WorldWideScience

Sample records for nuclear modes analysis

  1. Seismic analysis of structures of nuclear power plants by Lanczos mode superposition method

    International Nuclear Information System (INIS)

    Coutinho, A.L.G.A.; Alves, J.L.D.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.

    1986-01-01

    The Lanczos Mode Superposition Method is applied in the seismic analysis of nuclear power plants. The coordinate transformation matrix is generated by the Lanczos algorithm. It is shown that, through a convenient choice of the starting vector of the algorithm, modes with participation factors are automatically selected. It is performed the Response Spectra analysis of a typical reactor building. The obtained results are compared with those determined by the classical aproach stressing the remarkable computer effectiveness of the proposed methodology. (Author) [pt

  2. Containment failure modes preliminary analysis for Atucha-I nuclear power plant during severe accidents

    International Nuclear Information System (INIS)

    Baron, J.; Caballero, C.; Zarate, S.M.

    1997-01-01

    The present work has the objective to analyze the containment behavior of the Atucha-I nuclear power plant during a severe accident, as part of a probabilistic safety assessment (PSA). Initially, a generic description of the containment failure modes considered in other PSAs is performed. Then, the possible containment failure modes for Atucha I are qualitatively analyzed, according to it design peculiarities. These failure modes involve some substantial differences from other PSAs, due to the particular design of Atucha I. Among others, it is studied the influence of: moderator/coolant separation, existence of cooling Zircaloy channels, existence of filling bodies inside the pressure vessel, reactor cavity geometry, on-line refueling mode, and existence of a double shell containment (steel and concrete) with an annular separation room. As a functions of the before mentioning analysis, a series of parameters to be taken into account is defined, on a preliminary basis, for definition of the plant damage states. (author) [es

  3. Failure modes and effects analysis as a design tool for nuclear safety systems

    International Nuclear Information System (INIS)

    Tashjian, B.M.

    1975-01-01

    The activities of nuclear power plant designers are monitored by government and industry to an unprecedented degree. This involves not only rigid design and quality assurance criteria, but extensive documentation and reporting. The failure modes and effects analysis (FMEA) is a technique for checking designs and assuring quality. Included in the FMEA is a system of documentation. A simplified example of the reactor protective system (RPS) is used to illustrate the method. (U.S.)

  4. Application of the failure modes and effects analysis technique to the emergency cooling system of an experimental nuclear power plant

    International Nuclear Information System (INIS)

    Conceicao Junior, Osmar; Silva, Antonio Teixeira e

    2009-01-01

    This study consists on the application of the failure modes and effects analysis (FMEA), a hazard identification and a risk assessment technique, to the emergency cooling system (ECS), of an experimental nuclear power plant. The choice of this technique was due to its detailed analysis of each component of the system, enabling the identification of all possible ways of failure and its related consequences (in order of importance), allowing the designer to improve the system, maximizing its security and reliability. Through the application of this methodology, it could be observed that the ECS is an intrinsically safe system, in spite of the modifications proposed. (author)

  5. Application of the failure modes and effects analysis technique to theemergency cooling system of an experimental nuclear power plant

    International Nuclear Information System (INIS)

    Conceicao Junior, Osmar

    2009-01-01

    This study consists on the application of the Failure Modes and EffectsAnalysis (FMEA), a hazard identification and a risk assessment technique, tothe Emergency Cooling System (ECS) of an experimental nuclear power plant,which is responsible for mitigating the consequences of an eventual loss ofcoolant accident on the Pressurized Water Reactor (PWR). Such analysisintends to identify possible weaknesses on the design of the system andpropose some improvements in order to maximize its reliability. To achievethis goal a detailed study of the system was carried on (through itstechnical documentation), the correspondent reliability block diagram wasobtained, the FMEA analysis was executed and, finally, some suggestions werepresented. (author)

  6. Application of FMEA-DEA (Failure Modes and Effect Analysis - Data Envelopment Analysis) to the air conditioning system of the control room a nuclear power plant

    International Nuclear Information System (INIS)

    Barbosa Junior, Gilberto Varanda

    2007-03-01

    This dissertation presents the FMEA-DEA analysis application to the air conditioning system of the control room of a nuclear power plant. After obtaining the failure modes, the index associated to the occurrence probability, the severity of the effects and the potential of detention, a priority order is established for the failure modes or deviations. This number is obtained by multiplying the three mentioned index that vary in a natural scale from 1 to 10, where the higher the index, the more critical the situation will be. In this work, it is intended to use a model based on the data envelopment analysis, DEA jointly with the FMEA, to identify the current efficiency of the system and which failure modes or deviations are considered more critical, and by means of the weights attributed for the mathematical modeling to identify which index are contributing more for these deviations. From this identification, improvements can be set, which may consider administrative changes, operator training and so on, thus adding value to the final product. (author)

  7. Nuclear scissors mode with pairing

    International Nuclear Information System (INIS)

    Balbutsev, E. B.; Malov, L. A.; Schuck, P.; Urban, M.; Vinas, X.

    2008-01-01

    The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method, taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment, and other relevant collective variables are derived on the basis of the time-dependent Hartree-Fock-Bogolyubov equations. Analytical expressions for energy centroids and transition probabilities are found for the harmonic-oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.

  8. Nuclear analysis

    International Nuclear Information System (INIS)

    1988-01-01

    Basic studies in nuclear analytical techniques include the examination of underlying assumptions and the development and extention of techniques involving the use of ion beams for elemental and mass analysis. 1 ref., 1 tab

  9. Analysis on optimization of the critical path for civil construction period of Fangjiashan nuclear island constructed under EPC mode

    International Nuclear Information System (INIS)

    Liu Yongqing; Wu Youcong; Qiu Jinhong

    2011-01-01

    Based on the actual situation of nuclear island civil construction in Fangjiashan nuclear power plant and combined with the arrangement of the construction schedule, the analysis on optimization of the critical path for civil construction period is conducted. The result shows that on the premise of not increasing the contract price and the total engineering cost based on the original 57-month construction period, the construction period can be shorten to 21 month through strengthening the schedule control, keeping the critical work in a reasonable duration and rearranging the link between programmers. In addition, in view of the economic analysis, if we increase the mechanical engagement and adopt special method, the 2-month construction period can be even shortened to 20 months. (authors)

  10. Compression modes and the nuclear matter incompressibility ...

    Indian Academy of Sciences (India)

    We review the current status of the nuclear matter ( = and no Coulomb interaction) incompressibility coefficient, , and describe the theoretical and the experimental methods used to determine from properties of compression modes in nuclei. In particular we consider the long standing problem of the conflicting ...

  11. Nuclear scissors modes and hidden angular momenta

    Energy Technology Data Exchange (ETDEWEB)

    Balbutsev, E. B., E-mail: balbuts@theor.jinr.ru; Molodtsova, I. V. [Joint Institute for Nuclear Research (Russian Federation); Schuck, P. [Université Paris-Sud, Institut de Physique Nucléaire, IN2P3–CNRS (France)

    2017-01-15

    The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time-Dependent Hartree–Fock–Bogoliubov equations. The model of the harmonic oscillator including spin–orbit potential plus quadrupole–quadrupole and spin–spin interactions is considered. New low-lying spin-dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.

  12. Hyperfission - a new mode of nuclear fission

    International Nuclear Information System (INIS)

    Ion, D.B.; Ivascu, M.; Ion-Mihai, R.

    1988-02-01

    In this paper the nuclear hyperfission as a new mode of fission, possible for heavy elements with Z > 92, is investigated. The Q-systematics, hyperfissibility parameters, hyperfission barrier as well as the essential hindrance factors are presented. The hyperfission hindrance factor relative to that of fission is found to be in the interval 1.0x10 -17 - 3.4x10 -16 for the parent nuclei with Z = 92-108. (orig.)

  13. Computer code and users' guide for the preliminary analysis of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239b

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.A.; Smith, W.W.

    1976-06-30

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The second volume describes the computer code and users' guide for the preliminary analysis of the system.

  14. Sound modes in hot nuclear matter

    International Nuclear Information System (INIS)

    Kolomietz, V. M.; Shlomo, S.

    2001-01-01

    The propagation of the isoscalar and isovector sound modes in a hot nuclear matter is considered. The approach is based on the collisional kinetic theory and takes into account the temperature and memory effects. It is shown that the sound velocity and the attenuation coefficient are significantly influenced by the Fermi surface distortion (FSD). The corresponding influence is much stronger for the isoscalar mode than for the isovector one. The memory effects cause a nonmonotonous behavior of the attenuation coefficient as a function of the relaxation time leading to a zero-to-first sound transition with increasing temperature. The mixing of both the isoscalar and the isovector sound modes in an asymmetric nuclear matter is evaluated. The condition for the bulk instability and the instability growth rate in the presence of the memory effects is studied. It is shown that both the FSD and the relaxation processes lead to a shift of the maximum of the instability growth rate to the longer-wavelength region

  15. The breathing mode and the nuclear surface

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Grammaticos, B.

    1981-01-01

    The role of nuclear surface in the breathing mode of nuclei is analyzed. We discuss a simple model in which the density varies according to a scaling of the coordinates. We show that this model reproduces accurately the results of microscopic calculations in heavy nuclei, and we use it to estimate the contribution of the surface to the effective compression modulus of semi-infinite nuclear matter. The calculation is performed in the framework of an extended Thomas-Fermi approximation and using several effective interactions. It is shown that the surface energy is maximum with respect to variations of the density around saturation density. The reduction of the effective compression modulus due to the surface turns to be proportional to the bulk compression modulus. The magnitude of the effect is compared with results of RPA calculations. Other contributions to the effective compressions modulus of finite nuclei are also discussed. (orig.)

  16. Equilibrium calculations and mode analysis

    International Nuclear Information System (INIS)

    Herrnegger, F.

    1987-01-01

    The STEP asymptotic stellarator expansion procedure was used to study the MHD equilibrium and stability properties of stellarator configurations without longitudinal net-current, which also apply to advanced stellarators. The effects of toroidal curvature and magnetic well, and the Shafranov shift were investigated. A classification of unstable modes in toroidal stellarators is given. For WVII-A coil-field configurations having a β value of 1% and a parabolic pressure profile, no free-boundary modes are found. This agrees with the experimental fact that unstable behavior of the plasma column is not observed for this parameter range. So a theoretical β-limit for stability against ideal MHD modes can be estimated by mode analysis for the WVII-A device

  17. Risk and safety analysis of nuclear systems

    National Research Council Canada - National Science Library

    Lee, John C; McCormick, Norman J

    2011-01-01

    ...), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear applications, although there is an emphasis placed on the analysis of nuclear systems...

  18. Spin Modes in Nuclei and Nuclear Forces

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Otsuka, Takaharu

    2011-01-01

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in 12 C and 14 C and an anomalous M1 transition in 17 C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by Δ excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  19. Discussion of manage mode for nuclear power construcation in China

    International Nuclear Information System (INIS)

    Gao Mingshi; Chen Hua

    2007-01-01

    This paper analyzed the development status of management mode for NPP construction and nuclear power engineering companies. Considering the national development plan of nuclear power, and making reference of the experiences of the successful construction of NPPs, the management mode for NPP construction in which the nuclear engineering companies are the main factors have been discussed. This paper proposed that EPC/TurnKey as the management mode for the nuclear power construction, led by the owner, and constructed by engineering companies according to the contracts, so as to establish a construction group with expertise knowledge. (authors)

  20. Mathematical model for the preliminary analysis of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239a

    Energy Technology Data Exchange (ETDEWEB)

    Grey, J.; Chow, S.

    1976-06-30

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. Such a concept could be particularly useful for missions which require both relatively high acceleration (e.g., for planetocentric maneuvers) and high performance at low acceleration (e.g., on heliocentric trajectories or for trajectory shaping). The first volume develops the mathematical model of the system.

  1. HSE management for AP1000 nuclear plant construction in EPC mode

    International Nuclear Information System (INIS)

    He Xiaogang; Wei Zhong

    2010-01-01

    As a new nuclear type, AP1000 will become the development direction of Chinese nuclear project. EPC General Contract mode is favored by nuclear owners both at home and abroad. Therefore, there is necessity for studying HSE management system and method suitable for AP1000 nuclear plant construction (ANPC) based on combination of AP1000 construction characters in EPC mode. This can not only ensure safety for ANPC but also positively promote national nuclear power development. For this reason, based on site HSE management of the first AP1000 nuclear plant under construction, HSE management system and method for ANPC in EPC mode was proposed after analysis of the character of EPC mode and ANPC character. It is hoped that it will be helpful for safe construction for ANPC. (authors)

  2. Nuclear power equipment procurement management under EPC mode

    International Nuclear Information System (INIS)

    Shuai Yuezhi

    2014-01-01

    Nuclear power equipment procurement is one of the major constraints and management difficulties in the process of domestic nuclear power project construction for a long time. The construction of Hainan Changjiang Project can not meet the milestones due to the major equipment supply delay. Through the introduction to the organization and features of Changjiang project equipment procurement under EPC mode, and the main problems in the procurement process and its reason analysis, the purpose of this paper is to put forward ideas and suggestions of these items, i.e. selection of equipment suppliers, equipment localization, mass material design and procurement, complete system equipment supply, spare parts delivery and storage, owner process management, providing reference for follow-up projects. (author)

  3. Nuclear analysis

    International Nuclear Information System (INIS)

    1988-01-01

    In a search for correlations between the elemental composition of trace elements in human stones and the stone types with relation to their growth pattern, a combined PIXE and x-ray diffraction spectrometry approach was implemented. The combination of scanning PIXE and XRD has proved to be an advance in the methodology of stone analysis and may point to the growth pattern in the body. The exact role of trace elements in the formation and growth of urinary stones is not fully understood. Efforts are thus continuing firstly to solve the analytical problems concerned and secondly to design suitable experiments that would provide information about the occurrence and distribution of trace elements in urine. 1 fig., 1 ref

  4. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Cohen, T.D.; Broniowski, W.

    1995-01-01

    The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter

  5. Velocity fields and transition densities in nuclear collective modes

    Energy Technology Data Exchange (ETDEWEB)

    Stringari, S [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy

    1979-08-13

    The shape of the deformations occurring in nuclear collective modes is investigated by means of a microscopic approach. Analytical solutions of the equations of motion are obtained by using simplified nuclear potentials. It is found that the structure of the velocity field and of the transition density of low-lying modes is considerably different from the predictions of irrotational hydrodynamic models. The low-lying octupole state is studied in particular detail by using the Skyrme force.

  6. Concepts for space nuclear multi-mode reactors

    International Nuclear Information System (INIS)

    Myrabo, L.; Botts, T.E.; Powell, J.R.

    1983-01-01

    A number of nuclear multi-mode reactor power plants are conceptualized for use with solid core, fixed particle bed and rotating particle bed reactors. Multi-mode systems generate high peak electrical power in the open cycle mode, with MHD generator or turbogenerator converters and cryogenically stored coolants. Low level stationkeeping power and auxiliary reactor cooling (i.e., for the removal of reactor afterheat) are provided in a closed cycle mode. Depending on reactor design, heat transfer to the low power converters can be accomplished by heat pipes, liquid metal coolants or high pressure gas coolants. Candidate low power conversion cycles include Brayton turbogenerator, Rankine turbogenerator, thermoelectric and thermionic approaches. A methodology is suggested for estimating the system mass of multi-mode nuclear power plants as a function of peak electric power level and required mission run time. The masses of closed cycle nuclear and open cycle chemical power systems are briefly examined to identify the regime of superiority for nuclear multi-mode systems. Key research and technology issues for such power plants are also identified

  7. Trade secrets protection mode of nuclear power plant

    International Nuclear Information System (INIS)

    Zeng Bin

    2015-01-01

    The paper analyzes the legal environment in which nuclear power enterprises are stayed, and mainly discusses the business secret protection modes of China's nuclear power enterprises. It is expected to provide a revelation and help for these enterprises to protect their business secrets. Firstly, the paper briefly expounds the legal basis of business secret protection and China's legalization status in this regard. Then it mainly puts forward the business secret management framework and postulations for nuclear power enterprises, and key points in application and protection of nuclear power business secret. (author)

  8. Implementation of a computational system at the Center for Nuclear Technology Development, for systematization the application of the FMEA - Failure Mode and Effects Analysis, for identification of dangerous and developed risks evaluation

    International Nuclear Information System (INIS)

    Correa, Danyel Pontelo; Vasconcelos, Vanderley de

    2009-01-01

    The regulatory bodies request risks evaluations for nuclear and radioactive licensing purposes. In Brazil those evaluations are contained by the safety analysis reports requested by the Brazilian Nuclear Energy Commission (CNEN), and risk analysis studies requested by the environment organisms. A risk evaluation includes the identification of the risks and the accident sequence which can occur, and the estimation of the frequency and his undesirable effects on the industrial installations, the public, and the environment. The identification and the risk analysis are particularly important for the implementation of a health, environment and safety integrated management according to the regulation instruments ISO 14001, BS 8800 and OHSAS 18001. The utilization of the risk identification techniques and the risk analysis is performed at the non nuclear industry, in a non standard form by the various sectors of an enterprise, diminishing the effectiveness of the recommended actions based on risk indexes. However, for the nuclear licensing, the CNEN request through their regulatory instruments and standard formats, that the risks, the failure mechanisms and detection be identified, which can allow the preventive and mitigate actions. This paper proposes the utilization of the FMEA (Failure Mode and Effects Analysis) technique in the licensing process. It was implemented a software through the Excel program, using the Visual Basic for Applications program which allows the automation and the standardization of FMEA studies as well

  9. Mode of operation of a nuclear reactor

    International Nuclear Information System (INIS)

    Morita, T.

    1976-01-01

    A method is proposed for the operation of a nuclear reactor guaranteeing an essentially symmetrical axial power distribution during normal operation by controlling the changes occuring in the reactor power partly by variation of the concentration of the neutron-absorbing element and partly by variation of the control rod positions. The representative parameters are recorded for the upper and lower half and adjusted to a predetermined reference value. In using this method, the axial power peals are reduced and power losses avoided. (RW) [de

  10. Prediction of failure modes for concrete nuclear-containment buildings

    International Nuclear Information System (INIS)

    Butler, T.A.

    1982-01-01

    The failure modes and associated failure pressures for two common generic types of PWR containments are predicted. One building type is a lightly reinforced, posttensioned structure represented by the Zion nuclear reactor containment. The other is the normally reinforced Indian Point containment. Two-dimensional models of the buildings developed using the finite element method are used to predict the failure modes and failure pressures. Predicted failure modes for both containments involve loss of structural integrity at the intersection of the cylindrical sidewall with the base slab

  11. Implementation of a computational system at the Center for Nuclear Technology Development, for systematization the application of the FMEA - Failure Mode and Effects Analysis, for identification of dangerous and developed risks evaluation; Implementacao de um sistema computacional no Centro de Desenvolvimento da Tecnologia Nuclear para sistemarizar a aplicacao da tecnica FMEA - Failure Mode and Effects Analysis - na identificacao de perigos e avaliacao de riscos desenvolvida

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Danyel Pontelo; Vasconcelos, Vanderley de, E-mail: dpc@cdtn.b, E-mail: vasconv@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    The regulatory bodies request risks evaluations for nuclear and radioactive licensing purposes. In Brazil those evaluations are contained by the safety analysis reports requested by the Brazilian Nuclear Energy Commission (CNEN), and risk analysis studies requested by the environment organisms. A risk evaluation includes the identification of the risks and the accident sequence which can occur, and the estimation of the frequency and his undesirable effects on the industrial installations, the public, and the environment. The identification and the risk analysis are particularly important for the implementation of a health, environment and safety integrated management according to the regulation instruments ISO 14001, BS 8800 and OHSAS 18001. The utilization of the risk identification techniques and the risk analysis is performed at the non nuclear industry, in a non standard form by the various sectors of an enterprise, diminishing the effectiveness of the recommended actions based on risk indexes. However, for the nuclear licensing, the CNEN request through their regulatory instruments and standard formats, that the risks, the failure mechanisms and detection be identified, which can allow the preventive and mitigate actions. This paper proposes the utilization of the FMEA (Failure Mode and Effects Analysis) technique in the licensing process. It was implemented a software through the Excel program, using the Visual Basic for Applications program which allows the automation and the standardization of FMEA studies as well

  12. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  13. Nuclear analysis for ITER

    International Nuclear Information System (INIS)

    Santoro, R.T.; Iida, H.; Khripunov, V.; Petrizzi, L.; Sato, S.; Sawan, M.; Shatalov, G.; Schipakin, O.

    2001-01-01

    This paper summarizes the main results of nuclear analysis calculations performed during the International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA). Major efforts were devoted to fulfilling the General Design Requirements to minimize the nuclear heating rate in the superconducting magnets and ensuring that radiation conditions at the cryostat are suitable for hands-on-maintenance after reactor shut-down. (author)

  14. C5 capsule operation modes analysis

    International Nuclear Information System (INIS)

    Negut, Gh.; Ancuta, Mirela; Stefan, Violeta

    2008-01-01

    This paper is part of the Nuclear Research Institute Program 13 dedicated to 'TRIGA Research Reactor performance enhancing' and its objective is improving the engineering of the structural materials irradiation. The paper raises the knowledge level on C5 capsule irradiation modes and utilizes previous results in order to increase C5 performances. In the paper the irradiation modes to test zirconium yttrium sample are assessed. These tests are proposed by AECL. There are presented the C5 initial conditions and models. Also. there are presented the thermal hydraulic conditions during normal and accidental operation. The results will be used in the C5 safety report. (authors)

  15. Nuclear forensic analysis

    International Nuclear Information System (INIS)

    Tomar, B.S.

    2016-01-01

    In the present talk the fundamentals of the nuclear forensic investigations will be discussed followed by the detailed standard operating procedure (SOP) for the nuclear forensic analysis. The characteristics, such as, dimensions, particle size, elemental and isotopic composition help the nuclear forensic analyst in source attribution of the interdicted material, as the specifications of the nuclear materials used by different countries are different. The analysis of elemental composition could be done by SEM-EDS, XRF, CHNS analyser, etc. depending upon the type of the material. Often the trace constituents (analysed by ICP-AES, ICP-MS, AAS, etc) provide valuable information about the processes followed during the production of the material. Likewise the isotopic composition determined by thermal ionization mass spectrometry provides useful information about the enrichment of the nuclear fuel and hence its intended use

  16. Study on nuclear power plant project construction and management mode in China

    International Nuclear Information System (INIS)

    Wang Kai; Chen Lian

    2009-01-01

    Project management mode plays a key role in project construction, especially in nuclear power field. From the aspects of right, responsibility and benefit, this paper discussed the differences among the common used project management modes. Also the main kinds of the construction management modes used in China's nuclear power plants were summarized. At last, considering the experience of Ningde nuclear power plant, this paper put forward several perspectives about the selection of project management mode in nuclear power plant construction. (authors)

  17. Probabilistic analysis of ''common mode failures''

    International Nuclear Information System (INIS)

    Easterling, R.G.

    1978-01-01

    Common mode failure is a topic of considerable interest in reliability and safety analyses of nuclear reactors. Common mode failures are often discussed in terms of examples: two systems fail simultaneously due to an external event such as an earthquake; two components in redundant channels fail because of a common manufacturing defect; two systems fail because a component common to both fails; the failure of one system increases the stress on other systems and they fail. The common thread running through these is a dependence of some sort--statistical or physical--among multiple failure events. However, the nature of the dependence is not the same in all these examples. An attempt is made to model situations, such as the above examples, which have been termed ''common mode failures.'' In doing so, it is found that standard probability concepts and terms, such as statistically dependent and independent events, and conditional and unconditional probabilities, suffice. Thus, it is proposed that the term ''common mode failures'' be dropped, at least from technical discussions of these problems. A corollary is that the complementary term, ''random failures,'' should also be dropped. The mathematical model presented may not cover all situations which have been termed ''common mode failures,'' but provides insight into the difficulty of obtaining estimates of the probabilities of these events

  18. Application of FMEA-DEA (Failure Modes and Effect Analysis - Data Envelopment Analysis) to the air conditioning system of the control room a nuclear power plant; Aplicacao de FMEA-DEA ao sistema de ar condicionado da sala de controle de uma usina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Junior, Gilberto Varanda

    2007-03-15

    This dissertation presents the FMEA-DEA analysis application to the air conditioning system of the control room of a nuclear power plant. After obtaining the failure modes, the index associated to the occurrence probability, the severity of the effects and the potential of detention, a priority order is established for the failure modes or deviations. This number is obtained by multiplying the three mentioned index that vary in a natural scale from 1 to 10, where the higher the index, the more critical the situation will be. In this work, it is intended to use a model based on the data envelopment analysis, DEA jointly with the FMEA, to identify the current efficiency of the system and which failure modes or deviations are considered more critical, and by means of the weights attributed for the mathematical modeling to identify which index are contributing more for these deviations. From this identification, improvements can be set, which may consider administrative changes, operator training and so on, thus adding value to the final product. (author)

  19. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    Science.gov (United States)

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  20. Nuclear-waste-package materials degradation modes and accelerated testing

    International Nuclear Information System (INIS)

    1981-09-01

    This report reviews the materials degradation modes that may affect the long-term behavior of waste packages for the containment of nuclear waste. It recommends an approach to accelerated testing that can lead to the qualification of waste package materials in specific repository environments in times that are short relative to the time period over which the waste package is expected to provide containment. This report is not a testing plan but rather discusses the direction for research that might be considered in developing plans for accelerated testing of waste package materials and waste forms

  1. A streamlined failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287 (United States)

    2014-06-15

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  2. A streamlined failure mode and effects analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-01-01

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed

  3. A streamlined failure mode and effects analysis.

    Science.gov (United States)

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  4. Preliminary failure mode and effect analysis

    International Nuclear Information System (INIS)

    Addison, J.V.

    1972-01-01

    A preliminary Failure Mode and Effect Analysis (FMEA) was made on the overall 5 Kwe system. A general discussion of the system and failure effect is given in addition to the tabulated FMEA and a primary block diagram of the system. (U.S.)

  5. Finite mode analysis through harmonic waveguides

    NARCIS (Netherlands)

    Alieva, T.; Wolf, K.B.

    2000-01-01

    The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part

  6. Bulk material management mode of general contractors in nuclear power project

    International Nuclear Information System (INIS)

    Zhang Jinyong; Zhao Xiaobo

    2011-01-01

    The paper introduces the characteristics of bulk material management mode in construction project, and the advantages and disadvantages of bulk material management mode of general contractors in nuclear power project. In combination with the bulk material management mode of China Nuclear Power Engineering Co., Ltd, some improvement measures have been put forward as well. (authors)

  7. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B.

    2006-12-01

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics

  8. Economic Analysis of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B

    2006-12-15

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics.

  9. Robust-mode analysis of hydrodynamic flows

    Science.gov (United States)

    Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.

    2017-04-01

    The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.

  10. Exploring the new development approach of nuclear power insurance mode in China

    International Nuclear Information System (INIS)

    Zhang Dongyan

    2009-01-01

    The booming nuclear power market will bring about huge commercial opportunities for the nuclear power insurance in the future. Started from the current status and development trend of nuclear power insurance, this thesis discussed and prospected a new possible development approach of nuclear power insurance mode, which has adopted the conception of the risk management, with an aim to maintain the maximum benefit from risk management innovation to the nuclear power plants. This mode can be used to meet the expansion need of nuclear power sectors. Meanwhile, it can also promote the healthy development of the Chinese nuclear power insurance market. (authors)

  11. Design Analysis of the Mixed Mode Bending Sandwich Specimen

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    A design analysis of the mixed mode bending (MMB) sandwich specimen for face–core interface fracture characterization is presented. An analysis of the competing failure modes in the foam cored sandwich specimens is performed in order to achieve face–core debond fracture prior to other failure modes...... for the chosen geometries and mixed mode loading conditions....

  12. Design management of general contractor under nuclear power project EPC mode

    International Nuclear Information System (INIS)

    Su Shaojian

    2013-01-01

    Design management has not yet formed a theoretical system recognized, general contractor design managers under nuclear power project EPC Mode lack the clear theory basis. This paper aims to discuss Design management from the angle of general contractor under nuclear power project EPC mode, Gives the concept of design management Clearly, by Combining the characteristics of nuclear power project, Gives the specific content and meaning of the design management of nuclear power project. (authors)

  13. Nuclear power regional analysis

    International Nuclear Information System (INIS)

    Parera, María Delia

    2011-01-01

    In this study, a regional analysis of the Argentine electricity market was carried out considering the effects of regional cooperation, national and international interconnections; additionally, the possibilities of insertion of new nuclear power plants in different regions were evaluated, indicating the most suitable areas for these facilities to increase the penetration of nuclear energy in national energy matrix. The interconnection of electricity markets and natural gas due to the linkage between both energy forms was also studied. With this purpose, MESSAGE program was used (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts), promoted by the International Atomic Energy Agency (IAEA). This model performs a country-level economic optimization, resulting in the minimum cost for the modelling system. Regionalization executed by the Wholesale Electricity Market Management Company (CAMMESA, by its Spanish acronym) that divides the country into eight regions. The characteristics and the needs of each region, their respective demands and supplies of electricity and natural gas, as well as existing and planned interconnections, consisting of power lines and pipelines were taken into account. According to the results obtained through the model, nuclear is a competitive option. (author) [es

  14. Fault tree and failure mode and effects analysis of a digital safety function

    International Nuclear Information System (INIS)

    Maskuniitty, M.; Pulkkinen, U.

    1995-01-01

    The principles of fault tree and failure mode and effects analysis (FMEA) for the analysis of digital safety functions of nuclear power plants are discussed. Based on experiences from a case study, a proposal for a full scale analysis is presented. The feasibility and applicability the above mentioned reliability engineering methods are discussed. (author). 13 refs, 1 fig., 2 tabs

  15. Failure mode analysis using state variables derived from fault trees with application

    International Nuclear Information System (INIS)

    Bartholomew, R.J.

    1982-01-01

    Fault Tree Analysis (FTA) is used extensively to assess both the qualitative and quantitative reliability of engineered nuclear power systems employing many subsystems and components. FTA is very useful, but the method is limited by its inability to account for failure mode rate-of-change interdependencies (coupling) of statistically independent failure modes. The state variable approach (using FTA-derived failure modes as states) overcomes these difficulties and is applied to the determination of the lifetime distribution function for a heat pipe-thermoelectric nuclear power subsystem. Analyses are made using both Monte Carlo and deterministic methods and compared with a Markov model of the same subsystem

  16. Analysis of Energy Transmission Modes of Flyback Converter

    Directory of Open Access Journals (Sweden)

    GONG Shu

    2014-08-01

    Full Text Available It is of significance to investigate energy transmission modes of a flyback converter for its optimum design. In this paper, the ETMs of a flyback converter are divided into three modes, which are continuous conduction mode-complete inductor supply mode, continuous conduction mode- incomplete inductor supply mode and discontinuous conduction mode-incomplete inductor supply mode, respectively. A deep analysis of the operation is made, a reduction of the boundary condition between the modes is conducted and a comparison of current stress, transformer AP and output ripple voltage between the modes is performed. A 30W prototype is developed and its experiment is done. The experiment results are in agreement with the theoretical analysis quite well.

  17. Modeling Operating Modes for the Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, H.; Jørgensen, Sten Bay

    2012-01-01

    of the process plant, its function and its structural elements. The paper explains how the means-end concepts of MFM can be used to provide formalized definitions of plant operation modes. The paper will introduce the mode types defined by MFM and show how selected operation modes can be represented...

  18. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  19. Nuclear matter kinetic coefficients and damping of finite nuclear collective modes

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de.

    1986-06-01

    By carrying the general description of one-body observables beyond the mean-field approximation, those correlation terms responsible for Kinetic phenomena and those involved in the renormalization of the G-matrix mean-field in finite nuclei are identified. A Kinetic equation for the one-body density is obtained. Estimates for transport coefficients and for the damping of zero sound are obtained which point to the inadequacy of hydrodynamical descriptions of collective nuclear modes and indicate that collisional damping in large nuclei may account for one or a few tenths of the observed widths. (S.D.) [pt

  20. Failure modes of safety-related components at fires on nuclear power plants

    International Nuclear Information System (INIS)

    Aaslund, A.

    2000-03-01

    Probabilistic assessment methods can be used to identify specific plant vulnerabilities. Application of such methods can also facilitate selection among system design alternatives available for safety enhancements. The quality of assessment results is however strongly dependent on realistic and accurate input data for modelling of system component behaviour and failure modes during conditions to be assessed. Use of conservative input data may not lead to results providing guidance on safety upgrades. Adequate input data for probabilistic assessments seems to be lacking for at least failure modes of some electrical components when exposed to a fire. This report presents an attempt to improve the situation with respect to such input data. In order to take advantage of information in existing documentation of fire incident occurrences some of the lessons learned from the fire at Browns Ferry Nuclear Power Plant on March 22, 1975 are discussed in this report. Also a summary of results from different fire tests of electrical cables presented in a fire risk analysis report is a part of the references. The failure modes used to describe fire-induced damage are 'open circuit' and 'hot short' which seems to be commonly accepted terms within the branch. Definitions of the terms are included in the report. Effects of the failure modes when occurring in some of the channels of the reactor protection system are discussed with respect to the existing design of the reactor protection system at Ringhals 2 nuclear power unit. Experiences from the Browns Ferry fire and results from fire tests of electrical cables indicate that the dominating failure mode for electrical cables is 'open circuit'. An 'open circuit' failure leads to circuit disjunction and loss of continuity. The circuit can no longer transmit its signal or power. When affecting channels of the reactor protection system an 'open circuit' failure can cause extensive inadvertent actions of safety related equipment

  1. Experimental status of the nuclear spin scissors mode

    Science.gov (United States)

    Balbutsev, E. B.; Molodtsova, I. V.; Schuck, P.

    2018-04-01

    With the Wigner function moments (WFM) method the scissors mode of the actinides and rare earth nuclei are investigated. The unexplained experimental fact that in 232Th a double hump structure is found finds a natural explanation within WFM. It is predicted that the lower peak corresponds to an isovector spin scissors mode whereas the higher-lying states corresponds to the conventional isovector orbital scissors mode. The experimental situation is scrutinized in this respect concerning practically all results of M 1 excitations.

  2. Tearing mode analysis in tokamaks, revisited

    International Nuclear Information System (INIS)

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1997-12-01

    A new Δ' shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio (ε ≤ 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease Δ', are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low β regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m ≥ 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code

  3. An evaluation of intraoperative and postoperative outcomes of torsional mode versus longitudinal ultrasound mode phacoemulsification: a Meta-analysis

    Directory of Open Access Journals (Sweden)

    Pia Leon

    2016-06-01

    Full Text Available AIM: To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. METHODS: Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST and cumulative dissipated energy (CDE. The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA and the endothelial cell loss (ECL were taken in consideration. RESULTS: The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001. CONCLUSION: The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE and postoperative ECL outcomes.

  4. An evaluation of intraoperative and postoperative outcomes of torsional mode versus longitudinal ultrasound mode phacoemulsification: a Meta-analysis.

    Science.gov (United States)

    Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele

    2016-01-01

    To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes.

  5. Project quality management under EPC mode by the owner of nuclear power plant

    International Nuclear Information System (INIS)

    Xu Hui; Hu Miao

    2014-01-01

    As the first completely independent nuclear power project in China, Fangjiashan nuclear power project is constructed under EPC mode of general project contracting. This paper, taking the project as an example, aims to explore how the project owners carry out quality management for the installation project during the construction of the nuclear power plant based on EPC mode. It has certain reference value for the management of following nuclear power projects which adopting the EPC construction mode. It will play a positive role in improving China's overall self-management abilities in the nuclear power construction, and lay a solid foundation for follow-up nuclear power construction in China. (authors)

  6. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation.

  7. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H.

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation

  8. Analysis of the ITER cryoplant operational modes

    International Nuclear Information System (INIS)

    Henry, D.; Journeaux, J.Y.; Roussel, P.; Michel, F.; Poncet, J.M.; Girard, A.; Kalinin, V.; Chesny, P.

    2007-01-01

    In the framework of an EFDA task, CEA is carrying out an analysis of the various ITER cryoplant operational modes. According to the project integration document, ITER is designed to be operated 365 days per year in order to optimize the available time of the Tokamak. It is anticipated that operation will be performed in long periods separated by maintenance periods (e.g. 10 days continuous operation and 1 week break) with annual or bi-annual major shutdown periods of a few months for maintenance, further installation and commissioning. For this operation schedule, auxiliary subsystems like the cryoplant and the cryodistribution have to cope with different heat loads which depend on the different ITER operating states. The cryoplant consists of four identical 4.5 K refrigerators and two 80 K helium loops coupled with two LN2 modules. All of these cryogenic subsystems have to operate in parallel to remove the heat loads from the magnet, 80 K shields, cryopumps and other small users. After a brief recall of the main particularities of a cryogenic system operating in a Tokamak environment, the first part of this study is dedicated to the assessment of the main ITER operation states. A new design of refrigeration loop for the HTS current leads, the updated layout of the cryodistribution system and revised strategy for operations of the cryopumps have been taken into consideration. The relevant normal operating scenarios of the cryoplant are checked for the typical ITER operating states like plasma operation state, short term stand by, short term maintenance, or test and conditioning state. The second part of the paper is dedicated to the abnormal operating modes coming from the magnets and from those generated by the cryoplant itself. The occurrence of a fast discharge or a quench of the magnets generates large heat loads disturbances and produces exceptional high mass flow rates which have to be managed by the cryoplant, while a failure of a cryogenic component induces

  9. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  10. Damping in nuclear collective modes in a semiclassical fluid-dynamical approximation

    International Nuclear Information System (INIS)

    Vignolo, C.E.; Hernandez, Susana

    1989-01-01

    A semiclassical fluiddynamical model based on an usual scaling approximation (SCA) was extended to investigate the role of one and two-body dissipation in the widths of nuclear collective modes. The competition between one and two-body viscosity in: i) the collisionless (elastic) limit; ii) the hydrodynamical case and iii) the general viscoelastic regime is examined over the whole range of nuclear collision time scales. Numerical solutions are investigated for the first magnetic 2 - twist mode in 208 Pb. (Author) [es

  11. Nuclear power ecology: comparative analysis

    International Nuclear Information System (INIS)

    Trofimenko, A.P.; Lips'ka, A.Yi.; Pisanko, Zh.Yi.

    2005-01-01

    Ecological effects of different energy sources are compared. Main actions for further nuclear power development - safety increase and waste management, are noted. Reasons of restrained public position to nuclear power and role of social and political factors in it are analyzed. An attempt is undertaken to separate real difficulties of nuclear power from imaginary ones that appear in some mass media. International actions of environment protection are noted. Risk factors at different energy source using are compared. The results of analysis indicate that ecological influence and risk for nuclear power are of minimum

  12. Analysis of current diffusive ballooning mode

    International Nuclear Information System (INIS)

    Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.

    1993-04-01

    The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)

  13. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Kim, S. S.; Lee, M. K.; Moon, K. H.; Nam, J. H.; Noh, B. C.; Kim, H. R.

    2008-12-01

    The concerns on the global warming issues in the international community are bringing about a paradigm shift in the national economy including energy technology development. In this connection, the green growth mainly utilizing green technology, which emits low carbon, is being initiated by many advanced countries including Korea. The objective of the study is to evaluate the contribution to the national economy from nuclear energy attributable to the characteristics of green technology, to which nuclear energy belongs. The study covers the role of nuclear in addressing climate change issues, the proper share of nuclear in the electricity sector, the cost analyses of decommissioning and radioactive waste management, and the analysis on the economic performance of nuclear R and D including cost benefit analysis

  14. Procedures for analysis of accidents in shutdown modes for WWER nuclear power plants. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1997-07-01

    Operational events occurring during shutdown conditions contribute significantly to the NPP risk due to the fact that both preventive and mitigatory capabilities of the plant are somehow degraded. The need for detailed information in the performance and review of accident analysis for WWER type NPPs was identified as a priority within IAEA Extrabudgetary Program on Safety of WWER and RBMK NPPs. The present guidelines were developed through two consultants meetings in 1995 and 1996. The guidelines establish a set of criteria for performing deterministic analysis of accidents, initiated by events occurring under shutdown conditions. This report is mostly relevant for licensing type calculations, and may to a certain extent, also used for development, improvement or justification of the plant limits and conditions, emergency operating procedures, operator training programs and probabilistic safety studies. The guidelines apply to all WWER plants in operation and/or under construction

  15. Comparison on the working mode and training mode of nuclear safety inspectors between China and France

    International Nuclear Information System (INIS)

    Mao Haiyun

    2013-01-01

    Because of the rapid development of nuclear industry, the nuclear safety regulation work becomes heavier than before. Young inspectors are needed for the regulatory body. It is our important subject to help enhance the inspection ability of inspectors through on-the-job training. This article presents the different approaches on work and training for French and Chinese inspectors, and gives some suggestions for inspector training. (author)

  16. Modeling Operating Modes for the Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2012-01-01

    The specification of supervision and control tasks in complex processes requires definition of plant states on various levels of abstraction related to plant operation in start-up, normal operation and shut-down. Modes of plant operation are often specified in relation to a plant decomposition in...... for the Japanese fast breeder reactor plant MONJU....

  17. Risk and safety analysis of nuclear systems

    CERN Document Server

    Lee, John C

    2011-01-01

    The book has been developed in conjunction with NERS 462, a course offered every year to seniors and graduate students in the University of Michigan NERS program. The first half of the book covers the principles of risk analysis, the techniques used to develop and update a reliability data base, the reliability of multi-component systems, Markov methods used to analyze the unavailability of systems with repairs, fault trees and event trees used in probabilistic risk assessments (PRAs), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear a

  18. Nuclear forensic analysis of thorium

    International Nuclear Information System (INIS)

    Moody, K.J.; Grant, P.M.

    1999-01-01

    A comprehensive radiochemical isolation procedure and data analysis/interpretation method for the nuclear forensic investigation of Th has been developed. The protocol includes sample dissolution, chemical separation, nuclear counting techniques, consideration of isotopic parent-daughter equilibria, and data interpretation tactics. Practical application of the technology was demonstrated by analyses of a questioned specimen confiscated at an illegal drug synthesis laboratory by law enforcement authorities. (author)

  19. Multidimensional Analysis of Nuclear Detonations

    Science.gov (United States)

    2015-09-17

    Training Command in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Robert C. Slaughter, B.S., M.S. Captain, USAF 16...15-S-029 Abstract Digitized versions of atmospheric nuclear testing films represent a unique data set that enables the scientific community to create...temperature distribution of a nuclear fireball using digitized film . This temperature analysis underwent verification using the Digital Imaging and Remote

  20. Failure mode and effects analysis: an empirical comparison of failure mode scoring procedures.

    Science.gov (United States)

    Ashley, Laura; Armitage, Gerry

    2010-12-01

    To empirically compare 2 different commonly used failure mode and effects analysis (FMEA) scoring procedures with respect to their resultant failure mode scores and prioritization: a mathematical procedure, where scores are assigned independently by FMEA team members and averaged, and a consensus procedure, where scores are agreed on by the FMEA team via discussion. A multidisciplinary team undertook a Healthcare FMEA of chemotherapy administration. This included mapping the chemotherapy process, identifying and scoring failure modes (potential errors) for each process step, and generating remedial strategies to counteract them. Failure modes were scored using both an independent mathematical procedure and a team consensus procedure. Almost three-fifths of the 30 failure modes generated were scored differently by the 2 procedures, and for just more than one-third of cases, the score discrepancy was substantial. Using the Healthcare FMEA prioritization cutoff score, almost twice as many failure modes were prioritized by the consensus procedure than by the mathematical procedure. This is the first study to empirically demonstrate that different FMEA scoring procedures can score and prioritize failure modes differently. It found considerable variability in individual team members' opinions on scores, which highlights the subjective and qualitative nature of failure mode scoring. A consensus scoring procedure may be most appropriate for FMEA as it allows variability in individuals' scores and rationales to become apparent and to be discussed and resolved by the team. It may also yield team learning and communication benefits unlikely to result from a mathematical procedure.

  1. Further Development of Rotating Rake Mode Measurement Data Analysis

    Science.gov (United States)

    Dahl, Milo D.; Hixon, Ray; Sutliff, Daniel L.

    2013-01-01

    The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode amplitudes and phases were quantified. For low-speed fans within axisymmetric ducts, mode power levels computed from rotating rake measured data would agree with the far-field power levels on a tone by tone basis. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection at the exit and previous studies suggested conditions could exist where significant reflections could occur. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. The fit equations were also modified to allow evanescent mode amplitudes to be computed. This extension of the rotating rake data analysis technique was tested using simulated data, numerical code produced data, and preliminary in-duct measured data.

  2. Normal mode analysis for linear resistive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Kerner, W.; Lerbinger, K.; Gruber, R.; Tsunematsu, T.

    1984-10-01

    The compressible, resistive MHD equations are linearized around an equilibrium with cylindrical symmetry and solved numerically as a complex eigenvalue problem. This normal mode code allows to solve for very small resistivity eta proportional 10 -10 . The scaling of growthrates and layer width agrees very well with analytical theory. Especially, both the influence of current and pressure on the instabilities is studied in detail; the effect of resistivity on the ideally unstable internal kink is analyzed. (orig.)

  3. Simulation and Analysis of the Hybrid Operating Mode in ITER

    International Nuclear Information System (INIS)

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-01-01

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER

  4. Advanced nuclear energy analysis technology

    International Nuclear Information System (INIS)

    Gauntt, Randall O.; Murata, Kenneth K.; Romero, Vicente Josce; Young, Michael Francis; Rochau, Gary Eugene

    2004-01-01

    A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems

  5. Engineering management at feasibility study stage of nuclear power plant under EPC mode

    International Nuclear Information System (INIS)

    Wang Zhiqiang

    2015-01-01

    After the investment reform by the State Council in 2004, NDRC carries out approval system for enterprises to invest in nuclear power plants. Feasibility study stage is a critical stage on the mainline of nuclear power project approval, which intersects with the license application, and engineering design. The owners of nuclear power plants are required stringently in engineering management. From the owners' management point of view under EPC mode, this paper sorts the preliminary project process for nuclear power plants, focusing on the management in the feasibility study stage. License application and engineering design management in the feasibility study stage are also discussed. (author)

  6. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S

    2000-12-01

    This study identified the role of nuclear energy in the following three major aspects. First of all, this study carried out cost effectiveness of nuclear as a CDM technology, which is one of means of GHG emission reduction in UNFCCC. Secondly, environmental externalities caused by air pollutants emitted by power options were estimated. The 'observed market behaviour' method and 'responses to hypothetical market' method were used to estimate objectively the environmental external costs by electric source, respectively. Finally, the role of nuclear power in securing electricity supply in a liberalized electricity market was analyzed. This study made efforts to investigate whether nuclear power generation with high investment cost could be favored in a liberalized market by using 'option value' analysis of investments.

  7. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S.

    2000-12-01

    This study identified the role of nuclear energy in the following three major aspects. First of all, this study carried out cost effectiveness of nuclear as a CDM technology, which is one of means of GHG emission reduction in UNFCCC. Secondly, environmental externalities caused by air pollutants emitted by power options were estimated. The 'observed market behaviour' method and 'responses to hypothetical market' method were used to estimate objectively the environmental external costs by electric source, respectively. Finally, the role of nuclear power in securing electricity supply in a liberalized electricity market was analyzed. This study made efforts to investigate whether nuclear power generation with high investment cost could be favored in a liberalized market by using 'option value' analysis of investments

  8. Analysis of tokamak plasma confinement modes using the fast

    Indian Academy of Sciences (India)

    The Fourier analysis is a satisfactory technique for detecting plasma confinement modes in tokamaks. The confinement mode of tokamak plasma was analysed using the fast Fourier transformation (FFT). For this purpose, we used the data of Mirnov coils that is one of the identifying tools in the IR-T1 tokamak, with and ...

  9. Core Power Control of the fast nuclear reactors with estimation of the delayed neutron precursor density using Sliding Mode method

    International Nuclear Information System (INIS)

    Ansarifar, G.R.; Nasrabadi, M.N.; Hassanvand, R.

    2016-01-01

    Highlights: • We present a S.M.C. system based on the S.M.O for control of a fast reactor power. • A S.M.O has been developed to estimate the density of delayed neutron precursor. • The stability analysis has been given by means Lyapunov approach. • The control system is guaranteed to be stable within a large range. • The comparison between S.M.C. and the conventional PID controller has been done. - Abstract: In this paper, a nonlinear controller using sliding mode method which is a robust nonlinear controller is designed to control a fast nuclear reactor. The reactor core is simulated based on the point kinetics equations and one delayed neutron group. Considering the limitations of the delayed neutron precursor density measurement, a sliding mode observer is designed to estimate it and finally a sliding mode control based on the sliding mode observer is presented. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. Sliding Mode Control (SMC) is one of the robust and nonlinear methods which have several advantages such as robustness against matched external disturbances and parameter uncertainties. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability.

  10. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2002-12-01

    This study deals with current energy issues, environmental aspects of energy, project feasibility evaluation, and activities of international organizations. Current energy issues including activities related with UNFCCC, sustainable development, and global concern on energy issues were surveyed with focusing on nuclear related activities. Environmental aspects of energy includes various topics such as, inter- industrial analysis of nuclear sector, the role of nuclear power in mitigating GHG emission, carbon capture and sequestration technology, hydrogen production by using nuclear energy, Life Cycle Analysis as a method of evaluating environmental impacts of a technology, and spent fuel management in the case of introducing fast reactor and/or accelerator driven system. Project feasibility evaluation includes nuclear desalination using SMART reactor, and introduction of COMFAR computer model, developed by UNIDO to carry out feasibility analysis in terms of business attitude. Activities of international organizations includes energy planning activities of IAEA and OECD/NEA, introduction of the activities of FNCA, one of the cooperation mechanism among Asian countries. In addition, MESSAGE computer model was also introduced. The model is being developed by IAEA to effectively handle liberalization of electricity market combined with environmental constraints

  11. Normal mode analysis and applications in biological physics.

    Science.gov (United States)

    Dykeman, Eric C; Sankey, Otto F

    2010-10-27

    Normal mode analysis has become a popular and often used theoretical tool in the study of functional motions in enzymes, viruses, and large protein assemblies. The use of normal modes in the study of these motions is often extremely fruitful since many of the functional motions of large proteins can be described using just a few normal modes which are intimately related to the overall structure of the protein. In this review, we present a broad overview of several popular methods used in the study of normal modes in biological physics including continuum elastic theory, the elastic network model, and a new all-atom method, recently developed, which is capable of computing a subset of the low frequency vibrational modes exactly. After a review of the various methods, we present several examples of applications of normal modes in the study of functional motions, with an emphasis on viral capsids.

  12. Analysis of mixed mode microwave distribution manifolds

    International Nuclear Information System (INIS)

    White, T.L.

    1982-09-01

    The 28-GHz microwave distribution manifold used in the ELMO Bumpy Torus-Scale (EBT-S) experiments consists of a toroidal metallic cavity, whose dimensions are much greater than a wavelength, fed by a source of microwave power. Equalization of the mixed mode power distribution ot the 24 cavities of EBT-S is accomplished by empirically adjusting the coupling irises which are equally spaced around the manifold. The performance of the manifold to date has been very good, yet no analytical models exist for optimizing manifold transmission efficiency or for scaling this technology to the EBT-P manifold design. The present report develops a general model for mixed mode microwave distribution manifolds based on isotropic plane wave sources of varying amplitudes that are distributed toroidally around the manifold. The calculated manifold transmission efficiency for the most recent EBT-S coupling iris modification is 90%. This agrees with the average measured transmission efficiency. Also, the model predicts the coupling iris areas required to balance the distribution of microwave power while maximizing transmission efficiency, and losses in waveguide feeds connecting the irises to the cavities of EBT are calculated using an approach similar to the calculation of mainfold losses. The model will be used to evaluate EBT-P manifold designs

  13. Biological analysis with a nuclear microprobe

    International Nuclear Information System (INIS)

    Cookson, J.A.; Legge, G.J.F.

    1975-01-01

    Most low-energy nuclear accelerators are now partly used on analytical studies in support of sciences other than nuclear physics. This paper gives a short review of such analytical techniques (X-ray analysis, elastic scattering analysis, nuclear reaction analysis, and the nuclear microprobe) with particular reference to biological applications and also emphasizes the role of the positional analysis that can be performed with a focused beam of ions - the nuclear microprobe. (author)

  14. Development of a green mode DC/DC converter available to portable nuclear instrument

    International Nuclear Information System (INIS)

    Gao Feiyan; Wu Longxiong; Tan Wei; Tang Yaogeng

    2010-01-01

    A green mode DC/DC converter was developed which suitable to the portable nuclear instrument which is powered by battery and is sometime at stand-by mode. Some updated control approaches such as pseudo-resonant type power supply control and synchronous rectification were adopted to makethe DC/DC converter operate with low power consumption and high efficiency. The test results the battery can be prolonged with this converter. (authors)

  15. An engineering approach to common mode failure analysis

    International Nuclear Information System (INIS)

    Gangloff, W.C.; Franke, T.H.

    1975-01-01

    Safety systems for nuclear reactors can be designed using standard reliability engineering techniques such that system failure due to random component faults is extremely unlikely. However, the common-mode failure where several components fail together from a common cause is not susceptible to prevention by the usual tactics. In systems where a high degree of redundancy has been employed, the actual reliability of the system in service may be limited by common-mode failures. A methodical and thorough procedure for evaluation of system vulnerability to common-mode failures is presented. This procedure was developed for use in nuclear reactor safety systems and has been applied specifically to reactor protection. The method offers a qualitative assessment of a system whereby weak points can be identified and the resistance to common-mode failure can be judged. It takes into account all factors influencing system performance including design, manufacturing, installation, operation, testing, and maintenance. It is not a guarantee or sure solution, but rather a practical tool which can provide good assurance that the probability of common-mode protection failure has been made acceptably low. (author)

  16. Knowledge Sharing Through Virtual Mode: The Influenced Factors for KM Development Among the Researchers in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Adnan, H.; Sulaiman, M.S.; Yusof, M.H.; Ali, I.

    2014-01-01

    Conclusion: • The primary contribution of this study is to assess the influence of virtual mode as a KM medium in Nuclear Malaysia. • Direct relationship between the researchers and the used of virtual mode in the knowledge sharing process. • Finding reveals that virtual mode contributes significant factors in influencing researchers’ knowledge sharing behaviour. • The findings from the study may be used by the management of Nuclear Malaysia to improve or enhance the capacity of virtual mode provided by the organisation

  17. Nuclear instrumentation evaluation and analysis

    International Nuclear Information System (INIS)

    Park, Suk Jun; Han, Sang Joon; Chung, Chong Eun; Han, Kwang Soo; Kim, Dong Hwa; Park, Byung Hae; Moon, Je Sun; Lee, Chel Kwon; Song, Ki Sang; Choi, Myung Jin; Kim, Seung Bok; Kim, Jung Bok

    1986-12-01

    This project provides the program for improving instrumentation reliability as well as developing a cost-effective preventive maintenance activity through evaluation and analysis of nuclear instrumentation concerning pilot plants, large-scale test facilities and various laboratories on KAERI site. In addition, it discusses the program for enhancing safe operations and improving facility availability through establishment of maintenance technology. (Author)

  18. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  19. Time-frequency analysis : mathematical analysis of the empirical mode decomposition.

    Science.gov (United States)

    2009-01-01

    Invented over 10 years ago, empirical mode : decomposition (EMD) provides a nonlinear : time-frequency analysis with the ability to successfully : analyze nonstationary signals. Mathematical : Analysis of the Empirical Mode Decomposition : is a...

  20. Analysis for rare decay modes (E787)

    International Nuclear Information System (INIS)

    Muramatsu, Norihito

    2002-01-01

    BNL-AGS-E787 experiment is designed to study stopped K + decays. Rare decay mode K + → π + νν-bar is attractive because an absolute value of a CKM matrix element, |V td |, can be extracted. E787 collected K + → π + νν-bar trigger data, which corresponds to 3.2 x 10 12 K + exposures, in 1995-1997. Offline cuts to suppress backgrounds are developed with 'Bifurcation Method', and the background level is estimated to be 0.083±0.019 events inside the signal region. One candidate event is observed after applying the prepared cuts. This event survives with 10 times tighter cuts, which retain 33% of the acceptance. This observation results in BR(K + → π + νν-bar) = 1.52 -1.26 +3.48 x 10 -10 and 0.0024 td | + → π + π 0 νν-bar could also give information on |V td |. The 1995 data, which corresponds to 1.3 x 10 8 K + exposures, are analyzed, and zero events are observed in the signal region. A background level is estimated to be 0.068±0.021 events. The upper limit of the branching ratio is calculated to be 4.3 x 10 -5 at 90% confidence level. (author)

  1. Structural analysis of nuclear components

    International Nuclear Information System (INIS)

    Ikonen, K.; Hyppoenen, P.; Mikkola, T.; Noro, H.; Raiko, H.; Salminen, P.; Talja, H.

    1983-05-01

    THe report describes the activities accomplished in the project 'Structural Analysis Project of Nuclear Power Plant Components' during the years 1974-1982 in the Nuclear Engineering Laboratory at the Technical Research Centre of Finland. The objective of the project has been to develop Finnish expertise in structural mechanics related to nuclear engineering. The report describes the starting point of the research work, the organization of the project and the research activities on various subareas. Further the work done with computer codes is described and also the problems which the developed expertise has been applied to. Finally, the diploma works, publications and work reports, which are mainly in Finnish, are listed to give a view of the content of the project. (author)

  2. Introduction to structural failure modes for nuclear power facilities

    International Nuclear Information System (INIS)

    Reed, J.W.; Gurbuz, O.

    1993-01-01

    This introduction provides a background of the evaluation methods for earthquakes larger than design basis. Seismic probabilistic risk assessment (SPRA) and seismic margin assessment (SMA) methods are introduced to the reader. The basic parameters used to define seismic capacity for each method are explained. The objectives of both evaluation methods and how they can be used to evaluate the adequacy of a seismic design are discussed. General issues related to computing seismic capacity are reviewed relative to SPRA and SMA. Four companion papers presented in the journal following this introduction discuss the types of information (i.e., dynamic tests, earthquake experience, and analytical data) that are used to determine the real capacity of structures and equipment in nuclear power plants to resist earthquakes. The motivation for discussing these three types of information is presented as an introduction to these papers that following in this journal edition. The purpose of the present paper is to lay the groundwork and provide motivation for these papers

  3. A sociological Analysis on the Modes of Science Production

    Directory of Open Access Journals (Sweden)

    Ali Rabbani Khorasgani

    2012-12-01

    Full Text Available The main aim of this article was sociological Analysis on the modes of science, survey of new Approaches in this context, description of available Approaches relevant to Application of Indigenous paradigm in prodvetion of knowledge and conclusion to attain imitated Approaches from Analysis and mentioned discussions for planning in space of science production in society of Iran. After Analysis of propound Approaches in sociology of science concreted that sociology of science three generation transitioned yet : classic sociology of science (OSS [ Theories of Merton ] , New sociology of science ( NSS [Theories of Thomas kuhn and others ] and Third generation sociology of science that consisted of non - Marxist composinal and processive Approaches for example: Actor - Network theory (ANT, Triple Helix Theory life eyeles, mode 2 and Mode 3. On the other hand , because science production is encompass process in social structures and social communications , allowance for Analysis of Recent Development in mode of science production , three paradigm Analysis and critiqued titles mode 1 , 2 , 3 production of knowledge . Also, Application of Indigenous paradigm studied in production of knowledge and introduced two groups: A - External Approaches B - Internal Approaches that each of two groups propounded Ideas relevant to Indigenous knowledge and Indigenization of knowledge. In the final section, mode an efforted to answered this question that what doctrines can be concluded from these discourse in order to improve the conditions in Iran.

  4. Failure mode, effect and criticality analysis (FMECA) on mechanical subsystems of diesel generator at NPP

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Singh, Brijendra; Sung, Tae Yong; Park, Jin Hee; Lee, Yoon Hwan

    1996-06-01

    Largely, the RCM approach can be divided in three phases; (1) Functional failure analysis (FFA) on the selected system or subsystem, (2) Failure mode, effect and criticality analysis (FMECA) to identify the impact of failure to plant safety or economics, (3) Logical tree analysis (LTA) to select appropriate preventive maintenance and surveillance tasks. This report presents FMECA results for six mechanical subsystems of the diesel generators of nuclear power plants. The six mechanical subsystems are Starting air, Lub oil, Governor, Jacket water cooling, Fuel, and Engine subsystems. Generic and plant-specific failure and maintenance records are reviewed to identify critical components/failure modes. FMECA was performed for these critical component/failure modes. After reviewing current preventive maintenance activities of Wolsung unit 1, draft RCM recommendations are developed. 6 tabs., 16 refs. (Author)

  5. Failure mode, effect and criticality analysis (FMECA) on mechanical subsystems of diesel generator at NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Singh, Brijendra; Sung, Tae Yong; Park, Jin Hee; Lee, Yoon Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    Largely, the RCM approach can be divided in three phases; (1) Functional failure analysis (FFA) on the selected system or subsystem, (2) Failure mode, effect and criticality analysis (FMECA) to identify the impact of failure to plant safety or economics, (3) Logical tree analysis (LTA) to select appropriate preventive maintenance and surveillance tasks. This report presents FMECA results for six mechanical subsystems of the diesel generators of nuclear power plants. The six mechanical subsystems are Starting air, Lub oil, Governor, Jacket water cooling, Fuel, and Engine subsystems. Generic and plant-specific failure and maintenance records are reviewed to identify critical components/failure modes. FMECA was performed for these critical component/failure modes. After reviewing current preventive maintenance activities of Wolsung unit 1, draft RCM recommendations are developed. 6 tabs., 16 refs. (Author).

  6. The optimization of nuclear power plants operation modes in emergency situations

    Science.gov (United States)

    Zagrebayev, A. M.; Trifonenkov, A. V.; Ramazanov, R. N.

    2018-01-01

    An emergency situations resulting in the necessity for temporary reactor trip may occur at the nuclear power plant while normal operating mode. The paper deals with some of the operation c aspects of nuclear power plant operation in emergency situations and during threatened period. The xenon poisoning causes limitations on the variety of statements of the problem of calculating characteristics of a set of optimal reactor power off controls. The article show a possibility and feasibility of new sets of optimization tasks for the operation of nuclear power plants under conditions of xenon poisoning in emergency circumstances.

  7. Sound-like collective mode excitation with pion absorption in nuclear matter

    International Nuclear Information System (INIS)

    Qiu Xijiun; Shen Jianguo; Huang Lingfang

    1985-01-01

    The relativistic mean field theory consistent with bulk properties of nuclear matter is extended to study the excitations of the sound-like collective modes in nuclear matter. Corresponding relativistic mean field equations are solved numerically and self-consistently. The effective mass of nucleon, the speed of the sound and the amplitude of the sound-like solution are calculated. When the nuclear density is near or greater than the saturation density, the sound-like non-trivial solution could be found

  8. Senior High School Students' Preference and Reasoning Modes about Nuclear Energy Use.

    Science.gov (United States)

    Yang, Fang-Ying; Anderson, O. Roger

    2003-01-01

    Examines senior high school students' cognitive orientation toward scientific or social information, designated as information preference, and associated preferential reasoning modes when presented with an environmental issue concerning nuclear energy usage. Investigates the association of information preference variable with academic and personal…

  9. Calculation of nuclear level density parameters of some light deformed medical radionuclides using collective excitation modes of observed nuclear spectra

    International Nuclear Information System (INIS)

    Okuducu, S.; Sarac, H.; Akti, N. N.; Boeluekdemir, M. H.; Tel, E.

    2010-01-01

    In this study the nuclear energy level density based on nuclear collective excitation mechanism has been identified in terms of the low-lying collective level bands at near the neutron binding energy. Nuclear level density parameters of some light deformed medical radionuclides used widely in medical applications have been calculated by using different collective excitation modes of observed nuclear spectra. The calculated parameters have been used successfully in estimation of the neutron-capture cross section basic data for the production of new medical radionuclides. The investigated radionuclides have been considered in the region of mass number 40< A< 100. The method used in the present work assumes equidistance spacing of the collective coupled state bands of the interest radionuclides. The present calculated results have been compared with the compiled values from the literatures for s-wave neutron resonance data.

  10. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    Science.gov (United States)

    Flores, Melissa; Malin, Jane T.

    2013-01-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  11. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    Science.gov (United States)

    Flores, Melissa D.; Malin, Jane T.; Fleming, Land D.

    2013-09-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component's functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  12. Magnetostatic Analysis of a Pinch Mode Magnetorheological Valve

    Directory of Open Access Journals (Sweden)

    Gołdasz Janusz

    2017-09-01

    Full Text Available The study deals with the pinch mode of magnetorheological (MR fluids’ operation and its application in MR valves. By applying the principle in MR valves a highly non-uniform magnetic field can be generated in flow channels in such a way to solidify the portion of the material that is the nearest to the flow channel’s walls. This is in contrary to well-known MR flow mode valves. The authors investigate a basic pinch mode valve in several fundamental configurations, and then examine their magnetic circuits through magnetostatic finite-element (FE analysis. Flux density contour maps are revealed and basic performance figures calculated and analysed. The FE analysis results yield confidence in that the performance of MR pinch mode devices can be effectively controlled through electromagnetic means.

  13. Programs for nuclear data analysis

    International Nuclear Information System (INIS)

    Bell, R.A.I.

    1975-01-01

    The following report details a number of programs and subroutines which are useful for analysis of data from nuclear physics experiments. Most of them are available from pool pack 005 on the IBM1800 computer. All of these programs are stored there as core loads, and the subroutines and functions in relocatable format. The nature and location of other programs are specified as appropriate. (author)

  14. Prompt nuclear analysis bibliography 1976

    International Nuclear Information System (INIS)

    Bird, J.R.; Campbell, B.L.; Cawley, R.J.

    1978-05-01

    A prompt nuclear analysis bibliography published in 1974 has been updated to include literature up to the end of 1976. The number of publications has more than doubled since mid-1973. The bibliography is now operated as a computer file and searches can be made on key words and parameters. Tables of references are given for each of the categories: backscattering, ion-ion, ion-gamma, ion-neutron, neutron-gamma, neutron-neutron and gamma-ray-induced reactions

  15. Time-Frequency Analysis of the Dispersion of Lamb Modes

    Science.gov (United States)

    Prosser, W. H.; Seale, Michael D.; Smith, Barry T.

    1999-01-01

    Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A(sub 0), A(sub 1), S(sub 0), and S(sub 2)Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along, and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.

  16. Radiochemistry and nuclear methods of analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Vance, D.

    1991-01-01

    This book provides both the fundamentals of radiochemistry as well as specific applications of nuclear techniques to analytical chemistry. It includes such areas of application as radioimmunoassay and activation techniques using very short-lined indicator radionuclides. It emphasizes the current nuclear methods of analysis such as neutron activation PIXE, nuclear reaction analysis, Rutherford backscattering, isotope dilution analysis and others

  17. Probabilistic safety assessments of nuclear power plants for low power and shutdown modes

    International Nuclear Information System (INIS)

    2000-03-01

    Within the past several years the results of nuclear power plant operating experience and performance of probabilistic safety assessments (PSAs) for low power and shutdown operating modes have revealed that the risk from operating modes other than full power may contribute significantly to the overall risk from plant operations. These early results have led to an increased focus on safety during low power and shutdown operating modes and to an increased interest of many plant operators in performing shutdown and low power PSAs. This publication was developed to provide guidance and insights on the performance of PSA for shutdown and low power operating modes. The preparation of this publication was initiated in 1994. Two technical consultants meetings were conducted in 1994 and one in February 1999 in support of the development of this report

  18. Nuclear Futures Analysis and Scenario Building

    International Nuclear Information System (INIS)

    Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

    1999-01-01

    This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios

  19. Practical computer analysis of switch mode power supplies

    CERN Document Server

    Bennett, Johnny C

    2006-01-01

    When designing switch-mode power supplies (SMPSs), engineers need much more than simple "recipes" for analysis. Such plug-and-go instructions are not at all helpful for simulating larger and more complex circuits and systems. Offering more than merely a "cookbook," Practical Computer Analysis of Switch Mode Power Supplies provides a thorough understanding of the essential requirements for analyzing SMPS performance characteristics. It demonstrates the power of the circuit averaging technique when used with powerful computer circuit simulation programs. The book begins with SMPS fundamentals and the basics of circuit averaging models, reviewing most basic topologies and explaining all of their various modes of operation and control. The author then discusses the general analysis requirements of power supplies and how to develop the general types of SMPS models, demonstrating the use of SPICE for analysis. He examines the basic first-order analyses generally associated with SMPS performance along with more pra...

  20. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2004-12-01

    This study evaluated the role of nuclear energy in various aspects in order to provide a more comprehensive standard of judgement to the justification of the utilization of nuclear energy. Firstly, this study evaluated the economic value addition of nuclear power generation technology and Radio-Isotope(RI) technology quantitatively by using modified Input-Output table. Secondly, a comprehensive cost-benefit analysis of nuclear power generation was conducted with an effort to quantify the foreign exchange expenditure, the environmental damage cost during 1986-2015 for each scenario. Thirdly, the effect of the regulation of CO 2 emission on the Korean electric supply system was investigated. In more detail, an optimal composition of power plant mix by energy source was investigated, under the assumption of the CO 2 emission regulation at a certain level, by using MESSAGE model. Finally, the economic spillover effect from technology self-reliance of NSSS by Korea Atomic Energy Research Institute was evaluated. Both production spillover effect and value addition spillover effect were estimated by using Input-Output table

  1. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    Science.gov (United States)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  2. Subchannel analysis in nuclear reactors

    International Nuclear Information System (INIS)

    Ninokata, H.; Aritomi, M.

    1992-01-01

    This book contains 10 informative papers, presented at the International Seminar on Subchannel Analysis 1992 (ISSCA '92), organized by the Institute of Applied Energy, in collaboration with Atomic Energy Society of Japan, Tokyo Electric Power Company, Kansai Electric Power Company, Nuclear Power Engineering Corporation and the Japan Atomic Energy Research Institute, and held at the TIS-Green Forum, Tokyo, Japan, 30 October 1992. The seminar ISSCA '92 was intended to review the current state-of-the-arts of the method being applied to advanced nuclear reactors including Advanced BWRs, Advanced PWRs and LMRs, and to identify the problems to be solved, improvements to be made, and the needs of R and Ds that were required from the new fuel bundles design. The critical review was to focus on the performances of currently available subchannel analysis codes with regard to heat transfer and fluid flows in various types of nuclear reactor bundles under both steady-state and transient operating conditions, CHF, boiling transition (BT) or dryout behaviors and post BT. The behaviors of physical modeling and numerical methods in these extreme conditions were discussed and the methods critically evaluated in comparison with experiments. (author) (J.P.N.)

  3. Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories

    Science.gov (United States)

    Rodríguez, Martín A.

    2014-03-01

    Metallic engineered barriers must provide a period of absolute containment to high-level radioactive waste in geological repositories. Candidate materials include copper alloys, carbon steels, stainless steels, nickel alloys, and titanium alloys. The national programs of nuclear waste management have to identify and assess the anticipated degradation modes of the selected materials in the corresponding repository environment, which evolves in time. Commonly assessed degradation modes include general corrosion, localized corrosion, stress-corrosion cracking, hydrogen-assisted cracking, and microbiologically influenced corrosion. Laboratory testing and modeling in metallurgical and environmental conditions of similar and higher aggressiveness than those expected in service conditions are used to evaluate the corrosion resistance of the materials. This review focuses on the anticipated degradation modes of the selected or reference materials as corrosion-resistant barriers in nuclear repositories. These degradation modes depend not only on the selected alloy but also on the near-field environment. The evolution of the near-field environment varies for saturated and unsaturated repositories considering backfilled and unbackfilled conditions. In saturated repositories, localized corrosion and stress-corrosion cracking may occur in the initial aerobic stage, while general corrosion and hydrogen-assisted cracking are the main degradation modes in the anaerobic stage. Unsaturated repositories would provide an oxidizing environment during the entire repository lifetime. Microbiologically influenced corrosion may be avoided or minimized by selecting an appropriate backfill material. Radiation effects are negligible provided that a thick-walled container or an inner shielding container is used.

  4. Numerical study of the mode selection in response spectrum analysis-condensed version

    International Nuclear Information System (INIS)

    Ng, D.S.

    1986-01-01

    For quality assurance of the dynamic response spectrum analysis, the Nuclear Regulatory Commission (NRC) recommends retaining all modes below the cutoff frequency at which the spectral acceleration (S/sub a/) returns to the peak zero period acceleration (ZPA). It also suggests that modes accounting for at least 90 percent of the structural masses be included in the analysis. A simple frame-type structure is generated as a baseline frame. Then groups of oscillators representing substructure are added onto the frame to study substructure behavior. A base case is established for each frame by including the specific number of modes used. The tests are conducted by incrementing the number of modes in the response spectrum analyses starting with one mode. The structural response of each modal increment is compared with the base case to identify the efficiency of mode selection method. All three methods are then applied to the MFTF-B Axicell Vacuum Vessel. The responses in critical components of the vessel, such as hangers and foundations, will be analyzed to confirm the accuracy of the selected method

  5. Safety analysis for push-mode and rotary-mode core sampling

    International Nuclear Information System (INIS)

    Milliken, N.J.; Geschke, G.R.

    1995-01-01

    This safety analysis analyzes using the push-mode core sampling truck in the push-mode and the rotary-mode core sampling trucks in both the push- and rotary-modes to retrieve core samples that, once taken and analyzed, will yield waste characterization data for the hazardous waste tanks at the Hanford Site. Operation of the core sampling trucks in both the push- and rotary-modes was reviewed to determine whether the release of radioactive materials could occur during operation. It was concluded that there are three credible scenarios: a sample spill outside of the tank, a steam release event, and an unfiltered release to the environment during continuous exhauster operation. The probability of a sample spill was found to be 10 -4 /event, the probability of a steam release event was determined to fall in the unlikely range (10 -2 /event to 10 -4 /event), and the probability of an unfiltered release was calculated to be 5 x 10 -3 /year. Typically, events with probabilities of 10 -6 /event or less are not considered to be risk significant, and the consequences usually are not analyzed. The three accident scenarios were analyzed to calculate the dose consequences. It was determined that the steam release event is the bounding accident. The onsite and offsite dose consequences for this event are calculated to be 0.24 Sv (24 rem) and 3.2 x 10 -4 Sv (32 mrem), respectively. These consequences are below the risk acceptance guidelines for an unlikely event, as established in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. With the design features and the use of the controls presented in Section 8.0, this operation represents a minimal risk

  6. Nuclear energy: public controversies and the analysis of risks

    International Nuclear Information System (INIS)

    Sills, D.L.

    1984-01-01

    Energy is a social concept, the product of social, economic, and political processes that define certain raw materials as resources and thus convert them into usable energy. Like all social concepts, energy is controversial. Out of a wide range of controversies, three are selected for analysis here: (1) the relationship of nuclear power systems to nuclear weapons proliferation; (2) the risks of terrorism and sabotage associated with the operation of nuclear power facilities, including threats to civil liberties; and (3) the problems associated with the long-term management of radioactive wastes. The final section of the paper describes various modes of analyzing risks and the perception of risks. It is concluded that it may take many decades to learn whether nuclear energy is as natural a source of electrical power as wells are of drinking water, or whether nuclear energy is a horror that mankind in the 1980s or 1990s took a hard look at and then backed away. (author)

  7. Failure Modes and Effects Analysis (FMEA): A Bibliography

    Science.gov (United States)

    2000-01-01

    Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.

  8. Enhancing the Sustainability of Nuclear Power: the Pebble Bed HTR in Deep Burn Mode

    International Nuclear Information System (INIS)

    Da Cruz, D.F.; De Haas, J.B.M.; Van Heek, A.I.

    2004-01-01

    The scenario of a utility in an industrialized country starting new nuclear construction with a single PBMR reactor has been considered. To make the new construction project acceptable by government and society, a maximum effort to obtain sustainability (i.e. minimization of resource use and waste production) will have to be shown. Therefore the usual open cycle for HTR has been abandoned, and the spent fuel will be reprocessed once. The long-lived transuranic (TRU) elements Pu, Np, Am and Cm are all re-fabricated into so-called transmutation fuel elements, and loaded back into the same reactor, in our case a 110 MWe PBMR with low-enriched uranium cycle. In this study, the reactor physical prospects have been investigated: to what extent the amount of TRU could be reduced. In this way, 75% of the initial amount of TRU waste is being destructed, while the time span in which the waste is more radio-toxic than uranium ore is being reduced to one-third. Also, the amount of fresh driver fuel needed is decreases by 25%. A preliminary cost analysis has been performed as well. It shows that there is also a cost advantage of operating the reactor in Deep Burn mode in industrialized countries, where the waste storage fees charged per volume are relatively high. (authors)

  9. Nuclear Proliferation Technology Trends Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  10. Degradation mode analysis: An approach to establish effective predictive maintenance tasks

    International Nuclear Information System (INIS)

    Sonnett, D.E.; Douglass, P.T.; Barnard, D.D.

    1991-01-01

    A significant number of nuclear generating stations have been employing Reliability Centered Maintenance methodology to arrive at applicable and effective maintenance tasks for their plant equipment. The resultant endpoint of most programs has been an increased emphasis on predictive maintenance as the task of choice for monitoring and trending plant equipment condition to address failure mechanisms of the analyses. Many of these plants have spent several years conducting reliability centered analysis before they seriously begin implementing predictive program improvements. In this paper we present another methodology, entitled Degradation Mode Analysis, which provides a more direct method to quickly and economically achieve the major benefit of reliability centered analysis, namely predictive maintenance. (author)

  11. Ideal MHD stability analysis of KSTAR target AT mode

    International Nuclear Information System (INIS)

    Yi, S.M.; Kim, J.H.; You, K.I.; Kim, J.Y.

    2009-01-01

    Full text: A main research objective of KSTAR (Korea Superconducting Tokamak Advanced Research) device is to demonstrate the steady-state operation capability of high-performance AT (Advanced Tokamak) mode. To meet this goal, it is critical for KSTAR to have a good MHD stability boundary, particularly against the high-beta ideal instabilities such as the external kink and the ballooning modes. To support this MHD stability KSTAR has been designed to have a strong plasma shape and a close interval between plasma and passive- plate wall. During the conceptual design phase of KSTAR, a preliminary study was performed to estimate the high beta MHD stability limit of KSTAR target AT mode using PEST and VACUUM codes and it was shown that the target AT mode can be stable up to β N ∼ 5 with a well-defined plasma pressure and current profiles. Recently, a new calculation has been performed to estimate the ideal stability limit in various KSTAR operating conditions using DCON code, and it has been observed that there is some difference between the new and old calculation results, particularly in the dependence of the maximum β N value on the toroidal mode number. Here, we thus present a more detailed analysis of the ideal MHD stability limit of KSTAR target AT mode using various codes, which include GATO as well as PEST and DCON, in the comparison of calculation results among the three codes. (author)

  12. Failure mode and effects analysis of software-based automation systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Helminen, A.

    2002-08-01

    Failure mode and effects analysis (FMEA) is one of the well-known analysis methods having an established position in the traditional reliability analysis. The purpose of FMEA is to identify possible failure modes of the system components, evaluate their influences on system behaviour and propose proper countermeasures to suppress these effects. The generic nature of FMEA has enabled its wide use in various branches of industry reaching from business management to the design of spaceships. The popularity and diverse use of the analysis method has led to multiple interpretations, practices and standards presenting the same analysis method. FMEA is well understood at the systems and hardware levels, where the potential failure modes usually are known and the task is to analyse their effects on system behaviour. Nowadays, more and more system functions are realised on software level, which has aroused the urge to apply the FMEA methodology also on software based systems. Software failure modes generally are unknown - 'software modules do not fail, they only display incorrect behaviour' - and depend on dynamic behaviour of the application. These facts set special requirements on the FMEA of software based systems and make it difficult to realise. In this report the failure mode and effects analysis is studied for the use of reliability analysis of software-based systems. More precisely, the target system of FMEA is defined to be a safety-critical software-based automation application in a nuclear power plant, implemented on an industrial automation system platform. Through a literature study the report tries to clarify the intriguing questions related to the practical use of software failure mode and effects analysis. The study is a part of the research project 'Programmable Automation System Safety Integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002). In the project various safety assessment methods and tools for

  13. A quantitative method for Failure Mode and Effects Analysis

    NARCIS (Netherlands)

    Braaksma, Anne Johannes Jan; Meesters, A.J.; Klingenberg, W.; Hicks, C.

    2012-01-01

    Failure Mode and Effects Analysis (FMEA) is commonly used for designing maintenance routines by analysing potential failures, predicting their effect and facilitating preventive action. It is used to make decisions on operational and capital expenditure. The literature has reported that despite its

  14. Analysis of a shielded TE011 mode composite dielectric resonator ...

    Indian Academy of Sciences (India)

    Abstract. Analysis of a TE011 mode composite sapphire–rutile dielectric resonator has been car- ried out to study the temperature variation of resonance frequency, close to the Cs atomic clock hyperfine frequency of 9.192 GHz. The complementary behavior of dielectric permittivity with tem- perature of the composite has ...

  15. Analysis of event-mode data with Interactive Data Language

    International Nuclear Information System (INIS)

    De Young, P.A.; Hilldore, B.B.; Kiessel, L.M.; Peaslee, G.F.

    2003-01-01

    We have developed an analysis package for event-mode data based on Interactive Data Language (IDL) from Research Systems Inc. This high-level language is high speed, array oriented, object oriented, and has extensive visual (multi-dimensional plotting) and mathematical functions. We have developed a general framework, written in IDL, for the analysis of a variety of experimental data that does not require significant customization for each analysis. Unlike many traditional analysis package, spectra and gates are applied after data are read and are easily changed as analysis proceeds without rereading the data. The events are not sequentially processed into predetermined arrays subject to predetermined gates

  16. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  17. Methodology for Mode Selection in Corridor Analysis of Freight Transportation

    OpenAIRE

    Kanafani, Adib

    1984-01-01

    The purpose of tins report is to outline a methodology for the analysis of mode selection in freight transportation. This methodology is intended to partake of transportation corridor analysts, a component of demand analysis that is part of a national transportation process. The methodological framework presented here provides a basis on which specific models and calculation procedures might be developed. It also provides a basis for the development of a data management system suitable for co...

  18. Failure modes and effects analysis (FMEA) for Gamma Knife radiosurgery.

    Science.gov (United States)

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Flickinger, John; Arai, Yoshio; Vacsulka, Jonet; Feng, Wenzheng; Monaco, Edward; Niranjan, Ajay; Lunsford, L Dade; Huq, M Saiful

    2017-11-01

    Gamma Knife radiosurgery is a highly precise and accurate treatment technique for treating brain diseases with low risk of serious error that nevertheless could potentially be reduced. We applied the AAPM Task Group 100 recommended failure modes and effects analysis (FMEA) tool to develop a risk-based quality management program for Gamma Knife radiosurgery. A team consisting of medical physicists, radiation oncologists, neurosurgeons, radiation safety officers, nurses, operating room technologists, and schedulers at our institution and an external physicist expert on Gamma Knife was formed for the FMEA study. A process tree and a failure mode table were created for the Gamma Knife radiosurgery procedures using the Leksell Gamma Knife Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection for failure mode (D) were assigned to each failure mode by 8 professionals on a scale from 1 to 10. An overall risk priority number (RPN) for each failure mode was then calculated from the averaged O, S, and D scores. The coefficient of variation for each O, S, or D score was also calculated. The failure modes identified were prioritized in terms of both the RPN scores and the severity scores. The established process tree for Gamma Knife radiosurgery consists of 10 subprocesses and 53 steps, including a subprocess for frame placement and 11 steps that are directly related to the frame-based nature of the Gamma Knife radiosurgery. Out of the 86 failure modes identified, 40 Gamma Knife specific failure modes were caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the Gamma Knife helmets and plugs, the skull definition tools as well as other features of the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all external beam radiation therapy

  19. Data-processing program from the operating modes of the nuclear reactor (P0DER)

    International Nuclear Information System (INIS)

    Totev, T.L.; Boyadzhiev, A.I.

    1981-01-01

    A program PODER for processing data from the operating modes of the reactors taking into account the effects of corrosion, hydration, and deformation of the nuclear reactor fuel element sheathing, the formation of the corrosion product deposits, the change in the geometric dimensions of the nuclear reactor fuel element due to the temperature deformation, as well as the various gas fillers, are elaborated. The ''hot channel'' method determining the reliability of the system is realized. The basic equations describing the thermohydraulic processes in nuclear reactors are solved by the finite difference method. Approximations are carried out with the approach of least squares. The temperature distribution versus the zirconium sheathing height is computed for the case of WWER-440 type reactors. The advantages of the proposed program P0DER are discussed

  20. Mode Shape Analysis of Multiple Cracked Functionally Graded Timoshenko Beams

    Directory of Open Access Journals (Sweden)

    Tran Van Lien

    Full Text Available Abstract The present paper addresses free vibration of multiple cracked Timoshenko beams made of Functionally Graded Material (FGM. Cracks are modeled by rotational spring of stiffness calculated from the crack depth and material properties vary according to the power law throughout the beam thickness. Governing equations for free vibration of the beam are formulated with taking into account actual position of the neutral plane. The obtained frequency equation and mode shapes are used for analysis of the beam mode shapes in dependence on the material and crack parameters. Numerical results validate usefulness of the proposed herein theory and show that mode shapes are good indication for detecting multiple cracks in Timoshenko FGM beams.

  1. Sliding Mode Control for Pressurized-Water Nuclear Reactors in load following operations with bounded xenon oscillations

    International Nuclear Information System (INIS)

    Ansarifar, G.R.; Saadatzi, S.

    2015-01-01

    Highlights: • We present SMC which is a robust nonlinear controller to control the PWR power. • Xenon oscillations are kept bounded within acceptable limits. • The stability analysis has been based on Lyapunov approach. • Simulation results indicate the high performance of this new control. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, sliding mode control (SMC) which is a robust nonlinear controller is designed to control the Pressurized-Water Nuclear Reactor (PWR) power for the load-following operation problem that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The reactor core is simulated based on the two-point nuclear reactor model and one delayed neutron group. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability. Results show that the proposed controller for the load-following operation is sufficiently effective so that the xenon oscillations are kept bounded in the considered region

  2. The application of science communication modes in China's nuclear and radiation safety science popularization

    International Nuclear Information System (INIS)

    Cao Yali; Wang Erqi; Wang Xiaofeng; Zhang Ying

    2014-01-01

    The studies of the application of science communication theory in the nuclear and radiation safety will help to enhance the level of science popularization work in the field of nuclear and radiation safety. This paper firstly describes the definition and the evolvement process of science communication models, then analyzes the current status of the nuclear and radiation safety science popularization, finally discusses on the suitability of science communication mode of its application in the field of nuclear and radiation safety. (authors)

  3. Blended-mode pedagogical model fosters nuclear engineering education in Southern Africa

    International Nuclear Information System (INIS)

    Kruger, J.H.; Fick, J.I.J.

    2010-01-01

    Social upliftment requires access to energy. Especially in the Southern Africa region, affordable energy gives communities access to improved living conditions, potable water and life-changing educational opportunities. Distributed nuclear power generation can make a significant difference in a continent where communities are geographically widely dispersed and where technology centres are few and far between. Unfortunately, for a country to obtain a nuclear capability and be part of the renaissance, it needs a skilled and educated workforce - a workforce that must be trained through an educational system facing the same challenges of dispersed human resources and lack of infrastructure as the community it serves. The blended-mode pedagogical model developed by the Postgraduate School for Nuclear Science and Engineering at the North-West University (NWU) in South Africa represents one manner in which the problem of dispersed resources can be addressed. As a matter of national policy, South Africa has embarked on a drive to not only innovate in terms of reactor technology, but to also develop and sustain a skilled workforce in the nuclear engineering field. Due to a severe shortage of personnel in the local nuclear community, the NWU devised a blended-mode teaching system to link overseas lecturers with local students to expand the local workforce through training and human capital development. The blended-mode delivery takes place through the online Sakai system that uses powerful learning management tools to achieve the learning outcomes. Students are guided in distance self-study for the larger part of the course and a contact session is then used to contextualize and integrate the knowledge. In this manner, a virtual collaborative environment between geographically dispersed faculty members and students is created which provides essential flexibility in terms of time and human resource management. The blended-mode teaching model has already achieved great

  4. Linear stability analysis of collective neutrino oscillations without spurious modes

    Science.gov (United States)

    Morinaga, Taiki; Yamada, Shoichi

    2018-01-01

    Collective neutrino oscillations are induced by the presence of neutrinos themselves. As such, they are intrinsically nonlinear phenomena and are much more complex than linear counterparts such as the vacuum or Mikheyev-Smirnov-Wolfenstein oscillations. They obey integro-differential equations, for which it is also very challenging to obtain numerical solutions. If one focuses on the onset of collective oscillations, on the other hand, the equations can be linearized and the technique of linear analysis can be employed. Unfortunately, however, it is well known that such an analysis, when applied with discretizations of continuous angular distributions, suffers from the appearance of so-called spurious modes: unphysical eigenmodes of the discretized linear equations. In this paper, we analyze in detail the origin of these unphysical modes and present a simple solution to this annoying problem. We find that the spurious modes originate from the artificial production of pole singularities instead of a branch cut on the Riemann surface by the discretizations. The branching point singularities on the Riemann surface for the original nondiscretized equations can be recovered by approximating the angular distributions with polynomials and then performing the integrals analytically. We demonstrate for some examples that this simple prescription does remove the spurious modes. We also propose an even simpler method: a piecewise linear approximation to the angular distribution. It is shown that the same methodology is applicable to the multienergy case as well as to the dispersion relation approach that was proposed very recently.

  5. Kinetic analysis of MHD ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.

    1984-10-01

    A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from β = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with β, these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-β-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties

  6. Nondestructive assay methodologies in nuclear forensics analysis

    International Nuclear Information System (INIS)

    Tomar, B.S.

    2016-01-01

    In the present chapter, the nondestructive assay (NDA) methodologies used for analysis of nuclear materials as a part of nuclear forensic investigation have been described. These NDA methodologies are based on (i) measurement of passive gamma and neutrons emitted by the radioisotopes present in the nuclear materials, (ii) measurement of gamma rays and neutrons emitted after the active interrogation of the nuclear materials with a source of X-rays, gamma rays or neutrons

  7. Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method

    International Nuclear Information System (INIS)

    Vidal-Ferrandiz, A.; Fayez, R.; Ginestar, D.; Verdú, G.

    2014-01-01

    Highlights: • An hp finite element method is proposed for the Lambda modes problem of a nuclear reactor. • Different strategies can be implemented for increasing the accuracy of the solutions. • 2D and 3D benchmarks have been studied obtaining accurate results. - Abstract: Lambda modes of a nuclear power reactor have interest in reactor physics since they have been used to develop modal methods and to study BWR reactor instabilities. An h–p-Adaptation finite element method has been implemented to compute the dominant modes the fundamental mode and the next subcritical modes of a nuclear reactor. The performance of this method has been studied in three benchmark problems, a homogeneous 2D reactor, the 2D BIBLIS reactor and the 3D IAEA reactor

  8. Chemical mode control in nuclear power plant decommissioning during operation of technologies in individual radioactive waste processing plants

    International Nuclear Information System (INIS)

    Horvath, J.; Dugovic, L.

    1999-01-01

    Sewage treatment of nuclear power plant decommissioning is performed by system of sewage concentration in evaporator with formation of condensed rest, it means radioactive waste concentrate and breeding steam. During sewage treatment plant operation department of chemical mode performs chemical and radiochemical analysis of sewage set for treatment, chemical and radiochemical analysis of breeding steam condensate which is after final cleaning on ionization filter and fulfilling the limiting conditions released to environment; chemical and radiochemical analysis of heating steam condensate which is also after fulfilling the limiting conditions released to environment. Condensed radioactive concentrate is stored in stainless tanks and later converted into easy transportable and chemically stable matrix from the long term storage point of view in republic storage Mochovce. The article also refer to bituminous plant, vitrification plant, swimming pool decontamination plant of long term storage and operation of waste processing plant Bohunice

  9. Applications of noise analysis to nuclear safety

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2000-01-01

    Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in

  10. Application of nuclear activation analysis

    International Nuclear Information System (INIS)

    Mamonov, E.I.; Khlystova, A.F.

    1979-01-01

    Consideration is given to the applications of nuclear-activation analysis (NAA) as discussed at the International Conference of 1977. One of the new results in the present-day NAA practices is the growing number of elements detected in samples without using a destructive radiochemical separation. An essential feature in this context is the development of the system automation of control and information NAA operations through the use computers. In biological medicine a multicomponent NAA is employed to determine the concentration of elements in various human organs and objects, in metabolic studies and for diagnostic purposes. In agriculture NAA finds applications in the evaluation of grain protein, analysis of element feed composition, soil and fertilizers. The application of this method to the environmental monitoring is considered with particular reference to the element analysis of water (especially drinking water), air, plant residues. Data are presented for the use of NAA in metallurgy, geology, archaeology and criminal law. Tables are provided to illustrate the uses of NAA in various fields

  11. Economic analysis of fast reactor fuel cycle with different modes

    International Nuclear Information System (INIS)

    Ding Xiaoming

    2014-01-01

    Because of limitations on the access to technical and economic data and the lack of effective verification, the lack of in-depth study on the economy of fast reactor fuel cycle in China. This paper introduces the analysis and calculation results of the levelized cost of electricity (LCOE) under three different fuel cycle modes including fast reactor fuel cycle carried out by Massachusetts Institute of Technology (MIT). The author used the evaluation method and hypothesis parameters provided by the MIT to carry out the sensitivity analysis for the impact of the overnight cost, the discount rate and changes of uranium price on the LCOE under three fuel cycle modes. Finally, some suggestions are proposed on the study of economy in China's fast reactor fuel cycle. (authors)

  12. Advanced approaches to failure mode and effect analysis (FMEA applications

    Directory of Open Access Journals (Sweden)

    D. Vykydal

    2015-10-01

    Full Text Available The present paper explores advanced approaches to the FMEA method (Failure Mode and Effect Analysis which take into account the costs associated with occurrence of failures during the manufacture of a product. Different approaches are demonstrated using an example FMEA application to production of drawn wire. Their purpose is to determine risk levels, while taking account of the above-mentioned costs. Finally, the resulting priority levels are compared for developing actions mitigating the risks.

  13. NOLB: Nonlinear Rigid Block Normal Mode Analysis Method

    OpenAIRE

    Hoffmann , Alexandre; Grudinin , Sergei

    2017-01-01

    International audience; We present a new conceptually simple and computationally efficient method for nonlinear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a nonlinear extrapolation of motion out of these veloci...

  14. Analysis of blowout fractures using cine mode MRI

    International Nuclear Information System (INIS)

    Kawahara, Masaaki; Shiihara, Kumiko; Kimura, Hisashi; Fukai, Sakuko; Tabuchi, Akio; Kojo, Tuyoshi

    1995-01-01

    By observing conventional CT and MRI images, it is difficult to distinguish extension failure from adhesion, bone fracture or damage to the extraocular muscle, any one of which may be the direct cause of the eye movement disturbance accompanying blowout fracture. We therefore carried out dynamic analysis of eye movement disturbance using a cine mode MRI. We put seven fixation points in the gantry of the MRI and filmed eye movement disturbances by the gradient echo method, using a surface coil and holding the vision on each fixation point. We also video recorded the CRT monitor of the MRI to obtain dynamic MRI images. The subjects comprised 5 cases (7-23 years old). In 4 cases, we started orthoptic treatment, saccadic eye movement training, convergence training and fusional amplitude training after surgery, with only orthoptic treatment in the 5 th case. In all cases, fusion area improvement was recognized during training. In 2 cases examined by cine mode MRI before and after surgery, we observed improved eye movement after training, the effectiveness of which was thereby proven. Also, using cine mode MRI we were able to determine the character of incarcerated tissue and the cause of eye movement disturbance. We conclude that it blowout fracture, cine mode MRI may be useful in selecting treatment and observing its effectiveness. (author)

  15. Palo Verde nuclear dynamic analysis (PANDA)

    International Nuclear Information System (INIS)

    Girjashankar, P.V.; Secker, P.A. Jr.; LeClair, S.J.; Mendoza, J.; Webb, J.R.

    1988-01-01

    Arizona Nuclear Power Project (ANPP) has initiated the development of a large scale dynamic analysis computer program for the Palo Verde Nuclear Generating Station (PVNGS). This paper presents the decision processes and preliminary development activities that have been pursued related to the code development. The PANDA (Palo Verde Nuclear Dynamic Analysis) code will be used for a variety of applications as described in this paper

  16. ITER technical meeting on nuclear analysis

    International Nuclear Information System (INIS)

    Khripunov, V.

    2000-01-01

    The ITER technical meeting on nuclear analysis was organized on 24-25 February 2000 at the ITER Joint Work Site in Garching. It was clear from the meeting that continuous nuclear analysis is a fundamental part of the design process

  17. CPU time reduction strategies for the Lambda modes calculation of a nuclear power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, V.; Garayoa, J.; Hernandez, V. [Universidad Politecnica de Valencia (Spain). Dept. de Sistemas Informaticos y Computacion; Navarro, J.; Verdu, G.; Munoz-Cobo, J.L. [Universidad Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear; Ginestar, D. [Universidad Politecnica de Valencia (Spain). Dept. de Matematica Aplicada

    1997-12-01

    In this paper, we present two strategies to reduce the CPU time spent in the lambda modes calculation for a realistic nuclear power reactor.The discretization of the multigroup neutron diffusion equation has been made using a nodal collocation method, solving the associated eigenvalue problem with two different techniques: the Subspace Iteration Method and Arnoldi`s Method. CPU time reduction is based on a coarse grain parallelization approach together with a multistep algorithm to initialize adequately the solution. (author). 9 refs., 6 tabs.

  18. Theoretical analysis of ejector refrigeration system performance under overall modes

    International Nuclear Information System (INIS)

    Chen, Weixiong; Shi, Chaoyin; Zhang, Shuangping; Chen, Huiqiang; Chong, Daotong; Yan, Junjie

    2017-01-01

    Highlights: • Real gas theoretical model is used to get ejector performance at critical/sub-critical modes. • The model has a better accuracy against the experiment results compared to ideal gas model. • The overall performances of two refrigerants are analyzed based on the parameter analysis. - Abstract: The ejector refrigeration integrated in the air-conditioning system is a promising technology, because it could be driven by the low grade energy. In the present study, a theoretical calculation based on the real gas property is put forward to estimate the ejector refrigeration system performance under overall modes (critical/sub-critical modes). The experimental data from literature are applied to validate the proposed model. The findings show that the proposed model has higher accuracy compared to the model using the ideal gas law, especially when the ejector operates at sub-critical mode. Then, the performances of the ejector refrigeration circle using different refrigerants are analyzed. R290 and R134a are selected as typical refrigerants by considering the aspects of COP, environmental impact, safety and economy. Finally, the ejector refrigeration performance is investigated under variable operation conditions with R290 and R134a as refrigerants. The results show that the R290 ejector circle has higher COP under critical mode and could operate at low evaporator temperature. However, the performance would decrease rapidly at high condenser temperature. The performance of R134a ejector circle is the opposite, with relatively lower COP, and higher COP at high condenser temperature compared to R290.

  19. Structural mode significance using INCA. [Interactive Controls Analysis computer program

    Science.gov (United States)

    Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.

    1990-01-01

    Structural finite element models are often too large to be used in the design and analysis of control systems. Model reduction techniques must be applied to reduce the structural model to manageable size. In the past, engineers either performed the model order reduction by hand or used distinct computer programs to retrieve the data, to perform the significance analysis and to reduce the order of the model. To expedite this process, the latest version of INCA has been expanded to include an interactive graphical structural mode significance and model order reduction capability.

  20. Virtual screening for potential inhibitors of Mcl-1 conformations sampled by normal modes, molecular dynamics, and nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Glantz-Gashai Y

    2017-06-01

    Full Text Available Yitav Glantz-Gashai,* Tomer Meirson,* Eli Reuveni, Abraham O Samson Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel *These authors contributed equally to this work Abstract: Myeloid cell leukemia-1 (Mcl-1 is often overexpressed in human cancer and is an important target for developing antineoplastic drugs. In this study, a data set containing 2.3 million lead-like molecules and a data set of all the US Food and Drug Administration (FDA-approved drugs are virtually screened for potential Mcl-1 ligands using Protein Data Bank (PDB ID 2MHS. The potential Mcl-1 ligands are evaluated and computationally docked on to three conformation ensembles generated by normal mode analysis (NMA, molecular dynamics (MD, and nuclear magnetic resonance (NMR, respectively. The evaluated potential Mcl-1 ligands are then compared with their clinical use. Remarkably, half of the top 30 potential drugs are used clinically to treat cancer, thus partially validating our virtual screen. The partial validation also favors the idea that the other half of the top 30 potential drugs could be used in the treatment of cancer. The normal mode-, MD-, and NMR-based conformation greatly expand the conformational sampling used herein for in silico identification of potential Mcl-1 inhibitors. Keywords: virtual screening, Mcl-1, molecular dynamics, NMR, normal modes

  1. Nuclear analysis methods. Rudiments of radiation protection

    International Nuclear Information System (INIS)

    Roth, E.

    1998-01-01

    The nuclear analysis methods are generally used to analyse radioactive elements but they can be used also for chemical analysis, with fields such analysis and characterization of traces. The principles of radiation protection are explained (ALARA), the biological effects of ionizing radiations are given, elements and units used in radiation protection are reminded in tables. A part of this article is devoted to how to use radiation protection in a nuclear analysis laboratory. (N.C.)

  2. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S

    1999-12-01

    The objective of this study is to analyze how the economics of nuclear power generation are affected by the change in nuclear environmental factors and then, to suggest desirable policy directions to improve the efficiency of the use of nuclear energy resources in korea. This study focused to analyze the impact of the change in 3 major nuclear environmental factors in Korea on the economics of nuclear power generation. To do this, environmental external cost, nuclear R and fund, and carbon emission control according to UNFCCC were selected as the major factors. First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power plant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environmental impact in to monetary values. To do this, AIRPACTS and 'Impacts of atmospheric release' model developed by IAEA were used. Secondly, the impact of nuclear R and D fund raised by the utility on the increment of nuclear power generating cost was evaluated. Then, the desirable size of the fund in Korea was suggested by taking into consideration the case of Japan. This study also analyzed the influences of the fund on the economics of nuclear power generation. Finally, the role of nuclear power under the carbon emission regulation was analyzed. To do this, the econometric model was developed and the impact of the regulation on the national economy was estimated. Further efforts were made to estimate the role by developing CGE model in order to improve the reliability of the results from the econometric model.

  3. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S.

    1999-12-01

    The objective of this study is to analyze how the economics of nuclear power generation are affected by the change in nuclear environmental factors and then, to suggest desirable policy directions to improve the efficiency of the use of nuclear energy resources in korea. This study focused to analyze the impact of the change in 3 major nuclear environmental factors in Korea on the economics of nuclear power generation. To do this, environmental external cost, nuclear R and fund, and carbon emission control according to UNFCCC were selected as the major factors. First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power plant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environmental impact in to monetary values. To do this, AIRPACTS and 'Impacts of atmospheric release' model developed by IAEA were used. Secondly, the impact of nuclear R and D fund raised by the utility on the increment of nuclear power generating cost was evaluated. Then, the desirable size of the fund in Korea was suggested by taking into consideration the case of Japan. This study also analyzed the influences of the fund on the economics of nuclear power generation. Finally, the role of nuclear power under the carbon emission regulation was analyzed. To do this, the econometric model was developed and the impact of the regulation on the national economy was estimated. Further efforts were made to estimate the role by developing CGE model in order to improve the reliability of the results from the econometric model

  4. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su

    1997-12-01

    The major contents in this study are as follows : - long-term forecast to the year of 2040 is provided for nuclear electricity generating capacity by means of logistic curve fitting method. - the role of nuclear power in a national economy is analyzed in terms of environmental regulation. To do so, energy-economy linked model is developed. By using this model, the benefits from the introduction of nuclear power in Korea are estimated. Study on inter-industry economic activity for nuclear industry is carried out by means of an input-output analysis. Nuclear industry is examined in terms of inducement effect of production, of value-added, and of import. - economic analysis of nuclear power generation is performed especially taking into consideration wide variations of foreign currency exchange rate. The result is expressed in levelized generating costs. (author). 27 refs., 24 tabs., 44 figs

  5. Prospective analysis. Nuclear deterrence in 2030

    International Nuclear Information System (INIS)

    Tertrais, B.

    2006-12-01

    This study is a prospective analysis of the long-term future of nuclear weapons, and particularly the future of French nuclear deterrence after 2015. The selected time period is 2025-2030. The principal objective is to reflect on what the nuclear world might look like during the first part of the 21 st century, beyond the modernization decisions already planned or envisaged, and to draw conclusions for the future of the French deterrent. (author)

  6. The different modes of hydro-economic analysis (Invited)

    Science.gov (United States)

    Harou, J. J.; Binions, O.; Erfani, T.

    2013-12-01

    In the face of growing water demands, climate change and spatial and temporal water access variability, accurately assessing the economic impacts of proposed water resource management changes is useful. The objective of this project funded by UK Water Industry Research was to present and demonstrate a framework for identifying and using the ';value of water' to enable water utilities and their regulators to make better decisions. A hydro-economic model can help evaluate water management options in terms of their hydrological and economic impact at different locations throughout a catchment over time. In this talk we discuss three modes in which hydro-economic models can be implemented: evaluative, behavioral and prescriptive. In evaluation mode economic water demand and benefit functions are used to post-process water resource management model results to assess the economic impacts (over space and time) of a policy under consideration. In behavioral hydro-economic models users are represented as agents and the economics is used to help predict their actions. In prescriptive mode optimization is used to find the most economically efficient management actions such as allocation patterns or source selection. These three types of hydro-economic analysis are demonstrated on a UK watershed (Great River Ouse) that includes 97 different water abstractors from amongst the public water supply, agriculture, industry and energy plant cooling sectors. The following issues under dry and normal historical conditions were investigated: Supply/demand investment planning, societal cost of environmental flows, water market prices, and scarcity-sensitive charges for water rights. The talk discusses which hydro-economic modeling mode is used to study each of these issues and why; example results are shown and discussed. The topic of how hydro-economic models can be built and deployed effectively is covered along with how existing water utility operational and planning tools can be

  7. Signal Based Mixing Analysis for the magnetohydrodynamic mode reconstruction from homodyne microwave reflectometry

    International Nuclear Information System (INIS)

    Ejiri, Akira; Sakakibara, Satoru; Kawahata, Kazuo.

    1995-03-01

    A new method 'Signal Based Mixing Analysis', to extract the components which are coherent to a certain reference signal from a noisy signal, has been developed. The method is applied to homodyne microwave reflectometry to reconstruct the radial structure of a magnetohydrodynamic (MHD) mode in heliotron/torsatron Compact Helical System (CHS) [K. Matsuoka et al. Plasma Phys. Control. Nuclear Fusion Research 1988 Vol. 2, IAEA, Vienna 411 (1989)]. In CHS plasmas, MHD fluctuations measured with magnetic probes show bursts, in which the amplitude and frequency quasi-periodically vary. The signal based mixing analysis uses a set of functions which have the same amplitude and the harmonic frequency as those of the magnetic fluctuations. The product (mixing) of the signal of reflectometer and the functions yields the amplitude and phase of the coherent components. When the plasma density gradually increases, the measuring position moves radially outward. Thus, the radial structure of MHD modes can be obtained by this method. The analysis indicates several peaks and nodes inside the resonance surface of the MHD mode. In addition, the structure does not propagate radially during a burst. (author)

  8. Augmenting health care failure modes and effects analysis with simulation

    DEFF Research Database (Denmark)

    Staub-Nielsen, Ditte Emilie; Dieckmann, Peter; Mohr, Marlene

    2014-01-01

    This study explores whether simulation plays a role in health care failure mode and effects analysis (HFMEA); it does this by evaluating whether additional data are found when a traditional HFMEA is augmented with simulation. Two multidisciplinary teams identified vulnerabilities in a process...... by brainstorming, followed by simulation. Two means of adding simulation were investigated as follows: just simulating the process and interrupting the simulation between substeps of the process. By adding simulation to a traditional HFMEA, both multidisciplinary teams identified additional data that were relevant...

  9. Nuclear analysis techniques and environmental sciences

    International Nuclear Information System (INIS)

    1997-10-01

    31 theses are collected in this book. It introduced molecular activation analysis micro-PIXE and micro-probe analysis, x-ray fluorescence analysis and accelerator mass spectrometry. The applications about these nuclear analysis techniques are presented and reviewed for environmental sciences

  10. Safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Selvatici, E.

    1981-01-01

    A study about the safety analysis of nuclear power plant, giving emphasis to how and why to do is presented. The utilization of the safety analysis aiming to perform the licensing requirements is discussed, and an example of the Angra 2 and 3 safety analysis is shown. Some presented tendency of the safety analysis are presented and examples are shown.(E.G.) [pt

  11. Analysis of archaeological pieces with nuclear techniques

    International Nuclear Information System (INIS)

    Tenorio, D.

    2002-01-01

    In this work nuclear techniques such as Neutron Activation Analysis, PIXE, X-ray fluorescence analysis, Metallography, Uranium series, Rutherford Backscattering for using in analysis of archaeological specimens and materials are described. Also some published works and thesis about analysis of different Mexican and Meso american archaeological sites are referred. (Author)

  12. Causality analysis of leading singular value decomposition modes identifies rotor as the dominant driving normal mode in fibrillation

    Science.gov (United States)

    Biton, Yaacov; Rabinovitch, Avinoam; Braunstein, Doron; Aviram, Ira; Campbell, Katherine; Mironov, Sergey; Herron, Todd; Jalife, José; Berenfeld, Omer

    2018-01-01

    Cardiac fibrillation is a major clinical and societal burden. Rotors may drive fibrillation in many cases, but their role and patterns are often masked by complex propagation. We used Singular Value Decomposition (SVD), which ranks patterns of activation hierarchically, together with Wiener-Granger causality analysis (WGCA), which analyses direction of information among observations, to investigate the role of rotors in cardiac fibrillation. We hypothesized that combining SVD analysis with WGCA should reveal whether rotor activity is the dominant driving force of fibrillation even in cases of high complexity. Optical mapping experiments were conducted in neonatal rat cardiomyocyte monolayers (diameter, 35 mm), which were genetically modified to overexpress the delayed rectifier K+ channel IKr only in one half of the monolayer. Such monolayers have been shown previously to sustain fast rotors confined to the IKr overexpressing half and driving fibrillatory-like activity in the other half. SVD analysis of the optical mapping movies revealed a hierarchical pattern in which the primary modes corresponded to rotor activity in the IKr overexpressing region and the secondary modes corresponded to fibrillatory activity elsewhere. We then applied WGCA to evaluate the directionality of influence between modes in the entire monolayer using clear and noisy movies of activity. We demonstrated that the rotor modes influence the secondary fibrillatory modes, but influence was detected also in the opposite direction. To more specifically delineate the role of the rotor in fibrillation, we decomposed separately the respective SVD modes of the rotor and fibrillatory domains. In this case, WGCA yielded more information from the rotor to the fibrillatory domains than in the opposite direction. In conclusion, SVD analysis reveals that rotors can be the dominant modes of an experimental model of fibrillation. Wiener-Granger causality on modes of the rotor domains confirms their

  13. TU-AB-BRD-02: Failure Modes and Effects Analysis

    International Nuclear Information System (INIS)

    Huq, M.

    2015-01-01

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before a failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to

  14. TU-AB-BRD-02: Failure Modes and Effects Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huq, M. [University of Pittsburgh Medical Center (United States)

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before a failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to

  15. Failure modes and effects analysis of fusion magnet systems

    International Nuclear Information System (INIS)

    Zimmermann, M.; Kazimi, M.S.; Siu, N.O.; Thome, R.J.

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs

  16. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  17. Risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Koelzer, W.

    1983-01-01

    The German risk analysis program for nuclear power plants aiming at the man and the environment is presented. An accident consequence model to calculate the radiological impact and the potential health effects is described. (E.G.) [pt

  18. Analysis Of Natural Zeolites For Technical Nuclear

    International Nuclear Information System (INIS)

    Sarria, P.; Desdin, L.; Dominguez, O.

    1999-01-01

    In this article a methodology of elementary analysis of natural zeolites is reported using different technical nuclear (AANR, FRX, MRN and EG). Determines the elementary composition of ours of two Cuban locations. (Author) [es

  19. Materials analysis with a nuclear microprobe

    International Nuclear Information System (INIS)

    Maggiore, C.J.

    1980-01-01

    The ability to produce focused beams of a few MeV light ions from Van de Graaff accelerators has resulted in the development of nuclear microprobes. Rutherford backscattering, nuclear reactions, and particle-induced x-ray emission are used to provide spatially resolved information from the near surface region of materials. Rutherford backscattering provides nondestructive depth and mass resolution. Nuclear reactions are sensitive to light elements (Z < 15). Particle-induced x-ray analysis is similar to electron microprobe analysis, but 2 orders of magnitude more sensitive. The focused beams are usually produced with specially designed multiplets of magnetic quadrupoles. The LASL microprobe uses a superconducting solenoid as a final lens. The data are acquired by a computer interfaced to the experiment with CAMAC. The characteristics of the information acquired with a nuclear microprobe are discussed; the means of producing the beams of nuclear particles are described; and the limitations and applications of such systems are given

  20. SWEPP PAN assay system uncertainty analysis: Active mode measurements of solidified aqueous sludge waste

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.

    1997-12-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the US Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers active mode measurements of weapons grade plutonium-contaminated aqueous sludge waste contained in 208 liter drums (item description codes 1, 2, 7, 800, 803, and 807). Results of the uncertainty analysis for PAN active mode measurements of aqueous sludge indicate that a bias correction multiplier of 1.55 should be applied to the PAN aqueous sludge measurements. With the bias correction, the uncertainty bounds on the expected bias are 0 ± 27%. These bounds meet the Quality Assurance Program Plan requirements for radioassay systems

  1. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Lee, H. M.; Oh, K. B.

    2003-12-01

    This study consists of various issues as follows; electricity price regulation in the liberalized electricity market, establishment of carbon emission limit in national electricity sector, the role of nuclear power as an future energy supply option, the future prospect of CO2 capture and sequestration and current research status of that area in Korea, and Preliminary economic feasibility study of MIP(Medical Isotopes Producer). In the price regulation in the liberalized electricity market, the characteristic of liberalized electricity market in terms of regulation was discussed. The current status and future projection of GHG emission in Korean electricity sector was also investigated. After that, how to set the GHG emission limit in the national electricity sector was discussed. The characteristic of nuclear technology and the research in progress were summarized with the suggestion of the possible new application of nuclear power. The current status and future prospect of the CO2 capture and sequestration research was introduced and current research status of that area in Korea was investigated. Preliminary economic feasibility study of MIP(Medical Isotopes Producer), using liquid nuclear fuel to produce medical isotopes of Mo-99 and Sr-89, was performed

  2. 10 KWe dual-mode space nuclear power system for military and scientific applications

    International Nuclear Information System (INIS)

    Malloy, J.; Westerman, K.; Rochow, R.; Scoles, S.

    1992-01-01

    This paper discusses a 10 KWe dual-mode space power system concept which has been identified and is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. This paper will focus on the nuclear power system design, including: the reactor with its UO 2 fuel in tungsten clad, 36 thermionic heat pipe modules (THPMs) which produce electricity within the reactor and remove waste heat, radiation shielding, waste heat radiators, and reactivity control systems. The use of non-vented fuel elements for short lifetime missions (under five years) will be described

  3. Consigned regulatory control and effect of the owner's welding quality under the EPC mode in Fangjiashan nuclear power project

    International Nuclear Information System (INIS)

    Wang Qun; Gu Tao; Wei Lianfeng; Li Hongjun

    2012-01-01

    Under EPC management mode, how to optimize resources allocation and realize effective management and control over key control points is a big difficulty facing the owner. From the owner's point of view, and through summary of practices, the paper introduces and analyses the mode and effect of consigned regulatory control over the weld quality of Fangjiashan nuclear power project. And some recognitions and point of views on popularization of specialized and consigned regulatory control are put forward. (authors)

  4. An Analysis of Fundamental Mode Surface Wave Amplitude Measurements

    Science.gov (United States)

    Schardong, L.; Ferreira, A. M.; van Heijst, H. J.; Ritsema, J.

    2014-12-01

    Seismic tomography is a powerful tool to decipher the Earth's interior structure at various scales. Traveltimes of seismic waves are widely used to build velocity models, whereas amplitudes are still only seldomly accounted for. This mainly results from our limited ability to separate the various physical effects responsible for observed amplitude variations, such as focussing/defocussing, scattering and source effects. We present new measurements from 50 global earthquakes of fundamental-mode Rayleigh and Love wave amplitude anomalies measured in the period range 35-275 seconds using two different schemes: (i) a standard time-domain amplitude power ratio technique; and (ii) a mode-branch stripping scheme. For minor-arc data, we observe amplitude anomalies with respect to PREM in the range of 0-4, for which the two measurement techniques show a very good overall agreement. We present here a statistical analysis and comparison of these datasets, as well as comparisons with theoretical calculations for a variety of 3-D Earth models. We assess the geographical coherency of the measurements, and investigate the impact of source, path and receiver effects on surface wave amplitudes, as well as their variations with frequency in a wider range than previously studied.

  5. A Formal Methods Approach to the Analysis of Mode Confusion

    Science.gov (United States)

    Butler, Ricky W.; Miller, Steven P.; Potts, James N.; Carreno, Victor A.

    2004-01-01

    The goal of the new NASA Aviation Safety Program (AvSP) is to reduce the civil aviation fatal accident rate by 80% in ten years and 90% in twenty years. This program is being driven by the accident data with a focus on the most recent history. Pilot error is the most commonly cited cause for fatal accidents (up to 70%) and obviously must be given major consideration in this program. While the greatest source of pilot error is the loss of situation awareness , mode confusion is increasingly becoming a major contributor as well. The January 30, 1995 issue of Aviation Week lists 184 incidents and accidents involving mode awareness including the Bangalore A320 crash 2/14/90, the Strasbourg A320 crash 1/20/92, the Mulhouse-Habsheim A320 crash 6/26/88, and the Toulouse A330 crash 6/30/94. These incidents and accidents reveal that pilots sometimes become confused about what the cockpit automation is doing. Consequently, human factors research is an obvious investment area. However, even a cursory look at the accident data reveals that the mode confusion problem is much deeper than just training deficiencies and a lack of human-oriented design. This is readily acknowledged by human factors experts. It seems that further progress in human factors must come through a deeper scrutiny of the internals of the automation. It is in this arena that formal methods can contribute. Formal methods refers to the use of techniques from logic and discrete mathematics in the specification, design, and verification of computer systems, both hardware and software. The fundamental goal of formal methods is to capture requirements, designs and implementations in a mathematically based model that can be analyzed in a rigorous manner. Research in formal methods is aimed at automating this analysis as much as possible. By capturing the internal behavior of a flight deck in a rigorous and detailed formal model, the dark corners of a design can be analyzed. This paper will explore how formal

  6. Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique

    International Nuclear Information System (INIS)

    Feili, Hamid Reza; Akar, Navid; Lotfizadeh, Hossein; Bairampour, Mohammad; Nasiri, Sina

    2013-01-01

    Highlights: • Using Failure Modes and Effects Analysis (FMEA) to find potential failures in geothermal power plants. • We considered 5 major parts of geothermal power plants for risk analysis. • Risk Priority Number (RPN) is calculated for all failure modes. • Corrective actions are recommended to eliminate or decrease the risk of failure modes. - Abstract: Renewable energy plays a key role in the transition toward a low carbon economy and the provision of a secure supply of energy. Geothermal energy is a versatile source as a form of renewable energy that meets popular demand. Since some Geothermal Power Plants (GPPs) face various failures, the requirement of a technique for team engineering to eliminate or decrease potential failures is considerable. Because no specific published record of considering an FMEA applied to GPPs with common failure modes have been found already, in this paper, the utilization of Failure Modes and Effects Analysis (FMEA) as a convenient technique for determining, classifying and analyzing common failures in typical GPPs is considered. As a result, an appropriate risk scoring of occurrence, detection and severity of failure modes and computing the Risk Priority Number (RPN) for detecting high potential failures is achieved. In order to expedite accuracy and ability to analyze the process, XFMEA software is utilized. Moreover, 5 major parts of a GPP is studied to propose a suitable approach for developing GPPs and increasing reliability by recommending corrective actions for each failure mode

  7. Coexpression of nuclear receptors and histone methylation modifying genes in the testis: implications for endocrine disruptor modes of action.

    Directory of Open Access Journals (Sweden)

    Alison M Anderson

    Full Text Available BACKGROUND: Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. METHODOLOGY/PRINCIPAL FINDINGS: The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. CONCLUSIONS/SIGNIFICANCE: This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods.

  8. Autoclave nuclear criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  9. Failure mode analysis of a PCRV. Influence of some hypothesis

    International Nuclear Information System (INIS)

    Zimmermann, T.; Saugy, B.; Rebora, B.

    1975-01-01

    This paper is concerned with the most recent developments and results obtained using a mathematical model for the non-linear analysis of massive reinforced and prestressed concrete strucures developed by the IPEN at the Swiss Federal Institute of Technology, in Lausanne. The method is based on three-dimensional isoparametric finite elements. A linear solution is adapted step by step to the idealized behavior laws of the materials up to the failure of the structure. The laws proposed here for the non-linear behavior of concrete and steel have been described elsewhere but a simple extension to the time-dependent behavior is presented. A numerical algorithm for the superposition of creep deformations is also proposed, the basic creep law being supposed to satisfy a power expression. Time-dependent failure is discussed. The calculus of a PCRV of a helium cooled fast reactor is then performed and the influence of the liner on the failure mode is analyzed. The failure analysis under increasing internal pressure is run at the present time and the influence of an eventual pressure in the cracks is being investigated. The paper aims mainly to demonstrate the accuracy of a failure analysis by three-dimensional finite-elements and to compare it with a model test, in particular when complete deformation and failure tests of the materials are available. The proposed model has already been extensively tested on simple structures and has proved to be useful for the analysis of different simplifying hypotheses

  10. Chemical analysis by nuclear methods. v. 2

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1998-01-01

    'Chemical analysis by Nuclear Methods' is an effort of some renowned authors in field of nuclear chemistry and radiochemistry which is compiled by Alfassi, Z.B. and translated into Farsi version collected in two volumes. The second volume consists of the following chapters: Detecting ion recoil scattering and elastic scattering are dealt in the eleventh chapter, the twelfth chapter is devoted to nuclear reaction analysis using charged particles, X-ray emission is discussed at thirteenth chapter, the fourteenth chapter is about using ion microprobes, X-ray fluorescence analysis is discussed in the fifteenth chapter, alpha, beta and gamma ray scattering in chemical analysis are dealt in chapter sixteen, Moessbauer spectroscopy and positron annihilation are discussed in chapter seventeen and eighteen; The last two chapters are about isotope dilution analysis and radioimmunoassay

  11. Effects of the nuclear symmetry energy on gravitational waves from the axial W-modes of isolated neutron stars

    International Nuclear Information System (INIS)

    Wen, Dehua; Li, Baoan; Krastev, P.G.

    2010-01-01

    The frequencies and damping times of the axial w-mode oscillations of neutron stars are investigated using a nuclear equation of state (EOS) partially constrained by the available terrestrial laboratory data. It is found that the nuclear symmetry energy E sym (ρ), especially its high density behavior, plays an important role in determining both the eigen-frequencies and the damping times of these oscillations. (author)

  12. Failure mode and effects analysis on typical reactor trip system

    International Nuclear Information System (INIS)

    Eisawy, E.A.

    2010-01-01

    An updated failure mode and effects analysis, FMEA , has been performed on a typical reactor trip system. This upgrade helps to avoid system damage and ,as a result, extends the system service life. It also provides for simplified maintenance and surveillance testing. The operating conditions under which the system is to carry out its function and the operational profile expected for the system have been determined. The results of the FMEA have been given in terms of operating states of the subsystem.The results are given in form of table which is set up such that for a given failure one can read across it and determine which items remain operating in the system. From this data one can identify the number of components operating in the system for monitors pressure exceeds the setpoint pressure.

  13. Instantaneous lineshape analysis of Fourier domain mode-locked lasers.

    Science.gov (United States)

    Todor, Sebastian; Biedermann, Benjamin; Wieser, Wolfgang; Huber, Robert; Jirauschek, Christian

    2011-04-25

    We present a theoretical and experimental analysis of the instantaneous lineshape of Fourier domain mode-locked (FDML) lasers, yielding good agreement. The simulations are performed employing a recently introduced model for FDML operation. Linewidths around 10 GHz are found, which is significantly below the sweep filter bandwidth. The effect of detuning between the sweep filter drive frequency and cavity roundtrip time is studied revealing features that cannot be resolved in the experiment, and shifting of the instantaneous power spectrum against the sweep filter center frequency is analyzed. We show that, in contrast to most other semiconductor based lasers, the instantaneous linewidth is governed neither by external noise sources nor by amplified spontaneous emission, but it is directly determined by the complex FDML dynamics.

  14. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    Science.gov (United States)

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.

  15. Coaxial waveguide mode reconstruction and analysis with THz digital holography.

    Science.gov (United States)

    Wang, Xinke; Xiong, Wei; Sun, Wenfeng; Zhang, Yan

    2012-03-26

    Terahertz (THz) digital holography is employed to investigate the properties of waveguides. By using a THz digital holographic imaging system, the propagation modes of a metallic coaxial waveguide are measured and the mode patterns are restored with the inverse Fresnel diffraction algorithm. The experimental results show that the THz propagation mode inside the waveguide is a combination of four modes TE₁₁, TE₁₂, TM₁₁, and TM₁₂, which are in good agreement with the simulation results. In this work, THz digital holography presents its strong potential as a platform for waveguide mode charactering. The experimental findings provide a valuable reference for the design of THz waveguides.

  16. Clinical risk analysis with failure mode and effect analysis (FMEA) model in a dialysis unit.

    Science.gov (United States)

    Bonfant, Giovanna; Belfanti, Pietro; Paternoster, Giuseppe; Gabrielli, Danila; Gaiter, Alberto M; Manes, Massimo; Molino, Andrea; Pellu, Valentina; Ponzetti, Clemente; Farina, Massimo; Nebiolo, Pier E

    2010-01-01

    The aim of clinical risk management is to improve the quality of care provided by health care organizations and to assure patients' safety. Failure mode and effect analysis (FMEA) is a tool employed for clinical risk reduction. We applied FMEA to chronic hemodialysis outpatients. FMEA steps: (i) process study: we recorded phases and activities. (ii) Hazard analysis: we listed activity-related failure modes and their effects; described control measures; assigned severity, occurrence and detection scores for each failure mode and calculated the risk priority numbers (RPNs) by multiplying the 3 scores. Total RPN is calculated by adding single failure mode RPN. (iii) Planning: we performed a RPNs prioritization on a priority matrix taking into account the 3 scores, and we analyzed failure modes causes, made recommendations and planned new control measures. (iv) Monitoring: after failure mode elimination or reduction, we compared the resulting RPN with the previous one. Our failure modes with the highest RPN came from communication and organization problems. Two tools have been created to ameliorate information flow: "dialysis agenda" software and nursing datasheets. We scheduled nephrological examinations, and we changed both medical and nursing organization. Total RPN value decreased from 892 to 815 (8.6%) after reorganization. Employing FMEA, we worked on a few critical activities, and we reduced patients' clinical risk. A priority matrix also takes into account the weight of the control measures: we believe this evaluation is quick, because of simple priority selection, and that it decreases action times.

  17. Risk analysis with regard to nuclear engineering

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1980-01-01

    The author discusses the following questions: why are risk analyses elaborated. How are they carried out and which problems may arise. Completeness problem, data, human factors, common-mode-failures, accident simulation. To give an idea of the applicability of the results of risk analyses the author deals with systems comparison and system optimization, maintenance and testing strategies, incidents and the course of accidents that have to be considered in designing technical safety measures for nuclear power plants. Finally, the author tries to enter into questions that might arise due to the effects risk analyses may create in the general public. (HSCH) [de

  18. Defense against nuclear weapons: a decision analysis

    International Nuclear Information System (INIS)

    Orient, J.M.

    1985-01-01

    Response to the public health threat posed by nuclear weapons is a medical imperative. The United States, in contrast to other nations, has chosen a course that assures maximal casualties in the event of a nuclear attack, on the theory that prevention of the attack is incompatible with preventive measures against its consequences, such as blast injuries and radiation sickness. A decision analysis approach clarifies the risks and benefits of a change to a strategy of preparedness

  19. The nuclear analysis program at MURR

    International Nuclear Information System (INIS)

    Glascock, M.D.

    1993-01-01

    The University of Missouri-Columbia (MU) has continually upgraded research facilities and programs at the MU research reactor (MURR) throughout its 26-yr history. The Nuclear Analysis Program (NAP) area has participated in these upgrades over the years. As one of the largest activation analysis laboratories on a university campus, the activities of the NAP are broadly representative of the diversity of applications for activation analysis and related nuclear science. This paper describes the MURR's NAP and several of the research, education, and service projects in which the laboratory is currently engaged

  20. Seismic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Halbritter, A.L.

    1984-01-01

    Nuclear Power Plants require exceptional safety guarantees which are reflected in a rigorous control of the employed materials, advanced construction technology, sophisticated methods of analysis and consideration of non conventional load cases such as the earthquake loading. In this paper, the current procedures used in the seismic analysis of Nuclear Power Plants are presented. The seismic analysis of the structures has two objectives: the determination of forces in the structure in order to design it against earthquakes and the generation of floor response spectra to be used in the design of mechanical and electrical components and piping systems. (Author) [pt

  1. Nuclear class 1 piping stress analysis

    International Nuclear Information System (INIS)

    Lucas, J.C.R.; Maneschy, J.E.; Mariano, L.A.; Tamura, M.

    1981-01-01

    A nuclear class 1 piping stress analysis, according to the ASME code, is presented. The TRHEAT computer code has been used to determine the piping wall thermal gradient. The Nupipe computer code was employed for the piping stress analysis. Computer results were compared with the allowable criteria from the ASME code. (Author) [pt

  2. Economic analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Owen, P.S.; Parker, M.B.; Omberg, R.P.

    1979-05-01

    The report presents several methods for estimating the power costs of nuclear reactors. When based on a consistent set of economic assumptions, total power costs may be useful in comparing reactor alternatives. The principal items contributing to the total power costs of a nuclear power plant are: (1) capital costs, (2) fuel cycle costs, (3) operation and maintenance costs, and (4) income taxes and fixed charges. There is a large variation in capital costs and fuel expenses among different reactor types. For example, the standard once-through LWR has relatively low capital costs; however, the fuel costs may be very high if U 3 O 8 is expensive. In contrast, the FBR has relatively high capital costs but low fuel expenses. Thus, the distribution of expenses varies significantly between these two reactors. In order to compare power costs, expenses and revenues associated with each reactor may be spread over the lifetime of the plant. A single annual cost, often called a levelized cost, may be obtained by the methods described. Levelized power costs may then be used as a basis for economic comparisons. The paper discusses each of the power cost components. An exact expression for total levelized power costs is derived. Approximate techniques of estimating power costs will be presented

  3. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery.

    Science.gov (United States)

    Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya

    2015-05-01

    Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth

  4. Failure mode and effects analysis: A community practice perspective.

    Science.gov (United States)

    Schuller, Bradley W; Burns, Angi; Ceilley, Elizabeth A; King, Alan; LeTourneau, Joan; Markovic, Alexander; Sterkel, Lynda; Taplin, Brigid; Wanner, Jennifer; Albert, Jeffrey M

    2017-11-01

    To report our early experiences with failure mode and effects analysis (FMEA) in a community practice setting. The FMEA facilitator received extensive training at the AAPM Summer School. Early efforts focused on department education and emphasized the need for process evaluation in the context of high profile radiation therapy accidents. A multidisciplinary team was assembled with representation from each of the major department disciplines. Stereotactic radiosurgery (SRS) was identified as the most appropriate treatment technique for the first FMEA evaluation, as it is largely self-contained and has the potential to produce high impact failure modes. Process mapping was completed using breakout sessions, and then compiled into a simple electronic format. Weekly sessions were used to complete the FMEA evaluation. Risk priority number (RPN) values > 100 or severity scores of 9 or 10 were considered high risk. The overall time commitment was also tracked. The final SRS process map contained 15 major process steps and 183 subprocess steps. Splitting the process map into individual assignments was a successful strategy for our group. The process map was designed to contain enough detail such that another radiation oncology team would be able to perform our procedures. Continuous facilitator involvement helped maintain consistent scoring during FMEA. Practice changes were made responding to the highest RPN scores, and new resulting RPN scores were below our high-risk threshold. The estimated person-hour equivalent for project completion was 258 hr. This report provides important details on the initial steps we took to complete our first FMEA, providing guidance for community practices seeking to incorporate this process into their quality assurance (QA) program. Determining the feasibility of implementing complex QA processes into different practice settings will take on increasing significance as the field of radiation oncology transitions into the new TG-100 QA

  5. Using the Jacobi-Davidson method to obtain the dominant Lambda modes of a nuclear power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain)]. E-mail: gverdu@iqn.upv.es; Ginestar, D. [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Miro, R. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Vidal, V. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2005-07-15

    The Jacobi-Davidson method is a modification of Davidson method, which has shown to be very effective to compute the dominant eigenvalues and their corresponding eigenvectors of a large and sparse matrix. This method has been used to compute the dominant Lambda modes of two configurations of Cofrentes nuclear power reactor, showing itself a quite effective method, especially for perturbed configurations.

  6. GUMAP: A GUPIXWIN-compatible code for extracting regional spectra from nuclear microbeam list mode files

    Science.gov (United States)

    Russell, John L.; Campbell, John L.; Boyd, Nicholas I.; Dias, Johnny F.

    2018-02-01

    The newly developed GUMAP software creates element maps from OMDAQ list mode files, displays these maps individually or collectively, and facilitates on-screen definitions of specified regions from which a PIXE spectrum can be built. These include a free-hand region defined by moving the cursor. The regional charge is entered automatically into the spectrum file in a new GUPIXWIN-compatible format, enabling a GUPIXWIN analysis of the spectrum. The code defaults to the OMDAQ dead time treatment but also facilitates two other methods for dead time correction in sample regions with count rates different from the average.

  7. Extending Failure Modes and Effects Analysis Approach for Reliability Analysis at the Software Architecture Design Level

    NARCIS (Netherlands)

    Sözer, Hasan; Tekinerdogan, B.; Aksit, Mehmet; de Lemos, Rogerio; Gacek, Cristina

    2007-01-01

    Several reliability engineering approaches have been proposed to identify and recover from failures. A well-known and mature approach is the Failure Mode and Effect Analysis (FMEA) method that is usually utilized together with Fault Tree Analysis (FTA) to analyze and diagnose the causes of failures.

  8. [Failure mode and effects analysis on computerized drug prescriptions].

    Science.gov (United States)

    Paredes-Atenciano, J A; Roldán-Aviña, J P; González-García, Mercedes; Blanco-Sánchez, M C; Pinto-Melero, M A; Pérez-Ramírez, C; Calvo Rubio-Burgos, Miguel; Osuna-Navarro, F J; Jurado-Carmona, A M

    2015-01-01

    To identify and analyze errors in drug prescriptions of patients treated in a "high resolution" hospital by applying a Failure mode and effects analysis (FMEA).Material and methods A multidisciplinary group of medical specialties and nursing analyzed medical records where drug prescriptions were held in free text format. An FMEA was developed in which the risk priority index (RPI) was obtained from a cross-sectional observational study using an audit of the medical records, carried out in 2 phases: 1) Pre-intervention testing, and (2) evaluation of improvement actions after the first analysis. An audit sample size of 679 medical records from a total of 2,096 patients was calculated using stratified sampling and random selection of clinical events. Prescription errors decreased by 22.2% in the second phase. FMEA showed a greater RPI in "unspecified route of administration" and "dosage unspecified", with no significant decreases observed in the second phase, although it did detect, "incorrect dosing time", "contraindication due to drug allergy", "wrong patient" or "duplicate prescription", which resulted in the improvement of prescriptions. Drug prescription errors have been identified and analyzed by FMEA methodology, improving the clinical safety of these prescriptions. This tool allows updates of electronic prescribing to be monitored. To avoid such errors would require the mandatory completion of all sections of a prescription. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  9. Imprints of the nuclear symmetry energy on gravitational waves from the axial w-modes of neutron stars

    International Nuclear Information System (INIS)

    Wen Dehua; Li Baoan; Krastev, Plamen G.

    2009-01-01

    The eigenfrequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an equation of state (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy E sym (ρ) affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigenfrequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the w II -mode is found to exist only for neutron stars having a compactness of M/R≥0.1078 independent of the EOS used.

  10. Exome Array Analysis of Nuclear Lens Opacity.

    Science.gov (United States)

    Loomis, Stephanie J; Klein, Alison P; Lee, Kristine E; Chen, Fei; Bomotti, Samantha; Truitt, Barbara; Iyengar, Sudha K; Klein, Ronald; Klein, Barbara E K; Duggal, Priya

    2018-06-01

    Nuclear cataract is the most common subtype of age-related cataract, the leading cause of blindness worldwide. It results from advanced nuclear sclerosis, or opacity in the center of the optic lens, and is affected by both genetic and environmental risk factors, including smoking. We sought to understand the genetic factors associated with nuclear sclerosis through interrogation of rare and low frequency coding variants using exome array data. We analyzed Illumina Human Exome Array data for 1,488 participants of European ancestry in the Beaver Dam Eye Study who were without cataract surgery for association with nuclear sclerosis grade, controlling for age and sex. We performed single-variant regression analysis for 32,138 variants with minor allele frequency (MAF) ≥0.003. In addition, gene-based analysis of 11,844 genes containing at least two variants with MAF nuclear sclerosis, the possible association with the RNF149 gene highlights a potential candidate gene for future studies that aim to understand the genetic architecture of nuclear sclerosis.

  11. Information needs in nuclear power plants during low power operation modes

    Energy Technology Data Exchange (ETDEWEB)

    Tommila, Teemu; Fantoni, Paolo F.; Zander, Ralf M.

    1998-02-01

    During the past few years an increasing attention has been paid to the safety of shutdown and refuelling operations. It has turned out that the risks during shutdown may be comparable to the risks of power operation. The goal of this report is to identify information requirements related to low power operating modes of nuclear power plants. These include, for example, warm and cold shutdowns, refuelling and maintenance, as well as related state transitions such as start-up and shut-down. The focus of the report is on planned refuelling outages and the role of the control room in managing the outage activities. As a starting point, the basic terminology and characteristics of low power operation are discussed. The current situation at nuclear power plants and some recent developments in information technology are reviewed. End-users' requirements and enabling technologies are combined in order to identify the opportunities for new information technology tools in low power operation. The required features of process control systems and maintenance information systems are described. Common plant modelling techniques, open software architectures and functional structuring of the process control system are suggested to be the key issues in the long-term development of operator support systems. On a shorter time scale, new tools solving limited practical problems should be developed and evaluated. This would provide a basis for the features needed for low power operation, including for example, outage planning, on-line risk monitoring, management of outage tasks, adaptive alarm handling, computerised procedures and task-oriented human interfaces. (author)

  12. An overview of training and technical communication of Chinese representative nuclear power engineering company of EPC mode

    International Nuclear Information System (INIS)

    Qi Ting; Zhang Xiangyu

    2015-01-01

    After the Fukushima severe accident, nuclear power development has been in stagnation in all over the world. The Chinese nuclear industry has a slowdown on new NPP construction. As a result, high level technique on safety and effective communication are required. For nuclear power engineering company with EPC mode, high quality on training and technical communication is the principal investment in order to achieve better service on engineering design, environmental impact assessment, environmental engineering design, and equipment supervision and so on. EPC mode requires wide range knowledge on almost every field related to nuclear on nuclear power engineering. In this paper, the author investigated the case of the only nuclear power engineering EPC company (CNPE) in China and present an overview on its training and technical communication both domestic and abroad. Basically, there are 4 main branches of training. The internal training focuses on specifically task (both management and technique), such as HSE training, QC training and quality and safety training. Long term education in the university is organized by cooperated mechanism. Code and platform training is partly carried out by international organization or company, and the experienced engineers coach makes up the other part. The communication is a large part since the EPC mode needs the information and requirements from the NPP entity, authority, and the other institutes, international organizations (like IAEA, NINE, IRSN, OECD, NRC and CEA etc.) and sometimes the public. The overview of the training and communication of the EPC company prevails the outline of its advantage on domestic communication and disadvantage on international technical communication. The paper can be a tool on the soft strength construction of company under EPC mode to broaden its business like consultation and training. Some advice is given by the author on the consultation and global communication in the future. (author)

  13. An Interpretative Phenomenological Analysis of Schema Modes in a ...

    African Journals Online (AJOL)

    papers, a phenomenological account of her Child and Parent modes are presented and discussed. This is the first of two .... down emotional distress in the VCh mode, processes traditionally ... implicitly accept negative beliefs associated with the. EMSs and ...... of parent voices are typically separated in the ST literature, they.

  14. Letter report seismic shutdown system failure mode and effect analysis

    International Nuclear Information System (INIS)

    KECK, R.D.

    1999-01-01

    The Supply Ventilation System Seismic Shutdown ensures that the 234-52 building supply fans, the dry air process fans and vertical development calciner are shutdown following a seismic event. This evaluates the failure modes and determines the effects of the failure modes

  15. Analysis of high-quality modes in open chaotic microcavities

    International Nuclear Information System (INIS)

    Fang, W.; Yamilov, A.; Cao, H.

    2005-01-01

    We present a numerical study of the high-quality modes in two-dimensional dielectric stadium microcavities. Although the classical ray mechanics is fully chaotic in a stadium billiard, all of the high-quality modes show a 'strong scar' around unstable periodic orbits. When the deformation (ratio of the length of the straight segments over the diameter of the half circles) is small, the high-quality modes correspond to whispering-gallery-type trajectories and their quality factors decrease monotonically with increasing deformation. At large deformation, each high-quality mode is associated with multiple unstable periodic orbits. Its quality factor changes nonmonotonically with the deformation, and there exists an optimal deformation for each mode at which its quality factor reaches a local maximum. This unusual behavior is attributed to the interference of waves propagating along different constituent orbits that could minimize light leakage out of the cavity

  16. Modal analysis of blade bending and torsional shaft coupling by component mode synthesis

    International Nuclear Information System (INIS)

    Vare, C.

    1995-10-01

    The Acoustics and Vibration Mechanics Branch of EDF's Research and Development Division is in charge of performing finite element calculations, for the study of the vibratory behaviour of nuclear components. Due to the size and the geometrical complexity of some of these components, EDF has developed sub-structure synthesis methods for modal analysis of large structures. Both Craig-Bampton's and Mac Neal's methods have been implemented in the general mechanics code of EDF: the Aster Code. Craig-Bampton sub-structure synthesis approach was used to study the coupling between blade bending and torsional shaft of a turbine generator set. Four sub-structures were defined to make the calculation: a generator, a low pressure rotor, a high pressure rotor and a blade. The results of the modal calculation, show good agreement with the experimental measurements (error < 1 %). It shows the accuracy of component mode synthesis methods. (author). 6 refs., 7 figs

  17. Failure mode and effects analysis: too little for too much?

    Science.gov (United States)

    Dean Franklin, Bryony; Shebl, Nada Atef; Barber, Nick

    2012-07-01

    Failure mode and effects analysis (FMEA) is a structured prospective risk assessment method that is widely used within healthcare. FMEA involves a multidisciplinary team mapping out a high-risk process of care, identifying the failures that can occur, and then characterising each of these in terms of probability of occurrence, severity of effects and detectability, to give a risk priority number used to identify failures most in need of attention. One might assume that such a widely used tool would have an established evidence base. This paper considers whether or not this is the case, examining the evidence for the reliability and validity of its outputs, the mathematical principles behind the calculation of a risk prioirty number, and variation in how it is used in practice. We also consider the likely advantages of this approach, together with the disadvantages in terms of the healthcare professionals' time involved. We conclude that although FMEA is popular and many published studies have reported its use within healthcare, there is little evidence to support its use for the quantitative prioritisation of process failures. It lacks both reliability and validity, and is very time consuming. We would not recommend its use as a quantitative technique to prioritise, promote or study patient safety interventions. However, the stage of FMEA involving multidisciplinary mapping process seems valuable and work is now needed to identify the best way of converting this into plans for action.

  18. Failure Mode and Effect Analysis of Subsea Multiphase Pump Equipment

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Shobowale Kafayat

    2014-07-01

    Full Text Available Finding oil and gas reserves in deep/harsh environment with challenging reservoir and field conditions, subsea multiphase pumping benefits has found its way to provide solutions to these issues. Challenges such as failure issues that are still surging the industry and with the current practice of information hiding, this issues becomes even more difficult to tackle. Although, there are some joint industry projects which are only accessible to its members, still there is a need to have a clear understanding of these equipment groups so as to know which issues to focus attention on. A failure mode and effect analysis (FMEA is a potential first aid in understanding this equipment groups. A survey questionnaire/interview was conducted with the oil and gas operating company and equipment manufacturer based on the literature review. The results indicates that these equipment’s group are similar with its onshore counterpart, but the difference is the robustness built into the equipment internal subsystems for subsea applications. The results from the manufacturer perspectives indicates that Helico-axial multiphase pump have a mean time to failure of more than 10 years, twin-screw and electrical submersible pumps are still struggling with a mean time to failure of less than 5 years.

  19. Bulk analysis using nuclear techniques

    International Nuclear Information System (INIS)

    Borsaru, M.; Holmes, R.J.; Mathew, P.J.

    1983-01-01

    Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)

  20. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-10-01

    The Nuclear Plant Analyzer (NPA) is being developed as the US Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  1. Projection and analysis of nuclear components

    International Nuclear Information System (INIS)

    Heeschen, U.

    1980-01-01

    The classification and the types of analysis carried out in pipings for quality control and safety of nuclear power plants, are presented. The operation and emergency conditions with emphasis of possible simplifications of calculations are described. (author/M.C.K.) [pt

  2. Informatics for analysis of nuclear experiments: TOUTATIX

    International Nuclear Information System (INIS)

    Rabasse, J.F.; Du, S.; Penillault, G.; Tassan-Got, L.; Givort, M.

    1999-01-01

    For several years in connection with the migration towards UNIX system, software tools have been developed in the laboratory. They allow the nuclear physicist community to achieve the complete analysis of experimental data. They comply with the requirements imposed by the development of multi-detectors. A special attention has been devoted to ergonomic aspects and configuration possibilities. (authors)

  3. Dynamic energy analysis and nuclear power

    International Nuclear Information System (INIS)

    Price, J.

    1974-01-01

    An initial inquiry (intended for the layman) into how the net energy balance of exponential programmes of energy conversion facilities varies in time; what are the energy inputs and outputs of commercial nuclear reactors, both singly and in such programmes; what are the possible errors and omissions in this analysis; and what are the policy and research implications of the results. (author)

  4. Chemical analysis by nuclear techniques

    International Nuclear Information System (INIS)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system

  5. Chemical analysis by nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system.

  6. Nuclear analysis of Jordanian tobacco

    Science.gov (United States)

    Al-Saleh, K. A.; Saleh, N. S.

    The concentration of trace and minor elements in six different Jordanian and two foreign brands of cigarette tobacco and wrapping paper were determined using combined X-ray fluorescence (XRF) and Rutherford backscatteing (RBS) analysis techniques. The cigarette filter and the ash were also analyzed to determine the trapped elements on the filter and their transference with smoke. The toxic effects of some elements have been briefly discussed.

  7. Univariate and Bivariate Empirical Mode Decomposition for Postural Stability Analysis

    Directory of Open Access Journals (Sweden)

    Jacques Duchêne

    2008-05-01

    Full Text Available The aim of this paper was to compare empirical mode decomposition (EMD and two new extended methods of  EMD named complex empirical mode decomposition (complex-EMD and bivariate empirical mode decomposition (bivariate-EMD. All methods were used to analyze stabilogram center of pressure (COP time series. The two new methods are suitable to be applied to complex time series to extract complex intrinsic mode functions (IMFs before the Hilbert transform is subsequently applied on the IMFs. The trace of the analytic IMF in the complex plane has a circular form, with each IMF having its own rotation frequency. The area of the circle and the average rotation frequency of IMFs represent efficient indicators of the postural stability status of subjects. Experimental results show the effectiveness of these indicators to identify differences in standing posture between groups.

  8. Discontinuous conduction mode analysis of phase-modulated series ...

    Indian Academy of Sciences (India)

    modulated dc–dc series resonant converter (SRC) operating in discontinuous conduction mode (DCM). The conventional fundamental harmonic approximation technique is extended for a non-ideal series resonant tank to clarify the limitations of ...

  9. Nuclear spectrum analysis by using microcomputer

    International Nuclear Information System (INIS)

    Sanyal, M.K.; Mukhopadhyay, P.K.; Rao, A.D.; Pethe, V.A.

    1984-01-01

    A method is presented for analysis of nuclear spectra by using microcomputer. A nonlinear least square fit of a mathematical model with observed spectrum is performed with variable metric method. The linear search procedure of the variable metric method has been modified so that the algorithm needs less program space and computational time both of which are important for microcomputer implementation. This widely used peak analysis method can now be made available in microcomputer based multichannel analysers. (author)

  10. Nuclear data needs for material analysis

    International Nuclear Information System (INIS)

    Molnar, Gabor L.

    2001-01-01

    Nuclear data for material analysis using neutron-based methods are examined. Besides a critical review of the available data, emphasis is given to emerging application areas and new experimental techniques. Neutron scattering and reaction data, as well as decay data for delayed and prompt gamma activation analysis are all discussed in detail. Conclusions are formed concerning the need of new measurement, calculation, evaluation and dissemination activities. (author)

  11. Analysis of nuclear reactor pressure vessel flanges

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de; Augusto, O.B.

    1985-01-01

    This work proposes a methodology for the structural analysis of high diameter nuclear reactor pressure vessel flanges. In the analysis the vessel is divided into shell-of-revolution elements, the flanges are represented by rigid rings, and the bolts are treated as beams. The flexibility method is used for solving the problem, and the results are compared with results obtained by the finite element method. (Author) [pt

  12. Seismic analysis of nuclear piping system

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Pillai, K.R.V.; Nandakumar, S.

    1975-01-01

    To illustrate seismic analysis of nuclear power plant piping, a simple piping system running between two floors of the reactor building is assumed. Reactor building floor response is derived from time-history method. El Centre earthquake (1940) accelerogram is used for time-history analysis. The piping system is analysed as multimass lumped system. Behaviour of the pipe during the said earthquake is discussed. (author)

  13. Analysis of current diffusive ballooning mode in tokamaks

    International Nuclear Information System (INIS)

    Uchida, M.; Fukuyama, A.; Itoh, S.-I.; Yagi, M.

    1999-12-01

    The effect of finite gyroradius on the current diffusive ballooning mode is examined. Starting from the reduced MHD equations including turbulent transports, coupling with drift motion and finite gyroradius effect of ions, we derive a ballooning mode equation with complex transport coefficients. The eigenfrequency, saturation level and thermal diffusivity are evaluated numerically from the marginal stability condition. Preliminary results of their parameter dependence is presented. (author)

  14. Application of analysis technology in nuclear plant

    International Nuclear Information System (INIS)

    Takaoka, Keiko; Miura, Hiromi; Umeda, Kenji

    1996-01-01

    Recently, thanks to the rapid improvement of EWS performance, the authors have been able to carry out design evaluation comparatively, easily, utilizing computational fluid dynamics (CFD) technology. The Nuclear Plant Engineering Department has carried out some analyses in the past several years with the main purpose of evaluating the design of nuclear reactor internals. These studies included ''Thermal Hydraulic Analysis for Top Plenum'' and ''Flow Analysis for Lower Plenum''. It is considered to be a special matter in thermal hydraulic analysis of the top plenum that temperature distribution has been estimated with a relatively small number of meshes by means of an imaginary spray nozzle, and in the flow analysis for the lower plenum that flow distribution has been found to change largely, depending on the reactor internals. One of the ways to confirm the safety of nuclear plants, detailed structural analysis, is required for all possible combinations of transient and load conditions during operation. In particular, it is very important to clarify the thermal stress behavior under operating conditions and to evaluate fatigue analysis in accordance with the Code Requirements. However, it is very complicated and it takes a lot of time. A new system was developed which can operate continuously all of the definitions of the analytical model, the analyzation of pressurized thermal and external stress, and editing reports. In this paper, the authors introduce this system and apply it to a pressurized water reactor

  15. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  16. Economic analysis of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Chae, Kyu Nam

    1996-12-01

    The major contents in this study are as follows : (1) Efforts are made to examine the role of nuclear energy considering environmental regulation. An econometric model for energy demand and supply including carbon tax imposition is established. (2) Analysis for the learning effect of nuclear power plant operation is performed. The study is focused to measure the effect of technology homogeneity on the operation performance. (3) A preliminary capital cost of the KALIMER is estimated by using cost computer program, which is developed in this study. (author). 36 refs.,46 tabs., 15 figs.

  17. Activation Analysis and Nuclear Research in Burma

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R. W.

    1971-07-01

    Research endeavours in the field of Nuclear Sciences in Burma appear to be concentrated in three main Institutions. These are the Chemistry and Physics Departments of the Rangoon Arts & Science University and the Union of Burma Applied Research Institute (UBARI). In view of possible forthcoming developments an expanded research programme, which is to be implemented on the basis of a five year plan, has been drawn up. Research topics included in this programme are predominantly of practical interest and aimed at a contribution by nuclear methods, in particular activation analysis, to the technological and industrial needs of the country.

  18. User's manual of the REFLA-1D/MODE4 reflood thermo-hydrodynamic analysis code

    International Nuclear Information System (INIS)

    Hojo, Tsuneyuki; Iguchi, Tadashi; Okubo, Tsutomu; Murao, Yoshio; Sugimoto, Jun.

    1986-01-01

    REFLA-1D/MODE4 code has been developed by incorporating local power effect model and fuel temperature profile effect model into REFLA-1D/MODE3 code. This code can calculate the temperature transient of local rod by considering radial power profile effect in core and simulate the thermal characteristics of the nuclear fuel rod. This manual describes the outline of incorporated models, modification of the code with incorporating models and provides application information required to utilize the code. (author)

  19. Mass Spectrometric Analysis for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Boulyga, S.

    2013-01-01

    The release of man-made radionuclides into the environment results in contamination that carries specific isotopic signatures according to the release scenarios and the previous usage of materials and facilities. In order to trace the origin of such contamination and/or to assess the potential impact on the public and environmental health, it is necessary to determine the isotopic composition and activity concentrations of radionuclides in environmental samples in an accurate and timely fashion. Mass spectrometric techniques, such as thermal ionization mass spectrometry (TIMS), secondary ion mass spectrometry (SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) belong to the most powerful methods for analysis of nuclear and related samples in nuclear safeguards, forensics, and environmental monitoring. This presentation will address the potential of mass spectrometric analysis of actinides at ultra-trace concentration levels, isotopic analysis of micro-samples, age determination of nuclear materials as well as identification and quantification of elemental and isotopic signatures of nuclear samples in general. (author)

  20. Consequence analysis for nuclear reactors, Yongbyon

    International Nuclear Information System (INIS)

    Kang, Taewook; Jae, Moosung

    2017-01-01

    Since the Fukushima nuclear power plant accidents in 2011, there have been an increased public anxiety about the safety of nuclear power plants in Korea. The lack of safeguards and facility aging issues at the Yongbyon nuclear facilities have increased doubts. In this study, the consequence analysis for the 5-MWe graphite-moderated reactor in North Korea was performed. Various accident scenarios including accidents at the interim spent fuel pool in the 5-MWe reactor have been developed and evaluated quantitatively. Since data on the design and safety system of nuclear facilities are currently insufficient, the release fractions were set by applying the alternative source terms made for utilization in the analysis of a severe accident by integrating the results of studies of severe accidents occurred before. The calculation results show the early fatality zero deaths and latent cancer fatality about only 13 deaths in Seoul. Thus, actual impacts of a radiological release will be psychological in terms of downwind perceptions and anxiety on the part of potentially exposed populations. Even considering the simultaneous accident occurrence in both 5-MWe graphite-moderated reactor and 100-MWt light water reactor, the consequence analysis using the MACCS2 code shows no significant damage to people in South Korea. (author)

  1. Failure mode and effects analysis outputs: are they valid?

    Science.gov (United States)

    Shebl, Nada Atef; Franklin, Bryony Dean; Barber, Nick

    2012-06-10

    Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: Face validity: by comparing the FMEA participants' mapped processes with observational work. Content validity: by presenting the FMEA findings to other healthcare professionals. Criterion validity: by comparing the FMEA findings with data reported on the trust's incident report database. Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust's incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA's methodology for scoring failures, there were discrepancies between the teams' estimates and similar incidents reported on the trust's incident

  2. Identifying target processes for microbial electrosynthesis by elementary mode analysis.

    Science.gov (United States)

    Kracke, Frauke; Krömer, Jens O

    2014-12-30

    Microbial electrosynthesis and electro fermentation are techniques that aim to optimize microbial production of chemicals and fuels by regulating the cellular redox balance via interaction with electrodes. While the concept is known for decades major knowledge gaps remain, which make it hard to evaluate its biotechnological potential. Here we present an in silico approach to identify beneficial production processes for electro fermentation by elementary mode analysis. Since the fundamentals of electron transport between electrodes and microbes have not been fully uncovered yet, we propose different options and discuss their impact on biomass and product yields. For the first time 20 different valuable products were screened for their potential to show increased yields during anaerobic electrically enhanced fermentation. Surprisingly we found that an increase in product formation by electrical enhancement is not necessarily dependent on the degree of reduction of the product but rather the metabolic pathway it is derived from. We present a variety of beneficial processes with product yield increases of maximal 36% in reductive and 84% in oxidative fermentations and final theoretical product yields up to 100%. This includes compounds that are already produced at industrial scale such as succinic acid, lysine and diaminopentane as well as potential novel bio-commodities such as isoprene, para-hydroxybenzoic acid and para-aminobenzoic acid. Furthermore, it is shown that the way of electron transport has major impact on achievable biomass and product yields. The coupling of electron transport to energy conservation could be identified as crucial for most processes. This study introduces a powerful tool to determine beneficial substrate and product combinations for electro-fermentation. It also highlights that the maximal yield achievable by bio electrochemical techniques depends strongly on the actual electron transport mechanisms. Therefore it is of great importance to

  3. Reliability analysis for the creep rupture mode of failure

    International Nuclear Information System (INIS)

    Vaidyanathan, S.

    1975-01-01

    An analytical study has been carried out to relate the factors of safety employed in the design of a component to the probability of failure in the thermal creep rupture mode. The analysis considers the statistical variations in the operating temperature, stress and rupture time, and applies the life fraction damage criterion as the indicator of failure. Typical results for solution annealed type 304-stainless steel material for the temperature and stress variations expected in an LMFBR environment have been obtained. The analytical problem was solved by considering the joint distribution of the independent variables and deriving the distribution for the function associated with the probability of failure by integrating over proper regions as dictated by the deterministic design rule. This leads to a triple integral for the final probability of failure where the coefficients of variation associated with the temperature, stress and rupture time distributions can be specified by the user. The derivation is general, and can be used for time varying stress histories and the case of irradiated material where the rupture time varies with accumulated fluence. Example calculations applied to solution annealed type 304 stainless steel material have been carried out for an assumed coefficient of variation of 2% for temperature and 6% for stress. The results show that the probability of failure associated with dependent stress intensity limits specified in the ASME Boiler and Pressure Vessel Section III Code Case 1592 is less than 5x10 -8 . Rupture under thermal creep conditions is a highly complicated phenomenon. It is believed that the present study will help in quantizing the reliability to be expected with deterministic design factors of safety

  4. Analysis of self-homodyne detection for 6-mode fiber with low-modal crosstalk

    Science.gov (United States)

    Guo, Meng; Hu, Guijun

    2017-12-01

    In this paper, we present an appropriate analysis on self-homodyne coherent system with 56 × 5 × 3 Gb / s WDM-PDM-MDM quadrature phase-shift keying (QPSK) signals using 6-mode weakly coupled few mode fiber. The mode division technology can effectively improve the spectral efficiency (SE) of self-homodyne detection. Of all the LP modes, LP01 mode is used to transmit the pilot tone (PT), while the others for signal channels. The influence of inter-mode crosstalk is analyzed. The proposed frequency domain MMA shows a better BER performance for intra-mode crosstalk elimination. The path-length misalignment's influence caused by mode differential group delay (MDGD) is also investigated. The system tolerance for different laser's line-width is compared as well as the influence of PT filter's bandwidth.

  5. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  6. Proceedings of the third meeting on nuclear analysis

    International Nuclear Information System (INIS)

    1984-04-01

    This international meeting presents a series of methodical and device developments in the field of nuclear analysis techniques such as nuclear reaction analysis, activation analysis, pixe analysis, tracer techniques or atom and nuclear spectroscopy. The applications cover an extensive field in energetics, geology, medicine, biology, environment protection, materials science etc. and are presented in 141 papers

  7. Bimodal Nuclear Thermal Rocket Analysis Developments

    Science.gov (United States)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  8. Trend analysis in the nuclear maintenance industry

    International Nuclear Information System (INIS)

    Ruemeli, W.A.

    1986-01-01

    The maintenance of nuclear facilities is a demanding, ongoing activity which requires the same level of quality as new construction. Heretofore, many owners and contractors have relied on ''gut feel'' to determine whether maintenance quality was improving or not. However, trend analysis now is becoming a key factor in monitoring plant activities to ensure quality. Literature abounds with descriptions of computerized systems for collecting and sorting data. Even the Nuclear Regulatory Commission (NRC) has concurred, with its endorsement of trend analysis of construction indicators in NUREG 1055 (Ford Amendment Study). Stearns Catalytic has developed a unique system of tend analyses for nuclear plant activities. Aside from its intended purpose of determining the quality trends in maintenance activities, the program also supplies substantial quantitative data for control and management of the quality activities. Trend analysis is a time series analysis of a set of observations arranged in chronological order. The important aspect is the time basis, specifically the analysis of quality indicators over successive periods of time. Many program elements, including surveillances, nonconformances, inspections, and audits, are designed to look at quality indications

  9. Complete analysis of a nuclear building to nuclear safety standards

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, T A

    1975-01-01

    The nuclear standards impose on the designer the necessity of examining the loads, stresses, and strains in a nuclear building even under extreme loading conditions, both due to plant malfunctions and environmental accidents. It is necessary then to generate, combine, and examine a tremendous amount of data; really the lack of symmetry and general complication of the structures and the large number of loading combinations make an automatic analysis quite necessary. A largely automated procedure is presented in view of solving the problem by a series of computer programs linked together. After the seismic analysis has been performed by (SADE CODE) these data together with the data coming from thermal specifications, weight, accident descriptions etc. are fed into a finite element computer code (SAP4) for analysis. They are processed and combined by a computer code (COMBIN) according to the loading conditions (the usual list in Italy is given and briefly discussed), so that for each point (or each selected zone) under each loading condition the applied loads are listed. These data are fed to another computer code (DTP), which determines the amount of reinforcing bars necessary to accommodate the most severe of the loading conditions. The Aci 318/71 and Italian regulation procedures are followed; the characteristics of the program are briefly described and discussed. Some particular problems are discussed, e.g. the thermal stresses due to normal and accident conditions, the inelastic behavior of some frame elements (due to concrete cracking) is considered by means of an 'ad hoc' code. Typical examples are presented and the results are discussed showing a relatively large benefit in considering this inelastic effect.

  10. Ultimate capacity and influenced factors analysis of nuclear RC containment subjected to internal pressure

    International Nuclear Information System (INIS)

    Song Chenning; Hou Gangling; Zhou Guoliang

    2014-01-01

    Ultimate compressive bearing capacity, influenced factors and its rules of nuclear RC containment are key problems of safety assessment, accident treatment and structure design, etc. Ultimate compressive bearing capacity of nuclear RC containment is shown by concrete damaged plasticity model and steel double liner model of ABAQUS. The study shows that the concrete of nuclear RC containment cylinder wall becomes plastic when the internal pressure is up to 0.87 MPa, the maximum tensile strain of steel liner exceeds 3000 × 10 6 and nuclear RC containment reaches ultimate status when the internal pressure is up to 1.02 MPa. The result shows that nuclear RC containment is in elastic condition under the design internal pressure and the bearing capacity meets requirement. Prestress and steel liner play key parts in the ultimate internal pressure and failure mode of nuclear RC containment. The study results have value for the analysis of ultimate compressive bearing capacity, structure design and safety assessment. (authors)

  11. Integral equation based stability analysis of short wavelength drift modes in tokamaks

    International Nuclear Information System (INIS)

    Hirose, A.; Elia, M.

    2003-01-01

    Linear stability of electron skin-size drift modes in collisionless tokamak discharges has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic shear and strongly stabilized for negative shear. The corresponding mixing length anomalous thermal diffusivity exhibits favourable isotope dependence. (author)

  12. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  13. Nuclear data for proton activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhammedov, S; Vasidov, A [Institute of Nuclear Physics of Academy of Sciences of Uzbekistan, 702132 Ulugbek, Tashkent (Uzbekistan); Comsan, M N.H. [Nuclear Research Centre, Inshas Cyclotron Facility, AEA 13759 Cairo (Egypt)

    2000-11-15

    The activation analysis with charged particles (ChPAA), as well as proton activation analysis (PAA), mainly requires separately irradiation of thick (thicker than the range of particles) samples and standard. Therefore for simplicity of determination of traces of chemical elements by instrumental PAA the absolute activity of the radionuclides must be known. Consequently we compilated data for nuclear decays (half life, radiation energy and intensity, type of decay, saturation factor), for nuclear reactions (excitation function, threshold energy, Q-value, yields of radionuclides), for the element under study (natural isotopic abundance of the nuclide, which yields the nuclear reaction considered, molar mass), stopping power of the irradiated material and the range of the particle that are used in the calculation of the absolute activity of the radionuclides and for the resolution of a nuclear interference problems of PAA. These data are tabulated. The tables of the radionuclides are presented in dependence on increasing atomic number and radiation energy as well as on methods of the radionuclide formation. The thick target yields of analytical radionuclides are presented versus particle energy.

  14. Nuclear data for proton activation analysis

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Vasidov, A.; Comsan, M.N.H.

    2000-01-01

    The activation analysis with charged particles (ChPAA), as well as proton activation analysis (PAA), mainly requires separately irradiation of thick (thicker than the range of particles) samples and standard. Therefore for simplicity of determination of traces of chemical elements by instrumental PAA the absolute activity of the radionuclides must be known. Consequently we compilated data for nuclear decays (half life, radiation energy and intensity, type of decay, saturation factor), for nuclear reactions (excitation function, threshold energy, Q-value, yields of radionuclides), for the element under study (natural isotopic abundance of the nuclide, which yields the nuclear reaction considered, molar mass), stopping power of the irradiated material and the range of the particle that are used in the calculation of the absolute activity of the radionuclides and for the resolution of a nuclear interference problems of PAA. These data are tabulated. The tables of the radionuclides are presented in dependence on increasing atomic number and radiation energy as well as on methods of the radionuclide formation. The thick target yields of analytical radionuclides are presented versus particle energy

  15. Nuclear analysis methods in monitoring occupational health

    International Nuclear Information System (INIS)

    Clayton, E.

    1985-01-01

    With the increasing industrialisation of the world has come an increase in exposure to hazardous chemicals. Their effect on the body depends upon the concentration of the element in the work environment; its chemical form; the possible different routes of intake; and the individual's biological response to the chemical. Nuclear techniques of analysis such as neutron activation analysis (NAA) and proton induced X-ray emission analysis (PIXE), have played an important role in understanding the effects hazardous chemicals can have on occupationally exposed workers. In this review, examples of their application, mainly in monitoring exposure to heavy metals is discussed

  16. System analysis procedures for conducting PSA of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Jeong, Won Dae; Kim, Tae Un; Kim, Kil You; Han, Sang Hoon; Chang, Seung Chul; Sung, Tae Yong; Yang, Jun Eon; Kang, Dae Il; Park, Jin Hee; Hwang, Mi Jeong; Jin, Young Ho.

    1997-03-01

    This document, the Probabilistic Safety Assessment(PSA) procedures guide for system analysis, is intended to provide the guidelines to analyze the target of system consistently and technically in the performance of PSA for nuclear power plants(NPPs). The guide has been prepared in accordance with the procedures and techniques for fault tree analysis(FTA) used in system analysis. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis(ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. After the construction of fault tree is completed, system unavailability is calculated with the CUT module of KIRAP, and the qualitative and quantitative analysis is performed through the process as above stated. As above mentioned, the procedures for system analysis is based on PSA procedures and methods which has been applied to the safety assessments of constructing NPPs in the country. Accordingly, the method of FTA stated in this procedures guide will be applicable to PSA for the NPPs to be constructed in the future. (author). 6 tabs., 11 figs., 7 refs

  17. System analysis procedures for conducting PSA of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hwan; Jeong, Won Dae; Kim, Tae Un; Kim, Kil You; Han, Sang Hoon; Chang, Seung Chul; Sung, Tae Yong; Yang, Jun Eon; Kang, Dae Il; Park, Jin Hee; Hwang, Mi Jeong; Jin, Young Ho

    1997-03-01

    This document, the Probabilistic Safety Assessment(PSA) procedures guide for system analysis, is intended to provide the guidelines to analyze the target of system consistently and technically in the performance of PSA for nuclear power plants(NPPs). The guide has been prepared in accordance with the procedures and techniques for fault tree analysis(FTA) used in system analysis. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis(ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. After the construction of fault tree is completed, system unavailability is calculated with the CUT module of KIRAP, and the qualitative and quantitative analysis is performed through the process as above stated. As above mentioned, the procedures for system analysis is based on PSA procedures and methods which has been applied to the safety assessments of constructing NPPs in the country. Accordingly, the method of FTA stated in this procedures guide will be applicable to PSA for the NPPs to be constructed in the future. (author). 6 tabs., 11 figs., 7 refs.

  18. Radioecological studies tied to the French nuclear power station programme: aims, nature and mode of execution

    International Nuclear Information System (INIS)

    Delile, G.

    1980-01-01

    Under present French practice, assessing the effects of radioactive discharges due to the various likely accident situations comes under 'L'Analyse de Surete Nucleaire' (Nuclear Safety Analysis). The assessment of radioactive discharges relating to normal working comes within the framework of radioecologic studies. Radioecology studies are undertkaen for every power station project. They consist in: - studying what is to be done with radioelements discharged as liquids or gases, - estimating their impact on the populations in the areas of influence of the power station and checking that this impact is permissible, - establishing a surveillance measuring programme for checking against the predictions made and, if required, determining the modifications to be made to the facilities or to their method of operation [fr

  19. Failure mode and effects analysis outputs: are they valid?

    Directory of Open Access Journals (Sweden)

    Shebl Nada

    2012-06-01

    Full Text Available Abstract Background Failure Mode and Effects Analysis (FMEA is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Methods Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: · Face validity: by comparing the FMEA participants’ mapped processes with observational work. · Content validity: by presenting the FMEA findings to other healthcare professionals. · Criterion validity: by comparing the FMEA findings with data reported on the trust’s incident report database. · Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Results Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust’s incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. Conclusion There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA’s methodology for scoring failures, there were discrepancies

  20. Probability analysis of nuclear power plant hazards

    International Nuclear Information System (INIS)

    Kovacs, Z.

    1985-01-01

    The probability analysis of risk is described used for quantifying the risk of complex technological systems, especially of nuclear power plants. Risk is defined as the product of the probability of the occurrence of a dangerous event and the significance of its consequences. The process of the analysis may be divided into the stage of power plant analysis to the point of release of harmful material into the environment (reliability analysis) and the stage of the analysis of the consequences of this release and the assessment of the risk. The sequence of operations is characterized in the individual stages. The tasks are listed which Czechoslovakia faces in the development of the probability analysis of risk, and the composition is recommended of the work team for coping with the task. (J.C.)

  1. Building Foundations for Nuclear Security Enterprise Analysis Utilizing Nuclear Weapon Data

    Energy Technology Data Exchange (ETDEWEB)

    Josserand, Terry Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Security Enterprise and Cost Analysis; Young, Leone [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Security Enterprise and Cost Analysis; Chamberlin, Edwin Phillip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Security Enterprise and Cost Analysis

    2017-09-01

    The Nuclear Security Enterprise, managed by the National Nuclear Security Administration - a semiautonomous agency within the Department of Energy - has been associated with numerous assessments with respect to the estimating, management capabilities, and practices pertaining to nuclear weapon modernization efforts. This report identifies challenges in estimating and analyzing the Nuclear Security Enterprise through an analysis of analogous timeframe conditions utilizing two types of nuclear weapon data - (1) a measure of effort and (2) a function of time. The analysis of analogous timeframe conditions that utilizes only two types of nuclear weapon data yields four summary observations that estimators and analysts of the Nuclear Security Enterprise will find useful.

  2. Mediation Analysis of Mode Deactivation Therapy (Reanalysis and Interpretation)

    Science.gov (United States)

    Bass, Christopher K.; Apsche, Jack A.

    2013-01-01

    A key component of Mode Deactivation Therapy (MDT) is the development of self-awareness and regulatory skills by the client with the aim of helping adolescent males with conduct disordered behaviors, including sexually inappropriate behaviors and emotional dysregulation. The goal includes altering specific behaviors to fall within socially…

  3. Bloch-mode analysis for retrieving effective parameters of metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, Sangwoo; Sukhorukov, Andrey A.

    2012-01-01

    by our method with a high accuracy. We employ both surface and volume averaging of the electromagnetic fields of the dominating (fundamental) Bloch modes to determine the Bloch and wave impedances, respectively. We discuss how this method works for several characteristic examples, and demonstrate...

  4. Metallized Film Capacitor Lifetime Evaluation and Failure Mode Analysis

    CERN Document Server

    Gallay, R.

    2015-06-15

    One of the main concerns for power electronic engineers regarding capacitors is to predict their remaining lifetime in order to anticipate costly failures or system unavailability. This may be achieved using a Weibull statistical law combined with acceleration factors for the temperature, the voltage, and the humidity. This paper discusses the different capacitor failure modes and their effects and consequences.

  5. CASTOR: Normal-mode analysis of resistive MHD plasmas

    NARCIS (Netherlands)

    Kerner, W.; Goedbloed, J. P.; Huysmans, G. T. A.; Poedts, S.; Schwarz, E.

    1998-01-01

    The CASTOR (complex Alfven spectrum of toroidal plasmas) code computes the entire spectrum of normal-modes in resistive MHD for general tokamak configurations. The applied Galerkin method, in conjunction with a Fourier finite-element discretisation, leads to a large scale eigenvalue problem A (x)

  6. Design of all solid state tunable single-mode Ti: sapphire laser for nuclear industry

    International Nuclear Information System (INIS)

    Lee, J.H.; Nam, S.M.; Lee, Y.J.; Lee, J.M.; Horn, Roland E.; Wendt, Klaus

    1999-01-01

    We designed a Ti:Sapphire laser pumped by a diode laser pumped solid state laser (DPSSL). The DPSSL was intra-cavity frequency doubled and it had 20 W output power. The Ti:Sapphire laser was designed for single longitudinal mode lasing. For single mode lasing, the laser used several solid etalons. We simulated temporal evolution of the laser pulse and single pass amplification rate of the photons in each modes from rate equations. From the result, we found that single mode lasing is viable in this cavity

  7. Mode analysis of heuristic behavior of searching for multimodal optimum point

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, K; Araki, Y; Inoue, K

    1982-01-01

    Describes an experimental study of a heuristic behavior of searching for the global optimum (maximum) point of a two-dimensional, multimodal, nonlinear and unknown function. First, the authors define three modes dealing with the trial purposes, called the purpose modes and show the heuristic search behaviors expressed by the purpose modes which the human subjects select in the search experiments. Second, the authors classify the heuristic search behaviors into three types according to the mode transitions and extracts eight states of searches which cause the mode transitions. Third, a model of the heuristic search behavior is composed of the eight mode transitions. The analysis of the heuristic search behaviors by use of the purpose modes plays an important role in the heuristic search techniques. 6 references.

  8. Failure mode analysis of preliminary design of ITER divertor impurity monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki

    2016-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • Failure mode of DIM was prepared for RAMI analysis. • RAMI analysis on DIM was performed to reduce technical risks. - Abstract: The objective of the divertor impurity influx monitor (DIM) for ITER is to measure the parameters of impurities and hydrogen isotopes (tritium, deuterium, and hydrogen) in divertor plasma using visible and UV spectroscopic techniques in the 200–1000 nm wavelength range. In ITER, special provisions are required to ensure accuracy and full functionality of the diagnostic components under harsh conditions (high temperature, high magnetic field, high vacuum condition, and high radiation field). Japan Domestic Agency is preparing the preliminary design of the ITER DIM system, which will be installed in the upper, equatorial and lower ports. The optical and mechanical designs of the DIM are conducted to fit ITER’s requirements. The optical and mechanical designs meet the requirements of spatial resolution. Some auxiliary systems were examined via prototyping. The preliminary design of the ITER DIM system was evaluated by RAMI analysis. The availability of the designed system is adequately high to satisfy the project requirements. However, some equipment does not have certain designs, and this may cause potential technical risks. The preliminary design should be modified to reduce technical risks and to prepare the final design.

  9. Development of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae-Han; Koo, Gyeng-Hoi

    2002-01-01

    KAERI's contributions to the project entitled Development of Analysis Methods for Seismically Isolated Nuclear Structures under IAEA CRP of the intercomparison of analysis methods for predicting the behaviour of seismically isolated nuclear structures during 1996-1999 in effort to develop the numerical analysis methods and to compare the analysis results with the benchmark test results of seismic isolation bearings and isolated nuclear structures provided by participating countries are briefly described. Certain progress in the analysis procedures for isolation bearings and isolated nuclear structures has been made throughout the IAEA CRPs and the analysis methods developed can be improved for future nuclear facility applications. (author)

  10. Nuclear Analysis of an ITER Blanket Module

    Science.gov (United States)

    Chiovaro, P.; Di Maio, P. A.; Parrinello, V.

    2013-08-01

    ITER blanket system is the reactor's plasma-facing component, it is mainly devoted to provide the thermal and nuclear shielding of the Vacuum Vessel and external ITER components, being intended also to act as plasma limiter. It consists of 440 individual modules which are located in the inboard, upper and outboard regions of the reactor. In this paper attention has been focused on to a single outboard blanket module located in the equatorial zone, whose nuclear response under irradiation has been investigated following a numerical approach based on the Monte Carlo method and adopting the MCNP5 code. The main features of this blanket module nuclear behaviour have been determined, paying particular attention to energy and spatial distribution of the neutron flux and deposited nuclear power together with the spatial distribution of its volumetric density. Moreover, the neutronic damage of the structural material has also been investigated through the evaluation of displacement per atom and helium and hydrogen production rates. Finally, an activation analysis has been performed with FISPACT inventory code using, as input, the evaluated neutron spectrum to assess the module specific activity and contact dose rate after irradiation under a specific operating scenario.

  11. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  12. Failure analysis of motor bearing of sea water pump in nuclear power plant

    International Nuclear Information System (INIS)

    Bian Chunhua; Zhang Wei

    2015-01-01

    The motor bearing of sea water pump in Qinshan Phase II Nuclear Power plant broke after only one year's using. This paper introduces failure analysis process of the motor bearing. Chemical composition analysis, metallic phase analysis, micrographic examination, and hardness analysis, dimension analysis of each part of the bearing, as well as the high temperature and low temperature performance analysis of lubricating grease are performed. According to the analysis above mentioned, the failure mode of the bearing is wearing, and the reason of wearing is inappropriate installation of the bearing. (authors)

  13. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H S; Yang, M H; Kim, H J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  14. Analysis on Japanese nuclear industrial technologies and their military implications

    International Nuclear Information System (INIS)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months

  15. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  16. Distributed computing and nuclear reactor analysis

    International Nuclear Information System (INIS)

    Brown, F.B.; Derstine, K.L.; Blomquist, R.N.

    1994-01-01

    Large-scale scientific and engineering calculations for nuclear reactor analysis can now be carried out effectively in a distributed computing environment, at costs far lower than for traditional mainframes. The distributed computing environment must include support for traditional system services, such as a queuing system for batch work, reliable filesystem backups, and parallel processing capabilities for large jobs. All ANL computer codes for reactor analysis have been adapted successfully to a distributed system based on workstations and X-terminals. Distributed parallel processing has been demonstrated to be effective for long-running Monte Carlo calculations

  17. Nuclear material production cycle vulnerability analysis

    International Nuclear Information System (INIS)

    Bott, T.F.

    1996-01-01

    This paper discusses a method for rapidly and systematically identifying vulnerable equipment in a nuclear material or similar production process and ranking that equipment according to its attractiveness to a malevolent attacker. A multistep approach was used in the analysis. First, the entire production cycle was modeled as a flow diagram. This flow diagram was analyzed using graph theoretical methods to identify processes in the production cycle and their locations. Models of processes that were judged to be particularly vulnerable based on the cycle analysis then were developed in greater detail to identify equipment in that process that is vulnerable to intentional damage

  18. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  19. Computer enhanced release scenario analysis for a nuclear waste repository

    International Nuclear Information System (INIS)

    Stottlemyre, J.A.; Petrie, G.M.; Mullen, M.F.

    1979-01-01

    An interactive (user-oriented) computer tool is being developed at PNL to assist in the analysis of release scenarios for long-term safety assessment of a continental geologic nuclear waste repository. Emphasis is on characterizing the various ways the geologic and hydrologic system surrounding a repository might vary over the 10 6 to 10 7 years subsequent to final closure of the cavern. The potential disruptive phenomena are categorized as natural geologic and man-caused and tend to be synergistic in nature. The computer tool is designed to permit simulation of the system response as a function of the ongoing disruptive phenomena and time. It is designed to be operated in a determinatic manner, i.e., user selection of the desired scenarios and associated rate, magnitude, and lag time data; or in a stochastic mode. The stochastic mode involves establishing distributions for individual phenomena occurrence probabilities, rates, magnitudes, and phase relationships. A Monte-Carlo technique is then employed to generate a multitude of disruptive event scenarios, scan for breaches of the repository isolation, and develop input to the release consequence analysis task. To date, only a simplified one-dimensional version of the code has been completed. Significant modification and development is required to expand its dimensionality and apply the tool to any specific site

  20. Higher order mode analysis of the SNS superconducting linac

    CERN Document Server

    Sang Ho Kim; Dong Jeon; Sundelin, R

    2001-01-01

    Higher order modes (HOM's) of monopoles, dipoles, quadrupoles and sextupoles in beta =0.61 and beta =0.81 6-cell superconducting (SC) cavities for the Spallation Neutron Source (SNS) project, have been found up to about 3 GHz and their properties such as R/Q, trapping possibility, etc have been figured out concerning manufacturing imperfection. The main issues of HOM's are beam instabilities (published separately) and HOM induced power especially from TM monopoles. The time structure of SNS beam has three different time scales of pulses, which are micro-pulse, midi-pulse and macropulse. Each time structure will generate resonances. When a mode is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power. In order to understand the effects from such a complex beam time structure on the mode excitation and resulting HOM power, analytic expressions are developed. With these analytic expressions, the induced HOM voltage and HOM power were calculated by assuming e...

  1. Comparative Study of Various Normal Mode Analysis Techniques Based on Partial Hessians

    OpenAIRE

    GHYSELS, AN; VAN SPEYBROECK, VERONIQUE; PAUWELS, EWALD; CATAK, SARON; BROOKS, BERNARD R.; VAN NECK, DIMITRI; WAROQUIER, MICHEL

    2010-01-01

    Standard normal mode analysis becomes problematic for complex molecular systems, as a result of both the high computational cost and the excessive amount of information when the full Hessian matrix is used. Several partial Hessian methods have been proposed in the literature, yielding approximate normal modes. These methods aim at reducing the computational load and/or calculating only the relevant normal modes of interest in a specific application. Each method has its own (dis)advantages and...

  2. Nuclear spectrometry for environmental analysis and mapping

    International Nuclear Information System (INIS)

    Simon, Aliz

    2013-01-01

    Full text: The International Atomic Energy Agency (IAEA) helps countries to mobilize peaceful applications of nuclear science and technology. The three main pillars of the activities are: safety and security; science and technology; and safeguards and verification. As part of the science and technology pillar, the Physics Section supports Member States regarding utilization of particle accelerators and research reactors, applications of nuclear instrumentation, and controlled nuclear fusion research. Support is provided to the Member States in the form of capacity building, knowledge transfer and networking. The IAEA's coordinated research activities are designed to contribute to this mandate, by stimulating and coordinating research in IAEA Member States in selected nuclear fields. These coordinated research activities are normally implemented through Coordinated Research Projects that bring together research institutes from both developing and developed Member States to collaborate on the research topic of interest. The establishment of sustainable education and training programmes is fundamental for the safe, secure and efficient development of the nuclear field. The lAEA offers a wide spectrum of activities in support of education, training, human resource development and capacity building including interregional, regional and national training courses and workshops; assists visits and reviews services; initiates, formulates and runs programmes; networks managers and specialists for sharing good practices; assists in publications that compile the best international practices; supplies training materials and training tools; and supports internship programmes for the young generations of scientists and fellows. For the developing countries, the Technical Cooperation Programme provides the necessary skills and equipment to establish sustainable technology in the counterpart country or region through training courses, expert missions, fellowships, scientific

  3. Nuclear spectrometry for environmental analysis and mapping

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Aliz, E-mail: Aliz.Simon@iaea.org [International Atomic Energy Agency (IAEA), Division of Physical and Chemical Sciences, Vienna (Austria)

    2013-07-01

    Full text: The International Atomic Energy Agency (IAEA) helps countries to mobilize peaceful applications of nuclear science and technology. The three main pillars of the activities are: safety and security; science and technology; and safeguards and verification. As part of the science and technology pillar, the Physics Section supports Member States regarding utilization of particle accelerators and research reactors, applications of nuclear instrumentation, and controlled nuclear fusion research. Support is provided to the Member States in the form of capacity building, knowledge transfer and networking. The IAEA's coordinated research activities are designed to contribute to this mandate, by stimulating and coordinating research in IAEA Member States in selected nuclear fields. These coordinated research activities are normally implemented through Coordinated Research Projects that bring together research institutes from both developing and developed Member States to collaborate on the research topic of interest. The establishment of sustainable education and training programmes is fundamental for the safe, secure and efficient development of the nuclear field. The lAEA offers a wide spectrum of activities in support of education, training, human resource development and capacity building including interregional, regional and national training courses and workshops; assists visits and reviews services; initiates, formulates and runs programmes; networks managers and specialists for sharing good practices; assists in publications that compile the best international practices; supplies training materials and training tools; and supports internship programmes for the young generations of scientists and fellows. For the developing countries, the Technical Cooperation Programme provides the necessary skills and equipment to establish sustainable technology in the counterpart country or region through training courses, expert missions, fellowships, scientific

  4. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is being developed as the U.S. Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. The NPA integrates the NRC's computerized reactor behavior simulation codes such as RELAP5 and TRAC-BWR, both of which are well-developed computer graphics programs, and large repositories of reactor design and experimental data. Utilizing the complex reactor behavior codes as well as the experiment data repositories enables simulation applications of the NPA that are generally not possible with more simplistic, less mechanistic reactor behavior codes. These latter codes are used in training simulators or with other NPA-type software packages and are limited to displaying calculated data only. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  5. Disturbance analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Sillamaa, M.A.

    Disturbance analysis is any systematic procedure that helps an operator determine what has failed. This paper describes the typical information currently provided in CANDU power plants to help the operator respond to a disturbance. It presents a simplified model of how an operator could get into trouble, and briefly reviews development work on computerized disturbance analysis systems for nuclear power plants being done in various countries including Canada. Disturbance analysis systems promise to be useful tools in helping operators improve their response to complex situations. However, the originality and complexity of the work for a disturbance analysis system and the need to develop operator confidence and management support require a 'walk before you run' approach

  6. Analysis of nuclear-power construction costs

    International Nuclear Information System (INIS)

    Jansma, G.L.; Borcherding, J.D.

    1988-01-01

    This paper discusses the use of regression analysis for estimating construction costs. The estimate is based on an historical data base and quantification of key factors considered external to project management. This technique is not intended as a replacement for detailed cost estimates but can provide information useful to the cost-estimating process and to top management interested in evaluating project management. The focus of this paper is the nuclear-power construction industry but the technique is applicable beyond this example. The approach and critical assumptions are also useful in a public-policy situation where utility commissions are evaluating construction in prudence reviews and making comparisons to other nuclear projects. 13 references, 2 figures

  7. Mobile Monitoring System for Nuclear Contamination Analysis

    International Nuclear Information System (INIS)

    Broide, A.; Sheinfeld, M.; Marcus, E.; Wengrowicz, U.; Tirosh, D.

    2002-01-01

    In case of a nuclear accident, it is essential to have extensive knowledge concerning the nature of the radioactive plume expansion, for further analysis. For this purpose a mobile monitoring system may provide important data about the plume characteristics. An advanced Mobile Monitoring System is under development at the Nuclear Research Center-Negev. The system is composed of a network of mobile stations, typically installed onboard vehicles, which transmit radiation measurements along with position information to a central station. The mobile network's communications infrastructure is based on Motorola Mobile Logic Unit devices, which are state-of-the-art reliable modems with an integrated Global Positioning System module. The radiation measurements received by the central station are transferred to a risk assessment program, which evaluates the expected hazards to the populated areas located in the estimated plume's expansion direction

  8. Analysis of Few-Mode Multi-Core Fiber Splice Behavior Using an Optical Vector Network Analyzer

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, Jose Manuel Delgado; Klaus, Werner

    2017-01-01

    The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively and negativ......The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively...

  9. Sealing analysis for nuclear vessel of PWR

    International Nuclear Information System (INIS)

    Qu, J.; Dou, Y.

    1987-01-01

    Although design by analysis of pressure vessel has become a requirement in all codes for more than 20 years, sealing design for nuclear components is still too complicated and there are yet no criteria about this aspect, even though in the well-known ASME Boiler and Pressure Vessel Code. Thus it is of significance to undertake researches of transient sealing tests and analysis for nuclear vessel. Since 1960s great progress has been made in analytic computer program, which takes flange as a rigid ring. Actually, however, there are elastic or elastoplastic contacts on flange mating surface. Chen (1979) gave a mixed finite element method, using a condensing flexible matrix skill, to solve two-body contact problem. On the basis of axisymmetric stress and thermal analysis of finite element method and on accepting Chen's (1979) idea of mixed finite element method, we have developed a computer program for sealing analysis, named SMEC, which considers bolt loading changes and temperature effects. (orig./GL)

  10. Determination of fuel assembly vibrational modes through analysis of incore detector noise

    International Nuclear Information System (INIS)

    Johnson, R.S.

    1986-01-01

    In order to better characterize fuel assembly vibration at Duke Power Company's Oconee Nuclear Station, incore noise data were acquired an analyzed from prompt responding detectors incorporated in the Oconee 2, Cycle 7 core. Duke Power Company began actively pursuing an inhouse Neutron Noise Analysis program for routine surveillance of reactor internals vibration in 1979. Noise data has since been acquired and analyzed for twelve cycles of operation for the three Oconee units. Duke Power's Oconee Unit 2 is a Babcock and Wilcoxs pressurized water reactor with a rate thermal power of 2568MW. For Oconee 2, Cycle 7 operation, two test assemblies, each employing a string of seven axially-spaced, prompt responding hafnium detectors, were included in the final core design. Incore detector noise data were obtained during Cycle 7 at approximately 281 and 430 effective full power days (EFPD). In addition to the incore test detector signals, noise signals from the upper and lower chambers of the four excore power range detectors were recorded to aid in the analysis. The comparison of RMS signal levels for each incore detector and the phase relationships between detector locations within two test assemblies identified the first four fuel assembly bending modes associated with fixed end conditions

  11. Small break LOCA analysis for YGN 5 and 6 RCP trip strategy in power mode operation

    International Nuclear Information System (INIS)

    Kim, Tech Mo; Choi, Han Rim

    2001-01-01

    A continued operation of Reactor Coolant Pumps(RCPs) during a Small Break Loss of Coolant Accident(SBLOCA) in all operation mode may increase unnecessary inventory loss from the Reactor Coolant System(RCS) causing a severe core uncovery which might lead to fuel failure. After Three Mile Island Unit 2(TMI-2) accident, the Combustion Engineering Owner Group(CEOG) developed RCP trip strategy called 'Trip-Two/Leave-Two' (T2/L2). The T2/L2 RCP trip strategy consists of tripping the first two RCPs on low RCS pressure and then tripping the remaining two RCPs if a LOCA has occurred. This analysis demonstrates the inherent safety of RCP trip strategy during an SBLOCA for Youggwang Nuclear Power Plant Unit 5 and 6(YGN 5 and 6). The trip setpoint of the first two RCPs for YGN 5 and 6 is calculated to be 1721 psia in pressurizer pressure based on the limiting SBLOCA with 0.15 ft 2 break size in the hot leg. The analysis results show that YGN 5 and 6 can maintain the core coolability even if the operator fails to trip the second two RCPs or trips at the worst time of minimum liquid inventory

  12. Comparative study of various normal mode analysis techniques based on partial Hessians.

    Science.gov (United States)

    Ghysels, An; Van Speybroeck, Veronique; Pauwels, Ewald; Catak, Saron; Brooks, Bernard R; Van Neck, Dimitri; Waroquier, Michel

    2010-04-15

    Standard normal mode analysis becomes problematic for complex molecular systems, as a result of both the high computational cost and the excessive amount of information when the full Hessian matrix is used. Several partial Hessian methods have been proposed in the literature, yielding approximate normal modes. These methods aim at reducing the computational load and/or calculating only the relevant normal modes of interest in a specific application. Each method has its own (dis)advantages and application field but guidelines for the most suitable choice are lacking. We have investigated several partial Hessian methods, including the Partial Hessian Vibrational Analysis (PHVA), the Mobile Block Hessian (MBH), and the Vibrational Subsystem Analysis (VSA). In this article, we focus on the benefits and drawbacks of these methods, in terms of the reproduction of localized modes, collective modes, and the performance in partially optimized structures. We find that the PHVA is suitable for describing localized modes, that the MBH not only reproduces localized and global modes but also serves as an analysis tool of the spectrum, and that the VSA is mostly useful for the reproduction of the low frequency spectrum. These guidelines are illustrated with the reproduction of the localized amine-stretch, the spectrum of quinine and a bis-cinchona derivative, and the low frequency modes of the LAO binding protein. 2009 Wiley Periodicals, Inc.

  13. Failure Mode and Effect Analysis for Wind Turbine Systems in China

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; N. Soltani, Mohsen

    2017-01-01

    This paper discusses a cost based Failure Mode and Effect Analysis (FMEA) approch for the Wind Turbine (WT) with condition monitoring system in China. Normally, the traditional FMEA uses the Risk Priority Number (RPN) to rank failure modes. But the RPN can be changed with the Condition Monitoring...... Systems (CMS) due to change of the score of detection. The cost of failure mode should also be considered because faults can be detected at an incipient level, and condition-based maintenance can be scheduled. The results show that the proposed failure mode priorities considering their cost consequences...

  14. Failure modes of a concrete nuclear-containment building subjected to hydrogen detonation

    International Nuclear Information System (INIS)

    Fugelso, L.E.; Butler, T.A.

    1983-01-01

    Calculated response for the Indian Point reactor containment building to static internal pressure and one case of a dynamic pressure representing hydrogen combustion and detonation are presented. Comparison of the potential failure modes is made. 9 figures

  15. Considerations in the selection of transport modes for spent nuclear fuel shipments

    International Nuclear Information System (INIS)

    Daling, P.M.; McNair, G.W.; Andrews, W.B.

    1985-07-01

    This paper discusses the factors associated with selecting a particular transport mode for spent fuel shipments. These factors include transportation costs, economics of potential transportation accidents, risk/safety of spent fuel transportation, routing alternatives, shipping cask handling capabilities, and shipping cask availability. Data needed to estimate transportation costs and risks are presented and discussed. The remaining factors are discussed qualitatively and can be used as guidance for selecting a particular transport mode. 15 refs., 3 tabs

  16. Methods on TLD management be applicable in nuclear power plantsunder the multi-reactor operational mode

    International Nuclear Information System (INIS)

    Luo Huiyong; Wen Qinghua; Li Ruirong; Yu Enjian

    2006-01-01

    This paper discusses the methods on management of TLD dosimeters adopted in DNMC and other NPPs, analyzes and evaluates their both defects and advantages. Facing the coming of the multi-reactor operational mode applied in NPPs, a new method intelligent management mode is put forward, this optimized method not only assures the accuracy of TLD's measurement but also reduces the cost of production and improves the efficiency of management greatly. (authors)

  17. Software programmable multi-mode interface for nuclear-medical imaging

    International Nuclear Information System (INIS)

    Zubal, I.G.; Rowe, R.W.; Bizais, Y.J.C.; Bennett, G.W.; Brill, A.B.

    1982-01-01

    An innovative multi-port interface allows gamma camera events (spatial coordinates and energy) to be acquired concurrently with a sampling of physiological patient data. The versatility of the interface permits all conventional static, dynamic, and tomographic imaging modes, in addition to multi-hole coded aperture acquisition. The acquired list mode data may be analyzed or gated on the basis of various camera, isotopic, or physiological parameters

  18. Financing modes and methods for nuclear power development in developing countries

    International Nuclear Information System (INIS)

    Su Qun

    1999-02-01

    In financing for nuclear power project in developing countries, governmental support is significant in reducing the risk of the project and improving the financing environment. Issues studied and discussed include financing conditions and methods, export credit and supply. An appropriate solution of the financing problem will play an important role in developing nuclear power

  19. Anisotropic resonator analysis using the Fourier-Bessel mode solver

    Science.gov (United States)

    Gauthier, Robert C.

    2018-03-01

    A numerical mode solver for optical structures that conform to cylindrical symmetry using Faraday's and Ampere's laws as starting expressions is developed when electric or magnetic anisotropy is present. The technique builds on the existing Fourier-Bessel mode solver which allows resonator states to be computed exploiting the symmetry properties of the resonator and states to reduce the matrix system. The introduction of anisotropy into the theoretical frame work facilitates the inclusion of PML borders permitting the computation of open ended structures and a better estimation of the resonator state quality factor. Matrix populating expressions are provided that can accommodate any material anisotropy with arbitrary orientation in the computation domain. Several example of electrical anisotropic computations are provided for rationally symmetric structures such as standard optical fibers, axial Bragg-ring fibers and bottle resonators. The anisotropy present in the materials introduces off diagonal matrix elements in the permittivity tensor when expressed in cylindrical coordinates. The effects of the anisotropy of computed states are presented and discussed.

  20. Probabilistic risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Hauptmanns, U.

    1988-01-01

    Risk analysis is applied if the calculation of risk from observed failures is not possible, because events contributing substantially to risk are too seldom, as in the case of nuclear reactors. The process of analysis provides a number of benefits. Some of them are listed. After this by no means complete enumeration of possible benefits to be derived from a risk analysis. An outline of risk studiesd for PWR's with some comments on the models used are given. The presentation is indebted to the detailed treatment of the subject given in the PRA Procedures Guide. Thereafter some results of the German Risk Study, Phase B, which is under way are communicated. The paper concludes with some remarks on probabilistic considerations in licensing procedures. (orig./DG)

  1. Accident analysis for nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    Deterministic safety analysis (frequently referred to as accident analysis) is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). Owing to the close interrelation between accident analysis and safety, an analysis that lacks consistency, is incomplete or is of poor quality is considered a safety issue for a given NPP. Developing IAEA guidance documents for accident analysis is thus an important step towards resolving this issue. Requirements and guidelines pertaining to the scope and content of accident analysis have, in the past, been partially described in various IAEA documents. Several guidelines relevant to WWER and RBMK type reactors have been developed within the IAEA Extrabudgetary Programme on the Safety of WWER and RBMK NPPs. To a certain extent, accident analysis is also covered in several documents of the revised NUSS series, for example, in the Safety Requirements on Safety of Nuclear Power Plants: Design (NS-R-1) and in the Safety Guide on Safety Assessment and Verification for Nuclear Power Plants (NS-G-1.2). Consistent with these documents, the IAEA has developed the present Safety Report on Accident Analysis for Nuclear Power Plants. Many experts have contributed to the development of this Safety Report. Besides several consultants meetings, comments were collected from more than fifty selected organizations. The report was also reviewed at the IAEA Technical Committee Meeting on Accident Analysis held in Vienna from 30 August to 3 September 1999. The present IAEA Safety Report is aimed at providing practical guidance for performing accident analyses. The guidance is based on present good practice worldwide. The report covers all the steps required to perform accident analyses, i.e. selection of initiating events and acceptance criteria, selection of computer codes and modelling assumptions, preparation of input data and presentation of the

  2. Risk analysis of nuclear safeguards regulations

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Altman, W.D.; Judd, B.R.

    1982-06-01

    The Aggregated Systems Model (ASM), a probabilisitic risk analysis tool for nuclear safeguards, was applied to determine benefits and costs of proposed amendments to NRC regulations governing nuclear material control and accounting systems. The objective of the amendments was to improve the ability to detect insiders attempting to steal large quantities of special nuclear material (SNM). Insider threats range from likely events with minor consequences to unlikely events with catastrophic consequences. Moreover, establishing safeguards regulations is complicated by uncertainties in threats, safeguards performance, and consequences, and by the subjective judgments and difficult trade-offs between risks and safeguards costs. The ASM systematically incorporates these factors in a comprehensive, analytical framework. The ASM was used to evaluate the effectiveness of current safeguards and to quantify the risk of SNM theft. Various modifications designed to meet the objectives of the proposed amendments to reduce that risk were analyzed. Safeguards effectiveness was judged in terms of the probability of detecting and preventing theft, the expected time to detection, and the expected quantity of SNM diverted in a year. Data were gathered in tours and interviews at NRC-licensed facilities. The assessment at each facility was begun by carefully selecting scenarios representing the range of potential insider threats. A team of analysts and facility managers assigned probabilities for detection and prevention events in each scenario. Using the ASM we computed the measures of system effectiveness and identified cost-effective safeguards modifications that met the objectives of the proposed amendments

  3. Regional analysis of the nuclear-electricity

    International Nuclear Information System (INIS)

    Parera, M. D.

    2011-11-01

    In this study was realized a regional analysis of the Argentinean electric market contemplating the effects of regional cooperation, the internal and international interconnections; and the possibilities of insert of new nuclear power stations were evaluated in different regions of the country, indicating the most appropriate areas to carry out these facilities to increase the penetration of the nuclear energy in the national energy matrix. Also was studied the interconnection of the electricity and natural gas markets, due to the existent linking among both energy forms. With this purpose the program Message (Model for energy supply strategy alternatives and their general environmental impacts) was used, promoted by the International Atomic Energy Agency. This model carries out an economic optimization level country, obtaining the minimum cost as a result for the modeling system. The division for regions realized by the Compania Administradora del Mercado Mayorista Electrico (CAMMESA) was used, which divides to the country in eight regions. They were considered the characteristics and necessities of each one of them, their respective demands and offers of electric power and natural gas, as well as their existent and projected interconnections, composed by the electric lines and gas pipes. According to the results obtained through the model, the nuclear-electricity is a competitive option. (Author)

  4. Single cell elemental analysis using nuclear microscopy

    International Nuclear Information System (INIS)

    Ren, M.Q.; Thong, P.S.P.; Kara, U.; Watt, F.

    1999-01-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS)

  5. Computation system for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals

  6. Probabilistic analysis of fires in nuclear plants

    International Nuclear Information System (INIS)

    Unione, A.; Teichmann, T.

    1985-01-01

    The aim of this paper is to describe a multilevel (i.e., staged) probabilistic analysis of fire risks in nuclear plants (as part of a general PRA) which maximizes the benefits of the FRA (fire risk assessment) in a cost effective way. The approach uses several stages of screening, physical modeling of clearly dominant risk contributors, searches for direct (e.g., equipment dependences) and secondary (e.g., fire induced internal flooding) interactions, and relies on lessons learned and available data from and surrogate FRAs. The general methodology is outlined. 6 figs., 10 tabs

  7. SWEPP PAN assay system uncertainty analysis: Passive mode measurements of graphite waste

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.

    1997-07-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the U.S. Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. To this end a modified statistical sampling and verification approach has been developed to determine the total uncertainty of a PAN measurement. In this approach the total performance of the PAN nondestructive assay system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers passive mode measurements of weapons grade plutonium-contaminated graphite molds contained in 208 liter drums (waste code 300). The validity of the simulation approach is verified by comparing simulated output against results from measurements using known plutonium sources and a surrogate graphite waste form drum. For actual graphite waste form conditions, a set of 50 cases covering a statistical sampling of the conditions exhibited in graphite wastes was compiled using a Latin hypercube statistical sampling approach

  8. Nuclear analysis of the ITER Cryopump Ports

    International Nuclear Information System (INIS)

    Moro, Fabio; Villari, Rosaria; Flammini, Davide; Antipenkov, Alexander; Dremel, Matthias; Levesy, Bruno; Loughlin, Michael; Juarez, Rafael; Perez, Lucia; Petrizzi, Luigino

    2015-01-01

    Highlights: • Evaluation the shielding effectiveness of the TCPHs by means of 3-D neutrons and gamma maps. • Assessment of the nuclear heating induced by neutron and photons on the TCP and TCPHs. • Calculation of the dose rate at 12 days after shutdown in the maintenance area of the Lower Ports with the Advanced D1S method, in order to verify the design target (100 μSv/h). • Potential improvements of the shielding configuration aimed at the reduction of the dose level in the Port Cell have been proposed and discussed. - Abstract: The ITER machine will be equipped with 6 torus Cryopumps (TCP) that are positioned in their housings (TCPH) and integrated into the cryostat walls at B1 level in the port cells. A comprehensive nuclear analysis of the Cryopump Ports #4 and #12 has been carried out by means of the MCNP-5 Monte Carlo code in a full 3-D geometry, providing guidelines for the design of the embedded components. Radiation transport calculations have been performed in order to determine the radiation field inside the Lower Ports, up the Port Cell: 3-D neutrons and gamma maps have been provided in order to evaluate the shielding effectiveness of the TCPHs. Nuclear heating induced by neutron and photons have been estimated on the TCP and TCPH to assess the nuclear loads during plasma operations. The shutdown dose rate in the maintenance area of the Lower Ports has been assessed with the Advanced D1S method to verify the design limits.

  9. Nuclear analysis of the ITER Cryopump Ports

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Fabio, E-mail: fabio.moro@enea.it [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Villari, Rosaria; Flammini, Davide [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Antipenkov, Alexander; Dremel, Matthias; Levesy, Bruno; Loughlin, Michael [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Juarez, Rafael; Perez, Lucia [UNED, Energetic Engineering Department, C/Juan del Rosal 12, Madrid (Spain); Petrizzi, Luigino [European Commission, DG Research & Innovation G5, CDMA 00/030, B-1049 Brussels (Belgium)

    2015-10-15

    Highlights: • Evaluation the shielding effectiveness of the TCPHs by means of 3-D neutrons and gamma maps. • Assessment of the nuclear heating induced by neutron and photons on the TCP and TCPHs. • Calculation of the dose rate at 12 days after shutdown in the maintenance area of the Lower Ports with the Advanced D1S method, in order to verify the design target (100 μSv/h). • Potential improvements of the shielding configuration aimed at the reduction of the dose level in the Port Cell have been proposed and discussed. - Abstract: The ITER machine will be equipped with 6 torus Cryopumps (TCP) that are positioned in their housings (TCPH) and integrated into the cryostat walls at B1 level in the port cells. A comprehensive nuclear analysis of the Cryopump Ports #4 and #12 has been carried out by means of the MCNP-5 Monte Carlo code in a full 3-D geometry, providing guidelines for the design of the embedded components. Radiation transport calculations have been performed in order to determine the radiation field inside the Lower Ports, up the Port Cell: 3-D neutrons and gamma maps have been provided in order to evaluate the shielding effectiveness of the TCPHs. Nuclear heating induced by neutron and photons have been estimated on the TCP and TCPH to assess the nuclear loads during plasma operations. The shutdown dose rate in the maintenance area of the Lower Ports has been assessed with the Advanced D1S method to verify the design limits.

  10. Discontinuous conduction mode analysis of phase-modulated series ...

    Indian Academy of Sciences (India)

    Utsab Kundu

    domain analysis; frequency domain analysis; critical load resistance. 1. Introduction ... DCMSRC design process, requiring repeated circuit simu- lations for design ... Structured derivation of Av is presented, ..... System specifications. L. C r. Lm.

  11. Literature research of FMEA (Failure Mode and Effects Analysis) methodology

    International Nuclear Information System (INIS)

    Hustak, S.

    1999-01-01

    The potential of the FMEA applications is demonstrated. Some approaches can be used for system analysis or immediately for PSA, in particular, for obtaining background information for fault tree analysis in the area of component modelling and, to a lesser extent, for identification of the initiating events. On the other hand, other FMEA applications, such as criticality analysis, are unusable in PSA. (author)

  12. Analysis of Mode II Crack in Bilayered Composite Beam

    Science.gov (United States)

    Rizov, Victor I.; Mladensky, Angel S.

    2012-06-01

    Mode II crack problem in cantilever bilayered composite beams is considered. Two configurations are analyzed. In the first configuration the crack arms have equal heights while in the second one the arms have different heights. The modulus of elasticity and the shear modulus of the beam un-cracked part in the former case and the moment of inertia in the latter are derived as functions of the two layers characteristics. The expressions for the strain energy release rate, G are obtained on the basis of the simple beam theory according to the hypotheses of linear elastic fracture mechanics. The validity of these expressions is established by comparison with a known solution. Parametrical investigations for the influence of the moduli of elasticity ratio as well as the moments of inertia ratio on the strain energy release rate are also performed. The present article is a part of comprehensive investigation in Fracture mechanics of composite beams.

  13. Seismic analysis of the Aguirre Nuclear Reactor

    International Nuclear Information System (INIS)

    Sepulveda Soza, Cristian

    1999-01-01

    This thesis aims to verify the seismic design of the Aguirre Nuclear Reactor using the finite elements method and comparing the results with the original analysis. The study focused on the dynamic interaction of soil and structures, using the ANSYS program for the analysis, which was implemented for a work station under a UNIX platform belonging to the Chilean Nuclear Energy Commission. The modeling of the structures was carried out following International Atomic Energy recommendations, those of the makers of the Swanson Analysis Systems program and the prior study by S y S Ingenieros Consultores. Two-dimensional models were developed with axial and symmetry and three-dimensional models with symmetric and asymmetric plans, where the retaining building, the pond block and the soil down to the basal rock were included. The seismic stresses were defined according to the Chilean Standard NCh433.of96, using the spectrum of design accelerations for type II soils for the structural models and type IV for the soil-structure interaction models.The results of interest for this study are: the compression and cutting tensions, the unitary cut distortions and the displacements, which are shown graphically and are compared between the different models and with the original analysis. A sensitivity analysis was prepared for the models with axial symmetry considering soil reaction coefficient values of 20, 10, 5, 2, 1 and 0.5 kp/cm 3 ; and four screens with maximum sizes of 100, 50, 25 and 12.5 cm. The behavior of the stressed materials was studied as well as the result of the seismic stress (CS)

  14. Tank 241-B-203 push mode core sampling and analysis plan. Revision 1

    International Nuclear Information System (INIS)

    Jo, J.

    1995-01-01

    This Sampling and Analysis Plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for two push-mode core samples from tank 241-B-203 (B-203)

  15. Tank 241-B-204 push mode core sampling and analysis plan. Revision 1

    International Nuclear Information System (INIS)

    Sasaki, L.M.

    1995-01-01

    This Sampling and Analysis Plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for two push-mode core samples from tank 241-B-204 (B-204)

  16. Tank 241-U-105 push mode core sampling and analysis plan

    International Nuclear Information System (INIS)

    Bell, K.E.

    1995-01-01

    This Sampling and Analysis Plan (SAP) will identify characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples and two push mode core samples from tank 241-U-105 (U-105)

  17. Comparative analysis of nuclear reactor control system designs

    International Nuclear Information System (INIS)

    Russcher, G.E.

    1975-01-01

    Control systems are vital to the safe operation of nuclear reactors. Their seismic design requirements are some of the most important criteria governing reactor system design evaluation. Consequently, the seismic analysis for nuclear reactors is directed to include not only the mechanical and structural seismic capabilities of a reactor, but the control system functional requirements as well. In the study described an alternate conceptual design of a safety rod system was compared with a prototypic system design to assess their relative functional reliabilities under design seismic conditions. The comparative methods utilized standard success tree and decision tree techniques to determine the relative figures of merit. The study showed: (1) The methodology utilized can provide both qualitative and quantitative bases for design decisions regarding seismic functional capabilities of two systems under comparison, (2) the process emphasizes the visibility of particular design features that are subject to common mode failure while under seismic loading, and (3) minimal improvement was shown to be available in overall system seismic performance of an independent conceptual design, however, it also showed the system would be subject to a new set of operational uncertainties which would have to be resolved by extensive development programs

  18. Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems

    International Nuclear Information System (INIS)

    Chow, S.

    1976-01-01

    A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. In the power generation mode, the plasma and propellant flows are shut off, and the driver elements supply thermal power to the power conversion system, which generates electricity for primary electric propulsion purposes

  19. Comprehensive method of common-mode failure analysis for LMFBR safety systems

    International Nuclear Information System (INIS)

    Unione, A.J.; Ritzman, R.L.; Erdmann, R.C.

    1976-01-01

    A technique is demonstrated which allows the systematic treatment of common-mode failures of safety system performance. The technique uses log analysis in the form of fault and success trees to qualitatively assess the sources of common-mode failure and quantitatively estimate the contribution to the overall risk of system failure. The analysis is applied to the secondary control rod system of an early sized LMFBR

  20. Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques

    Science.gov (United States)

    2018-04-30

    Resources: N/A TOTAL: $18,687 2 TECHNICAL STATUS REPORT Abstract The program goal is analysis of sea ice dynamical behavior using Koopman Mode Decompo...Title: Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques Subject: Monthly Progress Report Period of...Attn: Code 5596 4555 Overlook Avenue, SW Washington, D.C. 20375-5320 E-mail: reports@library.nrl.navy.mil Defense Technical Information Center

  1. Analysis of public attitude to nuclear power

    International Nuclear Information System (INIS)

    Trofimenko, A.P.; Pisanko, Zh.I.

    2001-01-01

    Psychological features of nuclear power public perception, reasons of anti-nuclear movement and social components of its participants are considered. The results of some public opinion polls on nuclear power are analyzed, and factors, which influence on opinion, are discussed. Arguments are presented which indicate that part population imagination about nuclear power hazard is strongly exaggerated

  2. Numerical design and analysis of parasitic mode oscillations for 95 GHz gyrotron beam tunnel

    Science.gov (United States)

    Kumar, Nitin; Singh, Udaybir; Yadav, Vivek; Kumar, Anil; Sinha, A. K.

    2013-05-01

    The beam tunnel, equipped with the high lossy ceramics, is designed for 95 GHz gyrotron. The geometry of the beam tunnel is optimized considering the maximum RF absorption (ideally 100%) and the suppression of parasitic oscillations. The excitation of parasitic modes is a concerning problem for high frequency, high power gyrotrons. Considering the problem of parasitic mode excitation in beam tunnel, a detail analysis is performed for the suppression of these kinds of modes. Trajectory code EGUN and CST Microwave Studio are used for the simulations of electron beam trajectory and electromagnetic analysis, respectively.

  3. Pygmy and core polarization dipole modes in 206Pb: Connecting nuclear structure to stellar nucleosynthesis

    Science.gov (United States)

    Tonchev, A. P.; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-10-01

    A high-resolution study of the electromagnetic response of 206Pb below the neutron separation energy is performed using a (γ → ,γ‧) experiment at the HI γ → S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in 206Pb from 4.9 to 8.1 MeV. The extracted ΣB (E 1) ↑ and ΣB (M 1) ↑ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9 ± 0.2 e2fm2 and 8.3 ± 2.0 μN2, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of 206Pb of αD = 122 ± 10 mb /MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of Rskin206 = 0.12- 0.19 fm and a corresponding range for the slope of the symmetry energy of L = 48- 60 MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section 205Pb (n , γ)206Pb at 30 keV to be σ = 130 ± 25 mb. The astrophysical impact of this measurement-on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter-is discussed.

  4. Evolutionary modes of emergence of short interspersed nuclear element (SINE) families in grasses.

    Science.gov (United States)

    Kögler, Anja; Schmidt, Thomas; Wenke, Torsten

    2017-11-01

    Short interspersed nuclear elements (SINEs) are non-autonomous transposable elements which are propagated by retrotransposition and constitute an inherent part of the genome of most eukaryotic species. Knowledge of heterogeneous and highly abundant SINEs is crucial for de novo (or improvement of) annotation of whole genome sequences. We scanned Poaceae genome sequences of six important cereals (Oryza sativa, Triticum aestivum, Hordeum vulgare, Panicum virgatum, Sorghum bicolor, Zea mays) and Brachypodium distachyon to examine the diversity and evolution of SINE populations. We comparatively analyzed the structural features, distribution, evolutionary relation and abundance of 32 SINE families and subfamilies within grasses, comprising 11 052 individual copies. The investigation of activity profiles within the Poaceae provides insights into their species-specific diversification and amplification. We found that Poaceae SINEs (PoaS) fall into two length categories: simple SINEs of up to 180 bp and dimeric SINEs larger than 240 bp. Detailed analysis at the nucleotide level revealed that multimerization of related and unrelated SINE copies is an important evolutionary mechanism of SINE formation. We conclude that PoaS families diversify by massive reshuffling between SINE families, likely caused by insertion of truncated copies, and provide a model for this evolutionary scenario. Twenty-eight of 32 PoaS families and subfamilies show significant conservation, in particular either in the 5' or 3' regions, across Poaceae species and share large sequence stretches with one or more other PoaS families. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Computational methods for nuclear criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.

    1992-01-01

    Nuclear criticality safety analyses require the utilization of methods which have been tested and verified against benchmarks results. In this work, criticality calculations based on the KENO-IV and MCNP codes are studied aiming the qualification of these methods at the IPEN-CNEN/SP and COPESP. The utilization of variance reduction techniques is important to reduce the computer execution time, and several of them are analysed. As practical example of the above methods, a criticality safety analysis for the storage tubes for irradiated fuel elements from the IEA-R1 research has been carried out. This analysis showed that the MCNP code is more adequate for problems with complex geometries, and the KENO-IV code shows conservative results when it is not used the generalized geometry option. (author)

  6. Scaling of mode shapes from operational modal analysis using harmonic forces

    Science.gov (United States)

    Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.

    2017-10-01

    This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.

  7. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    International Nuclear Information System (INIS)

    Ahn, Mu-Young; Cho, Seungyon; Jin, Hyung Gon; Lee, Dong Won; Park, Yi-Hyun; Lee, Youngmin

    2015-01-01

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  8. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Mu-Young, E-mail: myahn74@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of); Jin, Hyung Gon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  9. Radiochemical analysis of military nuclear facilities

    International Nuclear Information System (INIS)

    Bayramov, A.A.; Bayramova, S.M.

    2012-01-01

    Full text : Radiochemical Analysis is a branch of analytical chemistry comprising an aggregate of methods for qualitatively determining the composition and content of radioisotopes in the products of transformations. Safety and minimization of radiation impact on human and environment are important demand of operation of Military Nuclear Facilities (MNF). In accordance of recommendations of International Commission on Radiological Protection there are next objects of radiochemical analysis: 1) potential sources of radiochemical pollution; 2) environment (objects of environment, human environment including buildings, agricultural production, water, air et al.); 3) human himself (determination of dose from external and internal radiation, chemical poisoning). The chemical analysis can be carried out using, for example, the Gas Chromatography instrument whish separates chemical mixtures and identifies the components at a molecular level. It is one of the most accurate tools for analyzing environmental samples. The Gas Chromatography works on the principle that a mixture will separate into individual substances when heated. The heated gases are carried through a column with an inert gas (such as helium). As the separated substances emerge from the column opening, they flow into the Mass Spectrometry. Mass spectrometry identifies compounds by the mass of the analyte molecule. Newly developed portable Gas Chromatography and Mass Spectrometry are techniques that can be used to separate volatile organic compounds and pesticides. Other uses of Gas Chromatography, combined with other separation and analytical techniques, have been developed for radionuclides, explosive compounds such as royal demolition explosive and trinitrotoluene, and metals. So, based on the many years experience of operation of dangerous MNF, in concordance with norms of radiation and chemical safety it was considered that the tasks of the radiochemical analysis of Military Nuclear Facilities include

  10. Random safety auditing, root cause analysis, failure mode and effects analysis.

    Science.gov (United States)

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Rouse mode analysis of chain relaxation in polymer nanocomposites.

    Science.gov (United States)

    Kalathi, Jagannathan T; Kumar, Sanat K; Rubinstein, Michael; Grest, Gary S

    2015-05-28

    Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, as in the case of a polymer-solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Thus, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.

  12. DEM Analysis of Backfilled Walls Subjected to Active Translation Mode

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Khosravi

    2017-12-01

    Full Text Available In this paper, the problem of a retaining wall under active translation mode is investigated numerically. To this end, a series of numerical models is conducted using the discrete element code, PFC2D. The backfill soil is simulated by an assembly of separate cohesionless circular particles. Backfill soil was prepared by pouring soil particles from a specific height under gravity force and giving them enough time for appropriate settlement. Different heights of retaining walls are simulated and the lateral earth pressure on the wall is observed under both at-rest and active conditions. Numerical results compared with predictions from some analytical methods and measurements from physical models. The active state of earth pressure is defined as the earth pressure distribution corresponding to the values of wall displacement where the failure zone in the backfill is fully developed. The numerical results showed that the fully active state of earth pressure occurred at a wall displacement corresponding to the strains required for reaching the critical state in biaxial compressive tests.

  13. Microincision versus small-incision coaxial cataract surgery using different power modes for hard nuclear cataract.

    Science.gov (United States)

    Kim, Eun Chul; Byun, Yong Soo; Kim, Man Soo

    2011-10-01

    To compare the efficacy of microincision and small-incision coaxial phacoemulsification in treating hard cataracts using different ultrasound power modes. Department of Ophthalmology, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea. Randomized clinical trial. Eyes with hard cataract were randomized to have an initial incision of 1.80 mm, 2.20 mm, or 2.75 mm. The eyes in each group were equally randomized to treatment with burst, pulse, or continuous mode. Ultrasound time (UST), mean cumulative dissipated energy (CDE), corrected distance visual acuity (CDVA), surgically induced corneal astigmatism, incisional and central corneal thickness (CCT), and endothelial cell counts were evaluated. The study enrolled 180 eyes, 60 in each group. Two months postoperatively, there were no statistically significant differences in UST, CDE, CDVA, CCT, or percentage endothelial cell loss between the 3 incision groups. The 2.75 mm incision induced more astigmatism at 2 months and less incisional corneal edema at 1 week than the 1.80 mm or 2.20 mm incision (Phard cataract. The intraoperative energy use and ocular damage was less with the pulse and burst modes than with the continuous mode. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Development of a systematic methodology to select hazard analysis techniques for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Reis, Sergio Carneiro dos; Costa, Antonio Carlos Lopes da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: vasconv@cdtn.br; reissc@cdtn.br; aclc@cdtn.br; Jordao, Elizabete [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica]. E-mail: bete@feq.unicamp.br

    2008-07-01

    In order to comply with licensing requirements of regulatory bodies risk assessments of nuclear facilities should be carried out. In Brazil, such assessments are part of the Safety Analysis Reports, required by CNEN (Brazilian Nuclear Energy Commission), and of the Risk Analysis Studies, required by the competent environmental bodies. A risk assessment generally includes the identification of the hazards and accident sequences that can occur, as well as the estimation of the frequencies and effects of these unwanted events on the plant, people, and environment. The hazard identification and analysis are also particularly important when implementing an Integrated Safety, Health, and Environment Management System following ISO 14001, BS 8800 and OHSAS 18001 standards. Among the myriad of tools that help the process of hazard analysis can be highlighted: CCA (Cause- Consequence Analysis); CL (Checklist Analysis); ETA (Event Tree Analysis); FMEA (Failure Mode and Effects Analysis); FMECA (Failure Mode, Effects and Criticality Analysis); FTA (Fault Tree Analysis); HAZOP (Hazard and Operability Study); HRA (Human Reliability Analysis); Pareto Analysis; PHA (Preliminary Hazard Analysis); RR (Relative Ranking); SR (Safety Review); WI (What-If); and WI/CL (What-If/Checklist Analysis). The choice of a particular technique or a combination of techniques depends on many factors like motivation of the analysis, available data, complexity of the process being analyzed, expertise available on hazard analysis, and initial perception of the involved risks. This paper presents a systematic methodology to select the most suitable set of tools to conduct the hazard analysis, taking into account the mentioned involved factors. Considering that non-reactor nuclear facilities are, to a large extent, chemical processing plants, the developed approach can also be applied to analysis of chemical and petrochemical plants. The selected hazard analysis techniques can support cost

  15. Development of a systematic methodology to select hazard analysis techniques for nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Reis, Sergio Carneiro dos; Costa, Antonio Carlos Lopes da; Jordao, Elizabete

    2008-01-01

    In order to comply with licensing requirements of regulatory bodies risk assessments of nuclear facilities should be carried out. In Brazil, such assessments are part of the Safety Analysis Reports, required by CNEN (Brazilian Nuclear Energy Commission), and of the Risk Analysis Studies, required by the competent environmental bodies. A risk assessment generally includes the identification of the hazards and accident sequences that can occur, as well as the estimation of the frequencies and effects of these unwanted events on the plant, people, and environment. The hazard identification and analysis are also particularly important when implementing an Integrated Safety, Health, and Environment Management System following ISO 14001, BS 8800 and OHSAS 18001 standards. Among the myriad of tools that help the process of hazard analysis can be highlighted: CCA (Cause- Consequence Analysis); CL (Checklist Analysis); ETA (Event Tree Analysis); FMEA (Failure Mode and Effects Analysis); FMECA (Failure Mode, Effects and Criticality Analysis); FTA (Fault Tree Analysis); HAZOP (Hazard and Operability Study); HRA (Human Reliability Analysis); Pareto Analysis; PHA (Preliminary Hazard Analysis); RR (Relative Ranking); SR (Safety Review); WI (What-If); and WI/CL (What-If/Checklist Analysis). The choice of a particular technique or a combination of techniques depends on many factors like motivation of the analysis, available data, complexity of the process being analyzed, expertise available on hazard analysis, and initial perception of the involved risks. This paper presents a systematic methodology to select the most suitable set of tools to conduct the hazard analysis, taking into account the mentioned involved factors. Considering that non-reactor nuclear facilities are, to a large extent, chemical processing plants, the developed approach can also be applied to analysis of chemical and petrochemical plants. The selected hazard analysis techniques can support cost

  16. Techniques to extract physical modes in model-independent analysis of rings

    International Nuclear Information System (INIS)

    Wang, C.-X.

    2004-01-01

    A basic goal of Model-Independent Analysis is to extract the physical modes underlying the beam histories collected at a large number of beam position monitors so that beam dynamics and machine properties can be deduced independent of specific machine models. Here we discuss techniques to achieve this goal, especially the Principal Component Analysis and the Independent Component Analysis.

  17. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results.

    Science.gov (United States)

    Hahn, Seungsoo

    2016-10-28

    The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.

  18. A study on the nuclear foreign policy analysis

    International Nuclear Information System (INIS)

    Oh, Keun Bae; Choi, Y. M.; Lee, D. J.; Lee, K. S.; Lee, B. W.; Cho, I. H.; Ko, H. S.

    1996-12-01

    This study aims to analyses recent trends of international situation relating to nuclear non-proliferation and the adverse conditions in Korea's pursuing self-support of such technology, so that it may map out effective strategies for the promotion of nuclear energy. This study analyses developments of international nuclear non-proliferation regime, which plays a main role in preventing the international proliferation of nuclear weapons. This study includes NPT, IAEA safeguards system, international export control regimes, CTBT, and NWFZs as the subjects of analysis. Second theme is international organizations concerning nuclear activities. This study mainly analyses IAEA activities which pursues the promotion of peaceful use of nuclear energy and nuclear non-proliferation simultaneously as a pivotal body of international nuclear cooperation. Third focus of this study is Northeast Asian circumstances pertaining to nuclear non-proliferation. The study looks into the DPRK nuclear issues, and reviews the developments of the proposed regional body for nuclear cooperation and the discussion on the Northeast Asian NWFZ. Fourth, but the most influential to Korean nuclear activities, is the U. S. nuclear policy, since U. S. takes the overwhelming initiative in the field of international nuclear non-proliferation. Therefore, this study gives much weight in analyzing the structure, procedures, recent trend, and pending issues of U. S. nuclear policy. (author). 78 refs., 5 tabs., 4 figs

  19. Quantitative analysis by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wainai, T; Mashimo, K [Nihon Univ., Tokyo. Coll. of Science and Engineering

    1976-04-01

    Recent papers on the practical quantitative analysis by nuclear magnetic resonance spectroscopy (NMR) are reviewed. Specifically, the determination of moisture in liquid N/sub 2/O/sub 4/ as an oxidizing agent for rocket propulsion, the analysis of hydroperoxides, the quantitative analysis using a shift reagent, the analysis of aromatic sulfonates, and the determination of acids and bases are reviewed. Attention is paid to the accuracy. The sweeping velocity and RF level in addition to the other factors must be on the optimal condition to eliminate the errors, particularly when computation is made with a machine. Higher sweeping velocity is preferable in view of S/N ratio, but it may be limited to 30 Hz/s. The relative error in the measurement of area is generally 1%, but when those of dilute concentration and integrated, the error will become smaller by one digit. If impurities are treated carefully, the water content on N/sub 2/O/sub 4/ can be determined with accuracy of about 0.002%. The comparison method between peak heights is as accurate as that between areas, when the uniformity of magnetic field and T/sub 2/ are not questionable. In the case of chemical shift movable due to content, the substance can be determined by the position of the chemical shift. Oil and water contents in rape-seed, peanuts, and sunflower-seed are determined by measuring T/sub 1/ with 90 deg pulses.

  20. Analysis of nuclear power plant construction costs

    International Nuclear Information System (INIS)

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs

  1. Analysis of nuclear power plant construction costs

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  2. Discriminant analysis to predict the occurrence of ELMs in H-mode discharges

    International Nuclear Information System (INIS)

    Kardaun, O.J.W.F.; Itoh, S.; Itoh, K.; Kardaun, J.W.P.F.

    1993-08-01

    After an exposition of its theoretical background, discriminant analysis is applied to the H-mode confinement database to find the region in plasma parameter space in which H-mode with small ELMs (Edge Localized Modes) is likely to occur. The boundary of this region is determined by the condition that the probability of appearance of such a type of H-mode, as a function of the plasma parameters, should be (1) larger than some threshold value and (2) larger than the corresponding probability for other types of H-mode (i.e., H-mode without ELMs or with giant ELMs). In practice, the discrimination has been performed for the ASDEX, JET and JFT-2M tokamaks (a) using four instantaneous plasma parameters (injected power P inj , magnetic field B t , plasma current I p and line averaged electron density (n-bar e ) and (b) taking also memory effects of the plasma and the distance between the plasma and the wall into account, while using variables that are normalised with respect to machine size. Generally speaking, it is found that there is a substantial overlap between the region of H-mode with small ELMs and the region of the two other types of H-mode. However, the ELM-free and the giant ELM H-modes relatively rarely appear in the region, that, according to the analysis, is allocated to small ELMs. A reliable production of H-mode with only small ELMs seems well possible by choosing this regime in parameter space. In the present study, it was not attempted to arrive at a unified discrimination across the machines. So, projection from one machine to another remains difficult, and a reliable determination of the region where small ELMs occur still requires a training sample from the device under consideration. (author) 53 refs

  3. Failure mode effect analysis and fault tree analysis as a combined methodology in risk management

    Science.gov (United States)

    Wessiani, N. A.; Yoshio, F.

    2018-04-01

    There have been many studies reported the implementation of Failure Mode Effect Analysis (FMEA) and Fault Tree Analysis (FTA) as a method in risk management. However, most of the studies usually only choose one of these two methods in their risk management methodology. On the other side, combining these two methods will reduce the drawbacks of each methods when implemented separately. This paper aims to combine the methodology of FMEA and FTA in assessing risk. A case study in the metal company will illustrate how this methodology can be implemented. In the case study, this combined methodology will assess the internal risks that occur in the production process. Further, those internal risks should be mitigated based on their level of risks.

  4. Parity simulation for nuclear plant analysis

    International Nuclear Information System (INIS)

    Hansen, K.F.; Depiente, E.

    1986-01-01

    The analysis of the transient performance of nuclear plants is sufficiently complex that simulation tools are needed for design and safety studies. The simulation tools are needed for design and safety studies. The simulation tools are normally digital because of the speed, flexibility, generality, and repeatability of digital computers. However, communication with digital computers is an awkward matter, requiring special skill or training. The designer wishing to gain insight into system behavior must expend considerable effort in learning to use computer codes, or else have an intermediary communicate with the machine. There has been a recent development in analog simulation that simplifies the user interface with the simulator, while at the same time improving the performance of analog computers. This development is termed parity simulation and is now in routine use in analyzing power electronic network transients. The authors describe the concept of parity simulation and present some results of using the approach to simulate neutron kinetics problems

  5. Nuclear Fuel Cycle System Analysis (I)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong; Yoon, Ji Sup; Park, Seong Won

    2006-12-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle, and evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance and economics. The analysis shows that the GEN-IV Recycle appears to have an advantage in terms of sustainability, environment-friendliness and long-term proliferation-resistance, while it is expected to be more economically competitive, if uranium ore prices increase or costs of pyroprocessing and fuel fabrication decrease.

  6. Procurement strategic analysis of nuclear safety equipment

    International Nuclear Information System (INIS)

    Wu Caixia; Yang Haifeng; Li Xiaoyang; Li Shixin

    2013-01-01

    The nuclear power development plan in China puts forward a challenge on procurement of nuclear safety equipment. Based on the characteristics of the procurement of nuclear safety equipment, requirements are raised for procurement process, including further clarification of equipment technical specification, establishment and improvement of the expert database of the nuclear power industry, adoption of more reasonable evaluation method and establishment of a unified platform for nuclear power plants to procure nuclear safety equipment. This paper makes recommendation of procurement strategy for nuclear power production enterprises from following aspects, making a plan of procurement progress, dividing procurement packages rationally, establishing supplier database through qualification review and implementing classified management, promoting localization process of key equipment continually and further improving the system and mechanism of procurement of nuclear safety equipment. (authors)

  7. The standardization of data relational mode in the materials database for nuclear power engineering

    International Nuclear Information System (INIS)

    Wang Xinxuan

    1996-01-01

    A relational database needs standard data relation ships. The data relation ships include hierarchical structures and repeat set records. Code database is created and the relational database is created between spare parts and materials and properties of the materials. The data relation ships which are not standard are eliminated and all the relation modes are made to meet the demands of the 3NF (Third Norm Form)

  8. Simulation of a nuclear measurement system around a multi-task mode real-time monitor

    International Nuclear Information System (INIS)

    De Grandi, G.; Ouiguini, R.

    1983-01-01

    When debugging and testing material and software for the automation of systems, the non-availability of this last one states important logistic problems. A simulator of the system to be automatized, conceived around a multi-task mode real-time monitor, allowing the debugging of the software of automation without the physical presence of the system to be automatized, is proposed in the present report

  9. Safety analysis of Oi nuclear power plant

    International Nuclear Information System (INIS)

    1979-01-01

    The transient phenomena in Oi nuclear power plant were analyzed, especially on the water level fluctuation and the capability of natural circulation in the primary loop, under the assumptions that the feed water for steam generators is totally lost, and the relief valve on the pressurizer, which is actuated due to the pressure rise in the primary system, is stuck and kept open. These assumptions are related to the TMI accident. The analysing conditions are 1) the main feed water flow is totally lost suddenly during the rated power operation of the reactor, 2) two motor-driven auxiliary feed water pumps are started manually fifteen minutes after the accident initiation, 3) one relief valve on the pressurizer is opened fifteen seconds after the accident initiation and kept open, 4) the reactor is scrammed thirty three seconds after the accident initiation, 5) the turbine is tripped 33.5 seconds after the accident initiation, etc. Two cases were analysed, namely 3,800 seconds and 1,200 seconds after the accident initiation. The analytical code RELEP4/Mod5/U2/J1 was utilized for this analysis. The level fluctuation in the pressurizer after the accident initiation, the flow rate fluctuation through the pressurizer relief valve, especially that of steam, liquid single phase and two phase flows, the water level in the upper plenum in the pressure vessel, the change of flow rate at core inlet, the average pressure in the core, and the temperature fluctuation of coolant in the core, the variation of void fraction in the core, and the change of surface temperature of fuel rods are presented as the analysis results, and they are evaluated. It is recognized that the plant safety is kept under the assumed accident conditions in the Oi nuclear power plant. (Nakai, Y.)

  10. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  11. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  12. Analysis of india and Pakistan's nuclear capacity

    International Nuclear Information System (INIS)

    Li Zhimin

    1999-07-01

    The development and capacity of both India and Pakistan's nuclear weapons are described in production of weapon-grade materials, nuclear testing, weaponization engineering and delivery systems. India is capable of designing and manufacturing both small yield tactic nuclear weapons and big yield strategic ones and also possesses the technique to design and manufacture H-bombs. Weapon-grade plutonium constitutes the primary fission material for India's nuclear weapon and it has plutonium enough to make 70 to 100 nuclear weapons. India can also produce some tritium. India has already possessed delivery systems but it has not yet mounted nuclear warheads on its ballistic missiles even though its missiles, which India has already owned or is under development, have the ability to carry nuclear warheads. Pakistan also has the ability to make both tactic nuclear weapons and strategic ones. With its weapon-grade uranium, 20 to 30 nuclear weapons can be made. Besides the uranium production facility. Pakistan also has the facility to produce tritium. It is supposed that Pakistan has the ability to carry nuclear weapons with airplane, but it has a long way to go if it wants to mount nuclear weapon, especially bit yield ones, on its own missile. As a whole, India's nuclear force is stronger than Pakistan's, and its development far more advanced than Pakistan's

  13. Legal Analysis of EPC Contract of the Nuclear Reactor in the aspect of Nuclear Law

    International Nuclear Information System (INIS)

    Lee, D. S.; Chung, W. S.; Yun, S. W.; Yang, M. H.

    2010-01-01

    Recently, Korea Nuclear Industry and R and D Institute obtained order of Nuclear Reactor construction from the UAE and the Jordan. Though the UAE's nuclear power plant and the Jordan's Research Reactor were different each other legal issues raised in EPC contract between employer and contractor had very close characters and similar suggestions. New nuclear country have not established all necessary entities regarding regulation and control and enacted laws yet. However, nuclear technology shall be transferred to the country that is ready to or have equipped all mandatory safeguard and safety. From the reality, nuclear specific issues such as the Nuclear Indemnity, Ownership of Intellectual property, Training program for operating technicians, and nuclear licensing are emerging in the EPC contract and finding consensus to the issues between both parties were time consuming work. Our studies will analysis the issues and try to find impartial guideline

  14. Wavelet analysis of the nuclear phase space

    International Nuclear Information System (INIS)

    Jouault, B.; Sebille, F.; De La Mota, V.

    1997-01-01

    The description of complex systems requires to select and to compact the relevant information. The wavelet theory constitutes an appropriate framework for defining adapted representation bases obtained from a controlled hierarchy of approximations. The optimization of the wavelet analysis depend mainly on the chosen analysis method and wavelet family. Here the analysis of the harmonic oscillator wave function was carried out by considering a Spline bi-orthogonal wavelet base which satisfy the symmetry requirements and can be approximated by simple analytical functions. The goal of this study was to determine a selection criterion allowing to minimize the number of elements considered for an optimal description of the analysed functions. An essential point consists in utilization of the wavelet complementarity and of the scale functions in order to reproduce the oscillating and peripheral parts of the wave functions. The wavelet base representation allows defining a sequence of approximations of the density matrix. Thus, this wavelet representation of the density matrix offers an optimal base for describing both the static nuclear configurations and their time evolution. This information compacting procedure is performed in a controlled manner and preserves the structure of the system wave functions and consequently some of its quantum properties

  15. Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer.

    Science.gov (United States)

    Huang, Yihua; Huang, Wei

    2010-12-01

    We propose a circular flexural-vibration-mode piezoelectric transformer and perform a theoretical analysis of the transformer. An equivalent circuit is derived from the equations of piezoelectricity and the Hamilton's principle. With this equivalent circuit, the voltage gain ratio, input impedance, and the efficiency of the circular flexural-vibration-mode piezoelectric transformer can be determined. The basic behavior of the transformer is shown by numerical results.

  16. A Deep Learning Prediction Model Based on Extreme-Point Symmetric Mode Decomposition and Cluster Analysis

    OpenAIRE

    Li, Guohui; Zhang, Songling; Yang, Hong

    2017-01-01

    Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by ESMD to obtain the finite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy c-means is used to cluster the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed ...

  17. Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis

    Directory of Open Access Journals (Sweden)

    Kanehisa Minoru

    2006-04-01

    Full Text Available Abstract Background Elementary mode analysis of metabolic pathways has proven to be a valuable tool for assessing the properties and functions of biochemical systems. However, little comprehension of how individual elementary modes are used in real cellular states has been achieved so far. A quantitative measure of fluxes carried by individual elementary modes is of great help to identify dominant metabolic processes, and to understand how these processes are redistributed in biological cells in response to changes in environmental conditions, enzyme kinetics, or chemical concentrations. Results Selecting a valid decomposition of a flux distribution onto a set of elementary modes is not straightforward, since there is usually an infinite number of possible such decompositions. We first show that two recently introduced decompositions are very closely related and assign the same fluxes to reversible elementary modes. Then, we show how such decompositions can be used in combination with kinetic modelling to assess the effects of changes in enzyme kinetics on the usage of individual metabolic routes, and to analyse the range of attainable states in a metabolic system. This approach is illustrated by the example of yeast glycolysis. Our results indicate that only a small subset of the space of stoichiometrically feasible steady states is actually reached by the glycolysis system, even when large variation intervals are allowed for all kinetic parameters of the model. Among eight possible elementary modes, the standard glycolytic route remains dominant in all cases, and only one other elementary mode is able to gain significant flux values in steady state. Conclusion These results indicate that a combination of structural and kinetic modelling significantly constrains the range of possible behaviours of a metabolic system. All elementary modes are not equal contributors to physiological cellular states, and this approach may open a direction toward a

  18. Applicability of trends in nuclear safety analysis to space nuclear power systems

    International Nuclear Information System (INIS)

    Bari, R.A.

    1992-01-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication

  19. Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis

    Science.gov (United States)

    E, Jianwei; Bao, Yanling; Ye, Jimin

    2017-10-01

    As one of the most vital energy resources in the world, crude oil plays a significant role in international economic market. The fluctuation of crude oil price has attracted academic and commercial attention. There exist many methods in forecasting the trend of crude oil price. However, traditional models failed in predicting accurately. Based on this, a hybrid method will be proposed in this paper, which combines variational mode decomposition (VMD), independent component analysis (ICA) and autoregressive integrated moving average (ARIMA), called VMD-ICA-ARIMA. The purpose of this study is to analyze the influence factors of crude oil price and predict the future crude oil price. Major steps can be concluded as follows: Firstly, applying the VMD model on the original signal (crude oil price), the modes function can be decomposed adaptively. Secondly, independent components are separated by the ICA, and how the independent components affect the crude oil price is analyzed. Finally, forecasting the price of crude oil price by the ARIMA model, the forecasting trend demonstrates that crude oil price declines periodically. Comparing with benchmark ARIMA and EEMD-ICA-ARIMA, VMD-ICA-ARIMA can forecast the crude oil price more accurately.

  20. Probabilistic safety and risk assessments in the field of nuclear technology - Mode of operation, possibilities and limits

    International Nuclear Information System (INIS)

    Mertens, J.

    1993-01-01

    In this study probabilistic safety and risk assessments in the field of nuclear energy are explained. Mainly qualitative results and conclusions are presented. Explanations for often discussed aspects of such analysis reveal the procedure and reasonable limits of application. The mentioned literature contains detailed results. (orig./DG) [de

  1. Introduction to structural and mechanical failure modes for nuclear power facilities

    International Nuclear Information System (INIS)

    Reed, J.W.

    1991-01-01

    The three papers presented in this section discuss the types of information (i.e., dynamic tests, earthquake experience and analytical data) which are used in predicting the capacity of structures and equipment in nuclear power plants to resist earthquakes. The background and motivation for discussing these three types of information is presented in this paper as an introduction to the papers which follow in this section

  2. The Nuclear Scissors Mode by Two Approaches (Wigner Function Moments Versus RPA)

    CERN Document Server

    Balbutsev, E B

    2004-01-01

    Two complementary methods to describe the collective motion, RPA and Wigner Function Moments (WFM) method, are compared on an example of a simple model - harmonic oscillator with quadrupole-quadrupole residual interaction. It is shown that they give identical formulae for eigenfrequencies and transition probabilities of all collective excitations of the model including the scissors mode, which is a subject of our especial attention. The normalization factor of the "synthetic" scissors state and its overlap with physical states are calculated analytically. The orthogonality of the spurious state to all physical states is proved rigorously.

  3. Design automation of switching mode high voltage power supply for nuclear instruments

    International Nuclear Information System (INIS)

    El-araby, S.M.S.

    1999-01-01

    This paper presents an automation procedure for the design of switching mode high voltage power supplies, using Pc programming facility. The procedure permits the selection of a ready made or designed ferrite transformer. This selection could be achieved according to the designer desire; as the program includes complete information about ready made ferrite transformer through complete database. The procedure is based on suggested template circuit. Micro-Cap IV simulation package is used to verify the desired high voltage power supply design. Simulation results agree quite well with suggested procedure's results. Design aspects and development needed to increase automation capabilities are also discussed

  4. Analysis of renal nuclear medicine images

    International Nuclear Information System (INIS)

    Jose, R.M.J.

    2000-01-01

    Nuclear medicine imaging of the renal system involves producing time-sequential images showing the distribution of a radiopharmaceutical in the renal system. Producing numerical and graphical data from nuclear medicine studies requires defining regions of interest (ROIs) around various organs within the field of view, such as the left kidney, right kidney and bladder. Automating this process has several advantages: a saving of a clinician's time; enhanced objectivity and reproducibility. This thesis describes the design, implementation and assessment of an automatic ROI generation system. The performance of the system described in this work is assessed by comparing the results to those obtained using manual techniques. Since nuclear medicine images are inherently noisy, the sequence of images is reconstructed using the first few components of a principal components analysis in order to reduce the noise in the images. An image of the summed reconstructed sequence is then formed. This summed image is segmented by using an edge co-occurrence matrix as a feature space for simultaneously classifying regions and locating boundaries. Two methods for assigning the regions of a segmented image to organ class labels are assessed. The first method is based on using Dempster-Shafer theory to combine uncertain evidence from several sources into a single evidence; the second method makes use of a neural network classifier. The use of each technique in classifying the regions of a segmented image are assessed in separate experiments using 40 real patient-studies. A comparative assessment of the two techniques shows that the neural network produces more accurate region labels for the kidneys. The optimum neural system is determined experimentally. Results indicate that combining temporal and spatial information with a priori clinical knowledge produces reasonable ROIs. Consistency in the neural network assignment of regions is enhanced by taking account of the contextual

  5. Impact response analysis of cask for spent fuel by dimensional analysis and mode superposition method

    International Nuclear Information System (INIS)

    Kim, Y. J.; Kim, W. T.; Lee, Y. S.

    2006-01-01

    Full text: Full text: Due to the potentiality of accidents, the transportation safety of radioactive material has become extremely important in these days. The most important means of accomplishing the safety in transportation for radioactive material is the integrity of cask. The cask for spent fuel consists of a cask body and two impact limiters generally. The impact limiters are attached at the upper and the lower of the cask body. The cask comprises general requirements and test requirements for normal transport conditions and hypothetical accident conditions in accordance with IAEA regulations. Among the test requirements for hypothetical accident conditions, the 9 m drop test of dropping the cask from 9 m height to unyielding surface to get maximum damage becomes very important requirement because it can affect the structural soundness of the cask. So far the impact response analysis for 9 m drop test has been obtained by finite element method with complex computational procedure. In this study, the empirical equations of the impact forces for 9 m drop test are formulated by dimensional analysis. And then using the empirical equations the characteristics of material used for impact limiters are analysed. Also the dynamic impact response of the cask body is analysed using the mode superposition method and the analysis method is proposed. The results are also validated by comparing with previous experimental results and finite element analysis results. The present method is simpler than finite element method and can be used to predict the impact response of the cask

  6. Prevention is better: the case of the underutilized failure mode effect analysis in patient safety

    Directory of Open Access Journals (Sweden)

    Lewis Goodrum

    2017-02-01

    Full Text Available Abstract Prospective hazard analysis methodologies, like failure modes and effects analysis (FMEA, have been tried and tested in the engineering industry and are more recently gaining momentum in healthcare. Considering FMEA’s evidence based successes, this commentary makes the case that healthcare is underutilizing the methodology by relying on retrospective hazard analysis. Healthcare leaders should determine where prospective hazard analysis principles could be better built into care delivery planning and processes that will enhance patient safety.

  7. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    Science.gov (United States)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  8. Mode shape and natural frequency identification for seismic analysis from background vibration

    International Nuclear Information System (INIS)

    Bhan, S.; Wozniak, Z.

    1986-02-01

    The feasibility of calculating natural frequencies and mode shapes of major equipment in a CANDU reactor from the measurements of their response to background excitation has been studied. A review of vibration data measured at various locations in CANDU plants shows that structures responded to a combination of random and harmonic background excitation. Amplitude of measured vibration is sufficient to allow meaningful data analysis. Frequency content in the 0 to 50-Hz range, which is of interest for earthquake response, is present in some of the vibration measurements studied. Spectral techniques have been developed for determining the response function of structures from measured vibration response to background excitation. The natural frequencies and mode shapes are then evaluated graphically from the frequency function plots. The methodology has been tested on a simple cantilever beam with known natural frequencies and mode shapes. The comparison between the theoretical and the computed natural frequencies and mode shapes is good for the lower modes. However, better curve-fitting techniques will be required in future, especially for higher modes. Readily available equipment necessary for the measurement of background vibration in a CANDU plant (which is commercially available) has been identified. An experimental program has been proposed to verify the methodology developed in this study. Recommendations are also made to study methods to improve the accuracy of the mode shape and natural frequency prediction

  9. Uncertainty analysis of nuclear waste package corrosion

    International Nuclear Information System (INIS)

    Kurth, R.E.; Nicolosi, S.L.

    1986-01-01

    This paper describes the results of an evaluation of three uncertainty analysis methods for assessing the possible variability in calculating the corrosion process in a nuclear waste package. The purpose of the study is the determination of how each of three uncertainty analysis methods, Monte Carlo, Latin hypercube sampling (LHS) and a modified discrete probability distribution method, perform in such calculations. The purpose is not to examine the absolute magnitude of the numbers but rather to rank the performance of each of the uncertainty methods in assessing the model variability. In this context it was found that the Monte Carlo method provided the most accurate assessment but at a prohibitively high cost. The modified discrete probability method provided accuracy close to that of the Monte Carlo for a fraction of the cost. The LHS method was found to be too inaccurate for this calculation although it would be appropriate for use in a model which requires substantially more computer time than the one studied in this paper

  10. Transient analysis for Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Ramos Pablos, J.C. et.al.

    1991-01-01

    Relationship between transients analysis and safety of Laguna Verde nuclear power plant is described a general panorama of safety thermal limits of a nuclear station, as well as transients classification and events simulation codes are exposed. Activities of a group of transients analysis of electrical research institute are also mentioned (Author)

  11. HRA qualitative analysis in a nuclear power plant

    International Nuclear Information System (INIS)

    Dai Licao; Zhang Li; Huang Shudong

    2004-01-01

    Human reliability analysis (HRA) is a very important part of probability safety assessment (PSA) in a nuclear power plant. Qualitative analysis is the basis and starting point of HRA. The purpose, the principle, the method and the procedure of qualitative HRA are introduced. SGTR, a pressurized nuclear power plant as an example, is used to illustrate it. (authors)

  12. Holistic safety analysis for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Guimaraes, A.C.F.

    1992-01-01

    This paper reviews the basic methodology of safety analysis used in the ANGRA-I and ANGRA-II nuclear power plants, its weaknesses, the problems with public acceptance of the risks, the future of the nuclear energy in Brazil, as well as recommends a new methodology, HOLISTIC SAFETY ANALYSIS, to be used both in the design and licensing phases, for advanced reactors. (author)

  13. Analysis of tokamak plasma confinement modes using the fast Fourier transformation

    International Nuclear Information System (INIS)

    Mirmoeini, S.R.; Salar Elahi, A.; Ghoranneviss, M.

    2016-01-01

    The Fourier analysis is a satisfactory technique for detecting plasma confinement modes in tokamaks. The confinement mode of tokamak plasma was analysed using the fast Fourier transformation (FFT). For this purpose, we used the data of Mirnov coils that is one of the identifying tools in the IR-T1 tokamak, with and without external field (electric biasing), and then compared it with each other. After the Fourier analysis of Mirnov coil data, the diagram of power spectrum density was depicted in different angles of Mirnov coils in the 'presence of external field' as well as in the 'absence of external field'. The power spectrum density (PSD) interprets the manner of power distribution of a signal with frequency. In this article, the number of plasma modes and the safety factor q were obtained by using the mode number of q = m/n (m is the mode number). The maximum MHD activity was obtained in 30-35 kHz frequency, using the density of the energy spectrum. In addition, the number of different modes across 0-35 ms time was compared with each other in the presence and absence of the external field. (author)

  14. Evaluation of Safety in a Radiation Oncology Setting Using Failure Mode and Effects Analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Gaudette, Ray; Myers, Lee; Vanderver, Bruce; Engineer, Lilly; Zellars, Richard; Song, Danny Y.; Wong, John; DeWeese, Theodore L.

    2009-01-01

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool for prospectively evaluating safety and reliability. We report our experiences in applying FMEA in the setting of radiation oncology. Methods and Materials: We performed an FMEA analysis for our external beam radiation therapy service, which consisted of the following tasks: (1) create a visual map of the process, (2) identify possible failure modes; assign risk probability numbers (RPN) to each failure mode based on tabulated scores for the severity, frequency of occurrence, and detectability, each on a scale of 1 to 10; and (3) identify improvements that are both feasible and effective. The RPN scores can span a range of 1 to 1000, with higher scores indicating the relative importance of a given failure mode. Results: Our process map consisted of 269 different nodes. We identified 127 possible failure modes with RPN scores ranging from 2 to 160. Fifteen of the top-ranked failure modes were considered for process improvements, representing RPN scores of 75 and more. These specific improvement suggestions were incorporated into our practice with a review and implementation by each department team responsible for the process. Conclusions: The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error. The FMEA framework can naturally incorporate further quantification and monitoring. A general-use system for incident and near miss reporting would be useful in this regard.

  15. Dynamics Evolution Investigation of Mack Mode Instability in a Hypersonic Boundary Layer by Bicoherence Spectrum Analysis

    Science.gov (United States)

    Han, Jian; Jiang, Nan

    2012-07-01

    The instability of a hypersonic boundary layer on a cone is investigated by bicoherence spectrum analysis. The experiment is conducted at Mach number 6 in a hypersonic wind tunnel. The time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface along streamwise direction to investigate the development of the unstable disturbances. The bicoherence spectrum analysis based on wavelet transform is employed to investigate the nonlinear interactions of the instability of Mack modes in hypersonic laminar boundary layer transition. The results show that wavelet bicoherence is a powerful tool in studying the unstable mode nonlinear interaction of hypersonic laminar-turbulent transition. The first mode instability gives rise to frequency shifts to higher unstable modes at the early stage of hypersonic laminar-turbulent transition. The modulations subsequently lead to the second mode instability occurrence. The second mode instability governs the last stage of instability and final breakdown to turbulence with multi-scale disturbances growth.

  16. Dynamics Evolution Investigation of Mack Mode Instability in a Hypersonic Boundary Layer by Bicoherence Spectrum Analysis

    International Nuclear Information System (INIS)

    Han Jian; Jiang Nan

    2012-01-01

    The instability of a hypersonic boundary layer on a cone is investigated by bicoherence spectrum analysis. The experiment is conducted at Mach number 6 in a hypersonic wind tunnel. The time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface along streamwise direction to investigate the development of the unstable disturbances. The bicoherence spectrum analysis based on wavelet transform is employed to investigate the nonlinear interactions of the instability of Mack modes in hypersonic laminar boundary layer transition. The results show that wavelet bicoherence is a powerful tool in studying the unstable mode nonlinear interaction of hypersonic laminar-turbulent transition. The first mode instability gives rise to frequency shifts to higher unstable modes at the early stage of hypersonic laminar-turbulent transition. The modulations subsequently lead to the second mode instability occurrence. The second mode instability governs the last stage of instability and final breakdown to turbulence with multi-scale disturbances growth. (fundamental areas of phenomenology(including applications))

  17. System reliability analysis using dominant failure modes identified by selective searching technique

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Ok, Seung-Yong; Song, Junho; Koh, Hyun-Moo

    2013-01-01

    The failure of a redundant structural system is often described by innumerable system failure modes such as combinations or sequences of local failures. An efficient approach is proposed to identify dominant failure modes in the space of random variables, and then perform system reliability analysis to compute the system failure probability. To identify dominant failure modes in the decreasing order of their contributions to the system failure probability, a new simulation-based selective searching technique is developed using a genetic algorithm. The system failure probability is computed by a multi-scale matrix-based system reliability (MSR) method. Lower-scale MSR analyses evaluate the probabilities of the identified failure modes and their statistical dependence. A higher-scale MSR analysis evaluates the system failure probability based on the results of the lower-scale analyses. Three illustrative examples demonstrate the efficiency and accuracy of the approach through comparison with existing methods and Monte Carlo simulations. The results show that the proposed method skillfully identifies the dominant failure modes, including those neglected by existing approaches. The multi-scale MSR method accurately evaluates the system failure probability with statistical dependence fully considered. The decoupling between the failure mode identification and the system reliability evaluation allows for effective applications to larger structural systems

  18. Failure mode and effects analysis applied to the administration of liquid medication by oral syringes

    Directory of Open Access Journals (Sweden)

    Eva María Guerra-Alia

    2017-11-01

    Full Text Available To carry out a Failure Mode and Effects Analysis (FMEA to the use of oral syringes. Methods: A multidisciplinary team was assembled within the Safety Committee. The stages of oral administration process of liquid medication were analysed, identifying the most critical and establishing the potential modes of failure that can cause errors. The impact associated with each mode of failure was calculated using the Risk Priority Number (RPN. Preventive actions were proposed. Results: Five failure modes were identified, all classified as high risk (RPN> 100. Seven of the eight preventive actions were implemented. Conclusions: The FMEA methodology was a useful tool. It has allowed to know the risks, analyse the causes that cause them, their effects on patient safety and the measures to reduce them

  19. Reactors Dynamic analysis Due to Reactivity of The RSG-Gas at One Line Cooling Mode

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji

    2003-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor power has been determined and steady state and LOFA transient analysis have also been done. To complete those analyses, the reactivity analysis was done by means of a core dynamic and thermal hydraulic code, PARET-ANL. Accident simulation was done. by a ramp reactivity accident due to control rod withdrawal. Reactivity analysis was carried out at two power range i.e. low and high power level, by imposing one line mode reactor protection limits. The results show that technically, the RSG-Gas can be operated safely using one line mode

  20. Radiochemistry and nuclear methods of analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Vance, D.E.

    1993-01-01

    In comparison with other aspects of physical science, nuclear and radiochemistry are small contributors to the overall scheme of things. Nuclear science is, however, an important player in various aspects of medicine, life sciences, industrial technology, physical sciences, archeometry and art, and theoretical/computational sciences. This new book fills the need for a contemporary text with a good mix of simple introductory theory, experimental methodology, and instrumentation for beginning students of nuclear science

  1. Analysis of a large-break LOCA at lower operational modes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.Y.; Jun, H.Y.; Lee, K. [Korea Electric Power Corporation, Taejon (Korea)

    2000-10-01

    To improve Technical Specifications and Emergency Operating Guidelines (EOGs) applicable at lower operational modes it is required to perform the safety analysis reflecting the operational characteristics in those modes. Because the component availability and system configurations at lower modes are different from those of power mode, the plant safety at lower modes should be confirmed through independent analyses. In the present study, a large-break loss-of-coolant accident is analyzed to evaluate the containment pressure and temperature control function for the preparation of EOGs applicable at lower modes. To reach the required shutdown condition, the plant cool-down is controlled by the secondary steam flow and auxiliary feedwater. The mass and energy releases from primary system are obtained from RELAP5/MOD3.1 calculation and the containment pressure and temperature are evaluated with CONTEMPT-LT code. The reference plant is Korean Next Generation Reactor having 4,000 MW thermal power. Two cases of cold leg LOCA initiated at Mode 3 with and without SIT operation are calculated. At the given plant conditions, all safety injection pumps are still available. The calculation at the condition of maximum mass and energy release shows that the containment pressure and temperature can be controlled within acceptable criteria, which means the operations of 2 or 4 fan coolers are the possible success paths to achieve the containment P/T control safety function. The peak cladding temperature with minimum safety injection flow does not show remarkable excursion, which implies the lower mode LOCA at Mode 3 can be bounded by the results obtained at full power from the viewpoint of ECCS performance. (author)

  2. WE-G-BRA-08: Failure Modes and Effects Analysis (FMEA) for Gamma Knife Radiosurgery

    International Nuclear Information System (INIS)

    Xu, Y; Bhatnagar, J; Bednarz, G; Flickinger, J; Arai, Y; Huq, M Saiful; Vacsulka, J; Monaco, E; Niranjan, A; Lunsford, L Dade; Feng, W

    2015-01-01

    Purpose: To perform a failure modes and effects analysis (FMEA) study for Gamma Knife (GK) radiosurgery processes at our institution based on our experience with the treatment of more than 13,000 patients. Methods: A team consisting of medical physicists, nurses, radiation oncologists, neurosurgeons at the University of Pittsburgh Medical Center and an external physicist expert was formed for the FMEA study. A process tree and a failure mode table were created for the GK procedures using the Leksell GK Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection (D) for failure modes were assigned to each failure mode by each professional on a scale from 1 to 10. The risk priority number (RPN) for each failure mode was then calculated (RPN = OxSxD) as the average scores from all data sets collected. Results: The established process tree for GK radiosurgery consists of 10 sub-processes and 53 steps, including a sub-process for frame placement and 11 steps that are directly related to the frame-based nature of the GK radiosurgery. Out of the 86 failure modes identified, 40 failure modes are GK specific, caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the GK helmets and plugs, and the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, overlooked target areas, inaccurate previous treatment information and excessive patient movement during MRI scan. Conclusion: The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential

  3. Ship operation and failure mode analysis using a maneuver simulator

    Science.gov (United States)

    Cabrerizo-Morales, Miguel Angel; Molina, Rafael; de los Santos, Francisco; Camarero, Alberto

    2013-04-01

    In a ship or floating structure operation the agents that contribute to the systems behaviour are not only those derived from fluid-structure interaction, but also the ones linked to mooring-control line set-up evolution and human interaction. Therefore, the analysis of such systems is affected by boundary conditions that change during a complete operation. Frequently, monitoring techniques in laboratory (model) and field (prototype) are based in different instrumental techniques adding difficulty to data comparison and, in some cases, inducing precision and repeatability errors. For this reason, the main aim of this study is to develop the methods and tools to achieve a deep knowledge of those floating systems and obtain capabilities to optimize their operationally thresholds. This abstract presents a methodology and an instrumental system applicable both in field and laboratory: SRECMOCOS Project (Small scale REal-time Caisson MOnitoring and COntrol System). SRECMOCOS compiles three modules. For the monitoring and control of the structure it has been developed a synchronized open and modular microcontroller-based electronic system that comprises sensors, to monitor agents and reactions, and actuators to perform pertinent actions after processing the sensors' data. A secondary objective has been to design and implement a global scaled simulator (1:22), at the 3D basin of The Harbour Research Lab at Technical University of Madrid, in which climatic agents and those derived from the rig/maneuvering setup and the structural design were included. The particular case of Campamento's drydock, in Algeciras Bay (Spain), has been used to apply and validate the methodology. SRECMOCOS Project conjugates control, monitoring and wireless communication systems in a real time basis, offering the possibility to register and simulate all the parameters involved in port operations. This approach offers a step forward into a monitoring strategy to be included in monitoring

  4. Nuclear power company activity based costing management analysis

    International Nuclear Information System (INIS)

    Xu Dan

    2012-01-01

    With Nuclear Energy Industry development, Nuclear Power Company has the continual promoting stress of inner management to the sustainable marketing operation development. In view of this, it is very imminence that Nuclear Power Company should promote the cost management levels and built the nuclear safety based lower cost competitive advantage. Activity based costing management (ABCM) transfer the cost management emphases from the 'product' to the 'activity' using the value chain analysis methods, cost driver analysis methods and so on. According to the analysis of the detail activities and the value chains, cancel the unnecessary activity, low down the resource consuming of the necessary activity, and manage the cost from the source, achieve the purpose of reducing cost, boosting efficiency and realizing the management value. It gets the conclusion from the detail analysis with the nuclear power company procedure and activity, and also with the selection to 'pieces analysis' of the important cost related project in the nuclear power company. The conclusion is that the activities of the nuclear power company has the obviously performance. It can use the management of ABC method. And with the management of the procedure and activity, it is helpful to realize the nuclear safety based low cost competitive advantage in the nuclear power company. (author)

  5. Experimental Observation of Nuclear Reactions in Palladium and Uranium - Possible Explanation by Hydrex Mode

    International Nuclear Information System (INIS)

    Dufour, J.; Murat, D.; Dufour, X.; Foos, J.

    2001-01-01

    Experiments with uranium are presented that show a highly exothermal reaction, which can only be of nuclear origin. One striking point of these results is that they clearly show that what is being observed is not some kind of fusion reaction of the deuterium present (only exceedingly small amounts of it are present). This is a strong indication that hydrogen can trigger nuclear reactions that seem to involve the nuclei of the lattice (which would yield a fission-like pattern of products). Confronted with a situation where some experiments in the field yield a fusion-like pattern of products (CF experiments) and others a fissionlike one (LENR experiments), one can reasonably wonder whether one is not observing two aspects of the same phenomenon. Thus, it is proposed to describe CF and LENR reactions as essentially the same phenomenon based on the possible existence of a still hypothetical proton/electron resonance, which would catalyze fissionlike reactions with a neutron sink. Finally, a series of experiments is proposed to assess this hypothesis

  6. Study of vibration analysis for nuclear reactor building

    International Nuclear Information System (INIS)

    Hirashima, Shin-ichi

    1978-01-01

    The mutual interference between the contiguous buildings with separate foundations and also that between the outer wall under the ground and the foundation bottom of the building were taken into consideration for the vibration analysis with spring-mass system. For two contiguous foundations of buildings it was attempted to represent the static mutual interference by a spring-mass system model. The theoretical analysis formulas are shown for the combination of the vertical movement and rocking motion, and for the interfering forces between the foundation and the outer wall of a building. The method of extending the model to dynamic one is explained. Several spring constants utilized in the analysis were obtained, for example, for mutual interference springs regarding vertical motion, mutual interfering springs for the foundation and the outer wall of a building and the mutual interference springs concerning horizontal movement. These models and analysis were applied to the BWR-MARK II-1100 MW nuclear reactor building and the contiguous turbine building. The structures and level relations of two buildings are shown, and the spring-mass system model for these buildings is expressed. The masses of about 20, the weights, the rotating inertia, the sectional moment of inertia, the spring constant and the damping coefficient for each mass are tabulated. As the results, the peak displacements occur at 2.556 Hz, 6.918 Hz, 10.43 Hz and 13.85 Hz. The damping coefficient is large and about 10 - 30% at the lower order modes. The calculated and the measured vibration characteristics for the BWR plant buildings are not much different, and this spring-mass system model is verified to be adequate. (Nakai, Y.)

  7. Functional analysis for complex systems of nuclear fusion plant

    International Nuclear Information System (INIS)

    Pinna, Tonio; Dongiovanni, Danilo Nicola; Iannone, Francesco

    2016-01-01

    Highlights: • Functional analysis for complex systems. • Functional Flow Block Diagrams (FFBD). • IDEFØ diagrams. • Petri Net algorithm - Abstract: In system engineering context, a functional analysis is the systematic process of identifying, describing and correlating the functions a system must perform in order to be successful at any foreseen life-cycle phase or operational state/mode. By focusing on what the system must do disregarding the implementation, the functional analysis supports an unbiased system requirement allocation analysis. The system function architecture is defined in terms of process, protection (interlock) or nuclear safety functions. Then, the system functions are analyzed from several points of view in order to highlight the various pieces of information defining the way the system is designed to accomplish its mission as defined in the system requirement documents. The process functional flow is identified and represented by Functional Flow Block Diagrams (FFBD) while the system function interfaces are identified and represented by IDEFØ diagrams. Function interfaces are defined as relationships across identified functions in terms of function input (from other functions or requirements), output (added value or outcome of the function), controls (from other functions or systems) and mechanisms necessary to fulfill the function. The function architecture is further detailed by considering for each function: a) the phase of application, b) the actions performed c) the controlled variable and control actions to be foreseen in the implementation of the functions, d) the system involved in the control action, e) the equipment involved in the function, f) the requirements allocated to the function. The methodology here presented are suggested for the designing of fusion facilities and reactors already from the first phases of the pre-conceptual design, as it is now for DEMO.

  8. Reliability of sprinkler systems. Exploration and analysis of data from nuclear and non-nuclear installations

    International Nuclear Information System (INIS)

    Roenty, V.; Keski-Rahkonen, O.; Hassinen, J.P.

    2004-12-01

    Sprinkler systems are an important part of fire safety of nuclear installations. As a part of effort to make fire-PSA of our utilities more quantitative a literature survey from open sources worldwide of available reliability data on sprinkler systems was carried out. Since the result of the survey was rather poor quantitatively, it was decided to mine available original Finnish nuclear and non-nuclear data, since nuclear power plants present a rather small device population. Sprinklers are becoming a key element for the fire safety in modern, open non-nuclear buildings. Therefore, the study included both nuclear power plants and non-nuclear buildings protected by sprinkler installations. Data needed for estimating of reliability of sprinkler systems were collected from available sources in Finnish nuclear and non-nuclear installations. Population sizes on sprinkler system installations and components therein as well as covered floor areas were counted individually from Finnish nuclear power plants. From non-nuclear installations corresponding data were estimated by counting relevant things from drawings of 102 buildings, and plotting from that sample needed probability distributions. The total populations of sprinkler systems and components were compiled based on available direct data and these distributions. From nuclear power plants electronic maintenance reports were obtained, observed failures and other reliability relevant data were selected, classified according to failure severity, and stored on spreadsheets for further analysis. A short summary of failures was made, which was hampered by a small sample size. From non-nuclear buildings inspection statistics from years 1985.1997 were surveyed, and observed failures were classified and stored on spreadsheets. Finally, a reliability model is proposed based on earlier formal work, and failure frequencies obtained by preliminary data analysis of this work. For a model utilising available information in the non-nuclear

  9. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry; Kasimov, Aslan R.

    2018-01-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  10. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry I.

    2017-12-08

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  11. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry

    2018-03-20

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  12. An integrated approach to the probabilistic assessments of aircraft strikes and structural mode of damages to nuclear power plants

    International Nuclear Information System (INIS)

    Godbout, P.; Brais, A.

    1975-01-01

    The possibilities of an aircraft striking a Canadian nuclear power plant in the vicinity of an airport and of inducing structural failure modes have been evaluated. This evaluation, together with other studies, may enhance decisions in the development of general criteria for the siting of reactors near airports. The study made use, for assessment, of the probabilistic approach and made judicious applications of the finite Canadian, French, German, American and English resources that were available. The tools, techniques and methods used for achieving the above, form what may be called an integrated approach. This method of approach requires that the study be made in six consecutive steps as follows: the qualitative evaluation of having an aircraft strike on a site situated near an airport with the use of the logic model technique; the statistical data gathering on aircraft movements and accidents; evaluating the probability distribution and calculating the basic event probabilities; evaluating the probability of an aircraft strike and the application of the sensitivity approach; generating the probability density distribution versus strike impact energy, that is, the evaluation of the energy envelope; and the probabilistic evaluation of structural failure mode inducements

  13. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: External lock operation in an external current mode for a 500 MHz nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Takahashi, Masato; Maeda, Hideaki; Ebisawa, Yusuke; Tennmei, Konosuke; Yanagisawa, Yoshinori; Nakagome, Hideki; Hosono, Masami; Takasugi, Kenji; Hase, Takashi; Miyazaki, Takayoshi; Fujito, Teruaki; Kiyoshi, Tsukasa; Yamazaki, Toshio

    2012-01-01

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb 3 Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a 7 Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

  14. Cyberattack analysis through Malaysian Nuclear Agency experience as nuclear research center

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Fauzi Haris; Saaidi Ismail; Nurbahyah Hamdan

    2011-01-01

    As a nuclear research center, Nuclear Malaysia is one of the Critical National Information Infrastructure (CNII) in the country. One of the easiest way to launch a malicious attack is through the online system, whether main web site or online services. Recently, we also under port scanning and hack attempts from various sources. This paper will discuss on analysis based on Nuclear Malaysia experience regarding these attempts which keep arising nowadays. (author)

  15. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  16. SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment

    International Nuclear Information System (INIS)

    Harry, T; Manger, R; Cervino, L; Pawlicki, T

    2016-01-01

    Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this work was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.

  17. WE-H-BRC-02: Failure Mode and Effect Analysis of Liver Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Rusu, I; Thomas, T; Roeske, J; Price, J; Perino, C; Surucu, M; Mescioglu, I

    2016-01-01

    Purpose: To identify areas of improvement in our liver stereotactic body radiation therapy (SBRT) program, using failure mode and effect analysis (FMEA). Methods: A multidisciplinary group consisting of one physician, three physicists, one dosimetrist and two therapists was formed. A process map covering 10 major stages of the liver SBRT program from the initial diagnosis to post treatment follow-up was generated. A total of 102 failure modes, together with their causes and effects, were identified. The occurrence (O), severity (S) and lack of detectability (D) were independently scored. The ranking was done using the risk probability number (RPN) defined as the product of average O, S and D numbers for each mode. The scores were normalized to remove inter-observer variability, while preserving individual ranking order. Further, a correlation analysis on the overall agreement on rank order of all failure modes resulted in positive values for successive pairs of evaluators. The failure modes with the highest RPN value were considered for further investigation. Results: The average normalized RPN values for all modes were 39 with a range of 9 to 103. The FMEA analysis resulted in the identification of the top 10 critical failures modes as: Incorrect CT-MR registration, MR scan not performed in treatment position, patient movement between CBCT acquisition and treatment, daily IGRT QA not verified, incorrect or incomplete ITV delineation, OAR contours not verified, inaccurate normal liver effective dose (Veff) calculation, failure of bolus tracking for 4D CT scan, setup instructions not followed for treatment and plan evaluation metrics missed. Conclusion: The application of FMEA to our liver SBRT program led to the identification and possible improvement of areas affecting patient safety.

  18. WE-H-BRC-02: Failure Mode and Effect Analysis of Liver Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, I; Thomas, T; Roeske, J; Price, J; Perino, C; Surucu, M [Loyola University Chicago, Maywood, IL (United States); Mescioglu, I [Lewis University, Romeoville, IL (United States)

    2016-06-15

    Purpose: To identify areas of improvement in our liver stereotactic body radiation therapy (SBRT) program, using failure mode and effect analysis (FMEA). Methods: A multidisciplinary group consisting of one physician, three physicists, one dosimetrist and two therapists was formed. A process map covering 10 major stages of the liver SBRT program from the initial diagnosis to post treatment follow-up was generated. A total of 102 failure modes, together with their causes and effects, were identified. The occurrence (O), severity (S) and lack of detectability (D) were independently scored. The ranking was done using the risk probability number (RPN) defined as the product of average O, S and D numbers for each mode. The scores were normalized to remove inter-observer variability, while preserving individual ranking order. Further, a correlation analysis on the overall agreement on rank order of all failure modes resulted in positive values for successive pairs of evaluators. The failure modes with the highest RPN value were considered for further investigation. Results: The average normalized RPN values for all modes were 39 with a range of 9 to 103. The FMEA analysis resulted in the identification of the top 10 critical failures modes as: Incorrect CT-MR registration, MR scan not performed in treatment position, patient movement between CBCT acquisition and treatment, daily IGRT QA not verified, incorrect or incomplete ITV delineation, OAR contours not verified, inaccurate normal liver effective dose (Veff) calculation, failure of bolus tracking for 4D CT scan, setup instructions not followed for treatment and plan evaluation metrics missed. Conclusion: The application of FMEA to our liver SBRT program led to the identification and possible improvement of areas affecting patient safety.

  19. SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Harry, T [Oregon State University, Corvallis, OR (United States); University of California, San Diego, La Jolla, CA (United States); Manger, R; Cervino, L; Pawlicki, T [University of California, San Diego, La Jolla, CA (United States)

    2016-06-15

    Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this work was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.

  20. Modal analysis of inter-area oscillations using the theory of normal modes

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, R.J. [School of Electromechanical Engineering, University of Colima, Manzanillo, Col. 28860 (Mexico); Barocio, E. [CUCEI, University of Guadalajara, Guadalajara, Jal. 44480 (Mexico); Messina, A.R. [Graduate Program in Electrical Engineering, Cinvestav, Guadalajara, Jal. 45015 (Mexico); Martinez, I. [State Autonomous University of Mexico, Toluca, Edo. Mex. 50110 (Mexico)

    2009-04-15

    Based on the notion of normal modes in mechanical systems, a method is proposed for the analysis and characterization of oscillatory processes in power systems. The method is based on the property of invariance of modal subspaces and can be used to represent complex power system modal behavior by a set of decoupled, two-degree-of-freedom nonlinear oscillator equations. Using techniques from nonlinear mechanics, a new approach is outlined, for determining the normal modes (NMs) of motion of a general n-degree-of-freedom nonlinear system. Equations relating the normal modes and the physical velocities and displacements are developed from the linearized system model and numerical issues associated with the application of the technique are discussed. In addition to qualitative insight, this method can be utilized in the study of nonlinear behavior and bifurcation analyses. The application of these procedures is illustrated on a planning model of the Mexican interconnected system using a quadratic nonlinear model. Specifically, the use of normal mode analysis as a basis for identifying modal parameters, including natural frequencies and damping ratios of general, linear systems with n degrees of freedom is discussed. Comparisons to conventional linear analysis techniques demonstrate the ability of the proposed technique to extract the different oscillation modes embedded in the oscillation. (author)

  1. A new approach for crude oil price analysis based on empirical mode decomposition

    International Nuclear Information System (INIS)

    Zhang, Xun; Wang, Shou-Yang; Lai, K.K.

    2008-01-01

    The importance of understanding the underlying characteristics of international crude oil price movements attracts much attention from academic researchers and business practitioners. Due to the intrinsic complexity of the oil market, however, most of them fail to produce consistently good results. Empirical Mode Decomposition (EMD), recently proposed by Huang et al., appears to be a novel data analysis method for nonlinear and non-stationary time series. By decomposing a time series into a small number of independent and concretely implicational intrinsic modes based on scale separation, EMD explains the generation of time series data from a novel perspective. Ensemble EMD (EEMD) is a substantial improvement of EMD which can better separate the scales naturally by adding white noise series to the original time series and then treating the ensemble averages as the true intrinsic modes. In this paper, we extend EEMD to crude oil price analysis. First, three crude oil price series with different time ranges and frequencies are decomposed into several independent intrinsic modes, from high to low frequency. Second, the intrinsic modes are composed into a fluctuating process, a slowly varying part and a trend based on fine-to-coarse reconstruction. The economic meanings of the three components are identified as short term fluctuations caused by normal supply-demand disequilibrium or some other market activities, the effect of a shock of a significant event, and a long term trend. Finally, the EEMD is shown to be a vital technique for crude oil price analysis. (author)

  2. Evaluation and analysis of nuclear resonance data

    International Nuclear Information System (INIS)

    Frohner, F.H.

    2000-01-01

    A probabilistic foundations of data evaluation are reviewed, with special emphasis on parameter estimation based on Bayes' theorem and a quadratic loss function, and on modern methods for the assignment of prior probabilities. The data reduction process leading from raw experimental data to evaluated computer files of nuclear reaction cross sections is outlined, with a discussion of systematic and statistical errors and their propagation and of the generalized least squares formalism including prior information and nonlinear theoretical models. It is explained how common errors induce correlations between data, what consequences they have for uncertainty propagation and sensitivity studies, and how evaluators can construct covariance matrices from the usual error information provided by experimentalists. New techniques for evaluation of inconsistent data are also presented. The general principles are then applied specifically to the analysis and evaluation of neutron resonance data in terms of theoretical models - R-matrix theory (and especially its practically used multi-level Breit-Wigner and Reich-Moore variants) in the resolved region, and resonance-averaged R-matrix theory (Hauser-Feshbach theory with width-fluctuation corrections) in the unresolved region. Complications arise because the measured transmission data, capture and fission yields, self-indication ratios and other observables are not yet the wanted cross sections. These are obtained only by means of parametrisation. The intervening effects - Doppler and resolution broadening, self-shielding, multiple scattering, backgrounds, sample impurities, energy-dependent detector efficiencies, inaccurate reference data etc - are therefore also discussed. (author)

  3. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  4. NRSAS: Nuclear Receptor Structure Analysis Servers.

    NARCIS (Netherlands)

    Bettler, E.J.M.; Krause, R.; Horn, F.; Vriend, G.

    2003-01-01

    We present a coherent series of servers that can perform a large number of structure analyses on nuclear hormone receptors. These servers are part of the NucleaRDB project, which provides a powerful information system for nuclear hormone receptors. The computations performed by the servers include

  5. The common mode failures analysis of the redundent system with dependent human error

    International Nuclear Information System (INIS)

    Kim, M.K.; Chang, S.H.

    1983-01-01

    Common mode failures (CMFs) have been a serious concern in the nuclear power plant. Thereis a broad category of the failure mechanisms that can cause common mode failures. This paper is a theoretical investigation of the CMFs on the unavailability of the redundent system. It is assumed that the total CMFs consist of the potential CMFs and the dependent human error CMFs. As the human error dependency is higher, the total CMFs are more effected by the dependent human error. If the human error dependence is lower, the system unavailability strongly depends on the potential CMFs, rather than the mechanical failure or the dependent human error. And it is shown that the total CMFs are dominant factor to the unavailability of the redundent system. (Author)

  6. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  7. 10th Australian conference on nuclear techniques of analysis. Proceedings

    International Nuclear Information System (INIS)

    1998-01-01

    These proceedings contains abstracts and extended abstracts of 80 lectures and posters presented at the 10th Australian conference on nuclear techniques of analysis hosted by the Australian National University in Canberra, Australia from 24-26 of November 1997. The conference was divided into sessions on the following topics : ion beam analysis and its applications; surface science; novel nuclear techniques of analysis, characterization of thin films, electronic and optoelectronic material formed by ion implantation, nanometre science and technology, plasma science and technology. A special session was dedicated to new nuclear techniques of analysis, future trends and developments. Separate abstracts were prepared for the individual presentation included in this volume

  8. 10th Australian conference on nuclear techniques of analysis. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    These proceedings contains abstracts and extended abstracts of 80 lectures and posters presented at the 10th Australian conference on nuclear techniques of analysis hosted by the Australian National University in Canberra, Australia from 24-26 of November 1997. The conference was divided into sessions on the following topics : ion beam analysis and its applications; surface science; novel nuclear techniques of analysis, characterization of thin films, electronic and optoelectronic material formed by ion implantation, nanometre science and technology, plasma science and technology. A special session was dedicated to new nuclear techniques of analysis, future trends and developments. Separate abstracts were prepared for the individual presentation included in this volume.

  9. Influence of the nuclear matter equation of state on the r-mode instability using the finite-range simple effective interaction

    Science.gov (United States)

    Pattnaik, S. P.; Routray, T. R.; Viñas, X.; Basu, D. N.; Centelles, M.; Madhuri, K.; Behera, B.

    2018-05-01

    The characteristic physical properties of rotating neutron stars under the r-mode oscillation are evaluated using the finite-range simple effective interaction. Emphasis is given on examining the influence of the stiffness of both the symmetric and asymmetric parts of the nuclear equation of state on these properties. The amplitude of the r-mode at saturation is calculated using the data of particular neutron stars from the considerations of ‘spin equilibrium’ and ‘thermal equilibrium’. The upper limit of the r-mode saturation amplitude is found to lie in the range 10‑8–10‑6, in agreement with the predictions of earlier work.

  10. Cost benefit analysis of recycling nuclear fuel cycle in Korea

    International Nuclear Information System (INIS)

    Lee, Jewhan; Chang, Soonheung

    2012-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. The importance if nuclear waste management has been the main issue since the beginning of nuclear history. The recycling nuclear fuel cycle includes the fast reactor, which can burn the nuclear wastes, and the pyro-processing technology, which can reprocess the spent nuclear fuel. In this study, a methodology using Linear Programming (LP) is employed to evaluate the cost and benefits of introducing the recycling strategy and thus, to see the competitiveness of recycling fuel cycle. The LP optimization involves tradeoffs between the fast reactor capital cost with pyro-processing cost premiums and the total system uranium price with spent nuclear fuel management cost premiums. With the help of LP and sensitivity analysis, the effect of important parameters is presented as well as the target values for each cost and price of key factors

  11. Three-dimensional analysis of relationship between relative orientation and motion modes

    Directory of Open Access Journals (Sweden)

    Fan Shijie

    2014-12-01

    Full Text Available Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.

  12. Complete mode-set stability analysis of magnetically insulated ion diode equilibria

    International Nuclear Information System (INIS)

    Slutz, S.A.; Lemke, R.W.

    1993-01-01

    We present the first analysis of the stability of magnetically insulated ion diodes that is fully relativistic and includes electromagnetic perturbations both parallel and perpendicular to the applied magnetic field. Applying this formalism to a simple diode equilibrium model that neglects velocity shear and density gradients, we find a fast growing mode that has all of the important attributes of the low frequency mode observed in numerical simulations of magnetically insulated ion diodes, which may be a major cause of ion divergence. We identify this mode as a modified two-stream instability. Previous stability analyses indicate a variety of unstable modes, but none of these exhibit the same behavior as the low frequency mode observed in the simulations. In addition, we analyze a realistic diode equilibrium model that includes velocity shear and an electron density profile consistent with that observed in the numerical simulations. We find that the diocotron instability is reduced, but not fully quenched by the extension of the electron sheath to the anode. However, the inclusion of perturbations parallel to the applied magnetic field with a wavelength smaller than the diode height does eliminate growth of this instability. This may explain why the diocotron mode has been observed experimentally with proton sources, but not with LiF, since the turn on of LiF is not uniform

  13. Pressure fluctuation analysis for charging pump of chemical and volume control system of nuclear power plant

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2016-01-01

    Full Text Available Equipment Failure Root Cause Analysis (ERCA methodology is employed in this paper to investigate the root cause for charging pump’s pressure fluctuation of chemical and volume control system (RCV in pressurized water reactor (PWR nuclear power plant. RCA project task group has been set up at the beginning of the analysis process. The possible failure modes are listed according to the characteristics of charging pump’s actual pressure fluctuation and maintenance experience during the analysis process. And the failure modes are analysed in proper sequence by the evidence-collecting. It suggests that the gradually untightened and loosed shaft nut in service should be the root cause. And corresponding corrective actions are put forward in details.

  14. A Nuclear Waste Management Cost Model for Policy Analysis

    Science.gov (United States)

    Barron, R. W.; Hill, M. C.

    2017-12-01

    Although integrated assessments of climate change policy have frequently identified nuclear energy as a promising alternative to fossil fuels, these studies have often treated nuclear waste disposal very simply. Simple assumptions about nuclear waste are problematic because they may not be adequate to capture relevant costs and uncertainties, which could result in suboptimal policy choices. Modeling nuclear waste management costs is a cross-disciplinary, multi-scale problem that involves economic, geologic and environmental processes that operate at vastly different temporal scales. Similarly, the climate-related costs and benefits of nuclear energy are dependent on environmental sensitivity to CO2 emissions and radiation, nuclear energy's ability to offset carbon emissions, and the risk of nuclear accidents, factors which are all deeply uncertain. Alternative value systems further complicate the problem by suggesting different approaches to valuing intergenerational impacts. Effective policy assessment of nuclear energy requires an integrated approach to modeling nuclear waste management that (1) bridges disciplinary and temporal gaps, (2) supports an iterative, adaptive process that responds to evolving understandings of uncertainties, and (3) supports a broad range of value systems. This work develops the Nuclear Waste Management Cost Model (NWMCM). NWMCM provides a flexible framework for evaluating the cost of nuclear waste management across a range of technology pathways and value systems. We illustrate how NWMCM can support policy analysis by estimating how different nuclear waste disposal scenarios developed using the NWMCM framework affect the results of a recent integrated assessment study of alternative energy futures and their effects on the cost of achieving carbon abatement targets. Results suggest that the optimism reflected in previous works is fragile: Plausible nuclear waste management costs and discount rates appropriate for intergenerational cost

  15. Analysis of archaeological pieces with nuclear techniques; Analisis de piezas arqueologicas con tecnicas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio, D [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work nuclear techniques such as Neutron Activation Analysis, PIXE, X-ray fluorescence analysis, Metallography, Uranium series, Rutherford Backscattering for using in analysis of archaeological specimens and materials are described. Also some published works and thesis about analysis of different Mexican and Meso american archaeological sites are referred. (Author)

  16. Analysis of Mode I and Mode II Crack Growth Arrest Mechanism with Z-Fibre Pins in Composite Laminated Joint

    Science.gov (United States)

    Jeevan Kumar, N.; Ramesh Babu, P.

    2018-04-01

    This paper presents the numerical study of the mode I and mode II interlaminar crack growth arrest in hybrid laminated curved composite stiffened joint with Z-fibre reinforcement. A FE model of hybrid laminated skin-stiffener joint reinforced with Z-pins is developed to investigate the effect of Z- fibre pins on mode I and mode II crack growth where the delamination is embedded inbetween the skin and stiffener interface. A finite element model was developed using S4R element of a 4-node doubly curved thick shell elements to model the composite laminates and non linear interface elements to simulate the reinforcements. The numerical analyses revealed that Z-fibre pinning were effective in suppressing the delamination growth when propagated due to applied loads. Therefore, the Z-fibre technique effectively improves the crack growth resistance and hence arrests or delays crack growth extension.

  17. Modeling, analysis and experiments for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.A.; Hadid, A.H.; Raffray, A.R.; Tillack, M.S.; Iizuka, T.

    1988-01-01

    Selected issues in the development of fusion nuclear technology (FNT) have been studied. These relate to (1) near-term experiments, modeling, and analysis for several key FNT issues, and (2) FNT testing in future fusion facilities. A key concern for solid breeder blankets is to reduce the number of candidate materials and configurations for advanced experiments to emphasize those with the highest potential. Based on technical analysis, recommendations have been developed for reducing the size of the test matrix and for focusing the testing program on important areas of emphasis. The characteristics of an advanced liquid metal MHD experiment have also been studied. This facility is required in addition to existing facilities in order to address critical uncertainties in MHD fluid flow and heat transfer. In addition to experiments, successful development of FNT will require models for interpreting experimental data, for planning experiments, and for use as a design tool for fusion components. Modeling of liquid metal fluid flows is a particular area of need in which substantial progress is expected, and initial efforts are reported here. Preliminary results on the modeling of tritium transport and inventory in solid breeders are also summarized. Finally, the thermo-mechanical behavior of liquid-metal-cooled limiters is analyzed and the parameter space for feasible designs is explored. Because of the renewed strong interest in a fusion engineering facility, a critical review and analysis of the important FNT testing requirements have been performed. Several areas have been emphasized due to their strong impact on the design and cost of the test facility. These include (1) the length of the plasma burn and the mode of operation (pulsed vs. steady-state), and (2) the need for a tritium-producing blanket and its impact on the availability of the device. (orig.)

  18. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.

    Science.gov (United States)

    Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola

    2016-08-01

    Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Collins, Liam; Belianinov, Alex; Somnath, Suhas; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen; Rodriguez, Brian J

    2016-01-01

    Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General mode (G-Mode) KPFM works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction—required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C′) channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors. (paper)

  20. An improved method for risk evaluation in failure modes and effects analysis of CNC lathe

    Science.gov (United States)

    Rachieru, N.; Belu, N.; Anghel, D. C.

    2015-11-01

    Failure mode and effects analysis (FMEA) is one of the most popular reliability analysis tools for identifying, assessing and eliminating potential failure modes in a wide range of industries. In general, failure modes in FMEA are evaluated and ranked through the risk priority number (RPN), which is obtained by the multiplication of crisp values of the risk factors, such as the occurrence (O), severity (S), and detection (D) of each failure mode. However, the crisp RPN method has been criticized to have several deficiencies. In this paper, linguistic variables, expressed in Gaussian, trapezoidal or triangular fuzzy numbers, are used to assess the ratings and weights for the risk factors S, O and D. A new risk assessment system based on the fuzzy set theory and fuzzy rule base theory is to be applied to assess and rank risks associated to failure modes that could appear in the functioning of Turn 55 Lathe CNC. Two case studies have been shown to demonstrate the methodology thus developed. It is illustrated a parallel between the results obtained by the traditional method and fuzzy logic for determining the RPNs. The results show that the proposed approach can reduce duplicated RPN numbers and get a more accurate, reasonable risk assessment. As a result, the stability of product and process can be assured.

  1. Safety Management in an Oil Company through Failure Mode Effects and Critical Analysis

    Directory of Open Access Journals (Sweden)

    Benedictus Rahardjo

    2016-06-01

    Full Text Available This study attempts to apply Failure Mode Effects and Criticality Analysis (FMECA to improve the safety of a production system, specifically the production process of an oil company. Since food processing is a worldwide issue and self-management of a food company is more important than relying on government regulations, therefore this study focused on that matter. The initial step of this study is to identify and analyze the criticality of the potential failure modes of the production process. Furthermore, take corrective action to minimize the probability of repeating the same failure mode, followed by a re-analysis of its criticality. The results of corrective actions were compared with those before improvement conditions by testing the significance of the difference using two sample t-test. The final measured result is the Criticality Priority Number (CPN, which refers to the severity category of the failure mode and the probability of occurrence of the same failure mode. The recommended actions proposed by the FMECA significantly reduce the CPN compared with the value before improvement, with increases of 38.46% for the palm olein case study.

  2. NUSTART: A PC code for NUclear STructure And Radiative Transition analysis and supplementation

    International Nuclear Information System (INIS)

    Larsen, G.L.; Gardner, D.G.; Gardner, M.A.

    1990-10-01

    NUSTART is a computer program for the IBM PC/At. It is designed for use with the nuclear reaction cross-section code STAPLUS, which is a STAPRE-based CRAY computer code that is being developed at Lawrence Livermore National Laboratory. The NUSTART code was developed to handle large sets of discrete nuclear levels and the multipole transitions among these levels; it operates in three modes. The Data File Error Analysis mode analyzes an existing STAPLUS input file containing the levels and their multipole transition branches for a number of physics and/or typographical errors. The Interactive Data File Generation mode allows the user to create input files of discrete levels and their branching fractions in the format required by STAPLUS, even though the user enters the information in the (different) format used by many people in the nuclear structure field. In the Branching Fractions Calculations mode, the discrete nuclear level set is read, and the multipole transitions among the levels are computed under one of two possible assumptions: (1) the levels have no collective character, or (2) the levels are all rotational band heads. Only E1, M1, and E2 transitions are considered, and the respective strength functions may be constants or, in the case of E1 transitions, the strength function may be energy dependent. The first option is used for nuclei closed shells; the bandhead option may be used to vary the E1, M1, and E2 strengths for interband transitions. K-quantum number selection rules may be invoked if desired. 19 refs

  3. Characterization of a pulsed mode high voltage power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Ghazali, A B; Ahmad, T S; Abdullah, N A

    2013-01-01

    This paper discusses the characterization of a pulsed mode high voltage power supply (HVPS) using LT1073 chip. The pulsed modulated signal generated from this chip is amplified using a step-up ferrite core transformer of 1:20 turn ratio and then further multiplied and converted into DC high voltage output using a diode-capacitor arrangement. The circuit is powered by a 9V alkaline battery but regulated at 5V supply. It was found that the output for this setup is 520V, 87 μA with 10% load regulation. This output is suitable to operate a pancake-type GM detector, typically model LND 7317 where the plateau is from 475V to 675V. It was also found that when a β-source with intensity of 120 cps is used, the power consumption of the circuit is 5 V, 10.1 mA only. When the battery was left 'on' for 40 hours continuously, the battery's voltage has dropped to 6.9V, meaning that the 5V supply as well as 520V output is still maintained. It is noted that the minimum output voltage of 475V has reached when the regulated supply has reduced to 4.6V and consequently the 9V battery dropped to 6.5V, and this had happened after approximately 3 days of continuous operation. The power efficiency for this circuitry was found to be 89.5%. This result has far better in performance since the commercial portable equipment of this type has normally specified that not less than 8 hours continuous operation only. On the circuit design for this power supply, it was found that the enveloped frequency is 133 Hz with approximately 50% duty cycle. The modulated frequency during 'on' state was found to be 256 KHz in which the majority of power consumption is required.

  4. New nuclear power generation in the UK: Cost benefit analysis

    International Nuclear Information System (INIS)

    Kennedy, David

    2007-01-01

    This paper provides an economic analysis of possible nuclear new build in the UK. It compares costs and benefits of nuclear new build against conventional gas-fired generation and low carbon technologies (CCS, wind, etc.). A range of scenarios are considered to allow for uncertainty as regards nuclear and other technology costs, gas prices and carbon prices. In the base case, the analysis suggests that there is a small cost penalty for new nuclear generation relative to conventional gas-fired generation, but that this is offset by environmental and security of supply benefits. More generally nuclear new build has a positive net benefit for a range of plausible nuclear costs, gas prices and carbon prices. This supports the UK policy of developing an enabling framework for nuclear new build in a market-based context. To the extent that assumptions in the analysis are not borne out in reality (e.g. as regards nuclear cost), this is a no regrets policy, given that the market would not invest in nuclear if it is prohibitively costly. (author)

  5. Mode of delivery after successful external cephalic version: a systematic review and meta-analysis

    NARCIS (Netherlands)

    de Hundt, Marcella; Velzel, Joost; de Groot, Christianne J.; Mol, Ben W.; Kok, Marjolein

    2014-01-01

    To assess the mode of delivery in women after a successful external cephalic version by performing a systematic review and meta-analysis. We searched MEDLINE, Embase, ClinicalTrials.gov, Cumulative Index to Nursing and Allied Health Literature, and the Cochrane Library for studies reporting on the

  6. Individual differences in anxiety responses to stressful situations : A three-mode component analysis model

    NARCIS (Netherlands)

    Van Mechelen, Iven; Kiers, Henk A.L.

    1999-01-01

    The three-mode component analysis model is discussed as a tool for a contextualized study of personality. When applied to person x situation x response data, the model includes sets of latent dimensions for persons, situations, and responses as well as a so-called core array, which may be considered

  7. Failure mode and effect analysis in asset maintenance : a multiple case study in the process industry

    NARCIS (Netherlands)

    Braaksma, Jan; Klingenberg, W.; Veldman, J.

    2013-01-01

    Failure mode and effect analysis (FMEA) is an important method for designing and prioritising preventive maintenance activities and is often used as the basis for preventive maintenance planning. Although FMEA was studied extensively, most of the published work so far covers FMEA concept design.

  8. Failure mode and effect analysis in asset maintenance: a multiple case study in the process industry

    NARCIS (Netherlands)

    Braaksma, Anne Johannes Jan; Klingenberg, W.; Veldman, Jasper

    2013-01-01

    Failure mode and effect analysis (FMEA) is an important method for designing and prioritising preventive maintenance activities and is often used as the basis for preventive maintenance planning. Although FMEA was studied extensively, most of the published work so far covers FMEA concept design.

  9. On the accuracy of mode-superposition analysis of linear systems under stochastic agencies

    International Nuclear Information System (INIS)

    Bellomo, M.; Di Paola, M.; La Mendola, L.; Muscolino, G.

    1987-01-01

    This paper deals with the response of linear structures using modal reduction. The MAM (mode acceleration method) correction is extended to stochastic analysis in the stationary case. In this framework the response of the given structure must be described in a probabilistic sense and the spectral moments of the nodal response must be computed in order to obtain a full description of the vibratory stochastic phenomenon. In the deterministic analysis the response is substantially made up of two terms, one of which accounts for the dynamic response due to the lower modes while the second accounts for the contribution due to the higher modes. In stochastic analysis the nodal spectral moments are made up of three terms; the first accounts for the spectral moments of the dynamic response due to the lower modes, the second accounts for the spectral moments of input and the third accounts for the cross-spectral moments between the input and the nodal output. The analysis is applied to a 35-storey building subjected to wind multivariate environments. (orig./HP)

  10. Risk Assessment Planning for Airborne Systems: An Information Assurance Failure Mode, Effects and Criticality Analysis Methodology

    Science.gov (United States)

    2012-06-01

    Visa Investigate Data Breach March 30, 2012 Visa and MasterCard are investigating whether a data security breach at one of the main companies that...30). MasterCard and Visa Investigate Data Breach . New York Times . Stamatis, D. (2003). Failure Mode Effect Analysis: FMEA from Theory to Execution

  11. Analysis of inheritance mode in chrysanthemum using EST-derived SSR markers

    NARCIS (Netherlands)

    Park, Sang Kun; Arens, Paul; Esselink, Danny; Lim, Jin Hee; Shin, Hak Ki

    2015-01-01

    To study the inheritance mode of hexaploid chrysanthemum (random or preferential chromosome pairing), a segregation analysis was carried out using SSR markers derived from chrysanthemum ESTs in the public domain. A total of 248 EST-SSR primer pairs were screened in chrysanthemum cultivars

  12. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    Science.gov (United States)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  13. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  14. Risk assessment of the emergency processes: Healthcare failure mode and effect analysis.

    Science.gov (United States)

    Taleghani, Yasamin Molavi; Rezaei, Fatemeh; Sheikhbardsiri, Hojat

    2016-01-01

    Ensuring about the patient's safety is the first vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conducted to evaluate the selected risk processes of emergency surgery department of a treatment-educational Qaem center in Mashhad by using analysis method of the conditions and failure effects in health care. In this study, in combination (qualitative action research and quantitative cross-sectional), failure modes and effects of 5 high-risk procedures of the emergency surgery department were identified and analyzed according to Healthcare Failure Mode and Effects Analysis (HFMEA). To classify the failure modes from the "nursing errors in clinical management model (NECM)", the classification of the effective causes of error from "Eindhoven model" and determination of the strategies to improve from the "theory of solving problem by an inventive method" were used. To analyze the quantitative data of descriptive statistics (total points) and to analyze the qualitative data, content analysis and agreement of comments of the members were used. In 5 selected processes by "voting method using rating", 23 steps, 61 sub-processes and 217 potential failure modes were identified by HFMEA. 25 (11.5%) failure modes as the high risk errors were detected and transferred to the decision tree. The most and the least failure modes were placed in the categories of care errors (54.7%) and knowledge and skill (9.5%), respectively. Also, 29.4% of preventive measures were in the category of human resource management strategy. "Revision and re-engineering of processes", "continuous monitoring of the works", "preparation and revision of operating procedures and policies", "developing the criteria for evaluating the performance of the personnel", "designing a suitable educational content for needs of employee", "training patients", "reducing the workload and power shortage", "improving team

  15. Social cost-benefit analysis and nuclear futures

    International Nuclear Information System (INIS)

    Pearce, D.W.

    1979-01-01

    The usefulness of cost-benefit analysis in making nuclear power investment decisions is considered. The essence of social cost-benefit analysis is outlined and shown to be unavoidably value-laden. As a case study six issues relevant to the decision to build on oxide fuel reprocessing plant (THORP) are examined. The potential practical value of using cost-benefit analysis as an aid to decision-making is considered for each of these issues. It is concluded that cost-benefit approach is of limited value in the nuclear power case because of its inapplicability to such issues as the liberty of the individual and nuclear weapons proliferation. (author)

  16. Stochastic processes analysis in nuclear reactor using ARMA models

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1990-01-01

    The analysis of ARMA model derived from general stochastic state equations of nuclear reactor is given. The dependence of ARMA model parameters on the main physical characteristics of RB nuclear reactor in Vinca is presented. Preliminary identification results are presented, observed discrepancies between theory and experiment are explained and the possibilities of identification improvement are anticipated. (author)

  17. Human reliability analysis of Lingao Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Yang Hong; He Aiwu; Huang Xiangrui; Zheng Tao; Su Shengbing; Xi Haiying

    2001-01-01

    The necessity of human reliability analysis (HRA) of Lingao Nuclear Power Station are analyzed, and the method and operation procedures of HRA is briefed. One of the human factors events (HFE) is analyzed in detail and some questions of HRA are discussed. The authors present the analytical results of 61 HFEs, and make a brief introduction of HRA contribution to Lingao Nuclear Power Station

  18. HJD-I record and analysis meter for nuclear information

    International Nuclear Information System (INIS)

    Di Shaoliang; Huang Yong; Xiao Yanbin

    1992-01-01

    A low-cost, small-volume, multi-function and new model intelligent nuclear electronic meter HJD-I Record and Analysis Meter are stated for Nuclear Information. It's hardware and software were detailed and the 137 Cs spectrum with this meter was presented

  19. Subsidence analysis Forsmark nuclear power plant - unit 1

    International Nuclear Information System (INIS)

    Bono, Nancy; Fredriksson, Anders; Maersk Hansen, Lars

    2010-12-01

    On behalf of SKB, Golder Associates Ltd carried out a risk analysis of subsidence during Forsmark nuclear power plant in the construction of the final repository for spent nuclear fuel near and below existing reactors. Specifically, the effect of horizontal cracks have been studied

  20. STEM mode in the SEM for the analysis of cellular sections prepared by ultramicrotome sectioning

    International Nuclear Information System (INIS)

    Hondow, N; Harrington, J; Brydson, R; Brown, A

    2012-01-01

    The use of the dual imaging capabilities of a scanning electron microscope fitted with a transmitted electron detector is highlighted in the analysis of samples with importance in the field of nanotoxicology. Cellular uptake of nanomaterials is often examined by transmission electron microscopy of thin sections prepared by ultramicrotome sectioning. Examination by SEM allows for the detection of artefacts caused by sample preparation (eg. nanomaterial pull-out) and the complementary STEM mode permits study of the interaction between nanomaterials and cells. Thin sections of two nanomaterials of importance in nanotoxicology (cadmium selenide quantum dots and single walled carbon nanotubes) are examined using STEM mode in the SEM.

  1. On the 485-day Mode in the Atmospheric Angular Momentum: Spectral Analysis of IERS Data

    Science.gov (United States)

    Tsurkis, I. Ya.; Kuchai, M. S.

    2018-05-01

    The modification of spectral analysis especially intended for studying the disturbing functions of the atmosphere and ocean, as well as the observed polar motion (Wiener-Liouville spectrum), is used. The time series of the atmospheric disturbing functions obtained by the U.S. National Centers for Environmental Prediction (NCEP) of the International Earth Rotation and Reference Systems Service (IERS) for the period from January 1, 1980 to June 20, 2014 (http://www.iers.org/.cs1?pid=43-1100116) are analyzed. It is shown that the baric disturbing function contains a regular mode with a period of 16 months; the contribution of this mode in the polar motion is estimated.

  2. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    International Nuclear Information System (INIS)

    Park, Jong-beom; Park, No-Cheol; Lee, Sang-Jeong; Park, Young-Pil; Choi, Youngin

    2017-01-01

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  3. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2017-03-15

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  4. Analisis Potensi Kecelakaan Kerja Pada CV. Automotive Workshop Dengan Metode Failure Mode and Effect Analysis

    OpenAIRE

    Syauqi, Qiqi Azwani; Susanty, Aries

    2016-01-01

    [Potential Analysis of Work Accidents at CV. Automotive Workshop using Failure Mode and Effect Analysis Method] Nowadays the global automotive industry, especially in developing countries has increased along with the increasing number of internet users and mobile penetration, the GDP rate increase of the developing countries and the growth of middle class-society, which makes the car sales in these countries increased anually. According to Carmudi, Semarang was the second-highest of the car l...

  5. Effect of mode of operation on hydrogen production from glycerol at thermal neutral conditions: Thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pairojpiriyakul, Thirasak; Soottitantawat, Apinan; Arpornwichanop, Amornchai; Assabumrungrat, Suttichai [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University (Thailand); Kiatkittipong, Worapon [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University (Thailand); Wiyaratn, Wisitsree [Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut' s University of Technology Thonburi (Thailand); Laosiripojana, Navadol [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi (Thailand); Croiset, Eric [Department of Chemical Engineering, University of Waterloo (Canada)

    2010-10-15

    Thermodynamic analysis of hydrogen production from glycerol under thermal neutral conditions is studied in this work. Heat requirement from the process can be achieved from the exothermic reaction of glycerol with oxygen in air fed to the system. Two modes of operation for air feeding are considered including (i) Single-feed mode in which air is fed in combination with water and glycerol to the reformer, and (ii) Split-feed mode in which air and part of glycerol is fed to a combustor in order to generate heat. The thermal neutral conditions are considered for two levels including Reformer and System levels. It was found that the H{sub 2} yield from both modes is not significantly different at the Reformer level. In contrast, the difference becomes more pronounced at the System level. Single-feed and Split-feed modes offer high H{sub 2} yield in low (600-900 K) and high (900-1200 K) temperature ranges, respectively. The maximum H{sub 2} yields are 5.67 (water to glycerol ratio, WGR = 12, oxygen to glycerol ratio, OGR = 0.37, T = 900 K, Split-feed mode), and 3.28 (WGR = 3, OGR = 1.40, T = 900 K, Single-feed mode), for the Reformer and System levels, respectively. The difference between H{sub 2} yields in both levels mainly arises from the huge heat demand for preheating feeds in the System level, and therefore, a higher amount of air is needed to achieve the thermal neutral condition. Split-feed mode is a favorable choice in term of H{sub 2} purity because the gas product is not diluted with N{sub 2} from the air. The use of pure O{sub 2} and afterburner products (ABP) stream were also considered at the System level. The maximum H{sub 2} yield becomes 3.75 (WGR = 5.21, OGR = 1.28, T = 900 K, Split-feed mode) at thermal neutral condition when utilizing heat from the ABP stream. Finally comparisons between the different modes and levels are addressed in terms of yield of by-products, and carbon formation. (author)

  6. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  7. Computer System Analysis for Decommissioning Management of Nuclear Reactor

    International Nuclear Information System (INIS)

    Nurokhim; Sumarbagiono

    2008-01-01

    Nuclear reactor decommissioning is a complex activity that should be planed and implemented carefully. A system based on computer need to be developed to support nuclear reactor decommissioning. Some computer systems have been studied for management of nuclear power reactor. Software system COSMARD and DEXUS that have been developed in Japan and IDMT in Italy used as models for analysis and discussion. Its can be concluded that a computer system for nuclear reactor decommissioning management is quite complex that involved some computer code for radioactive inventory database calculation, calculation module on the stages of decommissioning phase, and spatial data system development for virtual reality. (author)

  8. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    Science.gov (United States)

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  9. Bicoherence Analysis of Electrostatic Interchange Mode Coupling in a Turbulent Laboratory Magnetosphere

    Science.gov (United States)

    Abler, M. C.; Mauel, M. E.; Saperstein, A.

    2017-12-01

    Plasmas confined by a strong dipole field exhibit interchange and entropy mode turbulence, which previous experiments have shown respond locally to active feedback [1]. On the Collisionless Terrella Experiment (CTX), this turbulence is characterized by low frequency, low order, quasi-coherent modes with complex spectral dynamics. We apply bicoherence analysis [2] to study nonlinear phase coupling in a variety of scenarios. First, we study the self-interaction of the naturally occurring interchange turbulence; this analysis is then expanded to include the effects of single or multiple driven modes in the frequency range of the background turbulent oscillations. Initial measurements of coupling coefficients are presented in both cases. Driven low frequency interchange modes are observed to generate multiple harmonics which persist throughout the plasma, becoming weaker as they propagate away from the actuator in the direction of the electron magnetic drift. Future work is also discussed, including application of wavelet bicoherence analysis and applications to planetary magnetospheres. [1] Roberts, Mauel, and Worstell, Phys Plasmas (2015). [2] Grierson, Worstell, and Mauel, Phys Plasmas (2009). Supported by NSF-DOE Partnership for Plasma Science Grants DOE-DE-FG02-00ER54585 and NSF-PHY-1201896.

  10. Comprehensive Deployment Method for Technical Characteristics Base on Multi-failure Modes Correlation Analysis

    Science.gov (United States)

    Zheng, W.; Gao, J. M.; Wang, R. X.; Chen, K.; Jiang, Y.

    2017-12-01

    This paper put forward a new method of technical characteristics deployment based on Reliability Function Deployment (RFD) by analysing the advantages and shortages of related research works on mechanical reliability design. The matrix decomposition structure of RFD was used to describe the correlative relation between failure mechanisms, soft failures and hard failures. By considering the correlation of multiple failure modes, the reliability loss of one failure mode to the whole part was defined, and a calculation and analysis model for reliability loss was presented. According to the reliability loss, the reliability index value of the whole part was allocated to each failure mode. On the basis of the deployment of reliability index value, the inverse reliability method was employed to acquire the values of technology characteristics. The feasibility and validity of proposed method were illustrated by a development case of machining centre’s transmission system.

  11. Identification of different magnetic modes in CsFeCl{sub 3} by polarisation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Toperverg, B [St. Petersburg Nuclear Physics Inst., St. Petersburg (Russian Federation); Baehr, M [Hahn-Meitner-Institut Berlin GmbH (Germany); Petitgrand, D [Laboratoire Leon Brillouin (LLB) - Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-11-01

    CsFeCl{sub 3} is a quasi 1D magnetic system with a singlet groundstate. The Fe{sup 2+} ion has an effective spin S=1. Experimental results in a magnetic field applied perpendicular to the anisotropy axis show that the excited states (doubly degenerate in zero field) split and shift to higher frequencies with increasing field. The split of the high frequency modes is very small compared to the instrumental resolution. Only polarisation analysis of inelastic neutron scattering made it possible to observe the splitting everywhere in reciprocal space. The frequency shift of the two modes with field is different such that a mode crossing appears for fields below about 4 Tesla. (author) 9 figs., 1 tab., 7 refs.

  12. Analysis of current-bidirectional buck-boost based switch-mode audio amplifier

    DEFF Research Database (Denmark)

    Bolten Maizonave, Gert; Andersen, Michael A. E.; Kjærgaard, Claus

    2011-01-01

    The following studdy was carried out in order to assses quantitatively the performannce of the buck--boost converter whhen used as swiitch-mode audio amplifier. It comprises of, to beggin with, the de limitation of design criteria bassed on the state of-the-art solution, which is based...... in a differential mode buckbased amplifier with a boost converter as power supply. The averaged switch modelling of the differential mode current bidirectional topology is also used, in order to analyze the steady state and frequency-wise behaviour of this converter and parameterize it to meet the design criteria....... Next, several piecewise-linear siimulation resultss are shown with detail enough to emphasize the features of the converter. A simple prototype is implemented to verify the main predicted features. Presently no previous publicat ion could be found containing a thorough analysis of this topology...

  13. Identification of different magnetic modes in CsFeCl3 by polarisation analysis

    International Nuclear Information System (INIS)

    Dorner, B.; Toperverg, B.; Baehr, M.; Petitgrand, D.

    1996-01-01

    CsFeCl 3 is a quasi 1D magnetic system with a singlet groundstate. The Fe 2+ ion has an effective spin S=1. Experimental results in a magnetic field applied perpendicular to the anisotropy axis show that the excited states (doubly degenerate in zero field) split and shift to higher frequencies with increasing field. The split of the high frequency modes is very small compared to the instrumental resolution. Only polarisation analysis of inelastic neutron scattering made it possible to observe the splitting everywhere in reciprocal space. The frequency shift of the two modes with field is different such that a mode crossing appears for fields below about 4 Tesla. (author) 9 figs., 1 tab., 7 refs

  14. Analysis of color environment in nuclear power plants

    International Nuclear Information System (INIS)

    Natori, Kazuyuki; Akagi, Ichiro; Souma, Ichiro; Hiraki, Tadao; Sakurai, Yukihiro.

    1996-01-01

    This article reports the results of color and psychological analysis of the outlook of nuclear power plants and the visual environments inside of the plants. Study one was the color measurements of the outlook of nuclear plants and the visual environment inside of the plants. Study two was a survey of the impressions on the visual environments of nuclear plants obtained from observers and interviews of the workers. Through these analysis, we have identified the present state of, and the problems of the color environments of the nuclear plants. In the next step, we have designed the color environments of inside and outside of the nuclear plants which we would recommend (inside designs were about fuel handling room, operation floor of turbine building, observers' pathways, central control room, rest room for the operators). Study three was the survey about impressions on our design inside and outside of the nuclear plants. Nuclear plant observers, residents in Osaka city, residents near the nuclear plants, the operators, employees of subsidiary company and the PR center guides rated their impressions on the designs. Study four was the survey about the design of the rest room for the operators controlling the plants. From the results of four studies, we have proposed some guidelines and problems about the future planning about the visual environments of nuclear power plants. (author)

  15. Nuclear data evaluation and group constant generation for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-12-01

    In nuclear or shielding design analysis for reactors including nuclear facilities, nuclear data are one of the primary importances. Research project for nuclear data evaluation and their effective applications has been continuously performed. The objectives of this project are (1) to compile the latest evaluated nuclear data files, (2) to establish their processing code systems, and (3) to evaluate the multigroup constant library using the newly compiled data files and the code systems. As the results of this project, JEF-2.2 which is latest version of Joint Evaluated File developed at OECD/NEA was compiled and COMPLOT and EVALPLOT utility codes were installed in personal computer, which are able to draw ENDF/B-formatted nuclear data for comparison and check. Computer system (NJOY/ACER) for generating continuous energy Monte Carlo code MCNP library was established and the system was validated by analyzing a number of experimental data. (Author).

  16. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    Directory of Open Access Journals (Sweden)

    S. Costabel

    2018-03-01

    Full Text Available The capability of nuclear magnetic resonance (NMR relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite, and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny–Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation

  17. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    Science.gov (United States)

    Costabel, Stephan; Weidner, Christoph; Müller-Petke, Mike; Houben, Georg

    2018-03-01

    The capability of nuclear magnetic resonance (NMR) relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite), and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny-Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation in the gravel pack of

  18. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Lim, Chae Young

    1998-12-01

    An energy security index was developed to measure how the introduction of nuclear power generation improved the national security of energy supply in Korea. Using the developed index, a quantitative effort was made to analyze the relationship between the nuclear power generation and the national energy security. Environmental impacts were evaluated and a simplified external cost of a specific coal-fired power plant in Korea was estimated using the QUERI program, which was developed by IAEA. In doing so, efforts were made to quantify the health impacts such as mortality, morbidity, and respiratory hospital admissions due to particulates, SOx, and Nox. The effects of CO 2 emission regulation on the national economy were evaluated. In doing so, the introduction of carbon tax was assumed. Several scenarios were established about the share of nuclear power generation and an effort was made to see how much contribution nuclear energy could make to lessen the burden of the regulation on the national economy. This study re-evaluated the methods for estimating and distributing decommissioning cost of nuclear power plant over lifetime. It was resulted out that the annual decommissioning deposit and consequently, the annual decommissioning cost could vary significantly depending on estimating and distributing methods. (author). 24 refs., 44 tabs., 9 figs

  19. Evaluating the operational risks of biomedical waste using failure mode and effects analysis.

    Science.gov (United States)

    Chen, Ying-Chu; Tsai, Pei-Yi

    2017-06-01

    The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.

  20. Failure mode and effects analysis in a dual-product microsphere brachytherapy environment.

    Science.gov (United States)

    Younge, Kelly Cooper; Lee, Choonik; Moran, Jean M; Feng, Mary; Novelli, Paula; Prisciandaro, Joann I

    We performed a failure mode and effects analysis (FMEA) during the addition of a new microspheres product into our existing microsphere brachytherapy program to identify areas for safety improvements. A diverse group of team members from the microsphere program participated in the project to create a process map, identify and score failure modes, and discuss programmatic changes to address the highest ranking items. We developed custom severity ranking scales for staff- and institution-related failure modes to encompass possible risks that may exist outside of patient-based effects. Between both types of microsphere products, 173 failure mode/effect pairs were identified: 90 for patients, 35 for staff, and 48 for the institution. The SIR-Spheres program was ranked separately from the TheraSphere program because of significant differences in workflow during dose calculation, preparation, and delivery. High-ranking failure modes in each category were addressed with programmatic changes. The FMEA aided in identifying potential risk factors in our microsphere program and allowed a theoretically safer and more efficient design of the workflow and quality assurance for both our new SIR-Spheres program and our existing TheraSphere program. As new guidelines are made available, and our experience with the SIR-Spheres program increases, we will update the FMEA as an efficient starting point for future improvements. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  1. Revealing spatio-spectral electroencephalographic dynamics of musical mode and tempo perception by independent component analysis.

    Science.gov (United States)

    Lin, Yuan-Pin; Duann, Jeng-Ren; Feng, Wenfeng; Chen, Jyh-Horng; Jung, Tzyy-Ping

    2014-02-28

    Music conveys emotion by manipulating musical structures, particularly musical mode- and tempo-impact. The neural correlates of musical mode and tempo perception revealed by electroencephalography (EEG) have not been adequately addressed in the literature. This study used independent component analysis (ICA) to systematically assess spatio-spectral EEG dynamics associated with the changes of musical mode and tempo. Empirical results showed that music with major mode augmented delta-band activity over the right sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and moderately suppressed beta activity over the medial frontal cortex, compared to minor-mode music, whereas fast-tempo music engaged significant alpha suppression over the right sensorimotor cortex. The resultant EEG brain sources were comparable with previous studies obtained by other neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). In conjunction with advanced dry and mobile EEG technology, the EEG results might facilitate the translation from laboratory-oriented research to real-life applications for music therapy, training and entertainment in naturalistic environments.

  2. Online channel operation mode: Game theoretical analysis from the supply chain power structure

    Directory of Open Access Journals (Sweden)

    Song Huang

    2015-11-01

    Full Text Available Purpose: Dual-channels have been widely used in practice, and the pricing decisions and the online channel operation mode choice have been the core problems in dual-channel supply chain management. This paper focuses on the online channel operation mode choice from the supply chain power structures based on game theoretical analysis. Design/methodology/approach: This paper utilizes three kinds of game theoretical models to analyze the impact of supply chain power structures on the optimal pricing and online channel operation mode choice. Findings: Results derived in this paper indicate that when the self-price elasticity is large, the power structures have no direct impact on the decisions. However, when the self-price elasticity is small and customers’ preference for the online channel is low, then in the MS market, it is better for the retailer to operate the online channel, while in the RS market or in the VN market, it is better for the manufacturer to operate the online channel. Research limitations/implications: In this paper, we do not consider stochastic demand and asymmetric information, which may not well suit the reality. Originality/value: This paper provides a different perspective to analyze the impact of supply chain power structures on the pricing decisions and online channel operation mode choice. The comparison of these two online channel operation modes in this paper is also a unique point.

  3. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  4. Analysis of failure and maintenance experiences of motor operated valves in a Finnish nuclear power plant

    International Nuclear Information System (INIS)

    Simola, K.; Laakso, K.

    1992-01-01

    Operating experiences from 1981 up to 1989 of totally 104 motor operated closing valves (MOV) in different safety systems at TVO I and II nuclear power units were analysed in a systematic way. The qualitative methods used were failure mode and effects analysis (FMEA) and maintenance effects and criticality analysis (MECA). The failure descriptions were obtained from power plant's computerized failure reporting system. The reported 181 failure events were reanalysed and sorted according to specific classifications developed for the MOV function. Filled FMEA and MECA sheets on individual valves were stored in a microcomputer data base for further analyses. Analyses were performed for the failed mechanical and electrical valve parts, ways of detection of failure modes, failure effects, and repair and unavailability times

  5. Synthesis and Analysis of Methacryloyl-L-Alanine Methyl Ester using fourier Transform Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Tri Darwinto

    2008-01-01

    Methacryloyl-L-alanine methyl ester was synthesized by reacting methacrylic acid with L-alanine methyl ester hydrochloride in triethylamine at temperature of 90 o C. Hydrogel polymer of poly(methacryloyl-L-alanine methyl ester) was much used for diagnosis and therapy of vascular tumor. The molecular structure methacryloyl-L-alanine methyl ester analyzed by fourier transform nuclear magnetic resonance (FT-NMR) for analyzing of carbon atom ( 13 C) using Distortionless Enhancement by Polarization Transfer (DEPT) measurement mode with coupling as well as without coupling from proton atom ( 1 H). Molecular structure analysis result showed that DEPT FT-NMR measurement mode with coupling as well as without coupling from 1 H was very fast, exact and accurate method for molecular analysis of organic compound especially methacryloyl-L-alanine methyl ester. (author)

  6. Nuclear ship accidents, description and analysis

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1993-03-01

    In this report available information on 44 reported nuclear ship events is considered. Of these 6 deals with U.S. ships and 38 with USSR ships. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/ explosions, sea-water leaks into the submarines and sinking of vessels are considered. Comments are made on each of the events, and at the end of the report an attempt is made to point out the weaknesses of the submarine designs which have resulted in the accidents. It is emphasized that some of the information of which this report is based, may be of dubious nature. Consequently some of the results of the assessments made may not be correct. (au)

  7. Analysis by nuclear reactions and activations. A current bibliography

    International Nuclear Information System (INIS)

    Bujdoso, E.

    2001-01-01

    A current bibliography based on INIS Atomindex with 78 references on Analysis by nuclear reactions and activations has been prepared for year 1998. References are arranged by first authors' name. (N.T.)

  8. Genome inventory and analysis of nuclear hormone receptors in ...

    Indian Academy of Sciences (India)

    Prakash

    2006-12-20

    Dec 20, 2006 ... progestins, as well as lipids, cholesterol metabolites, and. Genome ... Gene structure analysis shows strong conservation of exon structures among orthologoues. ..... earlier subfamily classification of NRs (Nuclear Receptors.

  9. Temporal coupled mode analysis of one-dimensional magneto-photonic crystals with cavity structures

    Energy Technology Data Exchange (ETDEWEB)

    Saghirzadeh Darki, Behnam, E-mail: b.saghirzadeh@ec.iut.ac.ir; Zeidaabadi Nezhad, Abolghasem; Firouzeh, Zaker Hossein

    2016-12-01

    In this paper, we propose the time-dependent coupled mode analysis of one-dimensional magneto-photonic crystals including one, two or multiple defect layers. The performance of the structures, namely the total transmission, Faraday rotation and ellipticity, is obtained using the proposed method. The results of the developed analytic approach are verified by comparing them to the results of the exact numerical transfer matrix method. Unlike the widely used numerical method, our proposed analytic method seems promising for the synthesis as well as the analysis purposes. Moreover, the proposed method has not the restrictions of the previously examined analytic methods. - Highlights: • A time-dependent coupled mode analysis is proposed for the cavity-type 1D MPCs. • Analytical formalism is presented for the single, double and multiple-defect MPCs. • Transmission, Faraday rotation and ellipticity are gained using the proposed method. • The proposed analytic method has advantages over the previously examined methods.

  10. Network value and optimum analysis on the mode of networked marketing in TV media

    Directory of Open Access Journals (Sweden)

    Xiao Dongpo

    2012-12-01

    Full Text Available Purpose: With the development of the networked marketing in TV media, it is important to do the research on network value and optimum analysis in this field.Design/methodology/approach: According to the research on the mode of networked marketing in TV media and Correlation theory, the essence of media marketing is creating, spreading and transferring values. The Participants of marketing value activities are in network, and value activities proceed in networked form. Network capability is important to TV media marketing activities.Findings: This article raises the direction of research of analysis and optimization about network based on the mode of networked marketing in TV media by studying TV media marketing Development Mechanism , network analysis and network value structure.

  11. Fluidelastic instability analysis of steam generator U-tubes at antivibration bar-inactive modes

    International Nuclear Information System (INIS)

    Lee, S.K.; Jo, J.C.

    1995-01-01

    This paper presents the results of thermal-hydraulic and fluidelastic U-tube instability analyses performed for the vertical type pressurized water reactor (PWR) steam generator model being employed at Kori units 2, 3 and 4, and Yonggwang units 1 and 2 in Korea. The thermal-hydraulic analysis for providing the detailed three-dimensional two-phase flow field in the secondary side of the steam generator was accomplished using the ATHOS3 steam generator thermal-hydraulic analysis code. The UTVA2 code designed for calculating both the free vibration responses and fluidelastic stability ratio of a specific U-tube under consideration was used to assess the potential for fluidelastic instability of the steam generator U-tubes at various conditions of antivibration bar (AVB)-inactive modes. The results of the fluidelastic instability analysis were discussed in comparison with those obtained for the steam generator U-tubes at AVB-active mode

  12. Methodology for risk analysis of nuclear installations

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Senne Junior, Murillo; Jordao, Elizabete

    2002-01-01

    Both the licensing standards for general uses in nuclear facilities and the specific ones require a risk assessment during their licensing processes. The risk assessment is carried out through the estimation of both probability of the occurrence of the accident, and their magnitudes. This is a complex task because the great deal of potential hazardous events that can occur in nuclear facilities difficult the statement of the accident scenarios. There are also many available techniques to identify the potential accidents, estimate their probabilities, and evaluate their magnitudes. In this paper is presented a new methodology that systematizes the risk assessment process, and orders the accomplishment of their several steps. (author)

  13. Performance analysis of nuclear materials accounting systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Shipley, J.P.

    1979-01-01

    Techniques for analyzing the level of performance of nuclear materials accounting systems in terms of the four performance measures, total amount of loss, loss-detection time, loss-detection probability, and false-alarm probability, are presented. These techniques are especially useful for analyzing the expected performance of near-real-time (dynamic) accounting systems. A conservative estimate of system performance is provided by the CUSUM (cumulative summation of materials balances) test. Graphical displays, called performance surfaces, are developed as convenient tools for representing systems performance, and examples from a recent safeguards study of a nuclear fuels reprocessing plant are given. 6 refs

  14. Method and procedure of fatigue analysis for nuclear equipment

    International Nuclear Information System (INIS)

    Wen Jing; Fang Yonggang; Lu Yan; Zhang Yue; Sun Zaozhan; Zou Mingzhong

    2014-01-01

    As an example, the fatigue analysis for the upper head of the pressurizer in one NPP was carried out by using ANSYS, a finite element method analysis software. According to RCC-M code, only two kinds of typical transients of temperature and pressure were considered in the fatigue analysis. Meanwhile, the influence of earthquake was taken into account. The method and procedure of fatigue analysis for nuclear safety equipment were described in detail. This paper provides a reference for fatigue analysis and assessment of nuclear safety grade equipment and pipe. (authors)

  15. Nuclear fuel management and transients analysis in Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    De Loera De Haro, M.A.; Alvarez Gasca, J.

    1991-01-01

    Nuclear fuel management transient analysis are the set of activities which determine the load and reload of nuclear fuel inside the reactor, with the aim of getting the maximum performance in fuel burn up and heat remotion, without have an effect in the station safety. Nuclear fuel management and transient analysis has its basis on high precision quantitative analysis methodologies by means of simulation of nuclear and physical phenomena occurring both in normal and abnormal operation of nuclear power plants. On account of complexity of simulations and the required precision, those are carry out using codes type 'best estimate'. For the use of this tools it is necessary a deep knowledge of simulated nuclear and physical phenomena, as well as the used mathematical models and the numerical methods used. If different, the simulation results will be notably different actual processes owing to the use of models out of validity range, or incorrect calculations in the input parameters. On account of complexity of simulations and the required precision, those are carry out using codes type 'best estimate'. For the use of this tools it is necessary a deep knowledge of simulated nuclear and physical phenomena, as well as the used mathematical models and the numerical methods used. If different, the simulation results will be notably different actual processes owing to the use of models out of validity range, or incorrect calculations in the input parameters

  16. Multidimensional elemental analysis with the Sandia nuclear microprobe

    International Nuclear Information System (INIS)

    Doyle, B.L.

    1988-01-01

    It is well known that many of the ion beam analysis techniques such as Rutherford backscattering spectrometry, elastic recoil detection, resonant and nonresonant nuclear reaction analysis can be used to nondestructively obtain concentration depth profiles of elements in solids. When these techniques are combined with the small beam spot capabilities of a scanned nuclear microprobe, sample composition can be determined in up to three dimensions. This paper will review the various procedures used to collect and analyze multidimensional data using the Sandia nuclear microprobe. In addition, examples of how these data are being used in the study of materials will be shown. (author)

  17. Analysis and prediction of leucine-rich nuclear export signals

    DEFF Research Database (Denmark)

    La Cour, T.; Kiemer, Lars; Mølgaard, Anne

    2004-01-01

    We present a thorough analysis of nuclear export signals and a prediction server, which we have made publicly available. The machine learning prediction method is a significant improvement over the generally used consensus patterns. Nuclear export signals (NESs) are extremely important regulators...... this analysis is that the most important properties of NESs are accessibility and flexibility allowing relevant proteins to interact with the signal. Furthermore, we show that not only the known hydrophobic residues are important in defining a nuclear export signals. We employ both neural networks and hidden...

  18. FAILURE MODE AND EFFECT ANALYSIS (FMEA OF BUTTERFLY VALVE IN OIL AND GAS INDUSTRY

    Directory of Open Access Journals (Sweden)

    MUHAMMAD AMIRUL BIN YUSOF

    2016-04-01

    Full Text Available Butterfly valves are mostly used in various industries such as oil and gas plant. This valve operates with rotating motion using pneumatic system. Rotating actuator turns the disc either parallel or perpendicular to the flow. When the valve is fully open, the disc is rotated a quarter turn so that it allows free passage of the fluid and when fully closed, the disc rotated a quarter turns to block the fluid. The primary failure modes for valves are the valve leaks to environment through flanges, seals on the valve body, valve stem packing not properly protected, over tightened packing nuts, the valve cracks and leaks over the seat. To identify the failure of valve Failure Mode and Effects Analysis has been chosen. FMEA is the one of technique to perform failure analysis. It involves reviewing as many components to identify failure modes, and their causes and effects. For each component, the failure modes and their resulting effects on the rest of the system are recorded in a specific FMEA form. Risk priority number, severity, detection, occurrence are the factor determined in this studies. Risk priority number helps to find out the highest hazardous activities which need more attention than the other activity. The highest score of risk priority number in this research is seat. Action plan was proposed to reduce the risk priority number and so that potential failures also will be reduced.

  19. Kovasznay modes in the linear stability analysis of self-similar ablation flows

    International Nuclear Information System (INIS)

    Lombard, V.

    2008-12-01

    Exact self-similar solutions of gas dynamics equations with nonlinear heat conduction for semi-infinite slabs of perfect gases are used for studying the stability of ablative flows in inertial confinement fusion, when a shock wave propagates in front of a thermal front. Both the similarity solutions and their linear perturbations are numerically computed with a dynamical multi-domain Chebyshev pseudo-spectral method. Laser-imprint results, showing that maximum amplification occurs for a laser-intensity modulation of zero transverse wavenumber have thus been obtained (Abeguile et al. (2006); Clarisse et al. (2008)). Here we pursue this approach by proceeding for the first time to an analysis of perturbations in terms of Kovasznay modes. Based on the analysis of two compressible and incompressible flows, evolution equations of vorticity, acoustic and entropy modes are proposed for each flow region and mode couplings are assessed. For short times, perturbations are transferred from the external surface to the ablation front by diffusion and propagate as acoustic waves up to the shock wave. For long times, the shock region is governed by the free propagation of acoustic waves. A study of perturbations and associated sources allows us to identify strong mode couplings in the conduction and ablation regions. Moreover, the maximum instability depends on compressibility. Finally, a comparison with experiments of flows subjected to initial surface defects is initiated. (author)

  20. FRICTION ANALYSIS ON SCRATCH DEFORMATION MODES OF VISCO-ELASTIC-PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Budi Setiyana

    2013-11-01

    Full Text Available Understanding of abrasion resistance and associated surfaces deformation mechanisms is of primary importance in materials engineering and design. Instrumented scratch testing has proven to be a useful tool for characterizing the abrasion resistance of materials. Using a conical indenter in a scratch test may result in different deformation modes, like as elastic deformation, ironing, ductile ploughing and cutting. This paper presents the friction analysis of some deformation modes of visco-elastic-plastic behaving polymer materials, especially PEEK (poly ether ether ketone.In general, it is accepted that the friction consist of an adhesion and a deformation component, which can be assumed to be independent to each others. During a scratch test, the friction coefficient is influenced by some parameters, such as the sharpness of indenter, the deformation modes and the degree of elastic recovery. Results show that the adhesion component strongly influences the friction in the elastic and ironing deformation mode (scratching with a blunt cone, friction for the cutting deformation mode (scratching with a sharp cone is dominantly influenced by the deformation component. From the analysis, it can be concluded that the adhesion friction model is suitable for ironing - elastic deformation mode and the deformation friction model with elastic recovery is good for cutting mode. Moreover, the ductile ploughing mode is combination of the adhesion and plastic deformation friction model. ANALISIS FRIKSI PADA BENTUK DEFORMASI AKIBAT GORESAN PADA MATERIAL VISKO-ELASTIK-PLASTIK. Pemahaman tentang ketahanan abrasi dan deformasi permukaan  yang  menyertainya merupakan hal yang penting dalam rekayasa dan disain material. Peralatan uji gores terbukti ampuh untuk menyatakan ketahanan abrasi dari material. Pemakaian indenter kerucut dalam uji gores akan menghasilkan beberapa bentuk deformasi seperti halnya deformasi elastik, penyetrikaan, plowing dan pemotongan

  1. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    International Nuclear Information System (INIS)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  2. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul [Stanford University, Stanford, California 94394 (United States); Varian Medical Systems, Palo Alto, California 94304 (United States); Stanford University, Stanford, California 94394 (United States)

    2010-12-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN{>=}125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be {approx}193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was {approx}35 min, while that taken for comprehensive testing was {approx}3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures

  3. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems.

    Science.gov (United States)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-12-01

    To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Failures modes with RPN > or = 125 were recommended to be tested monthly. Failure modes with RPN < 125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be approximately 193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was approximately 35 min, while that taken for comprehensive testing was approximately 3.5 h. FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  4. Potential seismic structural failure modes associated with the Zion Nuclear Plant. Seismic safety margins research program (Phase I). Project VI. Fragilities

    International Nuclear Information System (INIS)

    1979-10-01

    The Zion 1 and 2 Nuclear Power Plant consists of a number of structures. The most important of these from the viewpoint of safety are the containment buildings, the auxiliary building, the turbine building, and the crib house (or intake structure). The evaluation of the potential seismic failure modes and determination of the ultimate seismic capacity of the structures is a complex undertaking which will require a large number of detailed calculations. As the first step in this evaluation, a number of potential modes of structural failure have been determined and are discussed. The report is principally directed towards seismically induced failure of structures. To some extent, modes involving soil foundation failures are discussed in so far as they affect the buildings. However, failure modes involving soil liquefaction, surface faulting, tsunamis, etc., are considered outside the scope of this evaluation

  5. Transient analysis models for nuclear power plants

    International Nuclear Information System (INIS)

    Agapito, J.R.

    1981-01-01

    The modelling used for the simulation of the Angra-1 start-up reactor tests, using the RETRAN computer code is presented. Three tests are simulated: a)nuclear power plant trip from 100% of power; b)great power excursions tests and c)'load swing' tests.(E.G.) [pt

  6. Issues and scenarios for nuclear waste management systems analysis

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1980-11-01

    The Planning and Analysis Branch of the Department of Energy's Nuclear Waste Management Programs is developing a new systems integration program. The Pacific Northwest Laboratory was requested to perform a brief scoping analysis of what scenarios, questions, and issues should be addressed by the systems integration program. This document reports on that scoping analysis

  7. Use of some nuclear methods for materials analysis

    International Nuclear Information System (INIS)

    Habbani, Farouk

    1994-01-01

    A review is given about the use of two nuclear-related analytical methods, namely: X-ray fluorescence (XRF) and neutron activation analysis (NAA), for the determination of elemental composition of various materials. Special emphasis is given to the use of XRF for the analysis of geological samples, and NAA for the analysis of food - stuffs for their protein content. (Author)

  8. A comparative institutional analysis of the Fukushima nuclear disaster: Lessons and policy implications

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Rothwell, Geoffrey

    2013-01-01

    This paper analyzes the causes, responses, and consequences of the Fukushima nuclear power plant accident (March 2011) by comparing these with Three Mile Island (March 1979) and Chernobyl (April 1986). We identify three generic modes of organizational coordination: modular, vertical, and horizontal. By relying on comparative institutional analysis, we compare the modes' performance characteristics in terms of short-term and long-term coordination, preparedness for shocks, and responsiveness to shocks. We derive general lessons, including the identification of three shortcomings of integrated Japanese electric utilities: (1) decision instability that can lead to system failure after a large shock, (2) poor incentives to innovate, and (3) the lack of defense-in-depth strategies for accidents. Our suggested policy response is to introduce an independent Nuclear Safety Commission, and an Independent System Operator to coordinate buyers and sellers on publicly owned transmission grids. Without an independent safety regulator, or a very well established “safety culture,” profit-maximizing behavior by an entrenched electricity monopoly will not necessarily lead to a social optimum with regard to nuclear power plant safety. All countries considering continued operation or expansion of their nuclear power industries must strive to establish independent, competent, and respected safety regulators, or prepare for nuclear power plant accidents. - Highlights: ► We review damage to Fukushima Dai-Ichi on March 11, 2011, from the Tōhoku earthquake and tsunami. ► We find that delays in coordinated action led to a cascading series of accidents at Fukushima. ► We suggest unbundling of the publicly purchased Tokyo Electric Power to pay for accident damages. ► We suggest the creation of a Japanese Independent System Operator to manage unbundled transmission assets. ► We propose establishing an open-interface, rule-based independent nuclear regulator in Japan.

  9. Cost analysis of spent nuclear fuel management

    International Nuclear Information System (INIS)

    Robertson, D.L.M.; Ford, L.M.

    1993-01-01

    The Department of Energy Civilian Radioactive Waste Management System (CRWMS) is chartered to develop a waste management system for the safe disposal of spent nuclear fuel (SNF) from the 131 nuclear power reactors in the United States and a certain amount of high level waste (HLW) from reprocessing operations. The current schedule is to begin accepting SNF in 1998 for storage at a Monitored Retrievable Storage (MRS) facility. Subsequently, beginning in 2010, the system is scheduled to begin accepting SNF at a permanent geologic repository in 2010 and HLW in 2015. At this time, a MRS site has not been selected. Yucca Mountain, Nevada is currently being evaluated as the candidate site for the repository for permanent geologic disposal of SNF. All SNF, with the possible exception of the SNF from the western reactors, is currently planned to be shipped to or through the MRS site en route to the repository. The repository will operate in an acceptance and performance confirmation phase for a 50 year period beginning in 2010 with an additional nine year closure and five year decontamination and decommissioning period. The MRS has a statutory maximum capacity of 15,000 Metric Tons Uranium (MTU), with a further restriction that it may not store more than 10,000 MTU until the repository begins accepting waste. The repository is currently scheduled to store 63,000 MTU of SNF and an additional 7,000 MTU equivalent of HLW for a total capacity of 70,000 MTU. The amended act specified the MRS storage limits and identified Yucca Mountain as the only site to be characterized. Also, an Office of the Nuclear Waste Negotiator was established to secure a voluntary host site for the MRS. The MRS, the repository, and all waste containers/casks will go through a Nuclear Regulatory Commission licensing process much like the licensing process for a nuclear power plant. Environmental assessments and impact statements will be prepared for both the MRS and repository

  10. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Science.gov (United States)

    2011-01-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932

  11. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Science.gov (United States)

    Sergis, Antonis; Hardalupas, Yannis

    2011-05-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

  12. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Directory of Open Access Journals (Sweden)

    Sergis Antonis

    2011-01-01

    Full Text Available Abstract This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

  13. PENERAPAN FUZZY ANALYTIC HIERARCHY PROCESS DALAM METODE MULTI ATTRIBUTE FAILURE MODE ANALYSIS UNTUK MENGIDENTIFIKASI PENYEBAB KEGAGALAN POTENSIAL PADA PROSES PRODUKSI

    OpenAIRE

    Dorina Hetharia

    2012-01-01

    Banyak metode dalam Total Quality Management (TQM) yang dapat digunakan untuk melakukan perbaikan kualitas produk dan jasa. Salah satunya adalah Multi Attribute Failure Mode Analysis (MAFMA), yang dapat digunakan untuk mengeliminasi atau mengurangi kemungkinan terjadinya kegagalan bila dilihat dari faktor penyebabnya, sehingga dapat mencegah terulang kembali kegagalan tersebut. MAFMA merupakan pengembangan dari Failure Mode and Effect Analysis (FMEA), yang mengintegrasikan atribut severity, o...

  14. Coupling analysis of energy conversion in multi-mode vibration structural control using a synchronized switch damping method

    International Nuclear Information System (INIS)

    Ji, Hongli; Qiu, Jinhao; Xia, Pinqi; Inman, Daniel

    2012-01-01

    Modal coupling is an important issue in the analysis and control of structural systems with multi-degrees of freedom (MDOF). In this paper, modal coupling induced by energy conversion in the structural control of an MDOF system using a synchronized switch damping method is investigated theoretically and validated numerically. In the analysis, it is supposed that the voltage on the piezoelectric actuator is switched at the displacement extrema of a given mode. Two types of coupling in energy conversion are considered. The first is whether the switching action based on one mode induces energy conversion of the other modes. The second is whether the vibration of one mode affects the energy conversion of the other modes. The results indicate that the modal coupling in energy conversion is very complicated. In most cases the switching action based on one mode does induce energy conversion of another mode, but the efficiency depends on the frequency ratio of the two modes. The vibration of one mode affects the energy conversion of another mode only when the frequency ratio of the two modes takes some special values. Discussions are also given on the potential application of the theoretical results in the design of an energy harvesting device. (paper)

  15. Review of the study and application on nuclear forensic analysis

    International Nuclear Information System (INIS)

    Liu Cheng'an; Song Jiashu; Wu Jun

    2009-01-01

    For the interests of national security, many scientists who work in the field of nuclear forensic analysis have carried out extensive work in the past on the detection of radioactive material and attributions study, developed a series of scientific and technical means to trace and detect illicit circulation of nuclear materials used to weapons and other radioactive materials which impair public security. All these questions relate to physical, chemical, biological attribution of materials. The nuclear forensic analysis has already become a special, up-to-date sphere of learning. The goal of the study of nuclear forensics is to prevent terrorists from acquiring not only nuclear weapons but also mate- rials that can be used to make such weapons, including radioactive materials for nuclear power plants, and medical radioisotope to and provide us as many clues of environmental links as possible that could help us trace the smuggling path, to answer the following questions: What is the material? Where did it come from? How did it pass from legitimate to illicit use? How did it get to where it was interdicted? Who did it? This paper outlines the contents, analysis means and application of nuclear forensics. (authors)

  16. Rethinking Sensitivity Analysis of Nuclear Simulations with Topology

    Energy Technology Data Exchange (ETDEWEB)

    Dan Maljovec; Bei Wang; Paul Rosen; Andrea Alfonsi; Giovanni Pastore; Cristian Rabiti; Valerio Pascucci

    2016-01-01

    In nuclear engineering, understanding the safety margins of the nuclear reactor via simulations is arguably of paramount importance in predicting and preventing nuclear accidents. It is therefore crucial to perform sensitivity analysis to understand how changes in the model inputs affect the outputs. Modern nuclear simulation tools rely on numerical representations of the sensitivity information -- inherently lacking in visual encodings -- offering limited effectiveness in communicating and exploring the generated data. In this paper, we design a framework for sensitivity analysis and visualization of multidimensional nuclear simulation data using partition-based, topology-inspired regression models and report on its efficacy. We rely on the established Morse-Smale regression technique, which allows us to partition the domain into monotonic regions where easily interpretable linear models can be used to assess the influence of inputs on the output variability. The underlying computation is augmented with an intuitive and interactive visual design to effectively communicate sensitivity information to the nuclear scientists. Our framework is being deployed into the multi-purpose probabilistic risk assessment and uncertainty quantification framework RAVEN (Reactor Analysis and Virtual Control Environment). We evaluate our framework using an simulation dataset studying nuclear fuel performance.

  17. The integration methods of fuzzy fault mode and effect analysis and fault tree analysis for risk analysis of yogurt production

    Science.gov (United States)

    Aprilia, Ayu Rizky; Santoso, Imam; Ekasari, Dhita Murita

    2017-05-01

    Yogurt is a product based on milk, which has beneficial effects for health. The process for the production of yogurt is very susceptible to failure because it involves bacteria and fermentation. For an industry, the risks may cause harm and have a negative impact. In order for a product to be successful and profitable, it requires the analysis of risks that may occur during the production process. Risk analysis can identify the risks in detail and prevent as well as determine its handling, so that the risks can be minimized. Therefore, this study will analyze the risks of the production process with a case study in CV.XYZ. The method used in this research is the Fuzzy Failure Mode and Effect Analysis (fuzzy FMEA) and Fault Tree Analysis (FTA). The results showed that there are 6 risks from equipment variables, raw material variables, and process variables. Those risks include the critical risk, which is the risk of a lack of an aseptic process, more specifically if starter yogurt is damaged due to contamination by fungus or other bacteria and a lack of sanitation equipment. The results of quantitative analysis of FTA showed that the highest probability is the probability of the lack of an aseptic process, with a risk of 3.902%. The recommendations for improvement include establishing SOPs (Standard Operating Procedures), which include the process, workers, and environment, controlling the starter of yogurt and improving the production planning and sanitation equipment using hot water immersion.

  18. Fourier mode analysis of slab-geometry transport iterations in spatially periodic media

    International Nuclear Information System (INIS)

    Larsen, E W; Zika, M R

    1999-01-01

    We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonant wave numbers, in which case the material heterogeneities most strongly affect iterative performance

  19. Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating

    International Nuclear Information System (INIS)

    Wang Wen-Bo; Zhang Xiao-Dong; Chang Yuchan; Wang Xiang-Li; Wang Zhao; Chen Xi; Zheng Lei

    2016-01-01

    In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. (paper)

  20. Field analysis of TE and TM modes in photonic crystal Bragg fibers by transmission matrix method

    Directory of Open Access Journals (Sweden)

    M Hosseini Farzad

    2010-03-01

    Full Text Available In this article, we considered the field analysis in photonic crystal Bragg fibers. We apply the method of transmission matrix to calculater the dispersion curves, the longitudinal wave number over wave number versus incident wavelength, and the field distributions of TE and TM modes in the Bragg fiber. Our analysis shows that the field of guided modes is confined in the core and can exist only in particular wavelength bands corresponding to the band-gap of the periodic structure of the clad. From another point of view, light confinement is due to Bragg reflection from high-and low-refractive index layers of the clad. Also, the diagram of average angular frequency with respect to average longitudinal wave number is plotted so that the band gap regions of the clad are clearly observed.