculations are performed with the input data and geometrical characteristics related to the D-4 (westinghouse) model of U-tube nuclear steam generator built in Krsko, operating under 100% load conditions. Results are shown in diagrams giving spatial distribution of pertinent variables in the secondary loop. (author)

  2. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    Kaoua, Th.; Lenain, R.

    2004-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  3. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    N'kaoua, Th.; Lenain, R.

    2002-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  4. Modeling the video distribution link in the Next Generation Optical Access Networks

    International Nuclear Information System (INIS)

    Amaya, F; Cardenas, A; Tafur, I

    2011-01-01

    In this work we present a model for the design and optimization of the video distribution link in the next generation optical access network. We analyze the video distribution performance in a SCM-WDM link, including the noise, the distortion and the fiber optic nonlinearities. Additionally, we consider in the model the effect of distributed Raman amplification, used to extent the capacity and the reach of the optical link. In the model, we use the nonlinear Schroedinger equation with the purpose to obtain capacity limitations and design constrains of the next generation optical access networks.

  5. Direct nuclear reactions and the structure of atomic nuclei

    International Nuclear Information System (INIS)

    Osterfeld, F.

    1985-01-01

    The present thesis deals with two different aspects of direct nuclear reactions, namely on the one hand with the microscopic calculation of the imaginary optical potential for the elastic nucleon-nucleus scattering as well as on the other hand with the microscopic analysis of giant magnetic resonances in atomic nuclei which are excited by (p,n) charge-exchange reactions. In the first part of the thesis the imaginary part of the optical potential for the elastic proton- and neutron-nucleus scattering is microscopically calculated in the framework of the so called nuclear-structure approximation to the optical potential. The calculations are performed in the Feshbach formalism in second-order perturbation theory corresponding to an effective projectile-target-nucleon interaction. In the second part of this thesis in the framework of microscopic nuclear models a complete analysis of different A(p,n)B charge-exchange reactions at high incident energies 160 MeV 90 Zr(p,n) reaction three collective spin-isospin resonances could be uniquely identified. (orig./HSI) [de

  6. Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations. A Compilation of Neutron Data from the Studsvik Neutron Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1969-06-15

    Neutron elastic scattering cross section measurements have been going on for a long period at the Studsvik Van de Graaff laboratory. The cross sections of a range of elements have been investigated in the energy interval 1.5 to 8 MeV. The experimental data have been compared with cross sections calculated with the optical model when using a local nuclear potential.

  7. Microcystic Changes in the Retinal Internal Nuclear Layer Associated with Optic Atrophy: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Benjamin Wolff

    2014-01-01

    Full Text Available Purpose. This study aimed at assessing the prevalence of pathologies presenting retinal inner nuclear layer (RINL microcystic perimacular changes associated with optic nerve atrophy (OA. The charts of patients presenting a significant defect of the Retinal Nerve Fiber Layer (RNFL were included prospectively in this study. Patients were classified according to the etiology of the RNFL defect. Two hundred and one eyes of 138 patients were enrolled in this analysis. Retinal images obtained showed the typical hyporeflective perifoveal crescent-shaped lesion composed of small round hyporeflective microcysts confined to the RINL in 35.3% of the eyes. Those findings were found in 75% of eyes presenting hereditary OA, 50% of eyes presenting ischemic optic neuritis, 50% of eyes with drusen of the optic nerve (ON, 44.4% of eyes presenting a compressive OA, 32% of eyes presenting inflammatory optic neuropathy from multiple sclerosis, 18.5% of eyes presenting OA from undetermined origin, and 17.6% of eyes having primary open-angle glaucoma. This study demonstrates that microcystic changes in RINL are not specific to a disease but are found in OA of various etiologies. Moreover, their incidence was found to be dependent upon the cause of OA, with the highest incidence occurring in genetic OA.

  8. Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies

    Science.gov (United States)

    Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.

    2017-12-01

    The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.

  9. A Nuclear Waste Management Cost Model for Policy Analysis

    Science.gov (United States)

    Barron, R. W.; Hill, M. C.

    2017-12-01

    Although integrated assessments of climate change policy have frequently identified nuclear energy as a promising alternative to fossil fuels, these studies have often treated nuclear waste disposal very simply. Simple assumptions about nuclear waste are problematic because they may not be adequate to capture relevant costs and uncertainties, which could result in suboptimal policy choices. Modeling nuclear waste management costs is a cross-disciplinary, multi-scale problem that involves economic, geologic and environmental processes that operate at vastly different temporal scales. Similarly, the climate-related costs and benefits of nuclear energy are dependent on environmental sensitivity to CO2 emissions and radiation, nuclear energy's ability to offset carbon emissions, and the risk of nuclear accidents, factors which are all deeply uncertain. Alternative value systems further complicate the problem by suggesting different approaches to valuing intergenerational impacts. Effective policy assessment of nuclear energy requires an integrated approach to modeling nuclear waste management that (1) bridges disciplinary and temporal gaps, (2) supports an iterative, adaptive process that responds to evolving understandings of uncertainties, and (3) supports a broad range of value systems. This work develops the Nuclear Waste Management Cost Model (NWMCM). NWMCM provides a flexible framework for evaluating the cost of nuclear waste management across a range of technology pathways and value systems. We illustrate how NWMCM can support policy analysis by estimating how different nuclear waste disposal scenarios developed using the NWMCM framework affect the results of a recent integrated assessment study of alternative energy futures and their effects on the cost of achieving carbon abatement targets. Results suggest that the optimism reflected in previous works is fragile: Plausible nuclear waste management costs and discount rates appropriate for intergenerational cost

  10. An optical channel modeling of a single mode fiber

    Science.gov (United States)

    Nabavi, Neda; Liu, Peng; Hall, Trevor James

    2018-05-01

    The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.

  11. Preparations for an optical access to the lowest nuclear excitation in {sup 229}Th

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter [Ludwig-Maximilians-Universitaet Muenchen (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2014-07-01

    The isomeric lowest excited nuclear level of {sup 229}Th has been indirectly measured to be 7.6±0.5 eV (163±11 nm). In order to improve the accuracy as prerequisite of an all-optical control, {sup 229m}Th is populated via a 2% decay branch in the α decay of {sup 233}U. The Thorium ions are extracted and cooled with the help of a buffer gas stopping cell and an RFQ-cooler. In order to suppress accompanying α decay chain products other than {sup 229}Th, a quadrupole mass spectrometer (QMS) is used, performance and extraction efficiency measurements were performed. Following the QMS, the Thorium isomers will be collected on a 50 μm micro electrode. The decay of these isomers can then be detected using deep UV optics, presently in the phase of preparation and adjustment. Newest results are presented.

  12. Covariant single-hole optical potential

    International Nuclear Information System (INIS)

    Kam, J. de

    1982-01-01

    In this investigation a covariant optical potential model is constructed for scattering processes of mesons from nuclei in which the meson interacts repeatedly with one of the target nucleons. The nuclear binding interactions in the intermediate scattering state are consistently taken into account. In particular for pions and K - projectiles this is important in view of the strong energy dependence of the elementary projectile-nucleon amplitude. Furthermore, this optical potential satisfies unitarity and relativistic covariance. The starting point in our discussion is the three-body model for the optical potential. To obtain a practical covariant theory I formulate the three-body model as a relativistic quasi two-body problem. Expressions for the transition interactions and propagators in the quasi two-body equations are found by imposing the correct s-channel unitarity relations and by using dispersion integrals. This is done in such a way that the correct non-relativistic limit is obtained, avoiding clustering problems. Corrections to the quasi two-body treatment from the Pauli principle and the required ground-state exclusion are taken into account. The covariant equations that we arrive at are amenable to practical calculations. (orig.)

  13. Issues arising with the application of optical fiber transmission in class 1E systems in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Antonescu, C.

    1993-01-01

    The application of fiber optic links and networks in safety-critical systems in the next generation of nuclear power plants, as well as in some digital upgrades in present-day plants, will mean that these links must be highly reliable and able to withstand the effect of environmental stressors present at the installation location. This paper discusses the failure modes and age-related mechanisms of fiber optic transmission components and identifies environmental stressors that could adversely affect their reliability over the long term. Some of the standards that could be used in their qualification for safety-critical applications are also discussed briefly

  14. DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Cyburt, R. H.; Keek, L.; Schatz, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Amthor, A. M. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Heger, A.; Meisel, Z.; Smith, K. [Joint Institute for Nuclear Astrophysics (JINA), Michigan State University, East Lansing, MI 48824 (United States); Johnson, E. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-20

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  15. Full scale model studies of nuclear power stations for earthquake resistance

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Ambriashvili, Ju. K.; Kozlov, A.V.

    Behaviour of nuclear power plants and its equipments under seismic action is not well understood. In the absence of well established method for aseismic deisgn of nuclear power plants and its equipments, it is necessary to carry out experimental investigations on models, fragments and full scale structures. The present study includes experimental investigations of different scale models and on existing nuclear power stations under impulse and explosion effects simulating seismic loads. The experimental work was aimed to develop on model test procedure for nuclear power station and the evaluation of the possible range of dynamic stresses in structures and pipe lines. The results of full-scale investigations of the nuclear reactor show a good agreement of dynamic characteristics of the model and the prototype. The study confirms the feasibility of simulation of model for nuclear power plants. (auth.)

  16. Population of delayed-neutron granddaughter states and the optical potential

    International Nuclear Information System (INIS)

    Schenter, R.E.; Mann, F.M.; Warner, R.A.; Reeder, P.L.

    1982-08-01

    Using a statistical treatment of beta decay and the Hauser-Feshbach model of nuclear reactions, calculations were made and compared to recent experimental measurements of the population of granddaughter states of several delayed neutron precursors ( 144 145 147 Cs and 96 Rb). Emphasis of this paper is on the sensitivity and interpretation of experimental results to various standard low energy neutron optical model potentials and variations in their forms and parameters. Results for these precursors show qualitative agreement with experiment for all the optical potential models used and good quantitative agreement for two (Moldauer and Becchetti-Greenlees). Questions such as (N-Z) terms, deformation and nonlocality dependence are presented

  17. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation

    Science.gov (United States)

    2009-09-01

    Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and

  18. Modeling the video distribution link in the Next Generation Optical Access Networks

    DEFF Research Database (Denmark)

    Amaya, F.; Cárdenas, A.; Tafur Monroy, Idelfonso

    2011-01-01

    In this work we present a model for the design and optimization of the video distribution link in the next generation optical access network. We analyze the video distribution performance in a SCM-WDM link, including the noise, the distortion and the fiber optic nonlinearities. Additionally, we...... consider in the model the effect of distributed Raman amplification, used to extent the capacity and the reach of the optical link. In the model, we use the nonlinear Schrödinger equation with the purpose to obtain capacity limitations and design constrains of the next generation optical access networks....

  19. Graphics-based nuclear facility modeling and management

    International Nuclear Information System (INIS)

    Rod, S.R.

    1991-07-01

    Nuclear waste management facilities are characterized by their complexity, many unprecedented features, and numerous competing design requirements. This paper describes the development of comprehensive descriptive databases and three-dimensional models of nuclear waste management facilities and applies the database/model to an example facility. The important features of the facility database/model are its abilities to (1) process large volumes of site data, plant data, and nuclear material inventory data in an efficient, integrated manner; (2) produce many different representations of the data to fulfill information needs as they arise; (3) create a complete three-dimensional solid model of the plant with all related information readily accessible; and (4) support complete, consistent inventory control and plant configuration control. While the substantive heart of the system is the database, graphic visualization of the data vastly improves the clarity of the information presented. Graphic representations are a convenient framework for the presentation of plant and inventory data, allowing all types of information to be readily located and presented in a manner that is easily understood. 2 refs., 5 figs., 1 tab

  20. Analytical models of optical response in one-dimensional semiconductors

    International Nuclear Information System (INIS)

    Pedersen, Thomas Garm

    2015-01-01

    The quantum mechanical description of the optical properties of crystalline materials typically requires extensive numerical computation. Including excitonic and non-perturbative field effects adds to the complexity. In one dimension, however, the analysis simplifies and optical spectra can be computed exactly. In this paper, we apply the Wannier exciton formalism to derive analytical expressions for the optical response in four cases of increasing complexity. Thus, we start from free carriers and, in turn, switch on electrostatic fields and electron–hole attraction and, finally, analyze the combined influence of these effects. In addition, the optical response of impurity-localized excitons is discussed. - Highlights: • Optical response of one-dimensional semiconductors including excitons. • Analytical model of excitonic Franz–Keldysh effect. • Computation of optical response of impurity-localized excitons

  1. Effects of nuclear radiation on the optical properties of cerium-doped glass (accelerator applications)

    CERN Document Server

    McGrath, B; Van de Voorde, M H

    1976-01-01

    Some twenty types of glass containing 0.5-4% CeO/sub 2/ have been irradiated in a /sup 60/Co gamma cell and in the mixed neutron-gamma field of a nuclear reactor, at total integrated doses of up to 5*10 /sup 9/ rad (CH). The resulting colouration has been assessed quantitatively by measuring the light transmission with reference to air, in the range 360-510 nm. From the results, certain types of glass suitable for applications in nuclear engineering can be selected. Specifically, it was found that 1-2% CeO/sub 2/ content is usually sufficient to obtain radiation-resistant optical glass: the reduction in light transmission above 450 nm is nil at 10/sup 8/ rad (CH), below 10% at 10/sup 9/ rad (CH), and below 20% at 5*10/sup 9/ rad (CH); the post-irradiation fading is negligible.

  2. Combined Electrical, Optical and Nuclear Investigations of Impurities and Defects in II-VI Semiconductors

    CERN Multimedia

    2002-01-01

    % IS325 \\\\ \\\\ To achieve well controlled bipolar conductivity in II-VI semiconductors represents a fundamental problem in semiconductor physics. The doping problems are controversely discussed, either in terms of self compensation or of compensation and passivation by unintentionally introduced impurities. \\\\ \\\\It is the goal of our experiments at the new ISOLDE facility, to shed new light on these problems and to look for ways to circumvent it. For this aim the investigation of impurities and native defects and the interaction between each other shall be investigated. The use of radioactive ion beams opens the access to controlled site selective doping of only one sublattice via nuclear transmutation. The compensating and passivating mechanisms will be studied by combining nuclear, electrical and optical methods like Perturbed Angular Correlation~(PAC), Hall Effect~(HE), Deep Level Transient Spectroscopy~(DLTS), Photoluminescence Spectroscopy~(PL) and electron paramagnetic resonance (EPR). \\\\ \\\\We intend to ...

  3. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A ≅ 182 region, structure of 182 Hg and 182 Au at high spin, a highly deformed band in 136 Pm and the anomalous h 11/2 proton crossing in the A∼135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier α particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative 209 Bi + 136 Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4π channel selection device, a novel x-ray detector, and a simple channel-selecting detector)

  4. Nuclear power investment risk economic model

    International Nuclear Information System (INIS)

    Postula, F.D.; Houghton, W.J.

    1986-01-01

    This paper describes the economic model which was developed to evaluate the net costs incurred by an owner due to an accident induced outage at a nuclear power plant. During such an outage, the portion of the plant operating costs associated with power production are saved; however the owner faces a sizable expense as fossil fuels are burned as a substitute for power from the incapacitated nuclear plant. Additional expenses are incurred by the owner for plant repair and, if necessary, decontamination cost. The model makes provision for mitigating these costs by sales of power, property damage insurance payments, tax write-offs and increased rates

  5. Program description of FIBRAM (Fiber Optic Radiation Attenuation Model): a radiation attenuation model for optical fibers

    International Nuclear Information System (INIS)

    Ingram, W.J.

    1987-06-01

    The report describes a fiber-optics system model and its computer implementation. This implementation can calculate the bit error ratio (BER) versus time for optical fibers that have been exposed to gamma radiation. The program is designed so that the user may arbitrarily change any or all of the system input variables and produce separate outputs. The primary output of the program is a table of the BER as a function of time. This table may be stored on magnetic media and later incorporated into computer graphic programs. The program was written in FORTRAN 77 for the IBM PC/AT/XT computers. Flow charts and program listings are included in the report

  6. Progress in the development of global medium-energy nucleon-nucleus optical model potentials

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    Two existing global medium-energy nucleon-nucleus phenomenological optical model potentials are described and compared with experiment and with each other. The first of these employs a Dirac approach (second-order reduction) that is global in projectile energy and projectile isospin and applies to the target nucleus 208 Pb. The second of these employs a relativistic equivalent to the Schroedinger equation (including relativistic kinematics) that is global in projectile energy, projectile isospin, and target (Z,A). Finally, current work is described and the influence of the nuclear bound state problem (treated in relativistic mean field theory) on the Dirac scattering problem is mentioned. Spherical target nuclei are treated in the present work and strongly-collective target nuclei (rotational and vibrational) requiring coupled-channels approaches will be treated in a future paper. (author)

  7. Simplifying BRDF input data for optical signature modeling

    Science.gov (United States)

    Hallberg, Tomas; Pohl, Anna; Fagerström, Jan

    2017-05-01

    Scene simulations of optical signature properties using signature codes normally requires input of various parameterized measurement data of surfaces and coatings in order to achieve realistic scene object features. Some of the most important parameters are used in the model of the Bidirectional Reflectance Distribution Function (BRDF) and are normally determined by surface reflectance and scattering measurements. Reflectance measurements of the spectral Directional Hemispherical Reflectance (DHR) at various incident angles can normally be performed in most spectroscopy labs, while measuring the BRDF is more complicated or may not be available at all in many optical labs. We will present a method in order to achieve the necessary BRDF data directly from DHR measurements for modeling software using the Sandford-Robertson BRDF model. The accuracy of the method is tested by modeling a test surface by comparing results from using estimated and measured BRDF data as input to the model. These results show that using this method gives no significant loss in modeling accuracy.

  8. Testing the predictive power of nuclear mass models

    International Nuclear Information System (INIS)

    Mendoza-Temis, J.; Morales, I.; Barea, J.; Frank, A.; Hirsch, J.G.; Vieyra, J.C. Lopez; Van Isacker, P.; Velazquez, V.

    2008-01-01

    A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool

  9. A probabilistic model for US nuclear power construction times

    International Nuclear Information System (INIS)

    Shash, A.A.H.

    1988-01-01

    Construction time for nuclear power plants is an important element in planning for resources to meet future load demands. Analysis of actual versus estimated construction times for past US nuclear power plants indicates that utilities have continuously underestimated their power plants' construction durations. The analysis also indicates that the actual average construction time has been increasing upward, and the actual durations of power plants permitted to construct in the same year varied substantially. This study presents two probabilistic models for nuclear power construction time for use by the nuclear industry as estimating tool. The study also presents a detailed explanation of the factors that are responsible for increasing and varying nuclear power construction times. Observations on 91 complete nuclear units were involved in three interdependent analyses in the process of explanation and derivation of the probabilistic models. The historical data was first utilized in the data envelopment analysis (DEA) for the purpose of obtaining frontier index measures for project management achievement in building nuclear power plants

  10. Experience in Modelling Nuclear Energy Systems with MESSAGE: Country Case Studies

    International Nuclear Information System (INIS)

    2018-01-01

    Member States have recognized the increasing need to model future nuclear power scenarios in order to develop strategies for sustainable nuclear energy systems. The IAEA model for energy supply strategy alternatives and their general environmental impacts (MESSAGE) code is a tool that supports energy analysis and planning in Member States. This publication documents the experience gained on modelling and scenario analysis of nuclear energy systems (NES) using the MESSAGE code through various case studies performed by the participating Member States on evaluation and planning for nuclear energy sustainability at the regional or national level. The publication also elaborates on experience gained in modelling of global nuclear energy systems with a focus on specific aspects of collaboration among technology holder and technology user countries and the introduction of innovative nuclear technologies. It presents country case studies covering a variety of nuclear energy systems based on a once-through fuel cycle and a closed fuel cycle for thermal reactors, fast reactors and advanced systems. The feedback from case studies proves the analytical capabilities of the MESSAGE model and highlight the path forward for further advancements in the MESSAGE code and NES modelling.

  11. Modeling fiber Bragg grating device networks in photomechanical polymer optical fibers

    Science.gov (United States)

    Lanska, Joseph T.; Kuzyk, Mark G.; Sullivan, Dennis M.

    2015-09-01

    We report on the modeling of fiber Bragg grating (FBG) networks in poly(methyl methacrylate) (PMMA) polymer fibers doped with azo dyes. Our target is the development of Photomechanical Optical Devices (PODs), comprised of two FBGs in series, separated by a Fabry-Perot cavity of photomechanical material. PODs exhibit photomechanical multi-stability, with the capacity to access multiple length states for a fixed input intensity when a mechanical shock is applied. Using finite-difference time-domain (FDTD) numerical methods, we modeled the photomechanical response of both Fabry-Perot and Bragg-type PODs in a single polymer optical fiber. The polymer fiber was modeled as an instantaneous Kerr-type nonlinear χ(3) material. Our model correctly predicts the essential optical features of FBGs as well as the photomechanical multi-stability of nonlinear Fabry-Perot cavity-based PODs. Networks of PODs may provide a framework for smart shape-shifting materials and fast optical computation where the decision process is distributed over the entire network. In addition, a POD can act as memory, and its response can depend on input history. Our models inform and will accelerate targeted development of novel Bragg grating-based polymer fiber device networks for a variety of applications in optical computing and smart materials.

  12. Constraints on the nuclear equation of state from nuclear masses and radii in a Thomas-Fermi meta-modeling approach

    Science.gov (United States)

    Chatterjee, D.; Gulminelli, F.; Raduta, Ad. R.; Margueron, J.

    2017-12-01

    The question of correlations among empirical equation of state (EoS) parameters constrained by nuclear observables is addressed in a Thomas-Fermi meta-modeling approach. A recently proposed meta-modeling for the nuclear EoS in nuclear matter is augmented with a single finite size term to produce a minimal unified EoS functional able to describe the smooth part of the nuclear ground state properties. This meta-model can reproduce the predictions of a large variety of models, and interpolate continuously between them. An analytical approximation to the full Thomas-Fermi integrals is further proposed giving a fully analytical meta-model for nuclear masses. The parameter space is sampled and filtered through the constraint of nuclear mass reproduction with Bayesian statistical tools. We show that this simple analytical meta-modeling has a predictive power on masses, radii, and skins comparable to full Hartree-Fock or extended Thomas-Fermi calculations with realistic energy functionals. The covariance analysis on the posterior distribution shows that no physical correlation is present between the different EoS parameters. Concerning nuclear observables, a strong correlation between the slope of the symmetry energy and the neutron skin is observed, in agreement with previous studies.

  13. Model of cooling nuclear fuel rod in the nuclear reactor

    International Nuclear Information System (INIS)

    Lavicka, David; Polansky, Jiri

    2010-01-01

    The following topics are described: Some basic requirements for nuclear fuel rods; The VVER 1000 fuel rod; Classification of the two-phase flow in the vertical tube; Type of heat transfer crisis in the vertical tube; Experimental apparatus; Model of the nuclear fuel rod and spacers; Potential of the experimental apparatus (velocity profile measurement via PIV; thermal flow field measurement by the PLIF method; cooling graph in dependence on the fuel rod temperature; comparison of the hydrodynamic properties with respect to the design features of the spacers). (P.A.)

  14. Optical Fibres in the Modeling of Translucent Concrete Blocks

    OpenAIRE

    M.N.V.Padma Bhushan, D.Johnson, Md. Afzal Basheer Pasha And Ms. K. Prasanthi

    2013-01-01

    Translucent concrete is a concrete based material with light-transmissive properties, obtained due to embedded light optical elements like Optical fibers in it. Light is conducted through the stone from one end to the other. This results into a certain light pattern on the other surface, depending on the fibre structure. Optical fibres transmit light so effectively that there is virtually no loss of light conducted through the fibres. Our paper deals with the modelling of such translucent or ...

  15. Squeezing and entangling nuclear spins in helium 3

    DEFF Research Database (Denmark)

    Reinaudi, Gael; Sinatra, Alice; Dantan, Aurelien Romain

    2007-01-01

    We present a realistic model for transferring the squeezing or the entanglement of optical field modes to the collective ground state nuclear spin of 3He using metastability exchange collisions. We discuss in detail the requirements for obtaining good quantum state transfer efficiency and study t...

  16. Optically-based Sensor System for Critical Nuclear Facilities Post-Event Seismic Structural Assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petrone, Floriana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buckle, Ian [Univ. of Nevada, Reno, NV (United States); Wu, Suiwen [Univ. of Nevada, Reno, NV (United States); Coates, Jason [California State Univ., Chico, CA (United States)

    2017-09-30

    The U.S. Department of Energy (DOE) has ownership and operational responsibility for a large enterprise of nuclear facilities that provide essential functions to DOE missions ranging from national security to discovery science and energy research. These facilities support a number of DOE programs and offices including the National Nuclear Security Administration, Office of Science, and Office of Environmental Management. With many unique and “one of a kind” functions, these facilities represent a tremendous national investment, and assuring their safety and integrity is fundamental to the success of a breadth of DOE programs. Many DOE critical facilities are located in regions with significant natural phenomenon hazards including major earthquakes and DOE has been a leader in developing standards for the seismic analysis of nuclear facilities. Attaining and sustaining excellence in nuclear facility design and management must be a core competency of the DOE. An important part of nuclear facility management is the ability to monitor facilities and rapidly assess the response and integrity of the facilities after any major upset event. Experience in the western U.S. has shown that understanding facility integrity after a major earthquake is a significant challenge which, lacking key data, can require extensive effort and significant time. In the work described in the attached report, a transformational approach to earthquake monitoring of facilities is described and demonstrated. An entirely new type of optically-based sensor that can directly and accurately measure the earthquake-induced deformations of a critical facility has been developed and tested. This report summarizes large-scale shake table testing of the sensor concept on a representative steel frame building structure, and provides quantitative data on the accuracy of the sensor measurements.

  17. Optical isotype shifts of 146Sm and 151Sm

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Griffith, J.A.R.; Evans, D.E.; England, J.G.; Grant, I.S.

    1984-01-01

    We have measured the optical isotope shifts of 146 Sm and 151 Sm by laser resonance fluorescence. From these measurements the changes in the mean square nuclear radii are: delta 2 > (A=144 to 146)=0.266(10) fm 2 , and delta 2 > (A=151 to 152)=0.262(10) fm 2 . These results, together with those of the stable isotopes, show that the average nuclear expansion of samarium can be accounted for by the liquid drop model with deformations. (orig.)

  18. ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection

    Directory of Open Access Journals (Sweden)

    SARACOGLU, O. G.

    2016-08-01

    Full Text Available This paper presents a modeling approach based on the use of fuzzy reasoning mechanism to define a measured data set obtained from an optical sensing circuit. For this purpose, we implemented a simple but effective an in vitro optical sensor to measure glucose content of an aqueous solution. Measured data contain analog voltages representing the absorbance values of three wavelengths measured from an RGB LED in different glucose concentrations. To achieve a desired model performance, the parameters of the fuzzy models are optimized by using the artificial bee colony (ABC algorithm. The modeling results presented in this paper indicate that the fuzzy model optimized by the algorithm provide a successful modeling performance having the minimum mean squared error (MSE of 0.0013 which are in clearly good agreement with the measurements.

  19. Modelling human resource requirements for the nuclear industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Ferry [Nuclear Research and Consultancy Group (NRG) (Netherlands); Flore, Massimo; Estorff, Ulrik von [Joint Research Center (JRC) (Netherlands)

    2017-11-15

    The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.

  20. Experiment research on cognition reliability model of nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Bingquan; Fang Xiang

    1999-01-01

    The objective of the paper is to improve the reliability of operation on real nuclear power plant of operators through the simulation research to the cognition reliability of nuclear power plant operators. The research method of the paper is to make use of simulator of nuclear power plant as research platform, to take present international research model of reliability of human cognition based on three-parameter Weibull distribution for reference, to develop and get the research model of Chinese nuclear power plant operators based on two-parameter Weibull distribution. By making use of two-parameter Weibull distribution research model of cognition reliability, the experiments about the cognition reliability of nuclear power plant operators have been done. Compared with the results of other countries such USA and Hungary, the same results can be obtained, which can do good to the safety operation of nuclear power plant

  1. Modelling human resource requirements for the nuclear industry in Europe

    International Nuclear Information System (INIS)

    Roelofs, Ferry; Flore, Massimo; Estorff, Ulrik von

    2017-01-01

    The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.

  2. Development of an Integrated Education/Training based Nuclear Outreach Model

    International Nuclear Information System (INIS)

    Han, Kyongwon; Nam, Youngmi; Hwang, Ina; Lee, Jisuk; Ko, Hansuk; Lee, Taejoon

    2013-01-01

    The Korean nuclear community also recognizes the importance of outreach from its experience with rad waste and nuclear power programs. Accordingly, nationwide programs dealing with public information, support for local community development, and HRD are implemented continuously involving a number of organizations concerned. The Nuclear Training and Education Center (NTC) of the Korea Atomic Energy Research Institute (KAERI), with its unique function and capability as a national research organization, has needs for the enhancement of public acceptance for KAERI programs, a better contribution to the national effort, and addressing the emerging needs for international education/training on nuclear outreach. This paper presents an integrated education/training based nuclear outreach model with a set of reference program, which is developed for NTC. An integrated education/training based nuclear outreach model for NTC is developed addressing the increasing needs for public acceptance on the peaceful use of nuclear energy, in terms of supporting KAERI activities, contributing to the national nuclear outreach efforts, and promoting international education and training on nuclear outreach. The model, harmonized with the national nuclear outreach system, consists of objectives, target audiences, a set of reference program supported by infrastructure and networking, and an evaluation system. The program is further specified into sub-programs with detailed design for the respective audiences. The developed model with a reference program is characterized by its integrity in terms of encompassing the whole outreach process cycle, and setting up of a target audience based total program structure with existing and new sub-programs. Also, it intends to be sustainable by addressing future generations' needs as well as innovative in the program delivery. The model will be continuously upgraded and applied addressing respective needs of the audiences

  3. Development of an Integrated Education/Training based Nuclear Outreach Model

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyongwon; Nam, Youngmi; Hwang, Ina; Lee, Jisuk; Ko, Hansuk; Lee, Taejoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The Korean nuclear community also recognizes the importance of outreach from its experience with rad waste and nuclear power programs. Accordingly, nationwide programs dealing with public information, support for local community development, and HRD are implemented continuously involving a number of organizations concerned. The Nuclear Training and Education Center (NTC) of the Korea Atomic Energy Research Institute (KAERI), with its unique function and capability as a national research organization, has needs for the enhancement of public acceptance for KAERI programs, a better contribution to the national effort, and addressing the emerging needs for international education/training on nuclear outreach. This paper presents an integrated education/training based nuclear outreach model with a set of reference program, which is developed for NTC. An integrated education/training based nuclear outreach model for NTC is developed addressing the increasing needs for public acceptance on the peaceful use of nuclear energy, in terms of supporting KAERI activities, contributing to the national nuclear outreach efforts, and promoting international education and training on nuclear outreach. The model, harmonized with the national nuclear outreach system, consists of objectives, target audiences, a set of reference program supported by infrastructure and networking, and an evaluation system. The program is further specified into sub-programs with detailed design for the respective audiences. The developed model with a reference program is characterized by its integrity in terms of encompassing the whole outreach process cycle, and setting up of a target audience based total program structure with existing and new sub-programs. Also, it intends to be sustainable by addressing future generations' needs as well as innovative in the program delivery. The model will be continuously upgraded and applied addressing respective needs of the audiences.

  4. Physics and numerical methods of OPTMAN. A coupled-channels method based on soft-rotator model for a description of collective nuclear structure and excitations

    International Nuclear Information System (INIS)

    Soukhovitskii, Efrem Sh.; Morogovskii, Gennadij B.; Chiba, Satoshi; Iwamoto, Osamu; Fukahori, Tokio

    2004-03-01

    This report gives a detailed description of the theory and computational algorithms of modernized coupled-channels optical model code OPTMAN based on the soft-rotator model for the collective nuclear structure and excitations. This work was performed under the Project Agreement B-521 with the International Science and Technology Center (Moscow), financing party of which is Japan. As a result of this work, the computational method of OPTMAN was totally updated, and an user-friendly interface was attached. (author)

  5. Modeling GMPLS and Optical MPLS Networks

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann; Wessing, Henrik

    2003-01-01

    . The MPLS concept is attractive because it can work as a unifying control structure. covering all technologies. This paper describes how a novel scheme for optical MPLS and circuit switched GMPLS based networks can incorporated in such multi-domain, MPLS-based scenarios and how it could be modeled. Network...

  6. Nanoscale nuclear architecture for cancer diagnosis by spatial-domain low-coherence quantitative phase microscopy

    Science.gov (United States)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Staton, Kevin D.; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2011-03-01

    Alterations in nuclear architecture are the hallmark diagnostic characteristic of cancer cells. In this work, we show that the nuclear architectural characteristics quantified by spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is more sensitive for the identification of cancer cells than conventional cytopathology. We demonstrated the importance of nuclear architectural characteristics in both an animal model of intestinal carcinogenesis - APC/Min mouse model and human cytology specimens with colorectal cancer by identifying cancer from cytologically noncancerous appearing cells. The determination of nanoscale nuclear architecture using this simple and practical optical instrument is a significant advance towards cancer diagnosis.

  7. MILES extended : Stellar population synthesis models from the optical to the infrared

    NARCIS (Netherlands)

    Rock, B.; Vazdekis, A.; Ricciardelli, E.; Peletier, R. F.; Knapen, J. H.; Falcon-Barroso, J.

    We present the first single-burst stellar population models, which covers the optical and the infrared wavelength range between 3500 and 50 000 angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical

  8. Optical model and calibration of a sun tracker

    International Nuclear Information System (INIS)

    Volkov, Sergei N.; Samokhvalov, Ignatii V.; Cheong, Hai Du; Kim, Dukhyeon

    2016-01-01

    Sun trackers are widely used to investigate scattering and absorption of solar radiation in the Earth's atmosphere. We present a method for optimization of the optical altazimuth sun tracker model with output radiation direction aligned with the axis of a stationary spectrometer. The method solves the problem of stability loss in tracker pointing at the Sun near the zenith. An optimal method for tracker calibration at the measurement site is proposed in the present work. A method of moving calibration is suggested for mobile applications in the presence of large temperature differences and errors in the alignment of the optical system of the tracker. - Highlights: • We present an optimal optical sun tracker model for atmospheric spectroscopy. • The problem of loss of stability of tracker pointing at the Sun has been solved. • We propose an optimal method for tracker calibration at a measurement site. • Test results demonstrate the efficiency of the proposed optimization methods.

  9. Irradiation Effects of Electron Beam on Optical Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Cho, Gyu Seong [KAIST, Daejeon (Korea, Republic of); Choi, Hong Gu; Oh, Kyung Hwan [Yonsei University, Seoul (Korea, Republic of); Cho, Ho Jin [Nucron Co. Ltd., Seoul (Korea, Republic of)

    2009-10-15

    The surveillance or monitoring systems used in space station, nuclear power plant and nuclear waste repository, are often equipped with optical fibers to remotely locating expensive camera systems so as to protect them from direct irradiation. Especially in nuclear power plant and nuclear waste repository, irradiation by gamma-ray and beta-ray are most concerned. The effective life-time of such surveillance system may depend on the soundness of the optical fiber because it is the component to be exposed the high intensity of radiation field by purpose. Though the degradation of mechanical properties such as hardness and elasticity may occur but the degradation of the optical property such as spectral transmittance is the most possible cause of the effective life-time limitation. Generally 30 % reduction of light signal transmittance is considered as the life-time threshold point of such optical systems. In this paper, we studied irradiation effects on spectral transparency of various commonly-used optical fibers with high energy electron beam to conveniently simulate the both gamma-ray and beta-ray irradiation situation.

  10. Model wells for nuclear well logging

    International Nuclear Information System (INIS)

    Tittle, C.W.

    1989-01-01

    Considerations needed in the design and construction of model wells for nuclear log calibration are covered, with special attention to neutron porosity logging and total γ-ray logging. Pulsed neutron decay-time and spectral γ-ray logging are discussed briefly. The American Petroleum Institute calibration facility for nuclear logs is a good starting point for similar or expanded facilities. A few of its shortcomings are mentioned; they are minor. The problem of fluid saturation is emphasized. Attention is given to models made of consolidated rock and those containing unconsolidated material such as Ottawa sand. Needed precautions are listed. A similarity method is presented for estimating the porosity index of formations that are not fully saturated. (author)

  11. Working sketch of an anatomically and optically equivalent physical model eye

    Science.gov (United States)

    Bakaraju, Ravi Chandra; Ehrmann, Klaus; Falk, Darrin; Papas, Eric B.; Ho, Arthur

    2009-02-01

    Our aim was to fabricate a bench-top physical model eye that closely replicates anatomical and optical properties of the average human eye, and to calibrate and standardize this model to suit normal viewing conditions and subsequently utilize it to understand the optical performance of corrective lens designs; especially multifocal soft contact lenses. Using available normative data on ocular biometrics and Zemax ray-tracing software as a tool, we modeled 25, 45 and 55 year-old average adult human eyes with discrete accommodation levels and pupil sizes. Specifications for the components were established following manufacturing tolerance analyses. The cornea was lathed from an optical material with refractive index of 1.376 @ 589 nm and the crystalline lenses were made of Boston RGP polymers with refractive indices of 1.423 (45 & 55yr) and 1.429 (25yr) @ 589 nm. These two materials served to model the equivalent crystalline lens of the different age-groups. A camera, the acting retina, was hosted on the motor-base having translatory and rotary functions to facilitate the simulation of different states of ametropia and peripheral refraction respectively. We report on the implementation of the first prototype and present some simulations of the optical performance of certain contact lenses with specific levels of ametropia, to demonstrate the potential use of such a physical model eye. On completion of development, calibration and standardization, optical quality assessment and performance predictions of different ophthalmic lenses can be studied in great detail. Optical performance with corrective lenses may be reliably simulated and predicted by customized combined computational and physical models giving insight into the merits and pitfalls of their designs

  12. Remote visual inspection of nuclear fuel pellets with fiber optics and video image processing

    International Nuclear Information System (INIS)

    Moore, F.W.

    1987-01-01

    Westinghouse Hanford Company has designed and constructed a nuclear fuel fabrication process line for the U.S. Department of Energy. This process line includes a system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100% basis after pellet sintering. A feeder delivers the pellets directly to a fiber optic inspection head, which views one pellet surface at a time and images it to a closed-circuit color television camera (CCTV). The output signal of the CCTV is input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator visually examines the images of the pellet surfaces on a high resolution monitor and accepts or rejects the pellets based on visual standards. The operator uses a digitizing tablet to record the location of rejected pellets, which are then automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image

  13. A Fourier Optical Model for the Laser Doppler Velocimeter

    DEFF Research Database (Denmark)

    Lading, Lars

    1972-01-01

    The treatment is based on a fourier optical model. It is shown how the various configurations (i.e. ldquodifferential moderdquo and reference beam mode with both one and two incident beams) are incorporated in the model, and how it can be extended to three dimensions. The particles are represented...... filtering ability vanishes as the aperture size converges towards zero. The results based on fourier optics are compared with the rough estimates obtainable by using the "antenna formular" for heterodyning (ArΩr≈λ2)....

  14. Theoretical aspects of the optical model

    International Nuclear Information System (INIS)

    Mahaux, C.

    1980-01-01

    We first recall the definition of the optical-model potential for nucleons and the physical interpretation of the main related quantities. We then survey the recent theoretical progress towards a reliable calculation of this potential. The present limitations of the theory and some prospects for future developments are outlined. (author)

  15. Optical Imaging and Radiometric Modeling and Simulation

    Science.gov (United States)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  16. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    Science.gov (United States)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  17. The imagine of establishing China nuclear insurance model

    International Nuclear Information System (INIS)

    Wu Yimin

    2010-01-01

    Nuclear power Insurance is one important technique for risk managements of Nuclear power Enterprises. At present, nuclear risk of Nuclear power plants in China has been mainly supported by China Nuclear Insurance pool (hereinafter called CNP) to get coverage from International Nuclear Insurance pool (hereinafter called NIP). CNIP has several advantages to confirm low-cost. Operation, such as large underwriting capacity, international approval and cession, direct writing without agents. However, there are both deficiencies, first, can not get rid of dependence on International markets ; second, in the absence of competition in Self- insurance organizations , tough and opaque premium offer greatly restricted the enthusiasm for Nuclear power plants insuring .But the next ten year is a golden decade for China Nuclear industry development; Nuclear power market is demonstrating tremendous growth potential. With new units put into operation, all kinds of nuclear insurance demand will release when subject-matter insured substantially increase. So, breaking the current bottleneck of China Nuclear Insurance and establishing China Nuclear Insurance (hereinafter called: Nuclear insurance) model adapting to China national conditions will play an important role in Nuclear power development. I made the advice that both domestic nuclear enterprises and general insurance companies initiate a 'Nuclear insurance company'. (authors)

  18. Optical Observations of X-ray Bright, Optically Normal Galaxies

    Science.gov (United States)

    Sadun, Alberto C.; Aryan, N. S.; Ghosh, K. K.

    2007-05-01

    X-ray bright, optically normal galaxies (XBONGs) are galaxies that seem to have normal spectra and morphology, but are relatively bright x-ray sources. The large ratio of the x-ray to optical emission suggests that some activity, similar to that of active galactic nuclei (AGN), is occurring. Since the galaxies do not show any obvious sign of nuclear activity in their optical spectra, one possible explanation is that these galaxies do not have an optically thick accretion disk at small radii, as previously assumed. Previous data for NGC 7626 classifies it as an XBONG, and so we are studying optical features of this galaxy in order to determine better its features. After confirming an x-ray jet, we are now comparing this to optical features that we have found, including warped dust lanes and a possible optical jet.

  19. Fire models for assessment of nuclear power plant fires

    International Nuclear Information System (INIS)

    Nicolette, V.F.; Nowlen, S.P.

    1989-01-01

    This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs

  20. Model for the determination of the nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1979-09-01

    The Nuclear Fuel Cost Determination Model, MDCN, is a computer program written in FORTRAN IV, meant to calculate the nuclear fuel cost employed in nuclear power plants for heat or electrical energy generation. The economic principles employed are: capital recovery proportional to the energy generation, present worth method for the equivalence of costs and levelized fuel cost calculation. This model presents some inovations in comparasion with other models already in use, since it takes into account refueling and maintenance outages and it does not fix the fuel cycle steps (industrial processes and services). The first inovation leads to a more realistic cost determination and permits the model to be employed together with hydrothermal power system simulators; the second permits a more flexible use of the model, like economical comparison of fuel cycles. Complementing the main body of the work, where the theoretical fundamentals and methodology necessary to the calculation developments are discussed, annexes are included treating in greater detail some specific itens; the more important ones refer to the FORTRAN program, input data preparation and example. (Author) [pt

  1. A nuclear data acquisition system flow control model

    International Nuclear Information System (INIS)

    Hack, S.N.

    1988-01-01

    A general Petri Net representation of a nuclear data acquisition system model is presented. This model provides for the unique requirements of a nuclear data acquisition system including the capabilities of concurrently acquiring asynchronous and synchronous data, of providing multiple priority levels of flow control arbitration, and of permitting multiple input sources to reside at the same priority without the problem of channel lockout caused by a high rate data source. Finally, a previously implemented gamma camera/physiological signal data acquisition system is described using the models presented

  2. Convenient models of the atmosphere: optics and solar radiation

    Science.gov (United States)

    Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov

    2017-11-01

    Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.

  3. Application of nuclear pumped laser to an optical self-powered neutron detector

    Science.gov (United States)

    Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.

    1996-05-01

    A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.

  4. Proceedings of a symposium on the occasion of the 40th anniversary of the nuclear shell model

    International Nuclear Information System (INIS)

    Lee, T.S.H.; Wiringa, R.B.

    1990-03-01

    This report contains papers on the following topics: excitation of 1p-1h stretched states with the (p,n) reaction as a test of shell-model calculations; on Z=64 shell closure and some high spin states of 149 Gd and 159 Ho; saturating interactions in 4 He with density dependence; are short-range correlations visible in very large-basis shell-model calculations?; recent and future applications of the shell model in the continuum; shell model truncation schemes for rotational nuclei; the particle-hole interaction and high-spin states near A-16; magnetic moment of doubly closed shell +1 nucleon nucleus 41 Sc(I π =7/2 - ); the new magic nucleus 96 Zr; comparing several boson mappings with the shell model; high spin band structures in 165 Lu; optical potential with two-nucleon correlations; generalized valley approximation applied to a schematic model of the monopole excitation; pair approximation in the nuclear shell model; and many-particle, many-hole deformed states

  5. Analysis of a Thin Optical Lens Model

    Science.gov (United States)

    Ivchenko, Vladimir V.

    2011-01-01

    In this article a thin optical lens model is considered. It is shown that the limits of its applicability are determined not only by the ratio between the thickness of the lens and the modules of the radii of curvature, but above all its geometric type. We have derived the analytical criteria for the applicability of the model for different types…

  6. Hierarchy Bayesian model based services awareness of high-speed optical access networks

    Science.gov (United States)

    Bai, Hui-feng

    2018-03-01

    As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit (ONU) and to perform complex services awareness from the whole view of system in optical line terminal (OLT). Simulation results show that the proposed scheme is able to achieve better quality of services (QoS), in terms of packet loss rate and time delay.

  7. n + 2759Co(En≤20 MeV) nuclear data calculation and analysis

    International Nuclear Information System (INIS)

    Wang Shunuan

    2006-01-01

    Whole set of nuclear data calculation in ENDF/B-6 format for n + 27 59 Co (E n ≤20 MeV) has been finished by using spherical optical model, coupled channel optical model, pre-equilibrium exciton model and Hauser-Fashbach equilibrium statistical model. The calculated cross sections, angular distributions, spectrum and double differential cross sections by using codes of APOM, ECIS95 and UNF are compared with all existing experimental data for n + 27 59 Co(E n ≤20 MeV) takefrom EXFOR. The calculated results are analyzed from point of view of theoretical model and model parameters used. The work is for CENDL-3. (authors)

  8. Preparations for an optical access to the lowest nuclear excitation in {sup 229}Th

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2015-07-01

    The isomeric lowest excited nuclear level of {sup 229}Th has been indirectly measured to be 7.6±0.5 eV (163±11 nm). This low transition energy, compared to energies typically involved in nuclear processes, would allow for the application of laser-spectroscopic methods. Also considering the isomeric lifetime of the excited state (estimated to be 10{sup 3} to 10{sup 4} s), which leads to an extremely sharp linewidth of Δω/ω ∝ 10{sup -20}, the isomer becomes a strong candidate for a nuclear-based frequency standard. In order to directly detect the isomeric ground-state decay and improve the accuracy of its energy as a prerequisite for an all-optical control, {sup 229m}Th is populated via a 2% decay branch in the α decay of {sup 233}U. The Thorium ions are extracted and cooled with the help of a buffer-gas stopping cell and an RFQ-cooler. In order to suppress accompanying α decay chain products other than {sup 229}Th, a quadrupole mass spectrometer (QMS) is used. Following the QMS, the Thorium isomeric decay is expected to be detectable. Internal conversion as well as photonic decay is probed via different detection techniques. Latest results are presented.

  9. Optical model theory of elastic electron- and positron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Joachain, C.J.

    1977-01-01

    It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)

  10. Accurate Measurement of the Optical Constants n and k for a Series of 57 Inorganic and Organic Liquids for Optical Modeling and Detection.

    Science.gov (United States)

    Myers, Tanya L; Tonkyn, Russell G; Danby, Tyler O; Taubman, Matthew S; Bernacki, Bruce E; Birnbaum, Jerome C; Sharpe, Steven W; Johnson, Timothy J

    2018-04-01

    For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties that include chemical structure, optical band strength, volatility, and viscosity. By obtaining the optical constants, one can model most optical phenomena in media and at interfaces including reflection, refraction, and dispersion. Based on the works of others, we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organic, and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for dimethyl methylphosphonate (DMMP) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.

  11. An operational approach to standard nuclear process model (SNPM) and SAP nuclear software implementation at Slovenske Elektrarne

    International Nuclear Information System (INIS)

    Warren, C.C.

    2010-01-01

    Benchmarking efforts in the fall of 2006 showed significant performance gaps in multiple measured processes between the Slovenske Elektrarne (SE) nuclear organization and the highest performing nuclear organizations in the world. While overall performance of the SE nuclear fleet was good and in the second quartile, when compared to the worldwide population of Pressurized Water Reactors (PWR), SE leadership set new goals to improve safety and operational performance to the first decile of the worldwide PWR Fleet. To meet these goals the SE nuclear team initiated a project to identify and implement the Best Practice nuclear processes in multiple areas. The benchmarking process identified the Standard Nuclear Performance Model (SNPM), used in the US nuclear fleet, as the industry best practice process model. The Slovenske Elektrarne nuclear management team used various change management techniques to clearly establish the case for organizational and process change within the nuclear organization. The project organization established by the SE nuclear management team relied heavily on functional line organization personnel to gain early acceptance of the project goals and methods thereby reducing organizational opposition to the significant organizational and process changes. The choice of a standardized process model used, all or in part, by approximately one third of the nuclear industry worldwide greatly facilitated the development and acceptance of the changes. Use of a nuclear proven templated software platform significantly reduced development and testing efforts for the resulting fully integrated solution. In the spring of 2007 SE set in motion a set of initiatives that has resulted in a significant redesign of most processes related to nuclear plant maintenance and continuous improvement. Significant organizational structure changes have been designed and implemented to align the organization to the SNPM processes and programs. The completion of the initial

  12. An operational approach to standard nuclear process model (SNPM) and SAP nuclear software implementation at Slovenske Elektrarne

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.C. [Nuclear Power Plants Operation Department, Slovenske Elektrarne, a.s., Mlynske nivy 47, 821 09 Bratislava (Slovakia)

    2010-07-01

    Benchmarking efforts in the fall of 2006 showed significant performance gaps in multiple measured processes between the Slovenske Elektrarne (SE) nuclear organization and the highest performing nuclear organizations in the world. While overall performance of the SE nuclear fleet was good and in the second quartile, when compared to the worldwide population of Pressurized Water Reactors (PWR), SE leadership set new goals to improve safety and operational performance to the first decile of the worldwide PWR Fleet. To meet these goals the SE nuclear team initiated a project to identify and implement the Best Practice nuclear processes in multiple areas. The benchmarking process identified the Standard Nuclear Performance Model (SNPM), used in the US nuclear fleet, as the industry best practice process model. The Slovenske Elektrarne nuclear management team used various change management techniques to clearly establish the case for organizational and process change within the nuclear organization. The project organization established by the SE nuclear management team relied heavily on functional line organization personnel to gain early acceptance of the project goals and methods thereby reducing organizational opposition to the significant organizational and process changes. The choice of a standardized process model used, all or in part, by approximately one third of the nuclear industry worldwide greatly facilitated the development and acceptance of the changes. Use of a nuclear proven templated software platform significantly reduced development and testing efforts for the resulting fully integrated solution. In the spring of 2007 SE set in motion a set of initiatives that has resulted in a significant redesign of most processes related to nuclear plant maintenance and continuous improvement. Significant organizational structure changes have been designed and implemented to align the organization to the SNPM processes and programs. The completion of the initial

  13. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip

    2008-01-01

    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  14. Measurement of infrared refractive indices of organic and organophosphorous compounds for optical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, Russell G.; Danby, Tyler O.; Birnbaum, Jerome C.; Taubman, Matthew S.; Bernacki, Bruce E.; Johnson, Timothy J.; Myers, Tanya L.

    2017-05-03

    The complex optical refractive index contains the optical constants, n($\\tilde{u}$)and k($\\tilde{u}$), which correspond to the dispersion and absorption of light within a medium, respectively. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. We have developed improved protocols based on the use of multiple path lengths to determine the optical constants for dozens of liquids, including organic and organophosphorous compounds. Detailed description of the protocols to determine the infrared indices will be presented, along with preliminary results using the constants with their applications to optical modeling.

  15. Self-consistent mean-field models for nuclear structure

    International Nuclear Information System (INIS)

    Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard

    2003-01-01

    The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications

  16. The Nuclear Spin Nanomagnet

    OpenAIRE

    Korenev, V. L.

    2007-01-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei brings the optical transition energy into resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of...

  17. Large scale Bayesian nuclear data evaluation with consistent model defects

    International Nuclear Information System (INIS)

    Schnabel, G

    2015-01-01

    The aim of nuclear data evaluation is the reliable determination of cross sections and related quantities of the atomic nuclei. To this end, evaluation methods are applied which combine the information of experiments with the results of model calculations. The evaluated observables with their associated uncertainties and correlations are assembled into data sets, which are required for the development of novel nuclear facilities, such as fusion reactors for energy supply, and accelerator driven systems for nuclear waste incineration. The efficiency and safety of such future facilities is dependent on the quality of these data sets and thus also on the reliability of the applied evaluation methods. This work investigated the performance of the majority of available evaluation methods in two scenarios. The study indicated the importance of an essential component in these methods, which is the frequently ignored deficiency of nuclear models. Usually, nuclear models are based on approximations and thus their predictions may deviate from reliable experimental data. As demonstrated in this thesis, the neglect of this possibility in evaluation methods can lead to estimates of observables which are inconsistent with experimental data. Due to this finding, an extension of Bayesian evaluation methods is proposed to take into account the deficiency of the nuclear models. The deficiency is modeled as a random function in terms of a Gaussian process and combined with the model prediction. This novel formulation conserves sum rules and allows to explicitly estimate the magnitude of model deficiency. Both features are missing in available evaluation methods so far. Furthermore, two improvements of existing methods have been developed in the course of this thesis. The first improvement concerns methods relying on Monte Carlo sampling. A Metropolis-Hastings scheme with a specific proposal distribution is suggested, which proved to be more efficient in the studied scenarios than the

  18. OPT13B and OPTIM4 - computer codes for optical model calculations

    International Nuclear Information System (INIS)

    Pal, S.; Srivastava, D.K.; Mukhopadhyay, S.; Ganguly, N.K.

    1975-01-01

    OPT13B is a computer code in FORTRAN for optical model calculations with automatic search. A summary of different formulae used for computation is given. Numerical methods are discussed. The 'search' technique followed to obtain the set of optical model parameters which produce best fit to experimental data in a least-square sense is also discussed. Different subroutines of the program are briefly described. Input-output specifications are given in detail. A modified version of OPT13B specifications are given in detail. A modified version of OPT13B is OPTIM4. It can be used for optical model calculations where the form factors of different parts of the optical potential are known point by point. A brief description of the modifications is given. (author)

  19. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  20. Virtual optical network provisioning with unified service logic processing model for software-defined multidomain optical networks

    Science.gov (United States)

    Zhao, Yongli; Li, Shikun; Song, Yinan; Sun, Ji; Zhang, Jie

    2015-12-01

    Hierarchical control architecture is designed for software-defined multidomain optical networks (SD-MDONs), and a unified service logic processing model (USLPM) is first proposed for various applications. USLPM-based virtual optical network (VON) provisioning process is designed, and two VON mapping algorithms are proposed: random node selection and per controller computation (RNS&PCC) and balanced node selection and hierarchical controller computation (BNS&HCC). Then an SD-MDON testbed is built with OpenFlow extension in order to support optical transport equipment. Finally, VON provisioning service is experimentally demonstrated on the testbed along with performance verification.

  1. Quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1977-01-01

    The general assumptions of the quasiparticle-phonon model of complex nuclei are given. The choice of the model hamiltonian as an average field and residual forces is discussed. The phonon description and quasiparticle-phonon interaction are presented. The system of basic equations and their approximate solutions are obtained. The approximation is chosen so as to obtain the most correct description of few-quasiparticle components rather than of the whole wave function. The method of strenght functions is presented, which plays a decisive role in practical realization of the quasiparticle-phonon model for the description of some properties of complex nuclei. The range of applicability of the quasiparticle-phonon nuclear model is determined as few-quasiparticle components of the wave functions at low, intermediate and high excitation energies averaged in a certain energy interval

  2. The neutron optical model potential

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1989-01-01

    The present status of optical model calculations of neutron scattering and interactions is reviewed, with special emphasis on more recent developments and the more promising lines of research. The use of dispersion relations to provide an extra constraint on the potential is discussed, together with their application to studies of the Fermi surface anomaly. The application of potential inversion techniques to determine the form of the potential is also considered. (author). 39 refs, figs

  3. Electron and nuclear spin system polarization in semiconductors by light

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenya, B; Flejsher, V

    1981-02-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation.

  4. Stochastic processes analysis in nuclear reactor using ARMA models

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1990-01-01

    The analysis of ARMA model derived from general stochastic state equations of nuclear reactor is given. The dependence of ARMA model parameters on the main physical characteristics of RB nuclear reactor in Vinca is presented. Preliminary identification results are presented, observed discrepancies between theory and experiment are explained and the possibilities of identification improvement are anticipated. (author)

  5. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  6. Electron and nuclear spin system polarization in semiconductors by light

    International Nuclear Information System (INIS)

    Zakharchenya, B.; Flejsher, V.

    1981-01-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation. (J.P.)

  7. Event-based Simulation Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.; Jaeger, G; Khrennikov, A; Schlosshauer, M; Weihs, G

    2011-01-01

    We present a corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one. The event-based corpuscular model gives a unified

  8. Analysis system of submicron particle tracks in the fine-grained nuclear emulsion by a combination of hard x-ray and optical microscopy

    International Nuclear Information System (INIS)

    Naka, T.; Asada, T.; Yoshimoto, M.; Katsuragawa, T.; Tawara, Y.; Umemoto, A.; Suzuki, Y.; Terada, Y.; Takeuchi, A.; Uesugi, K.; Kimura, M.

    2015-01-01

    Analyses of nuclear emulsion detectors that can detect and identify charged particles or radiation as tracks have typically utilized optical microscope systems because the targets have lengths from several μm to more than 1000 μm. For recent new nuclear emulsion detectors that can detect tracks of submicron length or less, the current readout systems are insufficient due to their poor resolution. In this study, we developed a new system and method using an optical microscope system for rough candidate selection and the hard X-ray microscope system at SPring-8 for high-precision analysis with a resolution of better than 70 nm resolution. Furthermore, we demonstrated the analysis of submicron-length tracks with a matching efficiency of more than 99% and position accuracy of better than 5 μm. This system is now running semi-automatically

  9. Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe.

    Science.gov (United States)

    Zhukov, E A; Kirstein, E; Kopteva, N E; Heisterkamp, F; Yugova, I A; Korenev, V L; Yakovlev, D R; Pawlis, A; Bayer, M; Greilich, A

    2018-05-16

    The coherent spin dynamics of fluorine donor-bound electrons in ZnSe induced by pulsed optical excitation is studied in a perpendicular applied magnetic field. The Larmor precession frequency serves as a measure for the total magnetic field exerted onto the electron spins and, surprisingly, does not increase linearly with the applied field, but shows a step-like behavior with pronounced plateaus, given by multiples of the laser repetition rate. This discretization occurs by a feedback mechanism in which the electron spins polarize the nuclear spins, which in turn generate a local Overhauser field adjusting the total magnetic field accordingly. Varying the optical excitation power, we can control the plateaus, in agreement with our theoretical model. From this model, we trace the observed discretization to the optically induced Stark field, which causes the dynamic nuclear polarization.

  10. Accountability and non-proliferation nuclear regime: a review of the mutual surveillance Brazilian-Argentine model for nuclear safeguards

    International Nuclear Information System (INIS)

    Xavier, Roberto Salles

    2014-01-01

    The regimes of accountability, the organizations of global governance and institutional arrangements of global governance of nuclear non-proliferation and of Mutual Vigilance Brazilian-Argentine of Nuclear Safeguards are the subject of research. The starting point is the importance of the institutional model of global governance for the effective control of non-proliferation of nuclear weapons. In this context, the research investigates how to structure the current arrangements of the international nuclear non-proliferation and what is the performance of model Mutual Vigilance Brazilian-Argentine of Nuclear Safeguards in relation to accountability regimes of global governance. For that, was searched the current literature of three theoretical dimensions: accountability, global governance and global governance organizations. In relation to the research method was used the case study and the treatment technique of data the analysis of content. The results allowed: to establish an evaluation model based on accountability mechanisms; to assess how behaves the model Mutual Vigilance Brazilian-Argentine Nuclear Safeguards front of the proposed accountability regime; and to measure the degree to which regional arrangements that work with systems of global governance can strengthen these international systems. (author)

  11. Nuclear theory research. Technical progress report

    International Nuclear Information System (INIS)

    1982-01-01

    Progress is briefly described on the following studies: (1) Dirac phenomenology for deuteron elastic scattering, (2) Dirac wave functions in nuclear distorted wave calculations, (3) impulse approximation for p→p → dπ + reaction above the 3-3 resonance, (4) coherent π production, (5) nuclear potentials from Dirac bound state wavefunctions, (6) nonlocality effects in nuclear reactions, (7) unhappiness factors in DWBA description of (t,p) and (p,t) reactions, (8) absolute normalization of three-nucleon transfer reactions, (9) formulation of a finite-range CCBA computer program, (10) crossing symmetric solutions of the low equations, (11) pion scattering from quark bags, (12) study of the p 11 channel in the delta model, (13) isovector corrections in pion-nucleus scattering, (14) pionic excitation of nuclear giant resonances, and (15) isospin dependence of the second-order pion-nucleus optical potential

  12. Reduced order for nuclear reactor model in frequency and time domain

    International Nuclear Information System (INIS)

    Nugroho, D.H.

    1997-01-01

    In control system theory, a model can be represented by frequency or time domain. In frequency domain, the model was represented by transfer function. in time domain, the model was represented by state space. for the sake of simplification in computation, it is necessary to reduce the model order. the main aim of this research is to find the best in nuclear reactor model. Model order reduction in frequency domain can be done utilizing pole-zero cancellation method; while in time domain utilizing balanced aggregation method the balanced aggregation method was developed by moore (1981). In this paper, the two kinds of method were applied to reduce a nuclear reactor model which was constructed by neutron dynamics and heat transfer equations. to validate that the model characteristics were not change when model order reduction applied, the response was utilized for full and reduced order. it was shown that the nuclear reactor order model can be reduced from order 8 to 2 order 2 is the best order for nuclear reactor model

  13. Wave optics modeling of real-time holographic wavefront compensation systems using OSSim

    Science.gov (United States)

    Carbon, Margarita A.; Guthals, Dennis M.; Logan, Jerry D.

    2005-08-01

    OSSim (Optical System Simulation) is a wave-optics, time-domain simulation toolbox with both optical and data processing components developed for adaptive optics (AO) systems. Diffractive wavefront control elements have recently been added that accurately model optically and electrically addressed spatial light modulators as real time holographic (RTH) devices in diffractive wavefront control systems. The developed RTH toolbox has found multiple applications for a variety of Boeing programs in solving problems of AO system analysis and design. Several complex diffractive wavefront control systems have been modeled for compensation of static and dynamic aberrations such as imperfect segmented primary mirrors and atmospheric and boundary layer turbulence. The results of OSSim simulations of RTH wavefront compensation show very good agreement with available experimental data.

  14. Average Nuclear properties based on statistical model

    International Nuclear Information System (INIS)

    El-Jaick, L.J.

    1974-01-01

    The rough properties of nuclei were investigated by statistical model, in systems with the same and different number of protons and neutrons, separately, considering the Coulomb energy in the last system. Some average nuclear properties were calculated based on the energy density of nuclear matter, from Weizsscker-Beth mass semiempiric formulae, generalized for compressible nuclei. In the study of a s surface energy coefficient, the great influence exercised by Coulomb energy and nuclear compressibility was verified. For a good adjust of beta stability lines and mass excess, the surface symmetry energy were established. (M.C.K.) [pt

  15. Asymmetric nuclear matter in a modified quark meson coupling model

    International Nuclear Information System (INIS)

    Mishra, R.N.; Sahoo, H.S.; Panda, P.K.; Barik, N.

    2014-01-01

    In an earlier attempt we have successfully used this model in developing the nuclear equation of state and analysed various other bulk properties of symmetric nuclear matter with the dependence of quark masses. In the present work we want to apply the model to analyze asymmetric nuclear matter with the variation of the asymmetry parameter y p as well as analyze the effects of symmetry energy and the slope of the symmetry energy L

  16. A linear ion optics model for extraction from a plasma ion source

    International Nuclear Information System (INIS)

    Dietrich, J.

    1987-01-01

    A linear ion optics model for ion extraction from a plasma ion source is presented, based on the paraxial equations which account for lens effects, space charge and finite source ion temperature. This model is applied to three- and four-electrode extraction systems with circular apertures. The results are compared with experimental data and numerical calculations in the literature. It is shown that the improved calculations of space charge effects and lens effects allow better agreement to be obtained than in earlier linear optics models. A principal result is that the model presented here describes the dependence of the optimum perveance on the aspect ratio in a manner similar to the nonlinear optics theory. (orig.)

  17. Modeling and analysis of laser active interference optical path

    Science.gov (United States)

    Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Chen, Jian-biao; Ren, Jian-ying

    2017-10-01

    By using the geometrical optics and physical optics method, the models of wedge plate interference optical path, Michelson interferometer and Mach Zehnder interferometer thus three different active interference pattern are built. The optical path difference (OPD) launched by different interference patterns, fringe spacing and contrast expression have been derived. The results show that far field interference peak intensity of the wedge plate interference is small, so the detection distance is limited, Michelson interferometer with low contrast affects the performance of detection system, Mach Zehnder interferometer has greater advantages in peak intensity, the variable range of interference fringe spacing and contrast ratio. The results of this study are useful for the theoretical research and practical application of laser active interference detection.

  18. Optical model potential analysis of n ¯A and n A interactions

    Science.gov (United States)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2018-05-01

    We use a momentum-dependent optical model potential to analyze the annihilation cross sections of the antineutron n ¯ on C, Al, Fe, Cu, Ag, Sn, and Pb nuclei for projectile momenta plab ≲500 MeV /c . We obtain a good description of annihilation cross section data of Barbina et al. [Nucl. Phys. A 612, 346 (1997), 10.1016/S0375-9474(96)00331-4] and of Astrua et al. [Nucl. Phys. A 697, 209 (2002), 10.1016/S0375-9474(01)01252-0] which exhibit an interesting dependence of the cross sections on plab as well as on the target mass number A . We also obtain the neutron (n ) nonelastic reaction cross sections for the same targets. Comparing the n A reaction cross sections σrecn A to the n ¯A annihilation cross sections σannn ¯A, we find that σannn ¯A is significantly larger than σrecn A, that is, the σannn ¯A/σrecn A cross section ratio lies between the values of about 1.5 to 4.0 in the momentum region where comparison is possible. The dependence of the n ¯ annihilation cross section on the projectile charge is also examined in comparison with the antiproton p ¯. Here we predict the p ¯A annihilation cross section on the simplest assumption that both p ¯A and n ¯A interactions have the same nuclear part of the optical potential but differ only in the electrostatic Coulomb interaction. Deviation from a such simple model extrapolation in measurements will provide new information on the difference between n ¯A and p ¯A potentials.

  19. The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium); Hilaire, S.; Girod, M.; Peru, S. [CEA, DAM, DIF, Arpajon (France)

    2016-07-15

    We present the Gogny-Hartree-Fock-Bogoliubov model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast to the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies is included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2353 measured masses is 789 keV in the 2012 atomic mass evaluation. In addition, the D1M Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces. The D1M properties and its predictions of various observables are compared with those of D1S and D1N. (orig.)

  20. Event-Based Corpuscular Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    Michielsen, K.; Jin, F.; Raedt, H. De

    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is presented. The event-based corpuscular model is shown to give a

  1. Combinatorial nuclear level-density model

    International Nuclear Information System (INIS)

    Uhrenholt, H.; Åberg, S.; Dobrowolski, A.; Døssing, Th.; Ichikawa, T.; Möller, P.

    2013-01-01

    A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level-distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: level spacings at neutron separation energy, data on total level-density functions from the Oslo method, cumulative level densities from low-lying discrete states, and data on parity ratios. Spherical and deformed nuclei follow basically different coupling schemes, and we focus on deformed nuclei

  2. Nuclear power plant prestressed concrete containment vessel structure monitoring during integrated leakage rate test using three kinds of fiber optic sensors

    Science.gov (United States)

    Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng

    2017-04-01

    After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.

  3. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.

    2017-12-13

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels. The model shows an excellent agreement with the measured data under all channel conditions.

  4. Using limnological and optical knowledge to detect discharges from nuclear facilities - Potential application of satellite imagery for international safeguards

    International Nuclear Information System (INIS)

    Borstad, G.; Truong, Q.S. Bob; Keeffe, R.; Baines, P.; Staenz, K.; Neville, R.

    2001-01-01

    Previous work carried out under the Canadian Safeguards Support Program, has shown that thermal imagery from the American Landsat satellites could be used to detect the cooling water discharges, and could therefore be used to verify the operational status of nuclear facilities. In some images, thermal plumes could be easily detected in single band imagery with no mathematical manipulation and little image enhancement because there was a very strong thermal contrast between the effluent and the receiving water. However, for certain situations such as discharges into well mixed conditions (cold water and violent tides) the thermal plume may be more subtle. We show here that the visible bands of Landsat and IKONOS images often contain additional information, and that the thermal signature of a discharge from a nuclear facility is not the only signal available to describe its operation. This paper introduces some important hydrological phenomena that govern the biological and physical organization of water bodies, and discusses some basic concepts of marine and aquatic optics that are relevant to the safeguards problem. Using image analysis techniques that have been used widely in ocean optics work and in applications in the mapping and monitoring of water quality, we have re-analyzed data that were obtained under a joint project between various Canadian government departments. We present a preliminary examination of imagery from both satellite multispectral and aircraft hyperspectral sensors, and discuss methods to extract information that could be useful in the detection and verification of declared or undeclared nuclear activities. In one example of an IKONOS image of the Canadian Bruce Nuclear Generating Facility, simple enhancement techniques failed to find any plume other than a small jet visible in the surface wave field. With knowledge of limnology, oceanography and aquatic optics, we have been able to separate and remove the surface reflection, and detect a

  5. Communication of nuclear data progress: No.9 (1993)

    International Nuclear Information System (INIS)

    1993-06-01

    The is the ninth issue of > (CNDP), in which the nuclear data progress in China during the passed year is carried. It includes optical model parameters for both small angles and larger angles elastic scattering, n-T phase shift analyses, forbidden angular region of secondary particle emission, introduction to codes CMUP2 and CFUP1, diffusion process of nuclear fission, techniques used for charged particle evaluation at CNDC, evaluation of neutron nuclear data for 7 Li and revision on recommended data of 238 U for CENDL-2, Chinese Evaluated Nuclear Parameter Library (CENPL) (II) and computer program library at CNDC, covariance data evaluation for experimental data and several examples of least squares combination for derived data, and calculation of thermal neutron scattering law for anisotropic microcrystals etc

  6. Review of turbulence modelling for numerical simulation of nuclear reactor thermal-hydraulics

    International Nuclear Information System (INIS)

    Bernard, J.P.; Haapalehto, T.

    1996-01-01

    The report deals with the modelling of turbulent flows in nuclear reactor thermal-hydraulic applications. The goal is to give tools and knowledge about turbulent flows and their modelling in practical applications for engineers, and especially nuclear engineers. The emphasize is on the theory of turbulence, the existing different turbulence models, the state-of-art of turbulence in research centres, the available models in the commercial code CFD-FLOW3D, and the latest applications of turbulence modelling in nuclear reactor thermal-hydraulics. It turns out that it is difficult to elaborate an universal turbulence model and each model has its advantages and drawbacks in each application. However, the increasing power of computers can permit the emergence of new methods of turbulence modelling such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) which open new horizons in this field. These latter methods are beginning to be available in commercial codes and are used in different nuclear applications such as 3-D modelling of the nuclear reactor cores and the steam generators. (orig.) (22 refs.)

  7. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    Science.gov (United States)

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  8. Quantum interference vs. quantum chaos in the nuclear shell model

    International Nuclear Information System (INIS)

    Fernández, Gerardo; Hautefeuille, M; Velázquez, V; Hernández, Edna M; Landa, E; Morales, I O; Frank, A; Fossion, R; Vargas, C E

    2015-01-01

    In this paper we study the complexity of the nuclear states in terms of a two body quadupole-quadrupole interaction. Energy distributions and eigenvectors composition exhibit a visible interference pattern which is dependent on the intensity of the interaction. In analogy with optics, the visibility of the interference is related to the purity of the states, therefore, we show that the fluctuations associated with quantum chaos have as their origin the remaining quantum coherence with a visibility magnitude close to 5%

  9. Comparison of models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1978-01-01

    The treatment of high energy nuclear reaction models covers goals of such collisions, the choice of theoretical framework, the zoo of models (p inclusive), light composites, models versus experiment, conclusions drawn, needed experiments, and pion production. 30 diagrams

  10. Separating form factor and nuclear model effects in quasielastic neutrino-nucleus scattering

    Science.gov (United States)

    Wieske, Joseph

    2017-09-01

    When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. In the past, CCQE data from the MiniBooNE experiment was analyzed assuming the Relativistic Fermi Gas (RFG) nuclear model, an axial dipole form factor in, and using the the z-expansion for the axial form factor in. We present the first analysis that combines a non-RFG nuclear model, in particular the Correlated Fermi Gas nuclear model (CFG) of, and the z expansion for the axial form factor. This will allow us to separate form factor and nuclear model effects in CCQE scattering. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.

  11. Remote visual inspection of nuclear fuel pellets with fiber optics and video image processing

    International Nuclear Information System (INIS)

    Moore, F.W.

    1986-01-01

    Westinghouse Hanford Company has designed and is constructing a nuclear fuel fabrication process line for the Department of Energy. This process line includes a pellet surface inspection system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100 percent basis after pellet sintering. A feeder will deliver the pellets directly to a fiber optic inspection head. The inspection head will view one pellet surface at a time. The surface image of the pellet will be imaged to a closed-circuit color television camera (CCTV). The output signal of the CCTV will be input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator will visually examine the images of the pellet surfaces on a high resolution monitor and accept or reject the pellets based on visual standards. The operator will use a digitizing tablet to record the location of rejected pellets, which will then be automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image

  12. Remote visual inspection of nuclear fuel pellets with fiber optics and video image processing

    International Nuclear Information System (INIS)

    Moore, F.W.

    1985-01-01

    Westinghouse Hanford Company has designed and is constructing a nuclear fuel fabrication process line for the Department of Energy. This process line includes a pellet surface inspection system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100% basis after pellet sintering. A feeder will deliver the pellets directly to fiber optic inspection head. The inspection head will view one pellet surface at a time. The surface image of the pellet will be imaged to a closed-circuit color television camera (CCTV). The output signal of the CCTV will be input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator will visually examine the images of the pellet surfaces on a high resolution monitor and accept or reject the pellets based on visual standards. The operator will use a digitizing tablet to record the location of rejected pellets, which will then be automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image

  13. Power systems with nuclear-electric generators - Modelling methods

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin

    2002-01-01

    This is a vast analysis on the issue of sustainable nuclear power development with direct conclusions regarding the Nuclear Programme of Romania. The work is targeting specialists and decision making boards. Specific to the nuclear power development is its public implication, the public being most often misinformed by non-professional media. The following problems are debated thoroughly: - safety, nuclear risk, respectively, is treated in chapter 1 and 7 aiming at highlighting the quality of nuclear power and consequently paving the way to public acceptance; - the environment considered both as resource of raw materials and medium essential for life continuation, which should be appropriately protected to ensure healthy and sustainable development of human society; its analysis is also presented in chapter 1 and 7, where the problem of safe management of radioactive waste is addressed too; - investigation methods based on information science of nuclear systems, applied in carrying out the nuclear strategy and planning are widely analyzed in the chapter 2, 3 and 6; - optimizing the processes by following up the structure of investment and operation costs, and, generally, the management of nuclear units is treated in the chapter 5 and 7; - nuclear weapon proliferation as a possible consequence of nuclear power generation is treated as a legal issue. The development of Romanian NPP at Cernavoda, practically, the core of the National Nuclear Programme, is described in chapter 8. Actually, the originality of the present work consists in the selection and adaptation from a multitude of mathematical models applicable to the local and specific conditions of nuclear power plant at Cernavoda. The Romanian economy development and power development oriented towards reduction of fossil fuel consumption and protection of environment, most reliably ensured by the nuclear power, is discussed in the frame of the world trends of the energy production. Various scenarios are

  14. The National Implementation of Nuclear Export Controls: Developing a Best Practices Model

    Energy Technology Data Exchange (ETDEWEB)

    Viski, Andrea [European University Institute, Department of Law, Badia Fiesolana, S.Domenico di Fiesole, Firenze (Italy)

    2011-12-15

    The nuclear renaissance promises significant benefits to the international community, but also raises security challenges, particularly relating to the trade of nuclear materials and equipment. The objective of this paper is to examine how supply-side non-proliferation efforts can be strengthened by developing a best practices model for national nuclear export control implementation. In order to achieve this goal, nuclear export control measures identified by the 1540 Committee will be used as a framework from which a best practices model can be formed. Such a model concentrates specifically on national legislation and enforcement measures delineated by the Committee in order to bring countries in accordance with international law. Developing a best practices model seeks to deliver an ideal process for national export control law actualization in order to encourage the peaceful development of nuclear energy and develop the infrastructure and framework for precluding nuclear proliferation.

  15. Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma.

    Directory of Open Access Journals (Sweden)

    Henry L Fu

    Full Text Available Cancer is associated with specific cellular morphological changes, such as increased nuclear size and crowding from rapidly proliferating cells. In situ tissue imaging using fluorescent stains may be useful for intraoperative detection of residual cancer in surgical tumor margins. We developed a widefield fluorescence structured illumination microscope (SIM system with a single-shot FOV of 2.1 × 1.6 mm (3.4 mm(2 and sub-cellular resolution (4.4 µm. The objectives of this work were to measure the relationship between illumination pattern frequency and optical sectioning strength and signal-to-noise ratio in turbid (i.e. thick samples for selection of the optimum frequency, and to determine feasibility for detecting residual cancer on tumor resection margins, using a genetically engineered primary mouse model of sarcoma. The SIM system was tested in tissue mimicking solid phantoms with various scattering levels to determine impact of both turbidity and illumination frequency on two SIM metrics, optical section thickness and modulation depth. To demonstrate preclinical feasibility, ex vivo 50 µm frozen sections and fresh intact thick tissue samples excised from a primary mouse model of sarcoma were stained with acridine orange, which stains cell nuclei, skeletal muscle, and collagenous stroma. The cell nuclei were segmented using a high-pass filter algorithm, which allowed quantification of nuclear density. The results showed that the optimal illumination frequency was 31.7 µm(-1 used in conjunction with a 4 × 0.1 NA objective (v=0.165. This yielded an optical section thickness of 128 µm and an 8.9 × contrast enhancement over uniform illumination. We successfully demonstrated the ability to resolve cell nuclei in situ achieved via SIM, which allowed segmentation of nuclei from heterogeneous tissues in the presence of considerable background fluorescence. Specifically, we demonstrate that optical sectioning of fresh intact thick tissues

  16. Quantum entanglement analysis of an optically excited coupling of two nuclear spins via a mediator: Combining the quantum concurrence and negativity

    Science.gov (United States)

    Fu, Chenghua; Hu, Zhanning

    2018-03-01

    In this paper, we investigate the characteristics of the nuclear spin entanglement generated by an intermedium with an optically excited triplet. Significantly, the interaction between the two nuclear spins presents to be a direct XY coupling in each of the effective subspace Hamiltonians which are obtained by applying a transformation on the natural Hamiltonian. The quantum concurrence and negativity are discussed to quantitatively describe the quantum entanglement, and a comparison between them can reveal the nature of their relationship. An innovative general equation describing the relationship between the concurrence and negativity is explicitly obtained.

  17. A nonlocal application of the dispersive optical model to 208Pb

    Science.gov (United States)

    Keim, M. A.; Mahzoon, M. H.; Atkinson, M. C.; Charity, R. J.; Dickhoff, W. H.

    2017-09-01

    A nonlocal application of the dispersive optical model to neutrons and protons in 208Pb is presented. A nucleon self-energy is described by parametrized real and imaginary parts connected through a dispersion relation. This parametrization includes nonlocal Hartree-Fock and local Coulomb and spin-orbit real terms, and nonlocal volume and surface and local spin-orbit imaginary terms. A simple Gaussian nonlocality is employed, and appropriate asymmetry parameters are included to describe the N-Z dependence of the nucleus. These parameters are constrained by fitting to experimental data, including particle numbers, energy levels, the charge density, elastic-scattering angular distributions, reaction cross sections, and the neutron total reaction cross section. From the resulting nucleon self-energy, the neutron matter distribution and neutron skin are deduced. This work was supported by the US Department of Energy, Division of Nuclear Physics under Grant DE-FG02-87ER-40316, the US National Science Foundation under Grants PHY-1304242 and PHY-1613362, and the Washington University Office of Undergraduate Research.

  18. Progress on Chinese evaluated nuclear parameters library (CENPL). Pt. 3

    International Nuclear Information System (INIS)

    Su Zongdi; Ge Zhigang; Zhou Chunmei

    1994-01-01

    The progress on Chinese evaluated nuclear parameters library (CENPL) is introduced. The setting up work of each sub-library of CENPL has got some new progresses at the past period. These sub-libraries are atomic mass and characteristic constant for nuclear ground state sub-library, discrete level scheme and batch ratio of γ decay sub-library, level density parameter sub-library, giant dipole resonance parameter for γ-ray strength function sub-library and optical model parameter sub-library

  19. The Watanabe model for 6Li-nucleus optical potential

    International Nuclear Information System (INIS)

    Abul-Magd, A.Y.; Rabie, A.; El-Gazzar, M.A.

    1980-09-01

    Optical potentials for the scattering of 6 Li projectiles are calculated using the Watanabe model and an α+d cluster model wave function for 6 Li. Reasonable fits to the elastic differential cross-section and vector polarization are obtained. (author)

  20. Chaotic behaviour of the nuclear shell-model hamiltonian

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Oliveira, N.A. de; Wildenthal, B.H.

    1987-11-01

    Large scale nuclear shell-model calculations for several nuclear systems are discussed. In particular, the statistical baheviour of the energy eigenvalues and eigenstates, are discussed. The chaotic behaviour of the NSMH is then shown to be quite useful in calculating the spreading width of the highly collective multipole giant resonances. (author) [pt

  1. Integrated Model of the Eye/Optic Nerve Head Biomechanical Environment

    Science.gov (United States)

    Ethier, C. R.; Feola, A.; Myers, J. G.; Nelson, E.; Raykin, J.; Samuels, B.

    2017-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a concern for long-duration space flight. Previously, it has been suggested that ocular changes observed in VIIP syndrome are related to the cephalad fluid shift that results in altered fluid pressures [1]. We are investigating the impact of changes in intracranial pressure (ICP) using a combination of numerical models, which simulate the effects of various environment conditions, including finite element (FE) models of the posterior eye. The specific interest is to understand how altered pressures due to gravitational changes affect the biomechanical environment of tissues of the posterior eye and optic nerve sheath. METHODS: Additional description of the numerical modeling is provided in the IWS abstract by Nelson et al. In brief, to simulate the effects of a cephalad fluid shift on the cardiovascular and ocular systems, we utilized a lumped-parameter compartment model of these systems. The outputs of this lumped-parameter model then inform boundary conditions (pressures) for a finite element model of the optic nerve head (Figure 1). As an example, we show here a simulation of postural change from supine to 15 degree head-down tilt (HDT), with primary outcomes being the predicted change in strains at the optic nerve head (ONH) region, specifically in the lamina cribrosa (LC), retrolaminar optic nerve, and prelaminar neural tissue (PLNT). The strain field can be decomposed into three orthogonal components, denoted as the first, second and third principal strains. We compare the peak tensile (first principal) and compressive (third principal) strains, since elevated strain alters cell phenotype and induces tissue remodeling. RESULTS AND CONCLUSIONS: Our lumped-parameter model predicted an IOP increase of c. 7 mmHg after 21 minutes of 15 degree HDT, which agreed with previous reports of IOP in HDT [1]. The corresponding FEM simulations predicted a relative increase in the magnitudes of the peak tensile

  2. Characterization of elastic interactions in GaAs/Si composites by optically pumped nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Ryan M.; Tokarski, John T.; McCarthy, Lauren A.; Bowers, Clifford R., E-mail: bowers@chem.ufl.edu [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Stanton, Christopher J. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)

    2016-08-28

    Elastic interactions in GaAs/Si bilayer composite structures were studied by optically pumped nuclear magnetic resonance (OPNMR). The composites were fabricated by epoxy bonding of a single crystal of GaAs to a single crystal of Si at 373 K followed by selective chemical etching of the GaAs at room temperature to obtain a series of samples with GaAs thickness varying from 37 μm to 635 μm, while the Si support thickness remained fixed at 650 μm. Upon cooling to below 10 K, a biaxial tensile stress developed in the GaAs film due to differential thermal contraction. The strain perpendicular to the plane of the bilayer and localized near the surface of the GaAs was deduced from the quadrupolar splitting of the Gallium-71 OPNMR resonance. Strain relaxation by bowing of the composite was observed to an extent that depended on the relative thickness of the GaAs and Si layers. The variation of the strain with GaAs layer thickness was found to be in good agreement with a general analytical model for the elastic relationships in composite media.

  3. Assessment of fiber optic pressure sensors

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P.

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements

  4. Enabling benchmarking and improving operational efficiency at nuclear power plants through adoption of a common process model: SNPM (standard nuclear performance model)

    International Nuclear Information System (INIS)

    Pete Karns

    2006-01-01

    To support the projected increase in base-load electricity demand, nuclear operating companies must maintain or improve upon current generation rates, all while their assets continue to age. Certainly new plants are and will be built, however the bulk of the world's nuclear generation comes from plants constructed in the 1970's and 1980's. The nuclear energy industry in the United States has dramatically increased its electricity production over the past decade; from 75.1% in 1994 to 91.9% by 2002 (source NEI US Nuclear Industry Net Capacity Factors - 1980 to 2003). This increase, coupled with lowered production costs; $2.43 in 1994 to $1.71 in 2002 (factored for inflation source NEI US Nuclear Industry net Production Costs 1980 to 2002) is due in large part to a focus on operational excellence that is driven by an industry effort to develop and share best practices for the purposes of benchmarking and improving overall performance. These best-practice processes, known as the standard nuclear performance model (SNPM), present an opportunity for European nuclear power generators who are looking to improve current production rates. In essence the SNPM is a model for the safe, reliable, and economically competitive nuclear power generation. The SNPM has been a joint effort of several industry bodies: Nuclear Energy Institute, Electric Cost Utility Group, and Institute of Nuclear Power Operations (INPO). The standard nuclear performance model (see figure 1) is comprised of eight primary processes, supported by forty four sub-processes and a number of company specific activities and tasks. The processes were originally envisioned by INPO in 1994 and evolved into the SNPM that was originally launched in 1998. Since that time communities of practice (CoPs) have emerged via workshops to further improve the processes and their inter-operability, CoP representatives include people from: nuclear power operating companies, policy bodies, industry suppliers and consultants, and

  5. Simulation of nuclear plant operation into a stochastic energy production model

    International Nuclear Information System (INIS)

    Pacheco, R.L.

    1983-04-01

    A simulation model of nuclear plant operation is developed to fit into a stochastic energy production model. In order to improve the stochastic model used, and also reduce its computational time burdened by the aggregation of the model of nuclear plant operation, a study of tail truncation of the unsupplied demand distribution function has been performed. (E.G.) [pt

  6. State regulation of nuclear sector: comparative study of Argentina and Brazil models

    International Nuclear Information System (INIS)

    Monteiro Filho, Joselio Silveira

    2004-08-01

    This research presents a comparative assessment of the regulation models of the nuclear sector in Argentina - under the responsibility of the Autoridad Regulatoria Nuclear (ARN), and Brazil - under the responsibility of Comissao Nacional de Energia Nuclear (CNEN), trying to identify which model is more adequate aiming the safe use of nuclear energy. Due to the methodology adopted, the theoretical framework resulted in criteria of analysis that corresponds to the characteristics of the Brazilian regulatory agencies created for other economic sector during the State reform staring in the middle of the nineties. Later, these criteria of analysis were used as comparison patterns between the regulation models of the nuclear sectors of Argentina and Brazil. The comparative assessment showed that the regulatory structure of the nuclear sector in Argentina seems to be more adequate, concerning the safe use of nuclear energy, than the model adopted in Brazil by CNEN, because its incorporates the criteria of functional, institutional and financial independence, competence definitions, technical excellence and transparency, indispensable to the development of its functions with autonomy, ethics, exemption and agility. (author)

  7. Nuclear Statistical Equilibrium for compact stars: modelling the nuclear energy functional

    International Nuclear Information System (INIS)

    Aymard, Francois

    2015-01-01

    The core collapse supernova is one of the most powerful known phenomena in the universe. It results from the explosion of very massive stars after they have burnt all their fuel. The hot compact remnant, the so-called proto-neutron star, cools down to become an inert catalyzed neutron star. The dynamics and structure of compact stars, that is core collapse supernovae, proto-neutron stars and neutron stars, are still not fully understood and are currently under active research, in association with astrophysical observations and nuclear experiments. One of the key components for modelling compact stars concerns the Equation of State. The task of computing a complete realistic consistent Equation of State for all such stars is challenging because a wide range of densities, proton fractions and temperatures is spanned. This thesis deals with the microscopic modelling of the structure and internal composition of baryonic matter with nucleonic degrees of freedom in compact stars, in order to obtain a realistic unified Equation of State. In particular, we are interested in a formalism which can be applied both at sub-saturation and super-saturation densities, and which gives in the zero temperature limit results compatible with the microscopic Hartree-Fock-Bogoliubov theory with modern realistic effective interactions constrained on experimental nuclear data. For this purpose, we present, for sub-saturated matter, a Nuclear Statistical Equilibrium model which corresponds to a statistical superposition of finite configurations, the so-called Wigner-Seitz cells. Each cell contains a nucleus, or cluster, embedded in a homogeneous electron gas as well as a homogeneous neutron and proton gas. Within each cell, we investigate the different components of the nuclear energy of clusters in interaction with gases. The use of the nuclear mean-field theory for the description of both the clusters and the nucleon gas allows a theoretical consistency with the treatment at saturation

  8. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  9. Measurement of nuclear moments and radii by collinear laser spectroscopy

    CERN Multimedia

    Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S

    2002-01-01

    %IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...

  10. Model of optical phantoms thermal response upon irradiation with 975 nm dermatological laser

    Science.gov (United States)

    Wróbel, M. S.; Bashkatov, A. N.; Yakunin, A. N.; Avetisyan, Yu. A.; Genina, E. A.; Galla, S.; Sekowska, A.; Truchanowicz, D.; Cenian, A.; Jedrzejewska-Szczerska, M.; Tuchin, V. V.

    2018-04-01

    We have developed a numerical model describing the optical and thermal behavior of optical tissue phantoms upon laser irradiation. According to our previous studies, the phantoms can be used as substitute of real skin from the optical, as well as thermal point of view. However, the thermal parameters are not entirely similar to those of real tissues thus there is a need to develop mathematical model, describing the thermal and optical response of such materials. This will facilitate the correction factors, which would be invaluable in translation between measurements on skin phantom to real tissues, and gave a good representation of a real case application. Here, we present the model dependent on the data of our optical phantoms fabricated and measured in our previous preliminary study. The ambiguity between the modeling and the thermal measurements depend on lack of accurate knowledge of material's thermal properties and some exact parameters of the laser beam. Those parameters were varied in the simulation, to provide an overview of possible parameters' ranges and the magnitude of thermal response.

  11. Health effects models for nuclear power plant accident consequence analysis

    International Nuclear Information System (INIS)

    Abrahamson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.

    1993-05-01

    The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled open-quotes Health Effects Models for Nuclear Power Plant Consequence Analysisclose quotes, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled open-quotes Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,close quotes was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model

  12. Asymptotic normalization coefficients in nuclear astrophysics an structure

    Czech Academy of Sciences Publication Activity Database

    Gagliardi, C. A.; Azhari, A.; Burjan, Václav; Carstoiu, F.; Kroha, Václav; Mukhamedzhanov, A. M.; Sattarov, A.; Tang, X.; Trache, L.; Tribble, R. E.

    2002-01-01

    Roč. 15, 1/2 (2002), s. 69-73 ISSN 1434-6001 R&D Projects: GA MŠk ME 385; GA ČR GA202/01/0709 Keywords : cross-section measurements * optical-model * S-factor * breakup * B-8 * halo * coulomb * Be-7 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.657, year: 2002

  13. Benchmarking nuclear models for Gamow–Teller response

    International Nuclear Information System (INIS)

    Litvinova, E.; Brown, B.A.; Fang, D.-L.; Marketin, T.; Zegers, R.G.T.

    2014-01-01

    A comparative study of the nuclear Gamow–Teller response (GTR) within conceptually different state-of-the-art approaches is presented. Three nuclear microscopic models are considered: (i) the recently developed charge-exchange relativistic time blocking approximation (RTBA) based on the covariant density functional theory, (ii) the shell model (SM) with an extended “jj77” model space and (iii) the non-relativistic quasiparticle random-phase approximation (QRPA) with a Brueckner G-matrix effective interaction. We study the physics cases where two or all three of these models can be applied. The Gamow–Teller response functions are calculated for 208 Pb, 132 Sn and 78 Ni within both RTBA and QRPA. The strengths obtained for 208 Pb are compared to data that enable a firm model benchmarking. For the nucleus 132 Sn, also SM calculations are performed within the model space truncated at the level of a particle–hole (ph) coupled to vibration configurations. This allows a consistent comparison to the RTBA where ph⊗phonon coupling is responsible for the spreading width and considerable quenching of the GTR. Differences between the models and perspectives of their future developments are discussed.

  14. Benchmarking nuclear models for Gamow–Teller response

    Energy Technology Data Exchange (ETDEWEB)

    Litvinova, E., E-mail: elena.litvinova@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008-5252 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Brown, B.A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Fang, D.-L. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824-1321 (United States); Marketin, T. [Physics Department, Faculty of Science, University of Zagreb (Croatia); Zegers, R.G.T. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2014-03-07

    A comparative study of the nuclear Gamow–Teller response (GTR) within conceptually different state-of-the-art approaches is presented. Three nuclear microscopic models are considered: (i) the recently developed charge-exchange relativistic time blocking approximation (RTBA) based on the covariant density functional theory, (ii) the shell model (SM) with an extended “jj77” model space and (iii) the non-relativistic quasiparticle random-phase approximation (QRPA) with a Brueckner G-matrix effective interaction. We study the physics cases where two or all three of these models can be applied. The Gamow–Teller response functions are calculated for {sup 208}Pb, {sup 132}Sn and {sup 78}Ni within both RTBA and QRPA. The strengths obtained for {sup 208}Pb are compared to data that enable a firm model benchmarking. For the nucleus {sup 132}Sn, also SM calculations are performed within the model space truncated at the level of a particle–hole (ph) coupled to vibration configurations. This allows a consistent comparison to the RTBA where ph⊗phonon coupling is responsible for the spreading width and considerable quenching of the GTR. Differences between the models and perspectives of their future developments are discussed.

  15. Thermochemical modeling of nuclear waste glass

    International Nuclear Information System (INIS)

    Spear, K.E.; Besmann, T.M.; Beahm, E.C.

    1998-06-01

    The development of assessed and consistent phase equilibria and thermodynamic data for major glass constituents used to incorporate high-level nuclear waste is discussed in this paper. The initial research has included the binary Na 2 O-SiO 2 , Na 2 O-Al 2 O 3 , and SiO 2 -Al 2 O 3 systems. The nuclear waste glass is assumed to be a supercooled liquid containing the constituents in the glass at temperatures of interest for nuclear waste storage. Thermodynamic data for the liquid solutions were derived from mathematical comparisons of phase diagram information and the thermodynamic data available for crystalline solid phases. An associate model is used to describe the liquid solution phases. Utilizing phase diagram information provides very stringent limits on the relative thermodynamic stabilities of all phases which exist in a given system

  16. An optical flow-based state-space model of the vocal folds

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A l...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters........ A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...

  17. An optical flow-based state-space model of the vocal folds.

    Science.gov (United States)

    Granados, Alba; Brunskog, Jonas

    2017-06-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.

  18. Nuclear structure theory: Technical progress report for period September 1, 1986-August 31, 1987

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1987-08-01

    This report summarizes progress in the following areas of research: (1) quark theory of nuclear matter, including further development of models in one-dimension with analytic solutions, numerical studies, bound properties, inclusion of spin and isospin degrees of freedom, excitation properties and response function; electron scattering, including application of sum rules to deeply inelastic scattering, and of quark models of nuclei; charge exchange in pion-nucleus reactions, including models of isotensor optical potential, optical theorem for double charge exchange, and coupled-channel calculations of single charge exchange; a unified theory of reaction dynamics and nuclear structure for intermediate energies, including diagrammatic formulation and development of appropriate computer programs; weak interactions: a study of the neutrino mass-matrix; bounds for time reversal noninvariance in the nucleon-nucleon interaction, obtained from spectral and strength fluctuations in complex nuclei, and separately from detailed balance in compound nuclear reactions. The relative sensitivities of the two methods are discussed; fluctuation measures for the two-dimensional harmonic oscillator; random matrices and symmetry-breaking in atomic spectra data; saturation effects for spectral measures in many-particle systems; and finally fluctuation-free statistical spectroscopy, applied to state densities and partition functions, including accurate absolute calculations of nuclear level spacings

  19. Primer on nuclear exchange models

    Energy Technology Data Exchange (ETDEWEB)

    Hafemeister, David [Physics Department, Cal Poly University, San Luis Obispo, California (United States)

    2014-05-09

    Basic physics is applied to nuclear force exchange models between two nations. Ultimately, this scenario approach can be used to try and answer the age old question of 'how much is enough?' This work is based on Chapter 2 of Physics of Societal Issues: Calculations on National Security, Environment and Energy (Springer, 2007 and 2014)

  20. Probing nuclear structure with nucleons; Sonder la structure nucleaire avec des nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Bauge, E. [CEA Bruyeres-le-Chatel, Service de Physique Nucl aire, 91 (France)

    2007-07-01

    The goal of this lecture is to show how nucleon scattering can be used to probe the structure of target nuclei, and how nucleon scattering observables can be interpreted in terms of nuclear structure using microscopic optical potentials. After a brief overview of the specificities of nucleon-nucleus scattering, and a quick reminder on scattering theory, the main part of this lecture is devoted to the construction of optical potentials in which the target nuclei structure information is folded with an effective interaction. Several examples of such microscopic optical model potentials are given. (author)

  1. Bond graph modeling of nuclear reactor dynamics

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-01-01

    A tenth-order linear model of a pressurized water reactor (PWR) is developed using bond graph techniques. The model describes the nuclear heat generation process and the transfer of this heat to the reactor coolant. Comparisons between the calculated model response and test data from a small-scale PWR show the model to be an adequate representation of the actual plant dynamics. Possible application of the model in an advanced plant diagnostic system is discussed

  2. Size dependent diffusive parameters and tensorial diffusion equations in neutronic models for optically small nuclear systems

    International Nuclear Information System (INIS)

    Premuda, F.

    1983-01-01

    Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated

  3. Update neutron nuclear data evaluation for 236,238Np

    International Nuclear Information System (INIS)

    Chen, Guochang; Wang, Jimin; Yu, Baosheng; Cao, Wentian; Tang, Guo-you

    2015-01-01

    The nuclear data with high accuracy for actinides play an important role in nuclear technology applications, including reactor design and operation, fuel cycle, estimation of the amount of minor actinides (MAs) in high burnup reactors and to research to transmute the MAs to short half-lived nuclides or stable ones. The nuclides of 236 Np are generated via the α-decay of 240 Am or 237 Np(n, 2n) and 237 Np(d, t) reactions. And the nuclides of 238 Np are generated via the α-decay of 242 Am or 237 Np(n, γ) and 237 Np(d, p) reactions. In the present work, according to the systematic trend of the total cross section and elastic cross section etc. of different Np isotopes, and based on the neutron optical model parameters (OMP) of 237 Np, a new set of neutron optical model parameters were obtained for 236,238 Np. Based on the new set OMP and the systematic trend of the cross sections of different Np isotopes, a full set of 236,238 Np neutron nuclear data has been updated and improved by theoretical calculation. The present result has significant improvements over the data in CENDL-3.1

  4. The accuracy of heavy ion optical model calculations

    International Nuclear Information System (INIS)

    Kozik, T.

    1980-01-01

    There is investigated in detail the sources and magnitude of numerical errors in heavy ion optical model calculations. It is shown on example of 20 Ne + 24 Mg scattering at Esub(LAB)=100 MeV. (author)

  5. A bio-optical model suitable for use in forward and inverse coupled atmosphere-ocean radiative transfer models

    International Nuclear Information System (INIS)

    Zhang Kexin; Li Wei; Eide, Hans; Stamnes, Knut

    2007-01-01

    A simple, yet complete bio-optical model for the inherent optical properties (IOPs) of oceanic waters is developed. This bio-optical model is specifically designed for use in comprehensive, multiple scattering radiative transfer models for the coupled atmosphere-ocean system. Such models can be used to construct next-generation algorithms for simultaneous retrieval of aerosol and marine parameters. The computed remote sensing reflectance R rs (λ) is validated against field measurements of R rs (λ) compiled in the SeaBASS data base together with simultaneous chlorophyll concentrations (C) ranging from 0.03 to 100mgm -3 . This connection between R rs and C is used to construct a chlorophyll concentration retrieval algorithm that yields reliable results for a large range of chlorophyll concentrations. The overall performance of a MODIS/VIIRS chlorophyll concentration retrieval algorithm is found to be less satisfactory

  6. Modeling illumination performance of plastic optical fiber passive daylighting system

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, F; Ahmad, A [Universiti Teknologi MARA, Shah Alam (Malaysia). Faculty of Electrical Engineering; Ahmed, A Z [Universiti Teknologi MARA, Shah Alam (Malaysia). Bureau of Reseaarch and Consultancy

    2006-12-15

    of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings.

  7. Modeling illumination performance of plastic optical fiber passive daylighting system

    International Nuclear Information System (INIS)

    Sulaiman, F.; Ahmad, A.; Ahmed, A.Z.

    2006-01-01

    One of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings

  8. Folding models for elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1982-01-01

    The most widely used models are the optical model potential (OMP) for elastic scattering, and its generalization to non-spherical shapes, the deformed optical model potential (DOMP) for inelastic scattering. These models are simple and phenomenological; their parameters are adjusted so as to reproduce empirical data. Nonetheless, there are certain, not always well-defined, constraints to be imposed. The potential shapes and their parameter values must be reasonable and should vary in a smooth and systematic way with the masses of the colliding nuclei and their energy. One way of satisfying these constraints, without going back to a much more fundamental theory, is through the use of folding models. The basic justification for using potentials of the Woods-Saxon shape for nucleon-nucleus scattering, for example, is our knowledge that a nuclear density distribution is more-or-less constant in the nuclear interior with a diffuse surface. When this is folded with a short-range nucleon-nucleon interaction, the result is a similar shape with a more diffuse surface. Folding procedures allow us to incorporate many aspects of nuclear structure (although the nuclear size is one of the most important), as well as theoretical ideas about the effective interaction of two nucleons within nuclear matter. It also provides us with a means of linking information obtained from nuclear (hadronic) interactions with that from other sources, as well as correlating that from the use of different hadronic probes. Folding model potentials, single-folded potentials, and the double-folding model including applications to heavy-ion scattering are discussed

  9. Fiber-optical sensor with intensity compensation model in college teaching of physics experiment

    Science.gov (United States)

    Su, Liping; Zhang, Yang; Li, Kun; Zhang, Yu

    2017-08-01

    Optical fiber sensor technology is one of the main contents of modern information technology, which has a very important position in modern science and technology. Fiber optic sensor experiment can improve students' enthusiasm and broaden their horizons in college physics experiment. In this paper the main structure and working principle of fiberoptical sensor with intensity compensation model are introduced. And thus fiber-optical sensor with intensity compensation model is applied to measure micro displacement of Young's modulus measurement experiment and metal linear expansion coefficient measurement experiment in the college physics experiment. Results indicate that the measurement accuracy of micro displacement is higher than that of the traditional methods using fiber-optical sensor with intensity compensation model. Meanwhile this measurement method makes the students understand on the optical fiber, sensor and nature of micro displacement measurement method and makes each experiment strengthen relationship and compatibility, which provides a new idea for the reform of experimental teaching.

  10. Development of real options model for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Kenji

    2004-01-01

    As the Japanese electricity market is deregulated, it becomes more important for electric utilities to recognize their financial risks and to adopt strategic and scientific decision making methodology. We have developed two models for valuation of Japanese nuclear power plants to support utilities' decision making. One is a net present value (NPV) model using discounted cash flow analysis method. Another is a real options model. This model is based on strict financial technology theory and can calculate value of early retirement, life extension and new unit addition options of nuclear units under electricity price uncertainty. This can also derive an optimal period for retirement, life extension and new unit addition. (author)

  11. Using Direct Sub-Level Entity Access to Improve Nuclear Stockpile Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Robert Y. [Brigham Young Univ., Provo, UT (United States)

    1999-08-01

    Direct sub-level entity access is a seldom-used technique in discrete-event simulation modeling that addresses the accessibility of sub-level entity information. The technique has significant advantages over more common, alternative modeling methods--especially where hierarchical entity structures are modeled. As such, direct sub-level entity access is often preferable in modeling nuclear stockpile, life-extension issues, an area to which it has not been previously applied. Current nuclear stockpile, life-extension models were demonstrated to benefit greatly from the advantages of direct sub-level entity access. In specific cases, the application of the technique resulted in models that were up to 10 times faster than functionally equivalent models where alternative techniques were applied. Furthermore, specific implementations of direct sub-level entity access were observed to be more flexible, efficient, functional, and scalable than corresponding implementations using common modeling techniques. Common modeling techniques (''unbatch/batch'' and ''attribute-copying'') proved inefficient and cumbersome in handling many nuclear stockpile modeling complexities, including multiple weapon sites, true defect analysis, and large numbers of weapon and subsystem types. While significant effort was required to enable direct sub-level entity access in the nuclear stockpile simulation models, the enhancements were worth the effort--resulting in more efficient, more capable, and more informative models that effectively addressed the complexities of the nuclear stockpile.

  12. Application of computer mathematical modeling in nuclear well-logging industry

    International Nuclear Information System (INIS)

    Cai Shaohui

    1994-01-01

    Nuclear well logging techniques have made rapid progress since the first well log calibration facility (the API pits) was dedicated in 1959. Then came the first computer mathematical model in the late 70's. Mathematical modeling can now minimize design and experiment time, as well as provide new information and idea on tool design, environmental effects and result interpretation. The author gives a brief review on the achievements of mathematical modeling on nuclear logging problems

  13. Optical Evaluation of the Rear Contacts of Crystalline Silicon Solar Cells by Coupled Electromagnetic and Statistical Ray-Optics Modeling

    KAUST Repository

    Dabirian, Ali

    2017-02-15

    High-efficiency crystalline silicon (c-Si) solar cells increasingly feature sophisticated electron and hole contacts aimed at minimizing electronic losses. At the rear of photovoltaic devices, such contacts—usually consisting of stacks of functional layers—offer opportunities to enhance the infrared response of the solar cells. Here, we propose an accurate and simple modeling procedure to evaluate the infrared performance of rear contacts in c-Si solar cells. Our method combines full-wave electromagnetic modeling of the rear contact with a statistical ray optics model to obtain the fraction of optical energy dissipated from the rear contact relative to that absorbed by the Si wafer. Using this technique, we study the impact of the refractive index, extinction coefficient, and thickness of the rear-passivating layer and establish basic design rules. In addition, we evaluate novel optical structures, including stratified thin films, nanoparticle composites, and conductive nanowires embedded in a low-index dielectric matrix, for integration into advanced rear contacts in c-Si photovoltaic devices. From an optical perspective, nanowire structures preserving low contact resistance appear to be the most effective approach to mitigating dissipation losses from the rear contact.

  14. Fibre optic networks for safeguards applications

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Chare, P.; Barrier, A.

    1991-01-01

    The Euratom Safeguards Directorate has recently installed a fibre optic network in a new large scale nuclear facility in the European Communities. The selection, installation and commissioning of the fibre optic network is discussed from the viewpoint of network topology, physical testing, trouble shooting and authentication. The future use of fibre optic networks for safeguards applications is discussed

  15. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.; Zedini, Emna; Elafandy, Rami T.; Kammoun, Abla; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels

  16. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    Directory of Open Access Journals (Sweden)

    Andreas Ebneter

    Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  17. Infinite nuclear matter model and mass formulae for nuclei

    International Nuclear Information System (INIS)

    Satpathy, L.

    2016-01-01

    The matter composed of the nucleus is a quantum-mechanical interacting many-fermionic system. However, the shell and classical liquid drop have been taken as the two main features of nuclear dynamics, which have guided the evolution of nuclear physics. These two features can be considered as the macroscopic manifestation of the microscopic dynamics of the nucleons at fundamental level. Various mass formulae have been developed based on either of these features over the years, resulting in many ambiguities and uncertainties posing many challenges in this field. Keeping this in view, Infinite Nuclear Matter (INM) model has been developed during last couple of decades with a many-body theoretical foundation employing the celebrated Hugenholtz-Van Hove theorem, quite appropriate for the interacting quantum-mechanical nuclear system. A mass formula called INM mass formula based on this model yields rms deviation of 342 keV being the lowest in literature. Some of the highlights of its result includes its determination of INM density in agreement with the electron scattering data leading to the resolution of the long standing 'r 0 -paradox' it predicts new magic numbers giving rise to new island of stability in the drip-line regions. This is the manifestation of a new phenomenon where shell-effect over comes the repulsive component of nucleon-nucleon force resulting in the broadening of the stability peninsula. Shell quenching in N= 82,and N= 126 shells, and several islands of inversion have been predicted. The model determines the empirical value of the nuclear compression modulus, using high precission 4500 data comprising nuclear masses, neutron and proton separation energies. The talk will give a critical review of the field of mass formula and our understanding of nuclear dynamics as a whole

  18. Nuclear models to 200 MeV for high-energy data evaluations. Vol.12

    International Nuclear Information System (INIS)

    Chadwick, M.; Reffo, G.; Dunford, C.L.; Oblozinsky, P.

    1998-01-01

    The work of the Nuclear Energy Agency's Subgroup 12 is described, which represents a collaborative effort to summarize the current status of nuclear reaction modelling codes and prioritize desired future model improvements. Nuclear reaction modelling codes that use appropriate physics in the energy region up to 200 MeV are the focus of this study, particularly those that have proved useful in nuclear data evaluation work. This study is relevant to developing needs in accelerator-driven technology programs, which require accurate nuclear data to high energies for enhanced radiation transport simulations to guide engineering design. (author)

  19. NLOM - a program for nonlocal optical model calculations

    International Nuclear Information System (INIS)

    Kim, B.T.; Kyum, M.C.; Hong, S.W.; Park, M.H.; Udagawa, T.

    1992-01-01

    A FORTRAN program NLOM for nonlocal optical model calculations is described. It is based on a method recently developed by Kim and Udagawa, which utilizes the Lanczos technique for solving integral equations derived from the nonlocal Schroedinger equation. (orig.)

  20. A novel method of rapidly modeling optical properties of actual photonic crystal fibres

    International Nuclear Information System (INIS)

    Li-Wen, Wang; Shu-Qin, Lou; Wei-Guo, Chen; Hong-Lei, Li

    2010-01-01

    The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment. (rapid communication)

  1. Experiences with digital archiving based on optical disk

    International Nuclear Information System (INIS)

    Almasi, L.; Bitter, F.; Hellwig, D.; Wulff, P.; Bahr, R.; Weller, R.; Adam, W.E.

    1988-01-01

    The goal of using optical disks in nuclear medicine is to achieve the complete picture archiving. The size of the nuclear medicine pictures and the present storing capacity of optical disks is sufficient to solve this problem. We have developed a program system which makes it possible to archive all nuclear medicine pictures automatically. Our experiences we can summarise: 1. Low cost/image ratio (0.75 DM/MB); 2. Fast data transfer rate; 3. Short data access time; 4. Guarantee of data security (not erasable); 5. Storing reliability; 6. Large storing capacity. (orig.)

  2. The string model of nuclear scattering: an introduction

    International Nuclear Information System (INIS)

    Werner, Klaus

    1995-01-01

    We discuss the string model of hadronic and nuclear scattering at ultrarelativistic energies. The man purpose is to treat theoretical concepts common to essentially all successful models: strings, Pomerons, and their marriage int he string model approach. We stay an introductory level without going into technical details. (author)

  3. Development of ITER 3D neutronics model and nuclear analyses

    International Nuclear Information System (INIS)

    Zeng, Q.; Zheng, S.; Lu, L.; Li, Y.; Ding, A.; Hu, H.; Wu, Y.

    2007-01-01

    ITER nuclear analyses rely on the calculations with the three-dimensional (3D) Monte Carlo code e.g. the widely-used MCNP. However, continuous changes in the design of the components require the 3D neutronics model for nuclear analyses should be updated. Nevertheless, the modeling of a complex geometry with MCNP by hand is a very time-consuming task. It is an efficient way to develop CAD-based interface code for automatic conversion from CAD models to MCNP input files. Based on the latest CAD model and the available interface codes, the two approaches of updating 3D nuetronics model have been discussed by ITER IT (International Team): The first is to start with the existing MCNP model 'Brand' and update it through a combination of direct modification of the MCNP input file and generation of models for some components directly from the CAD data; The second is to start from the full CAD model, make the necessary simplifications, and generate the MCNP model by one of the interface codes. MCAM as an advanced CAD-based MCNP interface code developed by FDS Team in China has been successfully applied to update the ITER 3D neutronics model by adopting the above two approaches. The Brand model has been updated to generate portions of the geometry based on the newest CAD model by MCAM. MCAM has also successfully performed conversion to MCNP neutronics model from a full ITER CAD model which is simplified and issued by ITER IT to benchmark the above interface codes. Based on the two updated 3D neutronics models, the related nuclear analyses are performed. This paper presents the status of ITER 3D modeling by using MCAM and its nuclear analyses, as well as a brief introduction of advanced version of MCAM. (authors)

  4. Nuclear winter - a calculative experiment

    International Nuclear Information System (INIS)

    Aleksandrov, V.B.; Stenchikov, G.L.

    1985-01-01

    Using a hydrodynamic model of the Earth climate the climatic consequences following carbon dioxide concentration augmentation in the Earth atmosphere, effects of aerosol contamination and solar constant variation due to the use of nuclear weapon are studied. Results of studying the sensitivity of average annual climatic regime of the atmosphere and ocean general circulation to a sudde extremely strong, long-term change in optical properties of the air in the short-wave portion of the spectrum are discussed. These changes could be caused by contamination of the atmosphere with dust during a nuclear conflict and soot resulting from fires. It is shown, that after nuclear war according to practically any scenario, people who would survive the first blow will find themselves in conditions of a severe cold, darkness, absence of water, food and fuel under the effect of a powerful radiation, contaminants, diseases and under extreme pycological stress

  5. Gamma irradiation effects on the thermal, optical and structural properties of Cr-39 nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.; Said, A.F.; Atta, M.R.; EL-Mellegy, W.M.; EL-Meniawi, S.

    2006-01-01

    A study of the effect of gamma irradiation on the thermal, optical and structural properties of CR-39 diglycol carbonate solid state nuclear track detector (SSNTD) has been carried out. Samples from CR-39 polymer were irradiated with gamma doses at levels between 20 and 300 KGy. Non-isothermal studies were carried out using thermo-gravimetry (TG), differential thermo-gravimetry (DTG) and differential thermal analysis (DTA) to obtain the activation energy of decomposition and the transition temperatures for the non-irradiated and irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. The variation of onset temperature of decomposition (To) thermal activation energy of decomposition (Ea) melting temperature (Tm) refractive index (n) and the mass fraction of the amorphous phase with the gamma dose were studied. It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via the degradation and cross linking mechanisms. Also, the gamma dose gave an advantage for increasing the correlation between the thermal stability of CR-39 polymer and the bond formation created by the ionizing effect of gamma radiation

  6. State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels

    International Nuclear Information System (INIS)

    Bartel, T.J.; Dingreville, R.; Littlewood, D.; Tikare, V.; Bertolus, M.; Blanc, V.; Bouineau, V.; Carlot, G.; Desgranges, C.; Dorado, B.; Dumas, J.C.; Freyss, M.; Garcia, P.; Gatt, J.M.; Gueneau, C.; Julien, J.; Maillard, S.; Martin, G.; Masson, R.; Michel, B.; Piron, J.P.; Sabathier, C.; Skorek, R.; Toffolon, C.; Valot, C.; Van Brutzel, L.; Besmann, Theodore M.; Chernatynskiy, A.; Clarno, K.; Gorti, S.B.; Radhakrishnan, B.; Devanathan, R.; Dumont, M.; Maugis, P.; El-Azab, A.; Iglesias, F.C.; Lewis, B.J.; Krack, M.; Yun, Y.; Kurata, M.; Kurosaki, K.; Largenton, R.; Lebensohn, R.A.; Malerba, L.; Oh, J.Y.; Phillpot, S.R.; Tulenko, J. S.; Rachid, J.; Stan, M.; Sundman, B.; Tonks, M.R.; Williamson, R.; Van Uffelen, P.; Welland, M.J.; Valot, Carole; Stan, Marius; Massara, Simone; Tarsi, Reka

    2015-10-01

    The Nuclear Science Committee (NSC) of the Nuclear Energy Agency (NEA) has undertaken an ambitious programme to document state-of-the-art of modelling for nuclear fuels and structural materials. The project is being performed under the Working Party on Multi-Scale Modelling of Fuels and Structural Material for Nuclear Systems (WPMM), which has been established to assess the scientific and engineering aspects of fuels and structural materials, describing multi-scale models and simulations as validated predictive tools for the design of nuclear systems, fuel fabrication and performance. The WPMM's objective is to promote the exchange of information on models and simulations of nuclear materials, theoretical and computational methods, experimental validation and related topics. It also provides member countries with up-to-date information, shared data, models, and expertise. The goal is also to assess needs for improvement and address them by initiating joint efforts. The WPMM reviews and evaluates multi-scale modelling and simulation techniques currently employed in the selection of materials used in nuclear systems. It serves to provide advice to the nuclear community on the developments needed to meet the requirements of modelling for the design of different nuclear systems. The original WPMM mandate had three components (Figure 1), with the first component currently completed, delivering a report on the state-of-the-art of modelling of structural materials. The work on modelling was performed by three expert groups, one each on Multi-Scale Modelling Methods (M3), Multi-Scale Modelling of Fuels (M2F) and Structural Materials Modelling (SMM). WPMM is now composed of three expert groups and two task forces providing contributions on multi-scale methods, modelling of fuels and modelling of structural materials. This structure will be retained, with the addition of task forces as new topics are developed. The mandate of the Expert Group on Multi-Scale Modelling of

  7. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method.

    Science.gov (United States)

    Heh, Ding Yu; Tan, Eng Leong

    2011-04-12

    This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin.

  8. Wavefront Sensing for WFIRST with a Linear Optical Model

    Science.gov (United States)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  9. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography.

    Science.gov (United States)

    Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer

    2017-07-01

    A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  10. Design of nuclear power generation plants adopting model engineering method

    International Nuclear Information System (INIS)

    Waki, Masato

    1983-01-01

    The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)

  11. Multilateral simulation on various models for internationalization of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Adachi, T.; Akiba, M.; Tazaki, M.; Kuno, Y.; Choi, J-S.; Tanaka, S.; Omoto, A.

    2011-01-01

    To construct suitable models for a reliable and sustainable international/regional framework in the fields of nuclear fuel cycle, it is essential to reflect recent political situations including such that 1) a certain number of emerging countries especially in south-east Asia want to introduce and develop nuclear power in the long-terms despite the accident of the Fukushima Daiichi NPP, and 2) exposition of nuclear proliferation threats provided by North Korea and Iran. It is also to be considered that Japan is an unique country having enrichment and reprocessing facilities on commercial base among non-nuclear weapon countries. Although many models presented for the internationalization have not been realized yet, studies at the University of Tokyo aim at multilateral nuclear approach (MNA) in Asian-Pacific countries balancing between nuclear non-proliferation and nuclear fuel supply/service and presenting specific examples such as prerequisites for participating countries, scope of cooperative activities, ownership of facilities and type of agreements/frameworks. We will present a model basic agreement and several bilateral and multi-lateral agreements for the combinations of industry or government led consortia including Japan and its neighboring countries and made a preliminary evaluation for the combination of processes/facilities based on the INFCIRC/640 report for MNA. (author)

  12. Validation of Infinite Impulse Response Multilayer Perceptron for Modelling Nuclear Dynamics

    Directory of Open Access Journals (Sweden)

    F. Cadini

    2008-01-01

    Full Text Available Artificial neural networks are powerful algorithms for constructing nonlinear empirical models from operational data. Their use is becoming increasingly popular in the complex modeling tasks required by diagnostic, safety, and control applications in complex technologies such as those employed in the nuclear industry. In this paper, the nonlinear modeling capabilities of an infinite impulse response multilayer perceptron (IIR-MLP for nuclear dynamics are considered in comparison to static modeling by a finite impulse response multilayer perceptron (FIR-MLP and a conventional static MLP. The comparison is made with respect to the nonlinear dynamics of a nuclear reactor as investigated by IIR-MLP in a previous paper. The superior performance of the locally recurrent scheme is demonstrated.

  13. Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2005-01-01

    A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. ms

  14. Nuclear Winter: Global Consequences of Multiple Nuclear Explosions

    Science.gov (United States)

    Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, Carl

    1983-12-01

    The potential global atmospheric and climatic consequences of nuclear war are investigated using models previously developed to study the effects of volcanic eruptions. Although the results are necessarily imprecise, due to a wide range of possible scenarios and uncertainty in physical parameters, the most probable first-order effects are serious. Significant hemispherical attenuation of the solar radiation flux and subfreezing land temperatures may be caused by fine dust raised in high-yield nuclear surface bursts and by smoke from city and forest fires ignited by airbursts of all yields. For many simulated exchanges of several thousand megatons, in which dust and smoke are generated and encircle the earth within 1 to 2 weeks, average light levels can be reduced to a few percent of ambient and land temperatures can reach -15 degrees to -25 degrees C. The yield threshold for major optical and climatic consequences may be very low: only about 100 megatons detonated over major urban centers can create average hemispheric smoke optical depths greater than 2 for weeks and, even in summer, subfreezing land temperatures for months. In a 5000-megaton war, at northern mid-latitude sites remote from targets, radioactive fallout on time scales of days to weeks can lead to chronic mean doses of up to 50 rads from external whole-body gamma-ray exposure, with a likely equal or greater internal dose from biologically active radionuclides. Large horizontal and vertical temperature gradients caused by absorption of sunlight in smoke and dust clouds may greatly accelerate transport of particles and radioactivity from the Northern Hemisphere to the Southern Hemisphere. When combined with the prompt destruction from nuclear blast, fires, and fallout and the later enhancement of solar ultraviolet radiation due to ozone depletion, long-term exposure to cold, dark, and radioactivity could pose a serious threat to human survivors and to other species.

  15. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  16. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  17. Laser optical pumping of sodium and lithium atom beams

    International Nuclear Information System (INIS)

    Cusma, J.T.

    1983-01-01

    The method of optical pumping with a continuous wave dye laser has been used to produce beams of polarized 23 Na atoms and polarized 6 Li atoms. Optical pumping of a 23 Na atom beam using either a multimode dye laser or a single frequency dye laser with a double passed acousto-optic modulator results in electron spin polarizations of 0.70-0.90 and nuclear spin polarizations of 0.75-0.90. Optical pumping of a 6 Li atom beam using a single frequency dye laser either with an acousto-optic modulator or with Doppler shift pumping results in electron spin polarizations of 0.77-0.95 and nuclear spin polarizations greater than 0.90. The polarization of the atom beam is measured using either the laser induced fluorescence in an intermediate magnetic field or a 6-pole magnet to determine the occupation probabilities of the ground hyperfine sublevels following optical pumping. The results of the laser optical pumping experiments agree with the results of a rate equation analysis of the optical pumping process which predicts that nearly all atoms are transferred into a single sublevel for our values of laser intensity and interaction time. The use of laser optical pumping in a polarized ion source for nuclear scattering experiments is discussed. The laser optical pumping method provides a means of constructing an intense source of polarized Li and Na ions

  18. Concentrator optical characterization using computer mathematical modelling and point source testing

    Science.gov (United States)

    Dennison, E. W.; John, S. L.; Trentelman, G. F.

    1984-01-01

    The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.

  19. The Global Nuclear Futures Model: A Dynamic Simulation Tool for Energy Strategies

    International Nuclear Information System (INIS)

    Bixler, N.E.

    2002-01-01

    The Global Nuclear Futures Model (GNFM) is a dynamic simulation tool that provides an integrated framework to model key aspects of nuclear energy, nuclear materials storage and disposition, global nuclear materials management, and nuclear proliferation risk. It links nuclear energy and other energy shares dynamically to greenhouse gas emissions and twelve other measures of environmental impact. It presents historical data from 1990 to 2000 and extrapolates energy demand through the year 2050. More specifically, it contains separate modules for energy, the nuclear fuel cycle front end, the nuclear fuel cycle back end, defense nuclear materials, environmental impacts, and measures of the potential for nuclear proliferation. It is globally integrated but also breaks out five regions of the world so that environmental impacts and nuclear proliferation concerns can be evaluated on a regional basis. The five regions are the United States of America (USA), The Peoples Republic of China (China), the former Soviet Union (FSU), the OECD nations excluding the USA, and the rest of the world (ROW). (author)

  20. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  1. Optical linear algebra processors: noise and error-source modeling.

    Science.gov (United States)

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  2. Underwater wireless optical communications: From system-level demonstrations to channel modelling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-09

    In this paper, we discuss about recent experimental advances in underwater wireless optical communications (UWOC) over various underwater channel water types using different modulation schemes as well as modelling and describing the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.

  3. Modelling of the Optical Detector System in a Compact Disc Player

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2003-01-01

    The cross-couplings between focus and radial tracking servos in compact disc players are important, but the optical cross couplings are not well described in the literature. In this paper an optical model of a compact disc player based on the three beam single foucault detector principle is found...

  4. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  5. Geometrical optics model of Mie resonances

    Science.gov (United States)

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  6. Development of a financing model for nuclear fuel cycle cost evaluation

    International Nuclear Information System (INIS)

    Takahashi, Makoto; Yajima, Masayuki

    1984-01-01

    It is necessary to evaluate the prices of nuclear fuel pre- and post-processing in order to analyse the costs of the nuclear power generation. Those prices are directly related to the costs of construction and operation of facilities in the nuclear fuel cycle. In this report, we propose a model which evaluates financing of an undertaking that constructs and operates one of the facilities such as uranium enrichment, reprocessing or interim storage of spent fuels. The model is divided into two phases, the construction phase and the operation phase. In the construction phase, it calculates expenses during the facility construction and corresponding financings for each term. In the operation phase, the model refers to the results of the construction phase and performs calculations on profits and losses, cash-flow, and disposition to profits term by according to a certain operation schedule. Using this model, feasibility of the undertaking and effects of various pricing strategies on the nuclear fuel costs can be evaluated by simulations. (author)

  7. Development of a standard equipment management model for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hee Seung; Ju, Tae Young; Kim, Jung Wun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Most utilities that have achieved high performance have introduced a management model to improve performance and operate plants safely. The Nuclear Energy Institute has developed and updated its Standard Nuclear Performance Model (SNPM) in order to provide a summary of nuclear processes, cost definitions, and key business performance measures for business performance comparison and benchmarking. Over the past decade, Korea Hydro and Nuclear Power Co. (KHNP) has introduced and implemented many engineering processes such as Equipment Reliability (ER), Maintenance Rule (MR), Single Point Vulnerability (SPV), Corrective Action Program (CAP), and Self Assessment (SA) to improve plant performance and to sustain high performance. Some processes, however, are not well interfaced with other processes, because they were developed separately and were focused on the process itself. KHNP is developing a Standard Equipment Management Model (SEMM) to integrate these engineering processes and to improve the interrelation among the processes. In this paper, a draft model and attributes of the SEMM are discussed.

  8. Development of a standard equipment management model for nuclear power plants

    International Nuclear Information System (INIS)

    Chang, Hee Seung; Ju, Tae Young; Kim, Jung Wun

    2012-01-01

    Most utilities that have achieved high performance have introduced a management model to improve performance and operate plants safely. The Nuclear Energy Institute has developed and updated its Standard Nuclear Performance Model (SNPM) in order to provide a summary of nuclear processes, cost definitions, and key business performance measures for business performance comparison and benchmarking. Over the past decade, Korea Hydro and Nuclear Power Co. (KHNP) has introduced and implemented many engineering processes such as Equipment Reliability (ER), Maintenance Rule (MR), Single Point Vulnerability (SPV), Corrective Action Program (CAP), and Self Assessment (SA) to improve plant performance and to sustain high performance. Some processes, however, are not well interfaced with other processes, because they were developed separately and were focused on the process itself. KHNP is developing a Standard Equipment Management Model (SEMM) to integrate these engineering processes and to improve the interrelation among the processes. In this paper, a draft model and attributes of the SEMM are discussed

  9. Human modeling in nuclear engineering

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Furuta, Kazuo.

    1994-01-01

    Review on progress of research and development on human modeling methods is made from the viewpoint of its importance on total man-machine system reliability surrounding nuclear power plant operation. Basic notions on three different approaches of human modeling (behavioristics, cognitives and sociologistics) are firstly introduced, followed by the explanation of fundamental scheme to understand human cognitives at man-machine interface and the mechanisms of human error and its classification. Then, general methodologies on human cognitive model by AI are explained with the brief summary of various R and D activities now prevailing in the human modeling communities around the world. A new method of dealing with group human reliability is also introduced which is based on sociologistic mathematical model. Lastly, problems on human model validation are discussed, followed by the introduction of new experimental method to estimate human cognitive state by psycho-physiological measurement, which is a new methodology plausible for human model validation. (author)

  10. Operational characteristics of nuclear power plants - modelling of operational safety

    International Nuclear Information System (INIS)

    Studovic, M.

    1984-01-01

    By operational experience of nuclear power plants and realize dlevel of availability of plant, systems and componenst reliabiliuty, operational safety and public protection, as a source on nature of distrurbances in power plant systems and lessons drawn by the TMI-2, in th epaper are discussed: examination of design safety for ultimate ensuring of safe operational conditions of the nuclear power plant; significance of the adequate action for keeping proess parameters in prescribed limits and reactor cooling rquirements; developed systems for measurements detection and monitoring all critical parameters in the nuclear steam supply system; contents of theoretical investigation and mathematical modeling of the physical phenomena and process in nuclear power plant system and components as software, supporting for ensuring of operational safety and new access in staff education process; program and progress of the investigation of some physical phenomena and mathematical modeling of nuclear plant transients, prepared at faculty of mechanical Engineering in Belgrade. (author)

  11. Designing tools for oil exploration using nuclear modeling

    Science.gov (United States)

    Mauborgne, Marie-Laure; Allioli, Françoise; Manclossi, Mauro; Nicoletti, Luisa; Stoller, Chris; Evans, Mike

    2017-09-01

    When designing nuclear tools for oil exploration, one of the first steps is typically nuclear modeling for concept evaluation and initial characterization. Having an accurate model, including the availability of accurate cross sections, is essential to reduce or avoid time consuming and costly design iterations. During tool response characterization, modeling is benchmarked with experimental data and then used to complement and to expand the database to make it more detailed and inclusive of more measurement environments which are difficult or impossible to reproduce in the laboratory. We present comparisons of our modeling results obtained using the ENDF/B-VI and ENDF/B-VII cross section data bases, focusing on the response to a few elements found in the tool, borehole and subsurface formation. For neutron-induced inelastic and capture gamma ray spectroscopy, major obstacles may be caused by missing or inaccurate cross sections for essential materials. We show examples of the benchmarking of modeling results against experimental data obtained during tool characterization and discuss observed discrepancies.

  12. Optical asymmetric cryptography using a three-dimensional space-based model

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we present optical asymmetric cryptography combined with a three-dimensional (3D) space-based model. An optical multiple-random-phase-mask encoding system is developed in the Fresnel domain, and one random phase-only mask and the plaintext are combined as a series of particles. Subsequently, the series of particles is translated along an axial direction, and is distributed in a 3D space. During image decryption, the robustness and security of the proposed method are further analyzed. Numerical simulation results are presented to show the feasibility and effectiveness of the proposed optical image encryption method

  13. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity.

  14. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity

  15. Modelling the optical turbulence boiling and its effect on finite-exposure differential image motion

    Science.gov (United States)

    Berdja, A.; Borgnino, J.

    2007-07-01

    It is usually accepted that whenever dealing with astronomical observation through the atmosphere, the optical turbulence temporal evolution can be sufficiently described with the so-called frozen turbulence hypothesis. In this model, turbulence is supposed to be equivalent to a series of solid phase screens that slide horizontally in front of the observation field of view. Experimental evidence shows, however, that an additional physical process must be taken into account when describing the temporal behaviour of the optical turbulence. In fact, while translating above the observer, turbulence undergoes a proper temporal evolution and affects differently the astronomical and, more specifically, the astrometric observations. The proper temporal evolution of the turbulence-induced optical turbulence observable quantities is here called the optical turbulence boiling. We are proposing through this paper a theoretical approach to the modelling of the optical turbulence temporal evolution when the turbulent layer horizontal translation and the optical turbulence boiling are both involved. The model we propose, as a working hypothesis though, has a direct relevance to differential astrometry because of its explicit dependence upon the optical turbulence temporal evolution. It can also be generalized to other techniques of high angular resolution astronomical observation through the atmospheric turbulence.

  16. Mathematical model of an optically pumped molecular laser

    CSIR Research Space (South Africa)

    Botha, LR

    2009-07-01

    Full Text Available A mathematical model was developed that accurately predicts the performance of an optically pumped HBr laser. Relatively high conversion efficiency was achieved. Tm pumped Ho:YLF is a viable source for pumping HBr laser, while HBr can be scaled...

  17. Effective-mass model and magneto-optical properties in hybrid perovskites

    OpenAIRE

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be effici...

  18. Nuclear security culture: a generic model for universal application

    International Nuclear Information System (INIS)

    Khripunov, I.

    2005-01-01

    Full text: Nuclear security culture found its way into professional parlance several years ago, but still lacks an agreed-upon definition and description. The February 2005 U.S.-Russian Joint Statement, issued at the presidential summit meeting in Bratislava, referred specifically to security culture, focusing renewed attention on the concept. Numerous speakers at the March 2005 International Atomic Energy Agency's (IAEA) international conference on nuclear security referred to security culture, but their visions and interpretations were often at odds with one another. Clearly, there is a need for a generic model of nuclear security culture with universal applicability. Internationally acceptable standards in this area would be invaluable for evaluation, comparison, cooperation, and assistance. They would also help international bodies better manage their relations with the nuclear sectors in various countries. This paper will develop such a model. It will use the IAEA definition of nuclear security, and then apply Edgar Schein's model of organizational culture to security culture at a generic nuclear facility. A cultural approach to physical protection involves determining what attitudes and beliefs need to be established in an organization, how these attitudes and beliefs manifest themselves in the behavior of assigned personnel, and how desirable attitudes and beliefs can be transcribed into formal working methods to produce good outcomes, i.e., effective protection. The security-culture mechanism I will propose is broken into four major units: facility leadership, proactive policies and procedures, personnel performance, and learning and professional improvement. The paper will amplify on the specific traits characteristic of each of these units. Security culture is not a panacea. In a time of mounting terrorist threats, it should nonetheless be looked upon as a necessary organizational tool that enhances the skills of nuclear personnel and ensures that

  19. Theory model and experiment research about the cognition reliability of nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; Zhao Bingquan

    2000-01-01

    In order to improve the reliability of NPP operation, the simulation research on the reliability of nuclear power plant operators is needed. Making use of simulator of nuclear power plant as research platform, and taking the present international reliability research model-human cognition reliability for reference, the part of the model is modified according to the actual status of Chinese nuclear power plant operators and the research model of Chinese nuclear power plant operators obtained based on two-parameter Weibull distribution. Experiments about the reliability of nuclear power plant operators are carried out using the two-parameter Weibull distribution research model. Compared with those in the world, the same results are achieved. The research would be beneficial to the operation safety of nuclear power plant

  20. Predicting the optical observables for nucleon scattering on even-even actinides

    Science.gov (United States)

    Martyanov, D. S.; Soukhovitskiĩ, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.

    2017-09-01

    The previously derived Lane consistent dispersive coupled-channel optical model for nucleon scattering on 232Th and 238U nuclei is extended to describe scattering on even-even actinides with Z = 90-98. A soft-rotator-model (SRM) description of the low-lying nuclear structure is used, where the SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate the coupling matrix elements of the generalized optical model. The “effective” deformations that define inter-band couplings are derived from the SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a dynamic monopolar term to the deformed potential, leading to additional couplings between rotational bands. The fitted static deformation parameters are in very good agreement with those derived by Wang and collaborators using the Weizsäcker-Skyrme global mass model (WS4), allowing use of the latter to predict cross sections for nuclei without experimental data. A good description of the scarce “optical” experimental database is achieved. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus formation cross sections, which is significantly different from that calculated with rigid-rotor potentials coupling the ground-state rotational band. The derived parameters can be used to describe both neutron- and proton-induced reactions. Supported by International Atomic Energy Agency, through the IAEA Research Contract 19263, by the Spanish Ministry of Economy and Competitivity under Contracts FPA2014-53290-C2-2-P and FPA2016-77689-C2-1-R.

  1. Nuclear security assessment with Markov model approach

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Terao, Norichika

    2013-01-01

    Nuclear security risk assessment with the Markov model based on random event is performed to explore evaluation methodology for physical protection in nuclear facilities. Because the security incidences are initiated by malicious and intentional acts, expert judgment and Bayes updating are used to estimate scenario and initiation likelihood, and it is assumed that the Markov model derived from stochastic process can be applied to incidence sequence. Both an unauthorized intrusion as Design Based Threat (DBT) and a stand-off attack as beyond-DBT are assumed to hypothetical facilities, and performance of physical protection and mitigation and minimization of consequence are investigated to develop the assessment methodology in a semi-quantitative manner. It is shown that cooperation between facility operator and security authority is important to respond to the beyond-DBT incidence. (author)

  2. Light radiation pressure upon a wrinkled membrane – parametrization of an optically orthotropic model

    Science.gov (United States)

    Nerovny, N. A.; Zimin, V. N.

    2018-04-01

    In this paper, the problem of representing the light pressure force upon the surface of a thin wrinkled film is discussed. The common source of wrinkles is the shear deformation of the membrane sample. The optical model of such a membrane is assumed to be optically orthotropic and an analytic equation for infinitesimal light pressure force is written. A linear regression model in the case of wrinkle geometry, where a surface element can have different optical parameters, is constructed and the Bayesian approach is used to calculate the parameters of this model.

  3. V International Conference of Photonics and Information Optics

    International Nuclear Information System (INIS)

    Evtikhiev, NN

    2016-01-01

    Preface This special volume of JPCS contains the “Proceedings of the V International conference on photonics and information optics (PhIO 2016)”. The conference was held in Moscow, Russian Federation in February 3-5, 2016. Organizers of the conference: • The Russian Academy of Sciences • National Research Nuclear University «MEPhI» (Moscow Engineering Physics Institute). The conference included 10 meetings in total: two plenary sessions and eight section meetings, also poster sessions took place. 100 oral and more than 120 poster reports were presented by scientists from 130 organizations of more than 10 countries. The V International conference on photonics and information optics carried on traditions of previous forums held in National Research Nuclear University «MEPhI» (Moscow Engineering Physics Institute): wide range of topics, broad scope of participants and the involvement of young scientists and students. Relevance and importance of researches on photonics and information optics, need of an exchange of new ideas and methods between experts both in the Russian Federation, and at the international level, cause noticeable interest in this conference not only among scientists of the CIS, but also in Europe and Asia. Chairmen of the program committee are members of the Presidium of the Russian Academy of Sciences, president of Kotelnikov Institute of Radio-engineering and Electronics of the Russian Academy of Sciences, academician Yu.V. Gulyaev and head of the Laser Physics Department of National Research Nuclear University «MEPhI» (Moscow Engineering Physics Institute), professor N.N. Evtikhiev Conference themes: coherent and nonlinear optics, fiber and integrated optics, optics of crystals and acousto-optics, interaction of radiation with matter and optical materials, optical measurements and biophotonics, holography and digital optics, optical communication and optoelectronic data processing. The articles based on materials, selected by the

  4. Wave-optics modeling of the optical-transport line for passive optical stochastic cooling

    Science.gov (United States)

    Andorf, M. B.; Lebedev, V. A.; Piot, P.; Ruan, J.

    2018-03-01

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream "pickup" undulator to the downstream "kicker" undulator. In this paper, we present simulation results using wave-optics calculation carried out with the SYNCHROTRON RADIATION WORKSHOP (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.

  5. Development and investigation of aggregate models for nuclear objects with time shifts

    International Nuclear Information System (INIS)

    Gharakhanlou, J.; Kazachkov, I.V.

    2012-01-01

    The development and investigation of aggregate models for nuclear objects with shift arguments are discussed.The nonlinear differential equations of the model are described and the Cauchy problem is stated. The specific feature of the mathematical model for potentially hazardous nuclear objects are analyzed and computer simulation is presented

  6. Finite element modeling of AP1000 nuclear island

    International Nuclear Information System (INIS)

    Tinic, S.; Orr, R.

    2003-01-01

    The AP1000 is a standard design developed by Westinghouse and its partners for an advanced nuclear power plant utilizing passive safety features. It is based on the certified design of the AP600 and has been uprated to 1000 MWe. The plant has five principal building structures; the nuclear island, the turbine building; the annex building; the diesel generator building and the radwaste building. The nuclear island consists of the containment building (the steel containment vessel and the containment internal structures), the shield building, and the auxiliary building. These structures are founded on a common basemat and are collectively known as the nuclear island. This paper describes use of the general purpose finite element program ANSYS [2] in structural analyses and qualification of the AP1000 nuclear island buildings. It describes the modeling of the shield building and the auxiliary building and the series of analyses and the flow of information from the global analyses to the detailed analyses and building qualification. (author)

  7. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald [Colorado State Univ., Fort Collins, CO (United States); El-Azab, Anter [Florida State Univ., Tallahassee, FL (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Polyakov, Peter [Univ. of Wyoming, Laramie, WY (United States); Tavener, Simon [Colorado State Univ., Fort Collins, CO (United States); Xiu, Dongbin [Purdue Univ., West Lafayette, IN (United States); Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis for computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.

  8. Model Action Plan for Nuclear Forensics and Nuclear Attribution

    International Nuclear Information System (INIS)

    Dudder, G B; Niemeyer, S; Smith, D K; Kristo, M J

    2004-01-01

    Nuclear forensics and nuclear attribution have become increasingly important tools in the fight against illegal trafficking in nuclear and radiological materials. This technical report documents the field of nuclear forensics and nuclear attribution in a comprehensive manner, summarizing tools and procedures that have heretofore been described independently in the scientific literature. This report also provides national policy-makers, decision-makers, and technical managers with guidance for responding to incidents involving the interdiction of nuclear and radiological materials. However, due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. In fact, there are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Most of the laboratories that have the requisite equipment, personnel, and experience to perform nuclear forensic analysis are participants in the Nuclear Smuggling International Technical Working Group or ITWG (see Section 1.8). Consequently, there is a need to disseminate information on an appropriate response to incidents of nuclear smuggling, including a comprehensive approach to gathering evidence that meets appropriate legal standards and to developing insights into the source and routes of nuclear and radiological contraband. Appendix A presents a ''Menu of Options'' for other Member States to request assistance from the ITWG Nuclear Forensics Laboratories (INFL) on nuclear forensic cases

  9. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    Science.gov (United States)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  10. Development of a computerized system for the storage, retrieval and optimization of optical model parameters for nuclear data computations. Final report for IAEA technical contract No. 7408/RB/TC

    International Nuclear Information System (INIS)

    Avrigeanu, M.; Avrigeanu, V.

    1994-09-01

    A proposal for an optical potential parameter compilation format like-EXFOR system is presented, in total agreement with the structure of EXFOR. With respect to the primary RIPL objectives, an extended subroutine SYSPOT of the widely-used optical model code SCAT2, which is actually a library of global and regional optical potential parameter sets, could be well-suited. A version which allows the use of a great part of published potentials is also given. (Author) 1 Tab., 21 Refs

  11. Establishing an experimental model of photodynamic induced anterior ischemic optic neuropathy

    Institute of Scientific and Technical Information of China (English)

    Runsheng Wang; Xiaodi Wang; Peilin Lü; Jianwei Bai; Jianzhou Wang; Xiaoqin Lei; Xiaoliang Zhou; Hongfen Sun; Aizhu Pan

    2006-01-01

    BACKGROUND: Scholars have supposed to establish animal models of optic neuropathy by pressing and partially amputating optic nerve, increasing intraocular pressure and injecting vasoconstrictor, etc., but the models are greatly different from anterior ischemia optic neuropathy. Therefore, a more ideal method is needed to establish animal model of anterior ischemic optic neuropathy (AION).OBJECTIVE: To establish AION models in rats, observe the functional changes of fundus, fundus fluorescein angiography (FFA), optical coherence tomography (OCT), flash visual evoked potential (F-VEP), and histopathologically confirm its reliability.DESIGN: A randomized control trial.SETTINGS: Department of Ophthalmology, Xi'an Fourth Hospital; Xi'an Institute of Ocular Fundus Diseases.MATERIALS: The experiments were carried out in the research room of Xi'an Institute of Ocular Fundus Diseases from February 2005 to May 2006. Thirty healthy male SD rats of 4-5 weeks old, weighing 140-160 g,were provided by the animal experimental center of the Fourth Military Medical University of Chinese PLA [SCXK (Military)2002-005], and those without eye disease examined by slit lamp and direct ophthalmoscope after mydriasis were enrolled. The conditions for feeding mice without special pathogen were strictly followed.The rats were randomly divided into blank control group (n =5), laser group (n =5), hematoporphyrin derivative (HPD) group and AION group (n =15), each group was numbered randomly. For each rat, the right eye was taken as the experimental eye, and the left one as the control one.METHODS: In the AION group, the rats were injected with HPD (10 mg/kg) via caudal vein, and then the optic discs were exposed to krypton red (647 nm, 80 mV) for 120 s, and the rats were in avoidance of light for 2 weeks postoperatively. Rats in the laser group were only exposed to krypton red (647 nm, 80 mV) for 120 s, and in avoidance of light for 2 weeks postoperatively; Those in the HPD group were only

  12. Nuclear Data and Measurements Series: The energy dependence of the optical-model potential for fast-neutron scattering from bismuth

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Lawson, R.D.

    1987-05-01

    Neutron differential-elastic-scattering cross sections of bismuth were measured at 0.5 MeV intervals from 4.5 to 10.0 MeV. At each incident energy ≥40 differential values were obtained, distributed between 18 0 and 160 0 . The measured data were combined with lower-energy results previously reported from this laboratory, and others available in the literature, to provide a detailed data base extending from 1.5 to 10.0 MeV. This data base was interpreted in terms of the conventional optical-statistical model and also a model inclusive of the surface-peaked real potential predicted by the dispersion relation. Particular attention was given to the energy dependence of the volume-integral-per-nucleon of the real potential, J/sub v/, to see if there was evidence of the Fermi Surface Anomaly. In the range 3.0 to 10.0 MeV the present data indicate that dJ/sub v//dE is essentially constant, with a relatively large negative value of -6.0 to -9.0 fm 3 , depending on the model used in the analysis. Below 3.0 MeV, there is some evidence for a decrease in the magnitude of dJ/dE. However, the effect is very small and it is only when this trend is combined with considerations of the J/sub v/ values needed to give correct bound-state energies that evidence for the Fermi Surface Anomaly emerges. J/sub v/ and the geometry of the optical potentials found for 209 Bi become equal to those needed to explain the high-energy 208 Pb data at about 10.0 MeV. Since dJ/sub v//dE for the latter is smaller in magnitude than for 209 Bi, a change in dJ/sub v//dE is clearly indicated near 10.0 MeV. This may effect the extrapolation of higher-energy and charged-particle potentials into the lower-energy neutron domain. 47 refs., 9 figs

  13. Explosion-evaporation model for fragment production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.; Randrup, J.

    1981-01-01

    Nuclear collisions at intermediate energies may create transient systems of hot nuclear matter that decay into many nuclear fragments. The disassembly of such a nuclear fireball is described as a two-stage process. In the primary explosion stage the system quickly fragments into nucleons and composite nuclei according to the available phase space. The explosion produces excited nuclei with half-lives longer than the time associated with the breakup. In the secondary evaporation stage, these nuclei decay, first by sequential emission of light particles (neutrons, protons, alphas), later by electromagnetic radiation. The secondary stage in general changes the relative abundancies of the various fragment species. This general feature makes it essential to take account of the composite fragments before using d/p as a measure of the entropy of the initial source. The formation of unbound nuclei at the explosion stage also has the desirable effect of enhancing the final abundancies of particularly stable nuclei, e.g., 4 He. For neutron-excessive sources the presence of composite nuclei amplifies the ratio of observed neutrons and protons; this effect persists for heavier mirror systems. Predictions of the model are qualitatively compared to available experimental data. The model offers a convenient way to augment existing dynamical models, such as intra-nuclear cascade and nuclear fluid dynamics, to yield actual nuclear fragments rather than merely matter distributions

  14. Nuclear reactor fuel rod behavior modelling and current trends

    International Nuclear Information System (INIS)

    Colak, Ue.

    2001-01-01

    Safety assessment of nuclear reactors is carried out by simulating the events to taking place in nuclear reactors by realistic computer codes. Such codes are developed in a way that each event is represented by differential equations derived based on physical laws. Nuclear fuel is an important barrier against radioactive fission gas release. The release of radioactivity to environment is the main concern and this can be avoided by preserving the integrity of fuel rod. Therefore, safety analyses should cover an assessment of fuel rod behavior with certain extent. In this study, common approaches for fuel behavior modeling are discussed. Methods utilized by widely accepted computer codes are reviewed. Shortcomings of these methods are explained. Current research topics to improve code reliability and problems encountered in fuel rod behavior modeling are presented

  15. Comparison of stellar population model predictions using optical and infrared spectroscopy

    Science.gov (United States)

    Baldwin, C.; McDermid, R. M.; Kuntschner, H.; Maraston, C.; Conroy, C.

    2018-02-01

    We present Gemini/GNIRS cross-dispersed near-infrared spectra of 12 nearby early-type galaxies, with the aim of testing commonly used stellar population synthesis models. We select a subset of galaxies from the ATLAS3D sample which span a wide range of ages (single stellar population equivalent ages of 1-15 Gyr) at approximately solar metallicity. We derive star formation histories using four different stellar population synthesis models, namely those of Bruzual & Charlot, Conroy, Gunn & White, Maraston & Strömbäck and Vazdekis et al. We compare star formation histories derived from near-infrared spectra with those derived from optical spectra using the same models. We find that while all models agree in the optical, the derived star formation histories vary dramatically from model to model in the near-infrared. We find that this variation is largely driven by the choice of stellar spectral library, such that models including high-quality spectral libraries provide the best fits to the data, and are the most self-consistent when comparing optically derived properties with near-infrared ones. We also find the impact of age variation in the near-infrared to be subtle, and largely encoded in the shape of the continuum, meaning that the common approach of removing continuum information with a high-order polynomial greatly reduces our ability to constrain ages in the near-infrared.

  16. The nuclear single particle model

    International Nuclear Information System (INIS)

    Mang, H.

    1985-01-01

    Twenty years ago in December 1963 one half of the Nobel prize in Physics was awarded to Maria Goeppert-Mayer and Johannes Daniel Jensen for their work on the nuclear shell model. They suggested independently that a strong spin-orbit force with the opposite sign of the one known from atomic physics should be added to the shell-model potential. This proved to be the crucial new idea, because then all the bits of and pieces of evidence that had accumulated over the years fell into place. The author begins with the basic assumption: In a nucleus nucleons move almost independently of each other in an average or shell-model potential. He then provides experimental evidence plausibility arguments and mathematical deductions

  17. Wave-Optics Modeling of the Optical-Transport Line for Passive Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, M. B. [NICADD, DeKalb; Lebedev, V. A. [Fermilab; Piot, P. [Fermilab; Ruan, J. [Fermilab

    2018-03-01

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsytem critical to the OSC scheme is the focusing optics used to image radiation from the upstream "pickup" undulator to the downstream "kicker" undulator. In this paper, we present simulation results using wave-optics calculation carried out with the {\\sc Synchrotron Radiation Workshop} (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.

  18. A constrained dispersive optical model for the neutron-nucleus interaction from -80 to +80 MeV for the mass region 27≤A≤32

    International Nuclear Information System (INIS)

    Al-Ohali, M.A.; Howell, C.R.; Tornow, W.; Walter, R.L.

    1995-01-01

    A Constrained Dispersive Optical Model (CDOM) analysis was performed for the neutron-nucleus interaction in the energy domain from -80 to 80 MeV for the three nuclei in the center of the 2s-1d shell nuclei. The CDOM incorporates the dispersion relation which connects the real and imaginary parts of the nuclear mean field. Parameters for the model were derived by fitting the neutron differential elastic cross-section, the total cross-section, and the analyzing power data for 27 Al, 28 Si, and 32 S. The parameters were also adjusted slightly to improve overall agreement to single-particle bound-state energies

  19. Mathematical Model of the One-stage Magneto-optical Sensor Based on Faraday Effect

    Science.gov (United States)

    Babaev, O. G.; Paranin, V. D.; Sinitsin, L. I.

    2018-01-01

    The aim of this work is to refine a model of magneto-optical sensors based on Faraday’s longitudinal magneto-optical effect. The tasks of the study include computer modeling and analysis of the transfer characteristic of a single-stage magneto-optical sensor for various polarization of the input beam and non-ideal optical components. The proposed mathematical model and software make it possible to take into account the non-ideal characteristics of film polaroids observed in operation in the near infrared region and at increased temperatures. On the basis of the results of the model analysis it was found that the dependence of normalized transmission T(γ2) has periodic nature. Choosing the angle (γ 2-γ 1) makes it possible to shift the initial operation point and change the sensitivity dT/dγ 2. The influence of the input beam polarization increases with the increase of polaroid parameter deviation from ideal and shows itself as reduction of modulation depth and angular shift of the sensor conversion response.

  20. Few-body models for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0198 (Japan); Aoyama, S., E-mail: aoyama@cc.niigata-u.ac.jp [Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Arai, K., E-mail: arai@nagaoka-ct.ac.jp [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  1. Experimental test of nuclear magnetization distribution and nuclear structure models

    International Nuclear Information System (INIS)

    Beirsdorfer, P; Crespo-Lopez-Urrutia, J R; Utter, S B.

    1999-01-01

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to place

  2. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael

    2010-01-01

    on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define......Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...

  3. Geometrical optics modeling of the grating-slit test.

    Science.gov (United States)

    Liang, Chao-Wen; Sasian, Jose

    2007-02-19

    A novel optical testing method termed the grating-slit test is discussed. This test uses a grating and a slit, as in the Ronchi test, but the grating-slit test is different in that the grating is used as the incoherent illuminating object instead of the spatial filter. The slit is located at the plane of the image of a sinusoidal intensity grating. An insightful geometrical-optics model for the grating-slit test is presented and the fringe contrast ratio with respect to the slit width and object-grating period is obtained. The concept of spatial bucket integration is used to obtain the fringe contrast ratio.

  4. Optical roughness BRDF model for reverse Monte Carlo simulation of real material thermal radiation transfer.

    Science.gov (United States)

    Su, Peiran; Eri, Qitai; Wang, Qiang

    2014-04-10

    Optical roughness was introduced into the bidirectional reflectance distribution function (BRDF) model to simulate the reflectance characteristics of thermal radiation. The optical roughness BRDF model stemmed from the influence of surface roughness and wavelength on the ray reflectance calculation. This model was adopted to simulate real metal emissivity. The reverse Monte Carlo method was used to display the distribution of reflectance rays. The numerical simulations showed that the optical roughness BRDF model can calculate the wavelength effect on emissivity and simulate the real metal emissivity variance with incidence angles.

  5. Global economics/energy/environmental (E3) modeling of long-term nuclear energy futures

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-01-01

    A global energy, economics, environment (E 3 ) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors

  6. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  7. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  8. Dysplastic hepatocytes develop nuclear inclusions in a mouse model of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Priyanka Thakur

    Full Text Available Viral hepatitis resulting in chronic liver disease is an important clinical challenge and insight into the cellular processes that drive pathogenesis will be critical in order to develop new diagnostic and therapeutic options. Nuclear inclusions in viral and non-viral hepatitis are well documented and have diagnostic significance in some disease contexts. However, the origins and functional consequences of these nuclear inclusions remain elusive. To date the clinical observation of nuclear inclusions in viral and non-viral hepatitis has not been explored at depth in murine models of liver disease. Herein, we report that in a transgenic model of hepatitis B surface antigen mediated hepatitis, murine hepatocytes exhibit nuclear inclusions. Cells bearing nuclear inclusions were more likely to express markers of cell proliferation. We also established a correlation between these inclusions and oxidative stress. N-acetyl cysteine treatment effectively reduced oxidative stress levels, relieved endoplasmic reticulum (ER stress, and the number of nuclear inclusions we observed in the transgenic mice. Our results suggest that the presence of nuclear inclusions in hepatocytes correlates with oxidative stress and cellular proliferation in a model of antigen mediated hepatitis.

  9. Development on Dose Assessment Model of Northeast Asia Nuclear Accident Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Yub; Kim, Ju Youl; Kim, Suk Hoon; Lee, Seung Hee; Yoon, Tae Bin [FNC Techology, Yongin (Korea, Republic of)

    2016-05-15

    In order to support the emergency response system, the simulator for overseas nuclear accident is under development including source-term estimation, atmospheric dispersion modeling and dose assessment. The simulator is named NANAS (Northeast Asia Nuclear Accident Simulator). For the source-term estimation, design characteristics of each reactor type should be reflected into the model. Since there are a lot of reactor types in neighboring countries, the representative reactors of China, Japan and Taiwan have been selected and the source-term estimation models for each reactor have been developed, respectively. For the atmospheric dispersion modeling, Lagrangian particle model will be integrated into the simulator for the long range dispersion modeling in Northeast Asia region. In this study, the dose assessment model has been developed considering external and internal exposure. The dose assessment model has been developed as a part of the overseas nuclear accidents simulator which is named NANAS. It addresses external and internal pathways including cloudshine, groundshine and inhalation. Also, it uses the output of atmospheric dispersion model (i.e. the average concentrations of radionuclides in air and ground) and various coefficients (e.g. dose conversion factor and breathing rate) as an input. Effective dose and thyroid dose for each grid in the Korean Peninsula region are printed out as a format of map projection and chart. Verification and validation on the dose assessment model will be conducted in further study by benchmarking with the measured data of Fukushima Daiichi Nuclear Accident.

  10. Constituent quark model for nuclear stopping in high energy nuclear collisions

    International Nuclear Information System (INIS)

    Choi, T.K.; Maruyama, M.; Takagi, F.

    1997-01-01

    We study nuclear stopping in high energy nuclear collisions using the constituent quark model. It is assumed that wounded nucleons with a different number of interacted quarks hadronize in different ways. The probabilities of having such wounded nucleons are evaluated for proton-proton, proton-nucleus, and nucleus-nucleus collisions. After examining our model in proton-proton and proton-nucleus collisions and fixing the hadronization functions, it is extended to nucleus-nucleus collisions. It is used to calculate the rapidity distribution and the rapidity shift of final-state protons in nucleus-nucleus collisions. The computed results are in good agreement with the experimental data on 32 S+ 32 S at E lab =200A GeV and 208 Pb+ 208 Pb at E lab =160A GeV. Theoretical predictions are also given for proton rapidity distribution in 197 Au+ 197 Au at √(s)=200A GeV (BNL-RHIC). We predict that the nearly baryon-free region will appear in the midrapidity region and the rapidity shift is left-angle Δy right-angle=2.24

  11. Optical modelling of photoluminescence emitted by thin doped films

    International Nuclear Information System (INIS)

    Pigeat, P.; Easwarakhanthan, T.; Briancon, J.L.; Rinnert, H.

    2011-01-01

    Photoluminescence (PL) spectra emitted by doped films are deformed owing to film thickness-dependent wave interference. This hampers knowing well their PL generating mechanisms as well as designing photonic devices with suitable geometries that improve their PL efficiency. We develop in this paper an energy model for PL emitted by doped films considering the interaction between the wavelength-differing incident standing and emitted waves, their energy transfer in-between, and the interferences undergone by both. The film optical constants are estimated fitting the model to the measured PL. This simple model has thus allowed us to interpret the evolution of PL emitted by Er-doped AlN films prepared on Si substrates by reactive magnetron sputtering. The shapes, the amplitudes, and the illusive sub-spectral features of the PL spectra depend essentially on the film thickness. The model further predicts high sensitivity for PL emitted by non-homogenously doped stacked-films to incident light wavelengths and film-thickness variations. This property has potential applications in tracking wavelength variations and in measuring physical quantities producing thickness variations. This model may be used to optimise PL efficiency of photonic devices through different film geometries and optical properties.

  12. Role and use of nuclear theories and models in practical evaluation of neutron nuclear data needed for fission and fusion reactor design and other nuclear applications

    International Nuclear Information System (INIS)

    Prince, A.

    1975-01-01

    A review of the various nuclear models used in the evaluation of neutron nuclear data for fission and fusion reactors is presented. Computer codes embodying the principles of the relevant nuclear models are compared with each other and with experimental data. The regions of validity and limitations of the conceptual formalisms are also included, along with the effects of the numerical procedures used in the codes themselves. Conclusions and recommendations for future demands are outlined.15 tables, 15 figures, 90 references

  13. Modeling a space-based quantum link that includes an adaptive optics system

    Science.gov (United States)

    Duchane, Alexander W.; Hodson, Douglas D.; Mailloux, Logan O.

    2017-10-01

    Quantum Key Distribution uses optical pulses to generate shared random bit strings between two locations. If a high percentage of the optical pulses are comprised of single photons, then the statistical nature of light and information theory can be used to generate secure shared random bit strings which can then be converted to keys for encryption systems. When these keys are incorporated along with symmetric encryption techniques such as a one-time pad, then this method of key generation and encryption is resistant to future advances in quantum computing which will significantly degrade the effectiveness of current asymmetric key sharing techniques. This research first reviews the transition of Quantum Key Distribution free-space experiments from the laboratory environment to field experiments, and finally, ongoing space experiments. Next, a propagation model for an optical pulse from low-earth orbit to ground and the effects of turbulence on the transmitted optical pulse is described. An Adaptive Optics system is modeled to correct for the aberrations caused by the atmosphere. The long-term point spread function of the completed low-earth orbit to ground optical system is explored in the results section. Finally, the impact of this optical system and its point spread function on an overall quantum key distribution system as well as the future work necessary to show this impact is described.

  14. Solving the nuclear shell model with an algebraic method

    International Nuclear Information System (INIS)

    Feng, D.H.; Pan, X.W.; Guidry, M.

    1997-01-01

    We illustrate algebraic methods in the nuclear shell model through a concrete example, the fermion dynamical symmetry model (FDSM). We use this model to introduce important concepts such as dynamical symmetry, symmetry breaking, effective symmetry, and diagonalization within a higher-symmetry basis. (orig.)

  15. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  16. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  17. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  18. Integration of facility modeling capabilities for nuclear nonproliferation analysis

    International Nuclear Information System (INIS)

    Garcia, Humberto; Burr, Tom; Coles, Garill A.; Edmunds, Thomas A.; Garrett, Alfred; Gorensek, Maximilian; Hamm, Luther; Krebs, John; Kress, Reid L.; Lamberti, Vincent; Schoenwald, David; Tzanos, Constantine P.; Ward, Richard C.

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  19. Integration Of Facility Modeling Capabilities For Nuclear Nonproliferation Analysis

    International Nuclear Information System (INIS)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  20. Caustic meso-optical confocal microscope for vertical particle tracks. Proposal

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1995-01-01

    The principal of the proposed caustic meso-optical microscope for vertical particle tracks in the nuclear photoemulsion is explained. The results of the experiments performed to illustrate the main features of this new meso-optical microscope are given. The proposed caustic meso-optical microscope for vertical particle tracks in the nuclear photoemulsion can be effectively used in the experimental investigation of such rare processes as ν μ - ν τ oscillations and of the Pb-Pb interactions. 2 refs., 7 figs

  1. Program POD; A computer code to calculate nuclear elastic scattering cross sections with the optical model and neutron inelastic scattering cross sections by the distorted-wave born approximation

    International Nuclear Information System (INIS)

    Ichihara, Akira; Kunieda, Satoshi; Chiba, Satoshi; Iwamoto, Osamu; Shibata, Keiichi; Nakagawa, Tsuneo; Fukahori, Tokio; Katakura, Jun-ichi

    2005-07-01

    The computer code, POD, was developed to calculate angle-differential cross sections and analyzing powers for shape-elastic scattering for collisions of neutron or light ions with target nucleus. The cross sections are computed with the optical model. Angle-differential cross sections for neutron inelastic scattering can also be calculated with the distorted-wave Born approximation. The optical model potential parameters are the most essential inputs for those model computations. In this program, the cross sections and analyzing powers are obtained by using the existing local or global parameters. The parameters can also be inputted by users. In this report, the theoretical formulas, the computational methods, and the input parameters are explained. The sample inputs and outputs are also presented. (author)

  2. Development of optical apparatus with remote analysis in nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Cha, Byung Heon; Ko, Do Kyeong; Cha, Hyeong Ky

    1999-12-01

    Optical apparatus with remote analysis was developed. It is composed with Dye laser, optical fiber and optical transmitter, and optical corrector. Laser light is arming in untested sample, and there is back scattered fluorescence. Material is identified by detecting and analysis of this fluorescence. Liquid and solid dye laser was carry out. The maximum efficiency was up to 34 percent. and the divergency and bandwidth of laser light are 2 mrad and 4.2 GHz, respectively. A dye laser with two wavelength was also carry out. 3 inch optical transmitter with fluorite lens was developed and the spatial resolution was less than 2 arc sec. And large optical corrector with 6 inch was developed and that mirror was coated by enhanced aluminum. Thus the efficiency was up to 92 percent. (author)

  3. Documentation of a Model Action Plan to Deter Illicit Nuclear Trafficking

    International Nuclear Information System (INIS)

    Smith, D; Kristo, M; Niemeyer, S; Dudder, G

    2006-01-01

    Theft, illegal possession, smuggling, or attempted unauthorized sale of nuclear and radiological materials remains a worldwide problem. The Nuclear Smuggling International Technical Working Group (ITWG) has adopted a model action plan to guide investigation of these cases through a systematic approach to nuclear forensics. The model action plan was recently documented and provides recommendations concerning incident response, collection of evidence in conformance with required legal standards, laboratory sampling and distribution of samples, radioactive materials analysis, including categorization and characterization of samples, forensics analysis of conventional evidence, and case development including interpretation of forensic signatures

  4. Documentation of a model action plan to deter illicit nuclear trafficking

    International Nuclear Information System (INIS)

    Smith, D.K.; Kristo, M.J.; Niemeyer, S.; Dudder, G.B.

    2008-01-01

    Theft, illegal possession, smuggling, or attempted unauthorized sale of nuclear and radiological materials remains a worldwide problem. The Nuclear Smuggling International Technical Working Group (ITWG) has adopted a model action plan to guide investigation of these cases through a systematic approach to nuclear forensics. The model action plan was recently documented and provides recommendations concerning incident response, collection of evidence in conformance with required legal standards, laboratory sampling and distribution of samples, radioactive materials analysis, including categorization and characterization of samples, forensics analysis of conventional evidence, and case development including interpretation of forensic signatures. (author)

  5. Some Advances in the Circuit Modeling of Extraordinary Optical Transmission

    Directory of Open Access Journals (Sweden)

    F. Medina

    2009-06-01

    Full Text Available The phenomenon of extraordinary optical transmission (EOT through electrically small holes perforated on opaque metal screens has been a hot topic in the optics community for more than one decade. This experimentally observed frequency-selective enhanced transmission of electromagnetic power through holes, for which classical Bethe's theory predicts very poor transmission, later attracted the attention of engineers working on microwave engineering or applied electromagnetics. Extraordinary transmission was first linked to the plasma-like behavior of metals at optical frequencies. However, the primary role played by the periodicity of the distribution of holes was soon made evident, in such a way that extraordinary transmission was disconnected from the particular behavior of metals at optical frequencies. Indeed, the same phenomenon has been observed in the microwave and millimeter wave regime, for instance. Nowadays, the most commonly accepted theory explains EOT in terms of the interaction of the impinging plane wave with the surface plasmon-polariton-Bloch waves (SPP-Bloch supported by the periodically perforated plate. The authors of this paper have recently proposed an alternative model whose details will be briefly summarized here. A parametric study of the predictions of the model and some new potential extensions will be reported to provide additional insight.

  6. The glass model of Muelheim-Kaerlich nuclear power station

    International Nuclear Information System (INIS)

    Kuttruf, H.; Lemke, W.

    1986-01-01

    The glass model represents the nuclear steam generator system of Muelheim-Kaerlich nuclear power station on a scale of 1:25 and in simplified form, so that the thermohydraulic behaviour in both normal operational and fault conditions can be represented. A set-up time of about one hour results in a helpful aid to instruction. (orig.) [de

  7. Exact solutions to a schematic nuclear quark model and colorless superconductivity

    DEFF Research Database (Denmark)

    Bohr, Henrik; da Providencia, Joao

    2008-01-01

    Exact solutions are found to the equations of a standard nuclear quark model exemplified by the Bonn model which is defined in terms of an effective pairing force. We show, by symmetry arguments, that, in general, the ground state of this model is not color neutral. In particular, color-neutral s......Exact solutions are found to the equations of a standard nuclear quark model exemplified by the Bonn model which is defined in terms of an effective pairing force. We show, by symmetry arguments, that, in general, the ground state of this model is not color neutral. In particular, color...

  8. One recommendation of nuclear power export. GDP model application to the countries which expressed nuclear power introduction and consideration

    International Nuclear Information System (INIS)

    Iida, Tekehiko

    2010-01-01

    South Korea has been excited in nuclear business after the success in the contract to build nuclear power plants in UAE. Since more than 60 countries expressed nuclear power introduction and new countries were on the rise with exporting reactor technology accumulated, new era over nuclear renaissance seems to begin. This article at first classified countries, which expressed nuclear power introduction, with an economic level of GDP per capita. Then each classified country's requirements of nuclear power introduction were taken into consideration such as economic development, consumption pattern and technology attitude. As a result recommendation of nuclear power export was proposed. Different approach to each country targeted was suggested as shown in 'nuclear power GDP model'. (T. Tanaka)

  9. CFD simulations in the nuclear containment using the DES turbulence models

    International Nuclear Information System (INIS)

    Ding, Peng; Chen, Meilan; Li, Wanai; Liu, Yulan; Wang, Biao

    2015-01-01

    Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions

  10. CFD simulations in the nuclear containment using the DES turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Peng [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Chen, Meilan [China Nuclear Power Technology Research Institute, Shenzhen (China); Li, Wanai, E-mail: liwai@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China); Liu, Yulan [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Wang, Biao [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China)

    2015-06-15

    Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions.

  11. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  12. Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Liang, Hongbo; You, Shijun; Zhang, Huan

    2016-01-01

    A PTC (parabolic trough solar collector) focuses direct solar radiation reflected by the reflector onto a receiver located on its focal line. The solar flux distribution on the absorber is non-uniform generally, thus it needs to carry out optical simulation to analyze the concentrated flux density and optical performance. In this paper, three different optical models based on ray tracing for a PTC were proposed and compared in detail. They were proved to be feasible and reliable in comparison with other literature. Model 1 was based on MCM (Monte Carlo Method). Model 2 initialized photon distribution with FVM (Finite Volume Method), and calculated reflection, transmission, and absorption by means of MCM. Model 3 utilized FVM to determine ray positions initially, while it changed the photon energy by multiplying reflectivity, transmissivity and absorptivity. The runtime and computation effort of Model 3 were approximately 40% and 60% of that of Model 1 in the present work. Moreover, the simulation result of Model 3 was not affected by the algorithm for generating random numbers, however, it needed to take account of suitable grid configurations for different sections of the system. Additionally, effects of varying the geometric parameters for a PTC on optical efficiency were estimated. Effect of offsetting the absorber in width direction of aperture was greater than that in its normal direction at the same offset distance, which was more obvious with offset distance increasing. Furthermore, absorber offset at the opposite direction of tracking error was beneficial for improving optical performance. The larger rim angle (≤90°) was, the less sensitive optical efficiency was to tracking error for the same aperture width of a PTC. In contrast, a larger aperture width was more sensitive to tracking error for a certain rim angle. - Highlights: • Three different optical models for parabolic trough solar collectors were derived. • Their running time, computation

  13. Designing tools for oil exploration using nuclear modeling

    Directory of Open Access Journals (Sweden)

    Mauborgne Marie-Laure

    2017-01-01

    Full Text Available When designing nuclear tools for oil exploration, one of the first steps is typically nuclear modeling for concept evaluation and initial characterization. Having an accurate model, including the availability of accurate cross sections, is essential to reduce or avoid time consuming and costly design iterations. During tool response characterization, modeling is benchmarked with experimental data and then used to complement and to expand the database to make it more detailed and inclusive of more measurement environments which are difficult or impossible to reproduce in the laboratory. We present comparisons of our modeling results obtained using the ENDF/B-VI and ENDF/B-VII cross section data bases, focusing on the response to a few elements found in the tool, borehole and subsurface formation. For neutron-induced inelastic and capture gamma ray spectroscopy, major obstacles may be caused by missing or inaccurate cross sections for essential materials. We show examples of the benchmarking of modeling results against experimental data obtained during tool characterization and discuss observed discrepancies.

  14. Elastic Network Model of a Nuclear Transport Complex

    Science.gov (United States)

    Ryan, Patrick; Liu, Wing K.; Lee, Dockjin; Seo, Sangjae; Kim, Young-Jin; Kim, Moon K.

    2010-05-01

    The structure of Kap95p was obtained from the Protein Data Bank (www.pdb.org) and analyzed RanGTP plays an important role in both nuclear protein import and export cycles. In the nucleus, RanGTP releases macromolecular cargoes from importins and conversely facilitates cargo binding to exportins. Although the crystal structure of the nuclear import complex formed by importin Kap95p and RanGTP was recently identified, its molecular mechanism still remains unclear. To understand the relationship between structure and function of a nuclear transport complex, a structure-based mechanical model of Kap95p:RanGTP complex is introduced. In this model, a protein structure is simply modeled as an elastic network in which a set of coarse-grained point masses are connected by linear springs representing biochemical interactions at atomic level. Harmonic normal mode analysis (NMA) and anharmonic elastic network interpolation (ENI) are performed to predict the modes of vibrations and a feasible pathway between locked and unlocked conformations of Kap95p, respectively. Simulation results imply that the binding of RanGTP to Kap95p induces the release of the cargo in the nucleus as well as prevents any new cargo from attaching to the Kap95p:RanGTP complex.

  15. Quantummechanical multi-step direct models for nuclear data applications

    International Nuclear Information System (INIS)

    Koning, A.J.

    1992-10-01

    Various multi-step direct models have been derived and compared on a theoretical level. Subsequently, these models have been implemented in the computer code system KAPSIES, enabling a consistent comparison on the basis of the same set of nuclear parameters and same set of numerical techniques. Continuum cross sections in the energy region between 10 and several hundreds of MeV have successfully been analysed. Both angular distributions and energy spectra can be predicted in an essentially parameter-free manner. It is demonstrated that the quantum-mechanical MSD models (in particular the FKK model) give an improved prediction of pre-equilibrium angular distributions as compared to the experiment-based systematics of Kalbach. This makes KAPSIES a reliable tool for nuclear data applications in the afore-mentioned energy region. (author). 10 refs., 2 figs

  16. Optical fibers and sensors for chemistry

    International Nuclear Information System (INIS)

    Perez, J.J.; Boisde, G.

    1988-01-01

    The idea of using optical fibers in nuclear environment occurs as soon as 1967, too soon for practical realizations. In 1973 the first glass fibers were made available in Switzerland. From 1973 to 1988 three periods show the development: conception from 1973 to 1978, technique strengthening from 1978 to 1983 and nuclear and non nuclear industrial development since 1983. 45 refs., 27 figs [fr

  17. JENDL-4.0: A new library for nuclear science and engineering

    International Nuclear Information System (INIS)

    Shibata, Keiichi; Iwamoto, Osamu; Nakagawa, Tsuneo; Iwamoto, Nobuyuki; Ichihara, Akira; Kunieda, Satoshi; Chiba, Satoshi; Furutaka, Kazuyoshi; Katakura, Jun-ichi; Otuka, Naohiko; Ohsawa, Takaaki; Murata, Toru; Matsunobu, Hiroyuki; Zukeran, Atsushi; Kamada, So

    2011-01-01

    The fourth version of the Japanese Evaluated Nuclear Data Library has been produced in cooperation with the Japanese Nuclear Data Committee. In the new library, much emphasis is placed on the improvements of fission product and minor actinoid data. Two nuclear model codes were developed in order to evaluate the cross sections of fission products and minor actinoids. Coupled-channel optical model parameters, which can be applied to wide mass and energy regions, were obtained for nuclear model calculations. Thermal cross sections of actinoids were carefully examined by considering experimental data or by the systematics of neighboring nuclei. Most of the fission cross sections were derived from experimental data. A simultaneous evaluation was performed for the fission cross sections of important uranium and plutonium isotopes above 10 keV. New evaluations were performed for the thirty fission-product nuclides that had not been contained in the previous library JENDL-3.3. The data for light elements and structural materials were partly reevaluated. Moreover, covariances were estimated mainly for actinoids. The new library was released as JENDL-4.0, and the data can be retrieved from the Web site of the JAEA Nuclear Data Center. (author)

  18. Methodology and preliminary models for analyzing nuclear-safeguards decisions

    International Nuclear Information System (INIS)

    Judd, B.R.; Weissenberger, S.

    1978-11-01

    This report describes a general analytical tool designed with Lawrence Livermore Laboratory to assist the Nuclear Regulatory Commission in making nuclear safeguards decisions. The approach is based on decision analysis - a quantitative procedure for making decisions under uncertain conditions. The report: describes illustrative models that quantify the probability and consequences of diverted special nuclear material and the costs of safeguarding the material; demonstrates a methodology for using this information to set safeguards regulations (safeguards criteria); and summarizes insights gained in a very preliminary assessment of a hypothetical reprocessing plant

  19. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

    OpenAIRE

    Zoulinakis, Georgios; Ferrer-Blasco, Teresa

    2017-01-01

    Purpose. To design an intraocular telescopic system (ITS) for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses’ placement in the eye model and their powers. Ray tracing in bot...

  20. The role and use of nuclear theories and models in practical evaluation of neutron nuclear data needed for fission and fusion reactor design and other nuclear applications

    International Nuclear Information System (INIS)

    Prince, A.

    1976-01-01

    A review of the various nuclear models used in the evaluation of neutron nuclear data for fission and fusion reactors is presented. Computer codes embodying the principles of the relevant nuclear models are compared with each other and with experimental data. The regions of validity and limitations of the conceptual formalisms are also included, along with the effects of the numerical procedures used in the codes themselves. Conclusions and recommendations for future demands are outlined. (author)

  1. Urban meteorological modelling for nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Baklanov, Alexander; Sorensen, Jens Havskov; Hoe, Steen Cordt; Amstrup, Bjarne

    2006-01-01

    The main objectives of the current EU project 'Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure' (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution and population dose models, the building of improved urban air quality information and forecasting systems, and their application in cities in various European climates. In addition to the forecast of the worst air-pollution episodes in large cities, the potential use of improved weather forecasts for nuclear emergency management in urban areas, in case of hazardous releases from nuclear accidents or terror acts, is considered. Such use of NWP data is tested for the Copenhagen metropolitan area and the Oresund region. The Danish Meteorological Institute (DMI) is running an experimental version of the HIRLAM NWP model over Zealand including the Copenhagen metropolitan area with a horizontal resolution of 1.4 km, thus approaching the city-scale. This involves 1-km resolution physiographic data with implications for the urban surface parameters, e.g. surface fluxes, roughness length and albedo. For the city of Copenhagen, the enhanced high-resolution NWP forecasting will be provided to demonstrate the improved dispersion forecasting capabilities of the Danish nuclear emergency preparedness decision-support system, the Accident Reporting and Guidance Operational System (ARGOS), used by the Danish Emergency Management Agency (DEMA). Recently, ARGOS has been extended with a capability of real-time calculation of regional-scale atmospheric dispersion of radioactive material from accidental releases. This is effectuated through on-line interfacing with the Danish Emergency Response Model of the Atmosphere (DERMA), which is run at DMI. For local-scale modelling of atmospheric dispersion, ARGOS utilises the Local-Scale Model Chain (LSMC), which makes use of high-resolution DMI

  2. Mechanical reliability assessment of optical fibres in Radiation environments

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2006-01-01

    After more than two decades of intensive research and even some pioneering applications in space, optical fibres are now finding their way in various radiation environments, including both fission and future fusion nuclear-power plants, and high-energy physics experiments. For example, next to distributed monitoring applications of large nuclear infrastructures, fibre-optics can also be used for data communications during maintenance operations in the reactor vessel of the future ITER (International Thermonuclear Experimental Reactor), or for plasma diagnostics applications during operation of the reactor. These maintenance and diagnostics tasks require the optical fibres to withstand extremely high doses of radiation, up to MGy dose levels and temperatures above 150 degrees Celsius. The reliability assessment of fibre-optic systems for their qualification in nuclear environments often requires to meet stringent radiation tolerance levels. The majority of (usually accelerated) radiation assessments have so far focused on optical properties, such as wavelength-dependent radiation induced attenuation and radio-luminescence. The relation of these radiation effects with the fabrication methods and other environmental parameters has been the subject of years of research. Only a few results are available on the long-term evolution of mechanical properties of irradiated optical fibres. As a first step towards understanding the long-term reliability of fibre-optic composite cables in hostile radiation environments, we therefore performed dynamic fatigue tests with different commercial-grade optical fibres, both multi-mode and single-mode types

  3. Research on development model of nuclear component based on life cycle management

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    At present the development process of nuclear component, even nuclear component itself, is more and more supported by computer technology. This increasing utilization of the computer and software has led to the faster development of nuclear technology on one hand and also brought new problems on the other hand. Especially, the combination of hardware, software and humans has increased nuclear component system complexities to an unprecedented level. To solve this problem, Life Cycle Management technology is adopted in nuclear component system. Hence, an intensive discussion on the development process of a nuclear component is proposed. According to the characteristics of the nuclear component development, such as the complexities and strict safety requirements of the nuclear components, long-term design period, changeable design specifications and requirements, high capital investment, and satisfaction for engineering codes/standards, the development life-cycle model of nuclear component is presented. The development life-cycle model is classified at three levels, namely, component level development life-cycle, sub-component development life-cycle and component level verification/certification life-cycle. The purposes and outcomes of development processes are stated in detailed. A process framework for nuclear component based on system engineering and development environment of nuclear component is discussed for future research work. (authors)

  4. Conservation laws and nuclear transport models

    International Nuclear Information System (INIS)

    Gale, C.; Das Gupta, S.

    1990-01-01

    We discuss the consequences of energy and angular momentum conservation for nucleon-nucleon scattering in a nuclear environment during high-energy heavy-ion collisions. We describe algorithms that ensure stricter enforcement of such conservation laws within popular microscopic models of intermediate-energy heavy-ion collisions. We find that the net effects on global observables are small

  5. Nuclear models and data for gamma-ray production

    International Nuclear Information System (INIS)

    Young, P.G.

    1975-01-01

    The current Evaluated Nuclear Data File (ENDF/B, Version IV) contains information on prompt gamma-ray production from neutron-induced reactions for some 38 nuclides. In addition, there is a mass of fission product yield, capture, and radioactive decay data from which certain time-dependent gamma-ray results can be calculated. These data are needed in such applications as gamma-ray heating calculations for reactors, estimates of radiation levels near nuclear facilities and weapons, shielding design calculations, and materials damage estimates. The prompt results are comprised of production cross sections, multiplicities, angular distributions, and energy spectra for secondary gamma-rays from a variety of reactions up to an incident neutron energy of 20 MeV. These data are based in many instances on experimental measurements, but nuclear model calculations, generally of a statistical nature, are also frequently used to smooth data, to interpolate between measurements, and to calculate data in unmeasured regions. The techniques and data used in determining the ENDF/B evaluations are reviewed, and comparisons of model-code calculations and ENDF data with recent experimental results are given. 11 figures

  6. Numerical modelling of multimode fibre-optic communication lines

    Energy Technology Data Exchange (ETDEWEB)

    Sidelnikov, O S; Fedoruk, M P [Novosibirsk State University, Novosibirsk (Russian Federation); Sygletos, S; Ferreira, F [Aston University, England, Birmingham, B4 7ET (United Kingdom)

    2016-01-31

    The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)

  7. Pre-equilibrium nuclear reactions: An introduction to classical and quantum-mechanical models

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1999-01-01

    In studies of light-ion induced nuclear reactions one distinguishes three different mechanisms: direct, compound and pre-equilibrium nuclear reactions. These reaction processes can be subdivided according to time scales or, equivalently, the number of intranuclear collisions taking place before emission. Furthermore, each mechanism preferably excites certain parts of the nuclear level spectrum and is characterized by different types of angular distributions. This presentation includes description of the classical, exciton model, semi-classical models, with some selected results, and quantum mechanical models. A survey of classical versus quantum-mechanical pre-equilibrium reaction theory is presented including practical applications

  8. Modeling the optimal management of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nachlas, J.A.; Kurstedt, H.A. Jr.; Swindle, D.W. Jr.; Korcz, K.O.

    1977-01-01

    Recent governmental policy decisions dictate that strategies for managing spent nuclear fuel be developed. Two models are constructed to investigate the optimum residence time and the optimal inventory withdrawal policy for fuel material that presently must be stored. The mutual utility of the models is demonstrated through reference case application

  9. Common modelling approaches for training simulators for nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    Training simulators for nuclear power plant operating staff have gained increasing importance over the last twenty years. One of the recommendations of the 1983 IAEA Specialists' Meeting on Nuclear Power Plant Training Simulators in Helsinki was to organize a Co-ordinated Research Programme (CRP) on some aspects of training simulators. The goal statement was: ''To establish and maintain a common approach to modelling for nuclear training simulators based on defined training requirements''. Before adapting this goal statement, the participants considered many alternatives for defining the common aspects of training simulator models, such as the programming language used, the nature of the simulator computer system, the size of the simulation computers, the scope of simulation. The participants agreed that it was the training requirements that defined the need for a simulator, the scope of models and hence the type of computer complex that was required, the criteria for fidelity and verification, and was therefore the most appropriate basis for the commonality of modelling approaches. It should be noted that the Co-ordinated Research Programme was restricted, for a variety of reasons, to consider only a few aspects of training simulators. This report reflects these limitations, and covers only the topics considered within the scope of the programme. The information in this document is intended as an aid for operating organizations to identify possible modelling approaches for training simulators for nuclear power plants. 33 refs

  10. Implementing the correlated fermi gas nuclear model for quasielastic neutrino-nucleus scattering

    Science.gov (United States)

    Tockstein, Jameson

    2017-09-01

    When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. Neutrino experiments, such as MiniBooNE, often use the Relativistic Fermi Gas (RFG) nuclear model. Recently, the Correlated Fermi Gas (CFG) nuclear model was suggested in, based on inclusive and exclusive scattering experiments at JLab. We implement the CFG model for CCQE scattering. In particular, we provide analytic expressions for this implementation that can be used to analyze current and future neutrino CCQE data. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.

  11. Nuclear matter saturation in a U(1) circle-times chiral model

    International Nuclear Information System (INIS)

    Lin, Wei

    1989-01-01

    The mean-field approximation in the U(1) circle-times chiral model for nuclear matter maturation is reviewed. Results show that it cannot be the correct saturation mechanism. It is argued that in this chiral model, other than the fact the ω mass can depend on the density of nuclear matter, saturation is still quite like the Walecka picture. 16 refs., 3 figs

  12. Behavioral Model of High Performance Camera for NIF Optics Inspection

    International Nuclear Information System (INIS)

    Hackel, B M

    2007-01-01

    The purpose of this project was to develop software that will model the behavior of the high performance Spectral Instruments 1000 series Charge-Coupled Device (CCD) camera located in the Final Optics Damage Inspection (FODI) system on the National Ignition Facility. NIF's target chamber will be mounted with 48 Final Optics Assemblies (FOAs) to convert the laser light from infrared to ultraviolet and focus it precisely on the target. Following a NIF shot, the optical components of each FOA must be carefully inspected for damage by the FODI to ensure proper laser performance during subsequent experiments. Rapid image capture and complex image processing (to locate damage sites) will reduce shot turnaround time; thus increasing the total number of experiments NIF can conduct during its 30 year lifetime. Development of these rapid processes necessitates extensive offline software automation -- especially after the device has been deployed in the facility. Without access to the unique real device or an exact behavioral model, offline software testing is difficult. Furthermore, a software-based behavioral model allows for many instances to be running concurrently; this allows multiple developers to test their software at the same time. Thus it is beneficial to construct separate software that will exactly mimic the behavior and response of the real SI-1000 camera

  13. A modeling and control approach to advanced nuclear power plants with gas turbines

    International Nuclear Information System (INIS)

    Ablay, Günyaz

    2013-01-01

    Highlights: • Load frequency control strategies in nuclear plants are researched. • Nuclear reactor-centered control system may not be suitable for load control. • Local unit controllers improve stability and overall time constant. • Coolant loops in nuclear plants should be controlled locally. - Abstract: Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies

  14. MODELLING OF RADIONUCLIDE MIGRATION IN THE SYSTEM OF NUCLEAR POWER PLANT BIOLOGICAL PONDS

    Directory of Open Access Journals (Sweden)

    Ю. Кутлахмедов

    2011-04-01

    Full Text Available Migration of radionuclide coming from nuclear power plant into the system of biological pondsand then into the water reservoir-cooler is considered in the article. The theme of the work ismodeling of radionuclide migration process in the system of biological ponds on the example of thePivdennoukrainska nuclear power plant using chamber models method. Typical water ecosystemconsisting of three chambers (chamber-water, chamber-biota and chamber-bed silt was the basistaken by the authors. Application of chamber models method allowed authors to develop thedynamic chamber model of radionuclide migration in nuclear power plant biological ponds. Thismodel allows to forecast values and dynamics of radioactive water pollution based on limitedecosystem monitoring data. Thus, parameters of radioactive capacity of nuclear power plantbiological ponds system and water reservoir-cooler were modeled by authors, the estimation andprognosis of radionuclide distribution and accumulation in the system of nuclear power plantbiological ponds were done. Authors also explain the roles of basin water, biomass and bed silt inradionuclide deposition

  15. Relativistic nuclear physics with the spectator model

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    The spectator model, a general approach to the relativistic treatment of nuclear physics problems in which spectators to nuclear interactions are put on their mass-shell, will be defined nd described. The approach grows out of the relativistic treatment of two and three body systems in which one particle is off-shell, and recent numerical results for the NN interaction will be presented. Two meson-exchange models, one with only 4 mesons (π, σ, /rho/, ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with 6 mesons (π, σ, /rho/, ω, δ, and /eta/) but a pure γ 5 γ/sup mu/ pion coupling, are shown to give very good quantitative fits to NN scattering phase shifts below 400 MeV, and also a good description of the /rho/ 40 Cα elastic scattering observables. 19 refs., 6 figs., 1 tab

  16. Burnup effect on nuclear fuel cycle cost using an equilibrium model

    International Nuclear Information System (INIS)

    Youn, S. R.; Kim, S. K.; Ko, W. I.

    2014-01-01

    The degree of fuel burnup is an important technical parameter to the nuclear fuel cycle, being sensitive and progressive to reduce the total volume of process flow materials and eventually cut the nuclear fuel cycle costs. This paper performed the sensitivity analysis of the total nuclear fuel cycle costs to changes in the technical parameter by varying the degree of burnups in each of the three nuclear fuel cycles using an equilibrium model. Important as burnup does, burnup effect was used among the cost drivers of fuel cycle, as the technical parameter. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once Through Cycle(PWR-OT), PWR-MOX Recycle, Pyro-SFR Recycle. These fuel cycles are most likely to be adopted in the foreseeable future. As a result of the sensitivity analysis on burnup effect of each three different nuclear fuel cycle costs, PWR-MOX turned out to be the most influenced by burnup changes. Next to PWR-MOX cycle, in the order of Pyro-SFR and PWR-OT cycle turned out to be influenced by the degree of burnup. In conclusion, the degree of burnup in the three nuclear fuel cycles can act as the controlling driver of nuclear fuel cycle costs due to a reduction in the volume of spent fuel leading better availability and capacity factors. However, the equilibrium model used in this paper has a limit that time-dependent material flow and cost calculation is impossible. Hence, comparative analysis of the results calculated by dynamic model hereafter and the calculation results using an equilibrium model should be proceed. Moving forward to the foreseeable future with increasing burnups, further studies regarding alternative material of high corrosion resistance fuel cladding for the overall

  17. Fast neutrons and the optical model: some observations

    International Nuclear Information System (INIS)

    Smith, A.B.; Lawson, R.D.; Guenther, P.T.

    1985-01-01

    The optical model of fast-neutron-induced phenomena is considered from the observational viewpoint. Experimental characteristics governing the reliability of the modeling are outlined with attention to implications on model parameters and their uncertainties. The physical characteristics of experimentally-deduced ''regional'' and ''specific'' model parameters are examined including: parameter trends with mass and energy, implications of collective effects, and fundamental relations between real and imaginary potentials. These physical properties are illustrated by studies in the A=60 and 90 regions. General trends are identified and outstanding issues cited. Throughout, the approach is that of observational interpretation for basic and applied purposes. 20 refs., 11 figs., 2 tabs

  18. Feasibility Study on the Development of 2-channel Embedded Infrared Fiber-optic Sensor for Thermometry of Secondary Water System in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoo, W. J.; Jang, K. W.; Seo, J. K.; Moon, J.; Han, K. T.; Lee, B.; Park, B. G.

    2011-01-01

    Any warm object by measuring the emitted infrared (IR) radiation. The radiometers using infrared optical fibers are based on the relationship between the temperature of a heat source and the quality and the quantity of an IR radiation. To measure physical properties including a temperature, optical fiber-based sensor has many advantages, such as small size, low cost, high resolution, remote sensing and immunity to electromagnetic radiation over conventional electrical sensors. In this study, we carried out the feasibility study on the development of an embedded IR fiber-optic sensor for thermometry of the secondary water system in a nuclear power plant. The 2-channel embedded fiberoptic temperature sensor was fabricated using two identical IR optical fibers for accurate thermometry without complicated calibration processes. To decide accurate temperature of the water, we measured the difference between the IR radiations emitted from the two temperature sensing probes according to the temperature variation of the water

  19. Los Alamos nuclear enterprise resource and infrastructure model (LA-NERIM)

    International Nuclear Information System (INIS)

    Li, Ning; Dale, Crystal; Kern, Kristen; Scott, Sara

    2009-01-01

    In this nascent global 'Nuclear Renaissance', potential shortages of human resources and supply chains have become the top concerns for the policymakers and industry leaders. A number of industry studies have examined the potential supply shortages in qualified labors for specific deployment scenarios, the general shortage in nuclear engineers, and ways to ramp up educational and training pipelines. A Los Alamos National Laboratory team has been developing a nuclear enterprise resource and infrastructure model (LA-NERIM) to provide a dynamic and versatile tool for the systematic study of resource needs and flows. LA-NERIM is built around a stock-and-flow model of the nuclear fuel cycle model using the iThinkTM software, with modules and connections describing all the front-end, reactor operation and back-end processes. It is driven by nuclear power demand growth. We are using LA-NERIM to study the human resource development (HRD) needs for a number of scenarios for US and Russia. The US study includes a comparison of three scenarios of maintaining current capacity, expansion at 500 MWe/yr and maintaining current market share. We are also examining the impact of the sharply peaked demographics of the ageing US nuclear workforce on future growth. LA-NERIM can be modularized with more detailed labor categories and customer defined boundary conditions to provide high fidelity projection of dynamic staffing needs for nuclear vendors, owner/operators and suppliers. With different kinds of inputs, LA-NERIM can be used to project needs of other resources, such as concrete, steels, capital outlays and manufacturing capacities. Coupled with data from NFCSim, another Los Alamos code that calculates the quantities and isotopic compositions in the flows of nuclear materials throughout the fuel cycles, LA-NERIM has the potential to become a powerful and versatile system tool for policymakers and industry leaders to examine and compare the feasibilities and impacts of various

  20. Advanced modelling of optical coherence tomography systems

    International Nuclear Information System (INIS)

    Andersen, Peter E; Thrane, Lars; Yura, Harold T; Tycho, Andreas; Joergensen, Thomas M; Frosz, Michael H

    2004-01-01

    Analytical and numerical models for describing and understanding the light propagation in samples imaged by optical coherence tomography (OCT) systems are presented. An analytical model for calculating the OCT signal based on the extended Huygens-Fresnel principle valid both for the single and multiple scattering regimes is reviewed. An advanced Monte Carlo model for calculating the OCT signal is also reviewed, and the validity of this model is shown through a mathematical proof based on the extended Huygens-Fresnel principle. Moreover, for the first time the model is verified experimentally. From the analytical model, an algorithm for enhancing OCT images is developed; the so-called true-reflection algorithm in which the OCT signal may be corrected for the attenuation caused by scattering. For the first time, the algorithm is demonstrated by using the Monte Carlo model as a numerical tissue phantom. Such algorithm holds promise for improving OCT imagery and to extend the possibility for functional imaging